
IBM WebSphere Application Server for Distributed
Platforms, Version 8.5

Tuning guide

���

Note
Before using this information, be sure to read the general information under “Notices” on page 85.

Compilation date: June 6, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . v

Using this PDF . vii

Chapter 1. Tuning the Liberty profile . 1

Chapter 2. Planning for performance . 3
Application design consideration . 3

Chapter 3. Taking advantage of performance functions. 7

Chapter 4. Obtaining advice from the advisors . 9
Why you want to use the performance advisors . 9

Performance advisor types and purposes. 10
Using the Performance and Diagnostic Advisor . 14

Performance and Diagnostic Advisor configuration settings 16
Advice configuration settings . 17
Viewing the Performance and Diagnostic Advisor recommendations 18
Starting the lightweight memory leak detection . 19
Enabling automated heap dump generation . 20

Using the performance advisor in Tivoli Performance Viewer 23
Performance advisor report in Tivoli Performance Viewer 25

Chapter 5. Tuning the application serving environment 27
Tuning parameter hot list. 27
Directory conventions . 29
Tuning TCP/IP buffer sizes . 31
Tuning the JVM . 32

Tuning the IBM virtual machine for Java . 32
Tuning HotSpot Java virtual machines (Solaris & HP-UX) 42

Directory conventions . 51
Tuning transport channel services . 53
Checking hardware configuration and settings . 58
Tuning operating systems . 59

Tuning Windows systems . 59
Tuning Linux systems . 61
Tuning AIX systems . 63
Tuning Solaris systems . 66
Tuning HP-UX systems . 67

Tuning web servers. 69
Directory conventions . 71
Using PassByReference optimization in SCA applications. 73
Tuning the application server using pre-defined tuning templates 75

Chapter 6. Troubleshooting performance problems 81

Notices . 85

Trademarks and service marks. 87

Index . 89

© Copyright IBM Corp. 2012 iii

iv Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 v

vi Tuning guide

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 vii

viii Tuning guide

Chapter 1. Tuning the Liberty profile

Use this topic to learn about the tunable parameters and attributes of the Liberty profile.

About this task

The Liberty profile supports different attributes in the server.xml file to influence application performance.
You can use these parameters and attributes to achieve better performance.

Procedure
v Tune the JVM.

Tuning the JVM is a most important tuning step whether you are configuring a development or
production environment. When tuning the JVM for the Liberty profile, consider using the jvm.options file
in the ${server.config.dir} directory. You can specify each of the JVM arguments that you want to
use, one option per line. See Customizing the Liberty profile environment for more information. An
example of jvm.options file as follows:

-Xms50m
-Xmx256m

For a development environment, you might be interested in faster server startup, so consider setting the
minimum heap size to a small value, and the maximum heap size to whatever value is needed for your
application. For a production environment, setting the minimum heap size and maximum heap size to
the same value can provide the best performance by avoiding heap expansion and contraction.

v Tune transport channel services.

The transport channel services manage client connections, I/O processing for HTTP, thread pools, and
connection pools. For applications on the Liberty profile, the following attributes are available for
different elements that can be used to improve runtime performance, or scalability, or both. Each of
these attributes is also described in Liberty profile: Configuration elements in the server.xml file.

maxKeepAliveRequests of httpOptions
This option specifies the maximum number of persistent requests that are allowed on a single
HTTP connection if persistent connections are enabled. A value of -1 means unlimited. This
option can provide benefit to low latency or high throughput applications and SSL connections
where building up new a connection can be costly. Here is an example of how you code this
option in the server.xml file:
<httpOptions maxKeepAliveRequests="-1" />

coreThreads of executor
This option specifies the core number of threads to associate with the executor of the thread
pool. The number of threads associated with the executor will quickly grow to this number. If
this value is less than 0, a default value is used. This default value is calculated based on the
number of hardware threads on the system.

Tip: Start your tuning with coreThreads="5" for each hardware thread or logical processor. For
example, for a 2-core SMT-4 machine, which represents 8 logical processors, you might
use coreThreads="40" as a starting point.

Here is an example of how you code this option in the server.xml file:
<executor name="LargeThreadPool" id="default" coreThreads="40" maxThreads="80"

keepAlive="60s" stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS" />

maxPoolSize of connectionManager
This option specifies the maximum number of physical connections for the connection pool. The
default value is 50. The optimal setting here depends on the application characteristics. For an
application in which every thread obtains a connection to the database, you might start with a
1:1 mapping to the coreThreads attribute. Here is an example of how you code this option in the
server.xml file:

© Copyright IBM Corp. 2012 1

<connectionManager ... maxPoolSize="40" />

purgePolicy of connectionManager
This option specifies which connections to destroy when a stale connection is detected in a
pool. The default value is the entire pool. It might be better to purge only the failing connection.
Here is an example of how you code this option in the server.xml file:
<connectionManager ... purgePolicy="FailingConnectionOnly" />

numConnectionsPerThreadLocal of connectionManager
This option specifies the number of database connections to cache for each executor thread.
This setting can provide a major improvement on large multicore (8+) machines by reserving
the specified number of database connections for each thread.

Using thread local storage for connections can increase performance for applications on
multi-threaded systems. When setting numConnectionsPerThreadLocal to 1 or more, that number
of connections per thread are stored in thread local storage. When using
numConnectionsPerThreadLocal, two other values need to be considered:

– The number of application threads

– The connection pool maximum connections

For best performance, if you have n applications threads, set maximum pool connections to at
least n times the value of numConnectionsPerThreadLocal attribute. For example, if you use 20
application threads, then the maximum pool connections should be set to 20 or more; If you set
the value of numConnectionPerThreadLocal attribute as 2 and there are 20 application threads,
then the maximum pool connection must be set to 40 or more. Here is an example of how you
code this option in the server.xml file:
<connectionManager ... numConnectionsPerThreadLocal="1" />

statementCacheSize of dataSource
This option specifies the maximum number of cached prepared statements per connection. This
option must be set by reviewing the application code (or an SQL trace gathered from the
database or database driver) for all unique prepared statements, and ensuring the cache size is
larger than the number of statements. Here is an example of how you code this option in the
server.xml file:
<dataSource ... statementCacheSize="60" >

isolationLevel of dataSource
The datasource isolation level is used to specify the degree of data integrity and concurrency,
which in turns controls the level of database locking. Traditionally there are four different
options, listed below in order of best performing (least integrity) to worst performing (best
integrity).

TRANSACTION_READ_UNCOMMITTED
Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE
Dirty reads, non-repeatable reads and phantom reads are prevented.

Here is an example of how you code this option in the server.xml file:
<dataSource ... isolationLevel="TRANSACTION_READ_COMMITTED">

2 Tuning guide

Chapter 2. Planning for performance

How well a website performs while receiving heavy user traffic is an essential factor in the overall success
of an organization. This section provides online resources that you can consult to ensure that your site
performs well under pressure.

Procedure
v Consult the following web resources for learning.

IBM® Patterns for e-Business

IBM Patterns for e-business is a group of reusable assets that can help speed the process of
developing Web-based applications. The patterns leverage the experience of IBM architects to
create solutions quickly, whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

Availability is an achievable service-level characteristic that every enterprise struggles with. The
worst case scenario is realized when load is underestimated or bandwidth is overloaded
because availability planning was not carefully conducted. Applying the information in this article
and the accompanying spreadsheet to your planning exercises can help you avoid such a
scenario.

Hardware configurations for WebSphere® Application Server production environments
This article describes the most common production hardware configurations, and provides the
reasons for choosing each one. It begins with a single machine configuration, and then
proceeds with additional configurations that have higher fault tolerance, horizontal scaling, and a
separation of web and enterprise bean servers.

v Take advantage of performance functions to improve performance. You can use functions such as
balancing workloads with clusters and using the dynamic cache to improve performance.

Application design consideration
This topic describes architectural suggestions for the design and tuning of applications.

The designing applications information contains the architectural suggestions and the implementation of
applications. For existing applications, the suggestions might require changing the existing
implementations. Tuning the application server and resource parameters can have the greatest effect on
performance of the applications that are well designed.

Use designing applications considerations in this topic for tips to ensure your applications are thoughtfully
designed and tuned. These considerations include websites and other ideas for finding best practices for
designing WebSphere applications, particularly in the realm of WebSphere extensions to the Java
Platform, Enterprise Edition (Java EE) specification.

best-practices: Use the following information as an architectural guide when implementing applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Java EE applications load, store, create, and remove data from relational databases, a process commonly
referred to as persistence. Most enterprise applications have significant database access. The architecture

© IBM Corporation 2004 3

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

and performance of the persistence layer is critical to the performance of an application. Therefore,
persistence is a very important area to consider when making architectural choices that require trade-offs
related to performance. This guide recommends first focusing on a solution that has clean architecture.
The clean architecture considers data consistency, security, maintenance, portability, and the performance
of that solution. Although this approach might not yield the absolute peak performance obtainable from
manual coding a solution that ignores the mentioned qualities of service, this approach can achieve the
appropriate balance of data consistency, maintainability, portability, security, and performance.

Multiple options are available in Java EE for persistence: Session beans using entity beans including
container-managed persistence (CMP) or bean-managed persistence (BMP), session beans using Java
Database Connectivity (JDBC), and Java beans using JDBC. For the reasons previously mentioned,
consider CMP entity persistence because it provides maximum security, maintenance, and portability. CMP
is also recommended for good performance. Refer to the Tune the EJB container section of the tuning
application servers topic on tuning enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the persistence mechanism
usually involves the JDBC API. Because JDBC requires manual coding, the Structured Query Language
(SQL) that runs against a database instance, it is critical to optimize the SQL statements that are used
within the application. Also, configure the database server to support the optimal performance of these
SQL statements. Finally, usage of specific JDBC APIs must be considered including prepared statements
and batching.

Regardless of which persistence mechanism is considered, use container-managed transactions where the
bean delegates management of transactions to the container. For applications that use JDBC, this is easily
achieved by using the session façade pattern, which wraps all JDBC functions with a stateless session
bean.

Finally, information about tuning the connection over which the EJB entity beans or JDBC communicates
can be found in the Tune the data sources section of the tuning application servers topic.

One of the standard Java EE programming architectures is the model-view-controller (MVC) architecture,
where a call to a controller servlet might include one or more child JavaServer Pages (JSP) files to
construct the view. The MVC pattern is a recommended pattern for application architecture. This pattern
requires distinct separation of the view (JSP files or presentation logic), the controller (servlets), and the
model (business logic). Using the MVC pattern enables optimization of the performance and scalability of
each layer separately.

Implementations that avoid storing the client user state scale and perform the best. Design
implementations to avoid storing state. If state storage is needed, ensure that the size of the state data
and the time that the state is stored are kept to the smallest possible values. Also, if state storage is
needed, consider the possibility of reconstructing the state if a failure occurs, instead of guaranteeing state
failover through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise beans. Refer to the
follow tuning guides for tuning the size, replication, and timing of the state storage:
v Session management tuning
v EJB tuning tips
v Tuning dynamic cache with the cache monitor

Most Java EE application workloads have more read operations than write operations. Read operations
require passing a request through several topology levels that consist of a front-end web server, the web
container of an application server, the EJB container of an application server, and a database. WebSphere
Application Server provides the ability to cache results at all levels of the network topology and Java EE
programming model that include web services.

4 Tuning guide

Application designers must consider caching when the application architecture is designed because
caching integrates at most levels of the programming model. Caching is another reason to enforce the
MVC pattern in applications. Combining caching and MVC can provide caching independent of the
presentation technology and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed because caching also
integrates at most levels of the network topology. For applications that are available on the public Internet,
network designers might want to consider Edge Side Include (ESI) caching when WebSphere Application
Server caching extends into the public Internet. Network caching services are available in the proxy server
for WebSphere Application Server, WebSphere Edge Component Caching Proxy, and the WebSphere
plug-in.

Java EE workloads typically consist of two types of operations. You must perform the first type of operation
to respond to a system request. You can perform the second type of operation asynchronously after the
user request that initiated the operation is fulfilled.

An example of this difference is an application that enables you to submit a purchase order, enables you
to continue while the system validates the order, queries remote systems, and in the future informs you of
the purchase order status. This example can be implemented synchronously with the client waiting for the
response. The synchronous implementation requires application server resources and you wait until the
entire operations complete. If the process enables you to continue, while the result is computed
asynchronously, the application server can schedule the processing to occur when it is optimal in relation
to other requests. The notification to you can be triggered through email or some other interface within the
application.

Because the asynchronous approach supports optimal scheduling of workloads and minimal server
resource, consider asynchronous architectures. WebSphere Application Server supports asynchronous
programming through Java EE Java Message Service (JMS) and message-driven beans (MDB) as well as
asynchronous beans that are explained in the Tuning Java Message Service and Tuning MDB topics.

Verify that all the libraries that applications use are also designed for server-side performance. Some
libraries are designed to work well within a client application and fail to consider server-side performance
concerns, for example, memory utilization, synchronization, and pooling. It is suggested that all libraries
that are not developed as part of an application undergo performance testing using the same test
methodologies as used for the application.

Additional references:IBM WebSphere Developer Technical Journal: The top 10 Java EE best
practicesImprove performance in your XML applications, Part 2

Chapter 2. Planning for performance 5

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

6 Tuning guide

Chapter 3. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a combination of product
features and application development considerations.

Procedure
v Use one of the following considerations to improve performance.

Using the dynamic cache service to improve performance

The dynamic cache service improves performance by caching the output of servlets,
commands, and JavaServer Pages (JSP) files. Dynamic caching features include cache
replication among clusters, cache disk offload, Edge-side include caching, and external caching,
which is the ability to control caches outside of the application server, such as that of your web
server.

v Ensure your applications perform well.

Take advantage of architectural suggestions and coding best practices to ensure that your applications
perform well. See the information about application design considerations and the information on
designing applications to learn more about ways you can improve performance of your applications.

© IBM Corporation 2004 7

8 Tuning guide

Chapter 4. Obtaining advice from the advisors

Advisors provide a variety of recommendations that help improve the performance of your application
server.

Before you begin

The advisors provide helpful performance as well as diagnostic advice about the state of the application
server.

About this task

Tuning WebSphere Application Server is a critical part of getting the best performance from your website.
However, tuning WebSphere Application Server involves analyzing performance data and determining the
optimal server configuration. This determination requires considerable knowledge about the various
components in the application server and their performance characteristics. The performance advisors
encapsulate this knowledge, analyze the performance data, and provide configuration recommendations to
improve the application server performance. Therefore, the performance advisors provide a starting point
to the application server tuning process and help you without requiring that you become an expert.

The Runtime Performance Advisor is extended to also provide diagnostic advice and is now called the
Performance and Diagnostic Advisor. Diagnostic advice provides useful information regarding the state of
the application server. Diagnostic advice is especially useful when an application is not functioning as
expected, or simply as a means of monitoring the health of application server.

Procedure
v Decide which performance advisor is right for the purpose, Performance and Diagnostic Advisor or

Tivoli® Performance Viewer advisor.

v Use the chosen advisor to periodically check for inefficient settings, and to view recommendations.

v Analyze Performance Monitoring Infrastructure data with performance advisors.

Why you want to use the performance advisors
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning. The advisors that are based on this information provide advice on how to set some of
your configuration parameters to better tune WebSphere Application Server.

The advisors provide a variety of advice on the following application server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2® Performance Configuration wizard

v Connection use violations

© Copyright IBM Corp. 2012 9

For example, consider the data source statement cache. It optimizes the processing of prepared
statements and callable statements by caching those statements that are not used in an active connection.
(Both statements are SQL statements that essentially run repeatable tasks without the costs of repeated
compilation.) If the cache is full, an old entry in the cache is discarded to make room for the new one. The
best performance is generally obtained when the cache is large enough to hold all of the statements that
are used in the application. The PMI counter, prepared statement cache discards, indicates the number of
statements that are discarded from the cache. The performance advisors check this counter and provide
recommendations to minimize the cache discards.

Another example is thread or connection pooling. The idea behind pooling is to use an existing thread or
connection from the pool instead of creating a new instance for each request. Because each thread or
connection in the pool consumes memory and increases the context-switching cost, the pool size is an
important configuration parameter. A pool that is too large can hurt performance as much as a pool that is
too small. The performance advisors use PMI information about current pool usage, minimum or maximum
pool size, and the application server CPU utilization to recommend efficient values for the pool sizes.

The advisors can also issue diagnostic advice to help in problem determination and health monitoring. For
example, if your application requires more memory than is available, the diagnostic adviser tells you to
increase the size or the heap for application server.

Performance advisor types and purposes
Two performance advisors are available: the Performance and Diagnostic Advisor and the performance
advisor in Tivoli Performance Viewer.

The Performance and Diagnostic Advisor runs in the Java virtual machine (JVM) process of application
server; therefore, it does not provide expensive advice. In a stand-alone application server environment,
the performance advisor in Tivoli Performance Viewer runs within the application server JVM.

The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provide recommendations on inefficient settings by using collected Performance
Monitoring Infrastructure (PMI) data. Obtain the advice by selecting the performance advisor in Tivoli
Performance Viewer.

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor. The following chart shows the
differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Start location Application server Tivoli Performance Viewer client

Invocation of tool Administrative console Tivoli Performance Viewer

Output v The SystemOut.log file

v The administrative console

v JMX notifications

Tivoli Performance Viewer in the
administrative console

Frequency of operation Configurable When you select refresh in the Tivoli
Performance Viewer administrative
console

10 Tuning guide

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor (continued). The following chart
shows the differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Types of advice Performance advice:

v Object Request Broker (ORB) service
thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Memory leak detection

Diagnostic advice:

v Connection factory diagnostics

v Data source diagnostics

Connection usage diagnostics

v Detection of connection use by
multiple threads

v Detection of connection use across
components

Performance advice:

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM) heap size

v DB2 Performance Configuration wizard

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Performance and Diagnostic Advisor
Use this topic to understand the functions of the Performance and Diagnostic Advisor.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance
and is configured using the WebSphere Application Server administrative console or the wsadmin tool.
Running in the Java virtual machine (JVM) of the application server, the Performance and Diagnostic
Advisor periodically checks for inefficient settings and issues recommendations as standard product
warning messages. These recommendations are displayed both as warnings in the administrative console
under Runtime Messages in the WebSphere Application Server Status panel and as text in the application
server SystemOut.log file. Enabling the Performance and Diagnostic Advisor has minimal system
performance impact.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The Performance and Diagnostic Advisor provides performance advice and diagnostic advice to help tune
systems for optimal performance, and also to help understand the health of the system. It is configured

Chapter 4. Obtaining advice from the advisors 11

using the WebSphere Application Server administrative console or the wsadmin tool. Running in the Java
virtual machine (JVM) of the application server, the Performance and Diagnostic Advisor periodically
checks for inefficient settings and issues recommendations as standard product warning messages. These
recommendations are displayed as warnings in the administrative console under Runtime Messages in the
WebSphere Application Server Status panel, as text in the application server SystemOut.log file, and as
Java Management Extensions (JMX) notifications. Enabling the Performance and Diagnostic Advisor has
minimal system performance impact.

From WebSphere Application Server, Version 6.0.2, you can use the Performance and Diagnostic Advisor
to enable the lightweight memory leak detection, which is designed to provide early detection of memory
problems in test and production environments.

The advice that the Performance and Diagnostic Advisor gives is all on the server level. The only
difference when running in a WebSphere Application Server, Network Deployment environment is that you
might receive contradictory advice on resources that are declared at the node or cell level and used at the
server level.

For example, two sets of advice are given if a data source is declared at the node level to have a
connection pool size of {10,50} and is used by two servers (server1 and server2). If server1 uses only two
connections and server2 uses all fifty connections during peak load, the optimal connection pool size is
different for the two servers. Therefore, the Performance and Diagnostic Advisor gives two sets of advice
(one for server1 and another for server2). The data source is declared at the node level and you must
make your decisions appropriately by setting one size that works for both, or by declaring two different
data sources for each server with the appropriate level.

Read the using the performance and diagnostic advisor information for startup and configuration steps.

Diagnostic alerts:

In WebSphere Application Server Version 8.5 the Performance and Diagnostic Advisors are extended to
provide more diagnostic alerts to help common troubleshoot problems.

Several alerts are made available to monitor connection factory and data sources behavior. Some of these
alerts are straightforward and easy to comprehend. Others are much more involved and are intended for
use by IBM support only.

ConnectionErrorOccured diagnostic alert

When a resource adapter or data source encounters a problem with connections such that the connection
might no longer be usable, it informs the connection manager that a connection error occurred. This
causes the destruction of the individual connection or a pool purge, which is the destruction of all
connections in the pool, depending on the pool purge policy configuration setting. An alert is sent,
indicating a potential problem with the back-end if an abnormally high number of unusable connections are
detected.

Connection low-percent efficiency diagnostic alert

If the percentage of time that a connection is used versus held for any individual connections drops
beneath a threshold, an alert is sent with a call stack.

Cross-Component Use JCA Programming Model Violation Diagnostic Alert

When you enable cross-component use detection, the application server raises an alert when a connection
handle is used by a Java EE application component that is different from the component that originally
acquired the handle through a connection factory. This condition might inadvertently occur if an application
passes a connection handle in a parameter or an application obtains a handle from a cache that is shared

12 Tuning guide

by multiple application components. If components use a connection handle in this manner, this might
result in problems with application or data integrity. Enable the alert to detect the cross-component
connection use during development to identify and avoid potential application problems.

Local transaction containment (LTC) nesting threshold exceeded diagnostic alert

For LTC definition, see the Local transaction containment (LTC) and Transaction type and connection
behavior information, and Default behavior of managed connections in WebSphere Application Server
topic.

If a high number of LTCs are started on a thread before completing, an alert is raised. This alert is useful
in debugging some situations where the connection pool is unexpectedly running out of connections due to
multiple nested LTCs holding onto multiple shareable connections.

Multi-Thread Use JCA Programming Model Violation Diagnostic Alert

Multi-thread use detection raises an alert when an application component acquires a connection handle
using a connection factory, and then the component uses the handle on a different thread from which the
handle was acquired. If you use a connection in this manner, this behavior might cause data integrity
problems, especially if an application uses a connection handle on a thread that is not managed. Enable
the alert to detect multi-thread connection usage during application development.

Pool low-percent efficiency diagnostic alert

If the average time that a connection is held versus used for the all connections in the pool drops beneath
a threshold, an alert is sent.

Serial reuse violation diagnostic alert

For information on what serial reuse is, see the transaction type and connection behavior information.
Some legitimate scenarios exist, where a serial reuse violation is appropriate, but in most cases this
violation is not intended and might lead to data integrity problems.

If this alert is enabled, any time a serial reuse violation occurs within an LTC, an alert is sent.

Surge mode entered or exited diagnostic alert

When surge mode is configured, an alert is sent whenever surge mode engages or disengages. See the
surge mode documentation for more information.

Stuck connection block mode entered or exited diagnostic alert

When stuck connection detection is configured, an alert is sent whenever stuck connection blocking starts
or stops. See the stuck connection information.

Thread maximum connections exceeded diagnostic alert

When one or more LTCs on a thread ties too many managed connections, or poolable connections for
data sources an alert is issued.

Chapter 4. Obtaining advice from the advisors 13

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html

Using the Performance and Diagnostic Advisor
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning.

About this task

This topic is only appropriate for AIX®, Linux, and Windows operating systems.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance
and is configured using the WebSphere Application Server administrative console or the wsadmin tool
(scripting). The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI)
data to provide recommendations for performance tuning. Running in the Java virtual machine (JVM) of
the application server, this advisor periodically checks for inefficient settings, and issues recommendations
as standard product warning messages. View these recommendations by clicking Troubleshooting >
Runtime Messages > Runtime Warning in the administrative console. Enabling the Performance and
Diagnostic Advisor has minimal system performance impact.

Procedure
1. Ensure that PMI is enabled, which is default. If PMI is disabled, see the enabling PMI using the

administrative console information. To obtain advice, you must first enable PMI through the
administrative console and restart the server. The Performance and Diagnostic Advisor enables the
appropriate monitoring counter levels for all enabled advice when PMI is enabled. If specific counters
exist that are not wanted, or when disabling the Performance and Diagnostic Advisor, you might want
to disable PMI or the counters that the Performance and Diagnostic Advisor enabled.

2. Click Servers > Application servers in the administrative console navigation tree.

3. Click server_name > Performance and Diagnostic Advisor Configuration.

4. Under the Configuration tab, specify the number of processors on the server. This setting is critical
to ensure accurate advice for the specific configuration of the system.

5. Select the Calculation Interval. PMI data is taken over time and averaged to provide advice. The
calculation interval specifies the length of time over which data is taken for this advice. Therefore,
details within the advice messages display as averages over this interval.

6. Select the Maximum Warning Sequence. The maximum warning sequence refers to the number of
consecutive warnings that are issued before the threshold is updated. For example, if the maximum
warning sequence is set to 3, then the advisor sends only three warnings, to indicate that the
prepared statement cache is overflowing. After three warnings, a new alert is issued only if the rate of
discards exceeds the new threshold setting.

7. Specify Minimum CPU for Working System. The minimum central processing unit (CPU) for a
working system refers to the CPU level that indicates a application server is under production load.
Or, if you want to tune your application server for peak production loads that range from 50-90% CPU
utilization, set this value to 50. If the CPU is below this value, some diagnostic and performance
advice are still issued. For example, regardless of the CPU level if you are discarding prepared
statements at a high rate, you are notified.

8. Specify CPU Saturated. The CPU saturated level indicates at what level the CPU is considered fully
utilized. The level determines when concurrency rules no longer increase thread pools or other
resources, even if they are fully utilized.

9. Click Apply.

10. Click Save.

11. Click server_name > Performance and Diagnostic Advisor Configuration.

12. Click the Runtime tab.

14 Tuning guide

13. Click Restart. Select Restart on the Runtime tab to reinitialize the Performance and Diagnostic
Advisor using the last configuration information that is saved to disk.

This action also resets the state of the Performance and Diagnostic Advisor. For example, the current
warning count is reset to zero (0) for each message.

14. Simulate a production level load. If you use the Performance and Diagnostic Advisor in a test
environment, do any other tuning for performance, or simulate a realistic production load for your
application. The application must run this load without errors. This simulation includes numbers of
concurrent users typical of peak periods, and drives system resources, for example, CPU and
memory, to the levels that are expected in production. The Performance and Diagnostic Advisor
provides advice when CPU utilization exceeds a sufficiently high level only. For a list of IBM business
partners that provide tools to drive this type of load, see the performance: resource for learning
information.

15. Select the check box to enable the Performance and Diagnostic Advisor.

Tip: To achieve the best results for performance tuning, enable the Performance and Diagnostic
Advisor when a stable production-level load is applied.

16. Click OK.

17. Select Runtime Warnings in the administrative console under the Runtime Messages in the Status
panel or look in the SystemOut.log file, which is located in the following directory:
profile_root/logs/server_name

Some messages are not issued immediately.

18. Update the product configuration for improved performance, based on advice. Although the
performance advisors attempt to distinguish between loaded and idle conditions, misleading advice
might be issued if the advisor is enabled while the system is ramping up or down. This result is
especially likely when running short tests. Although the advice helps in most configurations, there
might be situations where the advice hinders performance. Because of these conditions, advice is not
guaranteed. Therefore, test the environment with the updated configuration to ensure that it functions
and performs better than the previous configuration.

Over time, the advisor might issue differing advice. The differing advice is due to load fluctuations and
the runtime state. When differing advice is received, you need to look at all advice and the time
period over which it is issued. Advice is taken during the time that most closely represents the peak
production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

What to do next

You can enable and disable advice in the Advice Configuration panel. Some advice applies only to certain
configurations, and can be enabled only for those configurations. For example, unbounded Object Request
Broker (ORB) service thread pool advice is only relevant when the ORB service thread pool is unbounded,
and can only be enabled when the ORB thread pool is unbounded. For more information on Advice
configuration, see the advice configuration settings information.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Chapter 4. Obtaining advice from the advisors 15

Performance and Diagnostic Advisor configuration settings
Use this page to specify settings for the Performance and Diagnostic Advisor.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name > Performance and Diagnostic Advisor Configuration under the Performance section.

Enable Performance and Diagnostic Advisor Framework
Specifies whether the Performance and Diagnostic Advisor runs on the server startup.

The Performance and Diagnostic Advisor requires that the Performance Monitoring Infrastructure (PMI) be
enabled. It does not require that individual counters be enabled. When a counter that is needed by the
Performance and Diagnostic Advisor or is not enabled, the Performance and Diagnostic Advisor enables it
automatically. When disabling the Performance and Diagnostic Advisor, you might want to disable
Performance Monitoring Infrastructure (PMI) or the counters that Performance and Diagnostic Advisor
enabled. The following counters might be enabled by the Performance and Diagnostic Advisor:
v ThreadPools (module)

– Web Container (module)
- Pool Size
- Active Threads

– Object Request Broker (module)
- Pool Size
- Active Threads

v JDBC Connection Pools (module)
– Pool Size
– Percent used
– Prepared Statement Discards

v Servlet Session Manager (module)
– External Read Size
– External Write Size
– External Read Time
– External Write Time
– No Room For New Session

v System Data (module)
– CPU Utilization
– Free Memory

Enable automatic heap dump collection
Specifies whether the Performance and Diagnostic Advisor automatically generates heap dumps for post
analysis when suspicious memory activity is detected.

Calculation Interval
Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The calculation interval
specifies the length of time over which data is taken for this advice. Details within the advice messages
display as averages over this interval. The default value is automatically set to four minutes.

Maximum warning sequence
The maximum warning sequence refers to the number of consecutive warnings that are issued before the
threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends three warnings to
indicate that the prepared statement cache is overflowing. After three warnings, a new alert is only issued
if the rate of discards exceeds the new threshold setting. The default value is automatically set to one.

16 Tuning guide

Number of processors
Specifies the number of processors on the server.

This setting is helpful to ensure accurate advice for the specific configuration of the system. Depending
your configuration and system, there may be only one processor utilized. The default value is automatically
set to two.

Minimum CPU For Working System
The minimum CPU for working system refers to the point at which concurrency rules do not attempt to free
resources in thread pools.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The Minimum CPU for working system sets a lower limit as to when you should consider adjusting thread
pools. For example, say you set this value to 50%. If the CPU is less than 50%, concurrency rules do not
try to free up resources by decreasing pools to get rid of unused threads. That is, if the pool size is 50-100
and only 20 threads are consistently used then concurrency rules would like to decrease the minimum
pool size to 20.

CPU Saturated
The CPU Saturated setting determines when the CPU is deemed to be saturated.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The CPU saturated setting determines when the CPU has reached its saturation point. For example, if this
is set to 95%, when the CPU is greater than 95% the concurrency rules do not try to improve things, that
is, increase the size of a thread pool.

Advice configuration settings
Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name. Under the Performance section, click Performance and Diagnostic Advisor
Configuration > Performance and Diagnostic Advice Configuration.

Advice name
Specifies the advice that you can enable or disable.

Advice applied to component
Specifies the WebSphere Application Server component to which the advice applies.

Advice type
Categorizes the primary indent of a piece of Advice.

Use Advice type for grouping, and then enabling or disabling sets of advice that is based upon your
purpose. Advice has the following types:

v Performance: Performance advice provides tuning recommendations, or identifies problems with your
configuration from a performance perspective.

v Diagnostic: Diagnostic advice provide automated logic and analysis relating to problem identification and
analysis. These types advice are usually issued when unexpected circumstances are encountered by
the application server.

Chapter 4. Obtaining advice from the advisors 17

Performance impact
Generalizes the performance overhead that an alert might incur.

The performance impact of a particular piece of advice is highly dependant upon the scenario being run
and upon the conditions meet. The performance categorization of alerts is based upon worst case
scenario measurements. The performance categorizations are:

v Low: Advice has minimal performance overhead. Advice might be run in test and production
environments. Cumulative performance overhead is within run to run variance when all advice of this
type is enabled.

v Medium: Advice has measurable but low performance overhead. Advice might be run within test
environments, and might be run within production environments if deemed necessary. Cumulative
performance overhead is less than 4% when all advice of this type is enabled.

v High: Advice impact is high or unknown. Advice might be run during problem determination tests and
functional tests. It is not run in production simulation or production environments unless deemed
necessary. Cumulative performance overhead might be significant when all advice of this type is
enabled.

Advice status
Specifies whether the advice is stopped, started, or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

v Started: The advice is enabled.

v Stopped: The advice is not enabled.

v Unavailable: The advice does not apply to the current configuration, for example, persisted session size
advice in a configuration without persistent sessions.

Viewing the Performance and Diagnostic Advisor recommendations
Runtime Performance Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning.

About this task

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application
server, this advisor periodically checks for inefficient settings, and issues recommendations as standard
product warning messages.

Procedure

The Performance and Diagnostic Advisor recommendations are displayed in two locations:

1. The WebSphere Application Server SystemOut.log log file.

2. The Runtime Messages panel in the administrative console. To view this administrative page, click
Troubleshooting > Runtime Messages > Runtime Warning.

Example

The following log file is a sample output of advice on the SystemOut.log file:
[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W CWTUN0202W:
Increasing the web container thread pool Maximum Size to 48
might improve performance.

Additional explanatory data follows.

Average number of threads: 48.

18 Tuning guide

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.
The threshold will be updated to reduce the
overhead of the analysis.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Starting the lightweight memory leak detection
Use this task to start the lightweight memory leak detection using the Performance and Diagnostic Advisor.

Before you begin

If you have a memory leak and want to confirm the leak, or you want to automatically generate heap
dumps on Java virtual machines (JVM) in WebSphere Application Server, consider changing your
minimum and maximum heap sizes to be equal. This change provides the memory leak detection more
time for reliable diagnosis.

About this task

To start the lightweight memory leak detection using the Performance and Diagnostic Advisor, perform the
following steps in the administrative console:

Procedure
1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name > Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Enable the Performance and Diagnostic Advisor Framework.

5. Click OK.

6. From the Runtime or Configuration tab of Performance and Diagnostic Advisor Framework, click
Performance and Diagnostic Advice configuration.

7. Start the memory leak detection advice and stop any other unwanted advice.

Results

The memory leak detection advice is started.

Important: To achieve the best results for performance tuning, start the Performance and Diagnostic
Advisor when a stable production level load is running.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Chapter 4. Obtaining advice from the advisors 19

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime
Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor
recommendations” on page 18 topic.

Lightweight memory leak detection
This topic describes memory leaks in Java applications and introduces lightweight memory leak detection.

Although a Java application has a built-in garbage collection mechanism, which frees the programmer from
any explicit object deallocation responsibilities, memory leaks are still common in Java applications.
Memory leaks occur in Java applications when unintentional references are made to unused objects. This
occurrence prevents Java garbage collection from freeing memory.

The term memory leak is overused; a memory leak refers to a memory misuse or mismanagement. Old
unused data structures might have outstanding references but are never garbage collected. A data
structure might have unbounded growth or there might not be enough memory that is allocated to
efficiently run a set of applications.

Most existing memory leak technologies are based upon the idea that you know that you have a memory
leak and want to find it. Because of these analysis requirements, these technologies have significant
performance burdens and are not designed for use as a detection mechanism in production. This limitation
means that memory leaks are generally not detected until the problem is critical; the application passes all
system tests and is put in production, but it crashes and nobody knows why.

WebSphere Application Server has implemented a lightweight memory leak detection mechanism that runs
within the WebSphere Performance and Diagnostic Advisor framework. This mechanism is designed to
provide early detection of memory problems in test and production environments. This framework is not
designed to provide analysis of the source of the problem, but rather to provide notification and help
generating the information that is required to use analysis tools. The mechanism only detects memory
leaks in the Java heap and does not detect native leaks.

The lightweight memory leak detection in WebSphere Application Server does not require any additional
agents. The detection relies on algorithms that are based on information that is available from the
Performance Monitoring Infrastructure service and has minimal performance overhead.

Enabling automated heap dump generation
Use this task to enable automated heap dump generation. This function is not supported when using a
Sun Java virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and
Solaris operating systems. You need to research taking heap dumps on Sun JVMs or call IBM Support.

Before you begin

Although heap dumps are only generated in response to a detected memory leak, you must understand
that generating heap dumps can have a severe performance impact on WebSphere Application Server for
several minutes.

About this task

The automated heap dump generation support, which is available only on IBM Software Development Kit
and analyzes memory leak problems on AIX, Linux, and Windows operating systems.

Manually generating heap dumps at appropriate times might be difficult. To help you analyze memory leak
problems when memory leak detection occurs, some automated heap dump generation support is
available. This functionality is available only for IBM Software Development Kit on AIX, Linux, and
Windows operating systems.

20 Tuning guide

Most memory leak analysis tools perform some forms of difference evaluation on two heap dumps. Upon
detection of a suspicious memory situation, two heap dumps are automatically generated at appropriate
times. The general idea is to take an initial heap dump as soon as problem detection occurs. Monitor the
memory usage and take another heap dump when you determine that enough memory is leaked, so that
you can compare the heap dumps to find the source of the leak.

To help you analyze memory leak problems when memory leak detection occurs, some automated heap
dump generation support is available.

To enable automated heap dump generation support, perform the following steps in the administrative
console:

Procedure
1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name >Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Select the Enable automatic heap dump collection check box.

5. Click OK.

Results

The automated heap dump generation support is enabled.

Important: To preserve disk space, the Performance and Diagnostic Advisor does not take heap dumps if
more than 10 heap dumps already exist in the WebSphere Application Server home directory. Depending
on the size of the heap and the workload on the application server, taking a heap dump might be quite
expensive and might temporarily affect system performance.

The automatic heap dump generation process dynamically reacts to various memory conditions and
generates dumps only when it is needed. When the heap memory is too low, the heap dumps cannot be
taken or the heap dump generation cannot be complete.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime
Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor
recommendations” on page 18 topic. If a memory leak is detected and you want to find the heap dump,
refer to the Locating and analyzing heap dumps topic.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Generating heap dumps manually
Use this task to generate heap dumps manually. This function is not supported on when using a Sun Java
virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and Solaris
operating systems.

Chapter 4. Obtaining advice from the advisors 21

Before you begin

Although heap dumps are generated only in response to a detected
memory leak, you must understand that generating heap dumps can have a severe performance impact
on WebSphere Application Server for several minutes. When generating multiple heap dumps manually for
memory leak analysis, make sure that significant objects are leaked in between the two heap dumps. This
approach enables problem determination tools to identify the source of the memory leak.

About this task

You might want to manually generate heap dumps for the analysis of memory leaks. You might also want
to designate certain times to take heap dumps because of the overhead involved. On JVM in WebSphere
Application Server, you can manually produce heap dumps by using the generateHeapDump operation on
WebSphere Application Server managed beans (MBeans) that are special Java beans.

On a Java virtual machines (JVM) in WebSphere Application Server, you cannot
enable automated heap dump generation.

Procedure
1. Determine if you want to use wsadmin or the administrative console to generate your heap dump.

2. To use wsadmin to generate your heap dump, complete the following:

a. Start the wsadmin scripting client. You have several options to run scripting commands, ranging
from running them interactively to running them in a profile.

b. Invoke the generateHeapDump operation on a JVM MBean, for example:

v Find a JVM objectName:
<wsadmin> set objectName [$AdminControl queryNames
WebSphere:type=JVM,process=<servername>,node=<nodename>,*]

v Invoke the generateHeapDump operation on JVM MBean:
<wsadmin> $AdminControl invoke $objectName generateHeapDump

Table 2. Description of variables. The following table explains variables in the command previously mentioned.

Variable Description

$ is a Jacl operator for substituting a variable name with its
value

invoke is the command

generateHeapDump is the operation you are invoking

<servername> is the name of the server on which you want to generate
a heap dump

<nodename> is the node to which <servername> belongs

3. To use the administrative console to generate your heap dump, complete the following:

a. Start the administrative console.

b. In the navigation pane, click Troubleshooting > Java dumps and cores.

c. Select the server_name for which you want to generate the heap dump.

d. Click Heap dump to generate the heap dump for your specified server.

What to do next

After running the wsadmin command, the file name of the heap dump is returned. For more information
on finding heap dumps, refer to the Locating and analyzing heap dumps topic. When you have a couple of
heap dumps, use a number of memory leak problem determination tools to analyze your problem. Memory
Dump Diagnostic for Java™ is an offline tool for diagnosing root causes behind memory leaks in the Java

22 Tuning guide

heap. See the diagnosing out-of-memory errors and Java heap memory leaks information.

Locating and analyzing heap dumps
Use this task to locate and analyze heap dumps.

Before you begin

Do not analyze heap dumps on the WebSphere Application Server machine because analysis is very
expensive. For analysis, transfer heap dumps to a dedicated problem determination machine.

About this task

When a memory leak is detected and heap dumps are generated, you must analyze heap dumps on a
problem determination machine and not on the application server because the analysis is very central
processing unit (CPU) and disk I/O intensive.

Perform the following procedure to locate the heap dump files.

Procedure
1. On the physical application server where a memory leak is detected, go to the WebSphere Application

Server home directory. For example, on the Windows operating system, the directory is:
profile_root\myProfile

2. IBM heap dump files are usually named in the following way:
heapdump.<date>..<timestamp><pid>.phd

3. Gather all the .phd files and transfer them to your problem determination machine for analysis.

4. Many tools are available to analyze heap dumps that include Rational® Application Developer 6.0.
WebSphere Application Server serviceability released a technology preview called Memory Dump
Diagnostic For Java. You can download this preview from the product download website.

What to do next

When you have a couple of heap dumps, use a number of memory leak problem determination tools to
analyze your problem.

Using the performance advisor in Tivoli Performance Viewer
The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provides recommendations on inefficient settings by using the collected Performance
Monitoring Infrastructure (PMI) data.

About this task

Obtain advice by clicking Performance Advisor in Tivoli Performance Viewer. The performance advisor in
Tivoli Performance Viewer provides more extensive advice than the Performance and Diagnostic Advisor.
For example, Tivoli Performance Viewer provides advice on setting the dynamic cache size, setting the
Java virtual machine (JVM) heap size and using the DB2 Performance Configuration wizard.

Procedure
1. Enable PMI in the application server.

To monitor performance data through the PMI interfaces, you must first enable PMI through the
administrative console before restarting the server.

2. Enable data collection and set the PMI monitoring level to Extended.

The monitoring levels that determine which data counters are enabled can be set dynamically, without
restarting the server. These monitoring levels and the data selected determine the type of advice you

Chapter 4. Obtaining advice from the advisors 23

obtain. The performance advisor in Tivoli Performance Viewer uses the extended monitoring level;
however, the performance advisor in Tivoli Performance Viewer can use a few of the more expensive
counters (to provide additional advice) and provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to All. Or, you can use
the PMI Custom Monitoring Level to enable the Servlet Session Manager SessionObjectSize counter.
The monitoring of the SessionSize PMI counter is expensive, and is not in the Extended PMI statistic
set. Complete this action in one of the following ways:

a. PMI settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.

3. In the administrative console, click Monitoring and Tuning > Performance Viewer > Current
Activity.

4. Simulate a production level load. Simulate a realistic production load for your application, if you use the
performance advisor in a test environment, or do any other performance tuning. The application must
run this load without errors. This simulation includes numbers of concurrent users typical of peak
periods, and drives system resources, for example, CPU and memory to the levels that are expected
in production. The performance advisor only provides advice when CPU utilization exceeds a
sufficiently high level. For a list of IBM business partners providing tools to drive this type of load, see
the performance: resource for learning information.

5. Log performance data with Tivoli Performance Viewer.

6. Clicking Refresh on top of the table of advice causes the advisor to recalculate the advice based on
the current data in the buffer.

7. Tuning advice displays when the Advisor icon is chosen in the Tivoli Performance Viewer Performance
Advisor. Double-click an individual message for details. Because PMI data is taken over an interval of
time and averaged to provide advice, details within the advice message display as averages.

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to enable sufficient data
to be collected for performing average calculations. Currently 5 minutes of data is required.
Hence, the following guidelines intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is the amount of PMI
data available in memory and it must be greater than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with Tivoli Performance Viewer logs, the
logs must be at least 300 seconds of duration.

For more information about configuring user and logging settings of Tivoli Performance Viewer,
refer to the configuring Tivoli Performance Viewer settings information.

8. Update the product configuration for improved performance, based on advice. Because Tivoli
Performance Viewer refreshes advice at a single instant in time, take the advice from the peak load
time. Although the performance advisors attempt to distinguish between loaded and idle conditions,
misleading advice might be issued if the advisor is enabled while the system is ramping up or down.
This result is especially likely when running short tests. Although the advice helps in most
configurations, there might be situations where the advice hinders performance. Because of these
conditions, advice is not guaranteed. Therefore, test the environment with the updated configuration to
ensure it functions and performs well.

Over a period of time the advisor might issue differing advice. The differing advice is due to load
fluctuations and run-time state. When differing advice is received, you need to look at all advice and
the time period over which it was issued. You must take advice during the time that most closely
represents the peak production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

24 Tuning guide

Performance advisor report in Tivoli Performance Viewer
View recommendations and data from the performance advisor in Tivoli Performance Viewer by clicking
the Advisor link in Tivoli Performance Viewer for a server.

For more information on how to use the performance advisor in Tivoli Performance Viewer, see the article,
Using the performance advisor in Tivoli Performance Viewer.

Message
Specifies recommendations for performance tuning.

Click the message to obtain more details.

Performance data in the upper panel
Displays a summary of performance data for WebSphere Application Server. Data here corresponds to the
same period that recommendations were provided for. However, recommendations might use a different
set of data points during analysis than the set that is displayed by the summary page.

The first table represents the number of requests per second and the response time in milliseconds for
both the web and Enterprise JavaBeans containers.

The pie graph displays the CPU activity as percentage busy and idle.

The second table displays the average thread activity for the web container and Object Request Broker
(ORB) thread pools, and the average database connection activity for connection pools. The activity is
expressed as the number of threads or connections busy and idle.

Chapter 4. Obtaining advice from the advisors 25

26 Tuning guide

Chapter 5. Tuning the application serving environment

Use this topic to understand the benefits of tuning for optimal performance. Learn about the tunable
parameters of the major WebSphere Application Server components and how these parameters affect
performance.

Before you begin

WebSphere Application Server provides tunable settings for its major components so that you can adjust
the runtime environment to match the characteristics of your application. Applications can run successfully
without changing the default values for these tuning parameters. Other applications might need changes,
for example, a larger heap size, to achieve optimal performance.

Performance tuning can yield significant gains in performance even if an application is not optimized for
performance. However, correcting shortcomings of an application typically results in higher performance
gains than are possible with just altering tuning parameters. Many factors contribute to a high performing
application.

About this task

Procedure
1. Run the applyPerfTuningTemplate.py script as the starting point for improving the performance of a

specific application server. This python-based tuning script, along with one of its template files, applies
the recommended performance tuning settings for a typical development, production, or environment
that is ready for immediate use. The applyPerfTuningTemplate.py script, and its associated templates
and properties files, are located in the WAS_HOME/bin directory.

2. Use the performance advisors, the suggested procedures or parameters in the tuning parameter hot
list, and the information on troubleshooting performance problems to optimize your WebSphere
Application Server instances to their fullest extent.

Performance advisors
The performance advisors use the Performance Monitoring Infrastructure (PMI) data to suggest
configuration changes to Object Request Broker (ORB) service thread pools, web container
thread pools, connection pool size, persisted session size and time, prepared statement cache
size, and session cache size. The Runtime Performance Advisor runs in the application server
process, while the other advisor runs in the Tivoli Performance Viewer. For more information,
see the documentation about using the Performance and Diagnostic Advisor and use the
performance advisor in Tivoli Performance Viewer.

Tuning parameter hot list
Review the documentation about the tuning parameter hot list. These parameters have an
important impact on performance. Because these parameters are application-dependent, the
parameter settings for specific applications and environments can vary.

Troubleshooting performance
To save you time detecting problems and help you troubleshoot performance problems, see
the documentation about troubleshooting performance.

Tuning parameter hot list
The following hot list contains recommendations that have improved performance or scalability, or both, for
many applications.

WebSphere Application Server provides several tunable parameters and options to match the application
server environment to the requirements of your application.
v Review the hardware and software requirements

© IBM Corporation 2002 27

It is critical for proper functionality and performance to satisfy the minimum hardware and software
requirements. Refer to IBM WebSphere Application Server supported hardware, software, and APIs
website which details hardware and software requirements.

v Install the most current refresh pack, fix pack, and the recommended interim fixes

The list of recommended updates is maintained on the Support site.
v Check hardware configuration and settings

Verify network interconnections and hardware configuration is setup for peak performance.
v Tune the operating systems

Operating system configuration plays a key role in performance. For example, adjustments such as
TCP/IP parameters might be necessary for your application

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size then the default for best performance. It is also advised to
select an appropriate GC policy based on the application's characteristics.

v Use a type 4 (or pure Java) JDBC driver

In general, the type 2 JDBC driver is recommended if the database exists on the same physical
machine as the WebSphere instance. However, in the case where the database is in a different tier, the
type 4 JDBC driver offers the fastest performance since they are pure Java not requiring native
implementation. Use the previous link to view a list of database vendor-specific requirements, which can
tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.
v Tune WebSphere Application Server JDBC data sources and associated connection pools

The JDBC data source configuration might have a significant performance impact. For example, the
connection pool size and prepared statement cache need to be sized based on the number of
concurrent requests being processed and the design of the application.

See the Administering applications and their environment PDF for more information.
v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to avoid the cost of copying
parameters to the stack.

v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application Server transaction log.
Locating the transaction log on a fast disk or disk array can improve response time

See the Administering applications and their environment PDF for more information.
v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher
throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more
information.

v Disable functions that are not required

For example, if your application does not use the web services addressing (WS-Addressing) support,
disabling this function can improve performance.

Attention: Use this property with care because applications might require WS-Addressing MAPs to
function correctly. Setting this property also disables WebSphere Application Server support for the
following specifications, which depend on the WS-Addressing support: Web Services Atomic
Transactions, Web Services Business Agreement and Web Services Notification.

To disable the support for WS-Addressing, refer to Enabling Web Services Addressing support for
JAX-RPC applications

v Review your application design

You can track many performance problems back to the application design. Review the design to
determine if it causes performance problems.

28 Tuning guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www-1.ibm.com/support/docview.wss?uid=swg27004980

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 3. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 4. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Chapter 5. Tuning the application serving environment 29

Table 5. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 6. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 7. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 8. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

30 Tuning guide

Table 9. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Tuning TCP/IP buffer sizes
WebSphere Application Server uses the TCP/IP sockets communication mechanism extensively. For a
TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive
window specifies the amount of data that can be sent and not received before the send is interrupted. If
too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls data
transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is too
small, the receive window buffer is frequently overrun, and the flow control mechanism stops the data
transfer until the receive buffer is empty.

About this task

Flow control can consume a significant amount of CPU time and result in additional network latency as a
result of data transfer interruptions. It is recommended that you increase buffer sizes to avoid flow control
under normal operating conditions. A larger buffer size reduces the potential for flow control to occur, and
results in improved CPU utilization. However, a large buffer size can have a negative effect on
performance in some cases. If the TCP/IP buffers are too large and applications are not processing data
fast enough, paging can increase. The goal is to specify a value large enough to avoid flow control, but
not so large that the buffer accumulates more data than the system can process.

The default buffer size is 8 KB. The maximum size is 8 MB (8096 KB). The optimal buffer size depends on
several network environment factors including types of switches and systems, acknowledgment timing,
error rates and network topology, memory size, and data transfer size. When data transfer size is
extremely large, you might want to set the buffer sizes up to the maximum value to improve throughput,
reduce the occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the web server and WebSphere Application Server are set
at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer Kit for Java(TM) JDBC
driver or the IBM Toolbox for Java JDBC driver to access a remote database. If the data transfers are
large, flow control can consume a large amount of CPU time. If you use the IBM Toolbox for Java JDBC
driver, you can use custom properties to configure the buffer sizes for each data source. It is
recommended that you specify large buffer sizes, for example, 1 MB.

Some system-wide settings can override the default 8 KB buffer size for sockets. With some applications,
for example, WebSphere Commerce Suite, a buffer size of 180 KB reduces flow control and typically does
not adversely affect paging. The optimal value is dependent on specific system characteristics. You might
need to try several values before you determine the ideal buffer size for your system.

Chapter 5. Tuning the application serving environment 31

For more information, see “TCP/IP network settings ”in Running IBM WebSphere Application
Server on System p and AIX: Optimization and Best Practices . In addition, see TCP streaming workload
tuning.

For more information, see the following documents:

v Boost socket performance on Linux

v Linux Tuning

For more information, see “Network configuration for WebSphere Application Server
communication ”in IBM WebSphere Application Server V6.1 on the Solaris 10 Operating System

For information on tuning TCP/IP buffer sizes, see the Windows 2000 and Windows Server
2003 TCP Featuresdocument. Consider setting the TcpWindowSize value to either 8388608 or 16777216.

Tuning the JVM

Tuning the IBM virtual machine for Java
An application server is a Java based server and requires a Java virtual machine (JVM) environment to
run and support the enterprise applications that run on it. As part of configuring your application server,
you can configure the Java SE Runtime Environment to tune performance and system resource usage.
This topic applies to IBM virtual machines for Java.

Before you begin

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

v Determine the type of JVM on which your application server is running.

Issue the java –fullversion command from within your application server app_server_root/java/bin
directory.

In response to this command, Java writes information about the JVM, including the JVM provider
information, into window where you run the command; for example:
java full version "JRE 1.6.0 IBM Windows 32 build pwi3260sr7-20091217_01 (SR7)"

If your application server is running on a Sun HotSpot JVM, see the topic Tuning Sun HotSpot Java
virtual machines (Solaris & HP-UX).

v Verify that:
1. The most recent supported version of the JVM is installed on your system.
2. The most recent service update is installed on your system. Almost every new service level includes

JVM performance improvements.

About this task

Each JVM vendor provides detailed information on performance and tuning for their JVM. Use the
information provided in this topic in conjunction with the information that is provided with the JVM that is
running on your system.

A Java SE Runtime Environment provides the environment for running enterprise applications and
application servers. Therefore the Java configuration plays a significant role in determining performance
and system resource consumption for an application server and the applications that run on it.

32 Tuning guide

http://www.redbooks.ibm.com/redbooks/SG247347/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG247347/wwhelp/wwhimpl/js/html/wwhelp.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://www.ibm.com/developerworks/linux/library/l-hisock/index.html
http://fasterdata.es.net/fasterdata/host-tuning/linux/
http://www.redbooks.ibm.com/redbooks/SG247584/wwhelp/wwhimpl/java/html/wwhelp.htm
http://support.microsoft.com/kb/224829
http://support.microsoft.com/kb/224829

The IBM virtual machine for Java Version 6.0 includes the latest in Java Platform, Enterprise Edition (Java
EE) specifications, and provides performance and stability improvements over previous versions of Java.

Even though JVM tuning is dependent on the JVM provider you use, there are some general tuning
concepts that apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just-In-Time (JIT) compilers to compile Java byte codes into native
instructions during server runtime.

v Java memory or heap tuning. Tuning the JVM memory management function, or garbage collection, is a
good starting point for improving JVM performance.

v Class loading tuning.

v Start up versus runtime performance optimization

The following steps provide specific instructions on how to perform the following types of tuning for each
JVM. The steps do not have to be performed in any specific order.

Procedure
1. Optimize the startup and runtime performance.

In some environments, such as a development environment, it is more important to optimize the
startup performance of your application server rather than the runtime performance. In other
environments, it is more important to optimize the runtime performance. By default, IBM virtual
machines for Java are optimized for runtime performance, while HotSpot-based JVMs are optimized for
startup performance.

The Java Just-in-Time (JIT) compiler impacts whether startup or runtime performance is optimized. The
initial optimization level that the compiler uses influences the length of time that is required to compile
a class method, and the length of time that is required to start the server. For faster startups, reduce
the initial optimization level that the compiler uses. However if you reduce the initial optimization level,
the runtime performance of your applications might decrease because the class methods are now
compiled at a lower optimization level.

v -Xquickstart

This setting influences how the IBM virtual machine for Java uses a lower optimization level for
class method compiles. A lower optimization level provides for faster server startups, but lowers
runtime performance. If this parameter is not specified, the IBM virtual machine for Java defaults to
starting with a high initial optimization level for compiles, which results in faster runtime
performance, but slower server starts.

You can set this property on the Java virtual machine panel using the administrative console. For
details, read the information about Java virtual machine settings.

Information Value

Default High initial compiler optimization level

Recommended High initial compiler optimization level

Usage Specifying -Xquickstart improves server startup time.

2. Configure the heap size.

The Java heap parameters influence the behavior of garbage collection. Increasing the heap size
supports more object creation. Because a large heap takes longer to fill, the application runs longer
before a garbage collection occurs. However, a larger heap also takes longer to compact and causes
garbage collection to take longer.

The JVM uses defined thresholds to manage the storage that it is allocated. When the thresholds are
reached, the garbage collector is invoked to free up unused storage. Therefore, garbage collection can
cause significant degradation of Java performance. Before changing the initial and maximum heap
sizes, you should consider the following information:

Chapter 5. Tuning the application serving environment 33

v In the majority of cases you should set the maximum JVM heap size to a value that is higher than
the initial JVM heap size. This setting allows for the JVM to operate efficiently during normal, steady
state periods within the confines of the initial heap. This setting also allows the JVM to operate
effectively during periods of high transaction volume because the JVM can expand the heap up to
the value specified for the maximum JVM heap size. In some rare cases, where absolute optimal
performance is required, you might want to specify the same value for both the initial and maximum
heap size. This setting eliminates some overhead that occurs when the JVM expands or contracts
the size of the JVM heap. Before changing any of the JVM heap sizes, verify that the JVM storage
allocation is large enough to accommodate the new heap size.

v Do not make the size of the initial heap so large that while it initially improves performance by
delaying garbage collection, when garbage collection does occur, the collection process affects
response time because the process has to run longer.

To use the administrative console to configure the heap size:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine.

c. Specify a new value in either the Initial heap size or the Maximum heap size field.

You can also specify values for both fields if you need to adjust both settings.

For performance analysis, the initial and maximum heap sizes should be equal.

The Initial heap size setting specifies, in megabytes, the amount of storage that is allocated for the
JVM heap when the JVM starts. The Maximum heap size setting specifies, in megabytes, the
maximum amount of storage that can be allocated to the JVM heap. Both of these settings have a
significant effect on performance.

If you are tuning a production system where you do not know the working set size of the enterprise
applications that are running on that system, an appropriate starting value for the initial heap size is
25 percent of the maximum heap size. The JVM then tries to adapt the size of the heap to the
working set size of the application.

The following illustration represents three CPU profiles, each running a fixed workload with varying
Java heap settings. In the middle profile, the initial and maximum heap sizes are set to 128 MB.
Four garbage collections occur. The total time in garbage collection is about 15 percent of the total
run. When the heap parameters are doubled to 256 MB, as in the top profile, the length of the work
time increases between garbage collections. Only three garbage collections occur, but the length of
each garbage collection is also increased. In the third profile, the heap size is reduced to 64 MB
and exhibits the opposite effect. With a smaller heap size, both the time between garbage
collections and the time for each garbage collection are shorter. For all three configurations, the
total time in garbage collection is approximately 15 percent. This example illustrates an important
concept about the Java heap and its relationship to object utilization. A cost for garbage collection
always exists when running enterprise applications.

34 Tuning guide

Run a series of tests that vary the Java heap settings. For example, run experiments with 128 MB,
192 MB, 256 MB, and 320 MB. During each experiment, monitor the total memory usage. If you
expand the heap too aggressively, paging can occur.

Use the vmstat command or the Windows Performance Monitor to check for paging. If paging
occurs, reduce the size of the heap or add more memory to the system.

When all the runs are finished, compare the following statistics:
v Number of garbage collection calls
v Average duration of a single garbage collection call
v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over utilizing objects and has no memory leaks, the state of steady memory
utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85 percent or more, consider decreasing the maximum heap size
values because the application server and the application are under-utilizing the memory allocated
for heap.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

You can also use the following command-line parameters to adjust these settings. These parameters
apply to all supported JVMs and are used to adjust the minimum and maximum heap size for each
application server or application server instance.

v -Xms

This parameter controls the initial size of the Java heap. Tuning this parameter reduces the
overhead of garbage collection, which improves server response time and throughput. For some
applications, the default setting for this option might be too low, which causes a high number of
minor garbage collections.

Information Value

Default 50 MB

Recommended Workload specific, but higher than the default.

Usage Specifying -Xms256m sets the initial heap size to 256 MB.

v -Xmx

This parameter controls the maximum size of the Java heap. Increasing this parameter increases
the memory available to the application server, and reduces the frequency of garbage collection.

Chapter 5. Tuning the application serving environment 35

Increasing this setting can improve server response time and throughput. However, increasing this
setting also increases the duration of a garbage collection when it does occur. This setting should
never be increased above the system memory available for the application server instance.
Increasing the setting above the available system memory can cause system paging and a
significant decrease in performance.

Information Value

Default By default, the JVM dynamically calculates the Java heap
size based on the available memory in the system.

Recommended Workload specific, but higher than the default value,
depending on the amount of available physical memory.

Usage Specifying -Xmx512m sets the maximum heap size to 512
MB.

Note: Specify a value for the -Xmx parameter to reduce possible out-of-memory issues.

v -Xlp

Use this parameter with the IBM virtual machine for Java to allocate the heap when using large
pages, such as 16 MB pages. Before specifying this parameter, verify that your operating system is
configured to support large pages. Using large pages can reduce the CPU overhead needed to
keep track of heap memory, and might also allow the creation of a larger heap.

Default

64 KB if you are using Java 6 SR 7 or higher

4 KB if you are using Java 6 SR 6 or lower

v –Xlp64k

This parameter can be used to allocate the heap using medium size pages, such as 64 KB. Using
this virtual memory page size for the memory that an application requires can improve the
performance and throughput of the application because of hardware efficiencies that are associated
with a larger page size.

i5/OS® and AIX provide rich support around 64 KB pages because 64 KB pages are
intended to be general purpose pages. 64 KB pages are easy to enable, and applications might
receive performance benefits when 64 KB pages are used. Starting with Java 6 SR 7, the Java
heap is allocated with 64K pages by default. For Java 6 SR 6 or earlier, 4K pages is the default
setting, This setting can be changed without changing the operating system configuration. However,
it is recommended that you run your application servers in a separate storage pool if you use of
64KB pages.

If you are using Java 6 SR 6 or earlier, to support a 64 KB page size, in the
administrative console, click Servers > Application servers > server_name > Process definition >
Environment entries > New, and then specify LDR_CNTRL in the Name field and
DATAPSIZE=64K@TEXTPSIZE=64K@STACKPSIZE=64K in the Value field.

Recommended

Use 64 KB page size whenever possible.

POWER5+ systems, and AIX 5L™ Version 5.3 with the 5300-04 Recommended Maintenance Package
support a 64 KB page size when they are running the 64-bit kernel.

v –Xlp4k

36 Tuning guide

This parameter can be used to allocate the heap using 4 KB pages. Using this virtual memory page
size for the memory that an application requires, instead of 64 KB, might negatively impact
performance and throughput of the application because of hardware inefficiencies that are
associated with a smaller page size.

Starting with Java 6 SR 7, the Java heap is allocated with 64K pages by default. For
Java 6 SR 6 or earlier, 4K pages is the default setting, This setting can be changed without
changing the operating system configuration. However, it is recommended that you run your
application servers in a separate storage pool if you use of 64KB pages.

If you are using Java 6 SR 7 or higher, to support a 4 KB page size, in the
administrative console, click Servers > Application servers > server_name > Process definition >
Environment entries > New, and then specify LDR_CNTRL in the Name field and
DATAPSIZE=4K@TEXTPSIZE=4K@STACKPSIZE=4K in the Value field.

Recommended

Use -Xlp64k instead of -Xlp4k whenever possible.

3. Tune Java memory.

Enterprise applications written in the Java language involve complex object relationships and use large
numbers of objects. Although, the Java language automatically manages memory associated with
object life cycles, understanding the application usage patterns for objects is important. In particular,
verify that the following conditions exist:
v The application is not over utilizing objects
v The application is not leaking objects
v The Java heap parameters are set properly to handle a given object usage pattern

a. Check for over-utilization of objects.

You can review the counters for the JVM run time, that are included in Tivoli Performance Viewer
reports, to determine if an application is overusing objects. You have to specify the
-XrunpmiJvmtiProfiler command-line option, as well as the JVM module maximum level, to
enable the Java virtual machine profiler interface, JVMTI, counters.

The optimal result for the average time between garbage collections is at least five to six times the
average duration of a single garbage collection. If you do not achieve this number, the application
is spending more than 15 percent of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the
bottleneck. The most cost-effective way to optimize the application is to implement object caches
and pools. Use a Java profiler to determine which objects to target. If you can not optimize the
application, try adding memory, processors and clones. Additional memory allows each clone to
maintain a reasonable heap size. Additional processors allow the clones to run in parallel.

b. Test for memory leaks.

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.
Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads
to system instability. Over time, garbage collection occurs more frequently until the heap is
exhausted and the Java code fails with a fatal out-of-memory exception. Memory leaks occur when
an unused object has references that are never freed. Memory leaks most commonly occur in
collection classes, such as Hashtable because the table always has a reference to the object, even
after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production
environment. If an application has memory leaks, a high workload can accelerate the magnification
of the leakage and cause memory allocation failures to occur.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of
the amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to
differentiate these amounts between expected sizes of useful and unusable memory. This task is

Chapter 5. Tuning the application serving environment 37

achieved more easily if the numbers are magnified, resulting in larger gaps and easier identification
of inconsistencies. The following list provides insight on how to interpret the results of your memory
leak testing:
v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are
found easily during long-running tests. Short running tests might provide invalid indications of
where the memory leaks are occurring. It is sometimes difficult to know when a memory leak is
occurring in the Java language, especially when memory usage has seemingly increased either
abruptly or monotonically in a given period of time. The reason it is hard to detect a memory
leak is that these kinds of increases can be valid or might be the intention of the developer. You
can learn how to differentiate the delayed use of objects from completely unused objects by
running applications for a longer period of time. Long-running application testing gives you
higher confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case.
The goal of memory leak testing is to establish a big gap between unusable memory and used
memory in terms of their relative sizes. By repeating the same scenario over and over again, the
gap is multiplied in a very progressive way. This testing helps if the number of leaks caused by
the execution of a test case is so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular
testing is better control. When a module is designed to keep the private module without creating
external side effects such as memory usage, testing for memory leaks is easier. First, the
memory usage before running the module is recorded. Then, a fixed set of test cases are run
repeatedly. At the end of the test run, the current memory usage is recorded and checked for
significant changes. Remember, garbage collection must be suggested when recording the
actual memory usage by inserting System.gc() in the module where you want garbage collection
to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Some memory leak problems can occur only when there are several threads running in the
application. Unfortunately, synchronization points are very susceptible to memory leaks because
of the added complication in the program logic. Careless programming can lead to kept or
not-released references. The incident of memory leaks is often facilitated or accelerated by
increased concurrency in the system. The most common way to increase concurrency is to
increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:
– A good test case exercises areas of the application where objects are created. Most of the

time, knowledge of the application is required. A description of the scenario can suggest
creation of data spaces, such as adding a new record, creating an HTTP session, performing
a transaction and searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed
of objects within the same class. Also, collection classes such as Vector and Hashtable are
common places where references to objects are implicitly stored by calling corresponding
insertion methods. For example, the get method of a Hashtable object does not remove its
reference to the retrieved object.

You can use the Tivoli Performance Viewer to help find memory leaks.

For optimal results, repeat experiments with increasing duration, such as 1,000, 2,000, and 4,000
page requests. The Tivoli Performance Viewer graph of used memory should have a jagged shape.
Each drop on the graph corresponds to a garbage collection. There is a memory leak if one of the
following conditions is appears in the graph:
v The amount of memory used immediately after each garbage collection increases significantly.

When this condition occurs, the jagged pattern looks more like a staircase.
v The jagged pattern has an irregular shape.
v The gap between the number of objects allocated and the number of objects freed increases

over time.

38 Tuning guide

Heap consumption that indicates a possible leak during periods when the application server is
consistently near 100 percent CPU utilization, but disappears when the workload becomes lighter
or near-idle, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM
can free sufficient objects to satisfy memory allocation requests during garbage collection cycles,
but the JVM does not have the time to compact small free memory areas in the heap to larger
contiguous spaces.

Another form of heap fragmentation occurs when objects that are less than 512 bytes are freed.
The objects are freed, but the storage is not recovered, resulting in memory fragmentation until a
heap compaction occurs.

Heap fragmentation can be reduced by forcing compactions to occur. However, there is a
performance penalty for forcing compactions. Use the Java -X command to see the list of memory
options.

4. Tune garbage collection

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage
collection is a Java strength. By taking the burden of memory management away from the application
writer, Java applications are more robust than applications written in languages that do not provide
garbage collection. This robustness applies as long as the application is not abusing objects. Garbage
collection typically consumes from 5 to 20 percent of total run time of a properly functioning
application. If not managed, garbage collection is one of the biggest bottlenecks for an application.

Monitoring garbage collection while a fixed workload is running, provides you with insight as to whether
the application is over using objects. Garbage collection can even detect the presence of memory
leaks.

You can use JVM settings to configure the type and behavior of garbage collection. When the JVM
cannot allocate an object from the current heap because of lack of contiguous space, the garbage
collector is invoked to reclaim memory from Java objects that are no longer being used. Each JVM
vendor provides unique garbage collector policies and tuning parameters.

You can use the Verbose garbage collection setting in the administrative console to enable garbage
collection monitoring. The output from this setting includes class garbage collection statistics. The
format of the generated report is not standardized between different JVMs or release levels.

To adjust your JVM garbage collection settings:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine

c. Enter the –X option you want to change in the Generic JVM arguments field.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

The following list describes the –X options for the different JVM garbage collectors.

The IBM virtual machine for Java garbage collector.
A complete guide to the IBM implementation of the Java garbage collector is provided in the
IBM Developer Kit and Runtime Environment, Java2 Technology Edition, Version 5.0
Diagnostics Guide. This document is available on the developerWorks® website.

Use the Java -X option to view a list of memory options.

v -Xgcpolicy

The IBM virtual machine for Java provides four policies for garbage collection. Each policy
provides unique benefits.

Chapter 5. Tuning the application serving environment 39

Note: While each policy provides unique benefits, for WebSphere Application Server
Version 8.0 and later, gencon is the default garbage collection policy. Previous
versions of the application server specify that optthruput is the default garbage
collection policy.

– gencon is the default policy. This policy works with the generational garbage collector.
The generational scheme attempts to achieve high throughput along with reduced
garbage collection pause times. To accomplish this goal, the heap is split into new and
old segments. Long lived objects are promoted to the old space while short-lived objects
are garbage collected quickly in the new space. The gencon policy provides significant
benefits for many applications. However, it is not suited for all applications, and is
typically more difficult to tune.

– optthruput provides high throughput but with longer garbage collection pause times.
During a garbage collection, all application threads are stopped for mark, sweep and
compaction, when compaction is needed. The gencon policy is sufficient for most
applications.

– optavgpause is the policy that reduces garbage collection pause time by performing the
mark and sweep phases of garbage collection while an application is running. This policy
causes a small performance impact to overall throughput.

– subpool is a policy that increases performance on multiprocessor systems, that
commonly use more then 8 processors. This policy is only available on IBM System i®

System p® and System z® processors. The subpool policy is similar to the gencon policy
except that the heap is divided into subpools that provide improved scalability for object
allocation.

Information Value

Default gencon

Recommended gencon

Usage Specifying Xgcpolicy:gencon sets the garbage collection
policy to gencon.

Setting gcpolicy to gencon disables concurrent mark. You should get optimal throughput
results when you use the gencon policy unless you are experiencing erratic application
response times, which is an indication that you might have pause time problems

Setting gcpolicy to optavgpause enables concurrent mark with its default values. This
setting alleviates erratic application response times that normal garbage collection causes.
However, this option might decrease overall throughput.

v -Xnoclassgc

By default, the JVM unloads a class from memory whenever there are no live instances of
that class left. The overhead of loading and unloading the same class multiple times, can
decrease performance.

gotcha: You can use the -Xnoclassgc argument to disable class garbage collection.
However, the performance impact of class garbage collection is typically minimal,
and turning off class garbage collection in a Java Platform, Enterprise Edition
(Java EE) based system, with its heavy use of application class loaders, might
effectively create a memory leak of class data, and cause the JVM to throw an
Out-of-Memory Exception.

If you use this option, whenever you redeploy an application, you should always
restart the application server to clear the classes and static data from the pervious
version of the application.

40 Tuning guide

Information Value

Default Class garbage collection is enabled.

Recommended Do not disable class garbage collection.

Usage Specify Xnoclassgc to disable class garbage collection.

5. Enable localhost name caching By default in the IBM SDK for Java, the static method
java/net/InetAddress.getLocalHost does not cache its result. This method is used throughout
WebSphere Application Server, but particularly in administrative agents such as the deployment
manager and node agent. If the localhost address of a process will not change while it is running, then
it is advised to use a built-in cache for the localhost lookup by setting the com.ibm.cacheLocalHost
system property to the value true. Refer to the Java virtual machine custom properties topic in the
information center for instructions on setting JVM custom properties on the various types of processes.

Note: The address for servers configured using DHCP change over time. Do not set this property
unless you are using statically assigned IP addresses for your server.

Information Value

Default com.ibm.cacheLocalHost = false

Recommended com.ibm.cacheLocalHost = true (see description)

Usage Specifying -Dcom.ibm.cacheLocalhost=true enables the
getLocalHost cache

6. Enable class sharing in a cache.

The share classes option of the IBM implementation of the Java 2 Runtime Environment (J2RE)
Version 1.5.0 lets you share classes in a cache. Sharing classes in a cache can improve startup time
and reduce memory footprint. Processes, such as application servers, node agents, and deployment
managers, can use the share classes option.

gotcha: The IBM implementation of J2RE Version 1.5.0 is currently not
supported on:

v Solaris

v HP-UX

If you use this option, you should clear the cache when the process is not in use. To clear the cache,
either call the app_server_root/bin/clearClassCache.bat/sh utility or stop the process and then restart
the process.

If you need to disable the share classes option for a process, specify the generic JVM argument
-Xshareclasses:none for that process:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine

c. Enter -Xshareclasses:none in the Generic JVM arguments field.

d. Click OK.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

Information Value

Default The Share classes in a cache option are enabled.

Recommended Leave the share classes in a cache option enabled.

Chapter 5. Tuning the application serving environment 41

|
|
|
|
|
|
|

|
|

|||

||

||

||
|
|

|

Information Value

Usage Specifying -Xshareclasses:none disables the share
classes in a cache option.

7. Enable compressed references on 64-bit environments.

You can enable compressed references on 64-bit environments, such as AIX 64, Linux PPC 64, zLinux
64, and Microsoft Windows AMD64, Linux AMD64.

The compressed references option of the IBM implementation of the 64-bit Java SE Runtime
Environment (JRE) Version 6.0 lets you limit all of the memory references to 32-bit size. Typically, the
64-bit JVMs use more heap space than the 32-bit JVMs because they use 64-bit wide memory
references to address memory. The heap that is addressable by the 64-bit reference is orders of
magnitude larger than the 32-bit heap, but in the real world, a heap that requires all 64-bits for
addressing is typically not required. Compressing the references reduces the size of the addresses
and makes more efficient use of the heap. Compressing these references also improves the processor
cache and bus utilization, thereby improving performance.

gotcha:

The compressed references feature is not supported on:

v HP-UX 64-bit JVM

v iSeries® Classic 64-bit JVM

The product automatically enables pointer compression on the supported platforms by default if the
heap size (controlled by the -Xmx parameter) is set under a certain heap size (around 25 GB
depending on platform), else it will default to non-compressed references. The user can override these
defaults by using the command line options below.

The following command-line options control compressed references feature:

-Xcompressedrefs
This command-line option enables the compressed references feature. When the JVM is
launched with this command line option it would use 32-bit wide memory references to address
the heap. This feature can be used up to a certain heap size (around 29GB depending on the
platform), controlled by -Xmx parameter.

-Xnocompressedrefs
This command-line options explicitly disable the compressed references feature. When the
JVM is launches with this command line option it will use full 64-bit wide memory references to
address the heap. This option can be used by the user to override the default enablement of
pointer compression, if needed.

What to do next

Continue to gather and analyze data as you make tuning changes until you are satisfied with how the JVM
is performing.

Tuning HotSpot Java virtual machines (Solaris & HP-UX)
The architecture of the Sun-developed, HP-ported HotSpot Java virtual machine (JVM) has evolved
differently than the IBM-developed software development kit (SDK.) Its internal structure, for young or old
generation and permanent regions, arises to primarily support generational garbage collection, as well as
other garbage collection modes as necessary.

Before you begin

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on

42 Tuning guide

distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

v Determine the type of JVM on which your application server is running.

Issue the java –fullversion command from within your application server app_server_root/java/bin
directory. In response to this command, the application server writes information about the JVM,
including the JVM provider information, into the SystemOut.log file. If your application server is running
on an IBM virtual machine for Java, see the topicTuning the IBM virtual machine for Java.

v Verify that the following statements are true for your system:
1. The most recent supported version of the JVM is installed on your system.
2. The most recent service update is installed on your system. Almost every new service level includes

JVM performance improvements.

About this task

Tuning the Sun HotSpot JVM is an iterative process where the JVM configuration is developed, data
gathered, primarily from verbosegc data, and then analyzed, and any configuration revisions applied on
the next cycle. Perform one or more of the following steps if you need to tune your Sun HotSpot JVM.

Procedure
v Provide enough Java Heap Memory.

The Java heap memory is a reserved, contiguous set of addresses. The size of the Java heap memory
is the maximum size for which the Java heap is configured. These addresses are not available for other
native or system memory demands, and are maintained and managed only by the JVM because the
Java heap is used for Java object storage for the lifetime of that JVM.

When the JVM initializes, secures resources for the Java heap are obtained according to the JVM
configuration settings. If insufficient memory is available, the JVM initialization fails. If inadequate
memory is configured in the Java heap, the system eventually fails with an OutOfMemory report, that is
typically preceded by significant garbage collection activity, during which almost no Java processing
occurs.

Sufficient consideration for the native memory needs of other components of your process must be
made to accommodate running threads, storing data for I/O, and satisfying such requirements as
alignment, and page size.

The Sun HotSpot Java heap comprises two physically independent parts that you must take into
consideration when you specify maximum Java heap sizes:

– The permanent region, which is a combination of young and old generation regions that are further
(subdivided into eden, survivor spaces, and tenured regions.

– The provision memory for the Java components of this system.

The -XX:MaxPermSize= and -Xmx (Maximum Java Heap size) parameters respectively configure the
maximum size of the permanent region, where the class code and related data are logically presented
as part of the old generation region but are kept physically separate, and the maximum size of the main
heap where Java objects and their data are stored either in the young or old generation regions.
Together the permanent region and the main heap comprise the total Java heap. An allocation failure in
either of these regions either represents the inability to accommodate either all the application code or
all the application data, both of which are terminal conditions, that can exhaust available storage, and
cause an OutOfMemory error.

Consult these tuning parameters:

– -XX:MaxPermSize (Permanent region)

– -Xmx (Maximum Java Heap size)

v Disable explicit garbage collection to eliminate any unnecessary or mistimed major garbage collection
cycles that might be introduced in software components of the system.

Chapter 5. Tuning the application serving environment 43

Consult the tuning parameter -XX:+DisableExplicitGC.

gotcha: By default, the JVM unloads a class from memory whenever there are no live instances of that
class left. You can use the -Xnoclassgc argument to disable class garbage collection.
However, the performance impact of class garbage collection is typically minimal, and turning
off class garbage collection in a Java Platform, Enterprise Edition (Java EE) based system,
with its heavy use of application class loaders, might effectively create a memory leak of class
data, and cause the JVM to throw an Out-of-Memory Exception.

If you use the -Xnoclassgc argument, whenever you have to redeploy an application, you
should always restart the application server to clear the classes and static data from the
pervious version of the application.

If you use the -Xnoclassgc argument, whenever you have to redeploy an application, you should always
restart the application server to clear the classes and static data from the pervious version of the
application.

v Tune region sizes to optimize garbage collection action.

Any garbage collection tuning endeavour decisions should be based on the behavior of the garbage
collectors. You should identify the correct garbage collection mode to suit the operational needs of you
application. You should also verify that you are meeting your performance requirements, and are
efficiently recycling enough memory resources to consistently meet the demands of your application.
Any changes that you make to garbage collection parameter settings should produce sufficiently
different results and show benefits that are derived from exploiting different regions of the HotSpot Java
heap.

An unwise choice typically lengthens the tuning process as the iterative tuning process needs to be
substantially repeated. Further sections present the two principal choices, parallel throughput or
concurrent low-pause, and the relevant options for further tuning. Both modes offer the potential for high
performance, but the key performance factor is that the behavior that gets optimized is different for each
mode.

The dominant tuning activity concerns controlling resource utilization to service allocation activity of the
application, and to arrange efficient garbage collection to recycle storage, as required. Inevitably, these
tuning discussions are dependent on the garbage collection mode employed. Two types of garbage
collection are discussed:

– The throughput collector that performs parallel scavenge copy collection on the young generation.
This type of garbage collection is the default type on multi-processor server class machines.

– A concurrent low-pause collector.

The objective of tuning with these collectors is to deliver the behavior that is most suited for the
allocation patterns and object lifetimes of your application system, and that maximizes the efficiency of
their collection actions.

– Option 1: Use the default throughput/parallel scavenge collector with built-in tuning enabled.

Starting with Version 5, the Sun HotSPot JVM provides some detection of the operating system on
which the server is running, and the JVM attempts to set up an appropriate generational garbage
collection mode, that is either parallel or serial, depending on the presence of multiple processors,
and the size of physical memory. It is expected that all of the hardware, on which the product runs in
production and preproduction mode, satisfies the requirements to be considered a server class
machine. However, some development hardware might not meet this criteria.

The behavior of the throughput garbage collector, whether tuned automatically or not, remains the
same and introduces some significant pauses, that are proportional to the size of the used heap, into
execution of the Java application system as it tries to maximize the benefit of generational garbage
collection. However, these automatic algorithms cannot determine if your workload well-suits its
actions, or whether the system requires or is better suited to a different garbage collection strategy.

Consult these tuning parameters:

- -XX:+UseParallelGC

44 Tuning guide

- -XX:+UseAdaptiveSizePolicy

- -XX:+AggressiveHeap

– Option 2: Use the default throughput/parallel scavenge collector, but tune it manually.

Disadvantages of using the built-in algorithm that is established using the
-XX:+UseAdaptiveSizePolicy parameter, include limiting what other parameters, such as the
-XX:SurvivorRatio parameter, can be configured to do in combination with the built-in algorithm.
When you use the built-in algorithm, you give up some control over determining the resource
allocations that are used during execution. If the results of using the built-in algorithm are
unsatisfactory, it is easier to manually configure the JVM resources, than to try and tune the actions
of the algorithm. Manually configuring the JVM resources involves the use of half as many options as
it takes to tune the actions of the algorithm.

Consult these tuning parameters:

- -XX:NewRatio=2 This is the default for a server that is configured for VM mode

- -XX:MaxNewSize= and -XX:NewSize=

- -XX:SurvivorRatio=

- -XX:+PrintTenuringDistribution

- -XX:TargetSurvivorRatio=

– Option 3: Use the concurrent low-pause mark-sweep collector

This collector is a radical departure from the evolution of generational garbage collection that has
under pinned the Hotspot architecture, permitting the overlap of application thread processing with a
dedicated low-priority, background garbage collection thread. If your application data is incompatible
with the behavior of the default throughput collector, then the concurrent mark-sweep (CMS) collector
might be a viable strategy, particularly for application systems that are intolerant of invasive pauses.
This collector is particularly helpful with the very large heaps that are used with the 64-bit JVM, or
applications that have a large set of long-lived data, also referred to as a large tenured generation,
and that maintains comparatively good cache utilization, largely preserving pages of the young
generation, even while the background thread must scan through all the pages of the entire heap.

To employ the concurrent mark-sweep collector as the principle housekeeping agent, add this option,
instead of any other garbage collection modes, to your JVM configuration.

Consult these tuning parameters:

- -XX:+UseConcMarkSweepGC

- -XX:CMSInitiatingOccupancyFraction=75

- -XX:SurvivorRatio=6

- -XX:MaxTenuringThreshold=8

- -XX:NewSize=128m

Among the difficulties for tuning with CMS, is that the worst case garbage collection times, which is
when the CMS cycle aborts, can take last several seconds, which is especially costly for a system
that uses CMS precisely to avoid long pauses. Consequently, service level agreements might dictate
the use of CMS, because the average or median pause times are very, very low, and the tuning
must err on the cautious side to ensure that CMS cycles don't abort. CMS succeeds only when its
anticipatory trigger ensures that the CMS cycle always starts early enough to ensure sufficient free
resources are available before they are demanded. If the CMS collector is unable to finish before the
tenured generation fills up, the collection is completed by pausing the application threads, which is
known as a full collection. Full collections are a sign that further tuning is required to the CMS
collector to make it better suit your application.

Finally, unlike other garbage collection modes with a compaction phase, the use of CMS theoretically
raises the risk of fragmentation occurring with the HotSpot. However, in practice this is rarely a
problem while the collection recovers a healthy proportion of the heap. In cases when the CMS fails,
or aborts a collection, an alternative compacting garbage collection is triggered. Inevitably any other
type of garbage collection incurs a significant invasive pause compared to a normal CMS collection.

Chapter 5. Tuning the application serving environment 45

gotcha: As with the throughput collector, there are considerably more options available for explicitly
controlling CMS. However, those mentioned represent the core of the options that you are
likely to need to considered using when you are tuning the HotSpot JVM.

What to do next

Gather and analyze data to evaluate the configuration, typically using verbosegc. Continue to gather and
analyze data as you make tuning changes until you are satisfied with how the JVM is performing.

Sun HotSpot JVM tuning parameters (Solaris and HP-UX)
Tuning a Sun HotSpot Java virtual machine (JVM) is an iterative process where the JVM configuration is
developed, data is gathered, primarily the verbosegc data, and then analyzed. Any configuration revisions
are then applied on the next cycle. Even though there are many Sun HotSpot JVM parameters, the
following parameters have been identified as central to tuning. Which of these parameters you modify
depends on your configuration choices. Therefore, in addition to reviewing these parameter descriptions, it
is strongly recommended that your read the topic “Tuning Sun HotSpot Java Virtual Machines (Solaris &
HP-UX)” for a complete understanding or the JVM tuning methodology.

There is a standard form by which all Sun HotSpot options are specified. Understanding this form can help
you avoid problems with transcribing options, interpreting instructions, and avoiding the potential confusion
caused by the JVM rejecting an option, and then refusing to start.

You should be particularly concerned with the Sun HotSpot options that are particular to the
implementation of the Sun HotSpot JVM, starting with the -XX option, rather than to standard or portable
VM options, such as -X option or - option. The majority of these options are boolean valued, meaning they
are set to either true or false. These settings either enable or disable a feature. The following standard
form is used to enable an option, which is what you typically do when you change the setting of an option
during the tuning process:
-XX:+ option

The following standard form is used to disable an option, which you will do less frequently:
-XX:- option

gotcha:

v The use of a plus sign or a minus sign should immediately follows the colon. Otherwise the
option typically requires a value, and appears more like the assignment of a value because it
has an option=value format.

v As stated on the SUN website, the -XX Hotspot options are subject to change without notice in
subsequent releases of the JDK. Therefore, before specifying an option, you should verify that
it is supported for the version of the JDK that you are running on your system.

When determining which option to use, the name of the option typically describes the action that occurs if
the option is enabled. The default value for most options leave the feature disabled. Therefore, if you
disable an option that is already disabling a feature, it is possible to cause a double-negative situation.
This is particularly true with options that have names that begins with the word Disable. For example, the
default setting for the DisableExplicitGC option causes JVM to honor Explicit garbage collection requests.
Therefore, you would normally want to enable this option by specifying a plus sign in front of this option.
The plus sign has the affect of disabling the honoring of explicit garbage collection requests, which is what
the name of the options implies. With options, such as the DisableExplicitGC option, it is rare to encounter
the setting -XX:-DisableExplicitGC because this setting equates to specifying the default action.

In circumstances where the name of the option includes the term Use, the option typically makes more
sense either for the enablement or disablement of that feature and the sense of the plus or minus sign is
usually more intuitive.

46 Tuning guide

Where a value needs to be specified, the option appears like an assignment with an equal sign between
the option and the setting. In this situation, the option expects an appropriate number value to immediately
follow the equal sign, without any blank spaces between the equal sign and the number. The value can
often accept standard abbreviations, such as k for kilobytes, m for megabytes, and g for gigabytes, where
it is appropriate to specify these values. The virtual machine performs only limited validation of such
parameters, and, where invalid, typically produces an error message that indicates that the virtual machine
cannot start.

-Xmx (Maximum Java Heap size):

Tune this parameter, in conjunction with the -XX:MaxPermSize parameter, to provide enough Java heap
memory. When you specify a value for the maximum Java heap size for object storage in the Java heap,
you should consider that the peak resource demands that are necessary for processing the peak input
volumes that are designed to be handled by the system.

By contrast, the initial minimum size of the Java heap, that is specified using the -Xms parameter, should
reflect the sizing of the Java heap that is needed to accommodate the persistent data that arises from the
normal operation of the system under a routine steady-state input load. Such a resource request ensures
an efficient system startup, where just the right amount of storage is claimed to permit quick initialization
without needing many garbage collection cycles to increase heap capacity. Thereafter, the working size
capacity of the Java heap varies between the normal capacity known to accommodate a routine
steady-state workload, and the systems design peak size, and any variations in heap capacity should
reflect changes in the systems inputs, such as a burst of activity, or the increase of workload.

The working size capacity of the Java heap is considered useful information about the running state of the
system. Tuning the initial minimum size of the Java heap should only involve optimizing system startup.
Setting minimum and maximum heap sizes to the same value fixes the Java heap and constrains the
recovery options of the JVM for its housekeeping of the Java heap. This type of setup can cause
performance penalties and poor utilization of Java heap resources.

-XX:+AggressiveHeap:

Use this parameter if you are using the default throughput/parallel scavenge collector with built-in tuning
enabled. The JVM can attempt to aggressively tune the parameters of its tuning algorithm based on using
all the resources of the operating system on which you are running. In situations where a single product
process is executing using all of the resources of the operating system, use of this option to determine if
the JVM can deliver satisfactory results. Using this option while testing JVM results should reduce your
tuning effort.

-XX:CMSInitiatingOccupancyFraction=75:

Configure this parameter if you are using the concurrent low-pause mark-sweep collector. This option is
used to control CMS. It sets the triggering condition for when the dedicated background thread engages to
conduct garbage collection on the tenured region of the heap. Unlike other garbage collection modes, the
garbage collection action does not wait for an allocation to fail. Instead the objective is to trigger the
garbage collection to recover sufficient space before the allocation arises that would otherwise have failed.
The principle trigger is based on the percentage utilization of the Java heap, and defaults to about 70%.
The default value typically ensures that CMS cycles start sufficiently, although this frequency might be
higher than necessary.

However, with only a very small eden region, and no use of the survivor spaces, there is barely any
opportunity for objects to age, such that the generational garbage collection support can collect short-lived
objects. For systems that benefit from generational garbage collection, by producing many quite short-lived
objects, the CMS defaults deny the opportunity to exploit the generational support for which the Sun
HotSpot structure is primarily designed. For only a modest investment of resources in the young
generation survivor spaces, and a decent eden region, to re-enable full generational garbage collection

Chapter 5. Tuning the application serving environment 47

action will probably only cause an invasive pause of a second, or less, keeping the promotion of aged
objects into the tenured region low. This condition gives you the full benefit of the free compaction of
surviving content as objects age, and provides maximum opportunity for the CMS thread to collect the
tenured region, even with large heaps.

-XX:+DisableExplicitGC:

This option disable explicit garbage collection to eliminate any unnecessary or mistimed major garbage
collection cycles that might be introduced in the software components of the system.

It is recommended that developers avoid the use of System.gc() calls to cause programmer-initiated, full
compaction garbage collection cycles, because such calls can interfere with tuning the resources and
garbage collection for a entire application system. If you are striving to meet demanding pause time
requirements, and want to prevent programmer initiated garbage collection calls, then use of this option
must be strongly considered because this option causes explicit System.gc() calls to be ignored.

-XX:MaxNewSize= and -XX:NewSize=:

Use these parameters if you are using the default throughput/parallel scavenge collector, but have decided
to manually tune this scavenge collector, instead of using the built-in tuning that the
-XX:+UseAdaptiveSizePolicy parameter provides. The current young generation size is bound to be
greater than or equal to the initial or minimum young generation size, as specified on the -XX:NewSize
parameter. This size is less than or equal to the value specified for the maximum young generation, as
specified on the -XX:MaxNewSize parameter.

Certain circumstances might suggest that you constrain the amount of the heap that is considered by
generational garbage collection, as determined by the -XX:NewRatio parameter, typically limiting the
maximum scope of the young generation, and occasionally limiting the minimum size. For example, setting
the limit of a large object that might be subject to generational garbage collection, or to limit the maximum
amount of memory that is typically in use beyond the set of persistent objects with long lifetimes, you
might need to set a maximum size for the young generation heap. Specifying a minimum size, for the
section of the heap that is used for young generation objects, typically accompanies tuning the use of
survivor spaces, which is usually of secondary importance, but must satisfy meeting the constraints for the
minimum resources in the Java heap, as specified on the -Xms parameter.

Unless you are striving for a specific behavior within generational garbage collection, it should be
unnecessary to specify either minimum or maximum separately from the use of the NewRatio option. The
reasons for setting either the maximum or minimum values are typically different. Seldom do these settings
need to be set to the same value, even though there is a shorthand for setting and fixing the size of the
young generation section, using the -Xmn parameter. However, an inappropriate configuration risks the loss
of the benefits of generational garbage collection entirely.

-XX:MaxPermSize (Permanent region):

Tune this parameter in conjunction with the -Xmx parameter to provide enough Java heap memory. The
permanent region is employed to store all the class code and class-like data, such as interned strings.

The permanent region must be large enough to accommodate all of the classes that might be concurrently
loaded together. Determining an appropriate size for this region might be confusing, because this region of
the heap is smaller, expands more slowly, and is specifically employed for class-like objects, and it is
commonly observed to be utilized at 99-100% of its current capacity. Therefore, you must be careful how
you interpret out-of-memory events. You should always verify that this region is maximally expanded
before providing this region with more resources.

gotcha: In any Java Platform, Enterprise Edition (Java EE) based system, with its heavy use of
application class loaders, you should avoid using the -Xnoclassgc parameter because this

48 Tuning guide

parameter prevents garbage collection of this critical region of the heap, effectively creating a
memory leak of class data. For a development system where you are frequently deploying
changing class content, you should significantly oversize this region. You should also regularly
restart this system to prevent old versions of dormant code from accumulating within currently
used, and otherwise unreleaseable class loaders.

-XX:MaxTenuringThreshold=number-of-collections:

Configure this parameter when using the concurrent low-pause mark-sweep collector. This parameter
controls the promotion of the objects from the new generation section to the old generation section by
specifying the number of collections during which an object remains in the new generation section before
being moved to the old generation section. 8 is the default value.

-XX:NewRatio=2:

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to
manually tune this scavenge collector, instead of using the built-in tuning that the
-XX:+UseAdaptiveSizePolicy parameter provides.

The Java heap is divided into two sections where objects are stored. One of the sections is where
generational garbage collection occurs, and is where young generation objects reside. The other section,
which comprises the rest of the heap, is called the tenured heap, and is where the old or long-lived objects
reside. This option sizes the young generation region that supports generational garbage collection, in
proportion to the overall heap capacity. The current young generation size is bound to be greater-than or
equal to the initial or minimum young generation size, as specified on the -XX:NewSize parameter. This
size is less-than or equal to the value specified for the maximum young generation, as specified on the
-XX:MaxNewSize parameter. The young generation size is maintained as a ratio to the tenured region, as
determined by the current capacity of the main Java heap. The default value of 2 means that the tenured
region is twice the size of the young generation region, which means that the young generation is one
third of the entire Java heap.

This default value typically delivers good generational garbage collection performance, which is the typical
goal of tuning the Sun HotSpot JVM. However, other strategies exist. For example, you might want to
increase the proportion of the heap where generational garbage collection is conducted. If you decide to
change the proportion, remember that there is a limit as to how much of the heap can reasonably be
maintained by generational garbage collection, and if that limit is exceeded, all generational garbage
collection might be lost because garbage collection cycles will become major garbage collection cycles
over the whole heap instead of the desired minor garbage collection cycles that consider just the
generational part of the heap.

2 is the default value for a server that is running in VM mode.

-XX:NewSize=128m:

Configure this parameter if you are using the concurrent low-pause mark-sweep collector. The current
young generation size is bound to be greater than or equal to the initial or minimum young generation
size, as specified on the -XX:NewSize parameter. One of the difficulties for tuning with CMS is that the
worst case garbage collection times, which occurs when the CMS cycle aborts, might take several
seconds, which is especially costly for a system that is employing CMS as a way to avoid long pauses.

Consequently, service level agreements might dictate the use of CMS. In this situation tuning must err on
the cautious side to ensure that CMS is given every opportunity to succeed. CMS succeeds only when its
anticipatory trigger ensures the CMS cycle starts early enough to always ensure that sufficient free
resources are available before they are demanded. If the CMS collector is unable to finish before the

Chapter 5. Tuning the application serving environment 49

tenured generation fills up, the collection is completed by pausing the application threads, which is called a
full collection. Full collections are a sign that further tuning is required to the CMS collector to make its
operation better suit your application.

-XX:+PrintTenuringDistribution:

This option is a garbage collection logging option which enables the printing of information regarding the
age of the objects, tenuring information, as they age through the survivor spaces.

-XX:SurvivorRatio=:

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to
manually tune this scavenge collector, instead of using the built-in tuning that the
-XX:+UseAdaptiveSizePolicy parameter provides, or if you are trying to tune the concurrent low pause
collector.

The generational garbage collection action concerns dividing short-lived objects from longer lived ones.
Only those objects that continue in use need to be preserved in the heap. The young generation region
that hosts generational garbage collection includes further internal structure. It includes a large eden
region where objects are initially allocated, and smaller survivor spaces where objects, that have longer
lifetimes, reside. The SurvivorRatio sizes these regions in terms of how large the eden region is relative to
the smaller survivor space. Sizing the survivor spaces is typically of secondary importance, because the
volume of objects that might benefit from optimization varies greatly by application. However, typically you
should lower this value from the default value of 25, to something like 8.

Any changes to this parameter should be justified through an analysis of the data concerning the tenuring.
You can use the -XX:+PrintTenuringDistribution parameter to obtain this data

gotcha: -XX:SurvivorRatio= option is incompatible with the JVM parameter -XX:+UseAdaptiveSizePolicy.
Please use either one according to your situation.

-XX:TargetSurvivorRatio=:

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to
manually tune this scavenge collector, instead of using the built-in tuning that the
-XX:+UseAdaptiveSizePolicy parameter provides.

This parameter encourages the JVM to increase the percentage utilization of the survivor spaces, thereby
avoiding premature promotion, if possible, and maximizing the chance for objects to be collected from the
young generation. The default value is 50. Better utilization of these regions might be achieved if you set
this parameter to 90.

-XX:+UseAdaptiveSizePolicy:

Use this parameter to enable the built-in tuning with the default throughput/parallel scavenge collector
default throughput/parallel scavenge collector.

In addition to the automatic operating system detection, Sun includes a tuning algorithm that attempts to
autonomically tune the JVM to optimize the throughput goal and the efficiency of the throughput collection
strategy. This tuning algorithm is turned on by default, and is explicitly engaged using the
-XX:+UseAdaptiveSizePolicy parameter. This tuning algorithm should typically achieve satisfactory results
for the majority of application workloads, saving you from having to perform additional tuning efforts.
However you should still test this algorithm for your workload and verify that it meets your throughput
requirements before using it in a production environment.

-XX:+UseConcMarkSweepGC:

50 Tuning guide

Use this parameter to enable the concurrent low-pause mark-sweep collector. This garbage collection
mode reconfigures the generational garbage collection so that your out-of-the-box the system minimizes
the invasive pauses introduced by having to collect the young generation content.

This parameter also minimizes the extent of the young generation, or eden region. Server-class systems
typically detect the availability of multiple processors, and attempt to collect the young generation in
parallel, in an attempt to deliver absolutely the minimum pause possible, even if there exists only a limited
amount of work available, giving little advantage for the use of multiple threads after the coordination
overhead. To offset the work no longer being performed by generational garbage collection, it is typically
necessary to increase the resources committed to the main heap by about ten to thirty percent, as
compared to the throughput collector settings.

-XX:+UseParallelGC:

Use this parameter to enable the default throughput/parallel scavenge collector.

The default garbage collection mode of a server JVM is to adopt the throughput collector that conducts the
minor garbage collections over the young generation in parallel as a foreground stop-the-world task. This
collector can be enabled explicitly through the use of the -XX:+UseParallelGC parameter. Goals, other than
throughput, can be specified. However, the penalty for not achieving such goals can be quite severe, and
might cause a fatal out-of-memory error.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 10. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Chapter 5. Tuning the application serving environment 51

Table 11. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 12. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 13. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

52 Tuning guide

Table 14. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 15. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 16. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Tuning transport channel services
The transport channel services manage client connections and I/O processing for HTTP and JMS
requests. These I/O services are based on the non-blocking I/O (NIO) features that are available in Java.
These services provide a highly scalable foundation to WebSphere Application Server request processing.
Java NIO-based architecture has limitations in terms of performance, scalability, and user usability.
Therefore, integration of true asynchronous I/O is implemented. This implementation provides significant
benefits in usability, reduces the complexity of I/O processing, and reduces that amount of performance
tuning you must perform.

Chapter 5. Tuning the application serving environment 53

About this task

Key features of the new transport channel services include:

v Scalability, which enables the product to handle many concurrent requests

v Asynchronous request processing, which provides a many-to-one mapping of client requests to web
container threads

v Resource sharing and segregation, which enables thread pools to be shared between the web container
and a messaging service

v Improved usability

v Incorporation of autonomic tuning and configuration functions

Changing the default values for settings on one or more of the transport channels associated with a
transport chain can improve the performance of that chain.

Procedure
v Adjust TCP transport channel settings. In the administration console, click Servers > Server Types >

WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the TCP transport channel defined for that chain.

3. Lower the value specified for the Maximum open connections property. This parameter controls the
maximum number of connections that are available for a server to use. Leaving this parameter at
the default value of 20000, which is the maximum number of connections, might lead to stalled

Figure 1. Transport Channel Service

54 Tuning guide

websites under failure conditions, because the product continues to accept connections, thereby
increasing the connection, and associated work, backlog. The default should be changed to a
significantly lower number, such as 500, and then additional tuning and testing should be performed
to determine the optimal value that you should specify for a specific website or application
deployment.

4. If client connections are being closed without data being written back to the client, change the value
specified for the Inactivity timeout parameter. This parameter controls the maximum number of
connections available for a server use. After receiving a new connection, the TCP transport channel
waits for enough data to arrive to dispatch the connection to the protocol-specific channels above
the TCP transport channel. If not enough data is received during the time period specified for the
Inactivity timeout parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds. This value is adequate for most applications.
Increase the value specified for this parameter if your workload involves many connections and all of
these connections cannot be serviced in 60 seconds.

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is assigned to a particular
thread pool. Thread pools can be shared between one or more TCP transport channels as well as
with other components. The default setting for a TCP transport channel is to have all HTTP-based
traffic assigned to the WebContainer thread pool and all other traffic assigned to the Default thread
pool. Use the Thread pool menu list to assign a particular thread pool to each TCP transport
channel. The default setting for this parameter has all HTTP-based traffic assigned to the
WebContainer thread pool and all other traffic is assigned to the Default thread pool. The
information about thread pool collection describes how to create additional thread pools.

6. Tune the size of your thread pools. By default, a thread pool can have a minimum of 10 threads and
a maximum of 50 maximum threads. To adjust these values, click Thread pools >threadpool_name
and adjust the values specified for the Minimum Size and Maximum Size parameters for that thread
pool.

Typical applications usually do not need more than 10 threads per processor. One exception is if
there is some off server condition, such as a very slow backend request, that causes a server
thread to wait for the backend request to complete. In such a case, processor usage is low and
increasing the workload does not increase processor throughput. Thread memory dumps show
nearly all threads in a callout to the backend resource. If this condition exists, and the backend is
tuned correctly, try increasing the minimum number of threads in the pool until you see
improvements in throughput and thread memory dumps show threads in other areas of the run time
besides the backend call.

The setting for the Grow as needed parameter is changed unless your backend is prone to hanging
for long periods of time. This condition might indicate that all of your runtime threads are blocked
waiting for the backend instead of processing other work that does not involve the hung backend.

v Adjust HTTP transport channel settings. In the administration console, click Servers > Server Types >
WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive.

The Use persistent (keep-alive) connections setting controls whether connections are left open
between requests. Leaving the connections open can save setup and teardown costs of sockets if
your workload has clients that send multiple requests. The default value is true, which is typically the
optimal setting.

If your clients only send single requests over substantially long periods of time, it is probably better
to disable this option and close the connections right away rather than to have the HTTP transport
channel setup the timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to increase the number
of requests that can flow over a connection before it is closed.

Chapter 5. Tuning the application serving environment 55

When the Use persistent connections option is enabled, the Maximum persistent requests
parameter controls the number of requests that can flow over a connection before it is closed. The
default value is 100. This value should be set to a value such that most, if not all, clients always
have an open connection when they make multiple requests during the same session. A proper
setting for this parameter helps to eliminate unnecessary setting up and tearing down of sockets.

For test scenarios in which the client is never closed, a value of -1 disables the processing which
limits the number of requests over a single connection. The persistent timeout shuts down some idle
sockets and protects your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase the length of time that a
connection is held open before being closed due to inactivity. The Persistent timeout parameter
controls the length of time that a connection is held open before being closed because there is no
activity on that connection. The default value is 30 seconds This parameter is set to a value that
keeps enough connections open so that most clients can obtain a connection available when they
must make a request.

6. If clients are having trouble completing a request because it takes them more than 60 seconds to
send their data, change the value specified for the Read timeout parameter. Some clients pause
more than 60 seconds while sending data as part of a request. To ensure that they are able to
complete their requests, change the value specified for this parameter to a length of time in seconds
that is sufficient for the clients to complete the transfer of data. Be careful when changing this value
that you still protect the server from clients who send incomplete data and thereby use resources
(sockets) for an excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being written to them, change
the value specified for the Write timeout parameter. Some clients are slow and require more than 60
seconds to receive data that is sent to them. To ensure that they are able to obtain all of their data,
change the value specified for this parameter to a length of time in seconds that is sufficient for all
of the data to be received. Be careful when changing this value that you still protect the server from
malicious clients.

v Adjust the web container transport channel settings. In the administration console, click Servers >
Server Types > WebSphere application servers > server_name > Ports. Then click View associated
transports for the appropriate port.

1. Select the transport chain whose properties must be changed.

2. Click the web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the value specified for the
Write buffer size parameter to a value that is more appropriate for your clients. The Write buffer size
parameter controls the maximum amount of data per thread that the web container buffers before
sending the request on for processing. The default value is 32768 bytes, which are sufficient for
most applications. If the size of a response is greater than the size of the write buffer, the response
is chunked and written back in multiple TCP writes.

If you must change the value specified for this parameter, make sure that the new value enables
most requests to be written out in a single write. To determine an appropriate value for this
parameter, look at the size of the pages that are returned and add some additional bytes to account
for the HTTP headers.

v Adjust the settings for the bounded buffer.

Even though the default bounded buffer parameters are optimal for most of the environments, you might
want to change the default values in certain situations and for some operating systems to enhance
performance. Changing the bounded buffer parameters can degrade performance. Therefore, make
sure that you tune the other related areas, such as the web container and ORB thread pools, before
deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

56 Tuning guide

2. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine.

3. Click Custom properties.

4. Enter one of the following custom properties in the Name field and an appropriate value in the Value
field, and then click Apply to save the custom property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

Specifies the number of times a web container thread can attempt to retrieve a request from the
buffer before the thread is suspended and enqueued. This parameter enables you to trade off the
cost of performing possibly unsuccessful retrieval attempts, with the cost to suspending a thread
and activating it again in response to a put operation.

Information Value

Default: The number of processors available to the operating
system minus 1.

Recommended: Use any non-negative integer value. In practice, using an
integer from 2 to 8 yields the best performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=6. Six
attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to
take a request from the buffer. Typically a lower number of attempts is preferable.

Information Value

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=boolean value

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put a request into the
buffer before the thread is suspended and enqueued. Use this value to trade off between the
cost of repeated, possibly unsuccessful, attempts to put a request into the buffer with the cost to
suspend a thread and reactivate it in response to a take operation.

Information Value

Default: The value of com.ibm.ws.util.BoundedBuffer.spins_take
divided by 4.

Recommended: Use any non-negative integer value. In practice an integer
2 - 8 have shown the best performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_put=6. Six attempts
are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to put
a request into the buffer. Typically a lower number of attempts is preferable.

Information Value

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Chapter 5. Tuning the application serving environment 57

Information Value

Usage: com.ibm.ws.util.BoundedBuffer.yield_put=boolean value

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request might unnecessarily be
delayed if the buffer is completely full or if the buffer is empty.

Information Value

Default: 10000 milliseconds

Recommended: A value of 10000 milliseconds usually works well. In rare
instances when the buffer becomes either full or empty, a
smaller value guarantee a more timely handling of
requests, but there is usually a performance impact to
using a smaller value.

Usage: com.ibm.ws.util.BoundedBuffer.wait=8000. A request
might unnecessarily be delayed up to 8000 milliseconds.

v Click Apply and then click Save to save these changes.

Checking hardware configuration and settings
An optimal hardware configuration enables applications to get the greatest benefit from performance
tuning. The hardware speed impacts all types of applications and is critical to overall performance.

About this task

You can check hardware configuration and settings such as disk speed, system memory and processor
speed to gain performance benefits.

Procedure

Use the following considerations for selecting and configuring the hardware on which the application
servers run:

1. Optimize disk speed
v Description: Disk speed and configuration have a dramatic effect on the performance of application

servers running applications that are heavily dependent on the database support, using extensive
messaging, or processing workflow. The disk input or output subsystems that are optimized for
performance, for example Redundant Array of Independent Disks (RAID) array, high-speed drives,
and dedicated caches, are essential components for optimum application server performance in
these environments.

Application servers with fewer disk requirements can benefit from a mirrored disk drive configuration
that improves reliability and has good performance.

v Recommendation: Spread the disk processing across as many disks as possible to avoid contention
issues that typically occur with 1- or 2-disk systems. Placing the database tables on disks that are
separate from the disks that are used for the database log files reduces disk contention and improve
throughput.

2. Increase processor speed and processor cache
v Description: In the absence of other bottlenecks, increasing the processor speed often helps

throughput and response times. A processor with a larger L2 or L3 cache yields higher throughput,
even if the processor speed is the same as a CPU with a smaller L2 or L3 cache.

3. Increase system memory
v Description: Increase memory to prevent the system from paging memory to the disk to improve

performance. Allow a minimum of 256 MB of memory for each processor and 512 MB per

58 Tuning guide

application server. Adjust the available memory when the system pages and the processor utilization
is low because of the paging. The memory access speed might depend on the number and
placement of the memory modules. Check the hardware manual to make sure that your
configuration is optimal.

v Recommendation: Use 256 MB of memory for each processor and 512 MB per application server.
Some applications might require more memory.

4. Increase system memory
v Description: Increase memory to prevent the system from paging memory to the disk to improve

performance. Allow a minimum of 256 MB of memory for each processor and 512 MB per
application server. Adjust the available memory when the system pages and the processor utilization
is low because of the paging. The memory access speed might depend on the number and
placement of the memory modules. Check the hardware manual to make sure that your
configuration is optimal.

v Recommendation: Use 256 MB of memory for each processor and 512 MB per application server.
Some applications might require more memory.

5. Run network cards and network switches at full duplex
v Description: Run network cards and network switches at full duplex and use the highest supported

speed. Full duplex is much faster than half duplex. Verify that the network speed of adapters,
cables, switches, and other devices can accommodate the required throughput. Some websites
might require multiple gigabit links.

v Recommendation Make sure that the highest speed is in use on 10/100/1000 Ethernet networks.

Tuning operating systems
You can tune your operating system to optimize the performance of WebSphere Application Server.

About this task

Tuning parameters are specific to operating systems. Because these operating systems are not
WebSphere Application Server products, be aware that the products can change and results can vary.

Note: Check your operating system documentation to determine how to make the tuning parameters
changes permanent and if a reboot is required.

Procedure
v Tune Windows systems

v Tune Linux systems

v Tune AIX systems

v Tune Solaris systems

v Tune HP systems

Tuning Windows systems
This topic describes how to tune Windows XP, Windows 2003, Windows 2008 and Windows Vista
operating systems to optimize the performance of WebSphere Application Server. Because Windows
operating systems are not WebSphere Application Server products, be aware that the products can
change and results can vary.

About this task

When you have a performance concern, check the operating system settings to determine if they are
appropriate for your application.

Chapter 5. Tuning the application serving environment 59

Procedure

Configure the following settings or variables according to your specific tuning needs:

v TcpTimedWaitDelay
– Description: Determines the time that must elapse before TCP/IP can release a closed connection

and reuse its resources. This interval between closure and release is known as the TIME_WAIT
state or twice the maximum segment lifetime (2MSL) state. During this time, reopening the
connection to the client and server costs less than establishing a new connection. By reducing the
value of this entry, TCP/IP can release closed connections faster and provide more resources for
new connections. Adjust this parameter if the running application requires rapid release, the creation
of new connections, or an adjustment because of a low throughput caused by multiple connections in
the TIME_WAIT state.

– How to view or set:
1. Use the regedit command, access the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new REG_DWORD value named
TcpTimedWaitDelay.

2. Set the value to decimal 30, which is Hex 0x0000001e. This value sets the wait time to 30
seconds.

3. Stop and restart the system.
– Default value: 0xF0, which sets the wait time to 240 seconds (4 minutes).
– Recommended value: A minimum value of 0x1E, which sets the wait time to 30 seconds.

v MaxUserPort

gotcha: This setting is not needed for the Windows 2008 and Windows Vista operating systems. The
default start port for these operating systems is 49152, and the default end port is 65535. See
the Microsoft Support web site for more information.

– Description: Determines the highest port number that TCP/IP can assign when an application
requests an available user port from the system.

– How to view or set:
1. Use the regedit command, access the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new REG_DWORD value named
MaxUserPort.

2. Set this value to at least decimal 32768.
3. Stop and restart the system.

– Default value: None
– Recommended value: At least decimal 32768.

v MaxConnect Backlog
– Description: If many connection attempts are received simultaneously, increase the default number

of pending connections that are supported by the operating system.
– How to view or set:

1. Use the regedit command and access the HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\AFD\Parameters registry subkey

2. Create, if necessary, and set the following values:
"EnableDynamicBacklog"=dword:00000001

"MinimumDynamicBacklog"=dword:00000020

"MaximumDynamicBacklog"=dword:00001000

"DynamicBacklogGrowthDelta"=dword:00000010
3. These values request a minimum of 20 and a maximum of 1000 available connections. The

number of available connections is increased by 10 each time that there are fewer than the
minimum number of available connections.

4. Stop and restart the system.

v TPC/IP acknowledgements

60 Tuning guide

– TCP/IP can be the source of some significant remote method delays. You can increase TCP
performance by immediately acknowledging incoming TCP segments, in all situations.

To immediately acknowledge incoming TCP segments on a server that runs a Microsoft Windows XP
or Windows Server 2003 operating system:
1. Start the Registry Editor (regedit.exe).
2. Locate and then click the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\
3. On the Edit menu, click New > DWORD Value.
4. Name the new value, TcpAckFrequency, and assign it a value of 1.
5. Close the Registry Editor.
6. Restart your Windows operating system.

v Large page support
– Description: Using large pages can reduce the CPU overhead of managing a large JVM heap.
– How to view or set: The Windows operating system provides large page support by default. Use

the -Xlp JVM option to make use of this support.

Results

This tuning procedure improves performance of WebSphere Application Server on Windows XP, and
Windows 2003 operating systems.

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning Linux systems
This topic describes how to tune the Linux operating system to optimize the performance of your
WebSphere Application Server.

About this task

When you have a performance concern, check the operating system settings to determine if these settings
are appropriate for your application. Because the Linux operating system is not a WebSphere Application
Server product, be aware that it can change and results can vary.

Procedure

Configure the following settings and variables according to your tuning needs:

v Changing TCP parameters
– Description: Linux offers a number of tunable TCP parameters whose default values might be

sufficient for WebSphere Application Server. It might be necessary to tune these parameters in some
exceptional cases. For example, you might reduce the number of sockets in specific states such as
TIME_WAIT, modify the TCP keepalive operation, or modify other functions.

– How to view or set:

Consult the detailed information available under "man tcp" under your Linux distribution.

v SUSE Linux Enterprise Server 8 (SLES 8) SP2A - sched_yield_scale tuning
– Description: The Linux scheduler is very sensitive to excessive context switching, so fixes are

integrated into the SLES 8 kernel distribution to introduce delay when a thread yields processing.
This fix is automatically enabled in SLES 8 SP3, but must be enabled explicitly in SLES 8 SP2A or
earlier.

– How to view or set:
1. Upgrade your SLES 8 service pack to SP2A.
2. Issue the sysctl -w sched_yield_scale=1 command .

– Default value: 0

Chapter 5. Tuning the application serving environment 61

– Recommended value: 1

v RedHat Advanced Server 2.1 kernel update
– Description: Kernel updates for RedHat Advanced Server 2.1 implemented changes that affect

WebSphere Application Server performance, especially memory-to-memory HTTP session
replication.

– How to view or set:
1. Issue the uname -a command
2. If you are running any kernel prior to 2.4.9-e.23, upgrade at least to the RedHat Advanced Server

2.1 kernel, but preferably to the latest supported.
– Default value: 2.4.9-e.3
– Recommended value: 2.4.9-e.23

v Linux file descriptors (ulimit)
– Description: Specifies the number of open files that are supported. The default setting is typically

sufficient for most applications. If the value set for this parameter is too low, a file open error,
memory allocation failure, or connection establishment error might be displayed.

– How to view or set: Check the UNIX reference pages on the ulimit command for the syntax of
different shells. To set the ulimit command to 8000 for the KornShell shell (ksh), issue the ulimit -n
8000 command. Use the ulimit -a command to display the current values for all limitations on
system resources.

– Default value: For SUSE Linux Enterprise Server 9 (SLES 9), the default is 1024.
– Recommended value: 8000

v Connection backlog
– Description: Change the following parameters when a high rate of incoming connection requests

result in connection failures:
echo 3000 > /proc/sys/net/core/netdev_max_backlog
echo 3000 > /proc/sys/net/core/somaxconn

v TCP_KEEPALIVE_INTERVAL
– Description: Determines the wait time between isAlive interval probes.
– How to view or set: Issue the following command to set the value:

echo 15 > /proc/sys/net/ipv4/tcp_keepalive_intvl
– Default value: 75 seconds
– Recommended value: 15 seconds

v TCP_KEEPALIVE_PROBES
– Description: Determines the number of probes before timing out.
– How to view or set: Issue the following command to set the value:

echo 5 > /proc/sys/net/ipv4/tcp_keepalive_probes
– Default value: 9 seconds
– Recommended value: 5 seconds

v Allocating large pages for Java virtual machine (JVM) heap (tested with SLES 9)

Some applications require a very large heap for optimal performance. The CPU overhead of managing
a large heap can be reduced by using the "large page" support that is provided by the CPU and
operating system. The following example assumes a large page size of 4MB and a desired heap size of
2300MB.

1. Set the following three settings by a sysctl.conf file, typically located at /etc/sysctl.conf.

Note: You must have root privilege access to modify this file. Also, verify the file is not marked as
read-only before attempting to make changes.

a. Set the number of large pages (2300MB = 575 * 4MB) by issuing the following command:
vm.nr_hugepages = 575

b. Set the maximum shared segment size to 2300MB plus a little more (about 95MB) (2511724800
= 2300MB * 1048576 bytes/MB + 100000000 bytes) by issuing the following command:
kernel.shmmax = 2511724800

c. Set the total number of memory page to be shared by issuing the following command:

62 Tuning guide

|

kernel.shmall = ceil(shmmax/page_size)

This parameter sets the total number of shared memory pages that can be used system wide.
Therefore, the value specified for the shmall parameter should always be at least
ceil(shmmax/page_size) pages.

2. Set the Xmx JVM option to 2300MB.

3. Relocate the program text to a lower virtual memory address (0x10000000) to provide more address
space for a larger heap. On SUSE Linux Enterprise Server 9 , run the following command to
relocate the text in the script that invokes the JVM or in a .profile file:
echo "0x10000000" > /proc/self/mapped_base

Results

This tuning procedure improves performance of WebSphere Application Server on the Linux operating
system.

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning AIX systems
This topic describes how to tune the AIX operating system to optimize the performance of your
WebSphere Application Server.

About this task

There are a number of configuration changes and variables you can set to tune the performance of
Websphere to suit your needs. Because the AIX operating system is not a WebSphere Application Server
product, be aware that it can change and results can vary.

Procedure

Change the following configuration settings or variables according to your needs:

v TCP_TIMEWAIT
– Description: Determines the time that must elapse before TCP/IP can release a closed connection

and reuse its resources. This interval between closure and release is known as the TIME_WAIT
state or twice the maximum segment lifetime (2MSL) state. During this time, reopening the
connection to the client and server costs less than establishing a new connection. By reducing the
value of this entry, TCP/IP can release closed connections faster, providing more resources for new
connections. Adjust this parameter, if the running application requires rapid release or the creation of
new connections, or if a low throughput occurs due to many connections sitting in the TIME_WAIT
state.

– How to view or set:

Issue the following command to set TCP_TIMEWAIT state to 15 seconds:
/usr/sbin/no –o tcp_timewait =15

v AIX operating systems with DB2
– Description: Separating your DB2 log files from the physical database files can boost performance.

You can also separate the log and the database files from the drive that contains the Journaled File
System (JFS) service. AIX uses specific volume groups and file systems for the JFS logging.

– How to view or set: Use the AIX filemon utility to view all the file system input and output and to
strategically select the file system for the DB2 log files. Set the DB2 log location according to the
DB2 logging information..

– Default value: The default location for the DB2 log files is often the same disk drive where the
database tables are stored.

Chapter 5. Tuning the application serving environment 63

|

|
|
|

– Recommended value: Move the files to a disk that is separate from the DB2 data and has the
minimum input or output activity.

v AIX file descriptors (ulimit)
– Description: Specifies the various restrictions on resource usage on the user account. The ulimit

-a command displays all the ulimit limits including the number of open files that are permitted. The
default number of open files setting (2000) is typically sufficient for most applications. If the value set
for this parameter is too low, errors might occur when opening files or establishing connections.
Because this value limits the number of file descriptors that a server process might open, a value
that is too low prevents optimum performance.

– How to view or set: Perform the following steps to change the open file limit to 10,000 files:
1. Open the command window.
2. Edit the /etc/security/limits file. Add the following lines to the user account that the

WebSphere Application Server process runs on:
nofiles = 10000
nofiles_hard = 10000

3. Save the changes.
4. Restart your AIX system.
5. To verify the result, type the ulimit -a command on the command line.

– Default value: For the AIX operating system, the default setting is 2000.
– Recommended value: The value is application dependent and applies exclusively to application

program data and the application stack.

Increasing the ulimit file descriptor limits might improve performance. Increasing some of the other
limits might be needed depending on your application. Any changes to the data or stack ulimits
should ensure that data+stack < 256MB (for 32-bit WebSphere Application Server only).

It is recommended that you change the ulimit for data to "unlimited".

v AIX TCP_KEEPIDLE
– How to view or set:

- If you are on an AIX operating system prior to version 5.2, use the no command to determine the
current value or to set the value. The change is effective until the next time you restart the
machine. To permanently change the value, add the no command to the /etc/rc.net directory.
For example:
no -o tcp_keepidle=600

- If you are on an AIX operating system that is version 5.2 and later, use the no -r -o command to
determine the value or to set the value. On subsequent reboots, the specified no_optionname
value is maintained because it is written to the nextboot file. Set the no command as follows to
enable it on future reboots:
no -r -o arptab_size=10

– Default value: 14400 half seconds (2 hours).
– Recommended value: 600 half seconds (5 minutes).

v TCP_KEEPINTVL
– Description: Specifies the interval between packets that are sent to validate the connection.
– How to view or set: Use the following command to set the value to 5 seconds:

no -o tcp_keepintvl=10
– Default value: 150(1/2 seconds)
– Recommended value: 10(1/2 seconds)

v TCP_KEEPINIT
– Description: Specifies the initial timeout value for TCP connection.
– How to view or set: Use the following command to set the value to 20 seconds:

no -o tcp_keepinit=40
– Default value: 150(1/2 seconds)
– Recommended value: 40(1/2 seconds)

v Allocating large pages (16 MB) for Java virtual machines heap

64 Tuning guide

Some applications require a very large heap for optimal performance. Reduce the CPU overhead of
managing a large heap by using large page support that is provided by the CPU and the operating
system. The following steps allocate 4 GB of RAM as large pages (16 MB):

1. As root user, run the following commands to reserve 4 GB of large page:
vmo -r -o lgpg_regions=256 -o lgpg_size=16777216
bosboot -ad /dev/ipldevice
reboot -q

2. After reboot, run the following command to enable large page support on the AIX operating system:
vmo -p -o v_pinshm=1

3. As root user, add the following capabilities for the user:
chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE $USER

4. Add the -Xlp Java options to the Java command.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Java Virtual Machine.

c. In the Generic JVM Argument field, add -Xlp.

5. Add the EXTSHM custom property and set to OFF.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Environment Entries > New.

c. In the Name field, enter EXTSHM.

d. In the Value field, enter OFF.

6. Validate large page support is used with the following command:
vmstat -l 1

Note: The "alp" column is non-zero when the application is running.

Enabling large pages might have serious consequences. For more details on large pages, see the
information on AIX large pages.

If you do not want to use the large pages option, there is also a medium page option. The medium
page size option, which is similar, and has close to the same performance gains as large pages.
However, it does not involve the problems of reserving physical memory for a specific user or process.
For more information, read the Tuning Java virtual machines information.

v Other AIX information

Consider the other AIX operating system settings that are not within the scope of this document. You
can adjust the following additional settings:
– Adapter transmit and receive queue
– TCP/IP socket buffer
– IP protocol mbuf pool performance
– Update file descriptors
– Update the scheduler

For more information about AIX operating systems, see the performance: resources for learning
information.

Results

This tuning procedure improves performance of WebSphere Application Server on the AIX operating
system.

What to do next

After tuning your operating system for performance, consult the other tuning topics for various tuning tips.

Chapter 5. Tuning the application serving environment 65

Tuning Solaris systems
The following tuning parameters are specific to the Solaris operating system. Because the Solaris
operating system is not a WebSphere Application Server product, be aware that it can change and results
vary.

About this task

On the Solaris operating system, WebSphere Application Server runs on the Oracle Hotspot Java virtual
machine (JVM). It is important to use the correct tuning parameters with the Oracle JVM to utilize its
performance optimizing features. See the JVM tuning information. Also, consider the following parameters
that are specific to the Solaris operating system to ensure that WebSphere Application Server has enough
resources.

Procedure

Configure the following settings or variables according to your tuning needs:

v Solaris file descriptors (ulimit)
– Description: Specifies the maximum number of open files supported. If the value of this parameter

is too low, a Too many files open error is displayed in the WebSphere Application Server
stderr.log file.

– How to view or set: Check the UNIX reference pages on the file descriptor limits for parameters
and commands used. For the KornShell (ksh), the ulimit -n command can be used to set the
desired file descriptor value and the ulimit -a command to display all current ulimit settings in place.

– Default value: 1024
– Recommended value: 10000

v Solaris TCP_TIME_WAIT_INTERVAL
– Description: Notifies TCP/IP on how long to keep the connection control blocks closed. After the

applications complete the TCP/IP connection, the control blocks are kept for the specified time.
When high connection rates occur, a large backlog of the TCP/IP connections accumulates and can
slow server performance. The server can stall during certain peak periods. If the server stalls, the
netstat command shows that many of the sockets that are opened to the HTTP server are in the
CLOSE_WAIT or FIN_WAIT_2 state. Visible delays can occur for up to four minutes, during which
time the server does not send any responses, but CPU utilization stays high, with all of the activities
in system processes.

– How to view or set: Use the get command to determine the current interval and the set command
to specify an interval of 30 seconds. For example:
ndd -get /dev/tcp tcp_time_wait_interval
ndd -set /dev/tcp tcp_time_wait_interval 30000

– Default value: The default time wait interval for a Solaris operating system is 240000 milliseconds,
which is equal to 4 minutes.

– Recommended value: 60000 milliseconds

v Solaris TCP_FIN_WAIT_2_FLUSH_INTERVAL
– Description: Specifies the timer interval prohibiting a connection in the FIN_WAIT_2 state to remain

in that state. When high connection rates occur, a large backlog of TCP/IP connections accumulates
and can slow server performance. The server can stall during peak periods. If the server stalls, using
the netstat command shows that many of the sockets opened to the HTTP server are in the
CLOSE_WAIT or FIN_WAIT_2 state. Visible delays can occur for up to four minutes, during which
time the server does not send any responses, but CPU utilization stays high, with all of the activity in
system processes.

– How to view and set: Use the get command to determine the current interval and the set command
to specify an interval of 67.5 seconds. For example,
ndd -get /dev/tcp tcp_fin_wait_2_flush_interval
ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500

– Default value: 675000 milliseconds
– Recommended value: 67500 milliseconds

66 Tuning guide

v Solaris TCP_KEEPALIVE_INTERVAL
– Description: The keepAlive packet ensures that a connection stays in an active and established

state.
– How to view or set: Use the ndd command to determine the current value or to set the value. For

example:
ndd -set /dev/tcp tcp_keepalive_interval 300000

– Default value: 7200000 milliseconds
– Recommended value: 15000 milliseconds

v Solaris kernel semsys:seminfo_semopm
– Description: An entry in the /etc/system file can exist for this tuning parameter. This number is the

maximum value of System V semaphore operations per semop call. The default value for this option
is too low for highly concurrent systems.

– How to view or set: Set this parameter through the /etc/system entry: semsys:seminfo_semopm =
200

– Default value: None
– Recommended value: 200 (100 is appropriate for most systems, but 200 might be needed in some

cases.)

Note: This parameter has been superseded on the Solaris 10 operating system by the
process.max-sem-ops resource control, which now has a default value of 512 per process. This
default is sufficient for most applications. For more information on Solaris 10 parameters and
resource controls, search for "tunable parameters" and "resource control" on the Sun
Microsystems website at: http://docs.sun.com.

v Connection backlog
– Description: Change the following parameter when a high rate of incoming connection requests

result in connection failures:
ndd -get /dev/tcp tcp_conn_req_max_q
ndd -set /dev/tcp tcp_conn_req_max_q 8000

– Default value: For Solaris 8, the default value is 128.
– Default value: For Solaris 9 and Solaris 10, the default value is 128.
– Recommended value: 8000

v Large page support

Using large pages can reduce the CPU overhead of managing a large JVM heap.

With Solaris 9 and Solaris 10, large page support is provided by default. No operating system or JVM
parameters are necessary to make use of large pages for the JVM heap.

Results

This tuning procedure improves the performance of WebSphere Application Server on the Solaris
operating system.

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning HP-UX systems
This topic describes how to tune the HP-UX operating system to optimize the performance of your
WebSphere Application Server. Because the HP-UX operating system is not a WebSphere Application
Server product, be aware that it can change and results vary

Before you begin

On the HP-UX operating system, WebSphere Application Server runs on the Java virtual machine (JVM),
which is based on the technology of Sun HotSpot JVM. Properly tuning this JVM significantly affects

Chapter 5. Tuning the application serving environment 67

WebSphere Application Server performance by fully utilizing its performance optimizing characteristics.
See the setting up the JVM on the HP-UX system information. It is also important to change some
parameters that are specific to the HP-UX operating system to prevent WebSphere Application Server
from being deprived of resources.

About this task

When you have a performance concern, check the operating system settings to determine if they are
appropriate for your application.

Procedure
v Configure the following settings and variables according to your tuning needs:

– Tuning the HP operating system with the DB2 type 2 JDBC driver

When using the type 2 Java Database Connectivity (JDBC) driver on the HP operating system with
DB2, you can increase the performance of WebSphere Application Server by preallocating the DB2
trace segment. Perform the following steps:

1. Before starting application server, switch to the user that is associated with the DB2 instance.

2. Run the db2trc alloc command.

3. Start application server.

Usage note: Use the type 4 driver for best performance and compatibility.

Another issue with the type 2 JDBC driver on the HP operating system is code page conversion.
Creating the database using the UTF-8 code set avoids this problem and significantly increases
performance. See the database documentation for instructions on creating databases with a specific
code set. Read the DB2 tuning parameters information.

– The HP performance tuning parameters

Modify HP-UX 11i settings to significantly improve WebSphere Application Server performance. For
additional information about the HP performance tuning parameters, see the performance: resources
for learning information.

– Java virtual machine (JVM) virtual page size
- Description: Sets the JVM instruction and data page sizes to 64 MB to improve performance.
- How to view or set: Use the WASHOME/java/bin/SYSTEM_ARCH_PATH/java command. The

command output provides the current operating system characteristics of the process executable.
- Default value: 4 MB, if not assigned
- Recommended value: 64 MB

– HP-UX 11i TCP_CONN_REQUEST_MAX
- Description: Specifies the maximum number of connection requests that the operating system

can queue when the server does not have available threads. When high connection rates occur, a
large backlog of TCP/IP connection requests builds up and client connections are dropped. Adjust
this setting when clients start to time out after waiting to connect. Verify this situation by issuing
the netstat -p tcp command. Look for the following value: connect requests dropped due to full
queue

- How to view or set: Set this parameter by using the ndd -set /dev/tcp tcp_conn_request_max
8192 command.

- Default value: 4096
- Recommended value: In most cases the default is sufficient. Consider adjusting this value to

8192, if the default proves inadequate.

– HP-UX 11i kernel parameter recommendations

Refer to the table of kernel parameters shown in the “Preparing HP-UX systems for installation” topic
in the information center.

– TCP_KEEPALIVE_INTERVAL
- Description: Determines the interval between probes.

68 Tuning guide

- How to view or set: Use the ndd command to determine the current value or to set the value.
For example:
ndd -set /dev/tcp tcp_keepalive_interval 7200000

- Default value: None
- Recommended value: 7200000 milliseconds

– TCP_KEEPALIVES_KILL
- Description: Determines the maximum number of times to probe before dropping.
- How to view or set: Use the ndd command to determine the current value or to set the value.

For example:
ndd -set /dev/tcp tcp_keepalives_kill 1

- Default value: 1
- Recommended value: 1

v Keeping current with the operating system and Java patches is one of the most important things you
can do to optimize the performance of a server. For the latest Java patches, visit the following website:

HP-UX Patch Information

Also, for the latest operating system quality pack, visit the following website:

Support Plus: Quality Pack Bundles

Results

This tuning procedure improves performance of WebSphere Application Server on the HP-UX operating
system.

What to do next

After tuning your operating system for performance, consult the other tuning topics for various tuning tips.

Tuning web servers
WebSphere Application Server provides plug-ins for several web server brands and versions. Each web
server operating system combination has specific tuning parameters that affect the application
performance.

About this task

Following is a list of tuning parameters specific to web servers. The listed parameters may not apply to all
of the supported web servers. Check your web server documentation before using any of these
parameters.

Procedure
v Tune the IBM HTTP Server 2.0.47.1, Apache 2.0.48, IBM HTTP Server 6.0, and IBM HTTP Server

6.1. Monitoring the CPU utilization and checking the IBM HTTP Server error_log and http_plugin.log
files can help you diagnose web server performance problems.

You can also configure the IBM HTTP Server to show a status page:
– Edit the IBM HTTP Server httpd.conf file and remove the comment character (#) from the following

lines in this file:
#LoadModule status_module, modules/ApacheModuleStatus.dll,
#<Location/server-status>
#SetHandler server-status
#</Location>

– Save the changes and restart the IBM HTTP Server.
– In a web browser, go to: http://your_host/server-status. Alternatively, click Reload to update status.
– (Optional) If the browser supports refresh, go to http://your_host/server-status?refresh=5 to refresh

every five seconds.

Chapter 5. Tuning the application serving environment 69

http://ftp.hp.com/pub/softlib/hpuxjava-patchinfo/index.html
http://ftp.hp.com/pub/softlib/hpuxjava-patchinfo/index.html#whatqpks

All of these web servers allocate a thread to handle each client connection. Ensuring that enough
threads are available for the maximum number of concurrent client connections helps prevent this tier
from being a bottleneck. The settings for these web servers can be tuned by making changes to the
httpd.conf file on the web server system.

You can check the IBM HTTP Server error_log file to see if there are any warnings about having
reached the maximum number of clients (MaxClients). There are several parameters, depending on the
specific operating system platform, that determine the maximum number of clients the web server
supports. See http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients for a description of
the MaxClients parameters.

v Support thousands of concurrent clients. It is not unusual for a single IBM HTTP Server system to
support thousands of concurrent clients. If your requirements are to support more concurrent clients
than the number of threads that are supported by the web server operating system and hardware,
consider using multiple web servers.

v Respond to a Connection Refused error message. Some clients might receive a Connection
Refused error message if there is a sudden increase in the number of clients. Increasing the
ListenBacklog and StartServer parameters can reduce or eliminate this error.

– The ListenBacklog parameter indicates to the operating system the maximum allowed number of
pending connections. Although the IBM HTTP Server default is 511, the actual value can be much
higher or lower depending on the corresponding operating system parameter. To handle large
numbers of simultaneous connections, this parameter and the corresponding OS parameter might
need to be set to the number (possibly thousands) of expected simultaneous connections. (See the
information about tuning operating systems for additional information on how to tune your operating
system.

– The StartServers parameter indicates the number of IBM HTTP Server processes to initially start.
Pre-starting these IBM HTTP Server threads/processes reduces the chance of a user having to wait
for a new process to start. You should set this parameter to a value equal to the MinSpareServers
parameter so that the minimum number of IBM HTTP Server processes needed for this client load is
started immediately.

v Prevent the frequent creation and destruction of client threads/processes as the number of
users change. You can a use the MinSpareServers and MaxSpareServers to specify the minimum and
maximum number of servers (client threads/processes) that can exist in an idle state. To prevent
frequent creation and destruction of client threads/processes as the number of users change, set this
range large enough to include the maximum number of simultaneous users.

v Change the setting on the web server's Access logging parameter to reduce the load on the web
server. If you do not need to log every access to the Application Server, change the default value of the
web server's Access logging parameter. This change will reduce the load on the web server.

v Modify the settings of the Load balancing option and Retry interval web server plug-in properties
to improve performance. You can improve the performance of IBM HTTP Server (with the WebSphere
web server plug-in) by modifying the following web server plug-in configuration properties:

– Load balancing option, which specifies the load balancing option that the plug-in uses in sending
requests to the various application servers associated with that web server.

The goal of the default load balance option, Round Robin, is to provide an even distribution of work
across cluster members. Round Robin works best with web servers that have a single process
sending requests to the Application Server. If the web server is using multiple processes to send
requests to the Application Server, the Random option can sometimes yield a more even distribution
of work across the cluster.

– Retry interval value, which specifies the length of time to wait before trying to connect to a server
that has been marked temporarily unavailable.

How can lowering the retry interval affect throughput ? If the plug-in attempts to connect to a
particular application server and that application server is offline or in the process of restarting, the
requests must wait for a timeout period. This process causes delayed responses for those requests.
If you set the retry interval value too high, then an available application server is not utilized.

Specify the retry interval value based on the following factors:

70 Tuning guide

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

- How long it will take for your application servers to restart

- How averse you are to the delay caused by retrying too often

- How important it is to utilize all of your application servers

Making these changes can help the IBM HTTP Server to support more product users. To modify these
properties, in the administrative console, click Servers > Server Types > Web Servers >
web_server_name > Plug-in properties > Request routing .

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 17. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 18. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.

Chapter 5. Tuning the application serving environment 71

Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 19. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 20. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 21. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

72 Tuning guide

Table 22. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 23. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Using PassByReference optimization in SCA applications
Support exists for the @AllowsPassByReference annotation, which can be used to bypass marshaling and
unmarshaling when a client invokes a service located in the same JVM over a remote interface.

About this task

Typically, a performance intensive aspect of service invocations is data marshaling and unmarshaling.
Though invocation over a local interface always results in pass-by-reference semantics so that no data is
copied, an invocation over a remotable interface entails pass-by-value semantics, which typically results in
copying of the data which can be expensive.

The SCA default binding provides the @AllowsPassByReference as an optimization that you can use on
your service implementation at the class level or at the individual method level.

In placing the @AllowsPassByReference annotation on the service implementation class or methods, the
implementor agrees not to modify the data in a way that would violate the pass-by-value semantics. This
allows both client and service to assume they are working with their own copy of the data even though the
runtime environment has optimized to not perform the actual data serialization and deserialization, to save
this expense.

Parameters, return types, and business exceptions are passed by reference if the service implementation
class has the @AllowsPassByReference annotation defined at the class level or individual method level.

More specifically, the PassByReference optimization is performed when all of the following are true:

v Client and service have been targeted to the same JVM.

Chapter 5. Tuning the application serving environment 73

v The invocation is over the default binding.

v @AllowsPassByReference is present. Either the service implementation is a Java implementation with
an appropriate @AllowsPassByReference annotation, or a composite implementation, ultimately
recursively implemented in terms of such an @AllowsPassByReference-annotated Java implementation.

v All input, output, and exception types have the same package-qualified class names and can be loaded
by a class loader common to or shared by both client and service.

v Both client and service are part of the same business-level application.

This requirement applies to OSOA SCA applications. For OSOA SCA applications, both client and
service must be part of the same business-level application. This requirement does not apply to OASIS
SCA applications.

Procedure
1. To enable PassByReference optimization for SCA applications, ensure all classes that you want to

optimize are loaded by the same class loader. Use the SCA contribution import and export support.

2. Create a Java archive (JAR) file that contains all classes that are loaded by the same class loader
during both client and service execution.

3. Add an sca-contribution.xml file to the META-INF directory in the JAR.

See the OSOA Assembly specification for information on sca-contribution.xml. The contribution
definition must contain an export.java statement that exports all packages contained in the JAR that
are accessed by either the client or service JAR file. For example:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared/java">
<export.java package="com.ibm.sample.interface"/>
<export.java package="com.ibm.sample.types"/>

</contribution>

If the client and service JAR files are not already using an sca-contribution.xml file, update these
files to use a contribution definition that imports the packages that are exported by the shared library.
For example, the contribution files for the client and service that access the previous shared
contribution might look like this:
Client:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbr="http://test.sca.scafp/pbr/shared">
<deployable composite="pbr:PassByRef.SharedClient"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

Service:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbrsh="http://test.sca.scafp/pbr/shared">
<deployable composite="pbrsh:PassByRef.SharedService"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

4. Deploy the SCA application

Add the client, service, and shared contributions as an asset into the WebSphere repository. This can
occur in any order, however you must add the shared contribution as an asset before you can add
either the client or service asset as a composition unit to a business-level application. Only the client
and service assets need to be added as composition units to your business-level applications. During
the add composition unit operation for both the client and the service, the shared asset is automatically
added to the business-level application as a shared library.

Clients that are deployed outside of a business-level application cannot use the PassByReference
optimization to invoke SCA services deployed inside a business-level application. For example, a
user-created web application archive (WAR) file using the default binding cannot be installed into a

74 Tuning guide

business-level application, and therefore a WAR-hosted client might not participate in the
PassByReference optimization. The PassByReference optimization is supported only between JAR
files.

For OSOA SCA applications, you must install both service JAR files in the same business-level
application.

For OASIS SCA applications, the JAR files can be in separate business-level applications.

Results

You have enabled PassByReference optimization for SCA applications.

Tuning the application server using pre-defined tuning templates
You can use the python-based tuning script, applyPerfTuning.py, along with one of its template files, to
apply pre-defined performance tuning templates to your application server or cluster. The script, and these
property-based template files are located in the WAS_HOME/bin directory.

Before you begin

bprac: The configuration settings applied by this script and the associated tuning templates should be
viewed as potential performance tuning options for you to explore or use as a starting point for
additional tuning. The configuration settings that each of the pre-defined templates applies are
geared towards optimizing common application server environments or scenarios. Typically, these
settings improve performance for many applications.

Because optimizing for performance often involves trade-offs with features, capabilities, or
functional behavior, some of these settings might impact application correctness, while other
settings might be inappropriate for your environment. Please review the documentation below and
consider the impact of these settings to your application inventory and infrastructure.

As with any performance tuning exercise, the settings configured by the predefined templates
should be evaluated in a controlled preproduction test environment. You can then create a
customized template to refine the tuning settings to meet the specific needs of your applications
and production environment.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Typically, when you run the applyPerfTuning.py script, you will specify either the production.props template
file or the development.props template file to apply against the target server or cluster.

v If you specify the production.props template file when you run the applyPerfTuning.py script, the script
applies configuration settings that are appropriate for a production environment where application
changes are rare and optimal runtime performance is important.

v If you specify the development.props template file when you run the applyPerfTuning.py script, the script
applies configuration settings that are appropriate for a development environment where frequent
application updates are performed and system resources are at a minimum.

In addition to these two common templates, a third template file, default.props, is provided to enable you
to revert the server configuration settings back to the out-of-the-box defaults settings.

Chapter 5. Tuning the application serving environment 75

You can also create your own custom tuning template. To create a custom tuning template, copy one of
the existing templates, modify the configuration settings to better fit the needs of your applications and
environment, and then use the applyPerfTuning.py script to apply these customized settings. The script
and properties files leverage the property file configuration management features that wsadmin provides,
and can easily be augmented to tune additional server components. See the topic Using properties files to
manage system configuration for more information.

About this task

Review the following table to see the configuration changes that occur based on the template file that you
specify when you run the applyPerfTuning.py script. A blank cell in this table indicates that the listed
parameter is not configured, or is configured back to the default settings for the server defaults.

Table 24. Tuning parameters and their template values. The table includes the tuning parameter and its value for the
default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

JVM Heap Size (MB)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

50 min / 256 max 512 min / 512 max 256 min / 512 max

Verbose GC

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

disabled enabled disabled

JVM Diagnostic Trace
(Generic JVM Arguments)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.
gotcha: This setting might
cause issues when web
services are used in certain
scenarios. Therefore, if you
are running web services,
and are experiencing
throughput optimization
issues, you can remove this
parameter from the script,
or set the opti level to 0.

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

HTTP (9080) and HTTPS
(9443) Channel
maxKeepAliveRequests

See the topic HTTP
transport custom properties
for more information about
this setting.

100 10000 10000

TCP Channel
maxOpenConnections

20000 500 500

76 Tuning guide

Table 24. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

TCP Channel listenBacklog 511 128 128

Development Mode

See the topic Application
server settings for more
information about this
setting.

disabled enabled

Server Component
Provisioning

See the topic Application
server settings for more
information about this
setting.

disabled enabled enabled

PMI Statistic Set

See the topic Enabling PMI
data collection for more
information about this
setting.

basic none none

Authentication Cache
Timeout

See the topic Authentication
cache settings for more
information about this
setting.

10 minutes 60 minutes 60 minutes

Data Source Connection
Pool Size*

See the topic Connection
pool settings for more
information about this
setting.

1 min / 10 max 10 min / 50 max

Data Source Prepared
Statement Cache Size*

See the topic WebSphere
Application Server data
source properties for more
information about this
setting.

10 50

ORB Pass-by-Reference**

See the topic Request
Broker service settings for
more information about this
setting.

disabled enabled enabled

Web Server Plug-in
ServerIOTimeout

900 900 900

Chapter 5. Tuning the application serving environment 77

Table 24. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

Thread Pools (Web
Container, ORB, Default)

See the topic Thread pool
settings for more
information about this
setting.

50 min / 50 max, 10 min /
50 max, 20 min / 20 max

5 min / 10 max

Table notes:

* Indicates items that are tuned only if they exist in the configuration. For example, a data source connection pool
typically does not exist until an application is installed on the application server. If these items are created after
your run the script, they are given the standard server default values unless you specify other settings.

** Enabling ORB Pass-By-Reference can cause incorrect application behavior in some cases, because the Java
EE standard assumes pass-by-value semantics. However, enabling this option can improve performance up to
50% or more if the EJB client and server are installed in the same instance, and your application is written to take
advantage of these feature. The topic Object Request Broker service settings can help you determine if this
setting is appropriate for your environment.

Following are a few subtle platform-specific tuning differences:

Solaris platform
The following Generic JVM arguments are used for both the production and development
environments:

-XX:-UseAdaptiveSizePolicy

-XX:+UseParallelGC

-XX:+AggressiveOpts

-XX:+UnlockDiagnosticVMOptions -server

-Dcom.ibm.xml.xlxp.jaxb.opti.level=3

HP-UX platform
The following Generic JVM arguments are used for both the production and development
environments:

-XX:+AggressiveOpts

-XX:+ForceMmapReserved

-XX:SurvivorRatio=16

-XX:+UseParallelGC

-Djava.nio.channels.spi.SelectorProvider=sun.nio.ch.DevPollSelectorProvider

-XX:-ExtraPollBeforeRead -XX:+UseSpinning

-Dcom.ibm.xml.xlxp.jaxb.opti.level=3

Procedure
v Start the wsadmin tool if it is not already running, and then complete one of the following actions to tune

an application server or all of the application servers in a cluster.

v Run the applyPerfTuning.py script to tune a specific server or cluster of servers running in a production
environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile production.props

78 Tuning guide

v Run the applyPerfTuning.py script to tune a specific server or cluster of servers running in a
development environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile development.props

v Run the applyPerfTuning.py script to change the settings for a server or a cluster back to the standard
out-of-the-box default configuration settings.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile default.props

What to do next

Conduct a performance evaluation, and tuning exercise to determine if you should further fine tune the
server for your specific applications.

Chapter 5. Tuning the application serving environment 79

80 Tuning guide

Chapter 6. Troubleshooting performance problems

This topic illustrates that solving a performance problem is an iterative process and shows how to
troubleshoot performance problems.

Before you begin

It is recommended that you review the tuning parameters hot list page before reading this topic.

About this task

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the performance is now
constrained by some other part of the system. For example, replacing slow hard disks with faster ones
might shift the bottleneck to the CPU of a system.

Measuring system performance and collecting performance data

v Begin by choosing a benchmark, a standard set of operations to run. This benchmark exercises those
application functions experiencing performance problems. Complex systems frequently need a warm-up
period to cache objects, optimize code paths, and so on. System performance during the warm-up
period is usually much slower than after the warm-up period. The benchmark must be able to generate
work that warms up the system prior to recording the measurements that are used for performance
analysis. Depending on the system complexity, a warm-up period can range from a few thousand
transactions to longer than 30 minutes.

v If the performance problem under investigation only occurs when a large number of clients use the
system, then the benchmark must also simulate multiple users. Another key requirement is that the
benchmark must be able to produce repeatable results. If the results vary more than a few percent from
one run to another, consider the possibility that the initial state of the system might not be the same for
each run, or the measurements are made during the warm-up period, or that the system is running
additional workloads.

v Several tools facilitate benchmark development. The tools range from tools that simply invoke a URL to
script-based products that can interact with dynamic data generated by the application. IBM Rational
has tools that can generate complex interactions with the system under test and simulate thousands of
users. Producing a useful benchmark requires effort and needs to be part of the development process.
Do not wait until an application goes into production to determine how to measure performance.

v The benchmark records throughput and response time results in a form to allow graphing and other
analysis techniques. The performance data that is provided by WebSphere Application Server
Performance Monitoring Infrastructure (PMI) helps to monitor and tune the application server
performance. See the information on why use request metrics to learn more about performance data
that is provided by WebSphere Application Server. Request metrics allows a request to be timed at
WebSphere Application Server component boundaries, enabling a determination of the time that is
spent in each major component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:
v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each component is contributing to
the overall response time. Focus on the component accounting for the most time. Use Tivoli

© IBM Corporation 2002 81

Performance Viewer to check for resource consumption, including frequency of garbage collections. You
might need code profiling tools to isolate the problem to a specific method. See the Administering
applications and their environment PDF for more information.

v Scenario: Poor performance only occurs with multiple users.

Suggested solution: Check to determine if any systems have high CPU, network or disk utilization and
address those. For clustered configurations, check for uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk constraint but
performance problems occur with multiple users.

Suggested solutions:
– Check that work is reaching the system under test. Ensure that some external device does not limit

the amount of work reaching the system. Tivoli Performance Viewer helps determine the number of
requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large number of threads
waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM HTTP Server,
database, and the application servers. Conversely, too many threads can increase resource
contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc option of your Java
virtual machine. Excessive garbage collection can limit throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching can greatly reduce the
use of system resources by returning a previously cached response, thereby avoiding the work needed to
construct the original response. Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing out hot spots you can
optimize. IBM Rational and other companies have tools to perform code profiling. An analysis of the
application might reveal areas where some work might be reduced for some types of transactions.

Change tuning parameters to increase some resources, for example, the number of file handles, while
other resources might need a hardware change, for example, more or faster CPUs, or additional
application servers. Key tuning parameters are described for each major WebSphere Application Server
component to facilitate solving performance problems. Also, the performance advisors page can provide
advice on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are underutilized and others are
overloaded. WebSphere Application Server workload management functions provide several ways to
determine how the work is distributed. Workload distribution applies to both a single server and
configurations with multiple servers and nodes.

Some critical sections of the application and server code require synchronization to prevent multiple
threads from running this code simultaneously and leading to incorrect results. Synchronization preserves

82 Tuning guide

correctness, but it can also reduce throughput when several threads must wait for one thread to exit the
critical section. When several threads are waiting to enter a critical section, a thread dump shows these
threads waiting in the same procedure. Synchronization can often be reduced by: changing the code to
only use synchronization when necessary; reducing the path length of the synchronized code; or reducing
the frequency of invoking the synchronized code.

Chapter 6. Troubleshooting performance problems 83

84 Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 85

86 Tuning guide

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 87

http://www.ibm.com/legal/copytrade.shtml

88 Tuning guide

Index

A
application server environment

tuning 27
applications

tuning 3

D
directory

installation
conventions 29, 51, 71

J
JVM

tuning 32, 42

P
performance

tuning 3, 9, 10
Performance and Diagnostic Advisor 11

T
Tivoli Performance Viewer

tuning 23, 25
troubleshooting

performance 81

tuning 14
application server environment 27
applications 3
best practices 18
buffer sizes 31
diagnostic alerts 12
heap dumps 20, 22, 23
JVM 32, 42

HP-UX 46
Solaris 46

memory leaks 19, 20
operating systems 59

AIX 63
HP-UX 67
Linux 61
Solaris 66
Windows 59

parameters 27
performance 3, 7, 9, 10, 23, 81
Performance and Diagnostic Advisor 11
settings 16, 17, 58
transport channel services 54
web server 69

W
web server

tuning 69

© Copyright IBM Corp. 2012 89

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Tuning the Liberty profile
	Chapter 2. Planning for performance
	Application design consideration

	Chapter 3. Taking advantage of performance functions
	Chapter 4. Obtaining advice from the advisors
	Why you want to use the performance advisors
	Performance advisor types and purposes
	Performance and Diagnostic Advisor

	Using the Performance and Diagnostic Advisor
	Performance and Diagnostic Advisor configuration settings
	Enable Performance and Diagnostic Advisor Framework
	Enable automatic heap dump collection
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Minimum CPU For Working System
	CPU Saturated

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice type
	Performance impact
	Advice status

	Viewing the Performance and Diagnostic Advisor recommendations
	Starting the lightweight memory leak detection
	Lightweight memory leak detection

	Enabling automated heap dump generation
	Generating heap dumps manually
	Locating and analyzing heap dumps

	Using the performance advisor in Tivoli Performance Viewer
	Performance advisor report in Tivoli Performance Viewer
	Message
	Performance data in the upper panel

	Chapter 5. Tuning the application serving environment
	Tuning parameter hot list
	Directory conventions
	Tuning TCP/IP buffer sizes
	Tuning the JVM
	Tuning the IBM virtual machine for Java
	Tuning HotSpot Java virtual machines (Solaris & HP-UX)
	Sun HotSpot JVM tuning parameters (Solaris and HP-UX)

	Directory conventions
	Tuning transport channel services
	Checking hardware configuration and settings
	Tuning operating systems
	Tuning Windows systems
	Tuning Linux systems
	Tuning AIX systems
	Tuning Solaris systems
	Tuning HP-UX systems

	Tuning web servers
	Directory conventions
	Using PassByReference optimization in SCA applications
	Tuning the application server using pre-defined tuning templates

	Chapter 6. Troubleshooting performance problems
	Notices
	Trademarks and service marks
	Index
	A
	D
	J
	P
	T
	W

