IBM WebSphere Application Server - Express for
Distributed Platforms, Version 8.5

Securing applications and their
environment

..ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1045)

Compilation date: June 4, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments.

Using this PDF.

Chapter 1. Overview and new features for securing applications and their environment .

Security planning overview

Chapter 2. Securing the Liberty profile and its applications
Getting started with security in the Liberty profile . .
Liberty profile: Quick overview of security. .
Setting up BasicRegistry and role mapping on the L|berty proflle .
Securing communications with the Liberty profile . S
Enabling SSL communication for the Liberty profile .
Creating SSL certificates for your Liberty profile using the Ut|||t|es menu
Creating SSL certificates from the command prompt
Configuring your web application and server for client cert|f|cate authentlcanon
Authenticating users in the Liberty profile. .
Configuring a user registry for the Liberty profile .
Configuring the authentication cache on the Liberty profile
Configuring a JAAS custom login module for the Liberty profile.
Configuring LTPA on the Liberty profile
Customizing SSO configuration using LTPA cook|es for the L|berty prof|le
Configuring RunAs authentication in the Liberty profile . Coe
Configuring TAI for the Liberty profile .
Authorizing access to resources in the Liberty proflle
Configuring authorization for applications on the Liberty proflle
Accessing JMX connectors on the Liberty profile .
Configuring web security related properties for the Liberty prof|Ie
Customizing SSO configuration using LTPA cookies for the Liberty prof|le
Configuring your web application and server for client certificate authentication .
Configuring JCA security for the Liberty profile .
Developing extensions to the Liberty profile security mfrastructure
Developing a custom TAI for the Liberty profile. .
Developing JAAS custom login modules for a system Iogm conflguratlon .
Customizing an application login to perform an identity assertion using JAAS

Chapter 3. How do | secure applications and their environments? .
Chapter 4. Task overview: Securing resources

Chapter 5. Setting up, enabling and migrating security

Migrating, coexisting, and interoperating — Security considerations
Interoperating with previous product versions .
Interoperating with a C++ common object request broker arch|tecture cI|ent
Migrating trust association interceptors

Migrating Common Object Request Broker Arch|tecture programmahc Iogln to Java Authentlcatlon

and Authorization Service (CORBA and JAAS) .
Migrating from the CustomLoginServlet class to servlet fllters
Migrating Java 2 security policy . .
Migrating with Tivoli Access Manager for authentlcatlon enabled . . .
Migrating unrestricted jurisdiction policy files, local_policy.jar and US_export_| pollcyjar .
Preparing for security at installation time . .
Securing your environment before installation .

© Copyright IBM Corp. 2012

. Xi

. Xiii

.1
.1
. 13
.14
. 15
. 15
. 20
.21
.22
. 23
. 24
. 26
.27
. 29
. 30
. 31
. 32
. 33
. 34
. 35
. 36
.37
.37
. 38
. 39
. 39
.41
. 45

. 47

. 49

. 51
. 51
. 52
. 54
. 56

. 59
. 61
. 62
. 65
. 66
. 67
. 67

Securing your environment after installation .
Enabling security .
Administrative security.
Application security .
Java 2 security
Enabling security for the realm
Testing security after enabling it.
Security Configuration Wizard
Security configuration report . .
Adding a new custom property in a global securlty conflguratlon orina securlty domam

configuration .

Modifying an existing custom property in a gIobaI securlty conflguratlon orina securlty domaln
configuration .

Deleting an existing custom property ina global securlty conflguratlon orina securlty domaln
configuration . C e e e e e

Chapter 6. Configuring multiple security domains .
Multiple security domains .
Creating new multiple security domams
Deleting multiple security domains.
Copying multiple security domains.
Configuring inbound trusted realms for multlple securlty domams
Configure security domains
Name
Description
Assigned Scopes .
Application Security: .
Enable application security
Java 2 security:. .
Use global security settmgs .
Customize for this domain .
Use Java 2 security to restrict appllcatlon access to Iocal resources
Warn if applications are granted custom permissions .
Restrict access to resource authentication data .
User Realm: .
Trust Association: .
Interceptors .
Enable trust assomahon
SPNEGO Web Authentication:
RMI/IIOP Security: .o
CSIv2 inbound commumcatlons
CSlIv2 outbound communications .
JAAS Application logins.
Use global and domain-specific Iogrns
JAAS System Logins:
System Logins . . .
JAAS J2C Authent|cat|on Data .
Use global and domain-specific entries .
Java Authentication SPI (JASPI)
Authentication Mechanism Attributes: .
Authorization Provider: .
Custom properties.
Web Services Bindings .
External realm name.
External realm name.
Trust all realms .

iv Securing applications and their environment

. 68

. 69
.72

. 73

. 73

. . 83
. 114
. 114
. 115

. 117
. 118
. 119

121
. 124
. 140
. 143
. 144
. 147
. 147
. 148
. 148
. 148
. 148
. 148
. 149
. 149
. 149
. 149
. 149
. 149
. 150
. 150
. 150
. 151
. 151
. 151
. 151
. 151
. 152
. 152
. 152
. 152
. 152
. 152
. 152
. 1583
. 153
. 153
. 153
. 153
. 153
. 154

Trust all realms (including those external to this cell) .
Trust realms as selected
Add External Realm...
Security domains collection
Maximum rows .
Retain filter criteria
Copy selected domain .
Copy global security .
Authentication cache settings
Enable authentication cache .
Cache timeout: .
Initial cache size:
Maximum cache size.
Use basic authentication cache keys (password one- way hashed)

Chapter 7. Authenticating users .
Selecting a registry or repository
Configuring local operating system reg|str|es
Configuring Lightweight Directory Access Protocol user reg|str|es
Configuring stand-alone custom registries .
Managing the realm in a federated repository conf|gurat|on
Standalone Lightweight Directory Access Protocol registries
Selecting an authentication mechanism .
Lightweight Third Party Authentication
Configuring LTPA and working with keys
Kerberos (KRB5) authentication mechanism support for seourlty .
Setting up Kerberos as the authentication mechanism for WebSphere Appllcatlon Server
RSA token authentication mechanism e e
Configuring the RSA token authentication mechanlsm
Simple WebSphere authentication mechanism (deprecated)
Message layer authentication
Integrating third-party HTTP reverse proxy servers.
Trust associations . .
Trust association settings .
Trust association interceptor collectron
Trust association interceptor settings .
Single sign-on for authentication
Single sign-on for authentication using LTPA cookles

Using a WebSphere Application Server API to achieve downstream web smgle srgn on W|th an

LtpaToken2 cookie. .
Global single sign-on principal mapplng for authentrcahon .
Implementing single sign-on to minimize web user authentications .
Single sign-on for HTTP requests using SPNEGO web authentication.
Creating a single sign-on for HTTP requests using SPNEGO Web authentlcatlon
Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated) .
Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
Configuring administrative authentication .
Java Authentication and Authorization Service
Java Authentication and Authorization Service authonzatlon

Using the Java Authentication and Authorization Service programming model for web authent|cat|on

Developing custom login modules for a system login configuration for JAAS
Performing identity mapping for authorization across servers in different realms .
Configuring inbound identity mapping.
Configuring outbound identity mapping to a dlfferent target reaIm
Security attribute propagation
Default authentication token .

. 154
. 154
. 154
. 154
. 154
. 154
. 154
. 155
. 155
. 155
. 155
. 156
. 156
. 156

. 157
. 157
. 160
. 168
. 194
. 224
. 335
. 339
. 341
. 343
. 344
. 352
. 353
. 355
. 360
. 360
. 361
. 362
. 366
. 367
. 367
. 367
. 368

. 369
. 370
. 371
. 374
. 379
. 381
. 419
. 434
. 435
. 435

438

. 440
. 453
. 455
. 462
. 466
. 470

\'}

Propagating security attributes among application servers .
Using the default authorization token to propagate security attnbutes
Using the default propagation token to propagate security attributes
Using the default single sign-on token with default or custom token factory to propagate securlty
attributes
Configuring the authentrcatlon cache

Configuring Common Secure Interoperability Versron 2 (CSIV2) |nbound and outbound communrcatron

. 484
. 485
. 491
. 498
. 502
. 505
. 506

settings .
Configuring Common Secure Interoperabrlrty VerS|on 2 mbound communrcat|ons
Configuring Common Secure Interoperability Version 2 outbound communications .
Configuring inbound transports .
Configuring outbound transports
Configuring inbound messages .
Configuring outbound messages
Common Secure Interoperability Version 2 and Secunty Authent|cat|on Servrce (SAS) cl|ent
configuration .
Example 1: Configuring basrc authentrcatron and |dent|ty assertron
Example 2: Configuring basic authentication, identity assertion, and client certrfrcates
Example 3: Configuring client certificate authentication and RunAs system .
Example 4: Configuring TCP/IP transport using a virtual private network .
Authentication protocol for EJB security .
Authentication protocol support .
Common Secure Interoperability Versron 2 features
Identity assertion to the downstream server
Identity assertions with trust validation
Message layer authentication
Using Microsoft Active Directory for authentrcatlon
Authentication using Microsoft Active Directory . .
Groups spanning domains with Microsoft Active Drrectory .
Microsoft Active Directory Global Catalog . .
Options for finding group membership within a Mlcrosoft Actrve Drrectory forest .
Authenticating users with LDAP registries in a Microsoft Active Directory forest
SAML web single sign-on .
SAML single sign-on scenarios, features and Ilmltatlons .
Enabling your system to use the SAML web single sign-on (SSO) feature .
Configuring single sign-on (SSO) partners .
SAML web single sign-on (SSO) trust association mterceptor (TAI) custom propertles
Adding SAML web single sign-on (SSO) trust association interceptor (TAl) using the wsadmin
command-line utility .
Deleting SAML web single sign-on (SSO) |dent|ty prowder (IdP) partner usrng the wsadmrn
command-line utility .
Deleting SAML web single sign-on (SSO) trust assocratlon mterceptor (TAI) usrng the wsadmln
command-line utility
Exporting SAML web service prowder metadata usmg the Wsadmm command I|ne utlllty
Importing SAML identity provider (IdP) partner metadata using the wsadmin command-line utility
Displaying SAML identity provider (IdP) partner configuration using the wsadmin command-line
utility .
Displaying SAML web srngle srgn on (SSO) trust assocrat|on mterceptor (TAI) confrguratron usrng
the wsadmin command-line utility

Chapter 8. Authorizing access to resources .
Authorization technology
Administrative roles and namlng service authorlzatlon
Role-based authorization .
Administrative roles .
Authorization providers .

Vi Securing applications and their environment

. 471
. 474
. 477

. 482

. 483

. 507
. 512
. 513
. 514
. 515
. 516
. 520
. 520
. 521
. 522
. 523
. 524
. 525
. 529
. 531
. 534
. 537
. 539
. 540
. 543
. 544
. 547

. 553

. 555

. 556
. 557

558

. 559

. 560

. 563
. 563
. 564
. 569
. 572
. 576

Delegations . .
Authorizing access to Java EE resources usmg T|voI| Access Manager .
Using the built-in authorization provider .
Enabling an external JACC provider .
Authorizing access to administrative roles . .
Administrative user roles settings and CORBA namlng service user settlngs
Administrative group roles and CORBA naming service groups .
Assigning users to naming roles
Propagating administrative role changes to T|voI| Access Manager
migrateEAR utility for Tivoli Access Manager .
Assigning users from a foreign realm to the admin- authz me
Fine-grained administrative security .
New Administrative Authorization Group.
Administrative Authorization Group collection .
Creating a fine-grained administrative authorization group usmg the adm|n|strat|ve console
Editing a fine-grained administrative authorization group using the administrative console
Fine-grained administrative security in heterogeneous and single-server environments
Using SCA authorization and security identity policies.
Using the SCA RequestContext.getSecuritySubject() API

Chapter 9. Securing communications.
Secure communications using Secure Sockets Layer (SSL)
SSL configurations e e
Keystore configurations for SSL . .
Dynamic outbound selection of Secure Sockets Layer conflguratlons .
Central management of SSL configurations .
Secure Sockets Layer node, application server, and cluster |sclat|on .
Certificate options during profile creation
Default chained certificate configuration in SSL .
Dynamic configuration updates in SSL .
Certificate management using iKeyman prior to SSL
Certificate management in SSL .
Using the retrieveSigners command in SSL to enable server to server trust
Creating a Secure Sockets Layer configuration .
SSL certificate and key management.
SSL configurations for selected scopes .
SSL configurations collection .
SSL configuration settings .
Secure Sockets Layer client certlflcate authent|cat|on
Certificate authority (CA) client configuration .
Certificate authority (CA) client configuration coIIectlons
Creating a chained personal certificate in SSL
Recovering deleted certificates in SSL .
Renewing a certificate in SSL
Revoking a CA certificate in SSL
Using a CA client to create a personal certlflcate to be used as the default personal certlflcate
Creating a CA certificate in SSL.
Developing the WSPKIClient interface for commumcatlng W|th a cert|f|cate authorlty
Creating a custom trust manager configuration for SSL .
Creating a custom key manager for SSL

Associating a Secure Sockets Layer configuration dynamlcally W|th an outbound protocol and

remote secure endpoint . .
Quality of protection (QoP) settings
ssl.client.props client configuration file

Creating a CA client in SSL .
Deleting a CA client in SSL

Contents

. 593
. 595
. 596
. 600
. 630
. 631
. 633
. 635
. 635
. 636
. 639
. 640
. 652
. 653
. 653
. 656
. 658
. 659
. 661

. 665
. 665
. 672
. 681
. 683
. 684
. 685
. 690
. 692
. 703
. 703
. 705
. 708
. 710
. 713
. 714
. 715
. 715
. 717
. 721
. 723
. 723
. 724
. 725
. 725

726

. 727
. 729
. 729
. 735

. 740
. 750
. 751
. 759
. 760

Vii

Viewing or modifying a CA client in SSL. .
Creating a keystore configuration for a preexisting keystore f|Ie .

Configuring a hardware cryptographic keystore .

Managing keystore configurations remotely

Keystores and certificates collection .

Key store settings .

Key managers collection

Key managers settings .

Creating a self-signed certificate .

Replacing an existing personal certlflcate . .

Creating a new SSL certificate to replace an eX|st|ng one in a node

Creating new SSL certificates to replace existing ones in a cell .
Creating a certificate authority request

Certificate request settings

Personal certificates collection

Self-signed certificates settings . .

Personal certificate requests collection .

Personal certificate requests settings .

Extract certificate request . .

Receiving a certificate issued by a certlflcate authonty

Replace a certificate .

Extracting a signer certificate from a personal certlflcate

Extract certificate .

Extract signer certificate

Retrieving signers using the retrleveS|gners ut|I|ty at the ollent

Changing the signer auto-exchange prompt at the client.
Retrieving signers from a remote SSL port.

Retrieve from port.

Adding a signer certificate to a keystore

Add signer certificate settings

Signer certificates collection .

Signer certificate settings . .
Adding a signer certificate to the default S|gners keystore .
Exchanging signer certificates .

Keystores and certificates exchange S|gners .

Configuring certificate expiration monitoring

Manage certificate expiration settings.

Notifications .

Notifications settings . .

Key management for cryptographlc uses
Creating a key set configuration.

Active key history collection .

Add key alias reference settings

Key sets collection

Key sets settings . .

Creating a key set group confrguratron .

Example: Retrieving the generated keys from a key set group

Example: Developing a key or key pair generation class for automated key generatlon

Key set groups collection . e

Key set groups settings.

Configuring the web server plug-in for Secure Sockets Layer

Web server plug-in default configuration in SSL .

Chapter 10. Developing extensions to the WebSphere security infrastructure .
Developing stand-alone custom registries .
Result.java file .

viii Securing applications and their environment

. 760
. 761
. 762
. 763
. 764
. 765
. 768
. 768
. 769
. 770
.77
. 772
. 774
. 775
. 775
. 776
. 779
. 780
. 781
. 782
. 786
. 787
. 787
. 788
. 788
. 790
. 791
. 792
. 793
. 793
. 794
. 794
. 795
. 797
. 798
. 798
. 800
. 802
. 802
. 803
. 804
. 806
. 806
. 807
. 807
. 809
. 810
. 812
. 814
. 814
. 816
. 817

. 819
. 819
. 820

UserRegistry.java files .
Implementing custom password encryptlon
Developing applications that use programmatic securlty
Protecting system resources and APIs (Java 2 security) for developlng appllcatlons
Developing with programmatic security APIs for web applications
Developing with programmatic APIs for EJB applications
Customizing web application login .
Developing servlet filters for form login processmg .
Secure transports with JSSE and JCE programming mterfaces . .
Configuring Federal Information Processing Standard Java Secure Socket ExtenS|on f|Ies .
WebSphere Application Server security standards configurations
Convert certificates
Manage FIPS .
Configuring WebSphere Appl|cat|on Server for the Swte B securlty standard .
Transitioning WebSphere Application Server to the SP800-131 security standard
Configuring WebSphere Application Server for SP800-131 standard strict mode .
Implementing tokens for security attribute propagation
Implementing a custom propagation token for security attnbute propagat|on
Implementing a custom authorization token for security attribute propagation .
Implementing a custom single sign-on token for security attribute propagation.
Implementing a custom authentication token for security attribute propagation.
Propagating a custom Java serializable object for security attribute propagation .
Enabling a plugpoint for custom password encryption. Ce e
Plug point for custom password encryption
Implementing a custom authentication provider using JASPI
Developing a custom JASPI authentication provider .
Configuring a new JASPI authentication provider using the adm|n|strat|ve console .
Modifying an existing JASPI authentication provider using the administrative console .
Deleting a JASPI authentication provider using the administrative console .
Enabling JASPI authentication using the Map JASPI prowder option during appl|cat|on deployment
JASPI authentication providers collection . .o e Ce e e e
JASPI authentication provider details . .
JASPI authentication enablement for appllcatlons .

Chapter 11. Auditing the security infrastructure.
Enabling the security auditing subsystem
Security Auditing detail .
Context object fields .
Creating security auditing event type f|Iters
Auditable security events .
Event type filter settings
Event type filters collection
Example: Generic Event Interface .
Context objects for security auditing .
Context object fields .
Configuring security audit subsystem fa|Iure not|f|cat|ons
Audit monitor collection .
Audit notification settings .
Configuring the default audit service prowders for securlty aud|t|ng
Audit service provider collection.
Audit service provider settings .
Example: Base Generic Emitter Interface . .
Configuring a third party audit service providers for securlty audltlng .
Example: Base Generic Emitter Interface .
Configuring audit event factories for security aud|t|ng
Audit event factory configuration collection.

Contents

. 821
. 826
. 827
. 828
. 849
. 856
. 860
. 864
. 867
. 871
. 873
. 875
. 876
. 877
. 879
. 882
. 883
. 884
. 890
. 897
. 905
. 912
. 915
. 917
. 918
. 919
. 923
. 925
. 925

926

. 927
. 927
. 928

. 931
. 932
. 933
. 934
. 937
. 938
. 939
. 940
. 940
. 942
. 942
. 945
. 946
. 947
. 947
. 949
. 949
. 951
. 951
. 952
. 953
. 953

ix

Audit event factory settings
Example: Generic Event Factory Interface
Protecting your security audit data.
Encrypting your security audit records
Signing your security audit records .
Audit encryption keystores and certificates coIIectlon .
Audit record encryption configuration settings.
Audit record signing configuration settings .
Audit record keystore settings
Using the audit reader .

Chapter 12. Tuning, hardening, and maintaining security configurations .

Tuning security configurations
Secure Sockets Layer performance t|ps
Tuning security performance .
Hardening security configurations .
Enablement and migration considerations of Secunty hardenmg features
Securing passwords in files
Encoding passwords in files .
Enabling custom password encryption

Chapter 13. Troubleshooting security configurations.

Security components troubleshooting tips .

Security configuration and enablement errors.

Security enablement followed by errors .

Access problems after enabling security .

SSL errors for security.

Errors configuring SSL encrypted access for secunty

Single sign-on configuration troubleshooting tips for security .

Security authorization provider troubleshooting tips .

SPNEGO trust association interceptor (TAI) troubleshooting t|ps (deprecated)
SPNEGO troubleshooting tips . e e

Chapter 14. Directory conventions
Notices .
Trademarks and service marks.

Index .

X Securing applications and their environment

. 954
. 955
. 956
. 957
. 958
. 959
. 959
. 960
. 961
. 962

. 967
. 967
. 970
. 972
. 972
. 973
. 975
. 975
. 979

. 981
. 981
. 993
.. 997
. 1006
. 1010
. 1014
. 1016
. 1020
. 1023
. 1030

. 1041
. 1045
. 1047

. 1049

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.
* To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 Xi

xii Securing applications and their environment

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

» Links to Web addresses beginning with http:// work.
» Links that refer to specific page numbers within the same PDF book work.
* The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.
For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 xiii

xiv Securing applications and their environment

Chapter 1. Overview and new features for securing
applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

[What is new for security specialists|

This topic provides an overview of new and changed features in security.

This topic describes how IBM® WebSphere® Application Server provides security infrastructure and
mechanisms to protect sensitive Java Platform, Enterprise Edition (Java EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

[“Security planning overview”|

Several communication links are provided from a browser on the Internet, through web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configurations and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

Samples

The|Samples documentation| offers:

* Login - Form Login
The Form Login Sample demonstrates a very simple example of how to use the login facilities for
WebSphere Application Server to implement and configure login applications. The Sample uses the
Java Platform, Enterprise Edition (Java EE) form-based login technology to customize the look and feel
of the login screens. It uses servlet filters to log the user information and the date information. The
Sample finishes the session by using the form-based logout function, an IBM extension to the Java EE
specification.

* Login - JAAS Login
The JAAS Login Sample demonstrates how to use the Java Authentication and Authorization Service
(JAAS) with WebSphere Application Server. The Sample uses server-side login with JAAS to
authenticate a real user to the WebSphere security run time. Based upon a successful login, the
WebSphere security run time uses the authenticated Subject to perform authorization checks on a
protected stateless session enterprise bean. If the Sample runs successfully, it displays all the principals
and public credentials of the authenticated user.

Security planning overview

When you access information on the Internet, you connect through web servers and product servers to the
enterprise data at the back end. This section examines some typical configurations and common security
practices.

This section also examines the security protection that is offered by each security layer and common

security practice for good quality of protection in end-to-end security. The following figure illustrates the
building blocks that comprise the operating environment for security within WebSphere Application Server:

© IBM Corporation 2003 1

WebSphere security layers

- Naming - HTML

- Userregistry - Serviet or JSP file WebSphere Application Server resources

- JMXmessage - Enterprise beans

beans - Web services
L X
H i
Access control ; -

Yy v

WebSphere security WebSphere Application Server security

J2EE security API

CORBA security (CSlv2)

Java security

Java 2 security

Java virtual machine (JYM) Version 5.0

Operating system security

Platform security

Metwork security

The following information describes each of the components of WebSphere Application Server security,
Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security
WebSphere Application Server security enforces security policies and services in a unified
manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support
the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface
(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based
security policies and supports Java EE security APlIs.

Java 2 security
The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so
on. Application code must explicitly grant the required permission to access a protected
resource.

Java Virtual Machine (JVM) 5.0
The JVM security model provides a layer of security above the operating system layer. For
example, JVM security protects the memory from unrestricted access, creates exceptions
when errors occur within a thread, and defines array types.

Platform security

Operating system security

2 Securing applications and their environment

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. These services include the file system security
support that secures sensitive files in the product installation for WebSphere Application
Server. The system administrator can configure the product to obtain authentication
information directly from the operating system user registry.

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. The operating system identity of the servant,
controller, and daemon Started Task, as established by the STARTED profile, is the
identity that is used to control access to system resources such as files or sockets.
Optionally, the operating system security can provide authentication services using the
User Registry of local operating system, and/or authorization services using SAF
Authorization for the WebSphere Administration console and for applications running under
the application server.

In addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer Security
(TLS), the administrator must be familiar with System Authorization Facility (SAF) and
Resource Access Control Facility (RACF®), or an equivalent SAF based product.

The identity and verification of users can be managed by using a Local Operating System
as the User Registry, RACF or equivalent SAF base product. Alternatively, an LDAP,
Custom, or Federated User Registry can be used.

WebSphere can be configured to use SAF Authorization, which will use RACF or an
equivalent SAF based product to manage and protect users and group resources.
Alternatively, WebSphere can be configured to use WebSphere Authorization or a JACC
External Authorization Provider.

When using either Local Operating System as the User Registry and/or using SAF
Authorization, security auditing is an inherit feature of RACF or the equivalent SAF based
products.

Network security
The Network Security layers provide transport level authentication and message integrity
and confidentiality. You can configure the communication between separate application
servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and
Virtual Private Network (VPN) for added message protection.

Each product application server consists of a web container, an Enterprise Java Beans (EJB) container,
and the administrative subsystem.

The administrative console is a special Java EE web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,
which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see [Encoding passwords in files” on page 975.|

The administrative console web application has a setup data constraint that requires access to the
administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when
administrative security is enabled.

In WebSphere Application Server Version 6.0.x and earlier, the administrator console HTTPS port was
configured to use DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self- signed
certificate. The dummy certificates and keys must be replaced immediately after WebSphere Application
Server installation; the keys are common in all of the installation and are therefore insecure. WebSphere
Application Server Version 6.1 provides integrated certificate and key management, which generate distinct
private key and self-signed certificate with embedded server host name to enable host name verification.

Chapter 1. Overview and new features: Securing 3

WebSphere Application Server Version 6.1 also enables integration with external certificate (CA) authority
to use CA-issued certificates. The WebSphere Application Servers Version 6.1 installation process
provides an option to enable administrative security during installation. As a result, a WebSphere
Application Server process is secured immediately after installation. WebSphere Application Server Version
7.0 extends the embedded certificate management capabilities by creating a chained certificate (personal
certificate signed by a root certificate) to enable refresh of the personal certificate without affecting the
trust established. It also enables tailoring of the certificate during profile creation (you can import your own
or change the distinguished name (DN) of the one created by default) as well as the ability to change the
default keystore password.

Administrative security

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication
Services (SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server administrative security. The WebSphere Application Server administrative subsystem in
every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and
configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP
protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,
the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you
can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that
you enable administrative security and enable SSL to protect the sensitive configuration data.

Security for Java EE resources

Security for Java EE resources is provided by the web container and the EJB container. Each container
provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security
policy, including information that is derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use programmatic security to make access decisions. When administrative security is enabled and
application server security is not disabled at the server level, Java EE applications security is enforced.
When the security policy is specified for a web resource, the web container performs access control when
the resource is requested by a web client. The web container challenges the web client for authentication
data if none is present according to the specified authentication method, ensures that the data constraints
are met, and determines whether the authenticated user has the required security role. The web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal
has one of the required security roles. Servlets and JSP files can use the HttpServietRequest methods,
isUserInRole and getUserPrincipal.

When administrative security and application security are enabled, and the application server level
application security is not disabled, the EJB container enforces access control on EJB method invocation.

4 Securing applications and their environment

The authentication occurs regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods,
isCallerinRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable
business data from access by unauthorized users through the Internet and the intranet. Refer to
\web applications using an assembly tool} and [Securing enterprise bean applications]

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources
including the JMX system management subsystem, user registries, and Java Naming and Directory
Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security
roles:

Monitor role
A monitor can view the configuration information and status but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server IDs and passwords, enable or disable administrative
security and Java 2 security, and map users and groups to the administrator role.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin
scripting only.

Deployer
A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager
An administrative security manager can map users to administrative roles. Also, when fine grained
admin security is used, users granted this role can manage authorization groups.

Auditor
An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. Certain configuration tasks exist that a configurator does not have sufficient
authority to do when administrative security is enabled, including modifying a WebSphere Application
Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and
assigning users to administrative security roles. Those sensitive configuration tasks require the
administrative role because the server ID is mapped to the administrator role.

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.
Application server security can be selectively disabled if no sensitive information is available to protect. For
securing administrative security, refer to [‘Authorizing access to administrative roles” on page 630 and
[Assigning users and groups to roles|

Chapter 1. Overview and new features: Securing 9

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run
application code. Java 2 security provides a fine-grained and policy-based access control to protect
system resources such as files, system properties, opening socket connections, loading libraries, and so
on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that web
and EJB components expect to have.

Table 1. Java EE security permissions set for web components. The Java EE security permissions set for web
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.io.FilePermission * read, write
java.util.PropertyPermission * read

Table 2. Java EE security permissions set for EJB components. The Java EE security permissions set for EJB
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4
specification. The specification grants web components read and write file access permission to any file in
the file system, which might be too broad. The WebSphere Application Server default policy gives web
components read and write permission to the subdirectory and the subtree where the web module is
installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

${java.home}/jre/1ib/security/java.policy
This file is used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy
This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for a WebSphere Application
Server subsystem. These policy files, which are an extension of the WebSphere Application Server
runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java
EE applications:

. /conﬁg/ce]1s/ceZZ_name/nodes/node_name/sp1' .policy
This file is used for embedded resources defined in the resources.xml file, such as the Java Message
Service (JMS), JavaMail, and JDBC drivers.

« [profile_rool/config/cells/cell_name/nodes/node_name/1ibrary.policy

This file is used by the shared library that is defined by the WebSphere Application Server
administrative console.

« [profile_rool/config/cel1s/cell_name/nodes/node_name/app.policy
This file is used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE
specification to be portable among various application servers. However, some applications might require

6 Securing applications and their environment

more permissions. WebSphere Application Server supports the packaging of a was.policy file with each
application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the
potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.
WebSphere Application Server uses a permission filtering policy file to alert you when an application
installation fails because of additional permission requirements. For example, it is recommended that you
not give the java.lang.RuntimePermission exitVM permission to an application so that application code
cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the /conﬁg/ce] 1s/cell _name/filter.policy
file. Moreover, WebSphere Application Server also performs run-time permission filtering that is based on
the run-time filtering policy to ensure that application code is not granted a permission that is considered
harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application
Server, you might temporarily give those applications the java.security.AllPermission permission in the
was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is
active. For example, identify which extra permissions, if any, are required, and grant only those
permissions to a particular application. Not granting the A11Permission permission to applications can
reduce the risk of compromising system integrity. For more information on migrating applications, refer to
[‘Migrating Java 2 security policy” on page 62

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.
Applications that are granted the AT1Permission permission not only have access to sensitive system
resources, but also WebSphere Application Server run-time resources and can potentially cause damage
to both. In cases where an application can be trusted as safe, WebSphere Application Server does support
having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by
default in the administrative console and clear the Java 2 security flag to disable it at the particular
application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application
access to local resources options on the Global security panel of the administrative console, the
information and other sensitive configuration data, are stored in a set of XML configuration files. Both
role-based access control and Java 2 security permission-based access control are employed to protect
the integrity of the configuration data. The example uses configuration data protection to illustrate how
system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is
the same as the Enable administrative security option in Version 8.5. Also, the Enable Java
2 security option in previous releases is the same as the Use Java 2 security to restrict
application access to local resources option in Version 8.5.

* When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless the code is granted the required
WebSphere Application Server run-time permissions.

* When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless the code is granted the required file read and write permission.

* The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
administrative security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

Chapter 1. Overview and new features: Securing 7

» If a user can disable Java 2 security, the user can also modify the WebSphere Application Server
configuration, including the WebSphere Application Server security identity and authentication data with
other sensitive data. Only users with the administrator security role can disable Java 2 security.

* Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable administrative security, change server IDs and passwords, and
map users and groups to administrative roles, and so on.

Other Runtime resources

Other WebSphere Application Server run-time resources are protected by a similar mechanism, as
described previously. It is very important to enable WebSphere Application Server administrative security
and to use Java 2 security to restrict application access to local resources. Java EE Specification defines
several authentication methods for web components: HTTP Basic Authentication, Form-Based
Authentication, and HTTPS Client Certificate Authentication. When you use client certificate login, it is
more convenient for the browser client if the web resources have integral or confidential data constraint. If
a browser uses HTTP to access the web resource, the web container automatically redirects the browser
to the HTTPS port. The CSIv2 security protocol also supports client certificate authentication. You can also
use SSL client authentication to set up secure communication among a selected set of servers based on a
trust relationship.

If you start from the WebSphere Application Server plug-in at the web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the
selected two WebSphere Application Servers as shown in the following figure. Note that you can use
self-signed certificates to reduce administration and cost.

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere

Application Server B to accept secure socket connections only from the WebSphere Application Server

plug-in W.

» To complete this task, you can generate three certificates using the IKEYMAN and the certificate
management utilities. Also, you can use certificate W and trust certificate A and B. Configure the HTTPS
server of WebSphere Application Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate
W.

Table 3. Trust relationships from example. The trust relationship that is depicted in the previous figure is shown in the
following table.

Server Key Trust
WebSphere Application Server plug-in W A B
WebSphere Application Server A A w
WebSphere Application Server B B w

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)
user registry, you also can configure SSL with mutual authentication between every application server and
the LDAP server with self-signed certificates so that a password is not visible when it is passed from
WebSphere Application Server to the LDAP server.

WebSphere Application Server does not provide a registry configuration or management utility. In addition,

it does not dictate the registry password policy. It is recommended that you use the password policy
recommended by your registry, including the password length and expiration period.

8 Securing applications and their environment

Before securing your WebSphere Application Server environment, determine which versions of WebSphere
Application Server you are using, review the WebSphere Application Server security architecture, and
review each of the following topics:

“Common Secure Interoperability Version 2 features” on page 520
“ldentity assertion to the downstream server” on page 521|

“Selecting an authentication mechanism” on page 339

— |‘Lightweight Third Party Authentication” on page 341|

— [“Trust associations” on page 362

— [*Single sign-on for authentication using LTPA cookies” on page 368|
|“Selectinq a registry or repository” on page 157

— [“Local operating system registries” on page 162|

— |‘Standalone Lightweight Directory Access Protocol registries” on page 335|
|“Java 2 security” on page 73

— [“Java 2 security policy files” on page 78|

|“Java Authentication and Authorization Service” on page 435|
—_|Programmatic login for JAAS|

Java EE connector security|

“Access control exception for Java 2 security” on page 82|

— |“Role-based authorization” on page 569

— [“Administrative roles and naming service authorization” on page 564
[lmplementing a custom authentication provider using JASPI” on page 918§|

Chapter 1. Overview and new features: Securing

9

10 Securing applications and their environment

Chapter 2. Securing the Liberty profile and its applications

This information applies generally to all types of applications deployed on the Liberty profile.
About this task

Security in the Liberty profile supports all the Servlet 3.0 security features. In addition, it also secures Java
JMX connections. The following server features are applicable to security in the Liberty profile:

» appSecurity-1.0 enables security for all web resources.
* ss1-1.0 enables SSL connections using HTTPS.
* restConnector-1.0 enables remote access by JMX client through a REST-based connector.

To learn about how security works in the Liberty profile, see|Liberty profile: Security|

There are several security configuration examples under the /templates/config directory of the server
image for reference when configuring security for your applications on the Liberty profile.

Best practice: When you use the developer tools to configure the security on the Liberty profile, make
sure that the configuration created by the tools is similar to the examples in the
${wlp.install.dir}/templates/config directory of the server image. This directory
includes examples of configuring some of the most common security features. If you see
any differences in the configuration created by the developer tools and the examples,
modify the configuration to fit the configuration in the examples for that feature.

Procedure

+ [Use quickStartSecurity for minimal security configuration|

+ [Secure communication with the Liberty profile]

+ [Access secured JMX connector on the Liberty profile]
[Authenticate users in the Liberty profile|

[Authorize access to resources in the Liberty profile]

[Secure a database access application|

+ [Develop extensions to the Liberty profile security infrastructure]

Getting started with security in the Liberty profile

You can use the quickStartSecurity element to quickly enable a simple (one user) security setup for the
Liberty profile.

About this task

This topic goes through the basic steps required to set up a secured Liberty profile server and web
application. Additionally, configuration actions within the Liberty profile are dynamic, which means the
configuration updates take effect without having to restart the server.

Procedure
1. Create and start your server.

s M On Windows systems:

bin\server.bat create MyNewServer
bin\server.bat start MyNewServer

- BT EETITEN TSN ST TS BTSN EESTITEE On all systems other than

Windows systems:

© Copyright IBM Corp. 2012 11

bin/server create MyNewServer
bin/server start MyNewServer
2. Include the appSecurity-1.0 feature in the server.xml file. The server.xml file is located in the server
directory of myNewServer, for example, wip\usr\servers\myNewServer\server.xml.
<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>
3. Define the user name and password that is to be granted the Administrator role for server
management activities.

<quickStartSecurity userName="Bob" userPassword="bobpwd" />

Note: Choose a user name and password that are meaningful to you. Never use the name and
password in the example for your applications.

4. Configure the deployment descriptor with the relevant security constraints to protect the web resource.
For example, use <auth-constraint> and <role-name> elements to define a role that is allowed to
access the web resource.

The following example web.xml file shows that access to all the URlIs in the application is protected by
the testing role.

<?xml version="1.0" encoding="UTF-8"?>
<!IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app id="myWebApp">

<!-- SERVLET DEFINITIONS -->

<servlet id="Default">
<servlet-name>myWebApp</servlet-name>
<servlet-class>com.web.app.MyWebAppServiet</serviet-class>
<load-on-startup/>

</servlet>

<!-- SERVLET MAPPINGS -->

<servlet-mapping id="ServletMapping Default">
<servlet-name>myWebApp</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

<!-- SECURITY ROLES -->
<security-role>

<role-name>testing</role-name>
</security-role>

<!-- SECURITY CONSTRAINTS -->
<security-constraint>
<web-resource-collection>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>testing</role-name>
</auth-constraint>
</security-constraint>

<!-- AUTHENTICATION METHOD: Basic authentication -->
<login-config>
<auth-method>BASIC</auth-method>
</Togin-config>
</web-app>
5. Configure your application in the server.xml file.
In the following example, the user Bob is mapped to the testing role of the application:

12 Securing applications and their environment

<application type="war" id="myWebApp" name="myWebApp"
Tocation="${server.config.dir}/apps/myWebApp.war">
<application-bnd>
<security-role name="testing">
<user name="Bob" />
</security-role>
</application-bnd>
</application>
6. Access your application and log in with the user name Bob. The default URL for the myWebApp
application is http://Tocalhost:9080/myWebApp

Results

You have now secured your application.

Liberty profile: Quick overview of security

This topic describes some of common security terms, along with an example which helps you understand
the basic workflow of security in the Liberty profile.

Security key terms

Authorization
The process of determining whether or not to grant a user access to resources within the system
is known as authorization. The Java EE model uses subjects, resources and roles to determine
what should and should not be allowed.

Authentication
The process of confirming the identity of a user is known as authentication. The most common
form of authentication is user name and password, such as through either basic authentication or
form login for web applications. Once a user is authenticated, the source of a request is
represented as a Subject object at the run time.

Resource
Also known as an object, resources are things within the system. A resource can be any
non-active entity, such as a web application.

Role Arole is a logical collection of privileges that can be assigned to a user or group. Some roles are
predefined by the system (such as the Administrator role). Others are defined by the application
developer. In Java EE, subjects are usually granted or denied access to resources based on the
roles they do (or do not) possess.

Subject
A subject is both a general term, as well as a Java object javax.security.auth.Subject.
Generally, the term subject means active entities within the system, such as users on the system,
and even the system process itself.

Security workflow
The following example demonstrates how the security works when a user requests access to a resource.

For example, a user Bob wants to access a servlet myWebApp. See the code samples in[“Getting started|
\with security in the Liberty profile” on page 11

In order to do this, the following conditions must be true:
1. Bob must be able to log into the system because the servlet is protected.

2. Bob must be in the testing role because the servlet is restricted using an auth-constraint element in
the deployment descriptor.

Chapter 2. Securing the Liberty profile and its applications 13

If Bob cannot log into the system, or Bob is not in the testing role, then the access to the servlet myWebApp
is denied.

Another user Alice can log into the system because Alice is a valid user. But Alice is not in the testing
role. An HTTP 403 error (Access Denied/Forbidden) shows up when Alice logs in.

Setting up BasicRegistry and role mapping on the Liberty profile

You can configure the Liberty profile to authenticate and authorize users using a basic user registry.
Before you begin

The server feature appSecurity-1.0 must be enabled in the server.xml file of the Liberty profile.
About this task

This topic goes through the steps to set up a basic user registry and configure more role mapping in the
server.xml file for a Liberty profile server.

Procedure

1. Configure the basic registry as follows. Make sure to use a user name and password that are
meaningful to you. Never use the name and password in the example for your applications.
<basicRegistry id="basic" realm="WebRealm">

<user name="Bob" password="bobpwd" />
</basicRegistry>

2. Optional: Grant the user with the Administrator role if the user is used to perform remote system
management activities. This step is done automatically when |using quickStartSecurity element

<administrator-role>
<user>Bob</user>
</administrator-role>

3. Encode the password within the configuration. You can get the encoded value by using the
isecurityUtility encode] task.

4. Add additional users. Make sure each user name is unique.

<basicRegistry id="basic" realm="WebRealm">
<user name="Bob" password="bobpwd" />
<user name="userl" password="userlpwd" />
<user name="user2" password="user2pwd" />
</basicRegistry>
5. Create groups for users. Make sure each group name must be unique.
<basicRegistry id="basic" realm="WebRealm">
<user name="Bob" password="bobpwd" />

<user name="userl" password="userlpwd" />
<user name="user2" password="user2pwd" />

<group name="myAdmins">
<member name="Bob" />
<member name="userl" />
</group>

<group name="users">
<member name="userl" />
<member name="user2" />
</group>
</basicRegistry>

6. Assign a user group to the Administrator role.

14 Securing applications and their environment

<administrator-role>
<user>Bob</user>
<group>myAdmins</group>

</administrator-role>

7. Assign some users and groups to the testing role of an application.

<application type="war" id="myWebApp" name="myWebApp"
location="${server.config.dir}/apps/myWebApp.war">
<application-bnd>
<security-role name="tesing">
<user name="Bob" />
<user name="userl" />
<group name="users" />
</security-role>
</application-bnd>
</application>

What to do next

Configure security related elements in the deployment descriptor of your application. See [‘Getting started
\with security in the Liberty profile” on page 11|for a sample web.xml file.

Securing communications with the Liberty profile

You can configure the Liberty profile server to provide secure communications between a client and the
server.

About this task

To configure secure communications, you can either specify a|minimal SSL configuration| or ja detailed SSL|
in the server.xml file. The minimal configuration only requires the SSL feature and a

keystore entry to be specified. In the samples directory of the Liberty profile, there is an ss1Config.xml file
that contains several examples of SSL configurations.

The following topics are covered in this section:

Procedure

« [Enable SSL communications between a client and a Liberty profile server|

« Optional: [Create a keystore from the command prompf

« Optional: [Encode passwords from the command prompf

« Optional: [Configure client certificate authentication between your application and the Liberty profile]

|serve!|

Enabling SSL communication for the Liberty profile

To enable SSL communication for the Liberty profile, there is a minimal set of SSL configuration options. It
assumes most of the SSL options and only requires some keystore configuration information.

About this task

SSL client authentication occurs during the connection handshake using SSL certificates. The SSL
handshake is a series of messages that are exchanged over the SSL protocol to negotiate for
connection-specific protection. During the handshake, the secure server requests that the client send back
a certificate or certificate chain for the authentication. To do this, you add the ss1-1.0 server feature to the
server.xml file, along with code that tells the server the keystore information for authentication.

Chapter 2. Securing the Liberty profile and its applications 15

Procedure
1. Enable the appSecurity-1.0 and ss1-1.0 server features in the server.xml file.

<featureManager>
<feature>appSecurity-1.0</feature>
<feature>ss1-1.0</feature>
</featureManager>
2. Add the keystore service object entry to the server.xml file. The keyStore element is called
defaultKeyStore and contains the keystore password. The password can be entered in clear text or
encoded. The |securityUtility encode| option can be used to encode the password.

<keyStore id="defaultKeyStore" password="yourPassword" />

Avoid trouble: When using the developer tools to create a minimal SSL configuration, make sure to
enter defaultKeyStore in the id field and a password. Otherwise, the SSL
configuration fails and the services using this configuration fails to start. For example,
if the httpEndpoint element is using this SSL configuration, the HTTPS port doesn't
start.

In this configuration the keystore type is JKS. You can create this default keystore using the

lsecurityUtility createSSL Certificate| option, the server creates the keystore for you if it does not exist

during SSL initialization. The password must be at least 6 characters long. The type of the keystore is

JKS by default. Keystore of other types can also be specified in the minimal SSL configuration if the

keystore file is already created. Only JKS keystore files are created by the server if the keystore file

does not exist. The certificate has a validity period of 365 days, the CN value of the subjectDN is the
hostname of the machine where the server is running, and the signature algorithm of the certificate is

SHA1 with RSA.

The single keystore entry for a minimal SSL configuration can be extended to include the location and
type as well.

<keyStore id="defaultKeyStore" Tlocation="myKeyStore.pl2" password="yourPassword" type="PKCS12"/>

The location parameter can be an absolute path to the keystore file. If it is an absolute path, then the
keystore file is assumed to have been already created. Keystore of other types can also be specified in
the minimal SSL configuration as long as the keystore file is already created. When the minimal SSL
configuration is used, the SSL configuration defaults are used to create the SSL context for an SSL
handshake. The configuration protocol is SSL_TLS by default. The HIGH ciphers, 128 bit and higher
cipher suites can be used.

Liberty profile: SSL configuration attributes
SSL configurations contain attributes that you use to control the behavior of the server SSL transport layer
on a Liberty profile. This document iterates all the settings available for an SSL configuration.

SSL Feature

To enable SSL on a server, the SSL feature must be included in the server.xml file:
<featureManager>
<feature>ss1-1.0</feature>
</featureManager>
SSL Default

You can have multiple SSL configurations configured. If more than one is configured, then the default SSL
configuration must be specified in the server.xml file using the ss1Default service configuration.

16 Securing applications and their environment

Table 4. Attribute of the SSLDefault element. This table describes the attribute of the SSLDefault element.

Attribute

Description

Default Value

ss1Ref

The ss1Ref attribute specifies the
SSL configuration to be used as the
default. If this attribute is not
specified, then the value used is
defaultSSLSettings.

The default SSL Configuration name
is defaultSSLSettings.

In the server.xml file, the entry looks like this:
<ss1Default ss1Ref="mySSLSettings" />

SSL Configuration

You use the SSL configuration attributes to customize the SSL environment to suit your needs. These
attributes can be set on the ss1 service configuration element in the server.xml file.

Table 5. Attributes of the SSL element. This table describes the attributes of the ssl element.

Attribute Description Default Value
id The id attribute assigns a unique No default value; a unique name
name to the SSL configuration object. | must be specified.
keyStoreRef The keyStoreRef attribute names the | No default value; a keystore
keystore service object that defines reference must be specified.
the SSL configurations keystore. The
keystore holds the key needed to
make an SSL connection.
trustStoreRef The trustStoreRef attribute names trustStoreRef is an optional attribute

the keystore service object that
defines the SSL configurations
truststore. The truststore holds
certificates needed for signing

verification.

if the reference is missing. The
keystore specified by keyStoreRef is
used.

clientAuthentication

The clientAuthentication attribute
determines whether SSL client
authentication is required.

Default value is false.

clientAuthenticationSupported

The clientAuthenticationSupported
attribute determines whether SSL
client authentication is supported. The
client does not have to supply a client
certificate. If the clientAuthentication
attribute is set to true, the value of the
clientAuthenticationSupported
attribute is overwritten.

Default value is false.

ss1Protocol

The ss1Protocol attribute defines the
SSL handshake protocol. The protocol
can be SDK dependent, so if
modifying the protocol make sure the
value is supported by the SDK you are
running under.

Default value is SSL_TLS.

Chapter 2. Securing the Liberty profile and its applications 17

Table 5. Attributes of the SSL element (continued). This table describes the attributes of the ssl element.

Attribute

Description

Default Value

securitylLevel

The securityLevel attribute
determines the cipher suite group to
be used by the SSL handshake. The
attribute has one of the following
values:

* HIGH (128-bit ciphers and higher)
* MEDIUM (40-bit ciphers)

» WEAK (for all ciphers without
encryption)

» CUSTOM (if the cipher suite group is
customized).

When you set the enableCiphers
attribute with a specific list of ciphers,
the system ignores this attribute.

Default value is HIGH.

enableCiphers

The enableCiphers attribute is used to
specify a unique list of cipher suites.
Separate each cipher suite in the list
with a space. If the enableCiphers
attribute is set then the securityLevel
attribute is ignored

No default value.

serverKeyAlias

The serverKeyAlias attribute names
the key in the keystore to be used as
the SSL configurations key. This
attribute is only needed if the keystore
has more than one key entry in it. If
the keystore has more than one key
entry and this attribute does not
specify a key, then the JSSE picks a
key.

No default value.

clientKeyAlias

The clientKeyAliasattribute names
the key in the keystore to be used as
the key for SSL configuration when
clientAuthentication is enabled. The
attribute is only required if the keystore
contains more than one key entry.

No default value.

Note:

* The key manager is used by the SSL Handshake to determine what certificate alias to use. The
key manager is not configured in the server.xml file, it is retrieved from the security property
ss1.KeyManagerFactory.algorithm of the SDK.

» The trust manager is used by the SSL handshake to make trust decisions. The trust manager is

not configured in the server.xml file, it is retrieved from the security property
ss1.TrustManagerFactory.algorithm of the SDK.

Here is an example of how the ss1 element is configured in theserver.xml file:

<l-- Simple ssl configuration service object. This assumes there is a keystore object named -->
<l-- defaultKeyStore and a truststore object named defaultTrustStore in the server.xml file. -->

<ss1 id="myDefaultSSLConfig"

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" />

18 Securing applications and their environment

<l-- A ssl configuration service object that enabled clientAuthentication -->
<l-- and specifies the TLS protocol be used. -->
<ss1 id="myDefaultSSLConfig"
keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthentication="true"
ss1Protocol="TLS" />

<!l-- A ssl configuration service object that names the serverKeyAlias to be use by the handshake. -->
<l-- This assumes there is a certificate called "default" in the keystore defined by keyStoreRef. -->
<ss1 id="myDefaultSSLConfig"
keyStoreRef="defaultKeyStore"
serverKeyAlias="default" />

Keystore Configuration

The keystore configuration consists of the attributes needed to load a keystore. These attribute can be set
on the keystore service configuration in the server.xml file.

Table 6. Attributes of the keystore element. This table explains the attributes of keystore element.

Attribute Description Default Value

id The id attribute defines a unique No default value, a unique name
identifier of the keystore object. must be specified.

location The Tocation attribute specifies the In the [SSL minimal configuration| the
keystore file name. The value can location of the file is assumed to be

include the absolute path to the file. If |§{server.config.dir}/resources/
the absolute path is not provided, then |security/key.jks.

the code looks for the file in the
${server.config.dir}/resources/
security directory.

type The type attribute specifies the type of | Default value is jks.
the keystore. Check that the keystore
type that you specify is supported by
the SDK you are running on.

password The password attribute specifies the Must be provided.
password used to load the keystore
file. The password can be stored
either in clear text or encoded. For
information about how to encode the
password, see the

option.

provider The provider attributes specifies the | By default no provider is specified.
provider to be used to load the
keystore. Some keystore types
required a provider other then the SDK
default.

fileBased The fileBased attribute specifies Default value is true.
whether or not the keystore is
file-based.

Here is an example of how the keystore element is configured in the server.xml file:

<l-- A keystore object called defaultKeyStore provides a location, -->
<l-- type, and password. The MyKeyStoreFile.jks file is assumed -->
<l-- to be Tocated in ${server.config.dir}/resources/security -->
keyStore id="defaultKeyStore"
location="MyKeyStoreFile.jks"
type="JKS" password="myPassword" />

Chapter 2. Securing the Liberty profile and its applications 19

Full SSL Configuration Example

Here is an example of a full SSL configuration in the server.xml file. This example has the following SSL
configurations:

e defaultSSLSettings
e mySSLSettings

By default, the SSL configuration is set to defaultSSLSettings.

<featureManager>
<feature>ss1-1.0</feature>
</featureManager>

<!-- default SSL configuration is defaultSSLSettings ->
<ss1Default ss1Ref="defaultSSLSettings" />
<ssl id="defaultSSLSettings"
keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />
<keyStore id="defaultKeyStore"
location="key.jks"
type="JKS" password="defaultPWD" />
<keyStore id="defaultTrustStore"
location="trust.jks"
type="JKS" password="defaultPWD" />

<ss1 id="mySSLSettings"
keyStoreRef="myKeyStore"
trustStoreRef="myTrustStore"
clientAuthentication="true" />
<keyStore id="LDAPKeyStore"
location="${server.config.dir}/myKey.p12"
type="PKCS12"
password="{xor}CDo9Hgw=" />
<keyStore id="LDAPTrustStore"
location="${server.config.dir}/myTrust.pl2"
type="PKCS12"
password="{xor}CDo9Hgw=" />

Creating SSL certificates for your Liberty profile using the Utilities
menu
Using the Liberty profile Utilities menu in the developer tools, you can create an SSL certificate.

Procedure
1. In the Servers view, right-click your Liberty server profile, and select Utilities > Create SSL
Certificate....

2. On the Create SSL Certificate page, you can create a default secure socket layer (SSL) certificate to
use with your server.

a. In the Keystore password field, type a password for your SSL certificate.

b. Click the Specify validity period (days) field, and specify the number of days you want the
certificate to be valid for. Minimum length of time is 365 days.

c. Click the Specify subject (DN): field, and provide a value for your SSL subject.
3. Click Finish.

20 Ssecuring applications and their environment

Creating SSL certificates from the command prompt

You can use the securityUtility command to create a default SSL certificate for use by the Liberty
profile configuration.

Procedure
1. Open a command prompt, then change directory to the wip directory.
2. Create an SSL certificate.

Run the following command. If you do not specify a server name or a password, the command does
not run. See |“Liber’(y profile: securityUtility command.”l

bin/securityUtility createSSLCertificate --server server_name --password your password

Results

You have created a default keystore key.jks for the specified server. The keystore file is located under the
/resources/security directory of the specified server. If a default keystore already exists, the command
does not execute successfully.

What to do next

You can configure your server to use the keystore and enable the SSL in the server configuration by
adding the following lines to the server configuration file:

<featureManager>
<feature>ss1-1.0</feature>
</featureManager>

<keyStore id="defaultKeyStore" password="keystore password" />

See |“Enab|ing SSL communication for the Liberty profile” on page 15.|

Liberty profile: securityUtility command
The securityUtility command supports plain text encryption and SSL certificate creation for a Liberty
profile.

Syntax

The command syntax is as follows:
securityUtility task [options]

where the options are different based on the value of task.
Parameters

The following tasks are available for the securityUtility command:

encode
Encodes the provided text using Base64 encryption. If no arguments are specified , the command
enters interactive mode. Otherwise, the provided text is encoded. Text with spaces must be put in
quotation marks if specified as an argument.

createSSLCertificate
Creates a default SSL certificate for use in server configuration. Generated keystore file key. js is
placed under /resources/security directory of the server specified in --server name. The key
algorithm is RSA and signature algorithm is SHA1 with RSA. For more control over the certificate
creation, use keytool directly.

The arguments are:

Chapter 2. Securing the Liberty profile and its applications 21

--server=name
Specifies the name of the Liberty profile server for keystore creation. This option is
required.

--password=passwd
Specifies the password to be used in the keystore, which must be at least 6 characters in
length. This option is required.

--validity=days
Specifies the number of days that the certificate is valid, which must be equal to or greater
than 365. The default value is 365. This option is optional.

--subject=DN
Specifies the Domain Name (DN) for the certificate subject and issuer. The default value is
CN=TocaTlhost,0=ibm,C=us. This option is optional.

help Prints help information for specified task.
Usage

The following examples demonstrate correct syntax:

securityUtility encode GiveMelLiberty
securityUtility createSSLCertificate --server=myserver --password=mypassword --validity=365 --subject=CN=mycompany,
securityUtility help createSSLCertificate

Configuring your web application and server for client certificate
authentication
You can configure your web application on the Liberty profile using SSL client authentication.

Before you begin

This topic assumes that you have already created the SSL certificates, for example as described in
[‘Creating SSL certificates from the command prompt” on page 21|

About this task

Client certificate authentication occurs if the server side requests that the client side send a certificate. A
Websphere server can be configured for client certificate authentication on the SSL configuration. To do
this, you add the ss1-1.0 server feature to the server.xml file, along with code that tells the server the
keystore information for authentication.

For details of which aspects of SSL are supported, see|Liberty profile: Server featuresl

Procedure

1. Ensure that the deployment descriptor for your web application is specified with<auth-method>CLIENT-
CERT</auth-method>

Note: Typically, you would use a tool such as Rational® Application Developer to create the
deployment descriptor.

2. Optional: Generate an SSL certificate using the command prompt. See f‘Liberty profile: securityUtiIity|
fcommand” on page 21|

3. Configure your server to enable SSL client authentication by adding the following lines to the
server.xml file:

<featureManager>
<feature>ss1-1.0</feature>
<featureManager>

22 Securing applications and their environment

<ssl id="defaultSSLSettings" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />
<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="defaultPwD" />
<keyStore id="defaultTrustStore" Tocation="trust.jks" type="JKS" password="defaultPWD" />
» If you specify clientAuthentication="true", the server requests that a client send a certificate.
However, if the client does not have a certificate, or the certificate is not trusted by the server, the
handshake does not succeed.
 If you specify clientAuthenticationSupported="true", the server requests that a client send a
certificate. However, if the client does not have a certificate, or the certificate is not trusted by the
server, the handshake might still succeed.
 If you do not specify either clientAuthentication or clientAuthenticationSupported, or you
specify clientAuthentication="false" or clientAuthenticationSupported="false", the server does
not request that a client send a certificate during the handshake.
4. Add a client certificate to your browser. See the documentation of your browser for adding client
certificates.
5. Make sure the server trusts any client certificates that are used.
6. Make sure any client certificates used for client authentication are mapped to a user identity in your
registry.
» For the basic registry, the user identity is the common name (CN) from the distinguished name (DN)
of the certificate.
» For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate must
be in the LDAP registry.
7. To fall back to basic authentication (user ID and password only) if client certificate authentication does
not succeed, add the following line to your server.xml file.
<webAppSecurity allowFailOverToBasicAuth="true" />

Note: If you specify alTowFailOverToBasicAuth="false" or do not specify allowFailOvertoBasicAuth,
and the client certificate authentication does not succeed, the request generates a 403
Authentication error message and the client is not prompted for basic authentication.

Authenticating users in the Liberty profile

The Liberty profile server uses a user registry to authenticate a user and retrieve information about users
and groups to perform security-related operations, including authentication and authorization.

About this task

To learn about how authentication works in the Liberty profile, see [Liberty profile: Authentication]

The authentication tasks that you can configure might vary depending on your requirements. Unless you
have used [the quickStartSecurity element| that can configure only one user, you can configure the user
registry at the least . You do not have to configure the values for JAAS, authentication Cache and SSO
tasks unless you want to change the default values. Configure TAI configuration only when you have an
implementation of TAl interface to handle authentication.

You can complete one or more of the following authentication tasks:

Procedure

« [Configure authentication cache on the Liberty profile

« [Configure a custom JAAS login module for the Liberty profile|
« [Configure SSO on the Liberty profile]

« [Configure a user registry for the Liberty profile|

[Configure RunAS authentication in the Liberty profile]

Chapter 2. Securing the Liberty profile and its applications 23

« [Configure TAI for the Liberty profile|

Configuring a user registry for the Liberty profile

You can store user and group information for authentication in several types of registry. For example you
can use a basic user registry, or an LDAP registry.

Procedure
+ |Configure a basic user registry for the Liberty profile|
* |Configure an LDAP user registry for the Liberty profilel

Configuring a basic user registry for the Liberty profile
You can configure a basic user registry in the Liberty profile for authentication.

About this task

You can use a basic user registry by defining the users and groups information for authentication on the
Liberty profile server. To do this, you add the appSecurity-1.0 server feature to the server.xml file, along
with user information in the basicRegistry element.

Procedure
1. Add the appSecurity-1.0 server feature to the server.xml file.

2. Optional: To use SSL, add the ss1-1.0 server feature in the server.xml file. See [‘Enabling SS
fcommunication for the Liberty profile” on page 15.

3. Configure the basic registry for the server as follows:

<basicRegistry id="basic" realm="customRealm">
<user name="mlee" password="p@sswOrd" />
<user name="rkumar" password="pa$$wOrd" />
<user name="gjones" password="{xor}Lz4sLCgwLTs=" />
<group name="students">
<member name="mlee" />
<member name="rkumar" />
</group>
</basicRegistry>

Notes:
* You must use unique names for your users and groups.
* You should remove all trailing and leading spaces from the user and group names.

» If you use the Liberty profile developer tools, the password is encoded for you automatically.
If you edit the server.xml file directly, you can use the securityUtility encode command
to encode the password for each user. The securityUtility command-line tool is available
in the $INSTALL_ROOT/bin directory. When you run the securityUtility encode command,
you either supply the password to encode as an input from the command line or, if no
arguments are specified, the tool prompts you for the password. The tool then outputs the
encoded value. Copy the value output by the tool, and use that value for the password. For
example, to encode the password GiveMeLiberty, run the following command:
securityUtility encode GiveMelLiberty

* A more complete sample configuration of the basic registry is available in file
${wlp.install.dir}/templates/config/basicRegistry.xml.

Configuring an LDAP user registry with the Liberty profile
You can configure a Lightweight Directory Access Protocol (LDAP) server with the Liberty profile for
authentication.

24 Securing applications and their environment

Before you begin

Ensure your LDAP server is up and running, and that the host name and port number of the LDAP server

are already in your known list.

About this task

You can use an existing LDAP server for application authentication on the Liberty profile. To do this, you

add the appSecurity-1.0 server feature to the server.xml file, and specify in the server.xml file the
configuration information for connecting to the LDAP server.

Avoid trouble: You can refer to the sample LDAP configuration TdapRegistry.xml file in the

${wlp.install.dir}/templates/config directory, and make sure the configuration in your

server.xml file is similar to the one in the sample file.
Note: There is no support of certificate filter for LDAP.

Procedure
1. Add the appSecurity-1.0 server feature to the server.xml file.

2. Optional: To communicate with an SSL-enabled LDAP server , add the ss1-1.0 server feature in the

server.xml file.

3. Optional: Copy the truststore to the server configuration directory (for example, by using the
${server.config.dir} variable).

For SSL communication with an LDAP server to succeed, the Signer certificate for the LDAP server

must be added to the truststore that is referenced by the ss1Alias attribute of the <1dapRegistry>
element. In the following examples, the Signer certificate must be added to the
LdapSSLTrustStore. jks.

4. Configure the LDAP entry for the server.

If you do not need SSL for the LDAP server, remove all SSL and keystore related lines from the
following examples.

You configure the LDAP server in the server.xml file or using the Liberty profile developer tools. For

sample configuration of other LDAP server, refer to the ${wlp.install.dir}/templates/config/
1dapRegistry.xml file.

* For IBM Directory Server:

<ldapRegistry id="1dap" realm="SampleLdapIDSRealm"
host="1dapserver.mycity.mycompany.com" port="389" ingnoreCase="true"
baseDN="o=mycompany,c=us"
userFilter="(&amp; (uid=%v) (objectclass=ePerson))"
groupFilter="(&amp; (cn=%v) (| (objectclass=groupOfNames)

(objectclass=group0fUniqueNames) (objectclass=group0fURLs)))"
userIdMap="+:uid"
groupIdMap="+:cn"
groupMemberIdMap="mycompany-allGroups:member;mycompany-allGroups:uniqueMember;
groupOfNames :member;group0fUniqueNames:uniqueMember"

1dapType="IBM Tivoli Directory Server"
ss1EnabTed="true"
ss1Ref="LDAPSSLSettings">

</1dapRegistry>

<ss1Default ssTRef="LDAPSSLSettings" />
<ss1 id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" Tocation="${server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore" location="$§{server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

» For Microsoft Active Directory Server:

Chapter 2. Securing the Liberty profile and its applications

25

<ldapRegistry id="1dap" realm="SamplelLdapADRealm"
host="1dapserver.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindDN="cn=testuser,cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindPassword="testuserpwd"
userFilter="(& (sAMAccountName=%v) (objectcategory=user))"
groupFilter="(& (cn=%v) (objectcategory=group))"
userIdMap="user:sAMAccountName"
groupIdMap="=*:cn"
groupMemberIdMap="memberof:member"
1dapType="Microsoft Active Directory"
ss1Enabled="true"
ssTRef="LDAPSSLSettings">

</1dapRegistry>

<ss1Default ss1Ref="LDAPSSLSettings" />
<ss1 id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" Tocation="${server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore" location="${server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

If you use the Liberty profile developer tools, the bindPassword password is encoded for you
automatically. If you edit the server.xml file directly, you can use the securityUtility encode
command to encode the bindPassword password for you. The securityUtility command-line tool is
available in the $INSTALL_ROOT/bin directory. When you run the securityUtility encode command,
you either supply the password to encode as an input from the command line or, if no arguments are
specified, the tool prompts you for the password. The tool then outputs the encoded value. Copy the
value output by the tool, and use that value for the bindPassword password.

5. Optional: Configure failover for multiple LDAP servers.

<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"
host="1dapserverl.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us" T1dapType="IBM Tivoli Directory Server" idsFilters="ibm_dir_server">
<failoverServers name="failoverLdapServersGroupl">
<server host="1dapserver2.mycity.mycompany.com" port="389" />
<server host="1dapserver3.mycity.mycompany.com" port="389" />
</failoverServers>
<failoverServers name="failoverLdapServersGroup2">
<server host="1dapserver4.mycity.mycompany.com" port="389" />
</failoverServers>
</1dapRegistry>

<idsLdapFilterProperties id="ibm dir_server"
userFilter="(& (uid=%v) (objectclass=ePerson))"
groupFilter="(& (cn=%v) (| (objectclass=groupOfNames)
(objectclass=group0fUniqueNames) (objectclass=groupOfURLs)))"
userIdMap="+:uid" groupIdMap="+:cn"
groupMemberIdMap="1ibm-allGroups:member;ibm-allGroups:uniqueMember;
groupOfNames :member;groupOfUniqueNames:uniqueMember">
</idsLdapFilterProperties>

For more information about the 1dapRegistry and failoverServers elements, see|Liberty profile;
[Configuration elements in the server.xml filel

Configuring the authentication cache on the Liberty profile
This topic describes how to modify the way that authenticated users are cached on the Liberty profile.

About this task

Because the creation of a subject is relatively expensive, the Liberty profile provides an authentication
cache to store a subject after an authentication of a user is successful. The cache is initialized with a
certain number of entries, determined by the initialSize attribute, and has a maximum number of entries,

26 Securing applications and their environment

determined by the maxSize attribute. If the maximum size is reached, then the least recently used entries
are removed from the cache. Also, if a user has been inactive for more than a certain time period
determined by the timeout attribute, then the entry for that user is removed from the cache. By default, the
cache size is initialized to 50 entries and a maximum of 25000 entries with a timeout of 600 seconds.

You do not have to configure the values for the authCache element unless you want to change the default
values of the authentication cache.

See|Authentication Cache]|for more detail.

Note:

* Any changes to the user registry configuration in server.xml file will clear the authentication
cache. However, if changes are done to an external user registry (LDAP, for example), the
authentication cache is not impacted

* You must consider the following effects of the timeout value on your configuration:

— Larger authentication cache timeout values can increase the security risk. For example, you
might revoke a user in the user registry or repository. However, the revoked user can log in
using the credential that is cached in the authentication cache until the cache is refreshed.

— Smaller authentication cache timeout values can affect performance. When this value is
smaller, the Liberty profile server accesses the user registry or repository more frequently.

— Larger numbers of entries in the authentication cache, which is due to an increased number
of users, increases the memory usage by the authentication cache. Thus, the application
server might slow down and affect performance.

Procedure
1. Enable the appSecurity-1.0 server feature in the server.xml file.

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>
2. If you want to change the default options for the authentication cache, add the authCache element to
the server.xml file. In the following example, the initial size of the authentication cache is changed to
100 entries with a maximum of 50000 entries, and the timeout is changed to 15 minutes.

<authCache initialSize="100" maxSize="50000" timeout="15m"/>

Note: If you want to disable the authentication cache, set the attribute cachEnabled to false in the
authentication element as follows:
<authentication id="Basic" cacheEnabled="false" />
For more information on the authCache and authentication elements, see|Liberty profile: Configuration|
[elements in the server.xml file]

Configuring a JAAS custom login module for the Liberty profile

You can configure a custom Java Authentication and Authorization Service (JAAS) login module before or
after the Liberty profile server login module.

Before you begin
This topic assumes that you have a JAR file containing the JAAS custom login module, which implements

the javax.security.auth.spi.LoginModule interface and uses hashtable, callbacks or shared state variables
provided by the Liberty profile server to pass authentication data to the system login module.

Chapter 2. Securing the Liberty profile and its applications 27

About this task

You can use a custom login module to either make additional authentication decisions, or add information
to the Subject to make finer-grained authorization decisions inside your application. See |[JAAS

[configuration| and [JAAS login modules|for a more detailed overview.

You can also use the developer tools to configure a custom JAAS login module. See [‘Configuring JAAS|

fon the Liberty profile using developer tools.”|

See also [‘Developing JAAS custom login modules for a system login configuration” on page 41|

Procedure

1. Enable the appSecurity-1.0 server feature in the server.xml file.

2. Create a class com.ibm.ws.security.authentication.modules.CustomLoginModule that implements the
LoginModule interface and package it into the CustomLoginModule. jar file.

3. Create a library element that uses a fileset element indicating where the CustomLoginModule.jar
file is. In this example, the libraryid is customLoginLib.

4. Create a jaasLoginModule element. In this example, the id is custom. Configure the custom login
module to require a successful authentication by setting the controlFlag attribute to REQUIRED. Set
the TibraryRef attribute to customLoginLib, the id of the Tibrary element configured in the previous
step. This login module also has two options: UserRegistry is Tdap and mapToUser is userl.

5. Create a jaasLogincontextEntry element with an id and name of the system-defined JAAS

configuration: system_WEB_INBOUND (you can also set this to system.DEFAULT, WSLogin or your
own JAAS configuration). On the ToginModuleRef attribute, add custom, the id of the jaasLoginModule
element created in the previous step. Putting this id first in the list means that it is the first JAAS login
module to be called. You must also list the other default login modules: hashtable,
userNameAndPassword, certificate and token.

See the following server.xml file as an example:

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

<jaasLoginContextEntry id="system.WEB_INBOUND" name="system.WEB_INBOUND"
ToginModuleRef="custom, hashtable, userNameAndPassword, certificate, token" />

<jaasLoginModule id="custom"
className="com.ibm.ws.security.authentication.modules.CustomLoginModule"
controlFlag="REQUIRED" TibraryRef="customLoginLib">
<options userRegistry="1dap" mapToUser="userl"/>
</jaasLoginModule>

<library id="customLoginLib">
<fileset dir="§{server.config.dir}" includes="CustomLoginModule.jar"/>
</library>

Note: The option name cannot start with a period (.), config., or service. Also, the property name 1id
or ID is not allowed.

For more information on the jaasLoginContextEntry, jaasLoginModule, options and Tibrary elements,

see [Liberty profile: Configuration elements in the server.xml file}

Configuring JAAS on the Liberty profile using developer tools

You can configure a JAAS configuration (system.WEB_INBOUND) with a custom login module for the
Liberty profile by editing the configuration. You do not need to configure JAAS unless you want to
customize it.

28 Securing ap