
IBM WebSphere Application Server - Express for
Distributed Platforms, Version 8.5

Migrating WebSphere applications

���

Note
Before using this information, be sure to read the general information under “Notices” on page 83.

Compilation date: June 7, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . v

Using this PDF . vii

Chapter 1. Migrating Application profiling . 1
Running previous versions of application profiles on Version 8 1

Application profiling interoperability . 2

Chapter 2. Migrating Asynchronous beans . 3
Migrating asynchronous beans . 3

Interoperating with asynchronous beans . 3

Chapter 3. Migrating applications that use the Bean Validation API 5
Migration of JPA applications and bean validation . 5

Chapter 4. Migrating Data access resources . 7
Migrating data sources . 7

Migrating applications to use data sources of the current Java EE Connector Architecture (JCA) . . . 7
Verifying Cloudscape automatic migration . 11
Upgrading Cloudscape manually . 14
Directory conventions . 16

Chapter 5. Migrating Dynamic caching . 21
Migrating servers from multi-broker replication domains to data replication domains 21

Chapter 6. Migrating EJB applications . 23
Migrating enterprise bean code from Version 1.1 to Version 2.1 23
Migrating enterprise bean code to the supported specification 24

Adjusting exception handling for EJB wrapped applications migrating from version 5 to version 7 24

Chapter 7. Migrating Naming and directory . 27

Chapter 8. Migrating and coexisting for OSGi applications 29

Chapter 9. Migrating Scheduler service . 33
Interoperating with schedulers . 33

Interoperating with schedulers . 33

Chapter 10. Migrating Service integration . 35
Adding unique names to the bus authorization policy 35
Migrating a messaging engine based on a data store 36

Chapter 11. Migrating Transactions . 37
Interoperating transactionally between application servers 37

Chapter 12. Migrating web applications . 39
Migrating web application components. 39

Migrating web application components from WebSphere Application Server Version 5.x 39
JavaServer Faces migration . 43
Migration scenario for the getHeaderNames method 44
JavaServer Pages migration . 44

JavaServer Pages migration . 46
JavaServer Pages migration best practices and considerations. 46

© Copyright IBM Corp. 2012 iii

Chapter 13. Migrating web services . 49
Migrating web services . 49

Web services migration scenarios: JAX-RPC to JAX-WS and JAXB 49
Web services migration best practices . 57
Migrating Apache SOAP web services to JAX-RPC web services based on Java EE standards . . . 60

Migrating Web Services Security . 62
Migration of JAX-WS Web Services Security bindings from Version 6.1. 62
Migrating JAX-RPC Web Services Security applications to Version 8.5 applications 63

Migrating the UDDI registry . 79
Setting up a UDDI migration data source . 80
Migrating a UDDI database that uses Apache Derby 81

Notices . 83

Trademarks and service marks. 85

Index . 87

iv Migrating WebSphere applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 v

vi Migrating WebSphere applications

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 vii

viii Migrating WebSphere applications

Chapter 1. Migrating Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

Running previous versions of application profiles on Version 8
Java 2 platform, Enterprise Edition (J2EE) 1.3 applications created using WebSphere® Application Server
Version 5.x have an application profile configuration formatted for Version 5.x. Although, you can use
applications with an application profile configuration from Version 5.x on WebSphere Application Server
Version 7.0 and Version 8.0, you must change a setting. Also, there are several implications to using
Version 5.x application profiles on Version 7.0 and Version 8.0.

About this task

The product application profiling function works under the unit of work concept. This gives it a more
predictable data access pattern based on the active unit of work, which could be either a transaction or an
ActivitySession. See the topic, Task overview: Application profiling for more information.

Procedure
v Set the Application Profile service on your server to enable the Application Profiling 5.x Compatibility

Mode as the default.

See the topic, Using the TaskNameManager interface for more information.

Note: This setting is necessary to support Java 2 platform, Enterprise Edition (J2EE) 1.3 applications
with an application profile configuration from WebSphere Application Server Version 5.x. The 5.x
compatibility mode has a fair amount of performance overhead on a Version 7.0 and Version 8.0
server. Because of this, if there is no J2EE 1.3 application with an application profile V5.x
configuration installed, the server does not load the support for the 5.x compatibility mode during
startup, even when the 5.x compatibility mode is turned on.

After the server starts without loading the 5.x compatibility mode support, if a J2EE 1.3 application with
an application profile V5.x configuration installs on the server and attempts to start, the following
message is displayed, and the server must be restarted:
ACIN0031E: The J2EE 1.3 application <ApplicationName> is configured for application
profiling and is installed and starting on a running server that enables Application Profiling
5.x Compatibility Mode. You must re-start the server.

This situation only happens when:
1. the server started with the Application Profile service enabled and 5.x compatibility mode turned on,

but no J2EE 1.3 applications were installed at server start up. Therefore, the server run time
automatically ignores the 5.x compatibility in order to avoid performance costs associated with it.

2. you try to install and start a J2EE 1.3 application with an application profile configured in Version
5.x, but the 5.x compatibility mode is turned off.

To avoid this situation, you must install at least one J2EE 1.3 application with an application profile
Version 5.x configuration before starting the server, or restart the server after installing a J2EE 1.3
application with the application profile configured in Version 5.x.

v Ideally, upgrade your J2EE 1.3 applications to use the Version 6.x application profiling configuration and
turn off the Application Profiling 5.x Compatibility Mode through the administrative console.

See the topic, Application profiling service settings, for more information. .

© IBM Corporation 2009 1

v Migrate any application you have configured with application profiling in Version 5.

Application profiles migration requires you to re-configure your applications in the assembly tool. See
the Developing and deploying applications PDF for more information.

v Rework the usage of the TaskNameManager API if it is used in your applications. The
TaskNameManager API is not supported in container-managed transaction beans, and the setTaskName
method must be called before beginning a new unit of work.

See the topic, Using the TaskName Manager interface, for more information.

Application profiling interoperability
Using application profiling with 5.x compatibility mode or in a clustered environment with mixed product
versions and mixed platforms can affect its behavior in different ways.

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of
WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server
Foundation 5.1) can only run in WebSphere Application Server Version 6 or later if the Application Profiling
5.x Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5
application profiles might display unexpected behavior.

For information about the 5.x Compatibility Mode, see the topic, Application profile service settings..

Similarly, application profiles that you create using the latest version of WebSphere Application Server are
not compatible with Version 5 or earlier versions. Even applications configured with application profiles run
on Version 6.x servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot
interact with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x Compatibility
Mode, you must set the appprofileCompatibility system property to true in the client process. You can do
this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application
Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

2 Migrating WebSphere applications

Chapter 2. Migrating Asynchronous beans

This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Migrating asynchronous beans

Interoperating with asynchronous beans
Asynchronous beans support Serialized WorkWithExecutionContext interoperability with objects that are
serialized in 5.0.2 or later.

Before you begin

For more information on migrating to WebSphere Application Server Version 8 from previous product
releases, read the Migrating product configurations topic.

Procedure
1. Install the Version 8 product.

2. Use the Profile Management Tool to create one or more profiles for a standalone application server.

3. Start the First steps console.

4. Select the WebSphere Customization Toolbox on the First steps console.

5. Start the Migration Management Tool.

6. Migrate the previous release to the Version 8 product.

Read the Using the Migration wizard to migrate product configurations topic.

© IBM Corporation 2009 3

4 Migrating WebSphere applications

Chapter 3. Migrating applications that use the Bean Validation
API

The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate JavaBeans in all layers of an application, including, presentation, business, and
data access. Before the Bean Validation specification, the JavaBeans were validated in each layer. To
prevent the reimplementation of validations at each layer, developers bundled validations directly into their
classes or copied validation code, which was often cluttered. Having one implementation that is common
to all layers of the application simplifies the developers work and saves time.

Migration of JPA applications and bean validation
The Java Persistence API (JPA) 2.0 provides support for the Bean Validation API so that data validation
can be done at run time. This topic includes best practices when you want to deploy Version 7 Feature
Pack for OSGi and JPA 2.0 applications on Version 8.x.

The Bean Validation API was not included with the Version 7 Feature Pack for OSGi and JPA 2.0.
Therefore, it was required to provide and configure the Bean Validation API and implementation in a
shared library or package with the application.

Note: The Bean Validation API and implementation are included in the Version 8.x product. If you want to
deploy the feature pack applications on Version 8.x, be aware of the following changes in
configuration and runtime behaviors:

v In Version 7.0, the system property, com.ibm.websphere.validation.api.jar.path, is used to direct
the feature pack run time to locate the Bean Validation API JAR file. In Version 8.x, the Bean
Validation API JAR file is built into the product installation, therefore, this system property is
ignored. However, the bean validation provider can still be overridden in Version 7 and Version
8.x when packaged in application or shared libraries. The third bullet describes this usage
scenario.

v The bean validation implementation in WebSphere Application Server is automatically the
effective default bean validation provider.

v If standard bean validation features are used by the JPA application, the
com.ibm.websphere.validation.api.jar.path system property, and user-supplied bean validation
provider can be removed from application deployment.

v If non-specification compliant or provider-specific features are used by an application, the bean
validation provider that supports the required features must be packaged, configured, and
deployed as a typical, third-party service provider in the user application, the application shared
library, and the server associated shared library. Read more about shared library usage in
applications for more information.

© Copyright IBM Corp. 2012 5

6 Migrating WebSphere applications

Chapter 4. Migrating Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as, JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Migrating data sources

Migrating applications to use data sources of the current Java EE
Connector Architecture (JCA)
Migrate your applications that use Version 4 data sources, or data sources (WebSphere Application Server
V4), to use data sources that support more advanced connection management features, such as
connection sharing.

About this task

To use the connection management infrastructure in the application server, you must package your
application as a Java EE 1.3 or later application. This process involves repackaging your web modules to
the 2.3 specification and your EJB modules to the 2.1 specification before installing them onto WebSphere
Application Server.

Procedure
v Convert a 2.2 web module to a 2.3 web module

1. Open an assembly tool.

2. Create a new web module by selecting File > New > Web Module.

3. Add any required class files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Class Files and select Add Files.

c. In the Add Files window, click Browse.

d. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

e. In the upper left pane of the Add Files window, navigate to your WAR file and expand the
WEB-INF and classes directories.

© Copyright IBM Corp. 2012 7

f. Select each of the directories and files in the classes directory and click Add.

g. After you add all of the required class files, click OK.

4. Add any required JAR files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Jar Files and select Add Files.

c. Navigate to your WebSphere 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file and expand the
WEB-INF and lib directories.

e. Select each JAR file and click Add.

f. After you add all of the required JAR files, clickOK.

5. Add any required resource files, such as HTML files, JSP files, GIFs, and so on, to the new
module.

a. Expand the Files portion of the tree.

b. Right-click Resource Files and select Add Files.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file.

e. Select each of the directories and files in the WAR file, excluding META-INF and WEB-INF, and
click Add.

f. After you add all of the required resource files, clickOK.

6. Import your web components.

a. Right-click Web Components and select Import.

b. In the Import Components window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Open.

d. In the left top pane of the Import Components window, highlight the WAR file that you are
migrating.

e. Highlight each of the components that display in the right top pane and click Add.

f. When all of your web components display in the Selected Components pane of the window,
click OK.

g. Verify that your web components are correctly imported under the Web Components section of
your new web module.

7. Add servlet mappings for each of your web components.

a. Right-click Servlet Mappings and select New.

b. Identify a URL pattern for the web component.

c. Select the web component from the Servlet drop-down box.

d. Click OK.

8. Add any necessary resource references by following the instructions in the Creating a resource
reference article in the information center.

9. Add any other web module properties that are required. Click Help for a description of the settings.

10. Save the web module.

v Convert a 1.1 EJB module to a 2.1 EJB module (or later)

1. Open an assembly tool.

2. Create a new EJB Module by selecting File > New > EJB Module.

3. Add any required class files to the new module.

a. Right-click Files object and select Add Files.

b. In the Add Files window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

8 Migrating WebSphere applications

d. In the upper left pane of the Add Files window, navigate to your enterprise bean JAR file.

e. Select each of the directories and class files and click Add.

f. After you add all of the required class files, click OK

4. Create your session beans and entity beans. To find help on this subject, see the information center
article Migrating enterprise bean code to the supported specification.

5. Add any necessary resource references by following the instructions in the Creating a resource
reference article in the information center.

6. Add any other EJB module properties that are required. Click Help for a description of the settings.

7. Save the EJB module.

8. Generate the deployed code for the EJB module by clicking File > Generate Code for
Deployment.

9. Fill in the appropriate fields and click Generate Now.

v Add the EJB modules and web modules to an EAR file

1. Open an assembly tool.

2. Create a new Application by selecting File > New > Application.

3. Add each of your EJB modules.

a. Right-click EJB Modules and select Import.

b. Navigate to your converted EJB module and click Open.

c. Click OK.

4. Add each of your web modules.

a. Right-click Web Modules and select Import.

b. Navigate to your converted web module and click Open.

c. Fill in a Context root and click OK.

5. Identify any other application properties. Click Help for a description of the settings.

6. Save the EAR file.

v Install the application on the application server.

1. Install the application following the instructions in the topic on installing a new application, and bind
the resource references to the data source that you created.

2. Perform the necessary administrative task of creating a JDBC provider and a data source object
following the instructions in the topic on creating a JDBC provider and data source.

Connection considerations when migrating servlets, JavaServer Pages, or
enterprise session beans
If you plan to upgrade to WebSphere Application Server Version 6.x, and migrate applications from version
1.2 of the Java 2 Platform, Enterprise Edition (J2EE) specification to a later version, such as 1.4 or Java
Platform, Enterprise Edition (Java EE), be aware that the product allocates shareable and unshareable
connections differently for post-version 1.2 application components. For some applications, that difference
can result in performance degradation.

Adverse behavior changes

Because WebSphere Application Server provides backward compatibility with application modules coded
to the J2EE 1.2 specification, you can continue to use Version 4 style data sources when you migrate to
Application Server Version 6.x. As long as you configure Version 4 data sources only for J2EE 1.2
modules, the behavior of your data access application components does not change.

If you are adopting a later version of the J2EE specification along with your migration to Application Server
Version 6.x, however, the behavior of your data access components can change. Specifically, this risk
applies to applications that include servlets, JavaServer Page (JSP) files, or enterprise session beans that

Chapter 4. Migrating Data access resources 9

run inside local transactions over shareable connections. A behavior change in the data access
components can adversely affect the use of connections in such applications.

This change affects all applications that contain the following methods:
v RequestDispatcher.include()
v RequestDispatcher.forward()
v JSP includes (<jsp:include>)

Symptoms of the problem include:
v Session hang
v Session timeout
v Running out of connections

Note: You can also experience these symptoms with applications that contain the components and
methods described previously if you are upgrading from J2EE 1.2 modules within Application Server
Version 6.x.

The switch in allocating shareable and unshareable connections

For J2EE 1.2 modules using Version 4 data sources, WebSphere Application Server issues non-sharable
connections to JSP files, servlets, and enterprise session beans. All of the other application components
are issued shareable connections. However, for J2EE 1.3 and later modules, Application Server issues
shareable connections to all logically named resources (resources bound to individual references) unless
you specify the connections as unshareable in the individual resource-references. Using shareable
connections in this context has the following effects:
v All connections that are received and used outside the scope of a user transaction are not returned to

the free connection pool until the encapsulating method returns, even when the connection handle
issues a close() call.

v All connections that are received and used outside the scope of a user transaction are not shared with
other component instances (that is, other servlets, JSP files, or enterprise beans). For example, session
bean 1 gets a connection and then calls session bean 2 that also gets a connection. Even if all
properties are identical, each session bean receives its own connection.

If you do not anticipate this change in the connection behavior, the way you structure your application
code can lead to excessive connection use, particularly in the cases of JSP includes, session beans that
run inside local transactions over shareable connections, RequestDispatcher.include() routines,
RequestDispatcher.forward() routines, or calls from these methods to other components. Consequently,
you can experience session hang, session timeout, or connection deficiency.

Example scenario

Servlet A gets a connection, completes the work, commits the connection, and calls close() on the
connection. Next, servlet A calls the RequestDispatcher.include() to include servlet B, which performs the
same steps as servlet A. Because the servlet A connection does not return to the free pool until it returns
from the current method, two connections are now busy. In this way, more connections might be in use
than you intended in your application. If these connections are not accounted for in the Max Connections
setting on the connection pool, this behavior might cause a lack of connections in the pool, which results
in ConnectionWaitTimeOut exceptions. If the connection wait timeout is not enabled, or if the connection
wait timeout is set to a large number, these threads might appear to hang because they are waiting for
connections that are never returned to the pool. Threads waiting for new connections do not return the
ones they are currently using if new connections are not available.

Resolution

To resolve these problems:
1. Use unshared connections.

10 Migrating WebSphere applications

If you use an unshared connection and are not in a user transaction, the connection is returned to the
free pool when you issue a close() call (assuming you commit or roll back the connection).

2. Increase the maximum number of connections.

To calculate the number of required connections, multiply the number of configured threads by the
deepest level of component call nesting (for those calls that use connections). See the “Example
scenario” on page 10 section for a description of call nesting.

Verifying Cloudscape automatic migration
Version 7.0 of the application server requires Cloudscape or Apache Derby to run at a minimal version of
v10.1.x. During the application server upgrade to version 7.0, the migration tool automatically upgrades the
database instances that are accessed through the embedded framework by some internal components,
such as the UDDI registry. The tool also attempts to upgrade Cloudscape or Derby instances that your
applications access through the embedded framework. You must verify the migration results for these
backend databases.

Before you begin

Do not use Apache Derby or Cloudscape as a production database. Use it for development and test
purposes only.

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

The migration tool attempts to upgrade Cloudscape database instances that are accessed through the
embedded framework only. You must manually upgrade Cloudscape instances that transact with
application servers on the Network Server framework. See the topic, Upgrading Cloudscape manually. This
requirement eliminates the risk of corrupting third party applications that use the Network Server
framework to access the same database instances as WebSphere Application Server.

Other applications can access Apache Derby or Cloudscape on Network Server because the framework
provides the database with a foundation of connectivity software; the embedded framework does not.
Derby Network Server or Cloudscape Network Server can transact with multiple Java Virtual Machines
(JVM) or application servers concurrently, whereas Cloudscape or Derby on the embedded framework
works with only a single JVM. Clustered or coexistence implementations of Application Server require
Network Server. For more information, consult the IBM® Cloudscape Information Center. Find the link in
the following IBM Suggests section.

About this task

For database instances that your applications access through the embedded framework, the automatic
migration can succeed completely, fail completely, or succeed with warnings. A migration that produces
warning messages does create an Apache Derby or Cloudscape database with your data, but does not
migrate all of your configured logic and other settings, such as:

v keys

v checks

v views

v triggers

v aliases

v stored procedures

To distinguish between a partially and a completely successful migration, you must verify the
auto-migration results by checking both the general post-upgrade log and the individual database logs.
Performing these tasks gives you vital diagnostic data to troubleshoot the partially migrated databases as

Chapter 4. Migrating Data access resources 11

well as those that fail auto-migration completely. Ultimately, you migrate these databases through a
manual process.

Procedure
1. Open the post-upgrade log of each new profile for the application server. The path name of the log is

app_server_root/profiles/profileName/logs/WASPostUpgrade.timestamp.log.

2. Examine the post-upgrade log for database error messages. These exceptions indicate database
migration failures. The following lines are an example of post-upgrade log content, in which the
database error code is DSRA7600E. The migration tool references all database exceptions with the prefix
DSRA.

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/cloudscape
/db2j.properties.

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/config/cells
/migr06/applications/MyBankApp.ear/deployments/MyBankApp/deployment.xml.

DSRA7600E: Cloudscape migration of database instance /opt/WebSphere61/Express
/profiles/default/databases/_opt_WebSphere51_AppServer_bin_DefaultDB failed,
reason: java.sql.SQLException: Failure creating target db

MIGR0430W: Cloudscape Database /fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9
/testRun/pre/websphere_backup/bin/DefaultDB failed to migrate <new database name>

Important: Call IBM WebSphere Application Server Support if you see a migration failure message for
a Cloudscape instance that is accessed by a WebSphere internal component (that is, a
component that helps comprise WebSphere Application Server rather than one of your
applications).

3. Open the individual database migration log that corresponds with each of your backend Cloudscape
databases. These logs have the same timestamp as that of the general post-upgrade log. The logs
display more detail about errors that are listed in the general post-upgrade log, as well as expose
errors that are not documented by the general log.

The path name of each database log is app_server_root/profiles/profileName/logs/
myFulldbPathName_migrationLogtimestamp.log.

4. Examine each database migration log for errors. For a completely successful migration, the log
displays a message that is similar to the following text:

MIGR0429I: Cloudscape Database F:\temp\51BaseXExpress\PostUpgrade50BaseFVTTest2\testRun
\pre\websphere_backup\bin\DefaultDB was successfully migrated. See log C:\WebSphere61
\Express\profiles\default\logs\DefaultDB_migrationLogSun-Dec-18-13.31.40-CST-2005.log

Otherwise, the log displays error messages in the format of the following example:

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9
/testRun/pre/websphere_backup/bin/DefaultDB>

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9
/testRun/pre/websphere_backup/bin/DefaultDB> took 0.26 seconds

creating target db <jdbc:derby:/opt/WebSphere61/Express/profiles/default/databases
/_opt_WebSphere51_AppServer_bin_DefaultDB>

ERROR: An error occurred during migration. See debug.log for more details.

shutting down databases

shutting down databases took 0.055 seconds

5. For more data about a migration error, consult the debug log that corresponds with the database
migration log. The WebSphere Application Server migration utility triggers a debug migration trace by

12 Migrating WebSphere applications

default; this trace function generates the database debug logs. The full path name of a debug log is
app_server_root/profiles/profileName/logs/myFulldbPathName_migrationDebugtimestamp.log.

The following lines are a sample of debug text. The lines display detailed exception data for the error
that is referenced in the previous sample of database migration log data.
java.sql.SQLException: Database_opt_WebSphere51_AppServer_bin_DefaultDB already exists. Aborting migration
at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)
at com.ibm.db2j.tools.migration.MigrateFrom51Impl.doMigrate(Unknown Source)
at com.ibm.db2j.tools.MigrateFrom51.doMigrate(Unknown Source)
at com.ibm.ws.adapter.migration.CloudscapeMigrationUtility.migr

Results
v The migration utility for the application server changes your Apache Derby or Cloudscape JDBC

configurations whether or not it successfully migrates the database instances that are accessed by your
applications. The tool changes the class paths for the Derby or Cloudscape JDBC provider, data source
implementation classes, and data source helper classes. The following table depicts these changes:

Table 1. New class information. The following table depicts those changes mentioned in the previous section.
Class type Old value New value

JDBC provider class path ${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar ${DERBY_JDBC_DRIVER_PATH}/derby.jar

v Where DERBY_JDBC_DRIVER_PATH is the WebSphere
environment variable that defines your Cloudscape
JDBC provider

v Where derby.jar is the base name of the JDBC driver
class file (In your environment, reference the JDBC
driver class file by the full path name.)

Data source implementation class: Connection pool com.ibm.db2j.jdbc.DB2jConnectionPool DataSource org.apache.derby.jdbc.EmbeddedConnection
PoolDataSource

Data source implementation class: XA com.ibm.db2j.jdbc.DB2jXADataSource org.apache.derby.jdbc.EmbeddedXADataSource

Data source helper class com.ibm.websphere.rsadapter.Cloudscape
DataStoreHelper

com.ibm.websphere.rsadapter.Derby DataStoreHelper

Additionally, the db2j.properties file changes:
– The name app_server_root/cloudscape/dbj.properties changes to app_server_root/derby/

derby.properties

– Within the file, property names change from db2j.drda.* to derby.drda.*

v A partial or a completely successful database migration changes the location and name of the database
according to the following example:

– Old database name: c:\temp\mydb

– New database name: The new name includes a hash code that combines the entire path name of
the old database and the migration time stamp. The new name also includes the old database name
and time stamp exactly. For example:
app_server_root\profiles\profile_name\databases\my_database_hashCode_timestamp

Note: For both partial and failed migrations, the log messages contain the exact old and new database
path names that you must use to run the manual migration. Note these new path names
precisely.

What to do next

If you experience a partial migration, attempt to troubleshoot the Cloudscape or Derby database only if you
have expert knowledge of these database types. Otherwise, delete the new database. Perform the manual
migration procedure on the original database, just as you do for each database that completely fails
auto-migration. See the topic, Upgrading Cloudscape manually, for instructions.

After a successful database migration, reboot the database and compress tables to improve performance.
See the Apache Derby documentation for instructions.

Chapter 4. Migrating Data access resources 13

Upgrading Cloudscape manually
During the upgrade of your application server, the migration tool attempts to upgrade instances of
Cloudscape that are accessed through the embedded framework only. The automatic upgrade excludes
Cloudscape instances that transact with applications through the Network Server framework. This
exclusion eliminates the risk of corrupting third party applications that access the same database instances
as the application server. You must manually upgrade database instances that are accessed through the
Network Server framework. Do the same for databases that fail the automatic migration.

Before you begin

Do not use Apache Derby Version 10.1.x or Cloudscape v10.1.x as a production database. Use them for
development and test purposes only.

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

For instances of Cloudscape that are accessed through the embedded framework, determine which
instances completely failed the automatic upgrade process and which ones were only partially upgraded.
The topic on verifying the Cloudscape automatic migration documents how to uncover database errors and
diagnostic data from various migration logs. The log messages contain the exact old and new database
path names that you must use to run the manual migration. Note these new path names precisely.

To minimize the risk of migration errors for databases that were only partially upgraded during the
automatic migration process, delete the new database. Troubleshoot the original database according to the
log diagnostic data, then perform manual migration on the original database.

About this task

The following section consists of steps to migrate Cloudscape instances that are accessed through both
the embedded framework as well as the Network Server framework. Steps that apply only to the
Cloudscape Network Server framework are marked accordingly. As a migration best practice, ensure that
your user ID has one of the following authorities:

v Administrator of the application server that accesses the Cloudscape instance

v A umask that can access the database instance

Otherwise, you might see runtime errors about the database instance being read-only.

Procedure
1. Network Server framework only: Ensure that every client of the Cloudscape database can support

Cloudscape v10.1.x or Apache Derby. Application server clients of the database must run versions
6.02.x or later of the application server.

2. Network Server framework only: Take the database offline. No clients can access it during the
migration process.

3. Examine a sample Cloudscape migration script that the application server provides, either
db2jmigrate.bat or db2jmigrate.sh. The path of both scripts is app_server_root\derby\bin\embedded.
You can modify the script according to the requirements of your environment. Consult the Cloudscape
migration document for information about options that you can use with the script. For example, you
can use the following option to specify the DDL file for the new database:
-DB2j.migrate.ddlFile=filename

4. To generate database debug logs when you run the migration script, ensure that the debug migration
trace is active. By default, this trace function is enabled. Reactivate the debug trace if it is disabled.

a. To set the trace options in the administrative console, click Troubleshooting > Logging and
Tracing in the console navigation tree.

14 Migrating WebSphere applications

b. Select the application server name.

c. Click Change Log Level Details.

d. Optional: If All Components has been enabled, you might want to turn it off, and then enable
specific components.

e. Optional: Select a component or group name. For more information see the topic on log level
settings. If the selected server is not running, you will not be able to see individual component in
graphic mode.

f. Enter a trace string in the trace string box. In this case, enter one of the following:

v all traces*=all

v com.ibm.ws.migration.WASUpgrade=all

For more information on tracing read the topic on working with trace.

g. Select Apply, then OK.

5. Specify your old database name and the full post-migration path of the new database name when you
run the script. For example: E:\WebSphere\AppServer\derby\bin\embedded>db2jMigrate.bat myOldDB
myNewDB The logs from the automatic migration provide the exact path names to specify for both the old
database and the target database. You must use this target database name to specify the new
database, because your migrated Cloudscape data sources (updated by the WebSphere Application
Server migration utilities) now point to the target database name. The following sample text
demonstrates how log messages display target database names:
DSRA7600E: Cloudscape migration of database instance C:\temp\migration2\profiles\AppSrv01\
installedApps\ghongellNode01Cell\DynamicQuery.ear\EmployeeFinderDB to new database instance
C:\WebSphere\AppServer\profiles\AppSrv01\databases\C__WAS602_AppServer_profiles_AppSrv01_
installedApps_ghongellNode01Cell_DynamicQuery.ear_EmployeeFinderDB failed,
reason: java.sql.SQLException: Failure creating target db

For instances of Cloudscape that are accessed through the Network Server framework, input any
name that you want for the new database. Remember to modify your existing data sources to point to
the new database name.

6. When the migration process ends, examine the database migration log to verify the results. The path
name of each database migration log is app_server_root/logs/derby/
myFulldbPathName_migrationLog.log.

For a successful migration, the database migration log displays a message that is similar to the
following text:
Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress
Migration Completed Successfully
E:\WebSphere\AppServer\derby\bin\embedded>

Otherwise, the log displays error messages in the format of the following example:
Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress
ERROR: An error occurred during migration. See debug.log for more details.
ERROR XMG02: Failure creating target db
java.sql.SQLException: Failure creating target db

at com.ibm.db2j.tools.migration.MigrationState.getCurrSQLException(Unknown Source)
at com.ibm.db2j.tools.migration.MigrateFrom51Impl.handleException(Unknown Source)
at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)
at com.ibm.db2j.tools.migration.MigrateFrom51Impl.main(Unknown Source)
at com.ibm.db2j.tools.MigrateFrom51.main(Unknown Source)

...

7. For more data about a migration error, consult the debug log that corresponds with the database
migration log. The full path name of a debug log file is app_server_root/logs/derby/
myFulldbPathName_migrationDebug.log.

The following lines are a sample of debug text.

Chapter 4. Migrating Data access resources 15

sourceDBURL=jdbc:db2j:E:\WebSphere\myOldDB
newDBURL=jdbc:derby:e:\tempo\myNewDB
ddlOnly=false
connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB>
connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB> took 0.611 seconds
creating target db <jdbc:derby:e:\tempo\myNewDB>
creating target db <jdbc:derby:e:\tempo\myNewDB> took 6.589 seconds
initializing source db data structures
initializing source db data structures took 0.151 seconds
recording DDL to create db <E:\WebSphere\myOldDB>
recording DDL to create db <E:\WebSphere\myOldDB> took 5.808 seconds

Results

As indicated in the previous steps, the database migration log displays either a Migration Completed
Successfully message, or a message containing migration failure exceptions.

What to do next
v For databases that fail migration, troubleshoot according to the logged error data. Then rerun the

migration script.

v To access successfully upgraded databases through the embedded framework, modify your data
sources to point to the new database names.

v To access successfully upgraded databases through the Network Server framework, you can use either
the DB2® Universal JDBC driver or the Derby Client JDBC driver.

– If you want your existing JDBC configurations to continue to use the DB2 Universal JDBC driver,
modify your data sources to point to the new database names.

– If you want to use the Derby Client JDBC driver, which can support XA data sources, modify your
JDBC providers to use the new Derby Client JDBC driver class and the new data source
implementation classes. Then reconfigure every existing data source to use the correct Derby data
source helper class, and to point to the new database name.

Consult the article in the information center on vendor-specific data sources minimum required
settings for all of the new class names.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

16 Migrating WebSphere applications

Table 2. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 3. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 4. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Chapter 4. Migrating Data access resources 17

Table 5. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 6. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 7. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 8. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

18 Migrating WebSphere applications

Table 8. Default installation root directories for the IBM HTTP Server (continued).

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Chapter 4. Migrating Data access resources 19

20 Migrating WebSphere applications

Chapter 5. Migrating Dynamic caching

This page provides a starting point for finding information about the dynamic cache service, which
improves performance by caching the output of servlets, commands, web services, and JavaServer Pages
(JSP) files.

Dynamic caching features include replication of cache entries, cache disk offload, Edge-Side Include
caching, web services, and external caching. Use external caching to control caches outside of the
application server.

Migrating servers from multi-broker replication domains to data
replication domains
You can migrate multi-broker replication domains to data replication domains. Any multi-broker domains
that exist in your application server environment were created with a previous version of the product.

Before you begin

Determine if the application server configuration you are migrating:

1. Uses an instance of data replication service in peer-to-peer mode or in client/server mode.

Before you begin migrating a client/server mode replication domain, consider if migrating your
replication domains might cause a single point of failure. Because you migrate the servers to the new
type of replication domain one at a time, you risk a single point of failure if there are 3 or fewer
application servers. Before migrating, configure at least 4 servers that use multi-broker replication
domains. Perform the following steps to migrate the multi-broker domains to data replication domains:

Dynamic cache replication domains use the peer-to-peer topology.

2. Uses HTTP session memory-to-memory replication that is overloaded at the application or web module
level.

If the application server configuration you are migrating uses HTTP session memory-to-memory
replication that is overloaded at the application or web module level, you must upgrade your
deployment manager to the current version of the product before you start the migration process.

About this task

After you upgrade your deployment manager to the latest version of the product, you can only create data
replication domains. Any multi-broker domains that you created with a previous version of the product are
still functional, however, you cannot use the administrative console to create new multi-broker domains or
replicators.

The different versions of application servers cannot communicate with each other. When migrating your
servers to the current version of the product, keep at least two application servers running on the previous
version so that replication remains functional.

Make sure that all of your application servers that are using this multi-broker domain have been migrated
to the current version of the product before you start to migrate any multi-broker domains that exist in your
configuration.

To migrate the multi-broker domains that exist in your configuration:

Procedure
1. Migrate two or more of your existing servers to the current version of the product. The remaining

servers on the previous version of the product can still communicate with each other, but not with the
migrated servers. The migrated servers can also communicate with each other.

© Copyright IBM Corp. 2012 21

2. In the administrative console, create an empty data replication domain. Click Environment > >
Replication domains > New to create an empty data replication domain.

3. Add two of your migrated servers to the new data replication domain.

For example, if you are migrated four servers, only add two of them to the new replication domain.

4. Configure the two servers as consumers of the replication domain.

Configuring the servers as consumers of the replication domain enables them to use the new domain
to share data.

5. Add some of the clients to the new data replication domain.

Perform this step only if the application server configuration you are migrating uses an instance of
data replication service in client/server mode.

6. Configure these clients as consumers of the replication domain.

7. Verify that the new data replication domain are successfully sharing data.

Only the servers and clients that are added to the data replication domain and are configured as
consumers of this domain can use the data replication domain functions.

8. Add the rest of your migrated servers to the new data replication domain.

When the servers can use the new data replication domain to successfully share data, migrate the
rest of the servers that are using the multi-broker replication domain to the new data replication
domain.

For example, if you are migrated four servers, add the remaining two servers to the new replication
domain.

9. Configure these servers as consumers of the replication domain.

10. Add the rest of the clients to the new data replication domain.

Perform this step only if the application server configuration you are migrating uses an instance of
data replication service in client/server mode.

11. Configure these clients as consumers of the replication domain.

12. Restart all of the application servers and clients.

13. Delete the empty multi-broker replication domain.

What to do next

During this process, you might lose existing sessions. However, the application remains active through the
entire process, so users do not experience down time during the migration. Create a new replication
domain for each type of consumer. For example, create one replication domain for the session manager
and another replication domain for dynamic cache.

22 Migrating WebSphere applications

Chapter 6. Migrating EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Migrating enterprise bean code from Version 1.1 to Version 2.1
Enterprise JavaBeans (EJB) Version 2.1-compliant beans can be assembled only in an EJB 2.1-compliant
module, although an EJB 2.1-compliant module can contain a mixture of Version 1.x and Version 2.1
beans.

About this task

The EJB Version 2.1 specification mandates that prior to the EJB container starting a findByMethod query,
the state of all enterprise beans that are enlisted in the current transaction be synchronized with the
persistent store. (This action is so the query is performed against current data.) If Version 1.1 beans are
reassembled into an EJB 2.1-compliant module, the EJB container synchronizes the state of Version 1.1
beans as well as that of Version 2.1 beans. As a result, you might notice some change in application
behavior even though the application code for the Version 1.1 beans has not been changed.

The following information generally applies to any enterprise bean that currently complies with Version 1.1
of the EJB specification. For more information about migrating code for beans produced with the Rational
Application Developer tool, see the documentation for that product.

Procedure
1. In beans with container-managed persistence (CMP) version 1.x, replace each CMP field with abstract

get and set methods. In doing so, you must make each bean class abstract.

2. In beans with CMP version 1.x, change all occurrences of this.field = value to setField(value).

3. In each CMP bean, create abstract get and set methods for the primary key.

4. In beans with CMP version 1.x, create an EJB Query Language statement for each finder method.

Note: EJB Query Language has the following limitations in Application Developer Version 5:

v EJB Query Language queries involving beans with keys made up of relationships to other
beans appear as invalid and cause errors at deployment time.

v The IBM EJB Query Language support extends the EJB 2.1 specification in various ways,
including relaxing some restrictions, adding support for more DB2 functions, and so on. If
portability across various vendor databases or EJB deployment tools is a concern, then care
should be taken to write all EJB Query Language queries strictly according to instructions
described in Chapter 11 of the EJB 2.1 specification.

5. In finder methods for beans with CMP version 1.x, return java.util.Collection instead of
java.util.Enumeration.

6. Update handling of non-application exceptions.
v To report non-application exceptions, throw javax.ejb.EJBException instead of

java.rmi.RemoteException.
v Modify rollback behavior as needed: In EJB versions 1.1 and 2.1, all non-application exceptions

thrown by the bean instance result in the rollback of the transaction in which the instance is running;
the instance is discarded. In EJB 1.0, the container does not roll back the transaction or discard the
instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.

© IBM Corporation 2009 23

v In EJB versions 1.1 and 2.1, an application exception does not cause the EJB container to
automatically roll back a transaction.

v In EJB Version 1.1, the container performs the rollback only if the instance has called
setRollbackOnly() on its EJBContext object.

v In EJB Version 1.0, the container is required to roll back a transaction when an application exception
is passed through a transaction boundary started by the container.

8. Update any CMP setting of application-specific default values to be inside ejbCreate (not using global
variables, since EJB 1.1 containers set all fields to generic default values before calling ejbCreate,
which overwrites any previous application-specific defaults). This approach also works for EJB 1.0
CMPs.

Migrating enterprise bean code to the supported specification
Support for the Enterprise JavaBeans (EJB) 3.1 specification is added for this product.

Before you begin

There are no migration issues associated with using EJB 3.x beans. Existing applications continue to run
as-is and compile without error.

Note: The EJB 3.0 and EJB 3.1 specifications have deprecated the use of EJB 1.1 style entity beans.
While using EJB 2.x and earlier modules in the product has not yet been deprecated, you are
encouraged to start migrating to Java Persistence API (JPA) or JDBC.

About this task

Follow these steps as appropriate for your application deployment.

Procedure
1. Modify enterprise bean code for changes in the specification.

v You must migrate the Version 1.1 beans to Version 2.x beans and redeploy them on the product.

Note: The EJB Version 2.0 specification mandates that before the EJB container runs a
findByMethod query, the state of all enterprise beans enlisted in the current transaction be
synchronized with the persistent store. This synchronization is done so that the query is
performed against current data. When Version 1.1 beans are reassembled into an EJB
2.x-compliant module, the EJB container synchronizes the state of Version 1.1 beans, as well
as that of Version 2.x beans. As a result, you might notice some change in application
behavior even though the application code for the Version 1.1 beans has not been changed.

2. Ensure WebSphere Application Server 32-bit to 64-bit compatibility. This is not an issue for a pureJava
application. However, if your application code uses the Java Native Interface (JNI) code, be aware of
the following considerations: the JNI allows Java code running in a virtual machine to operate with
applications and libraries written in other languages, such as C, C++, and assembly. Therefore, if your
J2EE application uses JNI in a 32-bit environment, your code must be recompiled in the 64-bit
environment. It is possible that the JNI calls could be different after the compilation, as the JNI
specifications can change from version to version.

3. Reassemble and redeploy all modules to incorporate migrated code.

Adjusting exception handling for EJB wrapped applications migrating
from version 5 to version 7
Because of a change in the Java APIs for XML based Remote Procedure Call (JAX-RPC) specification,
Enterprise JavaBeans (EJB) applications that could be wrapped in WebSphere Application Server Version
5.1 cannot be wrapped in version 6 or 7 unless you modify the code to the exception handling of the base
EJB application.

24 Migrating WebSphere applications

About this task

Essentially, the JAX-RPC version 1.1 specification states:
a service specific exception declared in a remote method signature must be a
checked exception. It must extend java.lang.Exception either directly or indirectly
but it must not be a RuntimeException.

So it is no longer possible to directly use java.lang.Exception or java.lang.Throwable types. You must
modify your applications using service specific exceptions to comply with the specification.

Procedure
1. Modify your applications that use service specific exceptions. For example, say that your existing EJB

uses a service specific exception called UserException. Inside of UserException is a field called ex that
is type java.lang.Exception. To successfully wrapper your application with web services in WebSphere
Application Server version 7, you must change the UserException class . In this example, you could
modify UserException to make the type of ex to be java.lang.String instead of java.lang.Exception.
new UserException class:

package irwwbase;

/**
* Insert the type’s description here.
* Creation date: (9/25/00 2:25:18 PM)
* @author: Administrator
*/

public class UserException extends java.lang.Exception {

private java.lang.String _infostring = null;
private java.lang.String ex;

/**
* UserException constructor comment.
*/

public UserException() {
super();

}
/**
* UserException constructor comment.
*/
public UserException (String infostring)
{

_infostring = infostring;
} // ctor
/**
* Insert the method’s description here.
* Creation date: (11/29/2001 9:25:50 AM)
* @param msg java.lang.String
* @param ex java.lang.Exception
*/
public UserException(String msg,String t) {

super(msg);
this.setEx(t);

}
/**
* @return
*/
public java.lang.String get_infostring() {

return _infostring;
}

/**

Chapter 6. Migrating EJB applications 25

* @return
*/
public java.lang.String getEx() {

return ex;
}

/**
* @param string
*/
public void set_infostring(java.lang.String string) {

_infostring = string;
}

/**
* @param Exception
*/
public void setEx(java.lang.String exception) {

ex = exception;
}

public void printStackTrace(java.io.PrintWriter s) {
System.out.println("the exception is :"+ex);
}

}

2. Modify all of the exception handling in the enterprise beans that use it. You must ensure that your
enterprise beans are coded to accept the new exceptions. In this example, the code might look like
this:
new EJB exception handling:

try {
if (isDistributed()) itemCMPEntity = itemCMPEntityHome.findByPrimaryKey(ckey);
else itemCMPEntityLocal = itemCMPEntityLocalHome.findByPrimaryKey(ckey);

} catch (Exception ex) {
System.out.println("%%%%% ERROR: getItemInstance - CMPjdbc " + _className);
ex.printStackTrace();
throw new UserException("error on itemCMPEntityHome.findByPrimaryKey(ckey)",ex.getMessage());

}

26 Migrating WebSphere applications

Chapter 7. Migrating Naming and directory

This page provides a starting point for finding information about naming support. Naming includes both
server-side and client-side components. The server-side component is a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming). The client-side component is a Java™ Naming and
Directory Interface (JNDI) service provider. JNDI is a core component in the Java Platform, Enterprise
Edition (Java EE) programming model.

The WebSphere® JNDI service provider can be used to interoperate with any CosNaming name server
implementation. Yet WebSphere name servers implement an extension to CosNaming, and the JNDI
service provider uses those WebSphere extensions to provide greater capability than CosNaming alone.
Some added capabilities are binding and looking up of non-CORBA objects.

Java EE applications use the JNDI service provider supported by WebSphere Application Server to obtain
references to objects related to server applications, such as enterprise bean (EJB) homes, which have
been bound into a CosNaming name space.

© Copyright IBM Corp. 2012 27

28 Migrating WebSphere applications

Chapter 8. Migrating and coexisting for OSGi applications

No special steps are required to migrate your OSGi application environment from previous versions of
WebSphere Application Server to the current version. Enhancements made since Version 7 can affect how
you configure your OSGi applications, particularly for working in mixed cells.

To migrate your OSGi applications and associated configuration from a previous version, follow the
platform-specific instructions given in the “Migrating, coexisting, and interoperating” section of the
information center. When you reach the point in the migration process when you run the WASPostUpgrade
command (with the includeApps parameter set to TRUE), the following resources are migrated to the
current version of the product:

v The OSGi applications

v The contents of the internal bundle repository

v Any links to external bundle repositories

v The contents of the bundle cache

After you have migrated your configuration, or if you want to run OSGi applications on Version 7 nodes in
mixed cells, you will find it useful to understand the main enhancements made since Version 7, and the
implication of those enhancements for using your applications with different versions of the application
server:

v “Main enhancements in Version 8”

v “Main enhancements in Version 8.5” on page 30

v “Current version enhanced support for Version 7 nodes” on page 30

v “Version-related considerations for composite bundles” on page 30

v “Version-related considerations for application types” on page 31

Main enhancements in Version 8
v In Version 7, all composite bundles are stored in bundle repositories. In the current version, composite

bundles that are part of an OSGi application can also be directly included in the enterprise bundle
archive (EBA) file.

v You can include composite bundles in the Application-Content header of the application manifest file, so
they can be treated as isolated rather than shared bundles.

v You can extend an application by adding a composite bundle as an extension to the composition unit.

v In Version 7, when you add a composite bundle to the internal bundle repository, and that composite
bundle directly contains bundles (in compressed files in the root directory of the composite bundle
archive file), those bundles are added to the internal bundle repository both as part of the composite
bundle and as individually-available bundles. If you later delete the composite bundle from the
repository, the individually-available copies of the bundles are not deleted.

v In the current version, when you add to the repository a composite bundle that directly contains
bundles, those bundles are not also added individually. If you want to add sets of bundles to the internal
bundle repository, you package each set as a compressed archive file with a .zip file extension, then
add the archive file to the repository. The system expands the file, and all the bundles in its root
directory are added individually to the repository.

v In Version 7, bundle changes to the asset are applied by restarting the business-level application. In the
current version, these changes are applied by updating the composition unit. The current approach
means that many bundle changes can be applied in place, without restarting the running business-level
application.

v You can make post-configuration changes (for example configuring a new or changed Blueprint
resource reference, or security role mapping) after you have deployed the application.

v Web application bundles (WABs) can contain Run-As role metadata.

© Copyright IBM Corp. 2012 29

v OSGi applications can use other features that have been added to the product since Version 7. For
example, OSGi applications can use aspects of Java Platform, Enterprise Edition (Java EE) 6, such as
Java Servlet 3.0.

v The bundle cache is automatically cleaned whenever you uninstall an asset.

Main enhancements in Version 8.5
v Your OSGi applications can contain Enterprise JavaBeans (EJBs). The enterprise beans in your OSGi

bundles can be developed from scratch, or you can include existing EJB assets and migrate them to
use OSGi modularity with minimal code changes. Stateful, stateless, and singleton enterprise beans are
supported. Your OSGi application can also contain message-driven beans (MDBs).

v You can configure bean security in the Blueprint XML file of your OSGi applications, so that the
methods of the bean can be accessed only by users that are assigned a specified role. You can
configure bean-level security, so that a single role is associated with all the methods of the bean, or you
can configure method-level security, where different roles are associated with specific methods.

Current version enhanced support for Version 7 nodes

In a mixed cell, the current version provides the following enhancements to help support the Version 7
nodes:

v You can use the current administrative process for bundle changes to update all the nodes in a cell. For
the current version nodes, the runtime environment usually applies the changes without restarting the
running business-level application. For the Version 7 nodes, the runtime environment always restarts the
business-level application.

v You can make post-configuration changes to applications that are deployed on any node in the cell,
including the Version 7 nodes.

v When you uninstall an asset, the bundle cache is automatically cleaned for all nodes in the cell,
including the Version 7 nodes.

Note: There are slight differences in behavior for Version 7 nodes on the Windows platform, where
file-locking constraints can mean that bundles are only deleted from the bundle cache for a node
after the node has been restarted and another sync event has occurred.

Version-related considerations for composite bundles

A composite bundle cannot be used by an application running on a Version 7 server if any of the following
conditions apply:

v The application includes a composite bundle directly in its EBA file.

v The application references the composite bundle in the Application-Content header of the application
manifest file.

v The application has been extended by adding a composite bundle to the composition unit.

v The application pulls in individual bundles from a composite bundle that is stored in the internal bundle
repository.

Note: In the current version, if you want the bundles from a composite bundle that is stored in the
internal bundle repository to also be individually available to applications, you first add the
composite bundle to the repository; then you take the bundles that are directly contained in the
root directory of the CBA file, package them as a compressed archive file with a .zip file
extension, then add the archive file to the repository. The system expands the file, and all the
bundles in its root directory are added individually to the repository.

30 Migrating WebSphere applications

Version-related considerations for application types

The following types of OSGi application cannot run on a Version 7 server:

v Applications that contain WABs with Run-As role metadata.

v Applications that use composite bundles as described in “Version-related considerations for composite
bundles” on page 30.

v Applications that use other features that are not supported in Version 7. For example, Java Servlet 3.0.

Chapter 8. Migrating and coexisting for OSGi applications 31

32 Migrating WebSphere applications

Chapter 9. Migrating Scheduler service

This page provides a starting point for finding information about the scheduler service, a WebSphere
programming extension responsible for starting actions at specific times or intervals.

Schedulers are persistent and transactional timer services that run Enterprise JavaBeans methods or send
Java Message Service messages using any Java Message Service messages using any Java Platform,
Enterprise Edition (Java EE) server application.

The scheduler service helps minimize IT costs and increase application speed and responsiveness by
maximizing utilization of existing computing resources.

The scheduler service provides the ability to reliably process workloads using parallel processing and
schedule resource-intensive tasks to process during low traffic off-hours.

Interoperating with schedulers

Interoperating with schedulers
Schedulers support forward compatibility. Tasks created in previous versions of WebSphere Application
Server Enterprise Edition 5.0 or WebSphere Business Integration Server Foundation 5.1 continue to run in
WebSphere Application Server, Version 6.x schedulers. Tasks that you create using Version 6.x are not
compatible with product schedulers from Version 5.x. Version 5.x schedulers do not run any Version 6.x
tasks.

Schedulers and versions

All schedulers that are configured to use the same database and tables are considered a clustered
scheduler. To guarantee that your tasks run correctly, all servers in a scheduler cluster must be at the
same version. If the servers are at different versions, tasks created with a Version 6.x scheduler might not
run. If a mixed-Version environment is required for a short period of time, then all scheduler poll daemons
should be stopped on all Version 5.x servers to allow a Version 6.x server to run all tasks. This action
allows the Version 6.x schedulers to obtain leases and run tasks that have been created with a Version 6.x
scheduler.

Running tasks created with schedulers prior to Version 5.0.2 is not supported. See the topic,
"Interoperating with the Scheduler service," in the WebSphere Application Server Enterprise Edition
Version 5.0.2 information center for details on how to migrate these tasks to a more recent version. See
the Information Center Library to access the Version 5.0.2 information center.

© IBM Corporation 2009 33

http://www-306.ibm.com/software/webservers/appserv/infocenter.html

34 Migrating WebSphere applications

Chapter 10. Migrating Service integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Adding unique names to the bus authorization policy
How to update the authorization policy for the service integration bus with unique name entries.

About this task

You should carry out this task if you are migrating from WebSphere Application Server Version 6 to
WebSphere Application Server Version 7.0 or later. In this task, you manually run the populateUniqueNames
command to query the user repository for a selected bus for unique names, and add them to the
authorization policy. If you do not manually run this command, the messaging engine performs the query,
and adds the missing unique names to the authorizations policy, which adversely affects the start up time.

When you migrate from a Version 6 node to a Version 7.0 or later node, the authorization policy only
contains the user and group security names; it does not contain the names in the user registry that
uniquely define each user and group. If an LDAP user registry is in use, the unique name is the
distinguished name (DN). By default, only missing unique names are added to the authorization policy. If
you set the -force parameter, all unique name entries added to the authorization policy

Procedure
1. Run a scripting command.

2. At the wsadmin command prompt, type the populateUniquenames command. The following example
syntax queries the user repository for the unique names that match the security names for a bus called
Bus 1, and adds the missing unique names to the authorization policy .

AdminTask.populateUniquenames(’[-bus Bus1]’)

3. Save your changes to the master configuration repository. The following example presents the syntax:

AdminConfig.save()

Results

The authorization policy for the bus is updated with the missing unique names.

Example

The following example updates all the unique name entries in the authorization policy for a bus called Bus
1.

AdminTask.populateUniqueNames(AdminTask.populateUniquenames(’[-bus Bus1 -force TRUE]’)

What to do next

Use the administrative console to administer bus security authorizations.

© IBM Corporation 2009 35

Migrating a messaging engine based on a data store
Depending on your existing settings, when migrating a messaging engine from older versions of
WebSphere Application Server to Version 7.0 or later, you might have to create or alter database tables.

About this task

When migrating from older versions of WebSphere Application Server to Version 7.0 or later, if you do not
have the “create tables automatically” option selected, it will be necessary to create a new table
(SIBOWNERO) in each of your messaging engine database schemas. DDL for the creation of this table
can be generated by using the sibDDLGenerator tool located in the bin directory of your WebSphere
Application Server installation.

When migrating a messaging engine from the previous version of WebSphere Application Server to
Version 8.5, you might have to alter the existing database tables. Use sibDBUpgrade command to generate
the DDLs that are required to alter the tables.

Procedure
1. Use the sibDDLGenerator tool to generate the DDL for the creation of this table or sibDBUpgrade to

generate the DDL to alter the existing tables.

2. Send the output file to your database administrator to process the DDL statements manually.

Note: Alternatively, the option to automatically alter the existing tables for Version 8.5 is also available.
Although the existing tables that are required to be changed will not be automatically altered for
DB2 on z/OS, Derby, and Informix databases. The only option to alter the tables for DB2 on
z/OS, Derby, and Informix databases is to generate the DDL scripts and execute them manually.

36 Migrating WebSphere applications

Chapter 11. Migrating Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment.

Interoperating transactionally between application servers
You can configure application servers so that transaction messages are sent and received between
application servers at different versions of WebSphere Application Server. Depending on the version of the
application server, you can set system properties, or use the transaction coordination authorization setting.

About this task

The transaction manager in WebSphere Application Server supports transactional interoperation with other
transaction managers through either the CORBA Object Transaction Service (OTS) protocol, or, for
JSR-109 compliant requests, the Web Services Atomic Transaction (WS-AT) protocol. Also, the transaction
manager can coordinate XA resource managers and be coordinated by Java EE Connector Architecture
1.5 resource adapters.

Procedure
v To interoperate transactionally, using the OTS protocol to send requests from application servers that

are WebSphere Application Server Version 5.0.2 or earlier to application servers that are Version 6 or
later, set the following system properties on application servers that are Version 5.0.2 or earlier.

com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false
com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

For example, to send requests from application servers that are WebSphere Application Server Version
4.0.n to application servers that are WebSphere Application Server Version 6, set the system properties
on the Version 4.0.n application servers.

You do not have to set these properties to receive requests on application servers that are WebSphere
Application Server Version 5.0.2 or earlier from application servers that are Version 6 or later.

v When administrative security is enabled for application servers at WebSphere Application Server
Version 6.0.2 or later, you must disable transaction coordination authorization for such servers in the
following situations:

– The server interoperates transactionally with application servers at a version earlier than WebSphere
Application Server Version 6.0.2.

– The server interoperates transactionally with non-WebSphere Application Server servers.

– The server interoperates transactionally with other servers and the server is not in a Common
Criteria EAL4 evaluated configuration.

When administrative security is enabled, the transaction manager is configured by default for use in
the Common Criteria EAL4 evaluated configuration.

The transaction coordination authorization setting controls only the transaction protocol messages
between servers that are used to coordinate the completion of a transaction. It does not affect
application messages or the security of the server. When transaction coordination authorization is
enabled:

– The server verifies that the sending server is authorized to handle prepare, commit, rollback, and
one-phase commit messages.

– The caller will be checked to see if permitted to the administrator role.

© Copyright IBM Corp. 2012 37

To disable transaction coordination authorization on a server, use the following steps.

1. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name > [Container Settings] Container Services > Transaction Service.

2. Clear the Enable transaction coordination authorization check box.

3. Click Apply or OK.

4. Save your changes to the master configuration.

5. Restart the server.

38 Migrating WebSphere applications

Chapter 12. Migrating web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. More introduction...

Migrating web application components

Migrating web application components from WebSphere Application
Server Version 5.x
Migration of web applications deployed in previous versions of WebSphere Application Server is usually
not necessary. Versions 2.2 and later of the Java Servlet specification and versions 1.2 and 1.4 of the
JavaServer Pages (JSP) specifications are still supported unless the behavior was changed in the Servlet
3.0 or JSP 2.1 specifications. These changes are generally available in more detail in their corresponding
specification.

About this task

Servlet migration might be a concern if your application:
v Implements a WebSphere Application Server internal servlet to bypass a WebSphere Application Server

Version 4.x single application path restriction
v Extends a PageListServlet that relies on configuration information in the servlet configuration XML file
v Calls the response.sendRedirect method for a servlet using the encodeRedirectURL function or starting

within a non-context root
v Depends on a default Content-Type response header being set or the behavior of a setContentType call

after a getWriter call is made. The behavior is set by WebSphere Application Server version level using
the web container custom property com.ibm.ws.webcontainer.contenttypecompatibility with a value of
V4, V5, V6. or V7. The behavior for each version is described below.

Table 9. Web container custom properties.. Describes the version behavior for each version.
Version 4 Version 5 Version 6 Version 7

Default Content-Type text/html text/html;
charset=
<default_
encoding>

none none

Append Charset on getWriter if the property does not exist on
Content-Type

Example: response.setCharacterEncoding("UTF-8");
response.setContentType("text/xml"); response.getWriter();

text/html text/html text/xml;
charset=UTF-8

text/xml;
charset=UTF-8

Remove charset from the Content-Type property if the setContentType
property is called after getWriter with a ";charset=" portion

Example: setContentType("text/html;charset=ISO-8859-7"); getWriter();
setContentType("text/xml;charset=UTF-8");

text/html text/html text/html text/xml;
charset=ISO-8859-7

JSP migration might be a concern if your application references JSP page implementation classes in
unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in

© Copyright IBM Corp. 2012 39

Version 4.x with the JSP Precompile option), in Version 5.x. You need to recompile all JSP pages when
migrating from WebSphere Application Server Version 5.x.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Follow these steps if migration issues apply to your web application:

Procedure
1. IBM internal servlets are used to enable special behavior such as file serving and serving servlets by

class name. If a migrated application references internal servlets, ethe best practice is to enable or
disable the functionality through the IBM WebSphere extensions XMI file, ibm-web-ext.xmi, located in
each web module WEB-INF directory or by using an assembly tool.

2. If using these configuration options are not viable, then verify that the package names for the following
internal servlets match what is used in your version 7 web deployment descriptor.

40 Migrating WebSphere applications

F
ea

tu
re

C
o

n
fi

g
u

ra
ti

o
n

O
p

ti
o

n
S

er
vl

et
C

la
ss

D
ire

ct
or

y
br

ow
si

ng
di

re
ct

or
yB

ro
w

si
ng

E
na

bl
ed

=
"t

ru
e"

co
m

.ib
m

.w
s.

w
eb

co
nt

ai
ne

r.s
er

vl
et

.D
ire

ct
or

yB
ro

w
si

ng
S

er
vl

et

A
ut

o
m

ap
pi

ng
of

se
rv

le
t

pa
th

s
se

rv
eS

er
vl

et
sB

yC
la

ss
na

m
eE

na
bl

ed
=

"t
ru

e:
co

m
.ib

m
.w

s.
w

eb
co

nt
ai

ne
r.s

er
vl

et
.S

im
pl

eF
ile

S
er

vl
et

F
ile

se
rv

in
g

fil
eS

er
vi

ng
E

na
bl

ed
=

"t
ru

e"
co

m
.ib

m
.w

s.
w

eb
co

nt
ai

ne
r.s

er
vl

et
.F

ilt
er

P
ro

xy
S

er
vl

et

Chapter 12. Migrating web applications 41

3. Add the web container custom property, com.ibm.ws.webcontainer.contenttypecompatibility, with a
value of V4, V5, V6, V7, and so on. The value is determined by the version that the application is
dependant on. Because this property is a global setting, you must consider the effect on other
applications.

JavaServer Pages migration best practices and considerations
The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@
page %>, migrate successfully to JSP 2.0. However, there are several areas that must be considered
when migrating JavaServer Pages. This topic discusses the areas that you must consider when migrating
JavaServer Pages.

Classes from the unnamed or default package

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can
result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater
environment which also breaks compatibility with some older JSP applications. However, as of JDK 1.4,
importing classes from the unnamed package is not valid. Refer to the Java 2 Platform Compatibility with
Previous Releases web site for details. Therefore, for forwards compatibility, applications must not rely on
the unnamed package. This restriction also applies for all other cases where classes are referenced, such
as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file.

Page encoding for JSP documents

There have been noticeable differences in internationalization behavior on some containers as a result of
ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards
compatibility and overall, the internationalization abilities of JSP files have been greatly improved.

In JSP specification versions before JSP 2.0, JSP pages in XML syntax, JSP documents, and those in
standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or
contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present.

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and
appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to
make sure that it is consistent with the page encoding determined as per the XML specification. As a
result of this change, JSP documents that rely on their page encoding to be determined from their
pageEncoding attribute are no longer decoded correctly. These JSP documents must be changed to
include an appropriate XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0,
page encodings are determined based on each file. Therefore, if the a.jsp file statically includes the b.jsp
file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding for
the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file.

web.xml file version

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2
application or a JSP 2.0 application. Various features can behave differently depending on the version of
the web.xml file. The following is a list of items that JSP developers should be aware of when upgrading
their web.xml file from version Servlet 2.3 to version Servlet 2.4:

1. EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a web application to
JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence, \$, to escape
EL expressions that should not be interpreted by the container. Alternatively, you can use the
isELIgnored page directive attribute, or the <el-ignored> configuration element to deactivate EL for
entire translation units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 URI or use
the _rt versions of the tags, for example, use c_rt instead of c, or fmt_rt instead of fmt.

42 Migrating WebSphere applications

2. Web applications that contain files with an extension of .jspx will have those files interpreted as JSP
documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as
regular JSP pages, but there is no way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute
value that displays as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag

WebSphere Application Server enforces more strict adherence to the specification for the jsp:useBean tag:
with type and class attributes. Specifically, you should use the type attribute to specify a Java type that
cannot be instantiated as JavaBeans. For example, a Java type that is an abstract class, interface, or a
class with no public no-args constructor. If the class attribute is used for a Java type that cannot be
instantiated as JavaBeans, the JSP container produces an unrecoverable translation error at translation
time.

Generated packages for JSP classes

Any reliance on generated packages for JSP classes results in non-portable JSP files. Packages for
generated classes are implementation-specific and therefore do not rely on these packages.

JspServlet class

JspServlet classes are no longer used. Any reliance on the existence of a JspServlet class causes
unrecoverable error problems.

Important: While the JSP classes migrate successfully, if you are precompiling JSP classes, precompile
them again on the target server level. Annotation processing is supported as of JSP 2.1.
Recompile the JSP classes to take advantage of this processing.

JavaServer Faces migration
In WebSphere Application Server V8.0 and later, the default JavaServer Faces (JSF) implementation has
changed to MyFaces.

Choosing the correct JSF implementation

After updating WebSphere Application Server, the initial state for all applications will be to use the
MyFaces 2.0 JSF implementation. The Sun Reference Implementation (RI) is still optionally configurable
for migrated applications that require behaviors specific to this implementation.

Note: The RI is included in a deprecated state and only at the JSF 1.2 specification level.
Some examples when an application might require the RI include, but are not limited to:

v Applications or dependant libraries that directly extend RI classes instead of JSF API classes.

v Applications that use context parameters that are specific to the RI and do not have an equivalent
context parameter in MyFaces.

IBM JavaServer Faces widget library

You must update widget library to version 3.1.6 or higher to enable compatibility with the changes in the
JSF 2.0 specification. Obtain a compatible version of JWL by upgrading IBM Rational® Application
Developer for WebSphere to 7.5.5.2 or later or installing IBM Rational Application Developer for
WebSphere V8.0 and later.

Attention: JWL is deprecated and does not work with facelets-based JSF pages; it only works with JSF
pages that are built using the JavaServer Pages (JSP) technology.

Chapter 12. Migrating web applications 43

JSF 2.0 exception handling

The default behavior for JSF when unexpected exceptions occur during JSF lifecycle processing has
changed. Prior to JSF 2.0, unexpected exceptions during lifecycle processing were hidden by the runtime
environment. This behavior is no longer the case with JSF 2.0. Exceptions are now published to the new
ExceptionHandler API, as described in section 6.2 of the JSF 2.0 specification.

Add the following code snippet in the <factory> section of the faces-config.xml file to any applications that
have a requirement on the previously-defined behavior:
<exception-handlerfactory>

javax.faces.webapp.PreJsf2ExceptionHandlerFactory
</exception-handlerfactory>

Migration scenario for the getHeaderNames method
WebSphere Application Server Version 8 and later supports the Java Servlet 3.0 API.

As part of the Java Servlet 3.0 API, the following method is included in the HttpServletResponse:
Collection<String> getHeaderNames()

The com.ibm.websphere.servlet.response.StoredResponse class that existed before WebSphere
Application Server Version 8 had the following method:
Enumeration getHeaderNames()

Because StoredResponse implements HttpServletResponse, StoredResponse no longer compiles without
changing the return type of its getHeaderNames method to a type implementing Collection <String>. This
change breaks any existing application using the old Enumeration return type.

Note: To ensure the most successful migration, the return type of the StoredResponse getHeaderNames
method was changed to
com.ibm.websphere.servlet.response.CollectionEnumerationHybrid<String>. This type implements
both Collection<String> and Enumeration.

JavaServer Pages migration

JavaServer Pages migration best practices and considerations
The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@
page %>, migrate successfully to JSP 2.0. However, there are several areas that must be considered
when migrating JavaServer Pages. This topic discusses the areas that you must consider when migrating
JavaServer Pages.

Classes from the unnamed or default package

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can
result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater
environment which also breaks compatibility with some older JSP applications. However, as of JDK 1.4,
importing classes from the unnamed package is not valid. Refer to the Java 2 Platform Compatibility with
Previous Releases web site for details. Therefore, for forwards compatibility, applications must not rely on
the unnamed package. This restriction also applies for all other cases where classes are referenced, such
as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file.

Page encoding for JSP documents

There have been noticeable differences in internationalization behavior on some containers as a result of
ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards
compatibility and overall, the internationalization abilities of JSP files have been greatly improved.

44 Migrating WebSphere applications

In JSP specification versions before JSP 2.0, JSP pages in XML syntax, JSP documents, and those in
standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or
contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present.

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and
appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to
make sure that it is consistent with the page encoding determined as per the XML specification. As a
result of this change, JSP documents that rely on their page encoding to be determined from their
pageEncoding attribute are no longer decoded correctly. These JSP documents must be changed to
include an appropriate XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0,
page encodings are determined based on each file. Therefore, if the a.jsp file statically includes the b.jsp
file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding for
the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file.

web.xml file version

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2
application or a JSP 2.0 application. Various features can behave differently depending on the version of
the web.xml file. The following is a list of items that JSP developers should be aware of when upgrading
their web.xml file from version Servlet 2.3 to version Servlet 2.4:

1. EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a web application to
JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence, \$, to escape
EL expressions that should not be interpreted by the container. Alternatively, you can use the
isELIgnored page directive attribute, or the <el-ignored> configuration element to deactivate EL for
entire translation units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 URI or use
the _rt versions of the tags, for example, use c_rt instead of c, or fmt_rt instead of fmt.

2. Web applications that contain files with an extension of .jspx will have those files interpreted as JSP
documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as
regular JSP pages, but there is no way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute
value that displays as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag

WebSphere Application Server enforces more strict adherence to the specification for the jsp:useBean tag:
with type and class attributes. Specifically, you should use the type attribute to specify a Java type that
cannot be instantiated as JavaBeans. For example, a Java type that is an abstract class, interface, or a
class with no public no-args constructor. If the class attribute is used for a Java type that cannot be
instantiated as JavaBeans, the JSP container produces an unrecoverable translation error at translation
time.

Generated packages for JSP classes

Any reliance on generated packages for JSP classes results in non-portable JSP files. Packages for
generated classes are implementation-specific and therefore do not rely on these packages.

JspServlet class

JspServlet classes are no longer used. Any reliance on the existence of a JspServlet class causes
unrecoverable error problems.

Chapter 12. Migrating web applications 45

Important: While the JSP classes migrate successfully, if you are precompiling JSP classes, precompile
them again on the target server level. Annotation processing is supported as of JSP 2.1.
Recompile the JSP classes to take advantage of this processing.

JavaServer Pages migration

JavaServer Pages migration best practices and considerations
The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@
page %>, migrate successfully to JSP 2.0. However, there are several areas that must be considered
when migrating JavaServer Pages. This topic discusses the areas that you must consider when migrating
JavaServer Pages.

Classes from the unnamed or default package

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can
result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater
environment which also breaks compatibility with some older JSP applications. However, as of JDK 1.4,
importing classes from the unnamed package is not valid. Refer to the Java 2 Platform Compatibility with
Previous Releases web site for details. Therefore, for forwards compatibility, applications must not rely on
the unnamed package. This restriction also applies for all other cases where classes are referenced, such
as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file.

Page encoding for JSP documents

There have been noticeable differences in internationalization behavior on some containers as a result of
ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards
compatibility and overall, the internationalization abilities of JSP files have been greatly improved.

In JSP specification versions before JSP 2.0, JSP pages in XML syntax, JSP documents, and those in
standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or
contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present.

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and
appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to
make sure that it is consistent with the page encoding determined as per the XML specification. As a
result of this change, JSP documents that rely on their page encoding to be determined from their
pageEncoding attribute are no longer decoded correctly. These JSP documents must be changed to
include an appropriate XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0,
page encodings are determined based on each file. Therefore, if the a.jsp file statically includes the b.jsp
file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding for
the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file.

web.xml file version

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2
application or a JSP 2.0 application. Various features can behave differently depending on the version of
the web.xml file. The following is a list of items that JSP developers should be aware of when upgrading
their web.xml file from version Servlet 2.3 to version Servlet 2.4:

1. EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a web application to
JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence, \$, to escape
EL expressions that should not be interpreted by the container. Alternatively, you can use the
isELIgnored page directive attribute, or the <el-ignored> configuration element to deactivate EL for

46 Migrating WebSphere applications

entire translation units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 URI or use
the _rt versions of the tags, for example, use c_rt instead of c, or fmt_rt instead of fmt.

2. Web applications that contain files with an extension of .jspx will have those files interpreted as JSP
documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as
regular JSP pages, but there is no way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute
value that displays as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag

WebSphere Application Server enforces more strict adherence to the specification for the jsp:useBean tag:
with type and class attributes. Specifically, you should use the type attribute to specify a Java type that
cannot be instantiated as JavaBeans. For example, a Java type that is an abstract class, interface, or a
class with no public no-args constructor. If the class attribute is used for a Java type that cannot be
instantiated as JavaBeans, the JSP container produces an unrecoverable translation error at translation
time.

Generated packages for JSP classes

Any reliance on generated packages for JSP classes results in non-portable JSP files. Packages for
generated classes are implementation-specific and therefore do not rely on these packages.

JspServlet class

JspServlet classes are no longer used. Any reliance on the existence of a JspServlet class causes
unrecoverable error problems.

Important: While the JSP classes migrate successfully, if you are precompiling JSP classes, precompile
them again on the target server level. Annotation processing is supported as of JSP 2.1.
Recompile the JSP classes to take advantage of this processing.

Chapter 12. Migrating web applications 47

48 Migrating WebSphere applications

Chapter 13. Migrating web services

This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Migrating web services

Web services migration scenarios: JAX-RPC to JAX-WS and JAXB
This topic explains scenarios for migrating your Java API for XML-based RPC (JAX-RPC) web services to
Java API for XML-Based Web Services (JAX-WS) and Java Architecture for XML Binding (JAXB) Web
services.

Changes in the tooling can be largely hidden from the user by a development environment like the
assembly tools available with WebSphere Application Server. Also, depending on the data specified in the
XML, some methods that were used for the JAX-RPC service can be used with little or no change in a
JAX-WS service. There are also conditions that do require changes to be made in the JAX-WS service.

Because Java EE environments emphasize compatibility, most application servers that offer support for the
newer JAX-WS and JAXB specifications continue to support the previous JAX-RPC specification. A
consequence of this is that existing web services are likely to remain JAX-RPC based while new web
services are developed using the JAX-WS and JAXB programming models.

However, as time passes and applications are revised and rewritten, there might be times when the best
strategy is to migrate a JAX-RPC based web service to one that is based on the JAX-WS and JAXB
programming models. This might result from a vendor choosing to provide enhancements to qualities of
service that are only available in the new programming models. For example, SOAP 1.2 and SOAP
Message Transmission Optimization Mechanism (MTOM) support are only available within the JAX-WS 2.x
and JAXB 2.x programming models and not JAX-RPC.

The following information includes issues that you might have while migrating from JAX-RPC to JAX-WS
and JAXB.

Note: When the terms migrate, migrating, and migration are used in this topic, unless there is some
statement to indicate otherwise, the move from a JAX-RPC to a JAX-WS and JAXB environment is
being described.

Comparison of JAX-RPC to JAX-WS and JAXB programming models

If you are looking for additional information that describes the changes between the JAX-RPC and
JAX-WS and JAXB programming models, IBM developerWorks has published several web services hints
and tips topics.

© Copyright IBM Corp. 2012 49

Development models

The high level combined development models for JAX-RPC and JAX-WS and JAXB are shown the

following image:

WSDL
WSDL to Java

generation
tools

(Optional)
Configuration

files

JAX-WS and
JAXB portable

artifacts

JAX-RPC only;
Non-portable

artifacts

Implementation
code

Deployment
information

WAR file

At a high level, the models are very similar. The only difference is that the JAX-RPC model produces both
portable and non-portable artifacts; the JAX-WS and JAXB model does not produce non-portable artifacts.

The image displays the following components:

v Web Services Description Language (WSDL) file: A document conforming to the WSDL recommendation
as published by the W3C organization.

v (Optional) Configuration files:

– WSDL to Java generation tool: The specifications describe the mappings required, not the name of
the tools. Typically, the tool for JAX-WS and JAXB is wsimport, and for JAX-RPC the tools are
wscompile and wsdeploy.

– Portable artifacts: These are files generated by the WSDL to Java generation tool that have
well-defined mappings in the JAX-RPC or JAX-WS and JAXB, whichever is applicable,
specifications. These artifacts can be used without modification between different implementations of
JAX-RPC or JAX-WS and JAXB.

– Non-portable artifacts: These are files generated by the WSDL to Java generation tool that do not
have well-defined mappings in the JAX-RPC or JAX-WS and JAXB, whichever is applicable,
specifications. These artifacts generally require modification between different implementations of
JAX-RPC or JAX-WS/JAXB.

– Implementation code: This is the code that you need to meet particular requirements for
implementation.

– Deployment information: Additional information that is needed to run the application in a particular
environment.

– Web archive (WAR) file: In the context of the SampleService image, a WAR file is an archive file that
contains all items needed to deploy a web service into a particular environment. This is sometimes
called a cooked WAR file.

The Development and runtime environments

A specialized development environment simplifies web services migration by automating many of the
tasks. For development of WebSphere-based applications, including web services, you can use the
assembly tools provided with WebSphere Application Server.

The following sample code in this topic was tested in the following runtime environment:

v IBM WebSphere Application Server V6.1, which includes support for the JAX-RPC specification.

50 Migrating WebSphere applications

v IBM WebSphere Application Server V6.1 Feature Pack for Web Services, which includes support for the
JAX-WS and JAXB specifications.

Examples

The following examples show some of the code changes that you might need to migrate your JAX-RPC
Web services to JAX-WS and JAXB web services. In particular, there is an emphasis on the changes in
the implementation code that you must write, from both the client and the server side. If no new function is
to be introduced, the changes required to move from JAX-RPC to JAX-WS and JAXB might be few.

The first example is a sample JAX-RPC-based web service that was created from a WSDL file (top-down
development); the same WSDL file is used to generate the JAX-WS and JAXB-based service. The WSDL
file describes the web service, SampleService, with these operations described by the following image:

As shown in the image, the five operations offered are:

v xsd:int calcShippingCost(xsd:int, xsd:int)

v xsd:string getAccountNumber(xsd:string)

v xsd:dateTime calculateShippingDate(xsd:dateTime)

v xsd:string ckAvailability(xsd:int) creates invalidDateFault

v Person findSalesRep(xsd:string)

Also assume that Person is defined by the following schema fragment in the WSDL file:
<complexType name="Person">
<sequence>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
<element name="location" type="impl:Address/>
</sequence>
</complexType>

Address is defined by:
<complexType name="Address">
<sequence>
<element name="street" type="xsd:string"/>
<element name="city" type="xsd:string"/>
<element name ="state" type="xsd:string"/>
<element name="zip" type="xsd:int"/>
</sequence>
</complexType>

Chapter 13. Migrating web services 51

The following image also shows that the operation, ckAvailability(xsd:int), which produces an

invalidDateFault exception.

getAccountNumber

*

SampleServiceI

calcShippingCost

*
input

output

shippingWt

shippingZone

shippingCost

int

int

int

input

output

accountName

accountNumber

string

string

ckAvailability

*
input

output

itemNumbers

itemAvailability

int

string

invalidDateFaultX stringdate

calculateShippingDate

*
input

output

requestedDate

actualDate

dateTime

dateTime

findSalesRep

*
input

output

saleRepName

salesRepInfo

string

Person

Review the service code created by the tooling. The following information includes examining what is
created for a JAX-RPC runtime and also for a JAX-WS and JAXB runtime.

For JAX-RPC, the tooling accepts the WSDL file as input, and, amongst other files, generates the
SampleService.java and SampleServiceImpl.java interfaces. The SampleService.java interface defines an
interface and the generated code can be review in the following code block. The
SampleServiceSoapBindingImpl.java interface provides the skeleton of an implementation, and you
typically modify to add your own logic.

JAX-RPC version of SampleService.java:
/**
* SampleService.java
*
* This file was auto-generated from WSDL
* by the IBM web services WSDL2Java emitter.
* cf20633.22 v82906122346
*/
package simple;
public interface SampleService extends java.rmi.Remote {
public java.lang.Integer calcShippingCost(java.lang.Integer shippingWt,
java.lang.Integer shippingZone) throws java.rmi.RemoteException;
public java.lang.String getAccountNumber(java.lang.String accountName)
throws java.rmi.RemoteException;
public java.lang.String[] ckAvailability(int[] itemNumbers)
throws java.rmi.RemoteException, simple.InvalidDateFault;
public java.util.Calendar calculateShippingDate(
java.util.Calendar requestedDate)
throws java.rmi.RemoteException;
public simple.Person findSalesRep(java.lang.String saleRepName)
throws java.rmi.RemoteException; }

For JAX-WS and JAXB, the tooling accepts the WSDL file as input, and as in the case of JAX-RPC,
generates SampleService.java and SampleServiceImpl.java interfaces. As with JAX-RPC, the

52 Migrating WebSphere applications

SampleService.java interface also defines an interface as shown in the following code block. The
SampleServiceImpl.java interface provides the skeleton of an implementation, and you typically modify to
add your own logic.

Note: The code has been annotated by the tooling.
JAX-WS and JAXB version of the SampleService.java interface:
package simple;
import java.util.List;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.datatype.XMLGregorianCalendar;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;

/**
* This class was generated by the JAX-WS SI.
* JAX-WS RI IBM 2.0_03-06/12/2007 07:44 PM(Raja)-fcs
* Generated source version: 2.0
*
*/
@WebService(name = "SampleService", targetNamespace = "http://simple") public interface SampleService {

/**
*
* @param shippingWt
* @param shippingZone
* @return
* returns java.lang.Integer
*/
@WebMethod
@WebResult(name = "shippingCost", targetNamespace = "")
@RequestWrapper(localName = "calcShippingCost", targetNamespace = "http://simple",
className = "simple.CalcShippingCost")
@ResponseWrapper(localName = "calcShippingCostResponse", targetNamespace = "http://simple",
className = "simple.CalcShippingCostResponse")
public Integer calcShippingCost(
@WebParam(name = "shippingWt", targetNamespace = "")
Integer shippingWt,
@WebParam(name = "shippingZone", targetNamespace = "")
Integer shippingZone);

/**
*
*
@param accountName
* @return
* returns java.lang.String
*/
@WebMethod
@WebResult(name = "accountNumber", targetNamespace = "")
@RequestWrapper(localName = "getAccountNumber", targetNamespace = "http://simple",
className = "simple.GetAccountNumber")
@ResponseWrapper(localName = "getAccountNumberResponse", targetNamespace = "http://simple",
className = "simple.GetAccountNumberResponse")
public String getAccountNumber(
@WebParam(name = "accountName", targetNamespace = "")
String accountName);
/**
*
* @param requestedDate
* @return
* returns javax.xml.datatype.XMLGregorianCalendar
*/
@WebMethod
@WebResult(name = "actualDate", targetNamespace = "")
@RequestWrapper(localName = "calculateShippingDate", targetNamespace = "http://simple",
className = "simple.CalculateShippingDate")
@ResponseWrapper(localName = "calculateShippingDateResponse", targetNamespace = "http://simple",
className = "simple.CalculateShippingDateResponse")
public XMLGregorianCalendar calculateShippingDate(
@WebParam(name = "requestedDate", targetNamespace = "")
XMLGregorianCalendar requestedDate);
/**
*

Chapter 13. Migrating web services 53

* @param itemNumbers
* @return
* returns java.util.List<java.lang.String>
* @throws InvalidDateFault_Exception
*/
@WebMethod
@WebResult(name = "itemAvailability", targetNamespace = "")
@RequestWrapper(localName = "ckAvailability", targetNamespace = "http://simple", className = "simple.CkAvailability")
@ResponseWrapper(localName = "ckAvailabilityResponse", targetNamespace = "http://simple",
className = "simple.CkAvailabilityResponse")
public List<String> ckAvailability(
@WebParam(name = "itemNumbers", targetNamespace = "")
List<Integer> itemNumbers)
throws InvalidDateFault_Exception
;
/**
*
* @param saleRepName
* @return
* returns simple.Person
*/
@WebMethod
@WebResult(name = "salesRepInfo", targetNamespace = "")
@RequestWrapper(localName = "findSalesRep", targetNamespace = "http://simple", className = "simple.FindSalesRep")
@ResponseWrapper(localName = "findSalesRepResponse", targetNamespace = "http://simple",
className = "simple.FindSalesRepResponse")
public Person findSalesRep(
@WebParam(name = "saleRepName", targetNamespace = "")
String saleRepName);

}

Comparing the code examples

At first glance, it might seem that there is little similarity between the interfaces. If you disregard the
additional information added by the annotations for JAX-WS and JAXB, the code samples are similar. For
example, the calcShippingCost method in the JAX-WS and JAXB version the following lines of code exist:
@WebMethod
@WebResult(name = "shippingCost", targetNamespace = "")
@RequestWrapper(localName = "calcShippingCost", targetNamespace = "http://simple",
className = "simple.CalcShippingCost")
@ResponseWrapper(localName = "calcShippingCostResponse", targetNamespace = "http://simple",
className = "simple.CalcShippingCostResponse")
public Integer calcShippingCost(
@WebParam(name = "shippingWt", targetNamespace = "")
Integer shippingWt,
@WebParam(name = "shippingZone", targetNamespace = "")
Integer shippingZone);

But, if you discard the annotations, the following lines of code are:
public Integer calcShippingCost(

Integer shippingWt,
Integer shippingZone);

These lines are almost identical to what was generated for JAX-RPC. The only difference is that the
JAX-RPC code can produce the java.rmi.RemoteException error as follows:
public java.lang.Integer calcShippingCost(java.lang.Integer shippingWt,

java.lang.Integer shippingZone) throws java.rmi.RemoteException;

Following this logic, three of the methods have essentially the same signatures:
public Integer calcShippingCost(Integer shippingWt, Integer shippingZone)
public String getAccountNumber(String accountName)
public Person findSalesRep(String saleRepName)

This means that migrating from JAX-RPC to JAX-WS does not directly affect these methods and the
original implementation code that is successfully running in the JAX-RPC based environment can probably
be used without modification for these methods.

However two of the methods do have different signatures:

54 Migrating WebSphere applications

For JAX-RPC:
public java.util.Calendar calculateShippingDate(
java.util.Calendar requestedDate)
public java.lang.String[] ckAvailability(int[] itemNumbers)
throws java.rmi.RemoteException,
simple.InvalidDateFault

JAX-WS and JAXB:
public XMLGregorianCalendar calculateShippingDate(
XMLGregorianCalendar requestedDate)
public List<String> ckAvailability(List<Integer> itemNumbers)
throws InvalidDateFault_Exception

Note: You might find it easier to compare the skeleton implementation files since the annotations are not
present in SampleServiceImpl.java.:

v SampleServiceSoapBindingImpl.java

v SampleServiceImpl.java

The differences in signatures are due to the following reasons:

v Differences mappings from XML names to Java names

For the calculateShippingDate method, both the input parameter and the return parameter have
changed from type java.util.Calendar to type XMLGregorianCalendar. This is because the WSDL
specified these parameters to be of type, xsd:dateTime, JAX-RPC maps this data type to
java.util.Calendar, while JAX-WS and JAXB maps it to XMLGregorianCalendar.

v Different mappings of arrays from XML to Java

For the ckAvailability method, the change is due to the data mappings for XML arrays.

JAX-RPC maps the following WSDL elements:
<element maxOccurs="unbounded" name="itemNumbers" type="xsd:int"/>
<element maxOccurs="unbounded" name="itemAvailability" type="xsd:string"/>

The previous elements are mapped to the following Java source:
int[] itemNumbers
java.lang.String[] itemAvailability

JAX-WS and JAXB map the following WSDL elements:
List<Integer> itemNumbers
List<String> ckAvailability

v Different mappings of exceptions

For the ckAvailability method, the JAX-RPC code generated the following error:
simple.InvalidDateFault

The JAX-WS code generates the following error:
InvalidDateFault_Exception

Except for the names, the constructors for these exceptions are different. Therefore, the actual
JAX-RPC code that produces the error might be displayed as:

throw new InvalidDateFault("this is an InvalidDateFault");

For JAX-WS, the code uses a command similar to the following example::
throw new InvalidDateFault_Exception("this is an InvalidDateFault_Exception", new InvalidDateFault());

In cases that use exceptions, the code that uses it needs to change.

Chapter 13. Migrating web services 55

Migrating the code

Now that the differences between code have been explained, review the original code for the methods that
need changing and how to change this code so that it works in a JAX-WS and JAXB environment.

Assume that the original (JAX-RPC) implementation code is similar to following:
public java.util.Calendar calculateShippingDate(

java.util.Calendar requestedDate) throws java.rmi.RemoteException {
// Set the date to the date that was sent to us and add 7 days.
requestedDate.add(java.util.Calendar.DAY_OF_MONTH, 7);

// . . .

return requestedDate;
}

You can write the new code to directly use the new types as in the following examples:
public XMLGregorianCalendar calculateShippingDate(
XMLGregorianCalendar requestedDate) {
try {
// Create a data type factory.
DatatypeFactory df = DatatypeFactory.newInstance();
// Set the date to the date that was sent to us and add 7 days.
Duration duration = df.newDuration("P7D");
requestedDate.add(duration);

} catch (DatatypeConfigurationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

// . . .

return requestedDate;
}

When migrating the code for the ckAvailability method, changes were required because of the way that
arrays and exceptions are mapped from XML is different between JAX-RPC and JAX-WS. Assume that the
original JAX-RPC web service code is similar to the following example:
public java.lang.String[] ckAvailability(int[] itemNumbers)
{

String[] myString = new String[itemNumbers.length];
for (int j = 0; j < myString.length; j++) {

. . .
if (...)

throw new simple.InvalidDateFault(“InvalidDateFault”);

. . .
if (. . .)

myString[j] = “available: “ + jitemNumbers[j] ;
else

myString[j] = “not available: “ + jitemNumbers[j];

}
return myString;

}

The previous code accepts an int[] as input and returns a String[]. For the JAX-WS and JAXB version,
these are List<Integer> and List<String> elements respectively. Processing for these arrays, and
discarding the Exception code, the JAX-RPC code is similar to the following:
public java.lang.String[] ckAvailability(int[] itemNumbers)
{

String[] myString = new String[itemNumbers.length];
for (int j = 0; j < jitemNumbers.length; j++) {

56 Migrating WebSphere applications

. . .
if (. . .)

myString[j] = “available: “ + itemNumbers.get(j);
else

myString[j] = “not available: “ + itemNumbers.get(j);
}
return myString;

}

The following JAX-WS and JAXB equivalent code exists using Lists instead of arrays:
List <String> ckAvailability(List <Integer> itemNumbers)
{

ArrayList<String> retList = new ArrayList<String>();
for (int count = 0; count < itemNumbers.size(); count++) {

. . .
if (. . .)

retList.add(“available: “ + itemNumbers.get(j));
else

retList.add(“not available: “ + itemNumbers.get(j));
}
return retList;

}

The differences in the mappings of exceptions from XML to Java forces the JAX-WS code to use.
InvalidDateFault_Exception instead of InvalidDateFault.

This means that you must replace throw new simple.InvalidDateFault(“InvalidDateFault”); with some
other code. Therefore, the following line is used for the new code:
throw new InvalidDateFault_Exception("test InvalidDateFault_Exception", new InvalidDateFault());

The final JAX-WS and JAXB implementation of the method might be similar to the following code:
List <String> ckAvailability(List <Integer> itemNumbers)
{

ArrayList<String> retList = new ArrayList<String>();
for (int count = 0; count < itemNumbers.size(); count++) {

if (. . .) {
throw new InvalidDateFault_Exception(
"test InvalidDateFault_Exception",
new InvalidDateFault());

}

. . .
if (. . .)

retList.add(“available: “ + itemNumbers.get(count));
else

retList.add(“not available: “ + itemNumbers.get(count));
}
return retList;

}

There are multiple ways that you might choose to migrate the code. With practice and an effective
development environment, migrating from JAX-RPC to JAX-WS can be straightforward.

Web services migration best practices
Use these web services migration best practices when migrating web services applications.

If you have used the Apache SOAP support to develop web services client applications in WebSphere
Application Server Versions 4, 5, or 5.1, you might need to migrate your applications or the security files
for your applications. The following table summarizes the web services specifications supported by the
WebSphere products.

Chapter 13. Migrating web services 57

Table 10. Summary of web services specifications supported by WebSphere Application Server. The product
supports the web services specifications in this table.
WebSphere Application Server Version Web services specifications supported

4.0 Apache SOAP 2.2

5.0 and 5.0.1 Apache SOAP 2.3

5.0.2 or later Java 2 Platform, Enterprise Edition (J2EE), also known as (JSR 109)

6.0.x and 6.1 J2EE (JSR 109)

7.0 or later Web Services for Java Platform, Enterprise Edition (Java EE) 5 also
known as JSR 109

Note: The Apache SOAP 2.2 and Apache SOAP 2.3-based implementations that were available in
WebSphere Application Server Version 4.0.x, 5.0 and 5.0.1 are no longer supported. It is
recommended that applications that are using these SOAP implementations migrate to Web
Services for Java EE (JSR 109) support that is provided in current WebSphere Application Server
versions.

For more information on migrating your web services, read about migrating Apache SOAP web services to
web services to J2EE standards.

It is recommended that new web services be developed using the web services for Java EE specification.
To learn more, read about implementing web services applications.

Security cannot be directly migrated from SOAP 2.3 to the Java EE standards. After you have migrated
your web services to the Java EE standards, consider securing your web services applications. To learn
more, read about securing web services applications using message level security.

Follow these best practices for the most optimal migration experience:

The application server supports the Java API for XML-Based Web Services (JAX-WS) programming model
and the Java API for XML-based RPC (JAX-RPC) programming model. JAX-WS is the next generation
web services programming model extending the foundation provided by the JAX-RPC programming model.

Existing JAX-RPC applications wanting to use JAX-WS features must be rewritten using the JAX-WS
programming model.

Redeploy existing JAX-RPC web services after migrating to a new release of the
application server

When migrating to a new release of the application server, it is recommended that you redeploy your web
services applications. You should redeploy your web services application in the new application server
environment because of possible changes to the supported levels of web services specifications and web
services deployment descriptors in each release. To redeploy your web service, select Deploy Web
Services in the Install New Application wizard or use the wsdeploy command. To learn more about this
process, see the deploying web services applications onto application servers documentation.

Migrating a 32-bit WebSphere Application Server environment to be compatible
with 64-bit

If you are using web services that are implemented on a WebSphere Application Server 32-bit
environment, you need to make sure the web services are compatible with a 64-bit environment. For a
pure Java application this is not an issue. However, if your application code utilizes the Java Native
Interface (JNI) code, you should be aware of the following: the JNI enables the Java code running in a
virtual machine to operate with applications and libraries written in other languages, such as C, C++, and
assembly. Therefore, if your Java EE application uses JNI in a 32-bit environment, your code must be
re-compiled in the 64-bit environment. It is possible that the JNI calls can be different after the compilation,

58 Migrating WebSphere applications

as the JNI specifications can change from version to version.

Migrating a Version 5 Java API for XML-based remote procedure call (JAX-RPC)
client that uses SOAP over Java Message Service (JMS) to invoke a web service

A JAX-RPC client that is run on WebSphere Application Server Version 5, can use SOAP over JMS to
invoke a web service that is run on a Version 5 Application Server.

A user ID and password are not required on the target WebSphere MQ queue. After the application server
is migrated to Version 6.x, and uses the Version 6.x default messaging feature, client requests can fail
because basic authentication is enabled. The following error message displays when this migration
problem occurs:
SibMessage W [:] CWSIT0009W: A client request failed in the application server with
endpoint <endpoint name> in bus <bus_name> with reason: CWSIT0016E: The user
ID null failed authentication in bus <bus_name>.

When the application server is migrated to Version 6.x, and the default messaging provider (service
integration technologies) is used, and administrative and application security is enabled for the server or
the cell, the service integration bus queue destination inherits the security characteristics of the server or
the cell by default. If the server or the cell has basic authentication enabled, the client request fails.

The following options are available to solve this problem. The solutions are listed by the level of security
that they impose:

v Disable administrative and application security on the main security panel within the administrative
console. To disable administrative and application security, click Security > Global security. Deselect
the Enable administrative security and Enable application security options.

v Modify the settings for the service integration bus that hosts the queue destination so that the bus
security is disabled and the bus does not inherit security characteristics from the server or the cell. This
option is equivalent to the level of security that you can configure in Version 5.

v Configure the basic authentication on each client that uses the service. To learn more, see the
information on configuring HTTP basic authentication for JAX-RPC web services with the administrative
console.

Migrating Apache SOAP web services

You can migrate web services that were developed using Apache SOAP to web services that are
developed based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification. See
the information on migrating Apache SOAP web services to JAX-RPC web services based on Java EE
standards.

Migrating web services assembled with early versions of the Application Server
Toolkit or Assembly Toolkit

If you are migrating your web service or web service components from earlier versions of the Application
Server Toolkit or Assembly Toolkit, refer to the following hints and tips to improve your success:

v Secure web services are not migrated by the J2EE Migration Wizard when web services are migrated
from J2EE 1.3 to J2EE 1.4.

v The migration of secure web services requires manual steps.

v After the J2EE migration, the secure binding and extension files must be migrated manually to J2EE 1.4
as follows:

1. Double click on the webservices.xml file to open the web services editor.

2. Select the Binding Configurations tab to edit the binding file.

3. Add all the necessary binding configurations under the new sections Request Consumer Binding
Configuration Details and Response Generator Binding Configuration Details.

Chapter 13. Migrating web services 59

4. Select the Extension tab to edit the extension file.

5. Add all the necessary extension configurations under the new sections Request Consumer Service
Configuration Details and Response Generator Service Configuration Details.

6. Save and exit the editor.

.

Migrating Apache SOAP web services to JAX-RPC web services based
on Java EE standards
You can migrate web services that were developed using Apache SOAP to Java API for XML-based RPC
(JAX-RPC) web services that are developed based on the Web Services for Java Platform, Enterprise
Edition (Java EE) specification.

Before you begin

If you have used web services based on Apache SOAP and now want to develop and implement web
services that are Java-based, you need to migrate client applications developed with all versions of 4.0,
and versions of 5.0 prior to 5.0.2.

About this task

Note: For this version of the application server, SOAP-Security (XML digital signature) based on Apache
SOAP implementation has been removed. Instead of using SOAP-Security, migrate and
re-configure your application to the JSR-109 implementation of web services.

To migrate these client applications according to Java standards:

Procedure
1. Plan your migration strategy. You can port an Apache SOAP client to a JAX-RPC web services client in

one of two ways:

v If you have, or can create, a Web Services Description Language (WSDL) document for the service,
consider using the WSDL2Java command tool to generate bindings for the web service. It is more
work to adapt an Apache SOAP client to use the generated JAX-RPC bindings, but the resulting
client code is more robust and easier to maintain.

To follow this path, see the article on developing a web services client in the information center.

v If you do not have a WSDL document for the service, do not expect the service to change, and you
want to port the Apache SOAP client with minimal work, you can convert the code to use the
JAX-RPC dynamic invocation interface (DII), which is similar to the Apache SOAP APIs. The DII
APIs do not use WSDL or generated bindings.

Because JAX-RPC does not specify a framework for user-written serializers, the JAX-RPC does not
support the use of custom serializers. If your application cannot conform to the default mapping
between Java, WSDL, and XML technology supported by WebSphere Application Server, do not
attempt to migrate the application. The remainder of this topic assumes that you decided to use the
JAX-RPC dynamic invocation interface (DII) APIs.

2. Review the GetQuote Sample. A web services migration Sample is available in the Samples section of
the Information Center. This sample is located in the GetQuote.java file, originally written for Apache
SOAP users, and includes an explanation about the changes needed to migrate to the JAX-RPC DII
interfaces. To learn more, see the Samples section of the Information Center.

3. Convert the client application from Apache SOAP to JAX-RPC DII The Apache SOAP API and
JAX-RPC DII API structures are similar. You can instantiate and configure a call object, set up the
parameters, invoke the operation, and process the result in both. You can create a generic instance of
a Service object with the following command:

javax.xml.rpc.Service service = ServiceFactory.newInstance().createService(new QName(""));

60 Migrating WebSphere applications

in JAX-RPC.

a. Create the Call object. An instance of the Call object is created with the following code:
org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ()

in Apache SOAP.

An instance of the Call object is created by
java.xml.rpc.Call call = service.createCall();

in JAX-RPC.

b. Set the endpoint Uniform Resource Identifiers (URI). The target URI for the operation is passed as
a parameter to

call.invoke: call.invoke("http://...", "");

in Apache SOAP.

The setTargetEndpointAddress method is used as a parameter to
call.setTargetEndpointAddress("http://...");

in JAX-RPC.

Apache SOAP has a setTargetObjectURI method on the Call object that contains routing
information for the request. JAX-RPC has no equivalent method. The information in the
targetObjectURI is included in the targetEndpoint URI for JAX-RPC.

c. Set the operation name. The operation name is configured on the Call object by
call.setMethodName("opName");

in Apache SOAP.

The setOperationName method, which accepts a QName instead of a String parameter, is used in
JAX-RPC as illustrated in the following example:

call.setOperationName(new javax.xml.namespace.Qname("namespace", "opName"));

d. Set the encoding style. The encoding style is configured on the Call object by
call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);

in Apache SOAP.

The encoding style is set by a property of the Call object
call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY, "http://schemas.
xmlsoap.org/soap/encoding/");

in JAX-RPC.

e. Declare the parameters and set the parameter values. Apache SOAP parameter types and values
are described by parameter instances, which are collected into a vector and set on the Call object
before the call, for example:

Vector params = new Vector ();
params.addElement (new org.apache.soap.rpc.Parameter(name, type, value, encodingURI));
// repeat for additional parameters...
call.setParams (params);

For JAX-RPC, the Call object is configured with parameter names and types without providing their
values, for example:

call.addParameter(name, xmlType, mode);
// repeat for additional parameters
call.setReturnType(type);

Where
v name (type java.lang.String) is the name of the parameter
v xmlType (type javax.xml.namespace.QName) is the XML type of the parameter

Chapter 13. Migrating web services 61

v mode (type javax.xml.rpc.ParameterMode) the mode of the parameter, for example, IN, OUT, or
INOUT

f. Make the call. The operation is invoked on the Call object by
org.apache.soap.Response resp = call.invoke(endpointURI, "");

in Apache SOAP.

The parameter values are collected into an array and passed to call.invoke as illustrated in the
following example:

Object resp = call.invoke(new Object[] {parm1, parm2,...});

in JAX-RPC.

g. Check for faults. You can check for a SOAP fault on the invocation by checking the response:
if resp.generatedFault then {
org.apache.soap.Fault f = resp.getFault;
f.getFaultCode();
f.getFaultString();
}

in Apache SOAP.

A java.rmi.RemoteException error is displayed in JAX-RPC if a SOAP fault occurs on the
invocation.

try {
... call.invoke(...)
} catch (java.rmi.RemoteException) ...

h. Retrieve the result. In Apache SOAP, if the invocation is successful and returns a result, it can be
retrieved from the Response object:

Parameter result = resp.getReturnValue(); return result.getValue();

In JAX-RPC, the result of invoke is the returned object when no exception is displayed:
Object result = call.invoke(...);
...
return result;

Results

You have migrated Apache SOAP web services to a JAX-RPC Web services based on the Java EE
specification.

What to do next

Develop a web services client. See the article in the information center on how to develop a Web services
client based on the Web Services for Java EE specification.

Test the web services-enabled clients to make sure that the migration process is successful and you can
implement the web services in a Java EE environment.

Migrating Web Services Security
You can migrate Web Services Security bindings from an older version to the latest version of
WebSphere® Application Server. The product migration function handles most of the migration process, but
your input and action is required for specific configurations in order to complete the migration.

Migration of JAX-WS Web Services Security bindings from Version 6.1
You can migrate Web Services Security bindings from an older version to Version 7.0 and later of
WebSphere Application Server. Migration of the JAX-WS bindings in Version 6.1 Feature Pack for Web
Services takes place during the product migration to Version 7.0 and later.

62 Migrating WebSphere applications

The product migration handles most of the WS-Security migration process, but your input and action is
required for specific configurations in order to complete the migration. Following are some examples of
configurations that require manual migration steps:

v Using callers on Version 6.1 Feature Pack for Web Services.

WebSphere Application Server Version 7.0 and later supports the capability to specify a preference
order for callers. In the situation where only a single caller is present in the bindings, product migration
automatically assigns an order of 1 to the single caller that is present. However, if there are multiple
callers, warnings are logged during migration, and you must manually assign the caller preference
order. Set the order attribute for each caller using the administrative console, or the administration
commands, after product migration is completed. Read about call collection and configuring the callers
for general and default bindings for instructions on setting the caller order using the administrative
console. See the topic “WS-Security policy and binding properties” for information on using the
administration commands.

v Using multiple username tokens in the default bindings.

During product migration for Version 6.1 default bindings, all UsernameToken generators and
consumers in the bindings will be migrated. However, if multiple username token generators, or
consumers, are used, a warning is logged during migration. The warning states that a maximum of two
username token generators and two username token consumers are allowed, and that one of each pair
of token generators or consumers must have the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed
property set to true. You must manually select which username token consumer or generator to keep,
and which token has the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property, using the
administrative console, or administration commands.

– To use the administrative console to set the property, access the WS-Security 6.1 default bindings
as instructed in the “Policy set bindings settings for WS-Security” topic, and click the Authentication
and Protection link. Add, remove or edit the username token consumers and generators as needed,
following the instructions in the “WS-Security authentication and protection for general bindings”
topic.

– To use the administration commands to set the property, and to add, delete and edit the username
token generators or consumers as needed, refer to the “WS-Security policy and bindings properties”
topic for instructions.

v Using multiple token generators and token consumers of the same type in Version 6.1 default bindings.

During product migration for Version 6.1 default bindings, all token generators and token consumers for
supporting tokens are migrated. In the situation where multiple token generators and token consumers
of the same supporting token type are found a warning is logged during migration. This warning states
that only a single token consumer and token generator for each supporting token type must be present.
You must manually select which token consumer or generator to use for the repeating supporting token
type, using the administrative console or administration commands. To use the administrative console to
select the token, access the WS-Security 6.1 default bindings as instructed in the “Policy set bindings
settings for WS-Security” topic, and select the Authentication and Protection link. Add, edit or remove
token consumers and generators as needed, following the instructions in the “WS-Security
authentication and protection for general bindings” topic.

Migrating JAX-RPC Web Services Security applications to Version 8.5
applications
Migration of a Java Platform, Enterprise Edition (Java EE) Version 1.3 application that uses Web Services
Security to a Java EE Version 1.4 application is possible.

Before you begin

You can install Java Platform, Enterprise Edition (Java EE) Version 1.3 applications that use Web Services
Security on a WebSphere Application Server Version 8.5 server. However, if you want Java EE Version 1.3
applications to use the Web Services Security (WSS) Version 1.0 or 1.1 specifications and the other new

Chapter 13. Migrating web services 63

features added in Version 8.5, you must migrate the Java EE Version 1.3 applications to Java EE Version
1.4.

About this task

Complete the following steps to migrate a Version 1.3 application, along with the Web Services Security
configuration information, to a Version 8.5 application:

Procedure
1. Save the original Java EE Version 1.3 application. You need the Web Services Security configuration

files of the Java EE Version 1.3 application to recreate the configuration in the new format for the Java
EE Version 1.4 application.

2. Use the Java Platform, Enterprise Edition (Java EE) Migration Wizard in an assembly tool to migrate
the Java EE Version 1.3 application to Java EE Version 1.4.

Important: After you migrate to Java EE Version 1.4 using the Java EE Migration Wizard, you cannot
view the Java EE Version 1.3 extension and binding information within an assembly tool.
You can view the Java EE Version 1.3 Web Services Security extension and binding
information using a text editor. However, do not edit the extension and binding information
using a text editor. The Java EE Migration Wizard does not migrate the Web Services
Security configuration files to the new format in the Java EE Version 1.4 application.
Rather the wizard is used to migrate your files from Java EE Version 1.3 to Version 1.4.

To access the Java EE Migration Wizard, complete the following steps:

a. Right-click the name of your application.

b. Click Migrate > Java EE Migration Wizard.

3. Manually delete all of the Web Services Security configuration information from the binding and
extension files of the application that is migrated to Java EE Version 1.4.

a. Delete the <securityRequestReceiverServiceConfig> and
<securityResponseSenderServiceConfig> sections from the server-side ibm-webservices-ext.xmi
extension file.

b. Delete the <securityRequestReceiverBindingConfig> and
<securityResponseSenderBindingConfig> sections from the server-side ibm-webservices-bnd.xmi
binding file.

c. Delete the <securityRequestSenderServiceConfig> and
<securityResponseReceiverServiceConfig> sections from the client-side ibm-webservicesclient-
ext.xmi extension file.

d. Delete the <securityRequestSenderBindingConfig> and
<securityResponseReceiverBindingConfig> sections from client-side ibm-webservicesclient-
bnd.xmi binding file.

4. Recreate the Web Services Security configuration information in the new Java EE Version 1.4 format.
At this stage, because the application is already migrated to the Java EE Version 1.4, use an assembly
tool to configure the original Web Services Security information in the new Version 8.5 format. For
more information on assembly tools, see the related information.

Results

This task provides general information about how to migrate Java EE Version 1.3 applications to Java EE
Version 1.4.

What to do next

The following articles contain some general scenarios that map some of the basic Web Services Security
information specified in a Java EE Version 1.3 application to a Java EE Version 1.4 application and specify

64 Migrating WebSphere applications

this information using an assembly tool. The Web Services Security configuration information is contained
in four configuration files: two server-side configuration files and two client-side configuration files. The
migration of all of the configuration information is divided into four sections; one for each configuration file.
When you recreate the Web Services Security information in the new Java EE Version 1.4 format, it is
recommended that you configure the extensions and binding files in the following order:

1. Configure the ibm-webservices-ext.xmi server-side extensions file. For more information, see
“Migrating the JAX-RPC server-side extensions configuration.”

2. Configure the ibm-webservicesclient-ext.xmi client-side extensions file. For more information, see
“Migrating the client-side extensions configuration” on page 67.

3. Configure the ibm-webservices-bnd.xmi server-side bindings file. For more information, see “Migrating
the server-side bindings file” on page 68.

4. Configure the ibm-webservicesclient-bnd.xmi client-side bindings file. For more information, see
“Migrating the client-side bindings file” on page 70.

Migrating the JAX-RPC server-side extensions configuration
You can migrate the Web Services Security server-side extensions configuration for a Java Platform,
Enterprise Edition (Java EE) Version 1.3 application to a Java EE Version 1.4 application for the JAX-RPC
programming model.

About this task

The following table lists the mappings for the top-level sections under the server-side Security
Extensions tab within an assembly tool from a Java EE Version 1.3 application to a Java EE Version 1.4
application.

Table 11. The mapping of the configuration sections. Use the extensions configuration information for migration.
Java EE Version 1.3 extensions configuration Java EE Version 1.4 extensions configuration

Request Receiver Service Configuration Details Request Consumer Service Configuration Details

Response Sender Service Configuration Details Response Generator Service Configuration Details

For information about the assembly tools that are available for WebSphere Application Server Version
6.0.x, see the assembly tools information.

Consider the following steps to migrate the server-side extensions from a Java EE Version 1.3 application
to a Java EE Version 1.4 application. These steps are dependent upon your specific configuration.

Procedure
v Import the Java EE Version 1.3 application into an assembly tool and identify all the message parts that

are required to be signed and encrypted. The message parts are listed in the Required Integrity and
Required Confidentiality sections under the Request Receiver Service Configuration Details section. In a
Java EE Version 1.4 application, these message parts map to the Message parts field of the Required
integrity and Required confidentiality dialogs windows within the assembly tool.

To specify these message parts within an assembly tool, complete the following steps in the Web
Services Editor. The steps are based on typical scenarios, but the steps are not all-inclusive.

1. Click the Extensions tab.

2. Navigate to the Required integrity subsection within the Request Consumer Service Configuration
Details section.

3. Specify each message part to be signed in the Message Parts field.

For example, if the message part in the Java EE Version 1.3 application is body, you need to specify
body in the Message parts keyword field. Similarly, on the Extensions tab, configure the message parts
to be encrypted using the Required Confidentiality dialog. Also, for all the message parts that are

Chapter 13. Migrating web services 65

migrated from a Java EE Version 1.3 application, you must select http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was in the Message parts dialect field and Required in the Usage
type field.

v Optional: Configure the Required Security Token and Caller Part sections on the Extensions tab if the
authentication method of BasicAuth is configured under the Login Config section of the Java EE Version
1.3 application. When you configure the Required Security Token section, select Username in the name
field and Required in the Usage type field within the Required Security Token Dialog window. The
following table shows how the authentication method values for a Java EE Version 1.3 application map
to the token type values within the Java EE Version 1.4 application.

Table 12. Authentication method to token type mappings. Use the extensions configuration information for migration.
Login Config Authentication method values in the Java EE Version
1.3 extensions configuration

Token type values in the Java EE Version 1.4 extensions
configuration

BasicAuth UsernameToken

Signature X509 certificate

LTPA LTPAToken

If the authentication method value is IDAssertion within the Login Config section, the token type that you
must specify in the Java EE Version 1.4 application depends upon the IDType value within the
IDAssertion section. The following table shows how the IDType values for Java EE Version 1.3
application map to the token type values in the Java EE Version 1.4 application.

Table 13. IDType values to token type mappings. Use the extensions configuration information for migration.
IDType values in the Java EE Version 1.3 application extensions
configuration

Token type values in the Java EE Version 1.4 application extensions
configuration

X509Certificate X509 certificate

Username Username

v Select the appropriate token type in the Name field of the Call Part Dialog window based on the
previous two tables. Select the Username token type when you are configuring the caller part for the
basic authentication method. Configuring the other token types in the Caller part dialog is similar to
configuring token types in the Required Security Token dialog. If you need to map the IDAssertion
authentication method from a Java EE Version 1.3 application to a Java EE Version 1.4 application,
select the Use IDAssertion option and configure the ID assertion section of the Caller Part Dialog
window. The Trust Mode field under the IDAssertion section maps to the Trust method name field of the
Trust method property section in the Caller Part Dialog window. If Signature is selected for the Trust
method, specify the Required Integrity part that specifies the signature of the trusted intermediary
certificate.

v Configure a nonce in the Version 8.5 Binding Configurations section if nonce is specified in the Add
Authentication Method dialog under Login Config within the Java EE Version 1.3 application extensions
configuration.

Important: Nonce is configured in the bindings for a Java EE Version 1.4 application and not in the
extensions.

To configure a nonce on the Binding Configurations tab, set the
com.ibm.wsspi.wssecurity.token.username.verifyNonce property in the Token Consumer configuration
for the Username token.

v Configure the Add Timestamp section to migrate the time stamp information if the
<addReceivedTimestamp> element is configured in the Java EE Version 1.3 extensions. To migrate the
Response Sender Service Configuration Details section in the Java EE Version 1.3 extensions, identify
all of the message parts listed within the Integrity and Confidentiality sections. Configure these message
parts using the Integrity and Confidentiality dialogs under the Response Generator Service
Configuration details section. This configuration is similar to the configuration for Required Integrity and
Required Confidentiality, with the exception of the Order field in the Integrity Dialog. The value of this
Order field specifies the order in which the message parts specified in the Message Parts field are
digitally signed or encrypted in the SOAP message. For example, the extensions contain the following
information:

66 Migrating WebSphere applications

– One integrity entry called int_part1 with a value of 1 in the Order field

– One confidentiality entry called conf_part1 with a value of 2 in the Order field

In this example, the message parts that are specified by the int_part1 integrity entry are signed before
the message parts specified by the conf_part1 confidentiality entry are encrypted. The same rule for the
order attribute applies for multiple integrity or confidentiality elements.

Results

These steps describe the types of information that you need to migrate the Web Services Security
server-side extensions for a Java EE Version 1.3 application to a Java EE Version 1.4 application.

What to do next

Migrate the client-side extensions for a Java EE Version 1.3 application to a Java EE Version 1.4
application. For more information, see “Migrating the client-side extensions configuration.”

Migrating the client-side extensions configuration
You can migrate the Web Services Security client-side extensions configuration for a Java Platform,
Enterprise Edition (Java EE) Version 1.3 application to a Java EE Version 1.4 application.

About this task

The following table lists the mappings of the top-level sections under the client-side Security Extensions
tab for Web Services Security from a Java EE Version 1.3 application to a Java EE Version 1.4
application.

Table 14. The mapping of the configuration sections. Use the extensions configuration information for migration.
Java EE Version 1.3 security extensions for Web Services Security Java EE Version 1.4 extensions for Web Services Security

Request Sender Configuration Request Generator Configuration

Response Receiver Configuration Response Consumer Configuration

Consider the following steps to migrate the client-side extensions configuration from a Java EE Version 1.3
application to a Java EE Version 1.4 application. These steps are dependent upon your specific
configuration. The steps are based on typical scenarios, but the steps are not all-inclusive.

Procedure
v Migrate the message parts that you need to sign or encrypt from the Integrity and Confidentiality

sections in the Java EE Version 1.3 application to the Integrity and Confidentiality sections on the WS
Extensions tab in an assembly tool for a Java EE Version 1.4 application.

v Configure the Security Token section under the Request Generator Configuration on the WS
Extensions tab if Login Config section is configured in the Java EE Version 1.3 extensions
configuration. When you configure the security token, select the token type in the Token type field that
matches the authentication method value of the Login Config in the Java EE Version 1.3 application.
For example, if the authentication method in the Java EE Version 1.3 extensions configuration is
BasicAuth, then select Username in the Token type field within the assembly tool. For more information
on how the authentication methods for Web Services Security map from a Java EE Version 1.3
application to a Java EE Version 1.4 application, see Table 12 on page 66. If the authentication method
is IDAssertion, there is no action required because in a Java EE Version 1.4 application the identity
assertion configuration is not required in the client-side extensions configuration. In a Java EE Version
1.4 application, the identity assertion configuration is specified in the server-side extensions
configuration and in the client-side bindings configuration.

v Migrate the Required Integrity and Required Confidentiality sections by configuring the Required
Integrity and Required Confidentiality sections in an assembly tool. Migrating the Response Receiver

Chapter 13. Migrating web services 67

Configuration section is similar to migrating the Request Receiver Service Configuration Details section
of the server-side extensions configuration. For more information, see “Migrating the JAX-RPC
server-side extensions configuration” on page 65.

v Migrate the nonce configuration in the Login Config section in a Java EE Version 1.3 extensions
configuration for Web Services Security to a Java EE Version 1.4 application.

Important: Nonce is not configured in a Java EE Version 1.4 extension file for Web Services Security.
Rather, it is configured in the binding file for Web Services Security.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce
property in the token generator of the username token.

v Configure the Add Timestamp section under the Request Generator Configuration in the assembly tool if
the Add Created Time Stamp option is configured in the Java EE Version 1.3 extensions.

Results

This set of steps describe the types of information that you need to migrate the client-side extensions
configuration for Web Services Security for a Java EE Version 1.3 application to a Java EE Version 1.4
application.

What to do next

Migrate the server-side bindings configuration for a Java EE Version 1.3 application to a Java EE Version
1.4 application. For more information, see “Migrating the server-side bindings file.”

Migrating the server-side bindings file
You can migrate the server-side bindings configuration for a Java Platform, Enterprise Edition (Java EE)
Version 1.3 application to a Java EE Version 1.4 application.

About this task

The following table lists the mappings of the top-level sections under the server-side Binding
Configurations tab from a Java EE Version 1.3 application to a Java EE Version 1.4 application.

Table 15. The mapping of the configuration sections. Use the binding configuration information for migration.
Java EE Version 1.3 Binding Configurations Java EE Version 1.4 Binding Configurations

Request Receiver Binding Configuration Details Request Consumer Service Binding Configuration Details

Response Sender Binding Configuration Details Response Generator Binding Configuration Details

Consider the following steps to migrate the server-side bindings from Java EE Version 1.3 to Java EE
Version 1.4. These steps are dependent upon your specific configuration. The steps are based on typical
scenarios, but the steps are not all-inclusive.

Procedure
v Migrate the configuration information under the Request Receiver Binding Configuration Details section

of a Java EE Version 1.3 application.

1. Migrate any trust anchor information that is specified in the Java EE Version 1.3 application to Java
EE Version 1.4 using the Trust Anchor dialog.

2. Migrate the information under the certificate store list that is specified in the Java EE Version 1.3
application to Java EE Version 1.4 by configuring the Certificate Store List section in the Java EE
Version 1.4 application.

3. Configure the key locator and token consumer information that is referenced from the Key
Information dialog window. The configuration of the key locator and the token consumer depends
upon the key information type. For example, if an X.509 certificate that is embedded in the
<wsse:Security> security header is used for digital signature, complete the following steps:

68 Migrating WebSphere applications

a. For configuring the key locator, specify the
com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do
not specify a key store.

b. For configuring the token consumer, select the
com.ibm.wsspi.wssecurity.token.509TokenConsumer class, specify X509 certificate token for
the value type Uniform Resource Identifier (URI), and specify system.wssecurity.X509BST in the
jaas.config.name field. Also, you must specify the certificate path settings (the trust anchor
reference and the certificate store reference) as part of the token consumer configuration.

4. Explicitly specify the key information type in the Key Information Dialog window. In a Java EE
Version 1.3 application, the key information type, such as the security token reference and the key
identifier, is not explicitly specified. The key information type is implied by the configuration. In a
Java EE Version 1.4 application, you must specify the key information type explicitly using the Key
Information Dialog when you have digital signature or encryption information in the binding file.
Before you configure the key information, make sure that you have configured the key locator and
token consumer information that is referenced from the Key Information dialog.

When you configure the key information for either digital signature or encryption, you need to specify
the correct key information type. The value of the key information type depends upon the type of
mechanism that is used to reference the security token that is used for digitally signing or
encrypting. The following information describes the Security token reference (or Direct reference)
and the Key identifier, which are the most common, recommended key information types that are
used for digitally signing and encrypting:

Security token reference (or Direct reference)
The security token is directly referenced using the Uniform Resource Identifiers (URIs). The
following <KeyInfo> element is generated in the SOAP message for this key information
type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Reference URI="#mytoken" />
</wsse:SecurityTokenReference>

</ds:KeyInfo>

Key identifier
The security token is referenced using an opaque value that uniquely identifies the token.
The algorithm that is used for generating the KeyIdentifier value depends upon the token
type. For example, a hash of the important elements of the security token is used for
generating the KeyIdentifier value. The following <KeyInfo> element is generated in the
SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>

<wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

In the Key Information Dialog window, specify the names of the key locator and the token consumer
that you configured previously. The Key name field is optional for the consumer side.

5. Migrate the information in the Signing Information section by configuring the Signing Information,
Part References, and Transforms sections.

– Specify the Signature method and Canonicalization method algorithms in the Signing Information
Dialog window.

– Specify the Digest method algorithm in the Part Reference Dialog window.

6. Migrate the information under the Encryption Information section. In the Encryption Information
Dialog window, select the name of the Key Information element that is configured for encryption, and
specify the RequiredConfidentiality part. Verify that the value for the selected
RequiredConfidentiality part is the same name as the Required Confidentiality part that is
configured in the extension file.

The Login Mapping section in the Java EE Version 1.3 application maps to the Token Consumer
configuration for the type of token that is specified by the authentication method. For example, to

Chapter 13. Migrating web services 69

migrate a Login Mappings configuration that uses the BasicAuth authentication method, configure a
token consumer for the username token. To configure a token consumer for a username token,
complete the following steps:

a. Select the com.ibm.wsspi.wssecurity.UsernameTokenConsumer token consumer class.

b. Specify the name of the Required Security Token configuration from the Extensions within in the
Security Token field.

c. Select Username Token for value type.

d. Specify the system.wssecurity.UsernameToken value in the jaas.config.name field.

v Migrate the configuration information in the Response Sender Binding Configuration Details section of
the Java EE Version 1.3 bindings file to the Response Generator Binding Configuration Details section
of the Java EE Version 1.4 application. Configuring the Response Generator section is very similar to
configuring the Request Consumer section.

1. Migrate the information from the Key Locators section by using the Key Locator Dialog window in an
assembly tool.

2. Configure a token generator, which is referenced in the Key Information Dialog window. You must
configure a token generator for every security token that is generated in the SOAP message. If the
token generator is for an X.509 certificate that is used for digital signature or encryption, complete
the following steps:

a. For configuring the key locator, specify the
com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do
not specify a key store.

b. For configuring the token generator, select the com.ibm.wsspi.wssecurity.X509TokenGenerator
class and specify X509 certificate token for the value type Uniform Resource Identifier (URI).
The key store information that is specified for the token generator is the same information that is
used for configuring the key locator. Therefore, the keystore information from the Key Locators
configuration in a Java EE Version 1.3 application is used to configure the key locator and the
token generator in a Java EE Version 1.4 application.

c. In the Token Generator Dialog window, specify the key store information that is required by the
callback handler to obtain the key information that is required for generating the token.

d. For the callback handler, select the
com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler class.

3. Specify the names of the key locator and the token generator in the Key Information Dialog window
that you configured previously. The Key name is required for the generator side. The key that is
specified in the Key Information Dialog window must exist in the list of keys that is specified in the
key locator configuration. Also, migrating the Signing Information and the Encryption Information
configurations is similar to migrating the Signing Information and the Encryption Information
configurations for the Request Receiver Binding Configuration section. Configuring the key
information for the response generator section is similar to configuring the key information for the
request consumer section.

Results

This set of steps describes the types of information that you need to migrate the server-side bindings
configuration for a Java EE Version 1.3 application to a Java EE Version 1.4 application.

What to do next

Migrate the client-side binding configuration for a Java EE Version 1.3 application to a Java EE Version
1.4 application. For more information, see “Migrating the client-side bindings file.”

Migrating the client-side bindings file
You can migrate the Web Services Security client-side binding configuration for a Java Platform, Enterprise
Edition (Java EE) Version 1.3 application to a Java EE Version 1.4 application.

70 Migrating WebSphere applications

About this task

The following table lists the mapping of the top-level sections under the client-side Port Bindings tab
within a Java EE Version 1.3 application to a Java EE Version 1.4 application.

Table 16. The mapping of the configuration sections. Use the binding configuration information for migration.
Java EE Version 1.3 binding configuration for Web Services Security Java EE Version 1.4 binding configuration for Web Services Security

Security Request Sender Binding Configuration Security Request Generator Binding Configuration

Security Response Receiver Binding Configuration Security Response Consumer Binding Configuration

Consider the following steps to migrate the client-side binding configuration from a Java EE Version 1.3
application to a Java EE Version 1.4 application. These steps are dependent upon your specific
configuration. The steps are based on typical scenarios, but the steps are not all-inclusive.

Procedure
v Migrate the information in the Security Request Sender Binding Configuration section in a Java EE

Version 1.3 application to a Java EE Version 1.4 application. The migrations process for the Security
Request Sender Binding Configuration section is similar to the process for the Response Sender
Binding Configuration Details section in the server-side binding configuration. For more information, see
“Migrating the server-side bindings file” on page 68.

v Migrate the information in the Key Locators, Signing Information, and the Encryption Information
sections of the Java EE Version 1.3 application to a Java EE Version 1.4 application. The migration
process for these elements on the client side is similar to migration process on the server side. For
more information, see “Migrating the server-side bindings file” on page 68.

v Migrate the information in the Login Bindings section in a Java EE Version 1.3 application to a Java EE
Version 1.4 application. The migration of the Login Bindings section depends upon the value of the
authentication method. If the authentication method is BasicAuth or IDAssertion, configure a token
generator for the username token. If the authentication method is LTPA, select the
com.ibm.wsspi.wssecurity.token.LTPATokenGenerator class as the token generator class. If the
client-side bindings for the web service uses IDAssertion, complete the following steps:

1. Configure a token generator for the authentication token of the original client.

2. Define the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property and set its value to true
in the Token Generator Dialog window within an assembly tool. If the original client is using a
username token for authentication and if the target web service is using BasicAuth for
authentication, configure the following token generators in the client-side binding file:

– The username token of the original client. You must set the
com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property in the token generator of the
original client.

– The username token of the intermediary web service.

v Migrate the Security Response Receiver Binding Configuration section from a Java EE Version 1.3
application to a Java EE Version 1.4 application. Migrating the Security Response Receiver Binding
Configuration section is similar to migrating the Request Receiver Binding Configuration Details section
of the server-side bindings configuration. Migrate this information under the Security Response
Consumer Binding Configuration section. For more information, see “Migrating the server-side bindings
file” on page 68.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce
property in the token generator of the username token.

Results

This set of steps describe the types of information that you need to migrate the Web Services Security
client-side bindings configuration for a Java EE Version 1.3 application to a Java EE Version 1.4
application.

Chapter 13. Migrating web services 71

What to do next

Verify that you have migrated both the server-side and the client-side extension and binding configurations
for a Java EE Version 1.3 application to a Java EE Version 1.3 application. For more information, see
“Migrating JAX-RPC Web Services Security applications to Version 8.5 applications” on page 63.

View web services client deployment descriptor
Use this page to view your client deployment descriptor.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Before you begin this task, the web services application must be installed.

By completing this task, you can gather information that enables your to maintain or configure binding
information. After the web services application is installed, you can view the web services deployment
descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name .

3. Under Web Services Properties, click View web services client deployment descriptor extension.

The information in the following implementation indicates how to configure your application-level bindings.
If the web server is acting as a client, the default bindings are used. To configure the server-level bindings,
which are the defaults, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

If you are using any of the following configurations, verify that the deployment descriptor is configured
properly:
v “Request signing”
v “Request encryption” on page 73
v “BasicAuth authentication” on page 73
v “Identity (ID) Assertion authentication with BasicAuth TrustMode” on page 73
v “Identity (ID) Assertion authentication with the Signature TrustMode” on page 74
v “Response digital signature verification” on page 74
v “Response decryption” on page 75

Request signing

If the integrity constraints (digital signature) are specified, verify that you configured the signing information
in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web Services: Client security bindings.

4. In the Response receiver binding column, click Edit > Signing information > New.

72 Migrating WebSphere applications

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

Request encryption

If the confidentiality constraints (encryption) are specified, verify that you configured the encryption
information in the binding files.

To configure the encryption parameters, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. In the Response receiver binding column, click Edit > Encryption Information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web Services Security > Key
locators.

BasicAuth authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the
binding file to collect the basic authentication data. The following list contains the CallBack support
implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler
This implementation prompts for basic authentication information, the user name and password, in
an interface.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the basic authentication information from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler
This implementation prompts for a user name and password using the standard in (stdin) prompt.

To configure the login binding information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with BasicAuth TrustMode

Configure a login binding in the bindings file with a
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a BasicAuth
user name and password that a trusted ID evaluator on a downstream server trusts.

Chapter 13. Migrating web services 73

To configure the login binding information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with the Signature TrustMode

Configure the signing information in the bindings file with a signing key pointing to a key locator. The key
locator contains the X.509 certificate that is trusted by the downstream server.

To configure ID assertion, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Additional properties, click JAX-WS and JAX-RPC security runtime > Login mappings >
IDAssertion.

To configure the login binding information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. Under Request sender bindings, click Edit > Login binding.

Response digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing
information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. In the Response receiver binding column, click Edit > Signing information > New.

To configure the trust anchors, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trust anchors > New.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store > New.

74 Migrating WebSphere applications

Response decryption

If the confidentiality constraints (encryption) are specified, verify that you defined the encryption
information.

To configure the encryption information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Client security bindings.

4. In the Response receiver binding column, click Edit > Encryption information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

View web services server deployment descriptor
Use this page to view your server deployment descriptor settings.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Before you begin this task, the web services application must be installed.

By completing this task, you can gather information that enables you to maintain or configure binding
information. After the web services application is installed, you can view the web services deployment
descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Properties, click View web services server deployment descriptor.

WebSphere Application Server has two levels of bindings: application-level and server-level. The
information in the following implementation descriptions indicate how to configure your application-level
bindings. To configure the server-level bindings, which are the defaults, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

v “Request digital signature verification” on page 76
v “Request decryption” on page 76
v “Basic authentication” on page 77
v “Identity (ID) assertion authentication with the BasicAuth TrustMode” on page 77
v “Identity (ID) assertion authentication with the signature TrustMode” on page 77
v “Response signing” on page 78
v “Response encryption” on page 78

Chapter 13. Migrating web services 75

Request digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing
information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit > Signing information.

To configure the trust anchor, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trust anchors.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

Request decryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To configure the encryption information parameters, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

76 Migrating WebSphere applications

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

Basic authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the
binding file to collect the basic authentication data. The following list contains callback support
implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler
The implementation prompts for BasicAuth information (user name and password) in an interface
panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the BasicAuth information from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler
This implementation prompts for a user name and password using the standard in (stdin) prompt.

To configure the login mapping information, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the BasicAuth TrustMode

Configure a login binding in the bindings file with a
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a user
name and password for basic authentication that a TrustedIDEvaluator on a downstream server trusts.

To configure the login mapping information, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the signature TrustMode

Configure the signing information in the bindings file with a signing key that points to a key locator. The
key locator contains the X.509 certificate that is trusted by the downstream server.

To configure the login mapping information, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Login mappings.

Chapter 13. Migrating web services 77

The Java Authentication and Authorization Service (JAAS) uses WSLogin as the name of the login
configuration. To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

The value of the <TrustedIDEvaluatorRef> tag in the binding must match the value of the
<TrustedIDEvaluator> name.

To configure the trusted ID evaluators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trusted ID evaluators.

Response signing

If the integrity constraints (digital signature) are defined, verify that you have the signing information
configured in the binding files.

To specify the signing information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Server security bindings.

4. In the Request receiver binding column, click Edit > Signing information.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

Response encryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To specify the encryption information, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

78 Migrating WebSphere applications

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

Migrating the UDDI registry
With most scenarios, existing UDDI registries are migrated automatically when you migrate to the current
level of WebSphere Application Server. However, if your existing UDDI registry uses a network Apache
Derby database or a DB2 UDDI Version 2 database, there are some manual steps that you must take.

Before you begin

Migrate your installation of WebSphere Application Server. Ensure that you select the option to migrate
applications, so that the UDDI registry application will be migrated.

About this task

If your existing UDDI registry uses an Oracle, embedded Apache Derby or DB2 UDDI Version 3 database,
you do not have to complete any manual migration; the registry is migrated automatically when you
migrate WebSphere Application Server and start the UDDI node for the first time after migration.

If your existing UDDI registry uses a network Apache Derby database or a DB2 UDDI Version 2 database,
you must complete some manual steps to migrate the registry.

If the UDDI database uses Apache Derby Version 10.2, you must migrate the database. For details, see
the topic in the related links.

Procedure

If your UDDI registry uses a network Apache Derby database, complete the following steps.

1. If you have a cluster that contains servers at different levels of WebSphere Application Server, ensure
that any UDDI registries are running on servers that are at the current level of WebSphere Application
Server. For example, if you have a cluster that spans two nodes, you can upgrade one node to the
current level while the other node remains at a previous level, provided that any servers that are
running a UDDI registry are at the current level.

2. Initialize the relevant UDDI node. The initialize process will complete some of the UDDI registry
migration.

3. Enter the following commands as the database administrator, from app_server_root/derby/lib.
java -cp db2j.jar;db2jtools.jar com.ibm.db2j.tools.ij

connect ’jdbc:db2j:uddi_derby_database_path’;

run ’app_server_root/UDDIReg/databaseScripts/uddi30crt_drop_triggers_derby.sql’;

quit;

cd app_server_root/derby/migration

java -cp db2j.jar;db2jmigration.jar;../lib/derby.jar com.ibm.db2j.tools.MigrateFrom51
jdbc:db2j:uddi_derby_database_path

where

v uddi_derby_database_path is the absolute path of the existing Apache Derby database, for example
app_server_root/profiles/profile_name/databases/com.ibm.uddi/UDDI30

v app_server_root is the root directory for the installation of WebSphere Application Server

Chapter 13. Migrating web services 79

Results

The UDDI database and data source are migrated, and the UDDI node is activated.

Note: When you migrate WebSphere Application Server, the post-upgrade log for the profile indicates that
the migration of the UDDI database is partially complete, and is missing the steps for triggers,
aliases, and stored statements. If you initially enabled the debug function, the debug log for the
database indicates that there was a failure creating triggers. Ignore these messages; the UDDI
node completes the migration of the database when the UDDI node starts. For more information
about these log files, see the topic about verifying the Cloudscape automatic migration. Also refer to
this topic if other errors appear in the logs.

If the migration of the UDDI database completes successfully, the following message appears in the server
log:
CWUDQ0003I: UDDI registry migration has completed

If the following error appears, an unexpected error occurred during migration. The UDDI registry node is
not activated. Check the error logs for the problem and, if you cannot solve it, refer to the problem
determination information on the WebSphere Application Server support web page.
CWUDQ004W: UDDI registry not started due to migration errors

Setting up a UDDI migration data source
For DB2, you can set up a UDDI migration data source that you can use to reference a Version 2 UDDI
registry database.

About this task

Only migration from DB2 is supported, so this procedure describes how to set up a DB2 data source.

Procedure
1. If a suitable JDBC Provider for DB2 does not already exist, create one. Select the following options:

v Database type: DB2

v Provider type: DB2 Universal JDBC Driver Provider

v Implementation type: Connection pool data source

2. Create a data source for the Version 2 UDDI registry by following these steps:

a. Click Resources > JDBC > JDBC Providers.

b. Select the scope of the JDBC provider that you selected or created earlier. For example, select the
following to show the JDBC providers at the server level:

Node=your_node_name, Server=your_server_name

c. Select the JDBC provider that you created earlier.

d. Select [Additional Properties] Data sources. Do not select [Additional Properties] Data
sources (WebSphere Application Server V4).

e. Click New to create a new data source. The Create a data source wizard starts.

f. In the first pane of the Create a data source wizard, enter the following data:

Data source name
Type a suitable name, such as UDDI Datasource.

JNDI name
Type datasources/uddimigration . This value is compulsory, and you must set it as it is
shown.

g. On the database-specific properties pane of the wizard, enter the following data:

80 Migrating WebSphere applications

Database name
Type UDDI20, or the name of the Version 2 UDDI DB2 database.

Use this data source in container managed persistence (CMP)
Ensure that the check box is cleared.

h. On the setup security aliases pane of the wizard, enter the following data:

Component-managed authentication alias
Select the alias for the DB2 user ID used to access UDDI Version 2 data, for example
MyNode/UDDIAlias.

Mapping-configuration alias
Select DefaultPrincipalMapping. This field is in the Security settings section.

i. When the Create a data source wizard is finished, click the data source to display its properties,
then add the following information:

Description
Type a suitable description of the data source.

Category
Type uddi.

Data store helper class name
Ensure that this is set to DB2 Universal data store helper.

3. Click Apply, then save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and
clicking Test connection. A message similar to Test Connection for datasource UDDI Datasource on
server server1 at node MyNode was successful is displayed. If you do not see this message,
investigate the problem with the help of the error message.

What to do next

Continue with the migration, as described in the topic about migrating to Version 3 of the UDDI registry.

Migrating a UDDI database that uses Apache Derby
If a UDDI database that uses IBM Cloudscape or Apache Derby was created with WebSphere Application
Server Version 6.1 or earlier and now uses Apache Derby Version 10.2 or later, you need to migrate the
database. If you have a UDDI database that uses any other supported database, including versions of IBM
Cloudscape or Apache Derby earlier than Apache Derby Version 10.2, you do not need to undertake this
procedure.

Before you begin

Migrate your installation of WebSphere Application Server; ensure that you select the option to migrate
applications, so that the UDDI registry application is migrated.

About this task

Use this procedure if a UDDI database currently uses Apache Derby Version 10.2 or later. In this version
of the product, such databases are being used with Apache Derby Version 10.3. Typically, you need to
migrate the database if a UDDI database that uses IBM Cloudscape or Apache Derby was created with
WebSphere Application Server Version 6.1 or earlier, and you upgrade the servers to the current level of
the product.

If you do not migrate the database, the following error occurs when you try to save a business entity in a
UDDI registry that is running on the current level of the product, where the registry uses Apache Derby
Version 10.2:

Chapter 13. Migrating web services 81

Serious technical error has occurred while processing the request.

Procedure
1. Ensure that any servers that use the UDDI database are stopped.

2. Use the following command to start the Apache Derby command prompt:
WAS_HOME/derby/bin/embedded/ij

3. Run the following commands at the command prompt. Substitute the UDDI database location in the
CONNECT statement.

connect ’WAS_HOME/profiles/profileName/databases/com.ibm.uddi/UDDI30’;

drop trigger ibmudi30.tr_upd_busallsvc_p;

create trigger ibmudi30.tr_upd_bservice_p
after update of businesskey on ibmudi30.bservice
referencing old as old_real_service
new as new_real_service
for each row mode db2sql update ibmudi30.busallservice
set ibmudi30.busallservice.owningbusinesskey = new_real_service.businesskey
where ibmudi30.busallservice.servicekey = new_real_service.servicekey
and ibmudi30.busallservice.owningbusinesskey != ibmudi30.busallservice.businesskey;

exit;

4. Restart the servers that use the UDDI database.

82 Migrating WebSphere applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 83

84 Migrating WebSphere applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 85

http://www.ibm.com/legal/copytrade.shtml

86 Migrating WebSphere applications

Index

A
asynchronous beans

interoperating 3

B
bindings

migration
clients 71
servers 68

bundle repositories 29

C
composite bundles 29

D
data sources

migration 7
deployment descriptors

web services
clients 72
servers 75

directory
installation

conventions 16

E
Enterprise JavaBeans (EJB)

migration 24

J
JAX-RPC

application migration 63
migration

client-side extension 67
server-side extension 65

JAX-WS
security binding migration 63

S
schedulers

interoperation 33

U
UDDI migration data source 80
UDDI registry 79

databases 81

W
web services

migration 49, 57
web services security

migration 62

© Copyright IBM Corp. 2012 87

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Migrating Application profiling
	Running previous versions of application profiles on Version 8
	Application profiling interoperability

	Chapter 2. Migrating Asynchronous beans
	Migrating asynchronous beans
	Interoperating with asynchronous beans

	Chapter 3. Migrating applications that use the Bean Validation API
	Migration of JPA applications and bean validation

	Chapter 4. Migrating Data access resources
	Migrating data sources
	Migrating applications to use data sources of the current Java EE Connector Architecture (JCA)
	Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans

	Verifying Cloudscape automatic migration
	Upgrading Cloudscape manually
	Directory conventions

	Chapter 5. Migrating Dynamic caching
	Migrating servers from multi-broker replication domains to data replication domains

	Chapter 6. Migrating EJB applications
	Migrating enterprise bean code from Version 1.1 to Version 2.1
	Migrating enterprise bean code to the supported specification
	Adjusting exception handling for EJB wrapped applications migrating from version 5 to version 7

	Chapter 7. Migrating Naming and directory
	Chapter 8. Migrating and coexisting for OSGi applications
	Chapter 9. Migrating Scheduler service
	Interoperating with schedulers
	Interoperating with schedulers

	Chapter 10. Migrating Service integration
	Adding unique names to the bus authorization policy
	Migrating a messaging engine based on a data store

	Chapter 11. Migrating Transactions
	Interoperating transactionally between application servers

	Chapter 12. Migrating web applications
	Migrating web application components
	Migrating web application components from WebSphere Application Server Version 5.x
	JavaServer Pages migration best practices and considerations

	JavaServer Faces migration
	Migration scenario for the getHeaderNames method
	JavaServer Pages migration
	JavaServer Pages migration best practices and considerations

	JavaServer Pages migration
	JavaServer Pages migration best practices and considerations

	Chapter 13. Migrating web services
	Migrating web services
	Web services migration scenarios: JAX-RPC to JAX-WS and JAXB
	Web services migration best practices
	Migrating Apache SOAP web services to JAX-RPC web services based on Java EE standards

	Migrating Web Services Security
	Migration of JAX-WS Web Services Security bindings from Version 6.1
	Migrating JAX-RPC Web Services Security applications to Version 8.5 applications
	Migrating the JAX-RPC server-side extensions configuration
	Migrating the client-side extensions configuration
	Migrating the server-side bindings file
	Migrating the client-side bindings file
	View web services client deployment descriptor
	View web services server deployment descriptor

	Migrating the UDDI registry
	Setting up a UDDI migration data source
	Migrating a UDDI database that uses Apache Derby

	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	J
	S
	U
	W

