
IBM WebSphere Application Server for IBM i, Version 8.5

Tuning guide

���

Note
Before using this information, be sure to read the general information under “Notices” on page 61.

Compilation date: June 6, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . v

Using this PDF . vii

Chapter 1. Tuning the Liberty profile . 1

Chapter 2. Planning for performance . 3
Application design consideration . 3

Chapter 3. Taking advantage of performance functions. 7

Chapter 4. Obtaining advice from the advisors . 9
Why you want to use the performance advisors . 9

Performance advisor types and purposes. 10
Using the Performance and Diagnostic Advisor . 13

Performance and Diagnostic Advisor configuration settings 15
Advice configuration settings . 17
Viewing the Performance and Diagnostic Advisor recommendations 18
Starting the lightweight memory leak detection . 18
Enabling automated heap dump generation . 20

Using the performance advisor in Tivoli Performance Viewer 20
Performance advisor report in Tivoli Performance Viewer 22

Activating the heap monitor . 22
Heap monitor default operation . 23

Chapter 5. Tuning the application serving environment 25
Tuning parameter hot list. 25
Directory conventions . 26
Tuning TCP/IP buffer sizes . 28
Tuning the JVM . 29

Tuning the IBM virtual machine for Java . 29
Directory conventions . 38
Tuning transport channel services . 40
Checking hardware configuration and settings . 45
Tuning operating systems . 46

Tuning IBM i systems . 46
Tuning web servers for IBM i . 47
Tuning web servers. 48
Using Collection Services performance data . 49

The manageWASCollectionServices script . 51
processStats script . 51

Directory conventions . 52
Tuning the application server using pre-defined tuning templates 54

Chapter 6. Troubleshooting performance problems 59

Notices . 61

Trademarks and service marks. 63

Index . 65

© Copyright IBM Corp. 2012 iii

iv Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 v

vi Tuning guide

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 vii

viii Tuning guide

Chapter 1. Tuning the Liberty profile

Use this topic to learn about the tunable parameters and attributes of the Liberty profile.

About this task

The Liberty profile supports different attributes in the server.xml file to influence application performance.
You can use these parameters and attributes to achieve better performance.

Procedure
v Tune the JVM.

Tuning the JVM is a most important tuning step whether you are configuring a development or
production environment. When tuning the JVM for the Liberty profile, consider using the jvm.options file
in the ${server.config.dir} directory. You can specify each of the JVM arguments that you want to
use, one option per line. See Customizing the Liberty profile environment for more information. An
example of jvm.options file as follows:

-Xms50m
-Xmx256m

For a development environment, you might be interested in faster server startup, so consider setting the
minimum heap size to a small value, and the maximum heap size to whatever value is needed for your
application. For a production environment, setting the minimum heap size and maximum heap size to
the same value can provide the best performance by avoiding heap expansion and contraction.

v Tune transport channel services.

The transport channel services manage client connections, I/O processing for HTTP, thread pools, and
connection pools. For applications on the Liberty profile, the following attributes are available for
different elements that can be used to improve runtime performance, or scalability, or both. Each of
these attributes is also described in Liberty profile: Configuration elements in the server.xml file.

maxKeepAliveRequests of httpOptions
This option specifies the maximum number of persistent requests that are allowed on a single
HTTP connection if persistent connections are enabled. A value of -1 means unlimited. This
option can provide benefit to low latency or high throughput applications and SSL connections
where building up new a connection can be costly. Here is an example of how you code this
option in the server.xml file:
<httpOptions maxKeepAliveRequests="-1" />

coreThreads of executor
This option specifies the core number of threads to associate with the executor of the thread
pool. The number of threads associated with the executor will quickly grow to this number. If
this value is less than 0, a default value is used. This default value is calculated based on the
number of hardware threads on the system.

Tip: Start your tuning with coreThreads="5" for each hardware thread or logical processor. For
example, for a 2-core SMT-4 machine, which represents 8 logical processors, you might
use coreThreads="40" as a starting point.

Here is an example of how you code this option in the server.xml file:
<executor name="LargeThreadPool" id="default" coreThreads="40" maxThreads="80"

keepAlive="60s" stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS" />

maxPoolSize of connectionManager
This option specifies the maximum number of physical connections for the connection pool. The
default value is 50. The optimal setting here depends on the application characteristics. For an
application in which every thread obtains a connection to the database, you might start with a
1:1 mapping to the coreThreads attribute. Here is an example of how you code this option in the
server.xml file:

© Copyright IBM Corp. 2012 1

<connectionManager ... maxPoolSize="40" />

purgePolicy of connectionManager
This option specifies which connections to destroy when a stale connection is detected in a
pool. The default value is the entire pool. It might be better to purge only the failing connection.
Here is an example of how you code this option in the server.xml file:
<connectionManager ... purgePolicy="FailingConnectionOnly" />

numConnectionsPerThreadLocal of connectionManager
This option specifies the number of database connections to cache for each executor thread.
This setting can provide a major improvement on large multicore (8+) machines by reserving
the specified number of database connections for each thread.

Using thread local storage for connections can increase performance for applications on
multi-threaded systems. When setting numConnectionsPerThreadLocal to 1 or more, that number
of connections per thread are stored in thread local storage. When using
numConnectionsPerThreadLocal, two other values need to be considered:

– The number of application threads

– The connection pool maximum connections

For best performance, if you have n applications threads, set maximum pool connections to at
least n times the value of numConnectionsPerThreadLocal attribute. For example, if you use 20
application threads, then the maximum pool connections should be set to 20 or more; If you set
the value of numConnectionPerThreadLocal attribute as 2 and there are 20 application threads,
then the maximum pool connection must be set to 40 or more. Here is an example of how you
code this option in the server.xml file:
<connectionManager ... numConnectionsPerThreadLocal="1" />

statementCacheSize of dataSource
This option specifies the maximum number of cached prepared statements per connection. This
option must be set by reviewing the application code (or an SQL trace gathered from the
database or database driver) for all unique prepared statements, and ensuring the cache size is
larger than the number of statements. Here is an example of how you code this option in the
server.xml file:
<dataSource ... statementCacheSize="60" >

isolationLevel of dataSource
The datasource isolation level is used to specify the degree of data integrity and concurrency,
which in turns controls the level of database locking. Traditionally there are four different
options, listed below in order of best performing (least integrity) to worst performing (best
integrity).

TRANSACTION_READ_UNCOMMITTED
Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE
Dirty reads, non-repeatable reads and phantom reads are prevented.

Here is an example of how you code this option in the server.xml file:
<dataSource ... isolationLevel="TRANSACTION_READ_COMMITTED">

2 Tuning guide

Chapter 2. Planning for performance

How well a website performs while receiving heavy user traffic is an essential factor in the overall success
of an organization. This section provides online resources that you can consult to ensure that your site
performs well under pressure.

Procedure
v Consult the following web resources for learning.

IBM® Patterns for e-Business

IBM Patterns for e-business is a group of reusable assets that can help speed the process of
developing Web-based applications. The patterns leverage the experience of IBM architects to
create solutions quickly, whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

Availability is an achievable service-level characteristic that every enterprise struggles with. The
worst case scenario is realized when load is underestimated or bandwidth is overloaded
because availability planning was not carefully conducted. Applying the information in this article
and the accompanying spreadsheet to your planning exercises can help you avoid such a
scenario.

Hardware configurations for WebSphere® Application Server production environments
This article describes the most common production hardware configurations, and provides the
reasons for choosing each one. It begins with a single machine configuration, and then
proceeds with additional configurations that have higher fault tolerance, horizontal scaling, and a
separation of web and enterprise bean servers.

v Take advantage of performance functions to improve performance. You can use functions such as
balancing workloads with clusters and using the dynamic cache to improve performance.

Application design consideration
This topic describes architectural suggestions for the design and tuning of applications.

The designing applications information contains the architectural suggestions and the implementation of
applications. For existing applications, the suggestions might require changing the existing
implementations. Tuning the application server and resource parameters can have the greatest effect on
performance of the applications that are well designed.

Use designing applications considerations in this topic for tips to ensure your applications are thoughtfully
designed and tuned. These considerations include websites and other ideas for finding best practices for
designing WebSphere applications, particularly in the realm of WebSphere extensions to the Java
Platform, Enterprise Edition (Java EE) specification.

best-practices: Use the following information as an architectural guide when implementing applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Java EE applications load, store, create, and remove data from relational databases, a process commonly
referred to as persistence. Most enterprise applications have significant database access. The architecture

© IBM Corporation 2004 3

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

and performance of the persistence layer is critical to the performance of an application. Therefore,
persistence is a very important area to consider when making architectural choices that require trade-offs
related to performance. This guide recommends first focusing on a solution that has clean architecture.
The clean architecture considers data consistency, security, maintenance, portability, and the performance
of that solution. Although this approach might not yield the absolute peak performance obtainable from
manual coding a solution that ignores the mentioned qualities of service, this approach can achieve the
appropriate balance of data consistency, maintainability, portability, security, and performance.

Multiple options are available in Java EE for persistence: Session beans using entity beans including
container-managed persistence (CMP) or bean-managed persistence (BMP), session beans using Java
Database Connectivity (JDBC), and Java beans using JDBC. For the reasons previously mentioned,
consider CMP entity persistence because it provides maximum security, maintenance, and portability. CMP
is also recommended for good performance. Refer to the Tune the EJB container section of the tuning
application servers topic on tuning enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the persistence mechanism
usually involves the JDBC API. Because JDBC requires manual coding, the Structured Query Language
(SQL) that runs against a database instance, it is critical to optimize the SQL statements that are used
within the application. Also, configure the database server to support the optimal performance of these
SQL statements. Finally, usage of specific JDBC APIs must be considered including prepared statements
and batching.

Regardless of which persistence mechanism is considered, use container-managed transactions where the
bean delegates management of transactions to the container. For applications that use JDBC, this is easily
achieved by using the session façade pattern, which wraps all JDBC functions with a stateless session
bean.

Finally, information about tuning the connection over which the EJB entity beans or JDBC communicates
can be found in the Tune the data sources section of the tuning application servers topic.

One of the standard Java EE programming architectures is the model-view-controller (MVC) architecture,
where a call to a controller servlet might include one or more child JavaServer Pages (JSP) files to
construct the view. The MVC pattern is a recommended pattern for application architecture. This pattern
requires distinct separation of the view (JSP files or presentation logic), the controller (servlets), and the
model (business logic). Using the MVC pattern enables optimization of the performance and scalability of
each layer separately.

Implementations that avoid storing the client user state scale and perform the best. Design
implementations to avoid storing state. If state storage is needed, ensure that the size of the state data
and the time that the state is stored are kept to the smallest possible values. Also, if state storage is
needed, consider the possibility of reconstructing the state if a failure occurs, instead of guaranteeing state
failover through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise beans. Refer to the
follow tuning guides for tuning the size, replication, and timing of the state storage:
v Session management tuning
v EJB tuning tips
v Tuning dynamic cache with the cache monitor

Most Java EE application workloads have more read operations than write operations. Read operations
require passing a request through several topology levels that consist of a front-end web server, the web
container of an application server, the EJB container of an application server, and a database. WebSphere
Application Server provides the ability to cache results at all levels of the network topology and Java EE
programming model that include web services.

4 Tuning guide

Application designers must consider caching when the application architecture is designed because
caching integrates at most levels of the programming model. Caching is another reason to enforce the
MVC pattern in applications. Combining caching and MVC can provide caching independent of the
presentation technology and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed because caching also
integrates at most levels of the network topology. For applications that are available on the public Internet,
network designers might want to consider Edge Side Include (ESI) caching when WebSphere Application
Server caching extends into the public Internet. Network caching services are available in the proxy server
for WebSphere Application Server, WebSphere Edge Component Caching Proxy, and the WebSphere
plug-in.

Java EE workloads typically consist of two types of operations. You must perform the first type of operation
to respond to a system request. You can perform the second type of operation asynchronously after the
user request that initiated the operation is fulfilled.

An example of this difference is an application that enables you to submit a purchase order, enables you
to continue while the system validates the order, queries remote systems, and in the future informs you of
the purchase order status. This example can be implemented synchronously with the client waiting for the
response. The synchronous implementation requires application server resources and you wait until the
entire operations complete. If the process enables you to continue, while the result is computed
asynchronously, the application server can schedule the processing to occur when it is optimal in relation
to other requests. The notification to you can be triggered through email or some other interface within the
application.

Because the asynchronous approach supports optimal scheduling of workloads and minimal server
resource, consider asynchronous architectures. WebSphere Application Server supports asynchronous
programming through Java EE Java Message Service (JMS) and message-driven beans (MDB) as well as
asynchronous beans that are explained in the Tuning Java Message Service and Tuning MDB topics.

Verify that all the libraries that applications use are also designed for server-side performance. Some
libraries are designed to work well within a client application and fail to consider server-side performance
concerns, for example, memory utilization, synchronization, and pooling. It is suggested that all libraries
that are not developed as part of an application undergo performance testing using the same test
methodologies as used for the application.

Additional references:IBM WebSphere Developer Technical Journal: The top 10 Java EE best
practicesImprove performance in your XML applications, Part 2

Chapter 2. Planning for performance 5

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

6 Tuning guide

Chapter 3. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a combination of product
features and application development considerations.

Procedure
v Use one of the following considerations to improve performance.

Using the dynamic cache service to improve performance

The dynamic cache service improves performance by caching the output of servlets,
commands, and JavaServer Pages (JSP) files. Dynamic caching features include cache
replication among clusters, cache disk offload, Edge-side include caching, and external caching,
which is the ability to control caches outside of the application server, such as that of your web
server.

v Ensure your applications perform well.

Take advantage of architectural suggestions and coding best practices to ensure that your applications
perform well. See the information about application design considerations and the information on
designing applications to learn more about ways you can improve performance of your applications.

© IBM Corporation 2004 7

8 Tuning guide

Chapter 4. Obtaining advice from the advisors

Advisors provide a variety of recommendations that help improve the performance of your application
server.

Before you begin

The advisors provide helpful performance as well as diagnostic advice about the state of the application
server.

About this task

Tuning WebSphere Application Server is a critical part of getting the best performance from your website.
However, tuning WebSphere Application Server involves analyzing performance data and determining the
optimal server configuration. This determination requires considerable knowledge about the various
components in the application server and their performance characteristics. The performance advisors
encapsulate this knowledge, analyze the performance data, and provide configuration recommendations to
improve the application server performance. Therefore, the performance advisors provide a starting point
to the application server tuning process and help you without requiring that you become an expert.

The Runtime Performance Advisor is extended to also provide diagnostic advice and is now called the
Performance and Diagnostic Advisor. Diagnostic advice provides useful information regarding the state of
the application server. Diagnostic advice is especially useful when an application is not functioning as
expected, or simply as a means of monitoring the health of application server.

Procedure
v Decide which performance advisor is right for the purpose, Performance and Diagnostic Advisor or

Tivoli® Performance Viewer advisor.

v Use the chosen advisor to periodically check for inefficient settings, and to view recommendations.

v Analyze Performance Monitoring Infrastructure data with performance advisors.

What to do next

Additionally, you can use the heap monitor feature to monitor the Java Virtual Machine (JVM) heap size of
a WebSphere Application Server profile in comparison to pool size. The feature is available for new
WebSphere Application Server profiles or profiles that are created after you update to the WebSphere
Application Server. For existing WebSphere Application Server profiles, there is a script available to add
the feature. See the heapMonitor script information.

Why you want to use the performance advisors
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning. The advisors that are based on this information provide advice on how to set some of
your configuration parameters to better tune WebSphere Application Server.

The advisors provide a variety of advice on the following application server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

© Copyright IBM Corp. 2012 9

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2® Performance Configuration wizard

v Connection use violations

For example, consider the data source statement cache. It optimizes the processing of prepared
statements and callable statements by caching those statements that are not used in an active connection.
(Both statements are SQL statements that essentially run repeatable tasks without the costs of repeated
compilation.) If the cache is full, an old entry in the cache is discarded to make room for the new one. The
best performance is generally obtained when the cache is large enough to hold all of the statements that
are used in the application. The PMI counter, prepared statement cache discards, indicates the number of
statements that are discarded from the cache. The performance advisors check this counter and provide
recommendations to minimize the cache discards.

Another example is thread or connection pooling. The idea behind pooling is to use an existing thread or
connection from the pool instead of creating a new instance for each request. Because each thread or
connection in the pool consumes memory and increases the context-switching cost, the pool size is an
important configuration parameter. A pool that is too large can hurt performance as much as a pool that is
too small. The performance advisors use PMI information about current pool usage, minimum or maximum
pool size, and the application server CPU utilization to recommend efficient values for the pool sizes.

The advisors can also issue diagnostic advice to help in problem determination and health monitoring. For
example, if your application requires more memory than is available, the diagnostic adviser tells you to
increase the size or the heap for application server.

Performance advisor types and purposes
Two performance advisors are available: the Performance and Diagnostic Advisor and the performance
advisor in Tivoli Performance Viewer.

The Performance and Diagnostic Advisor runs in the Java virtual machine (JVM) process of application
server; therefore, it does not provide expensive advice. In a stand-alone application server environment,
the performance advisor in Tivoli Performance Viewer runs within the application server JVM.

The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provide recommendations on inefficient settings by using collected Performance
Monitoring Infrastructure (PMI) data. Obtain the advice by selecting the performance advisor in Tivoli
Performance Viewer.

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor. The following chart shows the
differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Start location Application server Tivoli Performance Viewer client

Invocation of tool Administrative console Tivoli Performance Viewer

Output v The SystemOut.log file

v The administrative console

v JMX notifications

Tivoli Performance Viewer in the
administrative console

Frequency of operation Configurable When you select refresh in the Tivoli
Performance Viewer administrative
console

10 Tuning guide

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor (continued). The following chart
shows the differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Types of advice Performance advice:

v Object Request Broker (ORB) service
thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Memory leak detection

Diagnostic advice:

v Connection factory diagnostics

v Data source diagnostics

Connection usage diagnostics

v Detection of connection use by
multiple threads

v Detection of connection use across
components

Performance advice:

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM) heap size

v DB2 Performance Configuration wizard

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Performance and Diagnostic Advisor
Use this topic to understand the functions of the Performance and Diagnostic Advisor.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance
and is configured using the WebSphere Application Server administrative console or the wsadmin tool.
Running in the Java virtual machine (JVM) of the application server, the Performance and Diagnostic
Advisor periodically checks for inefficient settings and issues recommendations as standard product
warning messages. These recommendations are displayed both as warnings in the administrative console
under Runtime Messages in the WebSphere Application Server Status panel and as text in the application
server SystemOut.log file. Enabling the Performance and Diagnostic Advisor has minimal system
performance impact.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The Performance and Diagnostic Advisor provides performance advice and diagnostic advice to help tune
systems for optimal performance, and also to help understand the health of the system. It is configured

Chapter 4. Obtaining advice from the advisors 11

using the WebSphere Application Server administrative console or the wsadmin tool. Running in the Java
virtual machine (JVM) of the application server, the Performance and Diagnostic Advisor periodically
checks for inefficient settings and issues recommendations as standard product warning messages. These
recommendations are displayed as warnings in the administrative console under Runtime Messages in the
WebSphere Application Server Status panel, as text in the application server SystemOut.log file, and as
Java Management Extensions (JMX) notifications. Enabling the Performance and Diagnostic Advisor has
minimal system performance impact.

From WebSphere Application Server, Version 6.0.2, you can use the Performance and Diagnostic Advisor
to enable the lightweight memory leak detection, which is designed to provide early detection of memory
problems in test and production environments.

The advice that the Performance and Diagnostic Advisor gives is all on the server level. The only
difference when running in a WebSphere Application Server, Network Deployment environment is that you
might receive contradictory advice on resources that are declared at the node or cell level and used at the
server level.

For example, two sets of advice are given if a data source is declared at the node level to have a
connection pool size of {10,50} and is used by two servers (server1 and server2). If server1 uses only two
connections and server2 uses all fifty connections during peak load, the optimal connection pool size is
different for the two servers. Therefore, the Performance and Diagnostic Advisor gives two sets of advice
(one for server1 and another for server2). The data source is declared at the node level and you must
make your decisions appropriately by setting one size that works for both, or by declaring two different
data sources for each server with the appropriate level.

Read the using the performance and diagnostic advisor information for startup and configuration steps.

Diagnostic alerts:

In WebSphere Application Server Version 8.5 the Performance and Diagnostic Advisors are extended to
provide more diagnostic alerts to help common troubleshoot problems.

Several alerts are made available to monitor connection factory and data sources behavior. Some of these
alerts are straightforward and easy to comprehend. Others are much more involved and are intended for
use by IBM support only.

ConnectionErrorOccured diagnostic alert

When a resource adapter or data source encounters a problem with connections such that the connection
might no longer be usable, it informs the connection manager that a connection error occurred. This
causes the destruction of the individual connection or a pool purge, which is the destruction of all
connections in the pool, depending on the pool purge policy configuration setting. An alert is sent,
indicating a potential problem with the back-end if an abnormally high number of unusable connections are
detected.

Connection low-percent efficiency diagnostic alert

If the percentage of time that a connection is used versus held for any individual connections drops
beneath a threshold, an alert is sent with a call stack.

Cross-Component Use JCA Programming Model Violation Diagnostic Alert

When you enable cross-component use detection, the application server raises an alert when a connection
handle is used by a Java EE application component that is different from the component that originally
acquired the handle through a connection factory. This condition might inadvertently occur if an application
passes a connection handle in a parameter or an application obtains a handle from a cache that is shared

12 Tuning guide

by multiple application components. If components use a connection handle in this manner, this might
result in problems with application or data integrity. Enable the alert to detect the cross-component
connection use during development to identify and avoid potential application problems.

Local transaction containment (LTC) nesting threshold exceeded diagnostic alert

For LTC definition, see the Local transaction containment (LTC) and Transaction type and connection
behavior information, and Default behavior of managed connections in WebSphere Application Server
topic.

If a high number of LTCs are started on a thread before completing, an alert is raised. This alert is useful
in debugging some situations where the connection pool is unexpectedly running out of connections due to
multiple nested LTCs holding onto multiple shareable connections.

Multi-Thread Use JCA Programming Model Violation Diagnostic Alert

Multi-thread use detection raises an alert when an application component acquires a connection handle
using a connection factory, and then the component uses the handle on a different thread from which the
handle was acquired. If you use a connection in this manner, this behavior might cause data integrity
problems, especially if an application uses a connection handle on a thread that is not managed. Enable
the alert to detect multi-thread connection usage during application development.

Pool low-percent efficiency diagnostic alert

If the average time that a connection is held versus used for the all connections in the pool drops beneath
a threshold, an alert is sent.

Serial reuse violation diagnostic alert

For information on what serial reuse is, see the transaction type and connection behavior information.
Some legitimate scenarios exist, where a serial reuse violation is appropriate, but in most cases this
violation is not intended and might lead to data integrity problems.

If this alert is enabled, any time a serial reuse violation occurs within an LTC, an alert is sent.

Surge mode entered or exited diagnostic alert

When surge mode is configured, an alert is sent whenever surge mode engages or disengages. See the
surge mode documentation for more information.

Stuck connection block mode entered or exited diagnostic alert

When stuck connection detection is configured, an alert is sent whenever stuck connection blocking starts
or stops. See the stuck connection information.

Thread maximum connections exceeded diagnostic alert

When one or more LTCs on a thread ties too many managed connections, or poolable connections for
data sources an alert is issued.

Using the Performance and Diagnostic Advisor
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning.

Chapter 4. Obtaining advice from the advisors 13

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html

Procedure
1. Ensure that PMI is enabled, which is default. If PMI is disabled, see the enabling PMI using the

administrative console information. To obtain advice, you must first enable PMI through the
administrative console and restart the server. The Performance and Diagnostic Advisor enables the
appropriate monitoring counter levels for all enabled advice when PMI is enabled. If specific counters
exist that are not wanted, or when disabling the Performance and Diagnostic Advisor, you might want
to disable PMI or the counters that the Performance and Diagnostic Advisor enabled.

2. Click Servers > Application servers in the administrative console navigation tree.

3. Click server_name > Performance and Diagnostic Advisor Configuration.

4. Under the Configuration tab, specify the number of processors on the server. This setting is critical
to ensure accurate advice for the specific configuration of the system.

5. Select the Calculation Interval. PMI data is taken over time and averaged to provide advice. The
calculation interval specifies the length of time over which data is taken for this advice. Therefore,
details within the advice messages display as averages over this interval.

6. Select the Maximum Warning Sequence. The maximum warning sequence refers to the number of
consecutive warnings that are issued before the threshold is updated. For example, if the maximum
warning sequence is set to 3, then the advisor sends only three warnings, to indicate that the
prepared statement cache is overflowing. After three warnings, a new alert is issued only if the rate of
discards exceeds the new threshold setting.

7. Specify Minimum CPU for Working System. The minimum central processing unit (CPU) for a
working system refers to the CPU level that indicates a application server is under production load.
Or, if you want to tune your application server for peak production loads that range from 50-90% CPU
utilization, set this value to 50. If the CPU is below this value, some diagnostic and performance
advice are still issued. For example, regardless of the CPU level if you are discarding prepared
statements at a high rate, you are notified.

8. Specify CPU Saturated. The CPU saturated level indicates at what level the CPU is considered fully
utilized. The level determines when concurrency rules no longer increase thread pools or other
resources, even if they are fully utilized.

9. Click Apply.

10. Click Save.

11. Click server_name > Performance and Diagnostic Advisor Configuration.

12. Click the Runtime tab.

13. Click Restart. Select Restart on the Runtime tab to reinitialize the Performance and Diagnostic
Advisor using the last configuration information that is saved to disk.

This action also resets the state of the Performance and Diagnostic Advisor. For example, the current
warning count is reset to zero (0) for each message.

14. Simulate a production level load. If you use the Performance and Diagnostic Advisor in a test
environment, do any other tuning for performance, or simulate a realistic production load for your
application. The application must run this load without errors. This simulation includes numbers of
concurrent users typical of peak periods, and drives system resources, for example, CPU and
memory, to the levels that are expected in production. The Performance and Diagnostic Advisor
provides advice when CPU utilization exceeds a sufficiently high level only. For a list of IBM business
partners that provide tools to drive this type of load, see the performance: resource for learning
information.

15. Select the check box to enable the Performance and Diagnostic Advisor.

Tip: To achieve the best results for performance tuning, enable the Performance and Diagnostic
Advisor when a stable production-level load is applied.

16. Click OK.

17. Select Runtime Warnings in the administrative console under the Runtime Messages in the Status
panel or look in the SystemOut.log file, which is located in the following directory:
profile_root/logs/server_name

14 Tuning guide

Some messages are not issued immediately.

18. Update the product configuration for improved performance, based on advice. Although the
performance advisors attempt to distinguish between loaded and idle conditions, misleading advice
might be issued if the advisor is enabled while the system is ramping up or down. This result is
especially likely when running short tests. Although the advice helps in most configurations, there
might be situations where the advice hinders performance. Because of these conditions, advice is not
guaranteed. Therefore, test the environment with the updated configuration to ensure that it functions
and performs better than the previous configuration.

Over time, the advisor might issue differing advice. The differing advice is due to load fluctuations and
the runtime state. When differing advice is received, you need to look at all advice and the time
period over which it is issued. Advice is taken during the time that most closely represents the peak
production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

What to do next

You can enable and disable advice in the Advice Configuration panel. Some advice applies only to certain
configurations, and can be enabled only for those configurations. For example, unbounded Object Request
Broker (ORB) service thread pool advice is only relevant when the ORB service thread pool is unbounded,
and can only be enabled when the ORB thread pool is unbounded. For more information on Advice
configuration, see the advice configuration settings information.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Performance and Diagnostic Advisor configuration settings
Use this page to specify settings for the Performance and Diagnostic Advisor.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name > Performance and Diagnostic Advisor Configuration under the Performance section.

Enable Performance and Diagnostic Advisor Framework
Specifies whether the Performance and Diagnostic Advisor runs on the server startup.

The Performance and Diagnostic Advisor requires that the Performance Monitoring Infrastructure (PMI) be
enabled. It does not require that individual counters be enabled. When a counter that is needed by the
Performance and Diagnostic Advisor or is not enabled, the Performance and Diagnostic Advisor enables it
automatically. When disabling the Performance and Diagnostic Advisor, you might want to disable
Performance Monitoring Infrastructure (PMI) or the counters that Performance and Diagnostic Advisor
enabled. The following counters might be enabled by the Performance and Diagnostic Advisor:
v ThreadPools (module)

– Web Container (module)
- Pool Size
- Active Threads

– Object Request Broker (module)
- Pool Size
- Active Threads

v JDBC Connection Pools (module)

Chapter 4. Obtaining advice from the advisors 15

– Pool Size
– Percent used
– Prepared Statement Discards

v Servlet Session Manager (module)
– External Read Size
– External Write Size
– External Read Time
– External Write Time
– No Room For New Session

v System Data (module)
– CPU Utilization
– Free Memory

Enable automatic heap dump collection
Specifies whether the Performance and Diagnostic Advisor automatically generates heap dumps for post
analysis when suspicious memory activity is detected.

Calculation Interval
Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The calculation interval
specifies the length of time over which data is taken for this advice. Details within the advice messages
display as averages over this interval. The default value is automatically set to four minutes.

Maximum warning sequence
The maximum warning sequence refers to the number of consecutive warnings that are issued before the
threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends three warnings to
indicate that the prepared statement cache is overflowing. After three warnings, a new alert is only issued
if the rate of discards exceeds the new threshold setting. The default value is automatically set to one.

Number of processors
Specifies the number of processors on the server.

This setting is helpful to ensure accurate advice for the specific configuration of the system. Depending
your configuration and system, there may be only one processor utilized. The default value is automatically
set to two.

Minimum CPU For Working System
The minimum CPU for working system refers to the point at which concurrency rules do not attempt to free
resources in thread pools.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The Minimum CPU for working system sets a lower limit as to when you should consider adjusting thread
pools. For example, say you set this value to 50%. If the CPU is less than 50%, concurrency rules do not
try to free up resources by decreasing pools to get rid of unused threads. That is, if the pool size is 50-100
and only 20 threads are consistently used then concurrency rules would like to decrease the minimum
pool size to 20.

CPU Saturated
The CPU Saturated setting determines when the CPU is deemed to be saturated.

16 Tuning guide

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The CPU saturated setting determines when the CPU has reached its saturation point. For example, if this
is set to 95%, when the CPU is greater than 95% the concurrency rules do not try to improve things, that
is, increase the size of a thread pool.

Advice configuration settings
Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name. Under the Performance section, click Performance and Diagnostic Advisor
Configuration > Performance and Diagnostic Advice Configuration.

Advice name
Specifies the advice that you can enable or disable.

Advice applied to component
Specifies the WebSphere Application Server component to which the advice applies.

Advice type
Categorizes the primary indent of a piece of Advice.

Use Advice type for grouping, and then enabling or disabling sets of advice that is based upon your
purpose. Advice has the following types:

v Performance: Performance advice provides tuning recommendations, or identifies problems with your
configuration from a performance perspective.

v Diagnostic: Diagnostic advice provide automated logic and analysis relating to problem identification and
analysis. These types advice are usually issued when unexpected circumstances are encountered by
the application server.

Performance impact
Generalizes the performance overhead that an alert might incur.

The performance impact of a particular piece of advice is highly dependant upon the scenario being run
and upon the conditions meet. The performance categorization of alerts is based upon worst case
scenario measurements. The performance categorizations are:

v Low: Advice has minimal performance overhead. Advice might be run in test and production
environments. Cumulative performance overhead is within run to run variance when all advice of this
type is enabled.

v Medium: Advice has measurable but low performance overhead. Advice might be run within test
environments, and might be run within production environments if deemed necessary. Cumulative
performance overhead is less than 4% when all advice of this type is enabled.

v High: Advice impact is high or unknown. Advice might be run during problem determination tests and
functional tests. It is not run in production simulation or production environments unless deemed
necessary. Cumulative performance overhead might be significant when all advice of this type is
enabled.

Advice status
Specifies whether the advice is stopped, started, or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

v Started: The advice is enabled.

Chapter 4. Obtaining advice from the advisors 17

v Stopped: The advice is not enabled.

v Unavailable: The advice does not apply to the current configuration, for example, persisted session size
advice in a configuration without persistent sessions.

Viewing the Performance and Diagnostic Advisor recommendations
Runtime Performance Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning.

About this task

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application
server, this advisor periodically checks for inefficient settings, and issues recommendations as standard
product warning messages.

Procedure

The Performance and Diagnostic Advisor recommendations are displayed in two locations:

1. The WebSphere Application Server SystemOut.log log file.

2. The Runtime Messages panel in the administrative console. To view this administrative page, click
Troubleshooting > Runtime Messages > Runtime Warning.

Example

The following log file is a sample output of advice on the SystemOut.log file:
[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W CWTUN0202W:
Increasing the web container thread pool Maximum Size to 48
might improve performance.

Additional explanatory data follows.

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.
The threshold will be updated to reduce the
overhead of the analysis.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Starting the lightweight memory leak detection
Use this task to start the lightweight memory leak detection using the Performance and Diagnostic Advisor.

Before you begin

If you have a memory leak and want to confirm the leak, or you want to automatically generate heap
dumps on Java virtual machines (JVM) in WebSphere Application Server, consider changing your
minimum and maximum heap sizes to be equal. This change provides the memory leak detection more
time for reliable diagnosis.

18 Tuning guide

About this task

To start the lightweight memory leak detection using the Performance and Diagnostic Advisor, perform the
following steps in the administrative console:

Procedure
1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name > Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Enable the Performance and Diagnostic Advisor Framework.

5. Click OK.

6. From the Runtime or Configuration tab of Performance and Diagnostic Advisor Framework, click
Performance and Diagnostic Advice configuration.

7. Start the memory leak detection advice and stop any other unwanted advice.

Results

The memory leak detection advice is started.

Important: To achieve the best results for performance tuning, start the Performance and Diagnostic
Advisor when a stable production level load is running.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime
Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor
recommendations” on page 18 topic.

Lightweight memory leak detection
This topic describes memory leaks in Java applications and introduces lightweight memory leak detection.

Although a Java application has a built-in garbage collection mechanism, which frees the programmer from
any explicit object deallocation responsibilities, memory leaks are still common in Java applications.
Memory leaks occur in Java applications when unintentional references are made to unused objects. This
occurrence prevents Java garbage collection from freeing memory.

The term memory leak is overused; a memory leak refers to a memory misuse or mismanagement. Old
unused data structures might have outstanding references but are never garbage collected. A data
structure might have unbounded growth or there might not be enough memory that is allocated to
efficiently run a set of applications.

Most existing memory leak technologies are based upon the idea that you know that you have a memory
leak and want to find it. Because of these analysis requirements, these technologies have significant
performance burdens and are not designed for use as a detection mechanism in production. This limitation
means that memory leaks are generally not detected until the problem is critical; the application passes all
system tests and is put in production, but it crashes and nobody knows why.

Chapter 4. Obtaining advice from the advisors 19

WebSphere Application Server has implemented a lightweight memory leak detection mechanism that runs
within the WebSphere Performance and Diagnostic Advisor framework. This mechanism is designed to
provide early detection of memory problems in test and production environments. This framework is not
designed to provide analysis of the source of the problem, but rather to provide notification and help
generating the information that is required to use analysis tools. The mechanism only detects memory
leaks in the Java heap and does not detect native leaks.

The lightweight memory leak detection in WebSphere Application Server does not require any additional
agents. The detection relies on algorithms that are based on information that is available from the
Performance Monitoring Infrastructure service and has minimal performance overhead.

Enabling automated heap dump generation
Use this task to enable automated heap dump generation. This function is not supported when using a
Sun Java virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and
Solaris operating systems. You need to research taking heap dumps on Sun JVMs or call IBM Support.

Before you begin

Although heap dumps are only generated in response to a detected memory leak, you must understand
that generating heap dumps can have a severe performance impact on WebSphere Application Server for
several minutes.

About this task

To help you analyze memory leak problems when memory leak detection occurs, use the Heap
Analysis Tools for Java™. Use the Heap Analysis Tools component (also known as Heap Analyzer) to
perform Java application heap analysis and object create profiling (size and identification) over time. Heap
Analyzer includes information about:

v Java virtual machine (JVM) heap growth or size

v The objects being created that include type of object, count and object size, object heap size

v The application "Heap Footprint" for memory sizing and performance considerations

v Includes a call stack for every snapshot when running in profile mode so objects created can be
correlated to functions in the application.

The Heap Analyzer tool is a component of the iDoctor for IBM i suite of performance
monitoring tools

Use the heap monitor feature to monitor the JVM heap size of a WebSphere Application Server
profile in comparison to pool size.

Using the performance advisor in Tivoli Performance Viewer
The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provides recommendations on inefficient settings by using the collected Performance
Monitoring Infrastructure (PMI) data.

About this task

Obtain advice by clicking Performance Advisor in Tivoli Performance Viewer. The performance advisor in
Tivoli Performance Viewer provides more extensive advice than the Performance and Diagnostic Advisor.
For example, Tivoli Performance Viewer provides advice on setting the dynamic cache size, setting the
Java virtual machine (JVM) heap size and using the DB2 Performance Configuration wizard.

20 Tuning guide

https://www-912.ibm.com/i_dir/idoctor.nsf/jv.html
https://www-912.ibm.com/i_dir/idoctor.nsf/jv.html
https://www-912.ibm.com/i_dir/iDoctor.nsf

Procedure
1. Enable data collection and set the PMI monitoring level to Extended.

The monitoring levels that determine which data counters are enabled can be set dynamically, without
restarting the server. These monitoring levels and the data selected determine the type of advice you
obtain. The performance advisor in Tivoli Performance Viewer uses the extended monitoring level;
however, the performance advisor in Tivoli Performance Viewer can use a few of the more expensive
counters (to provide additional advice) and provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to All. Or, you can use
the PMI Custom Monitoring Level to enable the Servlet Session Manager SessionObjectSize counter.
The monitoring of the SessionSize PMI counter is expensive, and is not in the Extended PMI statistic
set. Complete this action in one of the following ways:

a. PMI settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.

2. In the administrative console, click Monitoring and Tuning > Performance Viewer > Current
Activity.

3. Simulate a production level load. Simulate a realistic production load for your application, if you use the
performance advisor in a test environment, or do any other performance tuning. The application must
run this load without errors. This simulation includes numbers of concurrent users typical of peak
periods, and drives system resources, for example, CPU and memory to the levels that are expected
in production. The performance advisor only provides advice when CPU utilization exceeds a
sufficiently high level. For a list of IBM business partners providing tools to drive this type of load, see
the performance: resource for learning information.

4. Log performance data with Tivoli Performance Viewer.

5. Clicking Refresh on top of the table of advice causes the advisor to recalculate the advice based on
the current data in the buffer.

6. Tuning advice displays when the Advisor icon is chosen in the Tivoli Performance Viewer Performance
Advisor. Double-click an individual message for details. Because PMI data is taken over an interval of
time and averaged to provide advice, details within the advice message display as averages.

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to enable sufficient data
to be collected for performing average calculations. Currently 5 minutes of data is required.
Hence, the following guidelines intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is the amount of PMI
data available in memory and it must be greater than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with Tivoli Performance Viewer logs, the
logs must be at least 300 seconds of duration.

For more information about configuring user and logging settings of Tivoli Performance Viewer,
refer to the configuring Tivoli Performance Viewer settings information.

7. Update the product configuration for improved performance, based on advice. Because Tivoli
Performance Viewer refreshes advice at a single instant in time, take the advice from the peak load
time. Although the performance advisors attempt to distinguish between loaded and idle conditions,
misleading advice might be issued if the advisor is enabled while the system is ramping up or down.
This result is especially likely when running short tests. Although the advice helps in most
configurations, there might be situations where the advice hinders performance. Because of these
conditions, advice is not guaranteed. Therefore, test the environment with the updated configuration to
ensure it functions and performs well.

Over a period of time the advisor might issue differing advice. The differing advice is due to load
fluctuations and run-time state. When differing advice is received, you need to look at all advice and
the time period over which it was issued. You must take advice during the time that most closely
represents the peak production load.

Chapter 4. Obtaining advice from the advisors 21

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

Performance advisor report in Tivoli Performance Viewer
View recommendations and data from the performance advisor in Tivoli Performance Viewer by clicking
the Advisor link in Tivoli Performance Viewer for a server.

For more information on how to use the performance advisor in Tivoli Performance Viewer, see the article,
Using the performance advisor in Tivoli Performance Viewer.

Message
Specifies recommendations for performance tuning.

Click the message to obtain more details.

Performance data in the upper panel
Displays a summary of performance data for WebSphere Application Server. Data here corresponds to the
same period that recommendations were provided for. However, recommendations might use a different
set of data points during analysis than the set that is displayed by the summary page.

The first table represents the number of requests per second and the response time in milliseconds for
both the web and Enterprise JavaBeans containers.

The pie graph displays the CPU activity as percentage busy and idle.

The second table displays the average thread activity for the web container and Object Request Broker
(ORB) thread pools, and the average database connection activity for connection pools. The activity is
expressed as the number of threads or connections busy and idle.

Activating the heap monitor
This task describes the steps used to activate the heap monitor. Heap monitor is used with WebSphere
Application Server profiles to monitor heap size of a profile in comparison to pool size.

Before you begin

About this task

You can use the heap monitor feature to monitor the Java Virtual Machine (JVM) heap size of a
WebSphere Application Server profile in comparison to pool size. The feature is available for new
WebSphere Application Server profiles or profiles that are created.

To check if a WebSphere Application Server profile has the heap monitor enabled and to activate it if
necessary, perform the following steps.

Procedure
1. Start the server for the WebSphere Application Server profile.

2. Run the heapMonitor script with the -status flag. For example, for a WebSphere Application Server
Version 8.5 profile named default, enter the following command in the Qshell environment:
/QIBM/ProdData/WebSphere/AppServer/V85/Base/bin/heapMonitor -profileName default -status

The output should look similar to the following:

22 Tuning guide

WASX7209I: Connected to process "server1" on node MYSERVER using SOAP connector;
The type of process is: UnManagedProcess
WASX7303I: The following options are passed to the scripting
environment and are available as argument that is stored in the argv
variable: "[status, server1]"
HEAP0002I: The heap monitor is disabled.
$

3. To enable the heap monitor for this example, enter the following command in the Qshell environment:
/QIBM/ProdData/WebSphere/AppServer/V85/Base/bin/heapMonitor -profileName default -enable

The output should look similar to the following:
WASX7209I: Connected to process "server1" on node MYSERVER using SOAP connector;
The type of process is: UnManagedProcess
WASX7303I: The following options are passed to the scripting environment and are
available as argument that is stored in the argv
variable: "[enable, server1]"
HEAP0005I: Enabling the heap monitor...
HEAP0003I: The heap monitor has been enabled.
$

4. Stop and start the server.

Results

The following message typically appears in the Display Message command (DSPMSG QSYSOPR):
HEAP MONITOR STARTED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM qwas85 IN POOL

*BASE POOL ID=2 POOLSIZE(B)=1687994368 RESERVED(B)=778240 HEAP
TOTAL(B)=202276864 FREE(B)=67037600 USEDHEAP=135239264
OS400.GC.HEAP.SIZE.MAX(KB) =240000000

The heap monitor is activated.

Heap monitor default operation
The heap monitor follows default operation behavior as described in this file.

An active heap monitor typically sends a message to the QSYSOPR message queue when the
WebSphere Application Server profile starts. For example, the Display Message command (DSPMSG
QSYSOPR) displays the following message:
HEAP MONITOR STARTED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM qwas85 IN POOL

*BASE POOL ID=2 POOLSIZE(B)=1687994368 RESERVED(B)=778240 HEAP
TOTAL(B)=202276864 FREE(B)=67037600 USEDHEAP=135239264
OS400.GC.HEAP.SIZE.MAX(KB) =240000000

In default operation, a similar message displays ENDED instead of STARTED when the WebSphere
Application Server profile is ended. For example:
HEAP MONITOR ENDED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM
qwas85 IN POOL *BASE POOL ID=2 POOLSIZE(B)=6662139904 RESERVED(B)=5165056
HEAP TOTAL(B)=312999936 FREE(B)=168637264 USEDHEAP=144362672
OS400.GC.HEAP.SIZE.MAX(KB) =240000000

The Display Log command (DSPLOG LOG(QHST) MSGID(CPI8859)) shows all STARTED and ENDED
messages in the history log.

The default operation monitors the size of the Java virtual machine (JVM) Garbage Collection (GC) heap
against the following:

v The size of the effective memory pool.

v The size of the memory pool size minus the reserved size.

Chapter 4. Obtaining advice from the advisors 23

It also issues a message if the effective memory pool size exceeds 85, 90, 95, or 100 percent. For
example:
048241/QEJBSVR/SERVER1 GC HEAP USES 95% OF THE NON-RESERVED POOL. JVM GC

HEAP SIZE(KB) EFFECTIVE POOLSIZE(KB):840282 882444.
048241/QEJBSVR/SERVER1 GC HEAP USES 110% OF THE NON-RESERVED POOL. JVM GC

HEAP SIZE(KB) EFFECTIVE POOLSIZE(KB):974601 882392.

The first number is the size of the heap, such as 840282 or 974601. The second number is the effective
pool size (or non-reserved pool size), such as 882444 or 882392. The Display Log command (DSPLOG
LOG(QHST) MSGID(CPF9898)) shows warning messages in the history log.

For the maximum Garbage Collection heap size, the default operation is to monitor the size of the JVM
Garbage Collection heap so that it does not exceed 85, 90, or 95 percent of the maximum. For example:
048358/QEJBSVR/USER JAVA USED 88% OF THE GC HEAP. USED HEAP SIZE(KB)

AND MAX HEAP(KB):909088 1024001.

The maximum heap size is 1024001 Kbytes (-Xmx1000m), and the used heap size is 909088 Kbytes.

24 Tuning guide

Chapter 5. Tuning the application serving environment

Use this topic to understand the benefits of tuning for optimal performance. Learn about the tunable
parameters of the major WebSphere Application Server components and how these parameters affect
performance.

Before you begin

WebSphere Application Server provides tunable settings for its major components so that you can adjust
the runtime environment to match the characteristics of your application. Applications can run successfully
without changing the default values for these tuning parameters. Other applications might need changes,
for example, a larger heap size, to achieve optimal performance.

Performance tuning can yield significant gains in performance even if an application is not optimized for
performance. However, correcting shortcomings of an application typically results in higher performance
gains than are possible with just altering tuning parameters. Many factors contribute to a high performing
application.

About this task

Procedure
1. Run the applyPerfTuningTemplate.py script as the starting point for improving the performance of a

specific application server. This python-based tuning script, along with one of its template files, applies
the recommended performance tuning settings for a typical development, production, or environment
that is ready for immediate use. The applyPerfTuningTemplate.py script, and its associated templates
and properties files, are located in the WAS_HOME/bin directory.

2. Use the performance advisors, the suggested procedures or parameters in the tuning parameter hot
list, and the information on troubleshooting performance problems to optimize your WebSphere
Application Server instances to their fullest extent.

Performance advisors
The performance advisors use the Performance Monitoring Infrastructure (PMI) data to suggest
configuration changes to Object Request Broker (ORB) service thread pools, web container
thread pools, connection pool size, persisted session size and time, prepared statement cache
size, and session cache size. The Runtime Performance Advisor runs in the application server
process, while the other advisor runs in the Tivoli Performance Viewer. For more information,
see the documentation about using the Performance and Diagnostic Advisor and use the
performance advisor in Tivoli Performance Viewer.

Tuning parameter hot list
Review the documentation about the tuning parameter hot list. These parameters have an
important impact on performance. Because these parameters are application-dependent, the
parameter settings for specific applications and environments can vary.

Troubleshooting performance
To save you time detecting problems and help you troubleshoot performance problems, see
the documentation about troubleshooting performance.

Tuning parameter hot list
The following hot list contains recommendations that have improved performance or scalability, or both, for
many applications.

WebSphere Application Server provides several tunable parameters and options to match the application
server environment to the requirements of your application.
v Review the hardware and software requirements

© IBM Corporation 2002 25

It is critical for proper functionality and performance to satisfy the minimum hardware and software
requirements. Refer to IBM WebSphere Application Server supported hardware, software, and APIs
website which details hardware and software requirements.

v Check hardware configuration and settings

Check network connections to make sure that they are running at their highest speed. For
more information, see Chapter 5, “Tuning the application serving environment,” on page 25.

v “Tuning IBM i systems” on page 46

Operating system configuration plays a key role in performance. For example, adjustments such as
TCP/IP parameters might be necessary for your application.

IBM Power Systems Performance Capabilities Reference IBM i operating system Version 6.1

Web Performance Advisor
v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size then the default for best performance. It is also advised to
select an appropriate GC policy based on the application's characteristics.

v Use a type 2 JDBC driver for local data access and a type 4 (or pure Java) JDBC driver for
remote data access

In general, the type 2 JDBC driver is recommended. Use the previous link to view a list of database
vendor-specific requirements, which can tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.
v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to avoid the cost of copying
parameters to the stack.

v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application Server transaction log.
Locating the transaction log on a fast disk or disk array can improve response time

See the Administering applications and their environment PDF for more information.
v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher
throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more
information.

v Disable functions that are not required

For example, if your application does not use the web services addressing (WS-Addressing) support,
disabling this function can improve performance.

Attention: Use this property with care because applications might require WS-Addressing MAPs to
function correctly. Setting this property also disables WebSphere Application Server support for the
following specifications, which depend on the WS-Addressing support: Web Services Atomic
Transactions, Web Services Business Agreement and Web Services Notification.

To disable the support for WS-Addressing, refer to Enabling Web Services Addressing support for
JAX-RPC applications

v Review your application design

You can track many performance problems back to the application design. Review the design to
determine if it causes performance problems.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

26 Tuning guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www-03.ibm.com/systems/i/advantages/perfmgmt/pdf/pcrm.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzaie/rzaiewebperfadvisor.htm

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server is the
/QIBM/ProdData/WebSphere/AppServer/V85/Base directory.

java_home

Table 2. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server is the
/QIBM/UserData/WebSphere/AppServer/V85/Base/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

Chapter 5. Tuning the application serving environment 27

user_data_root
The default user data directory for WebSphere Application Server is the /QIBM/UserData/
WebSphere/AppServer/V85/Base directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Tuning TCP/IP buffer sizes
WebSphere Application Server uses the TCP/IP sockets communication mechanism extensively. For a
TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive
window specifies the amount of data that can be sent and not received before the send is interrupted. If
too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls data
transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is too
small, the receive window buffer is frequently overrun, and the flow control mechanism stops the data
transfer until the receive buffer is empty.

About this task

Flow control can consume a significant amount of CPU time and result in additional network
latency as a result of data transfer interruptions. It is recommended that you increase buffer sizes to avoid
flow control under normal operating conditions. A larger buffer size reduces the potential for flow control to
occur, and results in improved CPU utilization. However, a large buffer size can have a negative effect on
performance in some cases. If the TCP/IP buffers are too large and applications are not processing data
fast enough, paging can increase. The goal is to specify a value large enough to avoid flow control, but
not so large that the buffer accumulates more data than the system can process.

The default buffer size is 8 KB. The maximum size is 8 MB (8096 KB). The optimal buffer size
depends on several network environment factors including types of switches and systems,
acknowledgment timing, error rates and network topology, memory size, and data transfer size. When data
transfer size is extremely large, you might want to set the buffer sizes up to the maximum value to
improve throughput, reduce the occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the web server and WebSphere Application
Server are set at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer Kit for
Java(TM) JDBC driver or the IBM Toolbox for Java JDBC driver to access a remote database. If the data
transfers are large, flow control can consume a large amount of CPU time. If you use the IBM Toolbox for
Java JDBC driver, you can use custom properties to configure the buffer sizes for each data source. It is
recommended that you specify large buffer sizes, for example, 1 MB.

Some system-wide settings can override the default 8 KB buffer size for sockets. With some
applications, for example, WebSphere Commerce Suite, a buffer size of 180 KB reduces flow control and
typically does not adversely affect paging. The optimal value is dependent on specific system
characteristics. You might need to try several values before you determine the ideal buffer size for your
system.

To change the system wide value, perform the following steps:

28 Tuning guide

Procedure

Tune the TCP/IP buffer sizes.

1. Change the TCP/IP configuration.

a. Run the Change TCP/IP Attribute, CHGTCPA command.

b. View and change the buffer sizes by pressing F4 on the Change TCP/IP Attributes window. The
buffer sizes are displayed as the TCP receive and send buffer sizes. Type new values and save
your changes.

2. Recycle TCP/IP, then monitor CPU and paging rates to determine if they are within recommended
system guidelines.

Results

Repeat this process until you determine the ideal buffer size.

What to do next

The TCP/IP buffer sizes are changed. Repeat this process until you determine the ideal buffer
size.

For more information about TCP/IP performance, see Chapter 5 of the Performance
Capabilities Reference. Links to several editions of the Performance Capabilities Reference are in the
Performance Management Resource Library.

Tuning the JVM

Tuning the IBM virtual machine for Java
An application server is a Java based server and requires a Java virtual machine (JVM) environment to
run and support the enterprise applications that run on it. As part of configuring your application server,
you can configure the Java SE Runtime Environment to tune performance and system resource usage.
This topic applies to IBM virtual machines for Java.

Before you begin

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

v Determine the type of JVM on which your application server is running.

Issue the dspwasinst command from the profile_root/bin directory. The output from this
command contains the JAVA_HOME setting and other information about the JVM enabled for your
application server profile.

If your application server is running on the IBM i Java Developer Kit 6.0 JVM, which is also
known as the Classic JVM, see the topic Tuning the Classic JVM (IBM i).

Use the managesdk command, if you want to enable your application server profile to use a
different JVM.

Use the enablejvm command, if you want to enable your application server profile to use a
different JVM.

Chapter 5. Tuning the application serving environment 29

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.html

v Verify that:
1. The most recent supported version of the JVM is installed on your system.
2. The most recent service update is installed on your system. Almost every new service level includes

JVM performance improvements.

About this task

Each JVM vendor provides detailed information on performance and tuning for their JVM. Use the
information provided in this topic in conjunction with the information that is provided with the JVM that is
running on your system.

A Java SE Runtime Environment provides the environment for running enterprise applications and
application servers. Therefore the Java configuration plays a significant role in determining performance
and system resource consumption for an application server and the applications that run on it.

The IBM virtual machine for Java Version 6.0 includes the latest in Java Platform, Enterprise Edition (Java
EE) specifications, and provides performance and stability improvements over previous versions of Java.

Even though JVM tuning is dependent on the JVM provider you use, there are some general tuning
concepts that apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just-In-Time (JIT) compilers to compile Java byte codes into native
instructions during server runtime.

v Java memory or heap tuning. Tuning the JVM memory management function, or garbage collection, is a
good starting point for improving JVM performance.

v Class loading tuning.

v Start up versus runtime performance optimization

The following steps provide specific instructions on how to perform the following types of tuning for each
JVM. The steps do not have to be performed in any specific order.

Procedure
1. Optimize the startup and runtime performance.

In some environments, such as a development environment, it is more important to optimize the
startup performance of your application server rather than the runtime performance. In other
environments, it is more important to optimize the runtime performance. By default, IBM virtual
machines for Java are optimized for runtime performance, while HotSpot-based JVMs are optimized for
startup performance.

The Java Just-in-Time (JIT) compiler impacts whether startup or runtime performance is optimized. The
initial optimization level that the compiler uses influences the length of time that is required to compile
a class method, and the length of time that is required to start the server. For faster startups, reduce
the initial optimization level that the compiler uses. However if you reduce the initial optimization level,
the runtime performance of your applications might decrease because the class methods are now
compiled at a lower optimization level.

v -Xquickstart

This setting influences how the IBM virtual machine for Java uses a lower optimization level for
class method compiles. A lower optimization level provides for faster server startups, but lowers
runtime performance. If this parameter is not specified, the IBM virtual machine for Java defaults to
starting with a high initial optimization level for compiles, which results in faster runtime
performance, but slower server starts.

You can set this property on the Java virtual machine panel using the administrative console. For
details, read the information about Java virtual machine settings.

30 Tuning guide

Information Value

Default High initial compiler optimization level

Recommended High initial compiler optimization level

Usage Specifying -Xquickstart improves server startup time.

2. Configure the heap size.

The Java heap parameters influence the behavior of garbage collection. Increasing the heap size
supports more object creation. Because a large heap takes longer to fill, the application runs longer
before a garbage collection occurs. However, a larger heap also takes longer to compact and causes
garbage collection to take longer.

The JVM uses defined thresholds to manage the storage that it is allocated. When the thresholds are
reached, the garbage collector is invoked to free up unused storage. Therefore, garbage collection can
cause significant degradation of Java performance. Before changing the initial and maximum heap
sizes, you should consider the following information:

v In the majority of cases you should set the maximum JVM heap size to a value that is higher than
the initial JVM heap size. This setting allows for the JVM to operate efficiently during normal, steady
state periods within the confines of the initial heap. This setting also allows the JVM to operate
effectively during periods of high transaction volume because the JVM can expand the heap up to
the value specified for the maximum JVM heap size. In some rare cases, where absolute optimal
performance is required, you might want to specify the same value for both the initial and maximum
heap size. This setting eliminates some overhead that occurs when the JVM expands or contracts
the size of the JVM heap. Before changing any of the JVM heap sizes, verify that the JVM storage
allocation is large enough to accommodate the new heap size.

v Do not make the size of the initial heap so large that while it initially improves performance by
delaying garbage collection, when garbage collection does occur, the collection process affects
response time because the process has to run longer.

To use the administrative console to configure the heap size:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process
definition > Java virtual machine.

c. Specify a new value in either the Initial heap size or the Maximum heap size field.

You can also specify values for both fields if you need to adjust both settings.

For performance analysis, the initial and maximum heap sizes should be equal.

The Initial heap size setting specifies, in megabytes, the amount of storage that is allocated for the
JVM heap when the JVM starts. The Maximum heap size setting specifies, in megabytes, the
maximum amount of storage that can be allocated to the JVM heap. Both of these settings have a
significant effect on performance.

If you are tuning a production system where you do not know the working set size of the enterprise
applications that are running on that system, an appropriate starting value for the initial heap size is
25 percent of the maximum heap size. The JVM then tries to adapt the size of the heap to the
working set size of the application.

The following illustration represents three CPU profiles, each running a fixed workload with varying
Java heap settings. In the middle profile, the initial and maximum heap sizes are set to 128 MB.
Four garbage collections occur. The total time in garbage collection is about 15 percent of the total
run. When the heap parameters are doubled to 256 MB, as in the top profile, the length of the work
time increases between garbage collections. Only three garbage collections occur, but the length of
each garbage collection is also increased. In the third profile, the heap size is reduced to 64 MB
and exhibits the opposite effect. With a smaller heap size, both the time between garbage
collections and the time for each garbage collection are shorter. For all three configurations, the
total time in garbage collection is approximately 15 percent. This example illustrates an important

Chapter 5. Tuning the application serving environment 31

concept about the Java heap and its relationship to object utilization. A cost for garbage collection
always exists when running enterprise applications.

Run a series of tests that vary the Java heap settings. For example, run experiments with 128 MB,
192 MB, 256 MB, and 320 MB. During each experiment, monitor the total memory usage. If you
expand the heap too aggressively, paging can occur.

Use the IBM i WRKSYSSTS command to check for paging. If paging occurs, reduce
the size of the heap or add more memory to the system.

When all the runs are finished, compare the following statistics:
v Number of garbage collection calls
v Average duration of a single garbage collection call
v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over utilizing objects and has no memory leaks, the state of steady memory
utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85 percent or more, consider decreasing the maximum heap size
values because the application server and the application are under-utilizing the memory allocated
for heap.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

You can also use the following command-line parameters to adjust these settings. These parameters
apply to all supported JVMs and are used to adjust the minimum and maximum heap size for each
application server or application server instance.

v -Xms

This parameter controls the initial size of the Java heap. Tuning this parameter reduces the
overhead of garbage collection, which improves server response time and throughput. For some
applications, the default setting for this option might be too low, which causes a high number of
minor garbage collections.

Information Value

Default 50 MB

Recommended Workload specific, but higher than the default.

Usage Specifying -Xms256m sets the initial heap size to 256 MB.

v -Xmx

32 Tuning guide

This parameter controls the maximum size of the Java heap. Increasing this parameter increases
the memory available to the application server, and reduces the frequency of garbage collection.
Increasing this setting can improve server response time and throughput. However, increasing this
setting also increases the duration of a garbage collection when it does occur. This setting should
never be increased above the system memory available for the application server instance.
Increasing the setting above the available system memory can cause system paging and a
significant decrease in performance.

Information Value

Default By default, the JVM dynamically calculates the Java heap
size based on the available memory in the system.

Recommended Workload specific, but higher than the default value,
depending on the amount of available physical memory.

Usage Specifying -Xmx512m sets the maximum heap size to 512
MB.

Note: Specify a value for the -Xmx parameter to reduce possible out-of-memory issues.

v -Xlp

Use this parameter with the IBM virtual machine for Java to allocate the heap when using large
pages, such as 16 MB pages. Before specifying this parameter, verify that your operating system is
configured to support large pages. Using large pages can reduce the CPU overhead needed to
keep track of heap memory, and might also allow the creation of a larger heap.

Default

64 KB if you are using Java 6 SR 7 or higher

4 KB if you are using Java 6 SR 6 or lower

v –Xlp64k

This parameter can be used to allocate the heap using medium size pages, such as 64 KB. Using
this virtual memory page size for the memory that an application requires can improve the
performance and throughput of the application because of hardware efficiencies that are associated
with a larger page size.

i5/OS® and AIX® provide rich support around 64 KB pages because 64 KB pages are
intended to be general purpose pages. 64 KB pages are easy to enable, and applications might
receive performance benefits when 64 KB pages are used. Starting with Java 6 SR 7, the Java
heap is allocated with 64K pages by default. For Java 6 SR 6 or earlier, 4K pages is the default
setting, This setting can be changed without changing the operating system configuration. However,
it is recommended that you run your application servers in a separate storage pool if you use of
64KB pages.

Recommended

Use 64 KB page size whenever possible.

i5/OS POWER5+ systems, and i5/OS Version 6, Release 1, support a 64 KB page size.

v –Xlp4k

This parameter can be used to allocate the heap using 4 KB pages. Using this virtual memory page
size for the memory that an application requires, instead of 64 KB, might negatively impact
performance and throughput of the application because of hardware inefficiencies that are
associated with a smaller page size.

Starting with Java 6 SR 7, the Java heap is allocated with 64K pages by default. For
Java 6 SR 6 or earlier, 4K pages is the default setting, This setting can be changed without

Chapter 5. Tuning the application serving environment 33

changing the operating system configuration. However, it is recommended that you run your
application servers in a separate storage pool if you use of 64KB pages.

Recommended

Use -Xlp64k instead of -Xlp4k whenever possible.

3. Tune Java memory.

Enterprise applications written in the Java language involve complex object relationships and use large
numbers of objects. Although, the Java language automatically manages memory associated with
object life cycles, understanding the application usage patterns for objects is important. In particular,
verify that the following conditions exist:
v The application is not over utilizing objects
v The application is not leaking objects
v The Java heap parameters are set properly to handle a given object usage pattern

a. Check for over-utilization of objects.

You can review the counters for the JVM run time, that are included in Tivoli
Performance Viewer reports, to determine if an application is overusing objects. You have to
specify the -XrunpmiJvmtiProfiler command-line option, as well as the JVM module maximum
level, to enable the Java virtual machine profiler interface, JVMTI, counters.

The optimal result for the average time between garbage collections is at least five to
six times the average duration of a single garbage collection. If you do not achieve this number, the
application is spending more than 15 percent of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the
bottleneck. The most cost-effective way to optimize the application is to implement object caches
and pools. Use a Java profiler to determine which objects to target. If you can not optimize the
application, try adding memory, processors and clones. Additional memory allows each clone to
maintain a reasonable heap size. Additional processors allow the clones to run in parallel.

b. Test for memory leaks.

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.
Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads
to system instability. Over time, garbage collection occurs more frequently until the heap is
exhausted and the Java code fails with a fatal out-of-memory exception. Memory leaks occur when
an unused object has references that are never freed. Memory leaks most commonly occur in
collection classes, such as Hashtable because the table always has a reference to the object, even
after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production
environment. If an application has memory leaks, a high workload can accelerate the magnification
of the leakage and cause memory allocation failures to occur.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of
the amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to
differentiate these amounts between expected sizes of useful and unusable memory. This task is
achieved more easily if the numbers are magnified, resulting in larger gaps and easier identification
of inconsistencies. The following list provides insight on how to interpret the results of your memory
leak testing:
v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are
found easily during long-running tests. Short running tests might provide invalid indications of
where the memory leaks are occurring. It is sometimes difficult to know when a memory leak is
occurring in the Java language, especially when memory usage has seemingly increased either
abruptly or monotonically in a given period of time. The reason it is hard to detect a memory
leak is that these kinds of increases can be valid or might be the intention of the developer. You
can learn how to differentiate the delayed use of objects from completely unused objects by

34 Tuning guide

running applications for a longer period of time. Long-running application testing gives you
higher confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case.
The goal of memory leak testing is to establish a big gap between unusable memory and used
memory in terms of their relative sizes. By repeating the same scenario over and over again, the
gap is multiplied in a very progressive way. This testing helps if the number of leaks caused by
the execution of a test case is so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular
testing is better control. When a module is designed to keep the private module without creating
external side effects such as memory usage, testing for memory leaks is easier. First, the
memory usage before running the module is recorded. Then, a fixed set of test cases are run
repeatedly. At the end of the test run, the current memory usage is recorded and checked for
significant changes. Remember, garbage collection must be suggested when recording the
actual memory usage by inserting System.gc() in the module where you want garbage collection
to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Some memory leak problems can occur only when there are several threads running in the
application. Unfortunately, synchronization points are very susceptible to memory leaks because
of the added complication in the program logic. Careless programming can lead to kept or
not-released references. The incident of memory leaks is often facilitated or accelerated by
increased concurrency in the system. The most common way to increase concurrency is to
increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:
– A good test case exercises areas of the application where objects are created. Most of the

time, knowledge of the application is required. A description of the scenario can suggest
creation of data spaces, such as adding a new record, creating an HTTP session, performing
a transaction and searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed
of objects within the same class. Also, collection classes such as Vector and Hashtable are
common places where references to objects are implicitly stored by calling corresponding
insertion methods. For example, the get method of a Hashtable object does not remove its
reference to the retrieved object.

You can use the Tivoli Performance Viewer to help find memory leaks.

For optimal results, repeat experiments with increasing duration, such as 1,000, 2,000,
and 4,000 page requests. The Tivoli Performance Viewer graph of used memory should have a
jagged shape. Each drop on the graph corresponds to a garbage collection. There is a memory
leak if one of the following conditions is appears in the graph:
v The amount of memory used immediately after each garbage collection increases significantly.

When this condition occurs, the jagged pattern looks more like a staircase.
v The jagged pattern has an irregular shape.
v The gap between the number of objects allocated and the number of objects freed increases

over time.

Heap consumption that indicates a possible leak during periods when the application server is
consistently near 100 percent CPU utilization, but disappears when the workload becomes lighter
or near-idle, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM
can free sufficient objects to satisfy memory allocation requests during garbage collection cycles,
but the JVM does not have the time to compact small free memory areas in the heap to larger
contiguous spaces.

Another form of heap fragmentation occurs when objects that are less than 512 bytes are freed.
The objects are freed, but the storage is not recovered, resulting in memory fragmentation until a
heap compaction occurs.

Chapter 5. Tuning the application serving environment 35

Heap fragmentation can be reduced by forcing compactions to occur. However, there is a
performance penalty for forcing compactions. Use the Java -X command to see the list of memory
options.

4. Tune garbage collection

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage
collection is a Java strength. By taking the burden of memory management away from the application
writer, Java applications are more robust than applications written in languages that do not provide
garbage collection. This robustness applies as long as the application is not abusing objects. Garbage
collection typically consumes from 5 to 20 percent of total run time of a properly functioning
application. If not managed, garbage collection is one of the biggest bottlenecks for an application.

Monitoring garbage collection while a fixed workload is running, provides you with insight as to whether
the application is over using objects. Garbage collection can even detect the presence of memory
leaks.

You can use JVM settings to configure the type and behavior of garbage collection. When the JVM
cannot allocate an object from the current heap because of lack of contiguous space, the garbage
collector is invoked to reclaim memory from Java objects that are no longer being used. Each JVM
vendor provides unique garbage collector policies and tuning parameters.

You can use the Verbose garbage collection setting in the administrative console to enable garbage
collection monitoring. The output from this setting includes class garbage collection statistics. The
format of the generated report is not standardized between different JVMs or release levels.

To adjust your JVM garbage collection settings:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process
definition > Java virtual machine

c. Enter the –X option you want to change in the Generic JVM arguments field.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

The following list describes the –X options for the different JVM garbage collectors.

The IBM virtual machine for Java garbage collector.
A complete guide to the IBM implementation of the Java garbage collector is provided in the
IBM Developer Kit and Runtime Environment, Java2 Technology Edition, Version 5.0
Diagnostics Guide. This document is available on the developerWorks® website.

Use the Java -X option to view a list of memory options.

v -Xgcpolicy

The IBM virtual machine for Java provides four policies for garbage collection. Each policy
provides unique benefits.

Note: While each policy provides unique benefits, for WebSphere Application Server
Version 8.0 and later, gencon is the default garbage collection policy. Previous
versions of the application server specify that optthruput is the default garbage
collection policy.

– gencon is the default policy. This policy works with the generational garbage collector.
The generational scheme attempts to achieve high throughput along with reduced
garbage collection pause times. To accomplish this goal, the heap is split into new and
old segments. Long lived objects are promoted to the old space while short-lived objects
are garbage collected quickly in the new space. The gencon policy provides significant
benefits for many applications. However, it is not suited for all applications, and is
typically more difficult to tune.

36 Tuning guide

– optthruput provides high throughput but with longer garbage collection pause times.
During a garbage collection, all application threads are stopped for mark, sweep and
compaction, when compaction is needed. The gencon policy is sufficient for most
applications.

– optavgpause is the policy that reduces garbage collection pause time by performing the
mark and sweep phases of garbage collection while an application is running. This policy
causes a small performance impact to overall throughput.

– subpool is a policy that increases performance on multiprocessor systems, that
commonly use more then 8 processors. This policy is only available on IBM System i®

System p® and System z® processors. The subpool policy is similar to the gencon policy
except that the heap is divided into subpools that provide improved scalability for object
allocation.

Information Value

Default gencon

Recommended gencon

Usage Specifying Xgcpolicy:gencon sets the garbage collection
policy to gencon.

Setting gcpolicy to gencon disables concurrent mark. You should get optimal throughput
results when you use the gencon policy unless you are experiencing erratic application
response times, which is an indication that you might have pause time problems

Setting gcpolicy to optavgpause enables concurrent mark with its default values. This
setting alleviates erratic application response times that normal garbage collection causes.
However, this option might decrease overall throughput.

v -Xnoclassgc

By default, the JVM unloads a class from memory whenever there are no live instances of
that class left. The overhead of loading and unloading the same class multiple times, can
decrease performance.

gotcha: You can use the -Xnoclassgc argument to disable class garbage collection.
However, the performance impact of class garbage collection is typically minimal,
and turning off class garbage collection in a Java Platform, Enterprise Edition
(Java EE) based system, with its heavy use of application class loaders, might
effectively create a memory leak of class data, and cause the JVM to throw an
Out-of-Memory Exception.

If you use this option, whenever you redeploy an application, you should always
restart the application server to clear the classes and static data from the pervious
version of the application.

Information Value

Default Class garbage collection is enabled.

Recommended Do not disable class garbage collection.

Usage Specify Xnoclassgc to disable class garbage collection.

5. Enable localhost name caching By default in the IBM SDK for Java, the static method
java/net/InetAddress.getLocalHost does not cache its result. This method is used throughout
WebSphere Application Server, but particularly in administrative agents such as the deployment
manager and node agent. If the localhost address of a process will not change while it is running, then
it is advised to use a built-in cache for the localhost lookup by setting the com.ibm.cacheLocalHost
system property to the value true. Refer to the Java virtual machine custom properties topic in the
information center for instructions on setting JVM custom properties on the various types of processes.

Chapter 5. Tuning the application serving environment 37

|
|
|
|
|
|
|

Note: The address for servers configured using DHCP change over time. Do not set this property
unless you are using statically assigned IP addresses for your server.

Information Value

Default com.ibm.cacheLocalHost = false

Recommended com.ibm.cacheLocalHost = true (see description)

Usage Specifying -Dcom.ibm.cacheLocalhost=true enables the
getLocalHost cache

6. Enable class sharing in a cache.

The share classes option of the IBM implementation of the Java 2 Runtime Environment (J2RE)
Version 1.5.0 lets you share classes in a cache. Sharing classes in a cache can improve startup time
and reduce memory footprint. Processes, such as application servers, node agents, and deployment
managers, can use the share classes option.

This option is enabled by default in the application server. To clear the cache, either call the
app_server_root/bin/clearClassCache utility or stop the application server and then restart the
application server.

If you need to disable the share classes option for a process, specify the generic JVM argument
-Xshareclasses:none for that process:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process
definition > Java virtual machine

c. Enter -Xshareclasses:none in the Generic JVM arguments field.

d. Click OK.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

Information Value

Default The Share classes in a cache option are enabled.

Recommended Leave the share classes in a cache option enabled.

Usage Specifying -Xshareclasses:none disables the share
classes in a cache option.

What to do next

Continue to gather and analyze data as you make tuning changes until you are satisfied with how the JVM
is performing.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

38 Tuning guide

|
|

|||

||

||

||
|
|

|

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server is the
/QIBM/ProdData/WebSphere/AppServer/V85/Base directory.

java_home

Table 3. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server is the
/QIBM/UserData/WebSphere/AppServer/V85/Base/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server is the /QIBM/UserData/
WebSphere/AppServer/V85/Base directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.

Chapter 5. Tuning the application serving environment 39

The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Tuning transport channel services
The transport channel services manage client connections and I/O processing for HTTP and JMS
requests. These I/O services are based on the non-blocking I/O (NIO) features that are available in Java.
These services provide a highly scalable foundation to WebSphere Application Server request processing.
Java NIO-based architecture has limitations in terms of performance, scalability, and user usability.
Therefore, integration of true asynchronous I/O is implemented. This implementation provides significant
benefits in usability, reduces the complexity of I/O processing, and reduces that amount of performance
tuning you must perform.

About this task

Key features of the new transport channel services include:

v Scalability, which enables the product to handle many concurrent requests

v Asynchronous request processing, which provides a many-to-one mapping of client requests to web
container threads

v Resource sharing and segregation, which enables thread pools to be shared between the web container
and a messaging service

v Improved usability

v Incorporation of autonomic tuning and configuration functions

Changing the default values for settings on one or more of the transport channels associated with a
transport chain can improve the performance of that chain.

40 Tuning guide

Procedure
v Adjust TCP transport channel settings. In the administration console, click Servers > Server Types >

WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the TCP transport channel defined for that chain.

3. Lower the value specified for the Maximum open connections property. This parameter controls the
maximum number of connections that are available for a server to use. Leaving this parameter at
the default value of 20000, which is the maximum number of connections, might lead to stalled
websites under failure conditions, because the product continues to accept connections, thereby
increasing the connection, and associated work, backlog. The default should be changed to a
significantly lower number, such as 500, and then additional tuning and testing should be performed
to determine the optimal value that you should specify for a specific website or application
deployment.

4. If client connections are being closed without data being written back to the client, change the value
specified for the Inactivity timeout parameter. This parameter controls the maximum number of
connections available for a server use. After receiving a new connection, the TCP transport channel
waits for enough data to arrive to dispatch the connection to the protocol-specific channels above
the TCP transport channel. If not enough data is received during the time period specified for the
Inactivity timeout parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds. This value is adequate for most applications.
Increase the value specified for this parameter if your workload involves many connections and all of
these connections cannot be serviced in 60 seconds.

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is assigned to
a particular thread pool. Thread pools can be shared between one or more TCP transport channels

Figure 1. Transport Channel Service

Chapter 5. Tuning the application serving environment 41

as well as with other components. The default setting for a TCP transport channel is to have all
HTTP-based traffic assigned to the WebContainer thread pool and all other traffic assigned to the
Default thread pool. Use the Thread pool menu list to assign a particular thread pool to each TCP
transport channel. The default setting for this parameter has all HTTP-based traffic assigned to the
WebContainer thread pool and all other traffic is assigned to the Default thread pool. The
information about thread pool collection describes how to create additional thread pools.

6. Tune the size of your thread pools. By default, a thread pool can have a minimum of 10
threads and a maximum of 50 maximum threads. To adjust these values, click Thread pools
>threadpool_name and adjust the values specified for the Minimum Size and Maximum Size
parameters for that thread pool.

Typical applications usually do not need more than 10 threads per processor. One exception is if
there is some off server condition, such as a very slow backend request, that causes a server
thread to wait for the backend request to complete. In such a case, processor usage is low and
increasing the workload does not increase processor throughput. Thread memory dumps show
nearly all threads in a callout to the backend resource. If this condition exists, and the backend is
tuned correctly, try increasing the minimum number of threads in the pool until you see
improvements in throughput and thread memory dumps show threads in other areas of the run time
besides the backend call.

The setting for the Grow as needed parameter is changed unless your backend is prone to hanging
for long periods of time. This condition might indicate that all of your runtime threads are blocked
waiting for the backend instead of processing other work that does not involve the hung backend.

v Adjust HTTP transport channel settings. In the administration console, click Servers > Server Types >
WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive.

The Use persistent (keep-alive) connections setting controls whether connections are left open
between requests. Leaving the connections open can save setup and teardown costs of sockets if
your workload has clients that send multiple requests. The default value is true, which is typically the
optimal setting.

If your clients only send single requests over substantially long periods of time, it is probably better
to disable this option and close the connections right away rather than to have the HTTP transport
channel setup the timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to increase the number
of requests that can flow over a connection before it is closed.

When the Use persistent connections option is enabled, the Maximum persistent requests
parameter controls the number of requests that can flow over a connection before it is closed. The
default value is 100. This value should be set to a value such that most, if not all, clients always
have an open connection when they make multiple requests during the same session. A proper
setting for this parameter helps to eliminate unnecessary setting up and tearing down of sockets.

For test scenarios in which the client is never closed, a value of -1 disables the processing which
limits the number of requests over a single connection. The persistent timeout shuts down some idle
sockets and protects your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase the length of time that a
connection is held open before being closed due to inactivity. The Persistent timeout parameter
controls the length of time that a connection is held open before being closed because there is no
activity on that connection. The default value is 30 seconds This parameter is set to a value that
keeps enough connections open so that most clients can obtain a connection available when they
must make a request.

6. If clients are having trouble completing a request because it takes them more than 60 seconds to
send their data, change the value specified for the Read timeout parameter. Some clients pause

42 Tuning guide

more than 60 seconds while sending data as part of a request. To ensure that they are able to
complete their requests, change the value specified for this parameter to a length of time in seconds
that is sufficient for the clients to complete the transfer of data. Be careful when changing this value
that you still protect the server from clients who send incomplete data and thereby use resources
(sockets) for an excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being written to them, change
the value specified for the Write timeout parameter. Some clients are slow and require more than 60
seconds to receive data that is sent to them. To ensure that they are able to obtain all of their data,
change the value specified for this parameter to a length of time in seconds that is sufficient for all
of the data to be received. Be careful when changing this value that you still protect the server from
malicious clients.

v Adjust the web container transport channel settings. In the administration console, click Servers >
Server Types > WebSphere application servers > server_name > Ports. Then click View associated
transports for the appropriate port.

1. Select the transport chain whose properties must be changed.

2. Click the web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the value specified for the
Write buffer size parameter to a value that is more appropriate for your clients. The Write buffer size
parameter controls the maximum amount of data per thread that the web container buffers before
sending the request on for processing. The default value is 32768 bytes, which are sufficient for
most applications. If the size of a response is greater than the size of the write buffer, the response
is chunked and written back in multiple TCP writes.

If you must change the value specified for this parameter, make sure that the new value enables
most requests to be written out in a single write. To determine an appropriate value for this
parameter, look at the size of the pages that are returned and add some additional bytes to account
for the HTTP headers.

v Adjust the settings for the bounded buffer.

Even though the default bounded buffer parameters are optimal for most of the environments, you might
want to change the default values in certain situations and for some operating systems to enhance
performance. Changing the bounded buffer parameters can degrade performance. Therefore, make
sure that you tune the other related areas, such as the web container and ORB thread pools, before
deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

2. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine.

3. Click Custom properties.

4. Enter one of the following custom properties in the Name field and an appropriate value in the Value
field, and then click Apply to save the custom property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

Specifies the number of times a web container thread can attempt to retrieve a request from the
buffer before the thread is suspended and enqueued. This parameter enables you to trade off the
cost of performing possibly unsuccessful retrieval attempts, with the cost to suspending a thread
and activating it again in response to a put operation.

Information Value

Default: The number of processors available to the operating
system minus 1.

Recommended: Use any non-negative integer value. In practice, using an
integer from 2 to 8 yields the best performance results.

Chapter 5. Tuning the application serving environment 43

Information Value

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=6. Six
attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to
take a request from the buffer. Typically a lower number of attempts is preferable.

Information Value

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=boolean value

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put a request into the
buffer before the thread is suspended and enqueued. Use this value to trade off between the
cost of repeated, possibly unsuccessful, attempts to put a request into the buffer with the cost to
suspend a thread and reactivate it in response to a take operation.

Information Value

Default: The value of com.ibm.ws.util.BoundedBuffer.spins_take
divided by 4.

Recommended: Use any non-negative integer value. In practice an integer
2 - 8 have shown the best performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_put=6. Six attempts
are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to put
a request into the buffer. Typically a lower number of attempts is preferable.

Information Value

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Usage: com.ibm.ws.util.BoundedBuffer.yield_put=boolean value

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request might unnecessarily be
delayed if the buffer is completely full or if the buffer is empty.

Information Value

Default: 10000 milliseconds

Recommended: A value of 10000 milliseconds usually works well. In rare
instances when the buffer becomes either full or empty, a
smaller value guarantee a more timely handling of
requests, but there is usually a performance impact to
using a smaller value.

Usage: com.ibm.ws.util.BoundedBuffer.wait=8000. A request
might unnecessarily be delayed up to 8000 milliseconds.

44 Tuning guide

v Click Apply and then click Save to save these changes.

Checking hardware configuration and settings
An optimal hardware configuration enables applications to get the greatest benefit from performance
tuning. The hardware speed impacts all types of applications and is critical to overall performance.

About this task

For proper system sizing for WebSphere Application Server workloads, use the IBM Systems
Workload Estimator.

You can check hardware configuration and settings such as disk speed, system memory and processor
speed to gain performance benefits.

Procedure

Use the following considerations for selecting and configuring the hardware on which the application
servers run:

1. Optimize disk speed

v Description: Disk speed and the number of disk arms have a significant effect on application server
performance in the following cases:
– Your application is heavily dependent on database support .
– Your application uses messaging extensively.

v Recommendation: Use disk I/O subsystems that are optimized for performance, for example,
Redundant Array of Independent Disks (RAID). Distribute the disk processing across as many disks
as possible to avoid contention issues that occur with 1 or 2 disk systems. For more information
about disk arms and how they can affect performance, see the iSeries® Disk Arm Requirements
documentation.

2. Increase processor speed and processor cache
v Description: In the absence of other bottlenecks, increasing the processing power can

improve throughput, response times, or both. On WebSphere Application Server for IBM i,
processing power can be related to the Commercial Processing Workload (CPW) value of the
system. For more information about CPW values, see the Performance Management website.

3. Increase system memory

v Description: If a large number of page faults occur, performing the following tasks to improve
performance:

– Increase the memory available to WebSphere Application Server.

– Move WebSphere Application Server to another memory pool.

– Remove jobs from the WebSphere Application Server memory pool

v Recommendation: To determine the current page fault level, run the Work with System Status
(WRKSYSSTS) command from an IBM i command line. For information about the minimum memory
requirements, see the IBM Support website.

4. Increase system memory

v Description: If a large number of page faults occur, performing the following tasks to improve
performance:

– Increase the memory available to WebSphere Application Server.

– Move WebSphere Application Server to another memory pool.

– Remove jobs from the WebSphere Application Server memory pool

Chapter 5. Tuning the application serving environment 45

http://www-947.ibm.com/systems/support/tools/estimator/
http://www-947.ibm.com/systems/support/tools/estimator/
http://www.ibm.com/servers/eserver/iseries/perfmgmt/pdf/V5R2FiSArmct.pdf
http://www.ibm.com/systems/i/solutions/perfmgmt/resource.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v Recommendation: To determine the current page fault level, run the Work with System Status
(WRKSYSSTS) command from an IBM i command line. For information about the minimum memory
requirements, see the IBM Support website.

5. Run network cards and network switches at full duplex
v Description: Run network cards and network switches at full duplex and use the highest supported

speed. Full duplex is much faster than half duplex. Verify that the network speed of adapters,
cables, switches, and other devices can accommodate the required throughput. Some websites
might require multiple gigabit links.

v Recommendation Make sure that the highest speed is in use on 10/100/1000 Ethernet networks.

6. Verify that the activity levels for storage pools are sufficient
v Description: Verify that the activity levels for storage pools are sufficient. Increasing these values

can prevent threads from transitioning into the ineligible condition.
v Recommendation

– To modify the activity level for the storage pool in which you are running WebSphere Application
Server, run the following WRKSYSSTS command from the command line:
WRKSYSSTS ASTLVL(*INTERMED)

– Perform the following steps to set the QMAXACTLVL system value to a value equal to or greater
than the total activity level for all pools, or *NOMAX:
- Run the following WRKSYSSTS command from the command line:

WRKSYSSTS ASTLVL(*INTERMED)
- Adjust the value in the Max Active column.

Tuning operating systems
You can tune your operating system to optimize the performance of WebSphere Application Server.

About this task

Tuning parameters are specific to operating systems. Because these operating systems are not
WebSphere Application Server products, be aware that the products can change and results can vary.

Note: Check your operating system documentation to determine how to make the tuning parameters
changes permanent and if a reboot is required.

Procedure

Tune IBM i systems

Tuning IBM i systems
This topic describes how to tune the IBM i operating system to optimize the performance of WebSphere
Application Server. Because the IBM i operating system is not a WebSphere Application Server product,
be aware that the products can change and results can vary.

About this task

When you have a performance concern, check the operating system settings to determine if they are
appropriate for your application.

Procedure

For detailed performance tuning, refer to the Tuning performance topic in the IBM i and System i
Information Center.

46 Tuning guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahx/rzahxtune.htm

Results

This tuning procedure improves performance of WebSphere Application Server on the IBM i operating
system. After tuning your operating system for performance, consult other tuning topics for various tuning
tips.

Tuning web servers for IBM i
The product provides plug-ins for several web server brands and versions. If you are running your web
server on a non-IBM i platform, see the product documentation for performance tuning information.

About this task

For additional information, refer to Chapter 6 of the Performance Capabilities Reference Manual. This
manual is available in the Performance Management Resource Library.

The IBM HTTP Server (powered by Apache) is a multi-process, multi-threaded server. To tune this web
server:

Procedure
v Enable the access logs. The access logs record all incoming HTTP requests. Logging can degrade

performance even though logging occurs in a separate process from the web server function.

By default, the access log is disabled. It is recommended that you do not enable the access logs unless
you need a record of all incoming HTTP requests.

To enable the access logs:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for lines with the text CustomLog.

3. Remove the hash mark (#) at the beginning of the line to enable a custom access log.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

v Change the ThreadsPerChild directive setting. The ThreadsPerChild directive specifies the maximum
number of concurrent client requests that the server processes at any time. The web server uses one
thread for each request that it processes. The value specified for this directive does not represent the
number of active clients.

To change the ThreadsPerChild directive setting:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for the ThreadsPerChild directive.

3. Change the setting. The default value is 40. It is recommended that you either use the default value
or increase the value if you need to increase the number of concurrent client requests that the
server can process at any time. You should not decrease the setting of this directive.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

v Change the ListenBackLog directive setting. This directive specifies the length of the pending
connections queue. When several clients request connections to the IBM HTTP Server, and all threads
are in use, a queue is created to hold additional client requests.

If you use the default Fast Response Cache Accelerator (FRCA) feature, the value specified for the
ListenBackLog directive is ignored, because FRCA uses its own internal queue.

To change the ListenBackLog directive setting:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for the ListenBackLog directive.

Chapter 5. Tuning the application serving environment 47

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.html

3. Change the setting. For the IBM HTTP Server 1.3.26, the default setting is 1024 if FRCA is enabled,
and 511 if FRCA disabled. It is recommended that you use these default values.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

Tuning web servers
WebSphere Application Server provides plug-ins for several web server brands and versions. Each web
server operating system combination has specific tuning parameters that affect the application
performance.

About this task

Following is a list of tuning parameters specific to web servers. The listed parameters may not apply to all
of the supported web servers. Check your web server documentation before using any of these
parameters.

Procedure
v Tune the IBM HTTP Server 2.0.47.1, Apache 2.0.48, IBM HTTP Server 6.0, and IBM HTTP Server

6.1. Monitoring the CPU utilization and checking the IBM HTTP Server error_log and http_plugin.log
files can help you diagnose web server performance problems.

You can also configure the IBM HTTP Server to show a status page:
– Edit the IBM HTTP Server httpd.conf file and remove the comment character (#) from the following

lines in this file:
#LoadModule status_module, modules/ApacheModuleStatus.dll,
#<Location/server-status>
#SetHandler server-status
#</Location>

– Save the changes and restart the IBM HTTP Server.
– In a web browser, go to: http://your_host/server-status. Alternatively, click Reload to update status.
– (Optional) If the browser supports refresh, go to http://your_host/server-status?refresh=5 to refresh

every five seconds.

All of these web servers allocate a thread to handle each client connection. Ensuring that enough
threads are available for the maximum number of concurrent client connections helps prevent this tier
from being a bottleneck. The settings for these web servers can be tuned by making changes to the
httpd.conf file on the web server system.

You can check the IBM HTTP Server error_log file to see if there are any warnings about having
reached the maximum number of clients (MaxClients). There are several parameters, depending on the
specific operating system platform, that determine the maximum number of clients the web server
supports. See http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients for a description of
the MaxClients parameters.

v Support thousands of concurrent clients. It is not unusual for a single IBM HTTP Server system to
support thousands of concurrent clients. If your requirements are to support more concurrent clients
than the number of threads that are supported by the web server operating system and hardware,
consider using multiple web servers.

v Respond to a Connection Refused error message. Some clients might receive a Connection
Refused error message if there is a sudden increase in the number of clients. Increasing the
ListenBacklog and StartServer parameters can reduce or eliminate this error.

– The ListenBacklog parameter indicates to the operating system the maximum allowed number of
pending connections. Although the IBM HTTP Server default is 511, the actual value can be much
higher or lower depending on the corresponding operating system parameter. To handle large
numbers of simultaneous connections, this parameter and the corresponding OS parameter might

48 Tuning guide

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

need to be set to the number (possibly thousands) of expected simultaneous connections. (See the
information about tuning operating systems for additional information on how to tune your operating
system.

– The StartServers parameter indicates the number of IBM HTTP Server processes to initially start.
Pre-starting these IBM HTTP Server threads/processes reduces the chance of a user having to wait
for a new process to start. You should set this parameter to a value equal to the MinSpareServers
parameter so that the minimum number of IBM HTTP Server processes needed for this client load is
started immediately.

v Prevent the frequent creation and destruction of client threads/processes as the number of
users change. You can a use the MinSpareServers and MaxSpareServers to specify the minimum and
maximum number of servers (client threads/processes) that can exist in an idle state. To prevent
frequent creation and destruction of client threads/processes as the number of users change, set this
range large enough to include the maximum number of simultaneous users.

v Change the setting on the web server's Access logging parameter to reduce the load on the web
server. If you do not need to log every access to the Application Server, change the default value of the
web server's Access logging parameter. This change will reduce the load on the web server.

v Modify the settings of the Load balancing option and Retry interval web server plug-in properties
to improve performance. You can improve the performance of IBM HTTP Server (with the WebSphere
web server plug-in) by modifying the following web server plug-in configuration properties:

– Load balancing option, which specifies the load balancing option that the plug-in uses in sending
requests to the various application servers associated with that web server.

The goal of the default load balance option, Round Robin, is to provide an even distribution of work
across cluster members. Round Robin works best with web servers that have a single process
sending requests to the Application Server. If the web server is using multiple processes to send
requests to the Application Server, the Random option can sometimes yield a more even distribution
of work across the cluster.

– Retry interval value, which specifies the length of time to wait before trying to connect to a server
that has been marked temporarily unavailable.

How can lowering the retry interval affect throughput ? If the plug-in attempts to connect to a
particular application server and that application server is offline or in the process of restarting, the
requests must wait for a timeout period. This process causes delayed responses for those requests.
If you set the retry interval value too high, then an available application server is not utilized.

Specify the retry interval value based on the following factors:

- How long it will take for your application servers to restart

- How averse you are to the delay caused by retrying too often

- How important it is to utilize all of your application servers

Making these changes can help the IBM HTTP Server to support more product users. To modify these
properties, in the administrative console, click Servers > Server Types > Web Servers >
web_server_name > Plug-in properties > Request routing .

Using Collection Services performance data
Collection Services, a component of WebSphere Application Server for IBM i, collects Performance
Monitoring Infrastructure (PMI) data for stand-alone application servers. This PMI data is collected at
specified intervals, providing a snapshot of activity during that time.

About this task

Perform the following steps enable Collection Services for WebSphere Application Server. When Collection
Services is enabled, it writes the collected data into the following new database files:

v QAPMWASCFG

Chapter 5. Tuning the application serving environment 49

Server configuration data. This data includes information about the different WebSphere Application
Server jobs. This information is static and therefore does not change during life of the server. There is
one record per server.

v Server data

One record is created for each active server job per interval. Much of the data comes from WebSphere
Application Server PMI data and transaction counters.

v Application data

It contains one record for each application module per interval. WebSphere Application Server PMI
counters are the source for many of the fields in this file. For the JavaServer Pages (JSP) section, the
data in each field represents a sum over all JSPs running in a given application.

v QAPMWASEJB EJB data

This data includes information about applications with Enterprise JavaBeans (EJB) running on the
WebSphere Application Server. Each record represents one type of enterprise beans per application
module per interval. If there is no bean activity for a particular EJB type, then no record is written.

v QAPMWASRSC

Pooled resource data. This data includes information about pooled resources associated with
WebSphere Application Server. Each record represents one pooled resource per interval. The type of
pooled resource might be a Java Database Connectivity (JDBC) connection pool, a J2EE Connector
(J2C) connection pool, or a thread pool. Not all fields are applicable to each pooled resource type. If a
resource exists but is not being used (nothing is created, destroyed, allocated or returned), no record is
written.

Procedure
1. Install and enable the Collection Services custom service:

a. Type the following command on an IBM i command line to start the Qshell environment:
STRQSH

b. Type the following command:
cd app_server_root/bin

c. Type the following command to install and enable the Collection Services custom service:
manageWASCollectionServices -profileName pName -server.name sName -enable

where pName is the name of the WebSphere Application Server profile to manage and sName is
the name of the Application Server to manage.

2. Enable PMI and set the level using the administrative console.

3. Stop and restart the application server.

4. Perform the following steps to configure Collection Services:

v On an IBM i command line, type CFGPFRCOL (Configure Performance Collection) and press the F4
key.

v Make note of the collection library specified to create the management collection object (Collection
library parameter, LIB keyword).

v Make note of whether or not database files are automatically created (Create database files
parameter, CRTDBF keyword).

5. Type the following command to start the performance collection:
STRPFRCOL

6. If you configured Collection Services with CRTDBF(*YES), new records are written to all of the above
files at every collection interval. If CRTDBF(*NO) is specified, no database files are created
automatically, you need to do it manually using the CRTPFRDTA command. Here are two examples:

v To create all the Collection Services files, type the following command:
CRTPFRDTA FROMMGTCOL(MYLIB/Q123456789)

v To create the new WebSphere Application Server files only , type the following command:

50 Tuning guide

CRTPFRDTA FROMMGTCOL(MYLIB/Q123456789)

CRTPFRDTA FROMMGTCOL(MYLIB/Q123456789) CGY(*WAS)

What to do next

For more information about Collection Services, see the IBM i and System i Information Center at:
http://www.ibm.com/eserver/iseries/infocenter

The manageWASCollectionServices script
The manageWASCollectionServices script manages the WebSphere Application Server for IBM i Collection
Services custom service, which collects select Performance Monitoring Infrastructure (PMI) data and other
information for IBM i Collection Services.

Syntax

The syntax of the script is:
manageWASCollectionServices [-profileName profile_name] [wsadmin_options]
[-server.name server_name] [-enable|-disable|-status] [-help]

Parameters

The parameters of the script are:

v -profileName

The name of the profile to manage. The default profile is used if no profile is specified.

v -server.name

The name of the application server to manage. The default value is the name of the profile, or server1
if the profile is named default.

v -enable|-disable|-status

One of the following actions must be specified:

– -enable

Enables Collection Services on the specified server. If Collection Services is already enabled, it does
nothing.

– -disable

Disables Collection Services on the specified server. If Collection Services is already disabled, it
does nothing.

– -status

Displays whether Collection Services is enabled on the specified server.

v -help

Displays help for the script.

processStats script
The processStats script collects and summarizes Performance Monitoring Infrastructure (PMI) data, saving
the results to a text file. This file is imported into the IBM Systems Workload Estimator as the basis for a
WebSphere Application Server estimate.

Syntax
processStats [-host host_name] [-port soap_port] [-cycles cycles]
[sampleTime hours:minutes:seconds] [statLevel all|extended|base|noChange]
[-user user_name] [-password user_password] [-profileName profile_name]
[-verbose] [-help | ?]

Chapter 5. Tuning the application serving environment 51

http://www.ibm.com/eserver/iseries/infocenter

Parameters
v -host

Application Server host name. Default is localhost.

v -port

The Application Server SOAP port. Default is 8880.

v -cycles

The total number of times statistics are sampled. Default is 12.

v -sampleTime

The length of the interval between samples. Default is 5 minutes. The time format is
hours:minutes:seconds, where:

– hours (required) is an integer less than or equal to 24

– minutes (optional) is an integer thess than 60

– seconds (optional) is a decimal less than or equal to 59.999

Example: 0:12:3.23 specifies an interval of 12 minutes and 3.23 seconds.

v -statLevel

The PMI statistics level. Accepted values are: all, extended, base and noChange. Default is noChange.

v -user

The user IDof the WebSphere Application Server administrator when the server is running in secure
mode.

v -profileName

The name of the profile to run processStats. If -profileName is not specified, the default profile is used.

v -verbose

Enables tracing.

v -help

Displays help for the script..

For further information on IBM Systems Workload Estimator refer to: Collecting and Importing PMI Data .

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

52 Tuning guide

http://www-912.ibm.com/wle/HTML/en/WebSphereApplicationServerHelp.html#pmi

app_server_root
The default installation root directory for WebSphere Application Server is the
/QIBM/ProdData/WebSphere/AppServer/V85/Base directory.

java_home

Table 4. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server is the
/QIBM/UserData/WebSphere/AppServer/V85/Base/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server is the /QIBM/UserData/
WebSphere/AppServer/V85/Base directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Chapter 5. Tuning the application serving environment 53

Tuning the application server using pre-defined tuning templates
You can use the python-based tuning script, applyPerfTuning.py, along with one of its template files, to
apply pre-defined performance tuning templates to your application server or cluster. The script, and these
property-based template files are located in the WAS_HOME/bin directory.

Before you begin

bprac: The configuration settings applied by this script and the associated tuning templates should be
viewed as potential performance tuning options for you to explore or use as a starting point for
additional tuning. The configuration settings that each of the pre-defined templates applies are
geared towards optimizing common application server environments or scenarios. Typically, these
settings improve performance for many applications.

Because optimizing for performance often involves trade-offs with features, capabilities, or
functional behavior, some of these settings might impact application correctness, while other
settings might be inappropriate for your environment. Please review the documentation below and
consider the impact of these settings to your application inventory and infrastructure.

As with any performance tuning exercise, the settings configured by the predefined templates
should be evaluated in a controlled preproduction test environment. You can then create a
customized template to refine the tuning settings to meet the specific needs of your applications
and production environment.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Typically, when you run the applyPerfTuning.py script, you will specify either the production.props template
file or the development.props template file to apply against the target server or cluster.

v If you specify the production.props template file when you run the applyPerfTuning.py script, the script
applies configuration settings that are appropriate for a production environment where application
changes are rare and optimal runtime performance is important.

v If you specify the development.props template file when you run the applyPerfTuning.py script, the script
applies configuration settings that are appropriate for a development environment where frequent
application updates are performed and system resources are at a minimum.

In addition to these two common templates, a third template file, default.props, is provided to enable you
to revert the server configuration settings back to the out-of-the-box defaults settings.

You can also create your own custom tuning template. To create a custom tuning template, copy one of
the existing templates, modify the configuration settings to better fit the needs of your applications and
environment, and then use the applyPerfTuning.py script to apply these customized settings. The script
and properties files leverage the property file configuration management features that wsadmin provides,
and can easily be augmented to tune additional server components. See the topic Using properties files to
manage system configuration for more information.

54 Tuning guide

About this task

Review the following table to see the configuration changes that occur based on the template file that you
specify when you run the applyPerfTuning.py script. A blank cell in this table indicates that the listed
parameter is not configured, or is configured back to the default settings for the server defaults.

Table 5. Tuning parameters and their template values. The table includes the tuning parameter and its value for the
default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

JVM Heap Size (MB)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

50 min / 256 max 512 min / 512 max 256 min / 512 max

Verbose GC

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

disabled enabled disabled

JVM Diagnostic Trace
(Generic JVM Arguments)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.
gotcha: This setting might
cause issues when web
services are used in certain
scenarios. Therefore, if you
are running web services,
and are experiencing
throughput optimization
issues, you can remove this
parameter from the script,
or set the opti level to 0.

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

HTTP (9080) and HTTPS
(9443) Channel
maxKeepAliveRequests

See the topic HTTP
transport custom properties
for more information about
this setting.

100 10000 10000

TCP Channel
maxOpenConnections

20000 500 500

TCP Channel listenBacklog 511 128 128

Development Mode

See the topic Application
server settings for more
information about this
setting.

disabled enabled

Chapter 5. Tuning the application serving environment 55

Table 5. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

Server Component
Provisioning

See the topic Application
server settings for more
information about this
setting.

disabled enabled enabled

PMI Statistic Set

See the topic Enabling PMI
data collection for more
information about this
setting.

basic none none

Authentication Cache
Timeout

See the topic Authentication
cache settings for more
information about this
setting.

10 minutes 60 minutes 60 minutes

Data Source Connection
Pool Size*

See the topic Connection
pool settings for more
information about this
setting.

1 min / 10 max 10 min / 50 max

Data Source Prepared
Statement Cache Size*

See the topic WebSphere
Application Server data
source properties for more
information about this
setting.

10 50

ORB Pass-by-Reference**

See the topic Request
Broker service settings for
more information about this
setting.

disabled enabled enabled

Web Server Plug-in
ServerIOTimeout

900 900 900

Thread Pools (Web
Container, ORB, Default)

See the topic Thread pool
settings for more
information about this
setting.

50 min / 50 max, 10 min /
50 max, 20 min / 20 max

5 min / 10 max

56 Tuning guide

Table 5. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

Table notes:

* Indicates items that are tuned only if they exist in the configuration. For example, a data source connection pool
typically does not exist until an application is installed on the application server. If these items are created after
your run the script, they are given the standard server default values unless you specify other settings.

** Enabling ORB Pass-By-Reference can cause incorrect application behavior in some cases, because the Java
EE standard assumes pass-by-value semantics. However, enabling this option can improve performance up to
50% or more if the EJB client and server are installed in the same instance, and your application is written to take
advantage of these feature. The topic Object Request Broker service settings can help you determine if this
setting is appropriate for your environment.

Following are a few subtle platform-specific tuning differences:

Procedure
v Start the wsadmin tool if it is not already running, and then complete one of the following actions to tune

an application server or all of the application servers in a cluster.

v Run the applyPerfTuning.py script to tune a specific server or cluster of servers running in a production
environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile production.props

v Run the applyPerfTuning.py script to tune a specific server or cluster of servers running in a
development environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile development.props

v Run the applyPerfTuning.py script to change the settings for a server or a cluster back to the standard
out-of-the-box default configuration settings.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile default.props

What to do next

Conduct a performance evaluation, and tuning exercise to determine if you should further fine tune the
server for your specific applications.

Chapter 5. Tuning the application serving environment 57

58 Tuning guide

Chapter 6. Troubleshooting performance problems

This topic illustrates that solving a performance problem is an iterative process and shows how to
troubleshoot performance problems.

About this task

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the performance is now
constrained by some other part of the system. For example, replacing slow hard disks with faster ones
might shift the bottleneck to the CPU of a system.

Measuring system performance and collecting performance data

v Begin by choosing a benchmark, a standard set of operations to run. This benchmark exercises those
application functions experiencing performance problems. Complex systems frequently need a warm-up
period to cache objects, optimize code paths, and so on. System performance during the warm-up
period is usually much slower than after the warm-up period. The benchmark must be able to generate
work that warms up the system prior to recording the measurements that are used for performance
analysis. Depending on the system complexity, a warm-up period can range from a few thousand
transactions to longer than 30 minutes.

v If the performance problem under investigation only occurs when a large number of clients use the
system, then the benchmark must also simulate multiple users. Another key requirement is that the
benchmark must be able to produce repeatable results. If the results vary more than a few percent from
one run to another, consider the possibility that the initial state of the system might not be the same for
each run, or the measurements are made during the warm-up period, or that the system is running
additional workloads.

v Several tools facilitate benchmark development. The tools range from tools that simply invoke a URL to
script-based products that can interact with dynamic data generated by the application. IBM Rational®

has tools that can generate complex interactions with the system under test and simulate thousands of
users. Producing a useful benchmark requires effort and needs to be part of the development process.
Do not wait until an application goes into production to determine how to measure performance.

v The benchmark records throughput and response time results in a form to allow graphing and other
analysis techniques. The performance data that is provided by WebSphere Application Server
Performance Monitoring Infrastructure (PMI) helps to monitor and tune the application server
performance. See the information on why use request metrics to learn more about performance data
that is provided by WebSphere Application Server. Request metrics allows a request to be timed at
WebSphere Application Server component boundaries, enabling a determination of the time that is
spent in each major component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:
v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each component is contributing to
the overall response time. Focus on the component accounting for the most time. Use Tivoli
Performance Viewer to check for resource consumption, including frequency of garbage collections. You
might need code profiling tools to isolate the problem to a specific method. See the Administering
applications and their environment PDF for more information.

v Scenario: Poor performance only occurs with multiple users.

© IBM Corporation 2002 59

Suggested solution: Check to determine if any systems have high CPU, network or disk utilization and
address those. For clustered configurations, check for uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk constraint but
performance problems occur with multiple users.

Suggested solutions:
– Check that work is reaching the system under test. Ensure that some external device does not limit

the amount of work reaching the system. Tivoli Performance Viewer helps determine the number of
requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large number of threads
waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM HTTP Server,
database, and the application servers. Conversely, too many threads can increase resource
contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc option of your Java
virtual machine. Excessive garbage collection can limit throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching can greatly reduce the
use of system resources by returning a previously cached response, thereby avoiding the work needed to
construct the original response. Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing out hot spots you can
optimize. IBM Rational and other companies have tools to perform code profiling. An analysis of the
application might reveal areas where some work might be reduced for some types of transactions.

Change tuning parameters to increase some resources, for example, the number of file handles, while
other resources might need a hardware change, for example, more or faster CPUs, or additional
application servers. Key tuning parameters are described for each major WebSphere Application Server
component to facilitate solving performance problems. Also, the performance advisors page can provide
advice on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are underutilized and others are
overloaded. WebSphere Application Server workload management functions provide several ways to
determine how the work is distributed. Workload distribution applies to both a single server and
configurations with multiple servers and nodes.

Some critical sections of the application and server code require synchronization to prevent multiple
threads from running this code simultaneously and leading to incorrect results. Synchronization preserves
correctness, but it can also reduce throughput when several threads must wait for one thread to exit the
critical section. When several threads are waiting to enter a critical section, a thread dump shows these
threads waiting in the same procedure. Synchronization can often be reduced by: changing the code to
only use synchronization when necessary; reducing the path length of the synchronized code; or reducing
the frequency of invoking the synchronized code.

60 Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 61

62 Tuning guide

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 63

http://www.ibm.com/legal/copytrade.shtml

64 Tuning guide

Index

A
application server environment

tuning 25
applications

tuning 3

C
collection services

performance 49

D
directory

installation
conventions 26, 38, 52

J
JVM

tuning 29

P
performance

tuning 3, 9, 10
Performance and Diagnostic Advisor 11

T
Tivoli Performance Viewer

tuning 20, 22

troubleshooting
performance 59

tuning 14
application server environment 25
applications 3
best practices 18
buffer sizes 28
diagnostic alerts 12
heap dumps 20
heap monitor 22, 23
JVM 29
memory leaks 18, 19
operating systems 46

IBM i 46
parameters 25
performance 3, 7, 9, 10, 20, 49, 59
Performance and Diagnostic Advisor 11
settings 15, 17, 45
transport channel services 40
web server 48

IBM i 47
wsadmin scripts 51

W
web server

tuning 48
IBM i 47

wsadmin scripts
managing collection services 51
processing statistics 51

© Copyright IBM Corp. 2012 65

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Tuning the Liberty profile
	Chapter 2. Planning for performance
	Application design consideration

	Chapter 3. Taking advantage of performance functions
	Chapter 4. Obtaining advice from the advisors
	Why you want to use the performance advisors
	Performance advisor types and purposes
	Performance and Diagnostic Advisor

	Using the Performance and Diagnostic Advisor
	Performance and Diagnostic Advisor configuration settings
	Enable Performance and Diagnostic Advisor Framework
	Enable automatic heap dump collection
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Minimum CPU For Working System
	CPU Saturated

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice type
	Performance impact
	Advice status

	Viewing the Performance and Diagnostic Advisor recommendations
	Starting the lightweight memory leak detection
	Lightweight memory leak detection

	Enabling automated heap dump generation

	Using the performance advisor in Tivoli Performance Viewer
	Performance advisor report in Tivoli Performance Viewer
	Message
	Performance data in the upper panel

	Activating the heap monitor
	Heap monitor default operation

	Chapter 5. Tuning the application serving environment
	Tuning parameter hot list
	Directory conventions
	Tuning TCP/IP buffer sizes
	Tuning the JVM
	Tuning the IBM virtual machine for Java

	Directory conventions
	Tuning transport channel services
	Checking hardware configuration and settings
	Tuning operating systems
	Tuning IBM i systems

	Tuning web servers for IBM i
	Tuning web servers
	Using Collection Services performance data
	The manageWASCollectionServices script
	processStats script

	Directory conventions
	Tuning the application server using pre-defined tuning templates

	Chapter 6. Troubleshooting performance problems
	Notices
	Trademarks and service marks
	Index
	A
	C
	D
	J
	P
	T
	W

