IBM WebSphere Application Server for Distributed
Platforms, Version 8.5

Overview

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1205)

Compilation date: June 1, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments .

Using this PDF .

Chapter 1. Learn about WebSphere applications: Overview and new features .

Guided activities for the administrative console

Tutorials .

Accessing the samples

Development and assembly tooIs .

WebSphere Application Server architecture .
Three-tier architectures

Chapter 2. ActivitySessions .

The ActivitySession service .
Usage model for using ActrvrtySessrons wrth HTTP sessions
ActivitySession and transaction contexts .
ActivitySession and transaction container policies in combrnatron
ActivitySession samples .
ActivitySession service: Resources for Iearnrng

Chapter 3. Application profiling
Application profiling.
Tasks and units of work consrderatrons
Application profiles .
Application profiling tasks

Chapter 4. Asynchronous beans .
Asynchronous beans .
Work managers .
Timer managers .
Example: Using connectrons wrth asynchronous beans

Chapter 5. Bean Validation
Bean Validation .

Chapter 6. Communications Enabled Applications .
Communications Enabled Applications concepts .

CEA call flow .

CEA collaboration flow

CEA iWidgets .

Collaboration Dialog

Collaborative two-way forms

REST APIs in CEA .

Directory conventions .

Chapter 7. Client applications .

Types of client applications .
Terms used for clients.
Application Client for WebSphere Applrcatlon Server
Stand-alone thin clients
Java EE client.
Java thin client
Applet client

© Copyright IBM Corp. 2012

. Xiii

. XV

.12
.12
.12
.14
. 15
.17

.21
.21
. 22
. 24
. 25
. 31
.32

. 35
. 35
. 36
. 37
. 38

.4
.4
. 44
. 50
. 51

. 53
. 53

. 57
. 57
. 58
. 59
. 61
. 61
. 64
. 65
.72

.77
.77
. 80
. 81
. 81
. 82
. 83
. 84

ActiveX to Enterprise JavaBeans (EJB) Brrdge.
Pluggable Application Client .o .

Chapter 8. Data access resources

Data concepts.
Relational resource adapters and JCA
JDBC providers .
Data sources .
Data access beans . .
Connection management arch|tecture .
Data access: Resources for learning .
Service Data Objects: Resources for Iearmng

Java Persistence API (JPA) architecture.
JPA for WebSphere Application Server .
wsjpaversion command . S
wsjpa properties

Transaction support in WebSphere Applrcatron Server
Resource manager local transaction (RMLT) .
Global transactions
Local transaction contarnment
Local and global transactions
Client support for transactions
Commit priority for transactional resources.
Sharing locks between transaction branches .
Transaction compensatlon and business activity suppon
JTA support . e
SCA transaction mtents

Chapter 9. Dynamic caching
Dynamic cache service eviction polrcres
Disk cache infrastructure enhancements
Eviction policies using the disk cache garbage collector
Example: Caching web services
Caching with Servlet 3.0

Chapter 10. EJB applications .

Enterprise beans .

Java EE application resource declaratrons .
Message-driven beans - automatic message retrreval

Message-driven beans, activation specifications, and listener ports.

Message processing in ASF mode and non-ASF mode .
Message-driven beans - JCA components .
J2C activation specification configuration and use .
Message-driven beans - transaction support .
Message-driven beans - listener port components .
Access intent policies for EJB 2.x entity beans .
Concurrency control .
Read ahead scheme hints.
Database deadlocks caused by lock upgrades
Access intent assembly settings
Java Persistence API (JPA) architecture.
JPA for WebSphere Application Server .
wsjpaversion command . S
wsjpa properties
Transaction support in WebSphere Applrcat|on Server
Resource manager local transaction (RMLT) .

iV Overview

. 85
. 86

. 87
. 87
. 87
.91
. 93
. 94
. .9
.11
. 112
. 112
. 114
. 114
. 116
. 117
. 118
. 118
. 119
. 128
. 128
. 124
. 126
. 127
. 132
. 135

141
141
141
. 142
. 143
. 146

. 147
. 147
. 148
. 152
. 153
. 155
. 159
. 160
. 161
. 163
. 165
. 165
. 166
. 167
. 168
. 170
171
171
. 173
. 174
. 175

Global transactions

Local transaction contalnment

Local and global transactions

Client support for transactions

Commit priority for transactional resources.

Sharing locks between transaction branches .
Transaction compensatron and business activity support
JTA support . .

SCA transaction mtents

Chapter 11. IBM WebSphere Application Server Developer Tools for Eclipse overviewVersion

8.5

Chapter 12. The Liberty profile
Liberty profile: Architecture
Programming model support .
Liberty profile externals support.
Liberty profile: Server configuration
Liberty profile: Configuration elements in the serverxml f|Ie
Liberty profile: Feature management .
Liberty profile: Server features .
Liberty profile: Security . .
Liberty profile: Quick overview of securlty .
Liberty profile: Authentication .
Liberty profile: Authorization .
Liberty profile: Security public APls .
Configuration differences between the full prot|le and leerty prot|le securlty

Chapter 13. Mail, URLs, and other Java EE resources
Mail service providers and mail sessions

Mail: Resources for learning .

JavaMail support for Internet Protocol 6. 0
URLs

URLs: Resources for Iearmng

Chapter 14. Managed beans
Managed beans .o

Chapter 15. Messaging resources .
Styles of messaging in applications
Types of messaging providers
Default messaging .
JCA activation specrflcatlons and service |ntegrat|on .
JMS connection factories and service integration
JMS queue resources and service integration
JMS topic resources and service integration .
The createQueue or createTopic method and the default messaglng prowder
How JMS applications connect to a messaging engine on a bus. .
Interoperation with WebSphere MQ .
Comparison of WebSphere Application Server and WebSphere MQ messagtng
Interoperation with WebSphere MQ: Comparison of architectures .
Interoperation with WebSphere MQ: Comparison of key features
Interoperation with WebSphere MQ: Key WebSphere MQ concepts
Interoperation using the WebSphere MQ messaging provider .

How messages are passed between service integration and a WebSphere MQ network .

Interoperation using a WebSphere MQ link

. 175
. 176
. 180
. 180
. 181
. 183
. 184
. 189
. 192

. 197

. 199
. 200
. 203
. 208
. 209
. 209
. 331
. 331
. 335
. 337
. 338
. 347
. 349
. 353

. 355
. 355
. 355
. 356
. 356
. 356

. 359
. 359

. 361
. 361
. 362
. 364
. 365
. 365
. 366
. 367
. 369
. 372
. 387
. 387
. 388
. 390
. 394
. 396
. 418
. 423

Contents

\'}

Interoperation using a WebSphere MQ server

Message-driven beans - automatic message retrieval.
Message-driven beans, activation specifications, and listener ports
Message processing in ASF mode and non-ASF mode .
Message-driven beans - JCA components .
J2C activation specification configuration and use .
Message-driven beans - transaction support .
Message-driven beans - listener port components .

JMS interfaces - explicit polling for messages

Chapter 16. Naming and dlrectory
Naming.

Namespace Ioglcal view

Initial context support

Lookup names support in deployment descnptors and th|n cllents .

JNDI support in WebSphere Application Server .
Configured name bindings. e
Namespace federation .

Naming roles

Naming and directories: Resources for Iearnlng

Chapter 17. Object Request Broker (ORB)
Object Request Brokers .
Logical pool distribution.
Object Request Brokers: Resources for Iearnlng

Chapter 18. OSGi applications
An introduction to OSGi Applications .
Business goals and OSGi Applications .
The modularization challenge
The OSGi Framework
Enterprise OSGi standards
The WebSphere programming model and OSGl
The Blueprint Container. Coe e
Blueprint bundles .
Blueprint XML . .
Beans and the Blueprint Contalner
Services and the Blueprint Container .
References and the Blueprint Container.
Scopes and the Blueprint Container .
Object values and the Blueprint Container .
Object life cycles and the Blueprint Container.
Resource references and the Blueprint Container .
Dynamism and the Blueprint Container .
Type converters and the Blueprint Container .
JNDI lookup for blueprint components
OSGi bundles and bundle archives
Enterprise bundle archives
Composite bundles
Application bundles, use bundles and prowsmn bundles
Web application bundles
EJB bundles .
Bundle and package verS|on|ng
Manifest files. .
Example: OSGi bundle mamfest f|le . .
Example: OSGi composite bundle manifest file .

Vi Overview

. 446
. 459
. 461
. 462
. 467
. 468
. 468
. 471
. 472

. 475
. 475
. 475
. 478
. 479
. 481
. 481
. 483
. 484
. 486

. 487
. 487
. 487
. 488

. 489
. 490
. 490
. 491
. 492
. 493
. 494
. 497
. 498
. 498
. 499
. 502
. 503
. 505
. 506
. 508
. 509
. 510
. 512
. 512
. 514
. 514
. 517
. 518
. 519
. 521
. 521
. 522
. 522
. 524

Example: OSGi application manifest file.
OSGi deployment manifest file .
Provisioning for OSGi applications.
OSGi application isolation and sharing .
Java 2 security and OSGi Applications .
JMS and OSGi Applications .
JPA and OSGi Applications
SCA and OSGi Applications . .
Transactions and OSGi Applications .
Bean security and OSGi applications .
Enterprise JavaBeans and OSGi Appl|cat|ons

Chapter 19. Portlet applications .
Portlet container ..
Portlets.
Portlet filters .
Portlet container

Chapter 20. SCA composites . .
SCA in WebSphere Application Server: Overwew .
Learn about SCA composites e

SCA components .

SCA composites

SCA domain .

SCA contributions . .

Security configurations for SCA apphcatlons .
Unsupported SCA specification sections.

Chapter 21. Service integration .
Service integration technologies.
Service integration buses .
Bus members
Messaging engines
Mechanisms for stopping messaglng engmes
Message points.
Messaging engine commumcat|on
Security for messaging engines.
Applications with a dependency on messagmg englne ava|lab|I|ty
Bus destinations .
How JMS destinations relate to service mtegratlon destlnatlons .
Queue destinations .
Publish/subscribe messaging and toplc spaces .
Foreign destinations and alias destinations
Permanent bus destinations .
Temporary bus destinations .
Exception destinations .
Destination mediation
Destination routing paths .
Message points.
Message ordering . .
Strict message ordering for bus destlnatlons .
Message selection and f||ter|ng
Message stores.
Relative advantages of a flle store and a data store
File stores.
Data stores .

Contents

. 526
. 529
. 529
. 531
. 532
. 533
. 534
. 536
. 536
. 539
. 541

. 543
. 543
. 543
. 543
. 545

. 547
. 547
. 550
. 552
. 553
. 554
. 554
. 557
. 559

. 569
. 569
. 569
. 572
. 573
. 573
. 574
. 579
. 584
. 585
. 585
. 587
. 589
. 590
. 593
. 597
. 598
. 598
. 600
. 600
. 602
. 607
. 609
. 611
. 611
. 612
. 612
. 617

Vii

Service integration security .
Service integration security plannmg
Messaging security and multiple security domalns
Messaging security
Security event logging . .
Messaging security audit events
Client authentication on a service mtegratron bus
Role-based authorization .
Destination security .
Mediations security
Topic security .
Access control for multlple buses .
Message security in a service integration bus
Mediations .
Mediation handlers and med|at|on handler Ilsts .
Transactionality in mediations
Performance tuning for mediations.
Performance monitoring for mediations .
Concurrent mediations .
Mediation points .
Mediation context mformatlon
Mediations security
Mediation application |nstallat|on
Mediation programming. .
Service integration configurations .
Bus configurations.
Bootstrap members .
Service integration notification events

Message reliability levels - JMS delivery mode and service mtegratron qualrty of service .

Dynamic reloading of configuration files .
Service integration backup.

Chapter 22. Session Initiation Protocol (SIP) applications .
SIP in WebSphere Application Server e
SIP applications Coe
SIP container

Chapter 23. Spring applications .

Spring Framework.
Presentation layer and the Sprlng Framework
Data access and the Spring Framework.
Transaction support and the Spring Framework .
JMX and MBeans with the Spring Framework
JMS and the Spring Framework. ..
Class loaders and the Spring Framework .
Thread management and the Spring Framework

Chapter 24. Transactions
Transaction support in WebSphere Appllcatron Server
Resource manager local transaction (RMLT) .
Global transactions
Local transaction contalnment
Local and global transactions
Client support for transactions
Commit priority for transactional resources.
Sharing locks between transaction branches .

Viil Overview

. 621
. 623
. 625
. 625
. 626
. 626
. 629
. 630
. 631
. 632
. 633
. 635
. 636
. 637
. 638
. 639
. 640
. 640
. 641
. 641
. 642
. 642
. 643
. 643
. 646
. 647
. 671
. 672
. 673
. 676
. 677

. 679
. 679
. 680
. 693

. 695
. 695
. 695
. 695
. 697
. 699
. 700
. 701
. 701

. 703
. 703
. 704
. 704
. 705
. 709
. 709
. 710
. 712

Transaction compensation and business activity support.
JTA support . .
SCA transaction mtents

Chapter 25. Work area.
Overview of work area service .
Work area property modes
Nested work areas
Distributed work areas . .
WorkArea service: Special conS|derat|ons .

Chapter 26. Web applications .
Learn about web applications
Web applications . .
Asynchronous request dlspatcher .
Sessions . .
Session management support
Distributed sessions .
Scheduled invalidation . .
Base in-memory session pool size.
HTTP session invalidation .
Write operations
HTTP sessions: Resources for Iearmng
Asynchronous request dispatcher .
Asynchronous request dispatcher .

Chapter 27. Web services
Overview: Online garden retailer web services scenarios .
Web services online garden retailer scenario: Static inquiry on suppller .

Web services online garden retailer scenario: Dynamic inquiry on supplier .

Web services online garden retailer scenario: Cross supplier inquiry .
Service-oriented architecture . .
Web services approach to a service- orlented archltecture .
Web services business models supported in SOA .
Web services
Web Services for Java EE speC|f|cat|on
Artifacts used to develop web services .
WSDL .
SOAP .
JAX-WS
JAXB . .
JAX-RPC . .
WS-| Basic Profile. . . .
WS-I Attachments Profile .
Overview of IBM JAX-RS .
Web Services Addressing support .
Web Services Addressing overview
Web Services Addressing version |nteroperab|I|ty
Web Services Addressing application programming model .
Web Services Addressing annotations
Web Services Addressing security .
Web Services Addressing: firewalls and mtermedlary nodes
Web Services Addressing and the service mtegratton bus .
Web Services Addressing APIs .
IBM proprietary Web Services Addressing SPIs
Web Services Resource Framework support .

. 713
. 718
. 721

. 727
. 727
. 728
. 729
. 730
. 731

. 733
. 733
. 733
. 745
. 751
. 751
. 752
. 752
. 753
. 754
. 754
. 755
. 755
. 755

. 763
. 763
. 766
. 768
. 770
. 772
. 773
. 775
. 776
. 777
. 779
. 779
. 782
. 795
. 815
. 817
. 819
. 821
. 821
. 822
. 825
. 831
. 832
. 833
. 835
. 835
. 836
. 837
. 840
. 845

Contents

ix

Web Services Resource Framework base faults. .
Web Services Resource Framework resource property and Ilfecycle operatlons .
Web Services Distributed Management . .
Web Services Distributed Management resource management
Web Services Distributed Management manageab|I|ty capabilities for WebSphere Applrcat|on
Server resource types
Web Services Distributed Management support in the applrcatron server.
Web Services Distributed Management in a stand-alone application server mstance
Web Services Distributed Management in a WebSphere Application Server, Network Deployment
cell .
Web Services Dlstnbuted Management in an adm|n|strat|ve agent enwronment . -
Notifications from the application server Web Services Distributed Management resources .
Web Services Invocation Framework (WSIF) .
Goals of WSIF .
WSIF Overview.
WS-Policy. .
Web service prowders and polrcy conflguratlon sharlng
Web service clients and policy configuration to use the service prowder pollcy
WS-MetadataExchange requests
WS-ReliableMessaging . . .
WS-ReliableMessaging - How it works .
Benefits of using WS-ReliableMessaging
Qualities of service for WS-ReliableMessaging .
Use patterns for WS-ReliableMessaging
WS-ReliableMessaging sequences
WS-ReliableMessaging - terminology . .
WS-ReliableMessaging: supported specmcatlons and standards
WS-ReliableMessaging roles and goals .
WS-ReliableMessaging - requirements for mteractron W|th other |mplementat|ons
WS-Transaction
Web Services Atomic Transactlon support in the appllcatlon server.
Web Services Business Activity support in the application server .
Web services transactions, high availability, firewalls and intermediary nodes .
Transaction compensation and business activity support.
WS-Transaction and mixed-version cells
Business activity API. .
Overview of the Version 3 UDDI reglstry
Databases and production use of the UDDI reglstry
UDDI registry terminology .
Web Services Security concepts .
What is new for securing web services . .
Web Services Security configuration consrderatlons
Default bindings and runtime properties for Web Services Secunty .
Web Services Security provides message integrity, confidentiality, and authentlcatlon .

Chapter 28. XML applications

Overview of XML support . .
XSLT 2.0, XPath 2.0, and XQuery 1. 0 major new functlons .

Overview of the XML Samples application Coe .

Building and running a sample XML application

Chapter 29. What is new in this release
Chapter 30. Overview and new features for administering applications and their environments
What is new for administrators.

Introduction: System administration .

X Overview

. 847
. 850
. 853
. 855

. 855
. 862
. 863

. 864
. 865
. 866
. 867
. 868
. 869
. 872
. 873
. 875
. 878
. 879
. 880
. 881
. 881
. 883
. 886
. 887
. 888
. 890
. 891
. 892
. 892
. 896
. 898
. 898
. 904
. 904
. 907
. 909
. 910
. 913
. 913
. 941
. 943
. 944

. 1017
. 1017
. 1017
. 1019
. 1022

. 1025

1033

. 1033
. 1033

Introduction: Administrative console . .
Introduction: Administrative scripting (wsadmin)
Introduction: Administrative commands.
Introduction: Administrative programs . .
Introduction: Administrative configuration data .

Introduction: Environment

Introduction: Application servers .
Introduction: Application servers .
Introduction: Web servers .

Mail, URLs, and other J2EE resources.

Data access resources

Messaging resources .

Chapter 31. Overview and new features for securing applications and their environment

Security . .

What is new for securlty speC|aI|sts
What is new for securing web services.
Security planning overview .

. 1034
. 1034
. 1035
. 1035
. 1036
. 1036
. 1036
. 1036
. 1038
. 1038
. 1039
. 1040

1043
. 1043
. 1050
. 1050
. 1053

Security considerations when reg|ster|ng a base Appllcat|on Server node W|th the admlnlstratwe

agent .
Security: Resources for Iearnlng
Common Criteria (EAL4) support . .
Federal Information Processing Standard support

Chapter 32. Overview and new features for developing applications .

What is new for developers .

What is new for deployers

Learn about WebSphere appllcatlons OverV|ew and new features
Specifications and APl documentation .
Introduction: Web services . .
Introduction: Messaging resources .
Introduction: Dynamic cache
Learn about SIP applications

Learn about WebSphere programming extensmns
Introduction: Dynamic cache

Accessing the samples

Mail, URLs, and other J2EE resources.

Data access resources

Messaging resources .

Chapter 33. Overview and new features for monitoring
Performance: Resources for learning

Chapter 34. Overview and new features for tuning performance .

Chapter 35. Overview and new features for troubleshooting
What is new for troubleshooters

Chapter 36. What has changed in this release .
Transitioning notes for administration topics .
Transitioning notes for development topics
Transitioning notes for deployment topics .
Transitioning notes for security topics

Chapter 37. WebSphere Application Server roles and goals.

. 1061
. 1062
. 1064
. 1064

. 1067
. 1067
. 1068
. 1068
. 1078
. 1093
. 1094
. 1095
. 1097
. 1098
. 1098
. 1101
. 1103
. 1104
. 1105

. 1107
. 1107

. 1109

111
1112

. 1113
. 1113
. 1114
. 1115
. 1115

L1117

Contents Xi

Chapter 38. Fast paths for WebSphere Application Server 1119

Chapter 40. WebSphere platform and related software. 1238
Chapter 41. Guided activities for the administrativeconsole 1125
Chapter 42. Tutorials.N27
Chapter 43. Accessingthesamples .. .12
Chapter 44. Using the administrative clients. 1133
Chapter 45. Specifications and APl documentation 1135
Chapter 46. WebSphere Application Server architecture 1151
Three-tier architectures .153
Chapter 47. Deprecated, stabilized, and removed features 1155
Deprecated features .155
Features deprecated in Version85 .156
Features deprecated in Version8.0.01 .159
Features deprecated in Version80 .16
Features deprecated in Version70 .166
Features deprecated in Version6.1170
Features deprecated in Version6.0.2174
Features deprecated in Version6.0174
Features deprecated in Version51.1 .1178
Features deprecated in Version5.1 .178
Features deprecated in Version5.0.2 .182
Features deprecated in Version5.0.1 .1184
Features deprecated in Version50 .186
Stabilized features188
Removed features189
Features removed in Version85. .. .19
Features removed in Version 8.0 .192
Features removed in Version7.0.19
Features removed in Version6.11096
Features removed in Version6.0 .. .197
Chapter 48. Development and assembly tools . 1199
Chapter 49. Web resources for learning .1201
Notices L . . . L L. s .o 1205
Trademarks and servicemarks. .1207
Index L L L Lo 1209

Xii Overview

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.
* To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 xiii

XiV Overview

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

» Links to Web addresses beginning with http:// work.
» Links that refer to specific page numbers within the same PDF book work.
* The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.
For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 XV

XVi Overview

Chapter 1. Learn about WebSphere applications: Overview
and new features

Use the Learn about WebSphere applications section as a starting point to study the programing model,
encompassing the many parts used in and by various application types supported by the application
server.

The programming model for applications deployed on this product has the following aspects.
» Java specifications and other open standards for developing applications
+ WebSphere® programming model extensions to enhance application functionality

» Containers and services in the application server, used by deployed applications, and which sometimes
can be extended

The diagram shows a single application server installation. The parts pertaining to the programming model
are discussed here. Other parts comprise the product architecture, independent of the various application
types outlined by the programming model. See r‘WebSphere Application Server architecture” on page 15.|

© IBM Corporation 2003 1

Application server Scripting client

Server configuration Class loader

lé Console
: Admin application ¢
: Web browser client
Caafiguration = \Web container
files % .
=; SIP container = Web server, plug-in
= = 7| |«
2 g @ Caching proxy *
z Portlet container S '% geny
=1 g [s
g . @ (2]
= E.JB container U . .
5 a |z| 4 Client container
£ =)
® 2 E Java client
JCA i
Application gk . L
database . . managed by external provider
I Extensions registry _l (MQ)
Messaging engine TG l
< Service integration bus
Web services engine Message queues
.
\& Web services
: : provider or
Maming and directory gateway

Transactions

PD infrastructure

I
I
I Performance infrastructure
I
I

WLM and HA® * Available only with

Metwork Deployment edition

Security infrastructure

< Ports Environment settings >
Lk/]

Java EE application components

The product supports application components that conform to Java Platform, Enterprise Edition (Java EE)
specifications.

Web applications run in the web container

2 Overiew

The web container is the part of the application server in which web application components run.
Web applications are comprised of one or more related servlets, JavaServer Pages technology
(JSP files), and Hyper Text Markup Language (HTML) files that you can manage as a unit.
Combined, they perform a business logic function.

The web container processes servlets, JSP files, and other types of server-side includes. Each
application server runtime has one logical web container, which can be modified, but not created
or removed. Each web container provides the following.

Web container transport chains
Requests are directed to the web container using the web container inbound transport
chain. The chain consists of a TCP inbound channel that provides the connection to the
network, an HTTP inbound channel that serves HTTP requests, and a web container
channel over which requests for servlets and JSP files are sent to the web container for
processing.

Servlet processing
When handling servlets, the web container creates a request object and a response
object, then invokes the servlet service method. The web container invokes the servlet's
destroy method when appropriate and unloads the servlet, after which the JVM performs
garbage collection.

Servlets can perform such tasks as supporting dynamic web page content, providing
database access, serving multiple clients at one time, and filtering data.

JSP files enable the separation of the HTML code from the business logic in web pages.
IBM® extensions to the JSP specification make it easy for HTML authors to add the power
of Java technology to web pages, without being experts in Java programming.

HTML and other static content processing
Requests for HTML and other static content that are directed to the web container are
served by the web container inbound chain. However, in most cases, using an external
web server and web server plug-in as a front end to the web container is more appropriate
for a production environment.

Session management
Support is provided for the javax.servlet.http.HttpSession interface as described in the
Servlet application programming interface (API) specification.

An HTTP session is a series of requests to a servlet, originating from the same user at the
same browser. Sessions allow applications running in a web container to keep track of
individual users. For example, many web applications allow users to dynamically collect
data as they move through the site, based on a series of selections on pages they visit.
Where the user goes next, or what the site displays next, might depend on what the user
has chosen previously from the site. To maintain this data, the application stores it in a
“session”.

SIP applications and their container

SIP applications are Java programs that use at least one Session Initiation Protocol (SIP)
servlet. SIP is used to establish, modify, and terminate multimedia IP sessions including IP
telephony, presence, and instant messaging.

Portlet applications and their container

Portlet applications are special reusable Java servlets that appear as defined regions on
portal pages. Portlets provide access to many different applications, services, and web
content.

EJB applications run in the EJB container
The EJB container provides all of the runtime services needed to deploy and manage enterprise
beans. It is a server process that handles requests for both session and entity beans.

Chapter 1. Learn about WebSphere applications: Overview and new features 3

Enterprise beans are Java components that typically implement the business logic of Java EE
applications, as well as accessing data. The enterprise beans, packaged in EJB modules, installed
in an application server do not communicate directly with the server. Instead, the EJB container is
an interface between EJB components and the application server. Together, the container and the
server provide the enterprise bean runtime environment.

The container provides many low-level services, including threading and transaction support. From
an administrative perspective, the container handles data access for the contained beans. A single
container can host more than one EJB Java archive (JAR) file.

Client applications and other types of clients

In a client-server environment, clients communicate with applications running on the server. Client
applications or application clients generally refers to clients implemented according to a particular set of
Java specifications, and which run in the client container of a Java EE-compliant application server. Other
clients in the WebSphere Application Server environment include clients implemented as web applications
(web clients), clients of web services programs (web services clients), and clients of the product systems
administration (administrative clients).

Client applications and their container
The client container is installed separately from the application server, on the client machine. It
enables the client to run applications in an EJB-compatible Java EE environment. The diagram
shows a Java client running in the client container.

This product provides a convenient launchClient tooll for starting the application client, along with
its client container runtime.

Depending on the source of technical information, client applications sometimes are called
application clients. In this documentation, the two terms are synonymous.

Web clients, known also as web browser clients
The diagram shows a web browser client, which can be known simply as a web client, making a
request to the web container of the application server. A web client or web browser client runs in a
web browser, and typically is a web application.

Web services clients
Web services clients are yet another kind of client that might exist in your application serving
environment. The diagram does not depict a web services client. The web services information
includes information about this type of client.

Administrative clients
The diagram shows two kinds of administrative clients: a scripting client and the administrative
console that is the graphical user interface (GUI) for administering this product. Both are accessing
parts of the systems administration infrastructure. In the sense that they are basically the same for
whatever kind of applications you are deploying on the server, administrative clients are part of the
product architecture. However, because many of these clients are programs you create, they are
discussed as part of the programming model for completeness.

Web services

Web services
The diagram shows the web services engine, part of the web services support in the application
server runtime. Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. They implement a service-oriented architecture
(SOA), which supports the connecting or sharing of resources and data in a flexible and
standardized manner. Services are described and organized to support their dynamic, automated
discovery and reuse.

4 Overiew

The product acts as both a web services provider and as a requestor. As a provider, it hosts web
services that are published for use by clients. As a requester, it hosts applications that invoke web
services from other locations. The diagram shows the web services engine in this capacity,
contacting a web services provider or gateway.

SCA composites

Service Component Architecture (SCA)
SCA composites consist of components that implement business functions in the form of services.

Data access, messaging, and Java EE resources

Data access resources
Connection management for access to enterprise information systems (EIS) in the application
server is based on the Java EE Connector Architecture (JCA) specification. The diagram shows
JCA services helping an application to access a database in which the application retrieves and
persists data.

The connection between the enterprise application and the EIS is done through the use of
EIS-provided resource adapters, which are plugged into the application server. The architecture
specifies the connection management, transaction management, and security contracts between
the application server and EIS.

The Connection Manager (not shown) in the application server pools and manages connections. It
is capable of managing connections obtained through both resource adapters defined by the JCA
specification and data sources defined by the JDBC 2.0 Extensions specification.

JDBC resources (JDBC providers and data sources) are a type of Java EE resource used by
applications to access data. Although data access is a broader subject than that of JDBC
resources, this information often groups data access under the heading of Java EE resources for
simplicity.

JCA resource adapters are another type of Java EE resource used by applications. The JCA
defines the standard architecture for connecting the Java EE platform to heterogeneous EIS.
Imagine an ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

The JCA resource adapter is a system-level software driver supplied by EIS vendors or other
third-party vendors. It provides the connectivity between Java EE application servers or clients and
an EIS. To use a resource adapter, install the resource adapter code and create configurations
that use that adapter. The product provides a predefined relational resource adapter for your use.

Messaging resources and messaging engines
JMS support enables applications to exchange messages asynchronously with other JMS clients
by using JMS destinations (queues or topics). Applications can use message-driven beans to
automatically retrieve messages from JMS destinations and JCA endpoints without explicitly polling
for messages.

For inbound non-JMS requests, message-driven beans use a Java EE Connector Architecture
(JCA) 1.5 resource adapter written for that purpose. For JMS messaging, message-driven beans
can use a JCA-based messaging provider such as the default messaging provider that is part of
the product.

The messaging engine supports the following types of message providers.

Default messaging provider (service integration bus)
The default messaging provider uses the service integration bus for transport. The default
message provider provides point-to-point functions, as well as publish and subscribe
functions. Within this provider, you define JMS connection factories and destinations that
correspond to service integration bus destinations.

Chapter 1. Learn about WebSphere applications: Overview and new features 5

WebSphere MQ provider
You can use WebSphere MQ as the external JMS provider. The application server
provides the JMS client classes and administration interface, while WebSphere MQ
provides the queue-based messaging system.

Generic JMS provider
You can use another messaging provider as long as it implements the ASF component of
the JMS 1.0.2 specification. JMS resources for this provider cannot be configured using
the administrative console.

transition: Version 6 replaces the Version 5 concept of a JMS server with a messaging engine
built into the application server, offering the various kinds of providers mentioned
previously. The Version 5 messaging provider is offered for configuring resources for
use with Version 5 embedded messaging. You also can use the Version 5 default
messaging provider with a service integration bus.

EJB 2.1 introduces an ActivationSpec for connecting message-driven beans to
destinations. For compatibility with Version 5, you still can configure JMS
message-driven beans (EJB 2.0) against a listener port. For those message-driven
beans, the message listener service provides a listener manager that controls and
monitors one or more JMS listeners, each of which monitors a JMS destination on
behalf of a deployed message-driven bean.

Service integration bus

The service integration bus provides a unified communication infrastructure for messaging and
service-oriented applications. The service integration bus is a JMS provider that provides reliable
message transport and uses intermediary logic to adapt message flow intelligently into the
network. It supports the attachment of web services requestors and providers. Its capabilities are
fully integrated into product architecture, including the security, system administration, monitoring,
and problem determination subsystems.

The service integration bus is often referred to as just a bus. When used to host JMS applications,
it is often referred to as a messaging bus. It consists of the following parts (not shown at this level
of detail in the diagram).

Bus members
Application servers added to the bus.

Messaging engine
The component that manages bus resources. It provides a connection point for clients to
produce or from where to consume messages.

Destinations
The place within the bus to which applications attach to exchange messages. Destinations
can represent web services endpoints, messaging point-to-point queues, or messaging
publish and subscribe topics. Destinations are created on a bus and hosted on a
messaging engine.

Message store
Each messaging engine uses a set of tables in a supported data store (such as a JDBC
database) to hold information such as messages, subscription information, and transaction
states.

Through the service integration bus web services enablement, you can:

* Make an internal service that is already available at a service destination available as a web
service.

* Make an external web service available at a service destination.

* Use the web services gateway to map an existing service, either an internal service or an
external web service, to a new web service that appears to be provided by the gateway.

6 Overiew

Mail, URLs, and other Java EE resources
The following kinds of Java EE resources are used by applications deployed on a J2EE-compliant
application server.

Security

JDBC resources and other technology for data access (previously discussed)
JCA resource adapters (previously discussed)

JMS resources and other messaging support (previously discussed)
JavaMail support, for applications to send Internet mail

The JavaMail APIs provide a platform and protocol-independent framework for building
Java-based mail client applications. The APIs require service providers, known as protocol
providers, to interact with mail servers that run on the appropriate protocols.

A mail provider encapsulates a collection of protocol providers, including Simple Mail Transfer
Protocol (SMTP) for sending mail; Post Office Protocol (POP) for receiving mail; and Internet
Message Access Protocol (IMAP) as another option for receiving mail. To use another protocol,
you must install the appropriate service provider for the protocol.

JavaMail requires not only service providers, but also the JavaBeans Activation Framework
(JAF), as the underlying framework to handle complex data types that are not plain text, such
as Multipurpose Internet Mail Extensions (MIME), URL pages, and file attachments.

URLs, for describing logical locations

URL providers implement the functionality for a particular URL protocol, such as HTTP, enabling
communication between the application and a URL resource that is served by a particular
protocol. A default URL provider is included for use by any URL resource with protocols based
on the supported Java Platform, Standard Edition (Java SE) specification, such as HTTP, FTP,
or File. You also can plug in your own URL providers that implement additional protocols.

Resource environment entries, for mapping logical names to physical names

The java:comp/env environment provides a single mechanism by which both the JNDI name
space objects and local application environment objects can be looked up. The product provides
numerous local environment entries by default.

The Java EE specification also provides a mechanism for defining customer environment entries
by defining entries in the standard deployment descriptor of an application. The Java EE
specification uses the following methods to separate the definition of the resource environment
entry from the application.

— Requiring the application server to provide a mechanism for defining separate administrative
objects that encapsulate a resource environment entry. The administrative objects are
accessible using JNDI in the application server local name space (java:comp/env).

— Specifying the administrative object's JNDI lookup name and expected returned object type.
This specification is performed in the aforementioned resource environment entry in the
deployment descriptor.

The product supports the use of resource environment entries with the following administrative

concepts.

— A resource environment entry defines the binding target (JNDI name), factory class, and
return object type (via the link to a referenceable) of the resource environment entry.

— A referenceable defines the class name of the factory that returns object instances
implementing a Java interface.

— A resource environment provider groups together the referenceable, resource environment
entries and any required custom properties.

Security programming model and infrastructure
The product provides security infrastructure and mechanisms to protect sensitive Java EE

Chapter 1. Learn about WebSphere applications: Overview and new features 7

resources and administrative resources and to address enterprise end-to-end security
requirements on authentication, resource access control, data integrity, confidentiality, privacy, and
secure interoperability.

Security infrastructure and mechanisms protect Java Platform, Enterprise Edition (Java EE)
resources and administrative resources, addressing your enterprise security requirements. In turn,
the security infrastructure of this product works with the existing security infrastructure of your
multiple-tier enterprise computing framework. Based on open architecture, the product provides
many plug-in points to integrate with enterprise software components to provide end-to-end
security.

The security infrastructure involves both a programming model and elements of the product
architecture that are independent of the application type.

Additional services for use by applications

Naming and directory
Each application server provides a naming service that in turn provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources hosted on the
application server. The JNDI implementation is built on top of a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming model used by
application developers. CosNaming provides the server-side implementation and is where its name
space is actually stored. JNDI essentially provides a client-side wrapper of the name space stored
in CosNaming, and interacts with the CosNaming server on behalf of the client.

Clients of the application server use the naming architecture to obtain references to objects related
to those applications. The objects are bound into a mostly hierarchical structure called the name
space. It consists of a set of name bindings, each one of which is a name relative to a specific
context and the object bound with that name. The name space can be accessed and manipulated
through a name server.

This product provides the following naming and directory features.

» Distributed name space, for additional scalability

» Transient and persistent partitions, for binding at various scopes

* Federated name space structure across multiple servers

» Configured bindings for defining bindings bound by the system at server startup

» Support for CORBA Interoperable Naming Service (INS) object URLs

Note that with the addition of virtual member manager to provide federated repository support for

product security, the product now offers more extensive and sophisticated identity management
capabilities than ever before, especially in combination with other WebSphere and Tivoli® products.

Object Request Broker (ORB)
The product uses an ORB to manage interaction between client applications and server
applications, as well as among product components. An ORB uses IIOP to enable clients to make
requests and receive requests from servers in a network distributed environment.

The ORB provides a framework for clients to locate objects in the network and call operations on
those objects as though the remote objects were located in the same running process as the
client, providing location transparency.

Although not shown in the diagram, one place in which the ORB comes into play is where the
client container is contacting the EJB container on behalf of a Java client.

Transactions
Part of the application server is the transaction service. The product provides advanced
transactional capabilities to help application developers avoid custom coding. It provides support

8 Overiew

for the many challenges related to integrating existing software assets with a Java EE
environment. These measures include ActivitySessions (described below).

Applications running on the server can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made permanent.
Transactions are started and ended by applications or the container in which the applications are
deployed.

The application server is a transaction manager that supports coordination of resource managers
and participates in distributed global transactions with other compliant transaction managers.

The server can be configured to interact with databases, JMS queues, and JCA connectors
through their local transaction support when distributed transaction support is not required.

How applications use transactions depends on the type of application, for example:

+ A session bean either can manage its transactions itself, or delegate the management of
transactions to the container.

* Entity beans use container-managed transactions.
* Web components, such as servlets, use bean-managed transactions.

The product handles transactions with the following components.

« A transaction manager supports the enlistment of recoverable XAResources and ensures each
resource is driven to a consistent outcome, either at the end of a transaction, or after a failure
and restart of the application server.

» A container manages the enlistment of XAResources on behalf of deployed applications when it
performs updates to transactional resource managers such as databases. Optionally, the
container can control the demarcation of transactions for EJB applications that have enterprise
beans configured for container-managed transactions.

* An API handles bean-managed enterprise beans and servlets, allowing such application
components to control the demarcation of their own transactions.

WebSphere extensions

WebSphere programming model extensions are the programming model benefits you gain by purchasing
this product. They represent leading edge technology to enhance application capability and performance,
and make programming and deployment faster and more productive.

In addition, your applications can use the Eclipse extension framework. Your applications are extensible as
soon as you define an extension point and provide the extension processing code for the extensible area
of the application. You can also plug an application into another extensible application by defining an
extension that adheres to the target extension point requirements. The extension point can find the newly
added extension dynamically and the new function is seamlessly integrated in the existing application. It
works on a cross Java Platform, Enterprise Edition (Java EE) module basis. The application extension
registry uses the Eclipse plug-in descriptor format and application programming interfaces (APIs) as the
standard extensibility mechanism for WebSphere applications. Developers who build WebSphere
application modules can use WebSphere Application Server extensions to implement Eclipse tools and to
provide plug-in modules to contribute functionality such as actions, tasks, menu items, and links at
predefined extension points in the WebSphere application. For more information about this feature, see
IApplication extension registry|

The various WebSphere programming model extensions, and the corresponding application services that
support them in the application server runtime, can be considered in three groups: Business Object Model
extensions, Business Process Model extensions, and extensions for producing Next Generation
Applications.

Extensions pertaining to the Business Object Model

Chapter 1. Learn about WebSphere applications: Overview and new features 9

Business object model extensions operate with business objects, such as enterprise bean (EJB)
applications.

Application profiling
Application profiling is a WebSphere extension for defining strategies to dynamically control
concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application
performance for enterprise beans without impacting source code. Different enterprise beans, and
even different methods in one enterprise bean, can have their own intent to access resources.
Profiling the components based on their access intent increases performance in the application
server runtime.

Dynamic query
Dynamic query is a WebSphere programming extension for unprecedented application flexibility. It
lets you dynamically build and submit queries that select, sort, join, and perform calculations on
application data at runtime. Dynamic Query service provides the ability to pass in and process EJB
query language queries at runtime, eliminating the need to hard-code required queries into
deployment descriptors during application development.

Dynamic query improves enterprise beans by enabling the client to run custom queries on EJB
components during runtime. Until now, EJB lookups and field mappings were implemented at
development time and required further development or reassembly in order to be changed.

Dynamic cache
The dynamic cache service improves performance by caching the output of servlets, commands,
and JSP files. This service within the application server intercepts calls to cacheable objects and
either stores the output of the object or serves the content of the object from the dynamic cache.

Because Java EE applications have high read-write ratios and can tolerate small degrees of
latency in the currency of their data, the dynamic cache can create opportunity for significant gains
in server response time, throughput, and scalability.

Features include cache replication among clusters, cache disk offload, Edge side include caching,
and external caching - the ability to control caches outside of the application server, such as that
of your Web server.

Extensions pertaining to the Business Process Model

Business process model extensions provide process, workflow functionality, and services for the
application server. Use them in conjunction with business integration capabilities.

ActivitySessions
ActivitySessions are a WebSphere extension for reducing the complexity of dealing with
commitment rules and limitations associated with one-phase commit resources.

ActivitySessions provide the ability to extend the scope of multiple local transactions, and to group
them. This enables them to be committed based on deployment criteria or through explicit program
logic.

Web services
Web services are self-contained, modular applications that can be described, published, located,
and invoked over a network. They implement a services oriented architecture (SOA), which
supports the connecting or sharing of resources and data in a very flexible and standardized
manner. Services are described and organized to support their dynamic, automated discovery and
reuse.

Extensions for creating next generation applications

10 Overview

Next generation extentions can be used in applications that need the specific extensions. These enable
next generation development by leveraging the latest innovations that build on today's Java EE standards.
This provides greater control over application development, execution, and performance than was ever
possible before.

Asynchronous beans
Asynchronous beans offer performance enhancements for resource-intensive tasks by enabling
single tasks to run as multiple tasks. Asynchronous scheduling facilities can also be used to
process parallel processing requests in “batch mode” at a designated time. The product provides
full support for asynchronous execution and invocation of threads and components within the
application server. The application server provides execution and security context for the
components, making them an integral part of the application.

Startup beans
Startup beans allow the automatic execution of business logic when the application server starts or
stops. For example, they might be used to pre-fill application-specific caches, initialize
application-level connection pools, or perform other application-specific initialization and
termination procedures.

Object pools
Object pools provide an effective means of improving application performance at runtime, by
allowing multiple instances of objects to be reused. This reuse reduces the overhead associated
with instantiating, initializing, and garbage-collecting the objects. Creating an object pool allows an
application to obtain an instance of a Java object and return the instance to the pool when it has
finished using it.

Internationalization
The internationalization service is a WebSphere extension for improving developer productivity. It
allows you to automatically recognize the time zone and location information of the calling client,
so that your application can act appropriately. The technology enables you to deliver each user,
around the world, the right date and time information, the appropriate currencies and languages,
and the correct date and decimal formats.

Scheduler
The scheduler service is a WebSphere programming extension responsible for starting actions at
specific times or intervals. It helps minimize IT costs and increase application speed and
responsiveness by maximizing utilization of existing computing resources. The scheduler service
provides the ability to process workloads using parallel processing, set specific transactions as
high priority, and schedule less time-sensitive tasks to process during low traffic off-hours.

Work areas
Work areas are a WebSphere extension for improving developer productivity. Work areas provide
a capability much like that of “global variables”. They provide a solution for passing and
propagating contextual information between application components.

Work areas enable efficient sharing of information across a distributed application. For example,
you might want to add profile information as each customer enters your application. By placing this
information in a work area, it will be available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Chapter 1. Learn about WebSphere applications: Overview and new features 11

Guided activities for the administrative console

The topic describes the guided activities that are available in the administrative console. Guided activities
lead you through common administrative tasks that require you to visit multiple administrative console
pages.

Table 1. Quick reference: Accessing the guided activities. The following table gives you the web address for the
guided activities in the administrative console.

The guided activities are available from the main page of the administrative console. The page is displayed after you
log into the administrative console. To open the console, enter this web address in your web browser:

http://your fully qualified server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See [Starting and logging off the administrative console| for details, as needed.

Guided activities display each administrative console page that you need to perform a task, surrounded by
the following information to help you perform the task successfully.

* An introduction to the task, introducing essential concepts and describing when and why to perform the
task

» Other tasks to do before and after performing the task

* The main steps to complete during this task

» Hints and tips to help you avoid and recover from problems

» Links to field descriptions and extended task information in the online documentation

Tutorials

This topic describes how to find tutorials and their accompanying samples, for learning how to accomplish
your goals with the product.

IBM Education Assistant tutorials
The|IBM Education Assistant site| provides education resources that you can use at your
convenience.

developerWorks tutorials and training
The [Tutorials and Training page| of developerWorks provides tutorials and other training resources
that you can use at your convenience.

Accessing the samples

The product offers samples that demonstrate common enterprise application tasks. Many samples also
provide instructions for deployment and coding examples.

The product provides samples in two ways:

Plants By WebSphere sample installed with the product
If you select to install samples when installing the product and when creating an application server
profile, the Plants By WebSphere application is included with the product. The application
demonstrates several Java Platform, Enterprise Edition (Java EE) functions, using an online store
that specializes in plant and garden tool sales.

See |Installing the Plants By WebSphere samplel

Samples downloadable from the Samples, Version 8.5 information center
The product provides component-specific samples that you can download at any time from a
download site.

+ [Available samples|

12 Overview

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp
http://www.ibm.com/developerworks/training/tutorials.html

« [Downloading samples|

Installing the Plants By WebSphere sample

To install the Plants By WebSphere sample, perform the following steps.
1. Install the product.
When specifying installation or profile options, select to install the sample applications.

Plants By WebSphere sample is installed in the app_server_root/samples directory. A Plants By
WebSphere pre-built enterprise archive named pbw-ear.ear is in the /samples/PlantsByWebSphere/
pbw-ear/target directory.

Installation instructions are in the /samples/PlantsByWebSphere/docs directory.

You can build or modify the sample source code to support your project. The source code is in a src
directory.

2. Start the application server.
Available samples

Samples that you can download include, for example, the following materials:

Service Component Architecture (SCA) samples
The SCA samples support SCA specifications. SCA services are packaged in Java archive (JAR)
files that you import as assets to the product repository and then add as composition units to
business-level applications.

Download SCA.zip, or individual sample files, to a directory on your workstation. You might create
the /samples/sca directory path on your workstation and download SCA sample files to that
directory path.

You must deploy SCA sample files as assets of a business-level application to a Version 8.0 or
later server or to a Version 7.0 target that is enabled for the Feature Pack for SCA. The
SCA/installableApps directory of SCA.zip contains prebuilt archives that you can deploy as
assets. The other directories contain sample-specific source files, scripts, and instructions for
building deployable archives.

Communications Enabled Applications (CEA) samples
The CEA sample applications provide two main services, telephony access and multi-modal web
interaction. Use this collection of sample applications to explore the services and to use as a
starting point when developing your own communication enabled applications.

OSGi samples
The OSGi samples help you develop and deploy modular applications that use both Java EE and
OSGi technologies.

XML samples
The XML samples demonstrate use of the XML API and supported specifications.

Internationalization service sample
The Internationalization service sample demonstrates how to use the internationalization service in
Java EE applications, specifically within servlets and enterprise beans.

Web services samples

These samples demonstrate both Java API for XML-based RPC (JAX-RPC) and Java API for XML
Web Services (JAX-WS) web services that use Java Platform, Enterprise Edition (Java EE) beans
and JavaBeans components.

The JAX-WS web service samples demonstrate the implementation of one-way and two-way web
services that highlight the use of web services standards such as WS-Addressing (WS-A) ,

Chapter 1. Learn about WebSphere applications: Overview and new features 13

WS-Reliable Messaging (WS-RM), and WS-Secure Conversation (WS-SC) and the SOAP
Message Transmission Optimization Mechanism (MTOM) technology.

Service Data Objects (SDO) sample
This sample demonstrates data access to a relational database through Service Data Objects
(SDO) and Java DataBase Connectivity (JDBC) Mediator technologies.

Downloading samples

You can download samples from the Samples, Version 8.5 information center.
1. Go to the Samples, Version 8.5 information center.

2. Determine which samples you want to download.

3. On the Downloads tab for the samples that you want, click a Download Sample link.

4. In the authentication window, click OK.

5. Download the compressed file, or individual sample files, to a directory on your workstation.

You might create the /samples/sample_type directory path on your workstation and download the
sample files to that directory path.

Many sample compressed files have an /installableApps directory that contains deployable prebuilt
archives. Other directories contain files such as sample-specific source archives, scripts, and instructions
for building deployable archives.

To deploy them to the application server, you can use the administrative console or use the install script
in the app_server_root/samples/bin directory.

Limitations of the samples
* The samples are for demonstration purposes only.

The code that is provided is not intended to run in a secured production environment. The samples
support Java 2 Security, therefore the samples implement policy-based access control that checks for
permissions on protected system resources, such as file I/0.

The samples also support administrative security.

Additional samples and examples

Samples on developerWorks®
Additional product samples are available on [WebSphere developerWorks

Samples in tutorials
Many product tutorials rely on sample code. To find tutorials that demonstrate specific
technologies, browse the links in [‘Tutorials” on page 12)

Examples in the product documentation
The product documentation contains many code snippets and examples. To locate these examples
easily, see the developer examples in the Reference section of the information center navigation
for the product edition that you are using.

Development and assembly tools

You can use an Integrated Development Environment to develop, assemble, and deploy Java Platform,
Enterprise Edition (Java EE) modules for WebSphere Application Server.

The IBM Rational® Application Developer for WebSphere Software product and the IBM WebSphere
Application Server Developer Tools for Eclipse product are supported tools for integrated development
environments.

14 Overview

http://www.ibm.com/developerworks/websphere/library/samples/AppServer.html

This information center refers to the products as the assembly tools. However, you can use the products to
do more than assemble modules. Use these tools in an integrated development environment to develop,
assemble, and deploy Java EE modules.

The Rational Application Developer for WebSphere Software is a more extensive set of tools supporting
enterprise development. This workbench has integrated support for WebSphere Application Server Version
6.1 and later. This workbench also supports both the OSGi and Java EE programming models, and
contains wizards and visual editors to help you develop Web 2.0, Service Component Architecture (SCA),
Java, and Java EE applications. This product contains code quality tools to help you analyze code and
improve performance. This product integrates with Rational Team Concert to provide a team-based
environment to help developers share information and work collaboratively. The Trial download for Rational
Application Developer is available at http://www.ibm.com/developerworks/downloads/r/rad/.

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE applications to WebSphere Application Server Version 7.0 and 8.x.
This workbench integrates with the application server to help you to quickly deploy and test applications.
This product contains wizards and visual editors that support the Java EE programming model.

For documentation on the tools, see “Rational Application Developer documentation.” Topics on application
assembly in this information center supplement that documentation.

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

WebSphere Application Server architecture
This article introduces the parts of the WebSphere Application Server.

Servers

WebSphere Application Server. An application server is a Java virtual machine (JVM) running user
applications. Application servers use Java technology to extend web server capabilities to handle web
application requests. An application server makes it possible for a server to generate a dynamic,
customized response to a client request. The WebSphere Application Server provides application servers.

For more introduction, refer to[“Introduction: Application servers” on page 1036.|

Generic servers. In distributed platforms, you can use the generic servers feature to create a generic
server as an application server instance within the product administration, and associate it with a
non-WebSphere server or process. The generic server can be associated with any server or process that
is necessary to support the application server environment.

For more information, refer to [Server collection,

Web servers. In the WebSphere Application Server, an application server works with a web server to
handle requests for web applications. The application server and web server communicate using an HTTP
plug-in for the web server.

For more information, refer to |Imp|ementing a web server pIug-inI

Resources

JMS providers. The product supports messaging by providing a range of Java Message Service (JMS)
providers that conform to the JMS specifications. There are three main types of JMS provider that can be

Chapter 1. Learn about WebSphere applications: Overview and new features 15

configured in WebSphere Application Server: The WebSphere Application Server default messaging
provider (uses service integration as the provider), the WebSphere MQ messaging provider (uses your
WebSphere MQ system as the provider) and 3rd party messaging providers (use another company's
product as the provider).

For more information, refer to |“Introduction: Messaging resources” on page 1094.|

Environment

Environment settings help handle requests among web applications, web containers, and the application
server.

Virtual hosts. A virtual host is a configuration enabling a single host to resemble multiple logical hosts.
Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS
alias is the TCP/IP host name and port number that are used to request the servlet, for example:
hostname :80. The DNS alias might be the host name and port of a web server that routes to the
application server or the actual host name and port on which the application server is listening. Java
Platform, Enterprise Edition (Java EE) web modules are mapped to a virtual host at installation time. Web
modules that use the same virtual host can dispatch to resources within one another.

For more information, refer to |Virtual hosts|.

WebSphere variables. Variables are used to control settings and properties relating to the server
environment. WebSphere variables are used to configure product path names such as JAVA_HOME, and
environmental customization values.

For more information, refer to |WebSphere variables|

Shared libraries. Shared libraries are files used by multiple applications. You can define a shared library at
the node or server level. You can then associate the library to an application or server in order for the
classes represented by the shared library to be loaded in either a server-wide or application-specific class
loader.

For more information, refer to|Managing shared libraries]

System administration

Administrative console. The administrative console is a graphical interface that provides many features to
guide you through deployment and systems administration tasks. Use it to explore available management
options.

For more introduction, refer to[“Introduction: Administrative console” on page 1034

Scripting client (wsadmin). The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run administrative operations in a
scripting language. You can also submit scripting language programs to run. The wsadmin tool is intended
for production environments and unattended operations.

For more introduction, refer to |“Introduction: Administrative scripting (wsadmin)” on page 1034.|

Administrative programs (Java Management Extensions). The product supports a Java programming
interface for developing administrative programs. All of the administrative tools that are supplied with the
product are written according to the API, which is based on the industry standard Java Management
Extensions (JMX) specification.

For more introduction, refer to[“Introduction: Administrative programs” on page 1035.|

16 Overview

Command line tools. Command-line tools are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose administration. Using the
tools, you can start and stop application servers, check server status, add or remove nodes, and complete
similar tasks.

For more introduction, refer to |“Introduction: Administrative commands” on page 1035.|

Configuration files. Product configuration data resides in XML files that are manipulated by the previously
mentioned administrative clients.

For more introduction, refer to[“Introduction: Administrative configuration data” on page 1036.|

Monitoring and tuning

Monitoring tools. Performance monitoring is an activity in which you collect and analyze data about the

performance of your applications and their environments. Performance monitoring tools include :

* Performance Monitoring Infrastructure (PMI) for monitoring to understand overall system health. For
more information, see|Performance Monitoring Infrastructure (PMI)

* Request metrics for monitoring to understand resource usage. For more information, see
[request metrics?|

» Tivoli Performance Viewer (TPV) for viewing the performance data that you collected. For more
information, see |Why use Tivoli Performance Viewer?|

Tuning tools. Tuning the product helps you obtain the best performance from your website. Tuning the
product involves analyzing performance data and determining the optimal server configuration. This
determination requires considerable knowledge about the various components in the application server
and their performance characteristics. The performance advisors encapsulate this knowledge, analyze the
performance data and provide configuration recommendations to improve the application server
performance. Therefore, the performance advisors provide a starting point to the application server tuning
process and help you without requiring that you become an expert.

For more information, refer to [Obtaining advice from the advisors|

Troubleshooting

Diagnostic tools. Diagnostic tools help you isolate the source of problems. Many diagnostic tools are
available for this product.

For more information, refer to |Working with troubleshooting tools|

Support and self-help IBM Support can assist in deciphering the output of diagnostic tools. Refer to the
WebSphere Application Server Technical Support website for current information on known problems and
their resolution. Documents at this site can save you time gathering information that is needed to resolve a
problem.

For more information, refer to the |WebSphere Application Server Support pagel

Three-tier architectures

WebSphere Application Server provides the application logic layer in a three-tier architecture, enabling
client components to interact with data resources and legacy applications.

Collectively, three-tier architectures are programming models that enable the distribution of application
functionality across three independent systems, typically:

» Client components running on local workstations (tier one)

Chapter 1. Learn about WebSphere applications: Overview and new features 17

http://www.ibm.com/software/webservers/appserv/was/support/

* Processes running on remote servers (tier two)

» A discrete collection of databases, resource managers, and mainframe applications (tier three)

The following diagram outlines the three tier levels. The tiers are logical . They might or might not be

running on the same physical server.

Tier 1 Tier 2 Tier 3
Presentation Business Logic Data/Resource
Clignts Application Sarvers Exigting Enterprise
information Systems

@ B B

: o s

i : ¥

[i | ess =

[[}
@ L LAN || .

ALy g k.

i i 'L\

(] [& ——

1 [} 4 1
@ i I : ‘D- i

i] = e

i i -

: bk
@ e Resource Resources

Manager [for example;
databases)

Figure 1. Three tier architecture

First tier. Responsibility for presentation and user interaction resides with the first-tier components. These
client components enable the user to interact with the second-tier processes in a secure and intuitive
manner. WebSphere Application Server supports several client types. Clients do not access the third-tier
services directly. For example, a client component provides a form on which a customer orders products.
The client component submits this order to the second-tier processes, which check the product databases
and perform tasks that are needed for billing and shipping.

Second tier. The second-tier processes are commonly referred to as the “application logic layer”. These
processes manage the business logic of the application, and are permitted access to the third-tier
services. The application logic layer is where most of the processing work occurs. Multiple client
components can access the second-tier processes simultaneously, so this application logic layer must
manage its own transactions.

In the previous example, if several customers attempt to place an order for the same item, of which only
one remains, the application logic layer must determine who has the right to that item, update the
database to reflect the purchase, and inform the other customers that the item is no longer available.
Without an application logic layer, client components access the product database directly. The database
is required to manage its own connections, typically locking out a record that is being accessed. A lock can
occur when an item is placed into a shopping cart, preventing other customers from considering it for
purchase. Separating the second and third tiers reduces the load on the third-tier services, supports more
effective connection management, and can improve overall network performance.

Third tier. The third-tier services are protected from direct access by the client components residing within
a secure network. Interaction must occur through the second-tier processes.

Communication among tiers. All three tiers must communicate with each other. Open, standard protocols

and exposed APls simplify this communication. You can write client components in any programming
language, such as Java or C++. These clients run on any operating system, by speaking with the

18 Overview

application logic layer. Databases in the third tier can be of any design, if the application layer can query
and manipulate them. The key to this architecture is the application logic layer.

Chapter 1. Learn about WebSphere applications: Overview and new features 19

20 Overview

Chapter 2. ActivitySessions

This page provides a starting point for finding information about ActivitySessions, a WebSphere extension
for reducing the complexity of commitment rules and limitations that are associated with one-phase commit
resources.

Use ActivitySessions to extend the scope and group multiple local transactions. With this capability, you
can commit these transactions based on either deployment criteria or through explicit program logic.

The ActivitySession service

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and
can encapsulate global transactions.

Support for the ActivitySession service is shown in the following figure:

Resource adapter
."'/ Lacal ‘“\1I
\. - ftransaction
EIB S
Container T
]\ s
=1 72 i
y - .. X
| EJBOhjecl A Bean 1
e "
Enterprise application

UsarAclivilySession

ActivitySassion service

Application server

Figure 2. The ActivitySession service. This figure shows the main components of the ActivitySession service in
WebSphere Application server. For an overview of these components, see the text that accompanies this figure.

Although the purpose of a global transaction is to coordinate multiple resource managers, enterprise
applications often use global transaction context as a “session” context through which to access Enterprise
JavaBeans (EJB) instances. An ActivitySession context is such a session context, and can be used in
preference to a global transaction in cases where coordination of two-phase commit resource managers is
not needed. Further, an ActivitySession can be associated with an HttpSession to extend a “client session”
to an HTTP client.

ActivitySession support is available to Web, EJB, and Java platform for enterprise applications client

components. EJB components can be divided into beans that exploit container-managed ActivitySessions
and beans that use bean-managed ActivitySessions.

© IBM Corporation 2009 21

The ActivitySession service provides a UserActivitySession application programming interface available to
enterprise application components that use bean-managed ActivitySessions for application-managed
demarcation of ActivitySession context. The ActivitySession service also provides a system programming
interface for container-managed demarcation of ActivitySession context and for container-managed
enlistment of one-phase resources (resource manager local transactions (RMLTSs)) in such contexts.

The UserActivitySession interface is obtained by a Java Naming and Directory Interface (JNDI) lookup of
java:comp/websphere/UserActivitySession. This interface is not available to enterprise beans that use
container-managed ActivitySessions, and any attempt by such beans to obtain the interface results in a
NotFound exception.

A common scenario is an enterprise application accessing one or more enterprise beans backed by
non-transactional (one-phase commit) resources. The application, or its container, uses the
UserActivitySession interface to define the demarcation boundaries within which operations against the
enterprise beans are grouped and to control whether those grouped operations should be checkpointed or
discarded. The business logic of the enterprise beans does not need to use any ActivitySession interfaces.
The container into which the enterprise beans are deployed ensures that updates to the underlying
one-phase resource managers are coordinated.

The application can checkpoint an ActivitySession to create a new point of consistency within the
ActivitySession without ending the ActivitySession. The application can also use a reset operation to return
work performed in the ActivitySession back to the last point of consistency. The application can end the
ActivitySession with an operation to either checkpoint or reset all resources.

Usage model for using ActivitySessions with HTTP sessions

This topic describes how a Web application that runs in the WebSphere Web container can participate in
an ActivitySession context.

If the Web application is designed such that several servlet invocations occur as part of the same logical
application, then the servlets can use the HttpSession to preserve state across servlet invocations. The
ActivitySession context is one state that can be suspended into the HttpSession and resumed on a future
invocation of a servlet that accesses the HitpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used to extend access to
the ActivitySession over multiple HTTP invocations, over inclusion or forwarding of servlets, and to support
Enterprise JavaBeans (EJB) activation periods that can be determined by the lifecycle of the Web HTTP
client. An ActivitySession context stored in an HttpSession can also be used to relate work for the
ActivitySession back to a specific Web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor attributes associated with
servlets in the Web application module. The two usage models are:
* The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container control of ActivitySessions.

— If an HitpSession exists then it has an associated ActivitySession.

— If an HitpSession does not exist, the servlet can start an HitpSession, which causes an
ActivitySession to be started automatically and associated with the HitpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been ended. Within an
HttpSession, the Web application can invoke other servlets that can use the associated ActivitySession
context. When the Web application invokes a servlet that ends the HttpSession, the ActivitySession is
ended automatically. This is shown in the following diagram:

22 Overview

Wb application
invokes serviet

L b
L] r L =]
1 [
HttpSession : -
] ¥
] i
A5l
ActivitySession : 3
1
|
i
] [
Servlel stans Servial invalidates
HitpSession HitpSeszian
(ActivitySession started automatically) [ActivitySession checkpointad automatically)

Figure 3. Web container control of ActivitySessions. This figure is described in the surrounding text.

» The Web application starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for application control of

ActivitySesions.

— If an HitpSession exists and has an associated ActivitySession, the servlet can use or end that
ActivitySession context.

— If an HttpSession does not exist, the servlet can start an HttpSession, but this does not automatically
start an ActivitySession.

— If an HitpSession exists but does not have an associated ActivitySession, the servlet can start a new
ActivitySession. This automatically associates the ActivitySession with the HttpSession. The
ActivitySession lasts either until the ActivitySession is specifically ended or until the HttpSession is
ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession has been ended. The
servlet cannot start a new HttpSession until an existing HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can use or end an existing
ActivitySession context or, if no ActivitySession exists start a new ActivitySession. When the Web
application invokes a servlet that ends the HttpSession, the ActivitySession is ended automatically. This
is shown in the following diagram:

Web application
Invokes senviel

b 1 I
r e " L
] 1
HitpSession L .".'JI
: ® 99 |
; bast DD asp
ActivitySession | | :_..5_'. ha il .
] 1
- ,
| i !
L I (B 1
Sarvial Sarviat stars and Servlel imvalidales
starts ends AclivitySessions HttpSession
HilpSession spacifically {ActivitySassion As2

checkpointed autamatically)
Figure 4. Web application control of ActivitySessions,. This figure is described in the surrounding text.

A Web application can invoke servlets configured for either usage model.
The following points apply to both usage models:

» To end an HttpSession (and any associated ActivitySession), the Web application must invalidate that
session. This causes the ActivitySession to be checkpointed.

Chapter 2. ActivitySessions 23

* Any downstream enterprise beans activated within the context of an ActivitySession can be held in
memory rather than passivated between servlet invocations, because the client effectively becomes the
Web HTTP client.

» Web applications can be composed of many servlets, and each servlet in the Web application can be
configured with a value for ActivitySessionControl. ActivitySessionControl determines whether the servlet
or its container starts any ActivitySessions.

* An ActivitySession context that encapsulates an active transaction context cannot be associated with an
HttpSession, because a transaction can hold database locks and should be designed to be shortlived. If
an application moves an active transaction to an HttpSession, the transaction is rolled back and the
ActivitySession is suspended into the HTTPSession. In general, you should design applications to use
ActivitySessions or other constructs as the long-lived entities and ACID transactions as short-duration
entities within these.

* Only one ActivitySession can be associated with an HttpSession at any time, for the duration of the
ActivitySession. An ActivitySession associated with an HttpSession remains associated for the duration
of that ActivitySession, and cannot be replaced with another until the first ActivitySession is completed.
The ActivitySession can be accessed by multiple servlets if they have shared access to the
HttpSession.

» ActivitySessions are not persistent. If a persistent HttpSession exists longer than the server hosting it,
any cached ActivitySession is terminated when the hosting server ends.

» If the HttpSession times out before the associated ActivitySession has ended, then the ActivitySession is
reset’. This rolls back the ActivitySession resources to the last point of consistency:

— If the Web application invoked a servlet that has been configured for container control of
ActivitySessions, the ActivitySession resources are rolled back completely.

— If the Web application invoked a servlet that has been configured for application control of
ActivitySessions, the ActivitySession resources are rolled back to the last checkpoint taken by the
servlet, or completely if no checkpoint has been taken.

 If the ActivitySession times out, it is reset to the last point of consistency (see previous item), then the
HttpSession is ended.

ActivitySession and transaction contexts

This topic describes the hierarchical relationship between transaction and ActivitySession contexts. This
relationship, defined by the ActivitySession service, requires that any transaction context be either wholly
inside or wholly outside an ActivitySession context.

An ActivitySession context is very similar to a transaction context and extends the lifecycle choices for
activation of enterprise beans; it can encapsulate one or more transactions. The ActivitySession context is
a distributed context that, like the transaction context, can be bean- or container-managed. An
ActivitySession context is used mainly by a client to scope the lifecycle of an enterprise bean that it uses
either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead of transactions that are
only used to scope the lifecycle of a called enterprise bean. For a bean with an activation policy of
ActivitySession, the duration of any resource manager local transactions (RMLTs) started by that bean can
be bounded by the duration of the ActivitySession instead of the bean method in which the RMLT was
started. This provides flexibility and potential for using RMLTs in an enterprise bean beyond the scenarios
described in the Enterprise JavaBeans (EJB) specifications. The EJB specifications define that RMLTs
need to be completed before the end of the bean method, because the bean method is the only
containment boundary for local transactions available in those specifications.

The following rules defines the relationship between transactions and ActivitySessions.

1. Resetting an ActivitySession causes all the resources involved in the current ActivitySession to be rolled back to the last point of
consistency, but allows further work within the ActivitySession. When the reset completes, the thread is associated with the same
ActivitySession as it was before the reset was called. The ActivitySession resources remain associated with the ActivitySession
although they cannot participate further in the ActivitySession

24 Overview

» The EJB or Web container always uses a local transaction containment (LTC) if there is no global
transaction present. An LTC can be method-scoped or ActivitySession-scoped.

» Before a method dispatch, the container ensures that there is always either an LTC or global transaction
context, but never both contexts.

+ ActivitySessions cannot be nested within each other. Any attempt to start a nested ActivitySession
results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession().

* An ActivitySession can wholly encapsulate one or more global transactions.

» The application can end an ActivitySession with an operation to either checkpoint or reset all resources.
The endSession(EndModeCheckpoint) operation checkpoints the work coordinated under the
ActivitySession then ends the context. The endSession(EndModeReset) operation resets, to the last
point of consistency, the work coordinated under the ActivitySession then ends the context.

» An ActivitySession cannot be encapsulated by a global transaction nor should ActivitySession and global
transaction boundaries overlap. Any attempt to start an ActivitySession in the presence of a global
transaction context results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession(). Any attempt to call endSession(EndModeCheckpoint) on an
ActivitySession that contains an incomplete global transaction results in a
com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global transaction nor the
ActivitySession context are affected. If endSession(EndModeReset) is called then the ActivitySession is
reset and the global transactions marked rollback_only.

» Each global transaction wholly encapsulated by an ActivitySession is independent of every other global
transaction within that ActivitySession. A rollback of one global transaction does not affect any others or
the ActivitySession itself.

» ActivitySession and global transaction contexts can coexist with an ActivitySession encapsulating one or
more serially-running global transactions.

« EJB home methods cannot participate in an ActivitySession because this situation might cause
deadlocks. EJB home methods run in their own independent LTC.

ActivitySession and transaction container policies in combination

This topic provides details about the relationship between the deployment descriptor properties that
determine how the container manages ActivitySession boundaries.

If an enterprise bean uses ActivitySessions, how the EJB container manages ActivitySession boundaries
when delegating a method invocation depends on both the ActivitySession kind and Container
transaction type deployment descriptor attributes configured for the enterprise bean. The following table
lists the relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes with respect to global
transaction and ActivitySession context, based on the following abbreviations:

Sn An ActivitySession, where n indicates the ActivitySession instance.

Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction context associated with the
thread, it starts (or obtains from the bean instance) a local transaction containment and associates that
with the thread. The duration of the local transaction containment is determined by a combination of the
local-transaction boundary descriptor (configured as part of the application deployment descriptor, and not
shown in the following table) and the presence or not of an ActivitySession context, as described in
IActivitySessions and transaction contexts,.

The rows highlighted in bold are not allowed.

Chapter 2. ActivitySessions 25

Table 2. Container behavior for activitysession and transaction policies deployment settings

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Required

type)
Required None Start S1, Start T1
S Start T1
T Suspend T1, Start S1, Start T2
S1, T1 No Action
Requires new None Start S1, Start T1
S Start T1
T Suspend T1, Start S1, Start T2
S1, T1 Suspend T1, Start T2
Supports None Start S1
S1 No Action
T Suspend T1, Start S1
S1, T1 No Action
Not supported None Start S1
S1 No Action
T Suspend T1, Start S1
S1, T1 Suspend T1
Mandatory None Exception
S1 Exception
T Exception
S1, T1 No action
Never None Start S1
S1 No Action
T1 Suspend T1, Start S1
S1, T1 Exception

26 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Requires new

type)
Required None Start S1 + T1
S1 Suspend S1, Start S2 + T1
T1 Suspend T1, Start S1 + T2
S1+T1 Suspend S1 + T1, Start S2 +
T2
Requires new None Start S1 + T1
S1 Suspend S1, Start S2 + T1
T1 Suspend T1, Start S1 + T2
S1+T1 Suspend S1 + T1, Start S2 +
T2
Supports None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2
Not supported None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2
Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 Exception
Never None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2

Chapter 2. ActivitySessions

27

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Supports Required None Start T1
S Start T1
T1 No Action
S1, T1 No Action
Requires new None Start T1
S Start T1
T Suspend T1, Start T2
S1, T1 Suspend T1, Start T2
Supports None No Action
S1 No Action
T1 No Action
S1, T1 No Action
Not supported None No Action
S1 No Action
T1 Suspend T1
S1, T1 Suspend T1
Mandatory None Exception
S1 Exception
T1 No Action
S1, T1 No Action
Never None No Action
S1 No Action
T Exception
S1, T1 Exception

28 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Not supported Required None Start T1
S1 Suspend S1, Start T1
T1 No Action
S1, T1 Suspend S1 + T1, Start T2
Requires new None Start T1
S1 Suspend S1, Start T1
T1 Suspend T1, Start T2
S1, T1 Suspend S1 + T1, Start T2
Supports None No Action
S1 Suspend S1
T1 No Action
S1, T1 Suspend S1 + T1
Not supported None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1
Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception
Never None No Action
S1 Suspend S1
T1 Exception
S1, T1 Suspend S1 + T1

Chapter 2. ActivitySessions

29

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Mandatory

type)

Required None Exception
S Start T1
T Exception
S1, T1 No Action

Requires new None Exception
S Start T1
T Exception
S1, T1 Suspend T1, Start T2

Supports None Exception
S1 No Action
T Exception
S1, T1 No Action

Not supported None Exception
S1 No Action
T Exception
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T Exception
S1, T1 No Action

Never None Exception
S1 No Action
T Exception
S1,T1 Exception

30 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Never Required None Start T1

S1 Exception
T1 No Action
S1, T1 Exception

Requires new None Start T1
S1 Exception
T1 Suspend T1, Start T2
S1,T1 Exception

Supports None No Action
S1 Exception
T1 No Action
S1,T1 Exception

Not supported None No Action
S1 Exception
T1 Suspend T1
S1,T1 Exception

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Exception
T1 Exception
S1,T1 Exception

Bean managed Bean managed None No Action

S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

ActivitySession samples

WebSphere Application Server provides some ActivitySession samples.
MasterMind sample
This sample is based on the game MasterMind. It consists of the following components:
» A servlet, configured with the ActivitySession control kind attribute set to Container, that
accesses a stateful session bean.
» A stateful session bean, configured with an activation policy of ActivitySession containing
transient state data.

The servlet begins an HttpSession at the start of each new game, and ends it at the end of each
game; therefore an ActivitySession lasts for the duration of each game. The ActivitySession
activation policy stops the bean from being passivated and therefore the transient data remains in
memory. This sample demonstrates the association between HttpSession and ActivationSession in
the web container, and an ActivitySession-scoped activation policy.
Enterprise application client container and a CMP entity bean backed by a one-phase commit data
source
In this sample, the entity bean is configured with the following properties:

Chapter 2. ActivitySessions 31

+ TX_NOT_SUPPORTED

* An ActivitySession container managed policy of REQUIRES
* An LTC boundary of ActivitySession

* An LTC Resolution Control of ContainerAtBoundary

The client accesses the UserActivitySession, begins an ActivitySession, updates two instances of

the bean, then ends the ActivitySession. It does this twice using EndModeReset then

EndModeCheckpoint. This sample demonstrates the following functionality:

» Client access to the UserActivitySession interface

» Multiple resource manager local transactions (RMLTs) being scoped to the ActivitySession and
taking their completion direction automatically from that of the ActivitySession

The entity bean also holds a transient variable that each method call increments (gets and sets for
the persistent data). This value is checked before the end of the ActivitySession to show that the
same bean instance is used. The client checks for the correct results.
An enterprise application client container and two session beans with different ActivitySession
types This sample consists of an enterprise application client container and the following session beans:
+ SLBH1, a stateless session bean configured with an ActivitySession Type of Bean.
» SFB2, a stateful session bean configured with ActivitySession Type of Requires, an LTC
boundary of ActivitySession, LTC Resolution Contol of APPLICATION, and an LTC Unresolved
Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

This sample uses the following steps:

1. The client starts SLB1

2. SLB1 accesses the UserActivitySession interface, begins an ActivitySession, then calls a
method on SFB2

3. SFB2 accesses the UserActivitySession interface, begins an ActivitySession, calls a method on
SFB2

4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to update a single-phase data
source.

5. Optionally, SLB1 calls a separate method on SFB2 to finish the work, either committing or
rolling back the RMLT.

6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This sample demonstrates the following functionality:

» The ActivitySession completion direction is unconnected to the direction of the RMLTs, although
the containment of the RMLTs is bound to the ActivitySession.

* The container using the unresolved action when an RMLT is not completed.

* A bean-managed ActivitySessions bean using the UserActivitySession interface.

The sample checks for correct results and reports them back to the client.

ActivitySession service: Resources for learning

Use the links in this topic to find relevant supplemental information about ActivitySessions. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks® that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
* The application programming interface (API) reference information.

32 Overview

Programming specifications
- [J2EE Activity Service for Extended Transactions|
- [Java Transaction API (JTA) 1.0.1]

Other
+ |WebSphere Business Integration Server Foundation|

« |List of IBM WebSphere Redbooks|
» |WebSphere technical library, including links to white papersl

Chapter 2. ActivitySessions 33

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www.ibm.com/software/integration/wbisf/
http://www.redbooks.ibm.com/websphere
http://www.ibm.com/software/websphere/sw-library/

34 oOverview

Chapter 3. Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

The application profiling service is not available for Enterprise JavaBeans (EJB) that are contained in a
web archive (WAR). As a result, application profiling tasks can not be accessed from an EJB in a WAR.

Application profiling

You can use application profiling to identify particular units of work to the product runtime environment.
The run time can tailor its support to the exact requirements of that unit of work.

Application profiling requires accurate knowledge of an application's transactional configuration and the
interaction of the application with its persistent state during the course of each transaction.

You can execute the analysis in either closed world or open world mode. A closed-world analysis assumes
that all possible clients of the application are included in the analysis and that the resulting analysis is
complete and correct. The results of a closed-world analysis report the set of all transactions that can be
invoked by a web, JMS, or application client. The results exclude many potential transactions that never
execute at run time.

An open-world analysis assumes that not all clients are available for analysis or that the analysis cannot
return complete or accurate results. An open-world analysis returns the complete set of possible
transactions.

The results of an analysis persist as an application profiling configuration. The assembly tool establishes
container managed tasks for servlets, JavaServer Pages (JSP) files, application clients, and Message
Driven Beans (MDBs). Application profiles for the tasks are constructed with the appropriate access intent
for the entities enlisted in the transaction represented by the task. However, in practice, there are many
situations where the tool returns at best incomplete results. Not all applications are amenable to static
analysis. Some factory and command patterns make it impossible to determine the call graphs. The tool
does not support the analysis of ActivitySessions.

You should examine the results of the analysis very carefully. In many cases you must manually modify
them to meet the requirements of the application. However, the tool can be an effective starting place for
most applications and may offer a complete and quick configuration of application profiles for some
applications.

Access intent is the only runtime component that makes use of the application profiling functionality. For
example, you can configure one transaction to load an entity bean with strong update locks and configure
another transaction to load the same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.

Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a
transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE
component that can initiate a unit of work. Most commonly, the task is configured on a method of
an Enterprise JavaBeans file that is declared either for container-managed transactions or
bean-managed transactions. Any unit of work that begins in the scope of a configured task is
associated with that task name. A unit of work can only be named when it is initiated, and the

© Copyright IBM Corp. 2012 35

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent
task name configurations at any point after it has begun. The task is used for the duration of its
unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database
access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not running
under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the
client process. You can do this by specifying the -CCDappprofileCompatibility=true option
when invoking the launchClient command.
Profiles
A profile is simply a mapping of a task to a set of access intent policies that are configured on
entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a
dynamic query) requires data to be retrieved from the back end system, the current task
associated with the request is used to determine the exact requirement of the transaction. The
same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile
provides the developer an opportunity to reconfigure the application's access intent. If a request is
operating in the absence of a task, the runtime environment uses either a method-level access
intent (if any) or a bean-level default access intent.

Note: The application profile configuration is application scope configuration data. If any
Enterprise JavaBean (EJB) module contains an application profile configuration, all other
EJB modules are implicitly regulated by the Application Profiling service even if they do not
contain application profile configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is
registered by a task named task1. This task1 becomes a known-to-application task and is
honored when associated with a unit of work within this application. With the presence of
any known-to-application task, method level access intent configurations are ignored and
only bean level access intent configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level
access intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work
that is associated with task1, the bean-level access intent configuration is applied and
method level access intent configuration is ignored. Because the bean level access intent is
not set explicitly, the default bean level access intent, which is wsPessimisticUpdate-
WeakestLockAtLoad, is applied.

Tasks and units of work considerations

The application profiling function works under the unit of work (UOW) concept. UOW in this case means
either a transaction or an ActivitySession.

The task name on a method is used only when a UOW is begun, because of that method being invoked.

This gives it a more predictable data access pattern based on the active unit of work. To be more specific,
this approach ensures that a bean type with only one configured access intent is loaded within a UOW,

36 Overview

because a bean is configured with only one access intent within an application profile. This configured
access intent for a bean type is determined at assembly time and is enforced by the Application Profile
service.

A task name is always associated with a unit of work, and that task name does not change for the duration
of that UOW. When a UOW associated with a method is begun because of that method being invoked, if a
task name is associated with the method then that task name is used to name the UOW. A task assigned
to a unit of work is considered a named UOW.

If a task name is not associated with the method that began the UOW, then a default access intent is used
and the UOW is unnamed. A unit of work can only be named when the UOW is begun and that task name
remains for the life of the UOW. Furthermore, the task assigned to a UOW can never be changed for the
life of that UOW. Any task names associated with a method are ignored if that method does not begin a
UOW (either container managed or component managed).

It is not possible to change the task name assigned to a unit of work. However, it is possible that in a call
sequence consisting of many different application calls a different task name might need to be used for
different calls. In this case it is important for the deployer to begin a new UOW and associate with the
UOW the necessary task name. For example, assume you have the following beans: sb1 is a session
bean, eb2 and eb3 are container managed persistence (CMP) entity beans. When sb1 is called, a
transaction is begun and task 't1' is associated with it. Further assume that sb1 then calls eb2 and eb3. If
neither eb2 or eb3 create a unit of work, then these beans execute within the UOW context from sb1 and
as such its task name (t1). If eb2 or eb3 need to execute within a task name other than t1, then these
beans must define a unit of work and associate with it the appropriate task name.

Note that if an application deployer does not specifically configure a transaction on a method, WebSphere
Application Server creates a global transaction by default. This is important because if a task is defined on
a method, but a UOW is not specifically configured on that method, the EJB container automatically
creates a global transaction on behalf of that method. As such, this task name is associated with the UOW
and any application profiles mapped to this task are used.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

Application profiles

An application profile is the set of access intent policies that should be selectively applied for a particular
unit of work (a transaction or ActivitySession).

Application profiling enables applications to run under different sets of policies depending on the active
task under which the application is operating.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the

Chapter 3. Application profiling 37

active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the client
process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking
the launchClient command.

Consider an application that centralizes the student records for a school district. These records are
frequently accessed by the school district's central office in order to generate reports. The report
generation process would be optimized if it held no locks with the back end system, and if the records
could be read into memory with as few back end operations as possible. Occasionally, however, the
records are updated by the students' instructors. Without the ability to distinguish between transactions,
the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock
the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the
access intent under which the students' records are loaded. Under one profile, the records can be
configured with an exclusive pessimistic update intent, not only locking-out competing transactions but
ensuring that the student is not removed from the system before the transaction completes. Under another
profile, the records can be configured with an optimistic intent as part of an object graph that is read from
the back end system in a single database operation. The task represented by the pessimistic profile
receives the strong-locking semantics required for certain transactions, while the task represented by the
optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling tasks

Tasks are named units of work. They are the mechanism by which the runtime environment determines
which access intent policies to apply when an entity bean's data is loaded from the back end system.

Application profiles enable developers to configure an entity bean with multiple access intent policies; if
there are ninstances of profiles in a given application, each bean can be configured with as many as n
access intent policies.

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,
which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of
that unit of work to apply the access intent policy configured for that particular unit of work.

If an enterprise application is configured to use application profiling in any part of the application, then
application profiling is active and method-level access intent configurations are ignored when units of
works are associated with known-to-application tasks.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task
that is unassociated with an application profile, the default bean-level access intent or the method-level
access intent configuration is applied. If a unit of work is associated with a task that is configured with an
application profile, the bean-level access intent configuration within the appropriate application profile is
applied.

38 Overview

Note: The application profile configuration is application scope configuration data. If any Enterprise
Javabeans (EJB) module contains an application profile configuration, all other EJB modules are
implicitly regulated by the Application Profiling service even if they do not contain application profile
configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is registered by a
task named task1. This task1 becomes a known-to-application task and is honored when
associated with a unit of work within this application. With the presence of any known-to-application
task, method level access intent configurations are ignored and only bean level access intent
configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level access
intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work that is
associated with task1, the bean-level access intent configuration is applied and method level
access intent configuration is ignored. Because the bean level access intent is not set explicitly, the
default bean level access intent, which is wsPessimisticUpdate-WeakestLockAtLoad, is applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the
active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact
with student records. One method on the session bean allows administrators to modify the students'
records; another method supports student requests to view their own records. Without application profiling,
the two tasks would operate anonymously and the runtime environment would be unable to distinguish
work operating on behalf of one task or the other. To optimize the application, a developer can configure
one of the methods on the session bean with the task "updateRecords" and the other method on the
session bean with the task "readRecords". When registered with an application profile that has the student
bean configured with the appropriate locking access intent, the "updateRecords" task is assured that it is
not unnecessarily blocking transactions that need to_only read the records. For more information about the
relationships between tasks and units of work, see[‘Tasks and units of work considerations” on page 36.|

Tasks can be configured to be managed by the container or to be programmatically established by the
application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,
application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks
are only associated with units of work that the container initiates after the task name is set. Application
managed tasks can be configured on all J2EE components. In the case of enterprise beans they must be
bean managed transactions."

best-practices: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database

Chapter 3. Application profiing 39

access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not
running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in
the client process. You can do this by specifying the -CCDappprofileCompatibility=true
option when invoking the launchClient command.

40 oOverview

Chapter 4. Asynchronous beans
This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can run asynchronously by a Java
Platform, Enterprise Edition (Java EE) application, using the Java EE context of the asynchronous bean
creator.

Asynchronous beans can improve performance by enabling a Java EE program to decompose operations
into parallel tasks. Asynchronous beans support the construction of stateful, active Java EE applications.
These applications address a segment of the application space that Java EE has not previously addressed
(that is, advanced applications that require application threading, active agents within a server application,
or distributed monitoring capabilities).

Asynchronous beans can run using the Java EE security context of the creator Java EE component.

These beans also can run with copies of other Java EE contexts, such as:

* Internationalization context

» Application profiles, which are not supported for Java EE 1.4 applications and deprecated for Java EE
1.3 applications

* Work areas

Asynchronous bean interfaces

Four types of asynchronous beans exist:

Work object
There are two work interfaces that essentially accomplish the same goal. The legacy
Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ
work interface is commonj.work.Work. A work object runs parallel to its caller using the work
manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule
for CommondJ). Applications implement work objects to run code blocks asynchronously.

Timer listener
This interface is an object that implements the commonj\timers\TimerListener interface. Timer
listeners are called when a high-speed transient timer expires.

Alarm listener
An alarm listener is an object that implements the com.ibm.websphere.asynchbeans.AlarmListener
interface. Alarm listeners are called when a high-speed transient alarm expires.

Event listener
An event listener can implement any interface. An event listener is a lightweight, asynchronous
notification mechanism for asynchronous events within a single Java virtual machine (JVM). An
event listener typically enables Java EE components within a single application to notify each
other about various asynchronous events.

Supporting interfaces

Work manager
Work managers are thread pools that administrators create for Java EE applications. The
administrator specifies the properties of the thread pool and a policy that determines which Java
EE contexts the asynchronous bean inherits.

Commond Work manager
The Commond work manager is similar to the work manager. The difference between the two is
that the CommondJ work manager contains a subset of the asynchronous beans work manager

© Copyright IBM Corp. 2012 41

methods. Although Commond work manager functions in a Java EE 1.4 environment, each JNDI
lookup of a work manager does not return a new instance of the WorkManager. All the JNDI
lookup of work managers within a scope have the same instance.

Timer manager
Timer managers implement the commonj.timers.TimerManager interface, which enables Java EE
applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future
timer notifications and receive timer notifications. The timer manager for Application Servers
specification provides an application-server supported alternative to using the J2SE
java.util.Timer class, which is inappropriate for managed environments.

Event source
An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An
event source is a system-provided object that supports a generic, type-safe asynchronous
notification server within a single JVM. The event source enables event listener objects, which
implement any interface to be registered.

Event source events
Every event source can generate its own events, such as listener count changed. An application
can register an event listener object that implements the class
com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch
events such as listeners being added or removed, or a listener throwing an unexpected exception.

Additional interfaces, including alarms and subsystem monitors, are introduced in the Developing
asynchronous scopes topic, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed
transactions in typical enterprise beans. It is very similar to the situation when an Enterprise JavaBeans
(EJB) method is called with TX_NOT_SUPPORTED. The runtime starts a local transaction containment
before invoking the method. The asynchronous bean method is free to start its own global transaction if
this transaction is possible for the calling Java EE component. For example, if an enterprise bean creates
the component, the method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global
transactional context available on the current thread. Because asynchronous bean objects start local
transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method
marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from
which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the
method returns normally, any incomplete local transactions are completed according to the unresolved
action policy configured for the bean. EJB methods can configure this policy using their deployment
descriptor. If the asynchronous bean method starts its own global transaction and does not commit this
global transaction, the transaction is rolled back when the method returns.

Access to Java EE component metadata

If an asynchronous bean is a Java EE component, such as a session bean, its own metadata is active
when a method is called. If an asynchronous bean is a simple Java object, the Java EE component
metadata of the creating component is available to the bean. Like its creator, the asynchronous bean can
look up the java:comp namespace. This look up enables the bean to access connection factories and
enterprise beans, just as it would if it were any other Java EE component. The environment properties of
the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same
restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of
java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the

42 Overview

connection factories use the same resource-sharing scope as the creating component.
Connection management

An asynchronous bean method can use the connections that its creating Java EE component obtained
using java:comp resource references. (For more information on resource references, refer to the
References topic). However, the bean method must access those connections using a get, use or close
pattern. There is no connection caching between method calls on an asynchronous bean. The connection
factories or datasources can be cached, but the connections must be retrieved on every method call,
used, and then closed. While the asynchronous bean method can look up connection factories using a
global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following
reasons:

» The JNDI name is hard coded in the application (for example, as a property or string literal).

» The connection factories are not shared because there is no way to specify a sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to access connections from
asynchronous bean methods, refer to the Example: Asynchronous bean connection management topic.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of Java EE service context
information. The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the
WorkManager interface will create a snapshot of the Java EE service contexts enabled on the
WorkManager. The resulting WorkWithExecutionContext object can then be serialized and stored in a
database or file. This is useful when it is necessary to store Java EE service contexts such as the current
security identity or Locale and later inflate them and run some work within this context. The
WorkWithExecutionContext object can run using the startWork() and doWork() methods on the
WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All
EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2
(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext
object is deserialized and run to Java Authentication and Authorization Service (JAAS) subject identity
credential assignment. Review the following topics to better understand if you need to enable identity
assertion, when using a WorkWithExecutionContext object:

» Configuring Common Secure Interoperability Version 2 and Security Authentication Service
authentication protocol

 Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of
the product. Refer to the Interoperating with asynchronous beans topic.

JPA-related limitations
Use of asynchronous beans within a JPA extended persistence context is not supported.

A JPA extended persistence context is inconsistent with the scheduling and multi-threading capabilities of
asynchronous beans and will not be accessible from an asynchronous bean thread.

Chapter 4. Asynchronous beans 43

Likewise, an asynchronous bean should not be created such that it takes a
javax.persistence.EntityManager (or subclass) as a parameter since EntityManager instances are not
intended to be thread safe.

Work managers

A work manager is a thread pool created for Java Platform, Enterprise Edition (Java EE) applications that
use asynchronous beans.

Using the administrative console, an administrator can configure any number of work managers. The
administrator specifies the properties of the work manager, including the Java EE context inheritance
policy for any asynchronous beans that use the work manager. The administrator binds each work
manager to a unique place in Java Naming and Directory Interface (JNDI). You can use work manager
objects in any one of the following interfaces:

* Asynchronous beans
« Commond work manager (For details, see the Commond work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that
you specify in the ResourceRef, rather than the interface type specified in the configuration object. For
example, you can have one ResourceRef for each interface per configuration object, and each
ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the Java EE 1.4 applications. For more information,
see the Programming model section in this article.

Important: The javax.resource.spi.work.WorkManager class is a Java interface to be used by Java EE
Connector Architecture (JCA) resource adapters. It is not an actual implementation of the
WorkManager which is used by Java EE applications.

When writing a Web or Enterprise JavaBeans (EJB) component that uses asynchronous beans, the
developer should