
IBM WebSphere Application Server for Distributed
Platforms, Version 8.5

Developing and deploying applications

���

Note
Before using this information, be sure to read the general information under “Notices” on page 279.

Compilation date: June 6, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . vii

Using this PDF . ix

Chapter 1. Overview and new features for developing applications 1

Chapter 2. How do I develop applications? . 3
Migrating to Java Platform, Enterprise Edition (Java EE) 6 3
Migrating to Java Platform, Standard Edition (Java SE) 6 4

Chapter 3. Designing applications . 7

Chapter 4. Obtaining an integrated development environment (IDE) 9

Chapter 5. Debugging applications . 11
Debugging components in the IBM Rational Application Developer for WebSphere 12
Debugging Service details . 13

Enable service at server startup . 13
JVM debug port . 13
JVM debug arguments . 13
Debug class filters . 13

Chapter 6. Assembling applications . 15
Application assembly and enterprise applications . 16
Development and assembly tools . 17
Generating code for web service deployment . 17
Assembling applications: Resources for learning . 18

Chapter 7. Class loading . 21
Class loaders . 21
Configuring class loaders of a server . 25
Class loader collection . 27

Class loader ID . 27
Class loader order . 27
Class loader settings . 27

Configuring application class loaders . 28
Configuring web module class loaders . 30
Class loading: Resources for learning . 31

Chapter 8. Adding logging and tracing to your application 33
Using Java logging in an application . 34

Using a logger . 35
Java logging . 44
Configuring the logger hierarchy . 45
Creating log resource bundles and message files. 46
Logger.properties file for configuring logger settings 48

Configuring applications to use Jakarta Commons Logging 49
Jakarta Commons Logging . 50
Configurations for the WebSphere Application Server logger. 53

Programming with the JRas framework . 55
JRas logging toolkit. 55
JRas Extensions . 57
JRas messages and trace event types. 65

© Copyright IBM Corp. 2012 iii

Instrumenting an application with JRas extensions 68
Logging Common Base Events in WebSphere Application Server 74

The Common Base Event in WebSphere Application Server. 75
Logging with Common Base Event API and the Java logging API 88
java.util.logging -- Java logging programming interface 98
Logger.properties file . 99
Logging Common Base Events in WebSphere Application Server 100
Showlog commands for Common Base Events . 100

Chapter 9. Overview and new features for deploying applications 101

Chapter 10. Deploying applications to the Liberty profile 103
Adding and running an application on the Liberty profile using developer tools 104

Publishing your application using developer tools 105
Packaging a Liberty profile server from the command prompt 107
Using JNDI binding for constants from the server configuration files 107
Sharing common OSGi bundles for the Liberty profile. 108
Configuring class loaders for Java EE applications . 109

Using a Java library with a Java EE application . 109
Sharing a library across multiple Java EE applications 110
Accessing third-party APIs from a Java EE application 110
Removing access to third-party APIs for a Java EE application 111
Overriding a provided API with an alternative version 112
Providing global libraries for all Java EE applications 112

Deploying data access applications to the Liberty profile 113
Deploying an existing JDBC application to the Liberty profile 113
Enabling JDBC Tracing for the Liberty profile . 115

Deploying a web application to the Liberty profile . 117
Deploying a JPA application to the Liberty profile . 119

Chapter 11. How do I deploy applications? . 121

Chapter 12. Deploying enterprise applications . 123
Installing enterprise application files . 123

Installable enterprise module versions . 124
Ways to install enterprise applications or modules 126

Installing enterprise application files with the console 128
Example: Installing an EAR file using the default bindings 135
Example: Installing a web services sample with the console 136
Preparing for application installation settings . 137
Preparing for application installation binding settings 138
Select installation options settings . 143
Manage modules settings . 153
Client module settings . 155
Client module property settings . 155
Provide options to compile JavaServer Pages settings 156
EJB JNDI names for beans . 157
Bind EJB business settings . 158
Map default data sources for modules containing 1.x entity beans 159
EJB references . 160
Resource references . 161
Virtual hosts settings . 164
Security role to user or group mapping . 165
JASPI authentication enablement for applications 166
User RunAs collection . 166
Ensure all unprotected 1.x methods have the correct level of protection 167

iv Developing and deploying applications

Bind listeners for message-driven beans settings 168
Map data sources for all 2.x CMP beans . 169
Map data sources for all 2.x CMP beans settings 171
Ensure all unprotected 2.x methods have the correct level of protection 173
Provide options to perform the EJB Deploy settings 174
Shared library reference and mapping settings . 177
Shared library relationship and mapping settings 178
JSP and JSF option settings . 179
Context root for web modules settings . 181
Initial parameters for servlets settings . 181
Environment entries for client modules settings . 182
Environment entries for EJB modules settings . 183
Environment entries for web modules settings . 183
Environment entries for application settings . 184
Resource environment references . 184
Message destination reference settings . 185
Select current backend ID settings. 186
Provide JNDI names for JCA objects settings. 187
Correct use of the system identity . 187
Requirements for setting data access isolation levels 188
Metadata for module settings. 190
Provide options to perform the web services deployment settings 192
Display module build ID settings . 193

Installing enterprise application files by adding them to a monitored directory 193
Setting monitored directory deployment values . 196

Installing enterprise application files by adding properties files to a monitored directory 200
Installing enterprise modules with JSR-88 . 214
Customizing modules using DConfigBeans . 216

Chapter 13. Deploying and administering business-level applications 219
Business-level applications . 219

Assets . 222
Composition units . 222

Importing assets . 223
Upload asset settings . 225
Asset settings . 226

Managing assets . 229
Asset collection. 230
Updating assets . 231
Deleting assets . 235
Exporting assets . 235

Creating business-level applications . 236
Creating business-level applications with the console 237
Business-level application settings . 247
Composition unit settings . 249
Example: Creating a business-level application . 252

Starting business-level applications . 253
Stopping business-level applications . 254
Updating business-level applications . 255
Deleting business-level applications . 257

Chapter 14. Troubleshooting deployment . 259
Application deployment problems . 259
Application deployment troubleshooting tips . 265
Application startup errors . 265
Application startup problems . 270

Contents v

Reducing annotation searches during application deployment 273
A client program does not work . 274
Web resource is not displayed . 275
Application uninstallation problems. 277

Notices . 279

Trademarks and service marks . 281

Index . 283

vi Developing and deploying applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 vii

viii Developing and deploying applications

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 ix

x Developing and deploying applications

Chapter 1. Overview and new features for developing
applications

View the topics in the following list to learn more about developing applications for deployment on this
product.

What is new for developers

This topic provides an overview of new and changed features of the programming model and
application serving environment as it pertains to development and test efforts.

Learn about WebSphere applications: Overview and new features

This topic provides an overview of the programming model.

Accessing the samples

The samples are a good way to become familiar with the programming model.

© IBM Corporation 2003 1

2 Developing and deploying applications

Chapter 2. How do I develop applications?

Follow these shortcuts to get started quickly with popular tasks.

Design applications

Automate the build environment with Apache Ant

Secure applications, messages, and data

Learn about WebSphere programming extensions

Add logging and tracing to applications.

Migrating to Java Platform, Enterprise Edition (Java EE) 6
Version 8.5 of the product supports the Java Platform, Enterprise Edition (Java EE) 6 specification. Your
new and existing enterprise applications can take advantage of the capabilities added by Java EE 6.

About this task

The product supports the following specification and application programming interface (API) levels that
are new in Java EE 6:

v JSR 318: Enterprise JavaBeans (EJB) 3.1

v JSR 315: Java Servlet 3.0

v JSR 245 JavaServer Pages/Expression Language (JSP/EL) 2.1

v JSR 314: JavaServer Faces (JSF) 2.0

v JSR 199: JMS 1.1

v JSR-299: Java Contexts and Dependency Injection (JCDI) 1.0 (was Web Beans)

v JSR 317: Java Persistence API (JPA) 2.0

v JSR 322: Java EE Connector Architecture (JCA) 1.6

v Java API for XML-Based Web Services (JAX-WS) 2.2

v JSR 311: Java API for RESTful Web Services (JAX-RS) 1.0

v JSR 196: Java Authentication Service Provider Interface for Containers (JASPIC) 1.0

v JSR 303: Bean Validation 1.0

The new specifications add several capabilities to benefit application developers, such as profiles that
provide common features among applications.

Further, several specifications expand the use of annotations to more module types. Java language
annotations simplify development of Java EE applications. By using annotations, many applications can
avoid the need for deployment descriptors. In Version 7, the product supported annotations for EJB 3.0
and Web 2.5 modules . In Version 8, the product supports annotations for additional modules types, such
as resource adapters or RAR files, as well as continues to support the use of deployment descriptors.

The general steps for migrating your enterprise applications follow.

Procedure
1. Decide whether to take advantage of new Java EE 6 capabilities in your applications.

© Copyright IBM Corp. 2012 3

The Version 8.5 product supports applications written to Java EE 6 and supports portable applications
written to previous Java EE versions, specifically Java EE 5, Java 2 Platform, Enterprise Edition
(J2EE) 1.4, and J2EE 1.3. If you decide not to use new Java EE 6 capabilities, your portable
applications will continue to work without change and with identical behavior on the current version of
the platform.

2. If you select to use new Java EE 6 capabilities in your applications, change the applications as needed
to conform to the specifications.

3. Deploy your applications.

Deploy applications that use new Java EE 6 capabilities only to Version 8 deployment targets. You can
deploy applications written to previous specifications to Version 8 deployment targets or to Version 6.x
or 7.x deployment targets.

What to do next

Test the deployed applications to ensure that the applications behave as expected. Update the applications
as needed.

Migrating to Java Platform, Standard Edition (Java SE) 6
This product version supports the Java Platform, Standard Edition (Java SE) 6 specification. Its Java
virtual machine provides a Java language compiler and runtime environment. Decide whether your new
and existing applications will take advantage of the capabilities added by Java SE 6, adjust the just-in-time
(JIT) mode if necessary, and begin the transition from deprecated functions.

About this task

The following JSRs are new in Java SE 6:

v JSR 105: XML Digital Signature Application Programming Interfaces (APIs)

v JSR 173: Streaming API for XML (StAX)

v JSR 181: Web Services Metadata

v JSR 199: Java Compiler API

v JSR 202: Java Class-File Specification Update

v JSR 221: Java DataBase Connectivity (JDBC) 4.0

v JSR 222: Java Architecture for XML Binding (JAXB) 2.0

v JSR 223: Scripting for the Java Platform

v JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0

v JSR 250: Common Annotations

v JSR 269: Pluggable Annotation-Processing API

The new virtual machine specification adds several features and functions to benefit application
developers, such as interfaces for integrating the Java and scripting languages, password prompting, file
input-output enhancements, and parsing of streaming XML documents.

The Java Monitoring and Management Console (JConsole) is part of the Java Development Kit (JDK) and
the IBM Software Development Kit (SDK) Version 6. Although these development kits are shipped with
WebSphere Application Server, the product does not support the JConsole tool.

Procedure
v Determine whether to use the default just-in-time (JIT) mode.

For Java SE 6, the default JIT mode for the Solaris virtual machine depends on the hardware
configuration. It is not always client. With Java SE 6, for server class hardware (meaning 2+ CPU and
greater than 2 GB RAM), the virtual machine automatically switches to server JIT mode.

4 Developing and deploying applications

To configure the -server or -client parameter to your liking, set the generic Java virtual machine
arguments of the server process definition. See Java virtual machine settings.

v Decide whether to take advantage of new Java SE 6 capabilities in your applications.

You can deploy applications using Java SE 6 features only to Version 7 or later nodes, as earlier
product versions do not provide the Java SE 6 virtual machine.

Applications that access classes and APIs internal to the Java virtual machine might produce errors.
These classes and APIs are not covered by the Java SE 6 specification and are therefore subject to
change. Direct use of implementations of XML and XSL parsers is strongly discouraged, such as direct
use of Xerces and Xalan classes that provide the Java API for XML Processing (JAXP) implementation
for the virtual machine. The direct parser APIs also are considered internal and subject to change.
Applications should rely only on the JAXP APIs defined in the Java SE 6 API documentation. If your
application requires a specific version of Xerces or Xalan, or some other XML/XSL parser package, then
embed the parser within your application's WEB-INF/lib directory and set the appropriate class loading
mode in your application deployment so that for your application the XML parser APIs are loaded from
the application class path, not the Java virtual machine bootstrap class path. Failure to follow this
guideline can cause significant errors when you try to migrate to a new Java SE 6 level.

v Compile Java SE 6 applications to run on previous Java virtual machine levels by setting the compiler
modes.

When compiling applications that are built with Java SE 6 that are intended for running on previous
specifications, specify -source and -target modes for the Java SE 6 compiler. Doing so ensures that
the bytecode generated is compatible with the earlier Java virtual machine.

For example, if the target Java virtual machine is at 1.4.2 level, when you compile applications with
Java SE 6, you should specify -source 1.4, and target 1.4 to generate bytecode compatible with
1.4.2. This does not handle the usage of packages, classes, or functions new to Java SE 6. It only
addresses bytecode output. Developers must take care in what APIs they are using from the J2SE
packages if they intend to run the application on multiple Java virtual machine specification levels.

v Address incompatibilities in previously compiled Java 2 Standard Edition (J2SE) 1.4 and 5.0
applications.

Java SE 6 is upwards binary-compatible with Java 2 Technology Edition, Version 5.0 and Java 2
Technology Edition, Version 1.4.2, except for the incompatibilities documented by Oracle Corporation at
http://java.sun.com/javase/technologies/compatibility.jsp.

v Transition from deprecated Java Virtual Machine Debug Interface (JVMDI) and Java Virtual Machine
Profiler Interface (JVMPI) functions to Java Virtual Machine Tool Interface (JVMTI).

Note: JVMDI and JVMPI functions were deprecated in J2SE 5.0. They have been removed from Java
SE 6.

v Update your use of the Java command line interface.

The command-line interfaces for the Java SE 6 level have not changed extensively from J2SE 5,
although they vary among virtual machine vendors. You can find them in the JAVA_HOME/bin directory.
Here are some notable command line options that are standard to all Java SE 6 implementations.

– For JVMTI, use -agentlib to load a native agent library that you specify.

– For JVMTI, use -agentpath to load the native agent library by the full path name.

– For JVMTI, use -javaagent to load the Java programming language agent (see java.lang.instrument
for details).

– See apt -help for information about this new command line supporting the annotations capability.

– See javac -help for information and updates to that command line.

v Update ANT tasks.

If you have created ANT tasks based on the idltojava ANT task shipped with prior versions of this
product, ensure that it passes the proper parameters for Java SE 6 as it does for J2SE 1.4 or 5, to
ensure the stubs, ties and skeletons that it generates are compatible with earlier product releases.

Chapter 2. How do I develop applications? 5

6 Developing and deploying applications

Chapter 3. Designing applications

This topic highlights websites and other ideas for finding best practices for designing WebSphere®

applications, particularly in the realm of WebSphere extensions to the Java Platform, Enterprise Edition
(Java EE) specification.

When designing WebSphere applications, follow the example set by the Samples. Refer to the code in the
Samples Gallery that is available with the product. In particular, the Samples Gallery highlights new and
WebSphere-specific aspects of the programming model.

Use the following links to find relevant supplemental information about designing WebSphere applications.
The information resides on IBM® and non-IBM Internet sites, whose sponsors control the technical
accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks® that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Web resources for learning
v The top 10 (more or less) J2EE best practices

The authors, who are IBM consultants and performance experts, describe this document in the following
way: Over the last five years, a lot has been written about Java EE best practices. There now are
probably 10 or more books along with dozens of articles that provide insight into how Java EE
applications should be written. In fact, there are so many resources, often with contradictory
recommendations, navigating the maze has become an obstacle to adopting Java EE itself. To provide
some simple guidance for customers entering this maze, we set out to compile the following "top 10" list
of what we feel are the most important best practices for J2EE.

v IBM Patterns for e-Business

Patterns for e-business are a group of reusable assets that can help speed the process of developing
Web-based applications. The patterns leverage the experience of IBM architects to create solutions
quickly, whether for a small local business or a large multinational enterprise.

v Best practices for using XSLT in WebSphere Application Server applications

The author states: In this article I explore the reasons why some WebSphere Application Server
applications use XSL for HTML production instead of JavaServer Pages (JSP) files. I will compare the
performance of XSLT for HTML/XHTML production against JSP files and browser formatting. I will then
provide guidance on how to improve XSLT performance in WebSphere Application Server should you
decide to go this route. While this article focuses on the use of XSLT for the production of HTML, the
performance best practices are directly applicable to other WebSphere Application Server uses of XSLT,
such as XML-to-XML transformations and XML-to-text transformations.

v Rational on developerWorks

The developerWorks® site provides quick links to technical resources and best practices for Rational®

software. Browse information by product or by technology. Find resources for learning, support, and
developer communities.

v developerWorks site

developerWorks is an IBM technical resource for developers, providing a wide range of tools, code, and
education on DB2®, eServer™, Lotus®, Rational, Tivoli®, and WebSphere as well as on open standards
technology such as web services, Wireless, Linux, XML, Java technologies, and more. By providing
focused and relevant technical information for developers, developerWorks offers choices you can apply
to building and deploying applications across heterogeneous systems. Using developerWorks, you can
take full advantage of open standards and the IBM Software Development Platform in an on demand
world.

© Copyright IBM Corp. 2012 7

v Resource reference list

The product has a large amount of existing documentation. Use the following user communities and
other non-IBM sites that gather knowledge about using WebSphere products as a guideline to find the
documentation that you require.

– http://www.websphere-world.com/

– http://www.websphere.org/

– http://www.webspherepro.com/wphome/

– http://www.sys-con.com/websphere/

– http://websphereadvisor.com/

See also the documentation for the type of application that you are developing, such as web applications,
EJB applications, Web services applications, or applications that use messaging.

8 Developing and deploying applications

Chapter 4. Obtaining an integrated development environment
(IDE)

This topic describes obtaining an integrated development environment (IDE). Use Rational products from
IBM to design, construct, and manage changes to applications for deployment on your WebSphere
Application Server products.

Procedure
v See “Development and assembly tools” on page 17 for a description of the Rational Application

Developer product.

Insert the product disc and use the documentation and the installation program on the disc to install and
set up the development environment.

v Refer to these web resources for learning.

Rational software pages on ibm.com
Browse the IBM portfolio of software for requirements analysis and tracking, application design
and construction, ensuring software quality, configuration and change management, and
development project management.

Rational developer community
This page provides quick links to technical resources and best practices for Rational software
on developerWorks. Browse information by product or by technology. Find resources for
learning, support, and developer communities.

developerWorks main page
This page is the entrance to the IBM resource for developers.

© IBM Corporation 2004 9

10 Developing and deploying applications

Chapter 5. Debugging applications

To debug your application, you must use a development environment like the IBM Rational Application
Developer for WebSphere to create a Java project. You must then import the program that you want to
debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java
project. Two debugging styles are available:
v Step-by-step debugging mode prompts you whenever the server calls a method on a web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when
you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of
the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which web
objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your
program into the project, some of the source might not compile. You can still debug the project. Most
features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You
must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These
features let you select an expression in the source view and evaluate it.

Procedure
1. Create a Java Project by opening the New Project dialog.

2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

3. Click Next and specify a name for the project, for example, WASExamples.

4. Click Finish to create the project.

5. Select the new project, choose File > Import > File System, then Next to open the import file
system dialog.

6. Browse the directory for files.

Go to the following directory: profile_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This
imports the JavaServer Pages files and Java source for the examples into your project.

8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the
Libraries tab. Click Add External JARs to add the following JAR files:
v profile_root/installedApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the
Increment.jar file because it contains both the source and class files.

v app_server_root/dev/JavaEE/j2ee.jar
v app_server_root/plugins/com.ibm.ws.runtime.jar
v app_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as
step-by-step mode will prompt you whenever the server calls a method on a web object. Step-by-step
mode is explained in more detail below.

© Copyright IBM Corp. 2012 11

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make
note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open
Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing
Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other
category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server
Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).
Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next

To learn more about debugging, launch The IBM Rational Application Developer for WebSphere, select
Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn about known
limitations and problems that are associated with the IBM Rational Application Developer for WebSphere,
see the IBM Rational Application Developer for WebSphere release notes. For current information
available from IBM Support on known problems and their resolution, see the IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents page for information to gather to send to IBM
Support.

Debugging components in the IBM Rational Application Developer for
WebSphere

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server
on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench.
Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To
learn more about the debug components, launch the IBM Rational Application Developer for WebSphere,
select Help > Help Contents and choose the Developing > Debugging applications bookshelf entries.

The IBM Rational Application Developer for WebSphere includes the following components:
The WebSphere Application Server debug adapter

which allows you to debug web objects that are running on WebSphere Application Server and
that you have launched in a browser. These objects include enterprise beans, JavaServer Pages
files, and servlets.

The JavaScript debug adapter
which enables server-side JavaScript debugging.

The Compiled language debugger
which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger
which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for
debugging locally and for remote debugging. To learn more about the debug components, launch the IBM
Rational Application Developer for WebSphere, select Help > Help Contents and choose the Developing
> Debugging applications bookshelf entries.

12 Developing and deploying applications

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

To learn more about Log and Trace Analyzer, launch the IBM Rational Application Developer for
WebSphere, and select Help > Help Contents. To learn about known limitations and problems that are
associated with the IBM Rational Application Developer for WebSphere, see the IBM Rational Application
Developer for WebSphere release notes.

Debugging Service details
Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Servers Types > WebSphere application
servers > server name > Debugging service.

You can enable a debug session on WebSphere Application Server on this page. Debugging can prove
useful when your program behaves differently on the application server than on your local system.

Enable service at server startup
Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port
Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters
Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the
debugger will not stop in classes that match a filter entry.

Chapter 5. Debugging applications 13

14 Developing and deploying applications

Chapter 6. Assembling applications

Application assembly consists of creating Java Platform, Enterprise Edition (Java EE) modules that can be
deployed onto application servers. The modules are created from code artifacts such as web application
archive (WAR) files, resource adapter archive (RAR) files, enterprise bean (EJB) JAR files, and application
client archive (JAR) files. This packaging and configuring of code artifacts into enterprise archive (EAR)
modules or stand-alone web modules is necessary for deploying the modules onto an application server.

Before you begin

This topic assumes that you have developed code artifacts that you want to deploy onto an application
server and have unit tested the code artifacts in your favorite integrated development environment. Code
artifacts that you might assemble into deployable Java EE modules include the following:
v Enterprise beans
v Servlets, JavaServer Pages (JSP) files and other web components
v Resource adapter (connector) implementations
v Client applications
v Session Initiation Protocol (SIP) modules (SAR files)
v Other supporting classes and files

To assemble your code artifacts into deployable Java EE modules, you can use a supported assembly
tool. The product supports IBM Rational Application Developer for WebSphere Software for developing,
assembling, and deploying Java EE modules.

About this task

You assemble code artifacts into Java EE modules in order to deploy the code artifacts onto an application
server. When you assemble code artifacts, you package and configure the code artifacts into deployable
Java EE applications and modules, edit annotations or deployment descriptors, and map databases as
needed. Unless you assemble your code artifacts into Java EE modules, you cannot run them successfully
on an application server.

This topic describes how to assemble Java EE code artifacts into deployable modules using an assembly
tool. Alternatively, you can use a rapid deployment tool to quickly assemble and deploy Java 2 Platform,
Enterprise Edition (J2EE) 1.3 or 1.4 code artifacts. Refer to “Rapid deployment of J2EE applications” for
details.

Procedure
1. Start an assembly tool.

2. Optional: Read the online documentation for the assembly tool.

3. Configure the assembly tool for work on Java EE modules.

4. Migrate J2EE 1.4 or earlier projects or code artifacts created with the Application Server Toolkit,
Assembly Toolkit, Application Assembly Tool (AAT) or a different tool.

To migrate files, use the Migration wizard or import the files to the assembly tool.

5. Create an enterprise application project to which you can add archive files. You can create an
enterprise application project separately or when you create archive files such as the following:

v Create a web project.

v Create an enterprise bean (EJB) project.

v Create an application client.

v Create a resource adapter (connector) project.

© Copyright IBM Corp. 2012 15

6. Edit the annotations or deployment descriptors as needed. You can edit annotations or deployment
descriptors for enterprise application, Web, application client, resource adapter (connector), and
Enterprise JavaBeans (EJB) modules.

Topics in Rational Application Developer documentation provide extensive information on editing
annotations or deployment descriptors.

7. Optional: Generate enterprise bean (EJB) to relational database (RDB) mappings for EJB 2.1 or earlier
modules.

8. Verify the archive files.

9. Generate code for deployment for web services-enabled modules or for enterprise applications that
use web service modules.

What to do next

After assembling your applications, use a systems management tool to deploy the EAR or WAR files onto
the application server. “Ways to install enterprise applications or modules” lists systems management tools
available for deploying Java EE modules on an application server. The systems management tool follows
the security and deployment instructions defined in the annotations or deployment descriptors, and
enables you to modify bindings specified within an assembly tool. The tool locates the required external
resources that the application uses, such as enterprise beans and databases.

Package your application so that the EAR file contains necessary modules only. Modules can include
metadata for the modules such as information on annotations, deployment descriptors, bindings, and IBM
extensions.

Use the administrative console at installation to complete the security instructions defined in the
annotations or deployment descriptors and to locate required external resources, such as enterprise beans
and databases. You can add configuration properties and redefine binding properties defined in an
assembly tool.

Application assembly and enterprise applications
Application assembly is the process of creating an enterprise archive (EAR) file containing all files related
to an application. This configuration and packaging prepares the application for deployment onto an
application server.

EAR files are comprised of the following archives:
v Enterprise bean JAR files (known as EJB modules)
v Web archive (WAR) files (known as web modules)
v Application client JAR files (known as client modules)
v Resource adapter archive (RAR) files (known as resource adapter modules)
v SAR files (known as Session Initiation Protocol (SIP) modules)

Ensure that modules are contained in an EAR file so that they can be deployed onto the server. The
exceptions are WAR modules, which you can deploy individually. Although WAR modules can contain
regular Java archive (JAR) files, they cannot contain the other module types described previously.

The assembly process includes the following actions:

v Selecting all of the files to include in the module.

v Creating an annotation or deployment descriptor containing instructions for module deployment on the
application server.

You can use the graphical interface of Rational Application Developer assembly tools to generate the
annotation or deployment descriptor. You can also edit annotations or descriptors directly in your favorite
XML editor.

v Packaging modules into a single EAR file, which contains one or more files in a compressed format.

16 Developing and deploying applications

As part of the assembly process, you might also set environment-specific binding information. These
bindings are defaults for an administrator to use when installing the application through the administrative
console. Further, you might define IBM extensions to the Java Platform, Enterprise Edition (Java EE)
specifications, such as to allow servlets to be served by class name. To ensure portability to other
application servers, these extensions are saved in an XML file that is separate from the standard
annotation or deployment descriptor.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

Development and assembly tools
You can use an Integrated Development Environment to develop, assemble, and deploy Java Platform,
Enterprise Edition (Java EE) modules for WebSphere Application Server.

The IBM Rational Application Developer for WebSphere Software product and the IBM WebSphere
Application Server Developer Tools for Eclipse product are supported tools for integrated development
environments.

This information center refers to the products as the assembly tools. However, you can use the products to
do more than assemble modules. Use these tools in an integrated development environment to develop,
assemble, and deploy Java EE modules.

The Rational Application Developer for WebSphere Software is a more extensive set of tools supporting
enterprise development. This workbench has integrated support for WebSphere Application Server Version
6.1 and later. This workbench also supports both the OSGi and Java EE programming models, and
contains wizards and visual editors to help you develop Web 2.0, Service Component Architecture (SCA),
Java, and Java EE applications. This product contains code quality tools to help you analyze code and
improve performance. This product integrates with Rational Team Concert to provide a team-based
environment to help developers share information and work collaboratively. The Trial download for Rational
Application Developer is available at http://www.ibm.com/developerworks/downloads/r/rad/.

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE applications to WebSphere Application Server Version 7.0 and 8.x.
This workbench integrates with the application server to help you to quickly deploy and test applications.
This product contains wizards and visual editors that support the Java EE programming model.

For documentation on the tools, see “Rational Application Developer documentation.” Topics on application
assembly in this information center supplement that documentation.

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

Generating code for web service deployment
Before deploying web services-enabled modules or any enterprise application archive (EAR) files that
contain web services-enabled module onto an application server, you must generate deployment code for
the application.

Chapter 6. Assembling applications 17

Before you begin

This topic assumes you have assembled a module enabled with web services, added it to an application,
saved the application, and verified the application. It also assumes that you have started and configured
an assembly tool.

About this task

You can use an assembly tool to generate deployment code for the web services-enabled module or for
the EAR file that contains the web services-enabled module.

Procedure
1. If you have turned automatic validation off, manually validate any modules that use web services with

the JSR109 web services validator before generating deployment code for them. If validating your
module results in compilation errors or validation errors, fix the errors before generating deployment
code. However, if validating your module results in warning or information messages, you can generate
deployment code.

2. In the Project Explorer view of the assembly tool, right-click on the web services-enabled module
(WAR, enterprise bean JAR, or application client JAR file) for which you want to generate code for
deployment.

3. Click Deploy. Alternatively, you can generate deployment code for web services-enabled modules
using the deployment tool for web services (wsdeploy) from a command prompt.

4. If messages indicate that automatic file overwriting is not enabled, click Yes to All so the generated
files are added to the module.

Results

Code is generated into the folder where your web services-enable module is located. Problems with the
generation of code result in a window that displays error messages.

What to do next

Install the Java Platform, Enterprise Edition (Java EE) application on your server machine. You can install
the application onto a server using the administrative console. Before installing the application, you might
need to set class paths.

Assembling applications: Resources for learning
Additional information and guidance on assembling applications is available on various Internet sites.

Use the following links to find relevant supplemental information about the application assembly and using
an assembly tool. The information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks publications that supplement the broad coverage of the
release documentation with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming instructions and examples” on page 19
v “Programming specifications” on page 19
v “Administration” on page 19

18 Developing and deploying applications

http://www.ibm.com/developerworks/webservices/library/ws-jsrart/

Programming instructions and examples
v Rational Application Developer V8 Programming Guide, SG24-7835-00, http://www.redbooks.ibm.com/

abstracts/sg247835.html?Open

v Rational developer community, http://www.ibm.com/developerworks/rational/

v IBM WebSphere Developer Technical Journal: Using Rational Developer to create a simple web service
and use it in a web application, http://www.ibm.com/developerworks/websphere/techjournal/
0506_parkin/0506_parkin.html

v Java EE Tutorials, http://www.oracle.com/technetwork/java/javaee/documentation/tutorials-
137605.html

v Recommended reading list: Java EE and WebSphere Application Server, http://www.ibm.com/
developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html

Programming specifications
v Specifications and API documentation

Administration
v WebSphere Application Server V7 Administration and Configuration Guide, SG24-7615-01,

http://www.redbooks.ibm.com/abstracts/sg247615.html

Chapter 6. Assembling applications 19

20 Developing and deploying applications

Chapter 7. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading
class files. Class loaders enable applications that are deployed on servers to access repositories of
available classes and resources. Application developers and deployers must consider the location of class
and resource files, and the class loaders used to access those files, to make the files available to
deployed applications. Class loaders affect the packaging of applications and the runtime behavior of
packaged applications of deployed applications.

Before you begin

This topic describes how to configure class loaders for application files or modules that are installed on an
application server.

To better understand class loaders in WebSphere Application Server, read “Class loaders.” The topic
“Class loading: Resources for learning” on page 31 refers to additional sources.

About this task

Configure class loaders for application files or modules that are installed on an application server using the
administrative console. You configure class loaders to ensure that deployed application files and modules
can access the classes and resources that they need to run successfully.

Procedure
1. If an installed application module uses a resource, create a resource provider that specifies the

directory name of the resource drivers.

Do not specify the resource Java archive (JAR) file names. All JAR files in the specified directory are
added into the class path of the WebSphere Application Server extensions class loader. If a resource
driver requires a native library (.dll or .so file), specify the name of the directory that contains the
library in the native path of the resource configuration.

2. Specify class-loader values for an application server.

3. Specify class-loader values for an installed enterprise application.

4. Specify the class-loader mode for an installed web module.

5. If your deployed application uses shared library files, associate the shared library files with your
application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define shared libraries for library files that your applications need.

b. Define a library reference for each shared library that your application uses.

What to do next

After configuring class loaders, ensure that your application performs as desired. To diagnose and fix
problems with class loaders, refer to Troubleshooting class loaders.

Class loaders
Class loaders find and load class files. Class loaders enable applications that are deployed on servers to
access repositories of available classes and resources. Application developers and deployers must
consider the location of class and resource files, and the class loaders used to access those files, to make
the files available to deployed applications.

This topic provides the following information about class loaders in WebSphere Application Server:
v “Class loaders used and the order of use” on page 22
v “Class-loader isolation policies” on page 23

© Copyright IBM Corp. 2012 21

v “Class-loader modes” on page 25

Class loaders used and the order of use

The product runtime environment uses the following class loaders to find and load new classes for an
application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/lib) to find and load
classes. The extensions class loader uses the system property java.ext.dirs (typically jre/lib/ext) to
find and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to
find and load classes.

The CLASSPATH class loader loads the Java Platform, Enterprise Edition (Java EE) application
programming interfaces (APIs) provided by the WebSphere Application Server product in the j2ee.jar
file. Because this class loader loads the Java EE APIs, you can add libraries that depend on the Java
EE APIs to the class path system property to extend a server class path. However, a preferred method
of extending a server class path is to add a shared library.

2. A WebSphere extensions class loader

The WebSphere extensions class loader loads the WebSphere Application Server classes that are
required at run time. The extensions class loader uses a ws.ext.dirs system property to determine the
path that is used to load classes. Each directory in the ws.ext.dirs class path and every Java archive
(JAR) file or compressed file in these directories is added to the class path used by this class loader.

The WebSphere extensions class loader also loads resource provider classes into a server if an
application module installed on the server refers to a resource that is associated with the provider and
if the provider specifies the directory name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise applications running in
the server

The application elements can be web modules, enterprise bean (EJB) modules, resource adapter
archives (RAR files), and dependency JAR files. Application class loaders follow Java EE class-loading
rules to load classes and JAR files from an enterprise application. The product enables you to
associate shared libraries with an application.

4. Zero or more web module class loaders

By default, web module class loaders load the contents of the WEB-INF/classes and WEB-INF/lib
directories. Web module class loaders are children of application class loaders. You can specify that an
application class loader load the contents of a web module rather than the web module class loader.

Java class loaders

WebSphere extensions
class loader

Application module class loader Application module class loader

Web module class loader Web module class loader

Each class loader is a child of the previous class loader. That is, the application module class loaders are
children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.
Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class
loader. If none of the parent class loaders can find the class, the original class loader attempts to load the
class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the
WebSphere extensions class loader is requested to find a class in a Java EE module, it cannot go to the

22 Developing and deploying applications

application module class loader to find that class and a ClassNotFoundException error occurs. After a
class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go
up the precedence list until the class is found.

Class-loader isolation policies

The number and function of the application module class loaders depend on the class-loader policies that
are specified in the server configuration. Class loaders provide multiple options for isolating applications
and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

Table 1. Class-loader policy descriptions. Available policies include Application and WAR.

Class-loader policy Description

Application Application class loaders load EJB modules, dependency JAR files, embedded resource
adapters, and application-scoped shared libraries. Depending on the application
class-loader policy, an application class loader can be shared by multiple applications
(Single) or unique for each application (Multiple). The application class-loader policy
controls the isolation of applications that are running in the system. When set to Single,
applications are not isolated. When set to Multiple, applications are isolated from each
other.

WAR By default, web module class loaders load the contents of the WEB-INF/classes and
WEB-INF/lib directories. The application class loader is the parent of the web module class
loader. You can change the default behavior by changing the web application archive
(WAR) class-loader policy of the application.

The WAR class-loader policy controls the isolation of web modules. If this policy is set to
Application, then the Web module contents also are loaded by the application class loader
(in addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the
policy is set to Module, then each web module receives its own class loader whose parent
is the application class loader.
Tip: The console and the underlying deployment.xml file use different names for WAR
class-loader policy values. In the console, the WAR class-loader policy values are
Application or Module. However, in the underlying deployment.xml file where the policy is
set, the WAR class-loader policy values are Single instead of Application, or Multiple
instead of Module. Application is the same as Single, and Module is the same as
Multiple.

Restriction: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or
Multiple. When the application class-loader policy is set to Single, then a single application class loader
loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application
class-loader policy is set to Multiple, then each application receives its own class loader that is used for
loading the EJB modules, dependency JAR files, and shared libraries for that application.

An application class loader loads classes from web modules if the application's WAR class-loader policy is
set to Application. If the application's WAR class-loader policy is set to Module, then each WAR module
receives its own class loader.

The following example shows that when the application class-loader policy is set to Single, a single
application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all
applications on the server. The single application class loader can also load web modules if an application
has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set
to Module use a separate class loader for web modules.

Chapter 7. Class loading 23

Server’s application class-loader policy: Single
Application’s WAR class-loader policy: Module

Application 1
Module: EJB1.jar
Module: WAR1.war
MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = Module

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = Application

WebSphere extensions class loader

Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application class-loader policy of an application server is set
to Multiple, each application on the server has its own class loader. An application class loader also loads
its web modules if the application WAR class-loader policy is set to Application. If the policy is set to
Module, then a web module uses its own class loader.
Server’s application class-loader policy: Multiple
Application’s WAR class-loader policy: Module

Application 1
Module: EJB1.jar
Module: WAR1.war
MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = Module

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = Application

24 Developing and deploying applications

WebSphere extensions class loader

Application class loader Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Class-loader modes

The class-loader delegation mode, also known as the class loader order, determines whether a class
loader delegates the loading of classes to the parent class loader. The following values for class-loader
mode are supported:

Table 2. Class-loader mode descriptions. Available modes include Parent first and Parent last.

Class-loader mode Description

Parent first

Also known as Classes
loaded with parent
class loader first.

The Parent first class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class
path. This value is the default for the class-loader policy and for standard JVM class
loaders.

Parent last

Also known as Classes
loaded with local
class loader first or
Application first.

The Parent last class-loader mode causes the class loader to attempt to load classes
from its local class path before delegating the class loading to its parent. Using this policy,
an application class loader can override and provide its own version of a class that exists in
the parent class loader.

The following settings determine the mode of a class loader:

v If the application class-loader policy of an application server is Single, the server-level mode value
defines the mode for an application class loader.

v If the application class-loader policy of an application server is Multiple, the application-level mode
value defines the mode for an application class loader.

v If the WAR class-loader policy of an application is Module, the module-level mode value defines the
mode for a WAR class loader.

Configuring class loaders of a server
You can configure the application class loaders for an application server. Class loaders enable applications
that are deployed on the application server to access repositories of available classes and resources.

Chapter 7. Class loading 25

Before you begin

This topic assumes that an administrator created an application server on a WebSphere Application Server
product.

About this task

Configure the class loaders of an application server to set class-loader policy and mode values which
affect all applications that are deployed on the server. Use the administrative console to configure the
class loaders.

Procedure
1. Click Servers > Server Types > WebSphere application servers > server_name to access an

application server settings page.

2. Specify the application class-loader policy for the application server.

The application class-loader policy controls the isolation of applications that run in the system (on the
server). An application class loader groups enterprise bean (EJB) modules, shared libraries, resource
adapter archives (RAR files), and dependency Java archive (JAR) files associated to an application.
Dependency JAR files are JAR files that contain code which can be used by both enterprise beans
and servlets. The application class-loader policy controls whether an application class loader can be
shared by multiple applications or is unique for each application.

Use the application server settings page to specify the application class-loader policy for the server:

Option Description

Single Applications are not isolated from each other. Uses a
single application class loader to load all of the EJB
modules, shared libraries, and dependency JAR files in
the system.

Multiple Applications are isolated from each other. Gives each
application its own class loader to load the EJB modules,
shared libraries, and dependency JAR files of that
application.

3. Specify the application class-loader mode for the application server.

The application class loading mode specifies the class-loader mode when the application class-loader
policy is Single.

On the application server settings page, select either of the following values:

Option Description

Classes loaded with parent class loader first Causes the class loader to delegate the loading of
classes to its parent class loader before attempting to
load the class from its local class path. Classes loaded
with parent class loader first is the default value for
class loading mode.

This value is also known as parent first.

Classes loaded with local class loader first (parent
last)

Causes the class loader to attempt to load classes from
its local class path before delegating the class loading to
its parent. Using this policy, an application class loader
can override and provide its own version of a class that
exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the application server settings page, click Java and Process Management > Class loader to
access the Class loader page.

26 Developing and deploying applications

b. On the Class loader page, click New to access the settings page for a class loader.

c. On the class loader settings page, specify the class loader order.

The Classes loaded with parent class loader first value causes the class loader to delegate
the loading of classes to its parent class loader before attempting to load the class from its local
class path.

The Classes loaded with local class loader first (parent last) value causes the class loader
to attempt to load classes from its local class path before delegating the class loading to its parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class
loaders shown on the Class loader page.

What to do next

Save the changes to the administrative configuration.

Class loader collection
Use this page to manage class-loader instances on an application server. A class loader determines
whether an application class loader or a parent class loader finds and loads Java class files for an
application.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Java and Process Management > Class loader.

Class loader ID
Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

Class loader order
Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class loader first (Parent first). By specifying Classes
loaded with local class loader first (Parent last), your application can override classes contained in
the parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if you
have mixed use of overridden classes and non-overridden classes.

Class loader settings
Use this page to configure a class loader for applications that reside on an application server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Java and Process Management > Class loader > class_loader_ID.

Class loader ID
Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

Information Value
Data type String

Class loader order
Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server

Chapter 7. Class loading 27

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with
local class loader first (parent last), your application can override classes contained in the parent
class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have
mixed use of overridden classes and non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with local class
loader first (parent last). The default is to search in the parent class loader before searching in the
application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in this product, set this
application class loader order to Classes loaded with parent class loader first. For your application to
override the default configuration of Jakarta Commons Logging, your application must provide the
configuration in a form supported by Jakarta Commons Logging and this class loader order must be set to
Classes loaded with local class loader first (parent last). Also, to override the default
configuration, set the class loader order for each web module in your application so that the correct logger
factory loads.

Information Value
Data type String
Default Parent first

Configuring application class loaders
You can set values that control the class-loading behavior of an installed enterprise application. Class
loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that you installed an application on an application server.

About this task

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this
application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter
archive (RAR) files, and dependency Java archive (JAR) files associated to an application. Dependency
JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a web application archive (WAR) class loader. By default, a
web module has its own WAR class loader to load the contents of the web module. The WAR class-loader
policy value of an application class loader determines whether the WAR class loader or the application
class loader is used to load the contents of the Web module.

Use the administrative console to configure the class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Class loading and update detection to access the settings page for an application class loader.

28 Developing and deploying applications

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for web and
EJB modules to choose to reload application classes. You might specify different values for EJB
modules and for web modules such as servlets and JavaServer Pages (JSP) files.

3. Specify the number of seconds to scan the application's file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is
enabled. The default is the value of the reloading interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify
different values for EJB modules and for web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
.xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE
5 files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class
loader or in the application class loader first to load a class. The default is to search in the parent class
loader before searching in the application class loader to load a class.

Select either of the following values for Classes loader order:

Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class
loader first to load a class. This value is the standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Classes loaded with local class loader first (parent
last)

Causes the class loader to search in the application class
loader first to load a class. By specifying Classes loaded
with local class loader first (parent last), your
application can override classes contained in the parent
class loader.
Note: Specifying the Classes loaded with local class
loader first (parent last) value might result in
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

5. Specify whether to use a single or multiple class loaders to load web application archives (WAR files)
of your application.

By default, web modules have their own WAR class loader to load the contents of the WEB-INF/classes
and WEB-INF/lib directories. The default WAR class loader value is Class loader for each WAR file

Chapter 7. Class loading 29

in application, which uses a separate class loader to load each WAR file. Setting the value to Single
class loader for application causes the application class loader to load the web module contents
as well as the EJB modules, shared libraries, RAR files, and dependency JAR files associated to the
application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in
your application.

6. Click OK.

What to do next

Save the changes to the administrative configuration.

Configuring web module class loaders
You can set values that control the class-loading behavior of an installed web module.

Before you begin

This topic assumes that you installed a web module on an application server.

About this task

Configure the class loader order value of an installed web module. By default, a web module has its own
web application archive (WAR) class loader to load the contents of the web module, which are in the
WEB-INF/classes and WEB-INF/lib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an
application class loader determines whether the WAR class loader or the application class loader is used
to load the contents of the web module.

The default WAR class loader policy value is Class loader for each WAR file in application. If the
policy is set to Class loader for each WAR file in application, then each web module receives its own
class loader whose parent is the application class loader. If the policy is set to Single class loader for
application, then the application class loader loads the web module contents as well as the enterprise
bean (EJB) modules, shared libraries, resource adapter archive (RAR) files, and dependency Java archive
(JAR) files associated to an application. Thus, the configuration of the parent application class loader
affects the WAR class loader. You can set the policy on the Class loading and update detection page of an
administrative console.

Use the administrative console to configure the application and WAR class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. If you have not done so already, configure the application class loader.

30 Developing and deploying applications

Settings such as Override class reloading settings for web and EJB modules, Polling interval for
updated files and WAR class loader policy can affect web module class loading.

If WAR class loader policy is set to Class loader for each WAR file in application, then the web
module receives its own class loader and the WAR class-loader policy of the web module defines the
mode for a WAR class loader. If the policy is set to Single class loader for application, then the
application class loader loads the web module contents.

2. Specify the class loader order for the installed web module.

The web module class-loader mode specifies whether the class loader searches in the parent
application class loader or in the WAR class loader first to load a class. The default is to search in the
parent application class loader before searching in the WAR class loader to load a class.

Select either of the following values for Class loader order:

Option Description

Classes loaded with parent class loader first This option causes the class loader to prefer classes that
are provided by the product over the classes that exist
within the web module. This approach is standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Classes loaded with local class loader first This option causes the class loader to prefer classes that
exist in the web module over the classes that are
provided by the product. If the same class exists in both
the product and the web module, the class from the web
module is loaded.

Attention: If you specify the Classes loaded with
local class loader first value, you might receive
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

3. Click OK.

What to do next

Save the changes to the administrative configuration.

Class loading: Resources for learning
Additional information and guidance on class loading is available on various Internet sites.

Use the following links to find relevant supplemental information about class loaders. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks publications that supplement the broad coverage of the
release documentation with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming model and decisions” on page 32
v “Programming instructions and examples” on page 32
v “Programming specifications” on page 32

Chapter 7. Class loading 31

Programming model and decisions
v Demystifying class loading problems, Part 1: An introduction to class loading and debugging tools -

Learn how class loading works and how your JVM can help you sort out class loading problems
(developerWorks, November 2005), http://www.ibm.com/developerworks/java/library/j-dclp1/
?S_TACT=106AH10W&S_CMP=NC

v Demystifying class loading problems, Part 2: Basic class loading exceptions - An in-depth look at some
simple class loading quirks and conundrums (developerWorks, December 2005), http://www.ibm.com/
developerworks/java/library/j-dclp2.html?S_TACT=105AGX10&S_CMP=NC

v Demystifying class loading problems, Part 3: Tackling more unusual class loading problems -
Understand class loading and quash subtle exceptions (developerWorks, December 2005),
http://www.ibm.com/developerworks/java/library/j-dclp3/?S_TACT=105AGX10&S_CMP=NC

v J2EE Class Loading Demystified (developerWorks, August 2002), http://www.ibm.com/developerworks/
websphere/library/techarticles/0112_deboer/deboer.html

v Java programming dynamics, Part 1: Classes and class loading - A look at classes and what goes on
as they're loaded by a JVM (developerWorks, April 2003), http://www.ibm.com/developerworks/java/
library/j-dyn0429/

Programming instructions and examples
v WebSphere Application Server V7: Understanding Class Loaders, http://publib-b.boulder.ibm.com/

abstracts/redp4581.html?Open

Programming specifications
v Specifications and API documentation

32 Developing and deploying applications

Chapter 8. Adding logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in
WebSphere Application Server.

About this task

Deprecation: The JRas framework that is described in this information center is deprecated. However, you
can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as
servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes,
might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.println statements to your code:
v Your messages are displayed in the WebSphere Application Server standard log files, using a standard

message format with additional data, such as a date and time stamp that are added automatically.
v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.
v You can take advantage of the WebSphere Application Server log file management features.
v You can view your messages with the Log and Trace Analyzer tool.

Procedure
1. Enable and configure any of the supported types of logging as needed. Use one of the following

methods:

v Configuring Java logging using the administrative console

v Configuring applications to use Jakarta Commons Logging

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,
specify the number of logs to be kept, and specify a format for log output.

© Copyright IBM Corp. 2012 33

v Configuring Java logging using the administrative console

3. If you do not want log and trace from Jakarta Commons Logging to use the WebSphere log and trace
infrastructure, reconfigure the Jakarta Commons Logging.

v “Configuring applications to use Jakarta Commons Logging” on page 49

Note: Use the WebSphere log and trace infrastructure for all of your log content to make problem
source identification simpler.

4. Restart the application server after making static configuration changes.

Example

The sample security policy that follows grants access to the file system and runtime classes. Include this
security policy, with the entry permission java.util.logging.LoggingPermission "control", in the
META-INF directory of your application if you want your applications to programmatically alter controlled
properties of loggers and handlers. The META-INF file is located in the following locations for the different
module types:

Project name Location

EJB projects ejbModule/META-INF/MANIFEST.MF

Application client projects appClientModule/META-INF/MANIFEST.MF

Dynamic web projects WebContent/META-INF/MANIFEST.MF

Connector projects connectorModule/META-INF/MANIFEST.MF

Below is a sample security policy that grants permission to modify logging properties:
//
//
// WebSphere Application Server Security Policy
//
//

//
// Allow all access to the file system and runtime classes
//
grant codeBase "file:${application}" {

permission java.util.logging.LoggingPermission "control";
};

Using Java logging in an application
This topic describes how to use Java logging within an application.

About this task

To create an application using Java logging, perform the following steps:

Procedure
1. Optional: Create the necessary handler, formatter, and filter classes if you need your own log files.

Note: Use the WebSphere log and trace infrastructure to make problem source identification simpler,
rather than creating separate log files.

2. Optional: If localized messages are used by the application, create a resource bundle, as described in
“Creating log resource bundles and message files” on page 46.

3. In the application code, get a reference to a logger instance, as described in “Using a logger” on page
35.

34 Developing and deploying applications

4. Insert the appropriate message and trace logging statements in the application, as described in “Using
a logger.”

Using a logger
You can use Java logging to log messages and add tracing.

About this task

Java provides a log and trace package, java.util.logging, that you can use to instrument your applications.
This topic provides recommendations about how to use the log and trace package.

Procedure
1. Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel
class.

For messages use:
WsLevel.FATAL
Level.SEVERE
Level.WARNING
WsLevel.AUDIT
Level.INFO
Level.CONFIG
WsLevel.DETAIL

For trace use:
Level.FINE
Level.FINER
Level.FINEST

2. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for
class name and method name. The log and logrb methods will generally try to infer this information,
but the performance penalty is prohibitive. In general, the logp method has less performance impact
than the log or the logrb method.

3. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor
performance.

4. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For
example:

if (logger.isLoggable(Level.FINEST)) {
String s = dumpComponentState(); // some expensive to compute method
logger.logp(Level.FINEST, className, methodName, "componentX state

dump:\n{0}", s);
}

Localized messages

The following sample applies to localized messages:
// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with
// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
String resourceBundleName = "com.ibm.websphere.componentX.Messages";
Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.SEVERE))
logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))
logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))
logger.info("MSG_KEY_01");

Chapter 8. Adding logging and tracing to your application 35

if (logger.isLoggable(Level.CONFIG))
logger.config("MSG_KEY_01");

// log methods are not generally used due to lack of class and method
names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(WsLevel.FATAL))
logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// logp methods are the way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(WsLevel.FATAL))
logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.INFO))
logger.logp(Level.INFO, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01",
"parameter 1");

// logrb methods are not generally used due to diminished performance
of switching resource bundles dynamically
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
String resourceBundleNameSpecial =
"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))
logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,

36 Developing and deploying applications

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:
// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,
// INFO, CONFIG, DETAIL levels for trace
// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods
if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use
logp with a throwable parameter instead
if (logger.isLoggable(Level.FINER))
logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))
logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))
logger.finest("This is my trace");

// log methods are not generally used due to lack of class and
method names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))
logger.log(Level.FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.log(Level.FINEST, "This is my trace", "parameter 1");

// logp methods are the recommended way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(Level.FINE))
logger.logp(Level.FINE, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINER))
logger.logp(Level.FINER, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.logp(Level.FINEST, className, methodName, "This is my trace",
"parameter 1");

// logrb methods are not applicable for trace logging because no localization
is involved

Chapter 8. Adding logging and tracing to your application 37

There may be occasions when you want to propagate log records to your own log handlers rather than
participate in integrated logging. To use a stand-alone log handler, set the useParentHandlers flag to false
in your application.The mechanism for creating a customer handler is the Handler class support that is
provided by the IBM Developer Kit, Java Technology Edition. If you are not familiar with handlers, as
implemented by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.logging API. The following sample shows a custom handler:
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

/**
* MyCustomHandler outputs contents to a specified file
*/

public class MyCustomHandler extends Handler {

FileOutputStream fileOutputStream;
PrintWriter printWriter;

public MyCustomHandler(String filename) {
super();

// check input parameter
if (filename == null || filename == "")
filename = "mylogfile.txt";

try {
// initialize the file
fileOutputStream = new FileOutputStream(filename);
printWriter = new PrintWriter(fileOutputStream);
setFormatter(new SimpleFormatter());

}
catch (Exception e) {
// implement exception handling...
}
}

/* (non-API documentation)
* @see java.util.logging.Handler#publish(java.util.logging.LogRecord)
*/
public void publish(LogRecord record) {
// ensure that this log record should be logged by this Handler
if (!isLoggable(record))
return;

// Output the formatted data to the file
printWriter.println(getFormatter().format(record));
}

/* (non-API documentation)
* @see java.util.logging.Handler#flush()
*/
public void flush() {
printWriter.flush();
}

/* (non-API documentation)
* @see java.util.logging.Handler#close()
*/
public void close() throws SecurityException {
printWriter.close();
}

}

38 Developing and deploying applications

A custom filter provides optional, secondary control over what is logged, beyond the control that is
provided by the level. The mechanism for creating a custom filter is the Filter interface support that is
provided by the IBM Developer Kit, Java Technology Edition. If you are not familiar with filters, as
implemented by the Developer Kit, you can get more information from various texts, or by reading the API
documentation the for the java.util.logging API.

The following example shows a custom filter:
/**
* This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJ0350E.
*/
import java.util.logging.Filter;
import java.util.logging.Handler;
import java.util.logging.Logger;
import java.util.logging.LogRecord;

public class MyFilter implements Filter {
public boolean isLoggable(LogRecord lr) {
String msg = lr.getMessage();
if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJ0373E") || msg.startsWith("SECJ0350E")) {
return false;
}
return true;
}
}

//This code will register the above log filter with the root Logger’s handlers (including the WAS system logs):
...
Logger rootLogger = Logger.getLogger("");
rootLogger.setFilter(new MyFilter());

A formatter formats events. Handlers are associated with one or more formatters. The mechanism for
creating a custom formatter is the Formatter class support that is provided by the IBM Developer Kit, Java
Technology Edition. If you are not familiar with formatters, as implemented by the Developer Kit, you can
get more information from various texts, or by reading the API documentation for the java.util.logging API.

The following example shows a custom formatter:
import java.util.Date;
import java.util.logging.Formatter;
import java.util.logging.LogRecord;

/**
* MyCustomFormatter formats the LogRecord as follows:
* date level localized message with parameters
*/
public class MyCustomFormatter extends Formatter {

public MyCustomFormatter() {
super();
}

public String format(LogRecord record) {

// Create a StringBuffer to contain the formatted record
// start with the date.
StringBuffer sb = new StringBuffer();

// Get the date from the LogRecord and add it to the buffer
Date date = new Date(record.getMillis());
sb.append(date.toString());
sb.append(" ");

// Get the level name and add it to the buffer
sb.append(record.getLevel().getName());
sb.append(" ");

// Get the formatted message (includes localization
// and substitution of paramters) and add it to the buffer
sb.append(formatMessage(record));
sb.append("\n");

Chapter 8. Adding logging and tracing to your application 39

return sb.toString();
}

}

Adding custom handlers, filters, and formatters enables you to customize your logging environment beyond
what can be achieved by the configuration of the default WebSphere Application Server logging
infrastructure. The following example demonstrates how to add a new handler to process requests to the
com.myCompany subtree of loggers (see “Configuring the logger hierarchy” on page 45). The main
method in this sample gives an example of how to use the newly configured logger.
import java.util.Vector;
import java.util.logging.Filter;
import java.util.logging.Formatter;
import java.util.logging.Handler;
import java.util.logging.Level;
import java.util.logging.Logger;

public class MyCustomLogging {

public MyCustomLogging() {
super();
}

public static void initializeLogging() {

// Get the logger that you want to attach a custom Handler to
String defaultResourceBundleName = "com.myCompany.Messages";
Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

// Set up a custom Handler (see MyCustomHandler example)
Handler handler = new MyCustomHandler("MyOutputFile.log");

// Set up a custom Filter (see MyCustomFilter example)
Vector acceptableLevels = new Vector();
acceptableLevels.add(Level.INFO);
acceptableLevels.add(Level.SEVERE);
Filter filter = new MyCustomFilter(acceptableLevels);

// Set up a custom Formatter (see MyCustomFormatter example)
Formatter formatter = new MyCustomFormatter();

// Connect the filter and formatter to the handler
handler.setFilter(filter);
handler.setFormatter(formatter);

// Connect the handler to the logger
logger.addHandler(handler);

// avoid sending events logged to com.myCompany showing up in WebSphere
// Application Server logs
logger.setUseParentHandlers(false);

}

public static void main(String[] args) {
initializeLogging();

Logger logger = Logger.getLogger("com.myCompany");

logger.info("This is a test INFO message");
logger.warning("This is a test WARNING message");
logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");
}

}

40 Developing and deploying applications

When the above program is run, the output of the program is written to the MyOutputFile.log file. The
content of the log is in the expected log file, as controlled by the custom handler, and is formatted as
defined by the custom formatter. The warning message is filtered out, as specified by the configuration of
the custom filter. The output is as follows:
C:\>type MyOutputFile.log
Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message
Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Loggers
Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server
completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a
message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs
a clear view of what is occurring in each component to understand what might be going wrong. Logged
events are often the only events available when a problem is first detected, and are used during both
problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger
to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses
the same resource bundle as its parent.

You can configure loggers with a level. If specified, the level is compared by the logger to incoming
events. The events that are less severe than the level set for the logger are ignored by the logger. If the
level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is
Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are
passed to the attached handlers. Handlers write events to output destinations such as log files or network
sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that
logger, the logger passes the event to the handlers that are attached to the parents of the logger. This
process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere
Application Server are attached to the root logger. Set the useParentHandlers logger property to false to
prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether
or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the
Logger.getLogger method with a name for the logger. Typically, the logger name is either the package
qualified class name or the name of the package that the logger is used by. The hierarchical logger
namespace is automatically created by using the dots in the logger name. For example, the
com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The
parent at the top of the hierarchy is referred to as the root logger. This root logger is created during
initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger
can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event
filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager
function.

Loggers create log records. A log record is the container object for the data of an event. This object is
used by filters, handlers, and formatters in the logging infrastructure.

Chapter 8. Adding logging and tracing to your application 41

The logger provides several sets of methods for generating log messages. Some log methods take only a
level and enough information to construct a message. Other, more complex logp (log precise) methods
support the caller in passing class name and method name attributes, in addition to the level and message
information. The logrb (log with resource bundle) methods add the capability of specifying a resource
bundle as well as the level, message information, class name, and method name. Using methods such as
severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on
logging and how to use it in your applications read “Using Java logging in an application” on page 34. For
a complete list of methods, see the java.util.logging documentation at http://java.sun.com/javase/.

Log handlers
Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to
the attached handlers, if handlers are supplied.

You can configure handlers with a level. The handler compares the level that is specified in the logged
object to the level that is specified for the handler. If the level of the logged object is less severe than the
level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the
handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are
formatted. For example, the formatter can decide to first include the time stamp, followed by a string
representation of the level, followed by the message that is included in the logged object. The handler
writes this formatted representation to the output device.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements
to be output. For example, you can set the logger level to FINE, but if the handler level is set at
WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your
log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger
never sends messages beneath the WARNING to the log handler.

WebSphere Application Server uses the following set of log handlers that are available to all loggers:

v Diagnostic trace

v Java Management Extensions (JMX) notification object

v Service log

v SystemErr

v SystemOut

For instructions on how to configure these log handlers, see Configuring Java logging using the
administrative console.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Log levels
Levels control which events are processed by Java logging. WebSphere Application Server controls the
levels of all loggers in the system.

42 Developing and deploying applications

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The level value is set from configuration data when the logger is created and can be changed at run time
from the administrative console. If a level is not set in the configuration data, a level is obtained by
proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each
handler to indicate which events are published to an output device. When you change the level for a
logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all
levels above the set level.

Table 3. Valid log levels. This table lists valid logging levels.

Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace

Finer Trace information - Detailed trace + method entry / exit / return values

Finest Trace information - A more detailed trace - Includes all the detail that is needed to debug
problems

All All events are logged. If you create custom levels, All includes your custom levels, and can
provide a more detailed trace than Finest.

For instructions on how to set logging levels, read the topic about configuring Java logging using the
administrative console.

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to
the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,
Finer, or Finest does not effect the logged data.

Log filters
Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by
setting the level. Applications can apply a filter mechanism to control logging output through the logging
APIs. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. For a complete list of
filter methods, see the java.util.logging documentation at http://java.sun.com/javase/

Chapter 8. Adding logging and tracing to your application 43

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Log formatters
Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is
represented by the log record object, is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which writes the output to the output device.

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle
that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

With WebSphere Application Server, you can configure the formatter to work with trace, the
SystemOut.log, and theSystemErr.log log files:

v Basic (Compatible): Preserves only basic trace information. With this option, you can minimize the
amount of space taken by the trace output.

v Advanced: Preserves more specific trace information. You can see detailed trace information for
troubleshooting and problem determination.

v Log analyzer trace format: Preserves trace information in the same format as produced by Showlog
tool.

You can select a formatter for a handler using the administrative console panels. See Diagnostic trace
service settings for details.

You can find the java.util.logging documentation at http://java.sun.com/javase/.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Java logging
Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a
standard logging API for your applications.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important
differences. These differences are important for application developers to understand to use these tools
properly. The following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators,
and support personnel to view. The text of the message must be clear, concise, and interpretable
by an end user. Messages are typically localized and displayed in the national language of the end
user. Although the destination and lifetime of messages might be configurable, enable some level
of message logging in normal system operation. Use message logging judiciously because of
performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
As such, a trace record might be considerably more complex, verbose, and detailed than a
message entry. Localization support is typically not used for trace entries. Trace entries can be
fairly inscrutable, understandable only by the appropriate developer or service personnel. It is
assumed that trace entries are not written during normal runtime operation, but can be enabled as
needed to gather diagnostic information.

44 Developing and deploying applications

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

The application server redirects the system streams at the server startup. There is no way to allow the
application to output logging to the console because the system streams can not be obtained by the
application. If you would like to use console to monitor the application without using the console handler,
you can either monitor the SystemOut.log file, or monitor a file created by another file handler.

Note: The application server uses Java logging internally and therefore certain restrictions apply for using
system streams with this logging API by applications. During server startup, the standard output and
error streams are replaced with special streams that write to the logging infrastructure, in order to
include the output of the system streams in the log files. Because of this, applications can not use
java.util.logging.ConsoleHandler, or any handler writing to SystemErr.log or System.out
streams, attached to the root logger. If the user does attach the handler to the root logger, an
infinite loop is created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so
that it does not publish log records to parent handlers. The data written to the system streams is
then formatted and written to the corresponding system stream log file. To monitor what is being
written system streams, the configured log files (SystemOut.log and SystemErr.log by default) can
be monitored.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Configuring the logger hierarchy
WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the
logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by
WebSphere Application Server handlers.

About this task

You can configure your application server to handle logs in many different ways. Configure your log
settings based upon your configuration and the logging structure that best suits your needs.

Procedure
v Forward all application logging requests to the WebSphere Application Server handlers. This behavior is

the default.

v Forward all application logging requests to your own custom handlers. Set the useParentHandlers
option to false on one of your custom loggers, and then attach your handlers to that logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your
custom handlers, but do not forward WebSphere Application Server logging requests to your custom
handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then
attach your handlers to that logger.True is the default setting.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server
handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application
Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach
your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the
WebSphere Application Server handlers.

Chapter 8. Adding logging and tracing to your application 45

Example

The following example shows how these requirements can be met using the Java logging infrastructure:

Creating log resource bundles and message files
You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. Messages that are displayed on the administrative console, which can be running in
a different location than the server process, can be localized using the late binding process. Late binding
means that WebSphere Application Server does not localize messages when they are logged, but defers
localization to the process that displays the message.

About this task

Every method that accepts messages localizes those messages. The mechanism for providing localized
messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If
you are not familiar with resource bundles as implemented by the Developer Kit, you can get more
information from various texts, or by reading the API documentation for the java.util.ResourceBundle,
java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the
java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it.

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.
This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a
different location. However, you can use the early binding technique to localize messages as they log. An
application that uses early binding must localize the message before logging it. The application looks up

46 Developing and deploying applications

the localized text in the resource bundle and formats the message. Use the early binding technique to
package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains white space only, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists of white space only, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but doing this process is not recommended, because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a
file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for
German and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the
application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource
bundle. Messages logged with the Logger API use this resource bundle when message localization is
performed. At run time, the user locale setting determines the properties file from which to extract the
message that is specified by a message key, ensuring that the message is delivered in the correct
language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.

Example

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a properties resource bundle. This example shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the
creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat
class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable
characters. WebSphere Application Server does not support the use of extended formatting conventions
that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to
resolve, the subDir1.subDir2.resources.DefaultMessage name is used to identify the property resource
bundle and is passed to the message logger.

Chapter 8. Adding logging and tracing to your application 47

For this sample, the properties file is named DefaultMessages.properties.
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is located in the
baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

Logger.properties file for configuring logger settings
Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within
an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital "L" in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties
files are loaded. Applications can provide Logger.properties files in:

v the META-INF directory of the Java archive (JAR) file for the application

v directories included in the class path of an application module

v directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

v Logger control information

– Minimum localization level: The minimum LogRecord level for which localization is attempted

– Group: The logical group that this component belongs to

– Event factory: The Common Base Event template file to use with the event factory. The naming
convention for this template is the fully qualified component name, with a file extension of
.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called
com.ibm.compXYZ.event.xml.

v Logger data information

– Product name

– Organization name

– Component name

– Extensions and additional properties

Syntax of the Logger.properties file

Use the following syntax to set logger properties:

<logger base name>.<property>=value

where:

48 Developing and deploying applications

logger base name is the starting part of the logger name to which the property applies. All loggers with
names starting with this string have the property applied.

property is one of the following properties:

v organization

v product

v component

v minimum_localization_level

v group

v eventfactory

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the
com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration
file.
com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and
com.ibm.morestuff:
com.ibm.stuff.group=MyTraceGroup
com.ibm.morestuff.group=MyTraceGroup

Configuring applications to use Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The
support does not change interfaces defined by Jakarta Commons Logging.

Before you begin

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging
facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle
logging objects defined by either of the following:

v Java Logging found in Java Specification Request 47: Logging API Specification

v Common Base Event

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java
Logging and for Common Base Event. To better understand use of the WebSphere Application Server
logger, read “Jakarta Commons Logging” on page 50.

About this task

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries
directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and
JDK14Logger.

best-practices: The default configuration of Jakarta Commons Logging is stored in the
commons-logging.properties file. To specify the factory class to use with Jakarta
Commons Logging in an application, provide a file named

Chapter 8. Adding logging and tracing to your application 49

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/

org.apache.commons.logging.LogFactory, located in META-INF/services directory, that
contains the name of the factory class on the first line. This is the configuration
mechanism for the JAR file service provider, as defined in JDK 1.3 and above.

For an application to use the WebSphere Application Server logger, the application must provide its own
configuration for the logger. To configure an application to use the WebSphere Application Server logger,
complete the steps that follow.

Procedure
1. Examine “Configurations for the WebSphere Application Server logger” on page 53 and determine

which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server
logger.

Results

After the application starts, Jakarta Commons Logging routes the application's logging output to the
WebSphere Application Server logger.

Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. The logging interface enables application logging to be simple and independent of the logging
system that the application uses. You can change the logging implementation for a deployed application
without having to change the application logging code. However, the simplicity of the logging interface
prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application
Server:
v “Support for Jakarta Commons Logging”
v “Benefits of support for Jakarta Commons Logging”
v “Overview of the process for using Jakarta Commons Logging” on page 51
v “Classes used to obtain a logger factory and logger” on page 51
v “Logger level configuration and mapping” on page 52

Support for Jakarta Commons Logging

The product supports Jakarta Commons Logging by providing a logger, a thin wrapper for the WebSphere
Application Server logging facility. The logger can handle both Java Logging (JSR-47) and Common Base
Event logging objects. A logging object is an object that holds logging entry information.

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta
Commons Logging.

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:

v WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere
Application Server component. Logging calls are routed by default to the underlying WebSphere
Application Server logging facility.

v A logger that uses the WebSphere Application Server logging facility.

50 Developing and deploying applications

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Applications and components can pass both Java Logging and Common Base Event logging objects to
the WebSphere Application Server logger without conversion to strings, providing applications with
enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere
Application Server administrative facilities.

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the
WebSphere Application Server logger” on page 53 provides details on configuring your application to use
the WebSphere Application Server logger.

1. Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet
your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to
instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application
Server components can provide their own configuration if they use a different logger factory
implementation. Applications can use more than one factory.

2. Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is
implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.
The logging methods take at least one argument, which can be any Java object. The WebSphere
Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger
factory and logger,” handles the following objects passed into the following logging methods:
CommonBaseEvent

Wrapped into CommonBaseEventLogRecord
CommonBaseEventLogRecord

Passed without change
LogRecord

Passed without change
Other objects

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they
use an implementation of a logger that is not specific to WebSphere Application Server. An application
must know what factory is being used in order to configure it.

3. Start your application. Jakarta Commons Logging routes the application's logging output to the
designated logger

Classes used to obtain a logger factory and logger

Table 4. Jakarta Commons Logging class descriptions. Use the classes for a logger factory instance and logger.

Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory
is an abstract class that every logger factory implementation has to extend. It provides static
methods for obtaining:
v An instance of a factory class
v Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods
delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The
instances in a cache can be released. This functionality is designed for platform container
implementations rather than for applications.

Chapter 8. Adding logging and tracing to your application 51

Table 4. Jakarta Commons Logging class descriptions (continued). Use the classes for a logger factory instance
and logger.

Class name Description

LogFactoryImpl LogFactoryImpl is a Jakarta Commons Logging concrete class that implements the default
logger factory using methods in LogFactory. To use Java Logging, there must always be at least
one instance of a logger factory class, even if the application has not explicitly obtained one. If
the configuration does not name a logger factory class, LogFactoryImpl is used as the default.

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to
implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any
logging system, the Log interface defines a small set of common logging methods. In
WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere
Application Server uses the default logger factory provided in Jakarta Commons Logging, which
keeps instantiated loggers in cache, on a per context class loader basis.

WsJDK14Logger WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons
Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the
Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base
Event objects to be passed over without converting them into String objects. This prevents any
information loss the conversion to String might cause as well as allows the logging output to be
more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta
Commons Logging converts objects passed into the logging calls to String objects prior to
passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do
not have their own level, but use the level of the logger from the underlying logging system. Although the
underlying system can provide methods for changing level, there are no methods for changing level
defined on the Log interface, which all Jakarta Commons Logging loggers must implement.
WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within
WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. The first
column shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging
JDK14Logger to the Java Logging levels.

Table 5. Mapping of WsJDK14Logger levels to Java Logging levels. Compare the logging levels.

WsJDK14Logger
Java Logging in WebSphere
Application Server Java Logging JDK14Logger

Fatal Fatal

Error Severe Severe Fatal, Error

Warning Warning Warning Warning

Audit

Info Info Info Info

Config Config

Detail

Debug Fine Fine Debug

Finer Finer

Trace Finest Finest Trace

52 Developing and deploying applications

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere
Application Server administration controls the WsJDK14Logger level.

Configurations for the WebSphere Application Server logger
This topic describes several ways to configure an application to use the WebSphere Application Server
logger.

The type of configuration that best suits an application depends upon the following:

v Whether the class loader order setting for the application is Classes loaded with parent class loader
first (Parent First) or Classes loaded with application class loader first (Parent Last), you can
set the class loader delegation mode on a console page. For more details about class load order and
delegation, consult the class loading chapter in the Developing applications PDF book.

v Whether Jakarta Commons Logging is bundled with the application configuration

v Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere
Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with
the application

Table 6. Conditions required to use logger. When Parent First and Jakarta Commons Logging is bundled with an
application.
Jakarta Commons Logging
configuration LogFactory instance Log instance Comments

The application provides the
configuration by either of the following:

v The properties file
commons-logging.properties in the
application classpath is not read by the
LogFactory because the parent class
loader finds the WebSphere properties
file first.

v The class name is read from the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory used is
the LogFactory
implementation specified
in the WebSphere
Application Server
default configuration,
unless the configuration
is provided in a
META-INF file of the
application or module.

The log used is either of the
following:

v The Log implementation
specified in the WebSphere
Application Server default
configuration

v An application-specific
Log implementation if an
application-specific
LogFactory that instantiates
a different Log
implementation is used.

The application parent class loader is the first
class loader to load the Jakarta Commons
Logging code. The WebSphere bundle that
supports Jakarta Commons Logging provides the
LogFactory static code that looks up the
LogFactory configuration attributes.

For the static LogFactory code to instantiate the
LogFactory instance specified in the application
configuration, the LogFactory instance must be on
the classpath of the parent class loader.

Not provided by the application The log factory used is
the LogFactory
implementation specified
in the WebSphere
default configuration.

The log used is the Log
implementation specified in
the WebSphere default
configuration.

The Jakarta Commons Logging bundled with the
application is not used.

Chapter 8. Adding logging and tracing to your application 53

Class loader mode is Parent First and Jakarta Commons Logging is not bundled
with the application

Table 7. Conditions required to use logger. When Parent First and Jakarta Commons Logging is not bundled with an
application.
Jakarta Commons Logging
configuration LogFactory instance Log instance Comments

The application provides the
configuration by either of the following:

v The properties file
commons-logging.properties in the
application classpath is not read by the
LogFactory because the parent class
loader finds the WebSphere Application
Server properties file first.

v The class name is read from the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory used is
the LogFactory
implementation specified
in the WebSphere
Application Server
default configuration,
unless the configuration
is provided in a
META-INF file of the
application or module.

The log used is either of the
following:

v The Log implementation
specified in the WebSphere
Application Server default
configuration

v An application-specific
Log implementation if an
application-specific
LogFactory that instantiates
a different Log
implementation is used.

The application parent class loader is the first
class loader to load the Jakarta Commons
Logging code. The WebSphere bundle that
supports Jakarta Commons Logging provides the
LogFactory static code that looks up the
LogFactory configuration attributes.

For the static LogFactory code to instantiate the
LogFactory instance specified in the application
configuration, the LogFactory instance must be on
the classpath of the parent class loader.

Not provided by the application The log factory used is
the LogFactory
implementation specified
in the WebSphere
Application Server
default configuration.

The log used is the Log
implementation specified in
the WebSphere Application
Server default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with
the application

Table 8. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is bundled with an
application.
Jakarta Commons Logging
configuration LogFactory instance Log instance Comments

The application provides the
configuration by either of the following:

v The properties file
commons-logging.properties in the
application classpath is read by the
LogFactory because the class loader
finds the application properties file first.

v The class name is read from the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory used is
either of the following:

v The default Jakarta
Commons Logging
LogFactory

v The LogFactory
specified in the
application configuration

The log used is the Log
implementation specified in
the application
configuration.

If the log factory used is the
default Jakarta Commons
Logging LogFactory, the
Log implementation must be
on the classpath of the
application class loader.

The application class loader is the first class
loader to load the Jakarta Commons Logging
code. The application bundle that supports
Jakarta Commons Logging provides the
LogFactory static code that looks up the
LogFactory configuration attributes.

For the static LogFactory code to instantiate the
LogFactory instance specified in the application
configuration, the LogFactory instance must be on
the classpath of the application class loader.

Not provided by the application The log factory used is
the LogFactory
implementation specified
in the WebSphere
Application Server
default configuration.

The log used is the Log
implementation specified in
the WebSphere Application
Server default configuration.

54 Developing and deploying applications

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled
with the application

Table 9. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is not bundled with an
application.
Jakarta Commons Logging
configuration LogFactory instance Log instance Comments

The application provides the
configuration by either of the following:

v The properties file
commons-logging.properties in the
application classpath is read by the
LogFactory because the class loader
finds the application properties file first.

v The class name is read from the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory used is
either of the following:

v The default Jakarta
Commons Logging
LogFactory

v The LogFactory
specified in the
application configuration

The log used is the Log
implementation specified in
the application
configuration.

If the log factory used is the
default Jakarta Commons
Logging LogFactory, the
Log implementation must be
on the classpath of the
application class loader.

There is no Jakarta Commons Logging code at
the application class loader. Thus, the
WebSphere bundle that supports Jakarta
Commons Logging provides the LogFactory static
code that looks up the LogFactory configuration
attributes.

For the static LogFactory code to instantiate the
LogFactory instance specified in the application
configuration, the LogFactory instance must be on
the classpath of the parent class loader.

Not provided by the application The log factory used is
the LogFactory
implementation specified
in the WebSphere
Application Server
default configuration.

The log used is the Log
implementation specified in
the WebSphere Application
Server default configuration.

Programming with the JRas framework
Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application
Server applications.

Before you begin

Note: The JRas framework that is described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

About this task

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application
Server applications. They are based on the stand-alone JRas logging toolkit.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure
1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace
entries, as appropriate.

JRas logging toolkit
The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or
tune application performance.

Chapter 8. Adding logging and tracing to your application 55

Note: The JRas framework that is described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running
application encounters an unexpected condition, it might not be able to complete a requested operation. In
such a case, you might want the application to inform the administrator that the operation failed and
provide information. This action enables the administrator to take the proper corrective action. Those who
develop or maintain applications might need to gather detailed information relating to the path of a running
application to determine the root cause of a failure that is due to a code bug. The facilities that are used
for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have
important differences. It is important for application developers to understand these differences to use
these tools properly. To start with, the following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators
and support personnel to view. The text of the message must be clear, concise, and interpretable.
Messages are typically localized, meaning that they display in the national language of the end
user. Although the destination and lifetime of messages might be configurable, some level of
message logging is always enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
This trace record might be considerably more complex, verbose, and detailed than a message
entry. Localization support is typically not used for trace entries. Trace entries can be fairly
inscrutable, understandable only by the appropriate developer or service personnel. It is assumed
that trace entries are not written during normal runtime operation, but might be enabled as needed
to gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace API that applications can
use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The
stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product or platform. The
stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as
systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for
integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise
Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set
of extension classes to address these shortcomings. This collection of extension classes is referred to as
the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the
stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual
structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It
is equally applicable to the JRas extensions.

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the
stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this
logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More
detailed information, including code examples, is available in JRas extensions and its subtopics, including
in the API documentation for the various interfaces and classes that make up the logging toolkit.
Event types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event
types for trace. Examples of message types include informational, warning, and error. Examples of
trace types include entry, exit, and trace.

56 Developing and deploying applications

Event classes
The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers
A logger is the primary object with which the user code interacts. Two types of loggers are defined:
message loggers and trace loggers. The set of methods on message loggers and trace loggers
are different because they provide different functionality. Message loggers create message records
only and trace loggers create trace records only. Both types of loggers contain masks that indicate
which categories of events the logger processes and which to ignore. Although every JRas logger
is defined to contain both a message and trace mask, the message logger uses only the message
mask and the trace logger uses the trace mask only. For example, by setting a message logger
message mask to the appropriate state, it can be configured to process only error messages and
ignore informational and warning messages. Changing the trace mask state of a message logger
has no effect.

A logger contains one or more handlers to which it forwards events for further processing. When
the user calls a method on the logger, the logger compares the event type that is specified by the
caller to its current mask value. If the specified type passes the mask check, the logger creates an
event object to capture the information relating to the event that passed to the logger method. This
information can include information, such as the names of the class and method which logs the
event, a message, and parameters to log, among others. When the logger creates the event
object, it forwards the event to all handlers currently registered with the logger.

Methods that are used within the logging infrastructure do not make calls to the logger method.
When an application uses an object that extends a thread class, implements the hashCode
method, and makes a call to the logging infrastructure from that method, the result is a recursive
loop.

Handlers
A handler provides an abstraction over an output device or event consumer. An example is a file
handler, which knows how to write an event to a file. The handler also contains a mask that is
used to further restrict the categories of events the handler processes. For example, a message
logger might be configured to pass both warning and error events, but a handler attached to the
message logger might be configured to pass error events only. Handlers also include formatters,
which the handler invokes to format the data in the passed event before it is written to the output
device.

Formatters
Handlers are configured with formatters, which know how to format events of certain types. A
handler can contain multiple formatters, each of which knows how to format a specific class of
event. The event object is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which then writes it to the output device.

JRas Extensions
JRas extensions are the collection of implementation classes that support JRas integration into the
WebSphere Application Server environment.

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that
implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general
purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that
are necessary for use in the WebSphere Application Server product. In addition, many of the
implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition
(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the
appropriate implementation classes that support integration into the WebSphere Application Server

Chapter 8. Adding logging and tracing to your application 57

environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:
Integrated

In this mode, message and trace records are written only to logs that are defined and maintained
by the WebSphere Application Server run time. This mode is the default mode of operation and is
equivalent to the WebSphere Application Server V4.0 mode of operation.

Stand-alone
In this mode, message and trace records are written solely to stand-alone logs that are defined
and maintained by the user. You control which categories of events are written to which logs, and
the format in which entries are written. You are responsible for configuration and maintenance of
the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined
In this mode, message and trace records are written to both WebSphere Application Server
runtime logs and to stand-alone logs that you must define, control, and maintain. You can use
filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of
operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed
by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.
A set of user extension points are defined that support JRas extensions in either a stand-alone or
combined mode of operations.

JRas extension classes
WebSphere Application Server provides a base set of implementation classes that are collectively referred
to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,
handlers, and formatters for use in a WebSphere Application Server environment.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the
JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class
that are provided by the extensions, but you must provide your own implementations of handlers and
formatters.

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be
directly used in the WebSphere Application Server environment. The JRas extensions provide the
appropriate logger implementation classes. Instances of these message and trace logger classes are
obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot
directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from
the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server
Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided
by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the
set of methods that are directly available. Public methods that are introduced by the JRas extensions
logger subclasses cannot be called directly by user code because it is a violation of the programming
model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a
logger, the caller is required to specify a name for the logger. The Manager class maintains a

58 Developing and deploying applications

name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime
of a process. The first call to the Manager class with a particular name results in the logger, which is
configured by the Manager class. The Manager class caches a reference to the instance, then returns it to
the caller. Subsequent calls to the Manager class that specify the same name result in a returned
reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You
can use a single name obtain both a message logger and a trace logger from the Manager, without
ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an
entire application. You might determine that having a logger per class is more effective, or the appropriate
granularity might be somewhere in between. Partitioning an application into logging domains is determined
by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are
thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the
serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual
machine instance and are not serializable. Attempting to serialize a logger is a violation of the
programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server
environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and
trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere
Application Server handler to write to any other destination. The creation of a WebSphere Application
Server handler is a restricted operation and is not available to user code. Every logger that is obtained
from the Manager comes preconfigured with an instance of this handler already installed. You can remove
the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.
When you remove it, you cannot add the WebSphere Application Server handler again to the logger from
which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere
Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,
to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server
handler to a logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data
that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server
formatter is a restricted operation and not available to user code. No mechanism exists that allows the
user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change
the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All
message and trace loggers must be obtained from this Manager class. A reference to the Manager class is
obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the
createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the
createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group
abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.
WebSphere Application Server provides the appropriate systems management facilities to manipulate the
trace setting of a group, similar to the way the trace settings of an individual trace logger work.

Chapter 8. Adding logging and tracing to your application 59

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a
separate trace logger. All 10 trace loggers in the component are registered as members of the same
group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on
trace for all 10 classes in a single operation using the group name, if you want a component trace. Group
names are maintained within the namespace for trace loggers.

JRas framework (deprecated)
Because the JRas extensions classes do not provide the flexibility and behavior that are required for many
scenarios, a variety of extension points are defined. You can write your own implementation classes to
obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar
results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace
logger. No provision is made for you to provide your own message or trace logger subclasses. In general,
user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the
integrated mode of operation is solely determined by the WebSphere Application Server run time and the
JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this
interface. You can write your own handler classes that implement the RASIHandler interface. Directly
create instances of user-defined handlers and add them to the loggers that are obtained from the Manager
class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler
classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You
cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas
logging toolkit. Doing so is a violation of the programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement
this interface. You can write your own formatter classes that implement the RASIFormatter interface. You
can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be
configured to use user-defined formatters. Instead, directly create instances of your formatters and add
them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.
Direct use of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In
addition, the WebSphere Application Server reserves a range of message event types for future use. The
RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08
through 0x8000 are reserved for future use. You can provide your own message event types by extending
this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or
process all message event types defined in the RASIMessageEvent interface. To process user-defined
message types, you must manually set the message logger mask to the appropriate state by user code
after the message logger is obtained from the Manager class. WebSphere Application Server does not
provide any built-in systems management support for managing message types.

60 Developing and deploying applications

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message
logging method is called on the message logger, and the message type is currently enabled, the logger
creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You
must directly create instances of such user-defined message event classes. When it is created, pass your
message event to the message logger by calling the message logger's fireRASEvent method directly.
WebSphere Application Server message loggers cannot directly create instances of user-defined types in
response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined
message types are never processed by the WebSphere Application Server handler. You cannot create
instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide
your own trace event types by extending this interface appropriately. In such a case, you must ensure that
the values for the user-defined trace event types do not collide with the values of the types that are
defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all
types. A different starting state can be specified by using WebSphere Application Server systems
management facilities. In addition, you can change the state of the trace mask for a logger at run-time,
using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state
by user code. WebSphere Application Server systems management facilities cannot be used to manage
user-defined trace types, either at start time or run time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging
method is called on the WebSphere Application Server trace logger and the type is currently enabled, the
logger creates and distributes an event of this class to all the handlers that are currently registered with
that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent
interface. You must create instances of such user-defined event classes directly. When it is created, pass
the trace event to the trace logger by calling the trace logger's fireRASEvent method directly. WebSphere
Application Server trace loggers cannot directly create instances of user-defined types in response to
calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace
types are never processed by the WebSphere Application Server handler. You cannot create instances of
the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,
or user-defined message or trace event classes. Message and trace entries of either a user-defined type
or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

Chapter 8. Adding logging and tracing to your application 61

General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected
resources such as the file system and sockets. Because user-written extensions typically access such
protected resources, user-written extensions must contain the appropriate security checking calls, using
AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate
policy file. In general, locating user-written extensions in a separate package is a good practice. It is your
responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the
RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the
methods that are introduced by each of these interfaces follows, along with implementation pointers. For
more in-depth information on any of the particular interfaces or methods, see the corresponding product
API documentation.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are
stateful or configurable, such as loggers, handlers, and formatters.
v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a
properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are
used to get and set the configuration state. The JRas extensions do not support properties-based
configuration. Implement these methods as no-operations. You can implement your own
properties-based configuration using these methods.

v Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the
user to provide a name for the loggers that are retrieved from the manager. You can name your
handlers. The public String getName and public void setName(String name) methods are provided to
get or set the name field. The JRas extensions currently do not call these methods on user handlers.
You can implement these methods as you want, including as no operations.

v Loggers, handlers, and formatters can also contain a description field. The public String getDescription
and public void setDescription(String desc) methods can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement these methods as you
want, including as no operations.

v The public String getGroup method is provided for use by the RASManager interface. Since the JRas
extensions provide their own Manager class, this method is never called. Implement this as a
no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for
filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By
definition, an object that implements this interface contains both a message mask and a trace mask,
although both need not be used. For example, message loggers contain a trace mask, but the trace mask
is never used because the message logger never generates trace events. Handlers, however, can actively
use both mask values. For example, a single handler can handle both message and trace events.
v The public long getMessageMask and public void setMessageMask(long mask) methods are used to

get or set the value of the message mask. The public long getTraceMask and public void
setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes
state. The callback object must implement the RASIMaskChangeListener interface.
v The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove

62 Developing and deploying applications

listeners to the handler. The public Enumeration getMaskChangeListeners method returns an
enumeration over the list of currently registered listeners. The public void
fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered
listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to
the logger mask. The logger composite mask is formed by logically or'ing the appropriate masks of all
handlers that are registered to that logger, then and'ing the result with the logger mask. For example, the
message logger composite mask is formed by or'ing the message masks of all handlers that are registered
with that logger, then and'ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is
instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener
method. When either the message mask or trace mask of the handler is changed, the logger must be
called back to inform it of the mask change. With this process, the logger can dynamically maintain the
composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that
class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all
message and trace event classes that the implementing object process. The intent of these methods is to
support a management program such as a graphical user interface to retrieve the list of names, introspect
the classes to determine the event types that they might possibly process and display the results. The
JRas extensions do not ever call these methods, so they can be implemented as no operations.
v The public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) methodscan be called to add or remove a message event
class name from the list. The method public Enumeration getMessageEventClasses returns an
enumeration over the list of message event class names. Similarly, the public void
addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can
be called to add or remove a trace event class name from the list. The public Enumeration
getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that
run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by
the calling thread and then written by a worker thread. Because spawning of threads is not supported in
the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,
although this activity is not expressly prohibited.
v The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods

create IllegalStateException exceptions to manage the maximum queue size. The public int
getQueueSize method is provided to query the actual queue size.

v The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion
of error retry, which implies some type of queueing.

v The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter
formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters
that the handler can be configured with. Different formatters can be provided for different event classes,
if appropriate.

v The public void openDevice, public void closeDevice and public void stop methods are provided to
manage the underlying device that the handler abstracts.

v The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are
provided to pass events to the handler for processing.

Chapter 8. Adding logging and tracing to your application 63

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends
the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers
and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface
follows. For more in-depth information on the methods introduced by this interface, see the corresponding
product API documentation.

RASIFormatter interface
v The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a
particular formatter is the default formatter. Because these RASHandler classes must never be used in
a WebSphere Application Server environment, the semantic significance of these methods can be
determined by the user.

v The public void addEventClass(String name), public void removeEventClass(String name) and public
Enumeration getEventClasses methods are provided to determine which event classes a formatter can
use to format. You can provide the appropriate implementations.

v The public String format(RASIEvent event) method is called by handler objects and returns a formatted
String representation of the event.

Programming model summary
The programming model that is described in this section builds upon and summarizes some of the
concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the
WebSphere Application Server JRas extensions in a manner that does not conform to the following
programming guidelines is prohibited.

Note: The JRas framework described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The
programming models concepts and restrictions apply equally across all modes of operation.
v You must not use implementation classes that are provided by the stand-alone JRas logging toolkit

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM
Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by
the stand-alone JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly
instantiate loggers.

v You cannot replace the WebSphere Application Server message and trace logger classes.
v You must guarantee that the logger names that are passed to the Manager class are unique, and follow

the documented naming constraints. When a logger is obtained from the Manager class, you must not
attempt to change the name of the logger by calling the setName method.

v Named loggers can be used more than once. For any given name, the first call to the Manager class
results in the Manager class creating a logger that is associated with that name. Subsequent calls to the
Manager class that specify the same name result in a returned reference to the existing logger.

v The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified
class name to identify any logger. Other than dots or periods, logger names cannot contain any
punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

v Group names must comply with the same naming restrictions as logger names.
v The loggers returned from the Manager class are subclasses of the RASMessageLogger and the

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any
public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call
any public method that is introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler
and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the
stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented
guidelines.

64 Developing and deploying applications

v Loggers that are obtained from the Manager class come with a WebSphere Application Server handler
installed. This handler writes message and trace records to logs that are defined by the WebSphere
Application Server run time. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple
additions and removals of user defined handlers are supported. You are responsible for creating an
instance of the handler to add, configuring the handler by setting the handler mask value and formatter
appropriately, then adding the handler to the logger using the addHandler method. You are responsible
for programmatically updating the masks of user-defined handlers, as appropriate.

v You might get a reference to the handler that is installed within a logger by calling the getHandlers
method on the logger and processing the results. You must not call any methods on the handler that are
obtained in this way. You can remove the WebSphere Application Server handler from the logger by
calling the logger removeHandler method, passing in the reference to the WebSphere Application
Server handler. When removed, the WebSphere Application Server handler cannot be added again to
the logger.

v You can define your own message type. The behavior of user-defined message types and restrictions
on their definitions is discussed in JRas framework (deprecated).

v You can define your own message event classes. The use of user-defined message event classes is
discussed in JRas framework (deprecated).

v You can define your own trace types. The behavior of user-defined trace types and restrictions on your
definitions is discussed in JRas framework (deprecated).

v You can define your own trace event classes. The use of user-defined trace event classes is discussed
in JRas framework (deprecated).

v You must programmatically maintain the bits in the message and trace logger masks that correspond to
any user-defined types. If WebSphere Application Server facilities are used to manage the predefined
types, these updates must not modify the state of any of the bits that correspond to those types. If you
are assuming ownership responsibility for the predefined types, then you can change all bits of the
masks.

JRas messages and trace event types
The basic JRas message and event types are not the same as those natively recognized by WebSphere
Application Server, so the JRas types are mapped onto the types that are native to the runtime
environment. You can control the way JRas message and trace events are processed using custom filters
and message controls.

Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not
the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,
the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The
mapping is discussed in the following section.

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server
runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging
toolkit.

Table 10. Platform message event types. These message types are mapped onto the native message types, as
follows.

WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Chapter 8. Adding logging and tracing to your application 65

Table 10. Platform message event types (continued). These message types are mapped onto the native message
types, as follows.

WebSphere Application Server native type JRas RASIMessageEvent type

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time
are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The
RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple
set of levels, as well as a set of enumerated types.
v For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1,

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels
are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

v For users who prefer a more complex set of values that can be OR'd together, the RASITraceEvent
interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA,
TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Table 11. WebSphere Application Server native types and JRas RASITraceEvent level types. Mapping WebSphere
Application Server trace types to the JRas RASITraceEvent level types.

WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Table 12. WebSphere Application Server native types and JRas RASITraceEvent enumerated types. Mapping
WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,
TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used
consistently throughout the application. If you decide to use the non-level types, choose one type from
each category and use those types consistently throughout the application, to avoid confusion.

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable
parameter types. WebSphere Application Server processes and formats the various parameter types as
follows:
Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be
directly passed to one of these methods. A primitive value must be transformed to a proper Object
type (Integer, Long) before passing as a parameter.

66 Developing and deploying applications

Object
The toString method is called on the object and the resulting String is displayed. Implement the
toString method appropriately for any object that is passed to a message logging or trace method.
It is the responsibility of the caller to guarantee that the toString method does not display
confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]
The Object[] type is provided for the case when more than one parameter is passed to a message
logging or trace method. The toString method is called on each Object in the array. Nested arrays
are not handled, that is none of the elements in the Object array belong in an array.

Throwable
The stack trace of the Throwable type is retrieved and displayed.

Array of primitives
An array of primitive, for example, byte[], int[], is recognized as an Object, but is loosely
associated by Java code. In general, avoid arrays of primitives, if possible. If arrays of primitives
are passed, the results are indeterminate and can change, depending on the type of array passed,
the API used to pass the array, and the release of the product. For consistent results, user code
needs to preprocess and format the primitive array into some type of String form before passing it
to the method. If such preprocessing is not performed, the following problems can result:
v [B@924586a0b - This message is deciphered as a byte array at location X. This message is

typically returned when an array is passed as a member of an Object[] type and results from
calling the toString method on the byte[] type.

v Illegal trace argument : array of long. This response is typically returned when an array of
primitives is passed to a method taking an Object.

v 01040703: The hex representation of an array of bytes. Typically this problem can occur when a
byte array is passed to a method taking a single Object. This behavior is subject to change and
cannot be relied on.

v "1" "2": The String representation of the members of an int[] type formed by converting each
element to an integer and calling the toString method on the integers. This behavior is subject
to change and cannot be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an
array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three
levels of filtering or screening:
1. The message event type must be one of the message event types that is defined in the

RASIMessageEvent interface.
2. Logging of that message event type must be enabled by the state of the message logger mask.
3. The message event type must pass any filtering criteria that is established by the WebSphere

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the
mask forwards all native message event types to the WebSphere Application Server handler. It is possible
to control what messages get logged by programmatically setting the state of the message logger mask.

Some editions of the product support user specified message filter levels for a server process. When such
a filter level is set, only messages at the specified severity levels are written to WebSphere Application
Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere
Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can
support static trace enablement (trace settings are specified before the server is started), dynamic trace
enablement (trace settings for a running server process can be dynamically modified), or both.

Chapter 8. Adding logging and tracing to your application 67

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels
of filtering or screening:
1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent

interface.
2. Logging of that trace event type must be enabled by the state of the trace logger mask.
3. The trace event type must pass any filtering criteria that is established by the WebSphere Application

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace
types. The exception to this rule is the case where the WebSphere Application Server run time supports
static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike
message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a
trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that
corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application
Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state
change is reflected both in the application server run time and the trace mask of the trace logger. If user
code programmatically changes the bits in the trace mask corresponding to the values that are defined by
in the RASITraceEvent interface, the mask state of the trace logger and the run time state become
unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask
corresponding to the values that are defined in the RASITraceEvent interface is not supported.

Instrumenting an application with JRas extensions
You can create an application using JRas extensions.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

To create an application using the WebSphere Application Server JRas extensions, perform the following
steps:

Procedure
1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and
formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger
instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files
The WebSphere Application Server message logger provides the message and msg methods so the user
can log localized messages. In addition, the message logger provides the textMessage method to log
messages that are not localized. Applications can use either or both, as appropriate.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

68 Developing and deploying applications

About this task

The mechanism for providing localized messages is the resource bundle support that is provided by the
IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented
by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and
java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas
extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that
are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. For example, messages that are displayed on the administrative console, which can
be running in a different location than the server process, can be localized using the late binding process.
Late binding means that WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it. If you do not want to take these steps, you
can use the early binding technique to localize messages as they are logged.

The two techniques are described as follows:
Early binding

The application must localize the message before logging it. The application looks up the localized
text in the resource bundle and formats the message. When formatting is complete, the application
logs the message using the textMessage method. Use this technique to package the application
resource bundles with the application.

Late binding
The application can choose to have the WebSphere Application Server run time localize the
message in the process where it displays. Using this technique, the resource bundles are
packaged in a stand-alone .jar file, separately from the application. You must then install the
resource bundle .jar file on every machine in the installation from which an administrative console
or log viewing program might be run. You must install the .jar file in a directory that is part of the
extensions class path. In addition, if you forward logs to IBM service, you must also forward the
.jar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains only white space, or if the first non-white space character of the line is the number

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but using this approach is not recommended because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

Chapter 8. Adding logging and tracing to your application 69

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names for example, the
DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German
and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, write them to a system-managed persistent
storage medium. Resource bundles are used to convert the messages into the requested national
language and locale.

4. When a message logger is obtained from the JRas manager, configure the logger to use a particular
resource bundle. Messages logged through the message API use this resource bundle when message
localization is performed. At run time, the user's locale setting is used to determine the properties file
from which to extract the message that is specified by a message key, ensuring that the message is
delivered in the correct language.

5. If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is in the
baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

JRas resource bundles:

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a
properties file.

Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,
the creator must be aware of other restrictions that are imposed on the values by the Java
MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the
use of non-portable characters. WebSphere Application Server does not support the use of extended
formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the
subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource
bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three substitution parameters: parm1={0}, parm2 = {1}, parm3={2}

70 Developing and deploying applications

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

JRas manager and logger instances
You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the
application varies depending on the mode of operation, but use of the loggers to log message or trace
entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the
WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and
user-defined logs.

In the stand-alone mode, message and trace events are logged only to user-defined logs.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be
passed to the message loggers if the loggers are using the message API.
msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,

methodName, "MSG_KEY_00");
... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,

methodName, "MSG_KEY_01", "some string");

If message loggers use the msg API, you can specify a new resource bundle name.
msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,

"ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.
msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",
"A String", new Integer(5));

Using a trace logger

Because trace is normally disabled, guard trace methods for performance reasons.
private void methodX(int x, String y, Foo z)
{

// trace an entry point. Use the guard to make sure tracing is enabled.
Do this checking before you gather parameters to trace.

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {
// I want to trace three parameters, package them up in an Object[]
Object[] parms = {new Integer(x), y, z};
trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

}
... logic

// a debug or verbose trace point
if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");
}
...
// Another classification of trace event. An important state change is

Chapter 8. Adding logging and tracing to your application 71

detected, so a different trace type is used.
if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
}
...
// ready to exit method, trace. No return value to trace

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

}
}

Setting up for integrated JRas operation
Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere
Application Server logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server
logs. This approach is the default mode of operation.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Declare logger references:
private RASMessageLogger msgLogger = null;
private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager class and create the loggers. Because loggers are named
singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is
the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in
the ejbCreate method:
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

myTestBean.class.getName());

// Configure the message logger to use the message file that is created
// for this application.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");
trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",

myTestBean.class.getName());
mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation
Use JRas operation in combined mode to output trace data and logging messages to both WebSphere
Application Server and user-defined logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

72 Developing and deploying applications

About this task

In combined mode, messages and trace are logged to both WebSphere Application Server logs and
user-defined logs. The following sample assumes that:

v You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types or events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());

// Configure the message logger to use the message file defined
// in the ResourceBundle sample.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Create the user handler and formatter. Configure the formatter,
// then add it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the
//handlers listeners, then set the handlers
// mask, which updates the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation
You can configure JRas operations to output trace data and logging messages to only user-defined
locations.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample
assumes that:

Chapter 8. Adding logging and tracing to your application 73

v You have a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types of events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());

// Configure the message logger to use the message file that is defined in
//the ResourceBundle sample.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Get a reference to the Handler and remove it from the logger.
RASIHandler aHandler = null;
Enumeration enum = msgLogger.getHandlers();
while (enum.hasMoreElements()) {

aHandler = (RASIHandler)enum.nextElement();
if (aHandler instanceof WsHandler)

msgLogger.removeHandler(wsHandler);
}

// Create the user handler and formatter. Configure the formatter,
// then add it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the
// handlers listeners, then set the handlers
// mask, which will update the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Logging Common Base Events in WebSphere Application Server
WebSphere Application Server uses Common Base Events within its basic logging framework. Common
Base Events can be created explicitly and then logged through the Java logging API, or can be created
implicitly by using the Java logging API directly.

74 Developing and deploying applications

About this task

Attention: Logging Common Base Events is not supported with the High Performance Extensible
Logging (HPEL) log and trace mode.

An event is a notification from an application or the application server that reports information that is
related to a specific problem or situation. Common Base Events provide you with a standard structure for
these event notifications, which allow you to correlate events that are received from different applications.
Log Common Base Events to capture events from different sources to help you fix a problem within an
application environment or to tune system performance.

For Common Base Event creation, the application server environment provides a Common Base Event
factory with a content handler that provides both runtime data and template data for Common Base
Events.

Procedure
1. Optional: Read about the Common Base Event types and how they are implemented within an

application server. Refer to “The Common Base Event in WebSphere Application Server.”

2. Read “Logging Common Base Events in WebSphere Application Server” on page 100.

3. Configure the Common Base Event framework for your application server using one of the following
methods:

v “Logging with Common Base Event API and the Java logging API” on page 88

v “Generate Common Base Event content with the default event factory” on page 90.

Results

Common Base Events will now be logged according to your configuration. Use these event logs to
determine the source of application problems.

The Common Base Event in WebSphere Application Server
The Common Base Event is an XML document that defines a common representation of events that is
intended for use by enterprise management and business applications. The Common Base Event defines
common fields, the values they can take, and the exact meanings of these values.

An application creates an event object whenever something happens that either needs to be recorded for
later analysis or which might require the trigger of additional work. An event is a structured notification that
reports information that is related to a situation. An event reports three kinds of information:
v The situation: What happened
v The identity of the affected component: For example, the server that shut down
v The identity of the component that is reporting the situation, which might be the same as the affected

component

The application that creates the event object is called the event source. Event sources can use a common
structure for the event. The accepted standard for such a structure is called the Common Base Event. The
Common Base Event is an XML document that is defined as part of the autonomic computing initiative.

The Common Base Event model is a standard that defines a common representation of events that is
intended for use by enterprise management and business applications. This standard, which is developed
by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management,
and business events using a common XML-based format. This format makes it possible to correlate
different types of events that originate from different applications. For more information about the Common
Base Event model, see the Common Base Event specification (Canonical Situation Data Format: The
Common Base Event V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the
specification.

Chapter 8. Adding logging and tracing to your application 75

Note:

For WebSphere Application Server Version 8.5, if you delete an application server that was
previously deployed with the Common Event Infrastructure (CEI) enabled and you did not uninstall
CEI before deleting the server, you must use a different name when creating an application server
that you want to deploy with CEI. If you deploy CEI on an application server that was created with
the exact same server name as the server that was previously deleted and CEI was not uninstalled,
the following error occurs:
com.ibm.websphere.management.exception.AdminException: ADMA5026E: No valid target is specified in ObjectName
WebSphere:cell=targetCell,node=targetNode,server=targetServer for module EventServerMdb.jar+META-INF/ejb-jar.xml

If you did not uninstall CEI before deleting the application server, you must ensure that you use a
name for the new application server that is different from the name of the server that was
previously deployed with the common event infrastructure.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that
happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a
failed user login. The Common Base Event model defines a set of standard situation types that
accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event contains all of the information that is needed by the consumers to understand
the event. This information includes data about the runtime environment, the business environment, and
the instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema that is included in the
Common Base Event specification document, at http://www.ibm.com/developerworks/autonomic/books/
fpy0mst.htm#HDRCBEDESC .

Types of problem determination events
Problem determination involves multiple types of data, including at least two different classes of event
data, log events, and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a
business application during normal deployment and operations. Log events might identify problems, but
these events are also normally available and emitted while an application and its components are in
production mode. The target audience for log and message events is users and administrators of the
application and the components that make up the application. Log events are normally the only events
available when a problem is first detected, and are typically used during both problem recovery and
problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic
information about a component, and are usually not emitted or available during normal deployment and
operation. The target audience for diagnostic events is the developers of the components that make up the
business application. Diagnostic events are typically used when trying to resolve problems within a
component, such as a software failure, but are sometimes used to diagnose other problems, especially
when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events
are typically used when trying to resolve a problem.

A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event. Common Base Events are
primarily used to represent log events.

Common Base Event structure
A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event.

76 Developing and deploying applications

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC

The Common Base Event contains several structural elements. These elements include:

v Common header information

v Component identification, both source and reporter

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all the fields in the Common Base Event and their usage
requirements for problem determination events.

Table 13. Field name, log events, and base specification. This table shows whether a particular element or attribute
is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

Field name Log events Base specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific Situation Type elements) Required Required

msgDataElement* Recommended Optional

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

Chapter 8. Adding logging and tracing to your application 77

Table 13. Field name, log events, and base specification (continued). This table shows whether a particular element
or attribute is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

Field name Log events Base specification

msgDataElement .msgLocale Recommended Optional

extensionName Recommended Optional

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Notes:
v Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in

those elements are listed in the table directly following the parent element name.

v Some of the elements are optional, but when included, they include sub elements and attributes that are
required. For example, the reporterComponentId element has a ComponentIdentification type. The
component attribute in ComponentIdentification is required. Therefore, the
reporterComponentId.component attribute is required, but only when the reporterComponentId parent
element is included.

v The extendedDataElements element can be included multiple times to supply extended data
information. See the Extended data section for more information on required and recommended
extended data element values.

v The contextDataElements element can be included multiple times to supply context data information.

v The associatedEvents element can be included multiple times to supply correlation data. No
recommended uses of this element exist for the producers of problem determination data, and the use
of this element is discouraged.

Common header information:

78 Developing and deploying applications

This topic provides additional information about how to format and use these fields for problem
determination events, which can be used to clarify and extend the information provided in the other
documents.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

The common header information in the Common Base Event includes the following information about an
event:

v Version: The version of this Common Base Event

v creationTime: The date and time when the event generated

v Severity and priority: The severity of the condition (situation) that is identified by the event

v extensionName: The type of event that was captured

v localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event
within a set of events

v repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of
the same type, by consolidating those events into a single event

v sequenceNumber: Sequence information that supports a system to order a set of events in other ways
than time of capture

severity
All problem determination events must provide an indication as to the relative severity of the condition
(situation) being reported by providing appropriate values for the severity field in the Common Base
Event. The severity field is required for problem determination events. This field is more restrictive than
the base specification for the Common Base Event, which lists this field as optional because effective
and efficient problem determination requires the ability to quickly identify the information that is needed
to resolve a problem as well as prioritize the problems that need addressing.

Table 14. Severity values. The following values are used for problem determination events:

Value Severity Description

10 Information Log information events, normal
conditions, and events that are
supplied to clarify operations, for
example, state transitions, operational
changes. These events typically do
not require administrator action or
intervention.

20 Harmless Similar to information events, but are
used to capture audit items, such as
state transitions or operational
changes. These events typically do
not require administrator action or
intervention.

30 Warning Warnings typically represent
recoverable errors, for example a
failure that the system can correct.
These events can require
administrator action or intervention.

Chapter 8. Adding logging and tracing to your application 79

Table 14. Severity values (continued). The following values are used for problem determination events:

Value Severity Description

40 Minor Minor errors describe events that
represent an unrecoverable error
within a component. The failure
affects the component ability to
service some requests. The business
application can continue to perform its
normal functions, but its overall
operation might be degraded. These
events require administrator action or
intervention to address the condition.

50 Critical Critical errors describe events that
represent an unrecoverable error
within a component. The failure
significantly affects the component
ability to service most requests. The
business application can continue
most, but not all of its normal
functions and its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

60 Fatal Fatal errors describe events that
represent an unrecoverable error
within a component. The failure
usually results in the complete failure
of the component. The business
application can continue some normal
functions, but its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

msg
Refer to “Message data” on page 84 for information on this attribute.

priority
The use of the priority field is discouraged for problem determination events. The severity field is
typically used to communicate and evaluate the importance of problem determination events. Use the
priority field to enhance the information that is provided in the severity field, that is. prioritize events of
the same severity.

extensionName
The extensionName field is used to communicate the type of event that is reported, for example, what
general class of events is being reported. In many cases this field provides an indication of what
additional data you can expect with the event, for example, optional data values.

repeatCount
The repeatCount field is valid for problem determination events, but is not typically used or supplied by
the event producers. This field is used for data reduction and consolidation by event management and
analysis systems.

elapsedTime
The elapsedTime field is valid for problem determination events, but is not typically used or supplied
by the event producers. This field is used for data reduction and consolidation by event management
and analysis systems.

80 Developing and deploying applications

sequenceNumber
The sequenceNumber field is valid for problem determination events. It is typically used only by event
producers when the granularity of the event time stamp (the creationTime field) is not sufficient in
ordering events. The sequenceNumber field is typically used to sequence events that have the same
time stamp value.

Event management and analysis systems can use the sequenceNumber field for a number of reasons,
including providing alternative sequencing, not necessarily based on a time stamp. The
recommendations here are provided primarily for event producers.

Component identification for source and reporter:

The component identification fields in the Common Base Event are used to indicate which component in
the system is experiencing the condition that is described by the event (the sourceComponentID) and
which component emitted the event (the reporterComponentID).

Typically, these components are the same, in which case only the sourceComponentID is supplied. Some
notes and scenarios on when to use these two elements in the Common Base Event:

v The sourceComponentID is always used to identify the component experiencing the condition that is
described by the event.

v The reporterComponentID is used to identify the component that actually produced and emitted the
event. This element is typically used only within events that are emitted by a component that is
monitoring another component and providing operational information regarding that component. The
monitoring component (for example, a Tivoli agent or hardware device driver) is identified by the
reporterComponentID and the component being monitored (for example, a monitored server or
hardware device) is identified by the sourceComponentID.

A potential misuse of the reporterComponentID is to identify a component that provides event
conversion or management services for a component, for example, identifying an adapter that
transforms the events that are captured by a component into Common Base Event format. The event
conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is
the source component or reporter component.

Table 15. Component identification for source and reporter. The information that is used to identify a component in
the system is the same, regardless of whether it is the source component or reporter component.

Source component Reporter component Description

location locationType Component location Identifies the location of the
component.

component componentIdType Component name Identifies the asset name of the
component, as well as the type of
component.

subcomponent Subcomponent name Identifies a specific part or
subcomponent of a component, for
example a software module or
hardware part.

application Business application name Identifies the business application or
process the component is a part of
and provides services for.

instanceId Operational instance Identifies the operational instance of a
component, that is the actual running
instance of the component.

Chapter 8. Adding logging and tracing to your application 81

Table 15. Component identification for source and reporter (continued). The information that is used to identify a
component in the system is the same, regardless of whether it is the source component or reporter component.

Source component Reporter component Description

processId threadId Operational instance Identifies the operational instance of a
component within the context of a
software operating system, that is he
operating system process and thread
running when the event was
produced.

executionEnvironment Operational instance Component
location

Provides additional information about
the operational instance of a
component or its location by
identifying the name of the
environment hosting the operational
instance of the component, for
example the operating system name
for a software application, the
application server name for a Java 2
Platform, Enterprise Edition (J2EE)
application, or the hardware server
type for a hardware part.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use some of these fields for problem
determination events, which can be used to clarify and extend the information that is provided in the other
documents.

Component
The Component field in a problem determination event is used to identify the manageable asset that is
associated with the event. A manageable asset is open for interpretation, but a good working definition
is a manageable asset represents a hardware or software component that can be separately obtained
or developed, deployed, managed, and serviced. Examples of typical component names are:

v IBM eServer xSeries® model x330

v IBM WebSphere Application Server version 5.1 (5.1 is the version number)

v The name of an internally developed software application for a component

subComponent
The Subcomponent field in a problem determination event identifies the specific part of a component
that is associated with the event. The subcomponent name is typically not a manageable asset, but
provides internal diagnostic information when diagnosing an internal defect within a component, that is
What part failed? Examples of typical subcomponents and their names are:

v Intel Pentium processor within a server system (Intel Pentium IV Processor)

v the enterprise bean container within a web application server (enterprise bean container)

v the task manager within an operating system (Linux Kernel Task Manager)

v the name of a Java class and method (myclass.mycompany.com or
myclass.mycompany.com.methodname).

The format of a subcomponent name is determined by the component, but use the convention shown
previously for naming a Java class or the combination of a Java class and method is followed. The
subcomponent field is required in the Common Base Event.

componentIdType
The componentIdType field is required by the Common Base Event specification, but provides minimal
value for problem determination events. For most problem determination events, it is encouraged to

82 Developing and deploying applications

use the value provided in the application field instead of the componentIdType. The componentIdType
field identifies the type of component; the application is identified by the application field.

application
The application field is listed as an optional value within the Common Base Event specification, but
provide it within problem determination events whenever it this value is available. The only reason this
field is not required for problem determination events is that instances exist where the issuing
component might not be aware of the overall business application.

instanceId
The instanceId field is listed as an optional value within the Common Base Event specification, but
provide this value within problem determination events whenever it is available.

Always provide the instanceID when a software component is identified and identify the operational
instance of the component (for example, which operation instance of an installed software image is
actually associated with the event). Provide this value for hardware components when these
components support the concept of operational instances.

The format of the supplied value is defined by the component, but must be a value that an analysis
system can use (either human or programmatic) to identify the specific running instance of the
identified component. Examples include:

v cell, node, server name for the IBM WebSphere Application Server

v deployed EAR file name for a Java enterprise bean

v serial number for a hardware processor

processId
The processId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide this value for software-generated events, and identify the operating system process that is
associated with the component that is identified in the event. Match the format of the thread ID with
the format of the operating system (or other running environment, such as a Java virtual machine).
This field is typically not applicable or used for events that are emitted by hardware (for example,
firmware).

threadId
The threadId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide for software-generated events, and identify the active operating system thread when the event
was detected or issued. A notable exception to this recommendation is some operating systems or
running environments do not support threads. Match the format of the thread ID with the format of the
operating system (or other running environment, such as a Java virtual machine). This field is typically
not applicable or used for events that are emitted by hardware (for example, firmware).

executionEnvironment

The executionEnvironment field, when used, identifies the immediate running environment that is used by
the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard
Edition (J2SE) application.

v the web server name when the component is a servlet.

v the portal server name when the component is a portlet.

v the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

Situation information:

Chapter 8. Adding logging and tracing to your application 83

The situation information is used to classify the condition that is reported by an event into a common set of
situations.

The Common Base Event specification [CBE101] provides information on the set of situations defined for
the Common Base Event, with the values and formats that are used to describe these situations. The
Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Consider the following points regarding situation information for problem determination events:

v Whenever possible, use the situation categorizations and qualifiers that are described in the base
Common Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions that are supplied in the base
Common Base Event specification. You can use the OtherSituation categorization to provide your own
situation information, but the recommended course of action for problem determination events is to use
the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (that is an event with severity=warning) typically
indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures
(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation
categorization so the severity setting indicates the severity of the situation, that is whether the
component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Message data:

All problem determination Common Base Events must provide human readable text that describes the
specific reported event within the msg field of the Common Base Event.

The text that is associated with events representing actual messages or log entries is expected to be
translated and localized. Include the msgDataElement element in the Common Base Event whenever
internationalized text is provided in the event. This element provides information about how the message
text is created and how to interpret it. This information is particularly invaluable when trying to interpret the
event programmatically or when trying to interpret the message independent of the locale or language that
is used to format the message text.

Prerequisite: Understand the concepts that are associated with creating internationalized messages. A
good source of education on these concepts is provided by the documentation that is associated with
internationalization of Java information and the usage of resource bundles within the Java language.

The msgDataElement element in the Common Base Event includes the following information about the
value of the msg field that is provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the
message are formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier that is associated with the message that can be used to interpret the
message independent of the message language, message locale, and message format (msgId and
msgIdType).

v Information on how a translated message is created, including:

– The identifier that is used to retrieve the message template (msgCatalogId).

– The name and type of message catalog that are used to retrieve the message template (msgCatalog
and msgCatalogType).

– Any locale-independent information that is inserted into the message template to create the final
message (msgCatalogTokens).

84 Developing and deploying applications

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use these fields for problem
determination events.

msg
All message, log, and trace events must provide a human-readable message in the msg field of the
Common Base Event. The msg field is required for problem determination events, both log events and
diagnostic events. This field is more restrictive than the base specification for the Common Base
Event, which lists this field as optional; effective and efficient problem determination requires the ability
to quickly identify the reported condition. The format and usage of this message is component-specific,
but use the following general guidelines:

v Expect the message text that is supplied with messages and log events to be internationalized.

v Provide the locale of the supplied message text with the msgLocale field in the msgDataElement
element of the Common Base Event.

v Provide additional information regarding the format and construction of internationalized messages
whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale
Provide the message locale whenever message text is provided within the Common Base Event, as is
the case with all problem determination events. The msgLocale field is listed as an optional value
within the Common Base Event specification, but provide this information within problem determination
events whenever possible. The reason this field is not required for problem determination events is
that instances exist where the locale information is not provided or available when formatting the
Common Base Event.

msgId and msgIdType
Several companies include a locale-independent identifier within internationalized message text that
you can use to interpret the described condition by the message text, independent of the message.
For example, most messages issued by IBM software look like IEE890I WTO Buffers in console
backup storage = 1024, where a unique, locale-independent identifier IEE890I precedes the translated
message text. This identifier provides a way to uniquely detect and identify a message independent of
location and language. This detection is invaluable for locale-independent and programmatic analysis.

The msgId field is listed as an optional value within the Common Base Event specification, but it must
be provided within problem determination events whenever this identifier is included in the message
text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event
specification, but it must be provided within problem determination events whenever a value is
supplied for msgId. Do not supply these fields when the message text is not translated or localized, for
example, for trace events.

msgCatalogId
The msgCatalogId field is listed as an optional value within the Common Base Event specification, but
provide this value whenever the Common Base Event includes localized or translated message text,
for example when providing problem determination events that represent issued messages or log
events. This field is not required for problem determination events because not all problem
determination events include translated message text Some cases exist where the value is not
provided or available when formatting the Common Base Event. Do not supply this field when the
message text is not translated or localized, for example, for trace events.

msgCatalogTokens
The msgCatalogTokens field is listed as an optional value within the Common Base Event
specification, but provide this value whenever the Common Base Event includes localized or translated
message text, for example when providing problem determination events that represent issued
messages or log events. This field is not required for problem determination events because not all
problem determination events include translated message text, and cases exist where the value is not

Chapter 8. Adding logging and tracing to your application 85

provided or available when formatting the Common Base Event. This value contains the list of
locale-independent values or message tokens that are inserted into the localized message text when
creating a translated message.

These values are difficult to extract from a translated message without knowing the translated
message template that is used to create the message. Do not supply this field when the message text
is not translated or localized

The Common Base Event provides several mechanisms for providing additional data about an event,
including this field, extended data elements, and extensions to the schema. Always use the
msgCatalogTokens field to supply the list of message tokens that is included in the message text
associated with an event. These values can also be supplied in other parts of the Common Base
Event, but they must be included in this field.

msgCatalog and msgCatalogType
The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base
Event specification, but provide this value whenever the Common Base Event includes localized or
translated message text, for example when providing problem determination events that represent
issued messages or log events. These fields are not required for problem determination events
because not all problem determination events include translated message text, and cases exist where
the values are not provided or available when formatting the Common Base Event. Do not complete
these fields when the message text has is not translated or localized, for example, for trace events.

Extended data:

The Common Base Event provides several methods for including this additional data, including extending
the Common Base Event schema or supplying one or more ExtendedDataElement elements within the
Common Base Event, which is the preferred approach.

The base information that is included in a Common Base Event might not be sufficient to represent all of
the information captured by a component when creating a problem determination event.

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can
contain more than one of these elements, essentially one for each additional data item. A hint to the
number and type of ExtendedDataElement elements is supplied by the extensionName value, but this
information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem
determination events is the same as those for any other Common Base Event.

Sample Common Base Event instance
This XML document is an example of a Common Base Event instance that is generated by a WebSphere
Application Server application.

Use the following example for reference:
<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"

globalInstanceId="myhost:1095479647062:1899"
msg="WSVR0024I: Server server1 stopped"
severity="10"
version="1.0.1">

... several extendedDataElements for internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"
componentIdType="Unknown"
executionEnvironment="Windows Vista[x86]#5.0"
instanceId="myhost\myhost\server1"
location="myhost"
locationType="Hostname"
processId="1095479647062"
subComponent="Unknown"
threadId="Alarm : 0"
componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>

86 Developing and deploying applications

<msgDataElement msgLocale="en_US">
<msgCatalogTokens value="server1"/>
<msgId>WSVR0024I< /msgId>
<msgCatalogId>WSVR0024I< /msgCatalogId>
<msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>
</msgDataElement>

<situation categoryName="ReportSituation">
<situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>
</situation>

</CommonBaseEvent>

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but
are not for application use because these elements might change.

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of
attributes that are common for all Common Base Events. This set includes the extensionName attribute,
which defines the type or class of the Common Base Event instance, the creation time, severity, and
priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The
first of these elements is the situation element. This classification is standardized.

The CommonBaseEvent element also includes the sourceComponentId and the (optional)
reporterComponentId elements. The sourceComponentId element describes where the situation occurred;
the reporterComponentId describes where the situation is detected. If the sourceComponentId and the
reporterComponentId elements are the same, the reporterComponentId element is omitted.

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They
identify the component type, name, operating system, and network location. The content of these attributes
provides vertical correlation of the stack of IT resources that are active when the Common Base Event is
created.

Also included in the CommonBaseEvent element are contextDataElements elements that describe the
context in which the situation occurred. This context correlates Common Base Event instances that are
part of the same work. This correlation is called horizontal correlation because an instance of a particular
context type correlates events at the same level of abstraction, for example at the business level, the
application level, or at the middleware level.

Extended data elements contain additional data that is used to describe a situation. In this example, an
extended data element is added by WebSphere Application Server to describe the Java 2 Platform,
Enterprise Edition (J2EE) component that generated the Common Base Event instance and some
application data.

Sample Common Base Event template
The content handler uses template information to fill in blanks in the Common Base Event when the
Common Base Event complete method is called.

Components that use the WebSphere Application Server event factory home can include a Common Base
Event template XML file to provide data to populate Common Base Events. Information that is already
supplied in the event is not overridden if the same field is supplied in the template.

The following example illustrates a Common Base Event template:
<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent
version="1.0.1"

Chapter 8. Adding logging and tracing to your application 87

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="templateEvent.xsd">

<CommonBaseEvent
<sourceComponentId application="My Application" component="com.ibm.componentX"/>
<extendedDataElements name="Sample ExtendedDataElement name" type="string">
<values>Sample ExtendedDataElement value</values>
</extendedDataElements>
</CommonBaseEvent>

</TemplateEvent>

Component identification for problem determination
This topic describes types of problem determination events.

A business application is made up of multiple components. A component can be made up of several
internal subcomponents. Consistent application of these concepts is critical for effective problem
determination of a business application; all of the parts of the application must use the same concepts and
assumptions when creating and formatting events. Use the following definitions and examples when
creating Common Base Events for problem determination.

Business application
A business application is the business logic and business data that is used to address a set of specific
business requirements. A business application consists of several components of multiple types,
combined in a unique manner by an enterprise, to provide the functions and resources that are
needed to address those requirements. The primary creator and manager of a business application is
the enterprise, and each enterprise or company creates unique business applications. Examples of
business applications are the Payroll Application for the ACME Corporation and the Inventory
Application for Spacely Sprockets.

Components
A business application is created and managed by the enterprise as a set of components.
Components are deployable assets, which are developed either by the enterprise or a vendor, and
managed by the enterprise. A component might be created by the enterprise, typically for use within a
specific business application. For example, the ACME Corporation might create a set of enterprise
beans to represent the business logic that is required by their Payroll Application. A component might
also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these
components are hardware products, such as IBM eServers or Sun Solaris systems, or software
products, such as IBM WebSphere Application Server, Oracle Database Servers.

Subcomponents
A specific component, depending on its complexity, might consist of several subcomponents. For
example, the IBM WebSphere Application Server consists of many subcomponents, such as the
enterprise bean container and the servlet engine. Subcomponent information is typically used only by
the creator of the component to service the component, and as such are not separately deployable or
manageable resources in the enterprise. The enterprise might deploy a change or update to a
subcomponent, but only upon guidance from the component vendor and as part of the vendor’s
component. For example, a software fix for the enterprise bean container of the IBM WebSphere
Application Server is packaged and deployed as a software update to the IBM WebSphere Application
Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a
part of the original deployed component, the IBM eServer.

Logging with Common Base Event API and the Java logging API
In cases where the events that are generated by the Java logging API are insufficient to describe the
event that needs capturing, you can create Common Base Events with the Common Base Event factory
APIs.

88 Developing and deploying applications

Before you begin

When you create a Common Base Event, you can add data to the Common Base Event before it is
logged. The following diagram illustrates how application code can create and log Common Base Events:

About this task

WebSphere Application Server is configured to use an event factory that automatically populates
WebSphere Application Server-specific information into the Common Base Events that it generates. In
general, it is good practice to create events using the WebSphere Application Server default Common
Base Event factory because this approach ensures consistency of Common Base Event content across
events. However, you can create and use other Common Base Event factories.

Common Base Events are initiated and logged in the following sequence:

1. Application code invokes the createCommonBaseEvent method on the EventFactory class to create a
CommonBaseEvent.

2. Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and
adds event-specific data.

3. Application code calls the CommonBaseEvent event complete method.

4. The CommonBaseEvent event invokes the ContentHandler completeEvent method.

5. The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all
ContentHandler handlers support templates.

6. The ContentHandler handler adds runtime data to the CommonBaseEvent event.

7. Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log
method.

8. Logger passes CommonBaseEventLogRecord record to Handlers.

9. Handlers format data and write to the output device.

Procedure
v You can use the default Common Base Event factory to generate content. Read “Generate Common

Base Event content with the default event factory” on page 90 for more information.

Chapter 8. Adding logging and tracing to your application 89

v If you do not wish to use the default event factory, you can create custom content handlers and event
factories.

1. Create a custom factory home. Read “Creating custom Common Base Event factory homes” on
page 94.

2. Create a custom content handler. Read “Creating custom Common Base Event content handlers” on
page 93.

Results

After completing all the above steps you will have a Common Base event based on your configuration
settings.

Generate Common Base Event content with the default event factory
A default Common Base Event content handler populates Common Base Events with WebSphere
Application Server runtime information. This content handler can also use a Common Base Event template
to populate Common Base Events.

The default content handler is used when the server creates CommonBaseEventLogRecords as would be
the case in the following example:
// Get a named logger
Logger logger = Logger.getLogger(“com.ibm.someLogger”);
// Log to the logger -- implicitly the default content handler
// will be associated with the CommonBaseEvent contained in the
// CommonBaseEventLogRecord.
logger.warning(“MSG_KEY_001”);

To specify a Common Base Event template in the previous case, a Logger.properties file would need to be
provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath,
then the Logger's event factory will use the specified template's content in addition to the WebSphere
Application Server runtime information when populating Common Base Events. If the template is not found
on the classpath, or is invalid, then the Logger's event factory will only use the WebSphere Application
Server runtime information when populating Common Base Events.

The default content handler is also associated with the event factory home supplied in the global event
factory context. This is convenient for creating Common Base Events that need to be populated with
content similar to that generated from the WebSphere Application Server:
// Request the event factory from the global event factory home
EventFactory eventFactory =

EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);

// Create a Common Base Event
CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent();

// Complete the Common Base Event using content from the template (if specified previously)
// and the server runtime information.
eventFactory.getContentHandler().completeEvent(commonBaseEvent);

In the previous example, if the template referenced by templateName is found on the classpath, and the
template is valid, then the event factory home will return an event factory which uses a content handler
that combines the template's content with the WebSphere Application Server runtime information when
populating Common Base Events. If the template is not found on the classpath, or is invalid, then the
event factory home will return an event factory which uses a content handler that uses only the
WebSphere Application Server runtime information when populating Common Base Events.

The default content handler populates Common Base Events in the server environment with the following
runtime information:

90 Developing and deploying applications

CommonBaseEvent.globalInstanceId
Value: The unique_record_id

Set this value only if the CommonBaseEvent.globalInstanceId value is null before the
completeEvent method is called.

CommonBaseEvent.msg
Value: A localized message that is based on the MsgDataElement element.

Set this value only if the CommonBaseEvent.msg message is null before the completeEvent
method is called.

CommonBaseEvent.severity
Value: Set based on the value of level set on the CommonBaseEventLogRecord record, if level >=
Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10.

Set this value only if the CommonBaseEvent.severity value is null before the completeEvent
method is called.

CommonBaseEvent.ComponentIdentification.component
Value: Set based on the LoggerName value that is set on the CommonBaseEventLogRecord
record.

Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.componentIdType
Value: “Unknown”

Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is
null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.executionEnvironment
Value: OSname[OSarch]#OSversion

Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value
is null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.instanceId
Value: cellName\nodeName\serverName

Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null
before the completeEvent method is called. Set only in a server environment because this value is
ignored in a client application.

CommonBaseEvent.ComponentIdentification.location
Value:The host name

Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.locationType
Value: The host name

Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.processId
Value: An internally generated representation of the process number.

Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null
before the completeEvent method is called

Chapter 8. Adding logging and tracing to your application 91

CommonBaseEvent.ComponentIdentification.subComponent
Value: Set based on values of the sourceClassName and the sourceMethodName names that are
set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord
record.

Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null
before the completeEvent method is called and both the sourceClassName and the
sourceMethodName names are set.

CommonBaseEvent.ComponentIdentification.threadId
Value: Set to the value of the Java Virtual Machine (JVM) thread name.

Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before
the completeEvent value is called.

CommonBaseEvent.ComponentIdentification.componentType
Value: http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer

Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is
null before the completeEvent method is called.

CommonBaseEvent.MsgDataElement.msgLocale
Value: Set based on the default locale of the JVM.

Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method
is called.

CommonBaseEvent.Situation.categoryName
Value: ReportSituation

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.type
Value: ReportSituation

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reasoningScope
Value: EXTERNAL

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reportCategory
Value: LOG

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists
when the completeEvent method is invoked on the content handler. Otherwise, the
reporterComponentIdentification ID is populated instead.

Common Base Event content handler
Content handlers populate data into Common Base Events when the Common Base Event complete
method is invoked. You can associate content handlers with Common Base Event templates, which
provide default information to transfer into each Common Base Event.

Content handlers might also provide any other information that is relevant to completing the population of
the Common Base Event, such as appropriate runtime defaults. The use of content handlers ensures
consistency of field use in the Common Base Event within a component or within a set of components that
share the same runtime. For example, some content handlers support the specification of a template. If

92 Developing and deploying applications

used consistently across a component, this template ensures that all events for that component have the
same template information filled in. Similarly, some content handlers can also supply runtime information to
their associated Common Base Events. If consistently used throughout the entire runtime, runtime
information ensures that all events use runtime data in a similar way.

The event factory home that is used in the WebSphere Application Server runtime is associated with a
content handler that both reads from a template, and supplies runtime data. Have components use Event
Factories that are obtained from this event factory home with their own templates, to produce consistency
between application events and server events.

More details can be found in “Creating custom Common Base Event content handlers” or the API
documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at http://www.eclipse.org/tptp/
index.html.

Creating custom Common Base Event content handlers
Create a custom Common Base Event content handler or template to automate configuration or values for
specific events.

Before you begin

A content handler is an object that automatically sets the property values of each event based on any
arbitrary policies that you want to use.

The following content handler classes were added to WebSphere Application Server to facilitate the use of
the Common Base Event infrastructure:

Class name Description

WsContentHandlerImpl This provides an implementation of
org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in
the WebSphere Application Server environment. This content handler
completes Common Base Events using information from the WebSphere
Application Server runtime, and it uses the same content handler as is used
internally by the WebSphere Application Server when completing Common
Base Events for logging.

WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends
the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl
class to enable the use of a Common Base Event template. Template
content takes precedence in cases where the template data specifies values
for the same Common Base Event fields as does the
WsContentHandlerImpl.

About this task

In some situations, you might want some event property data set automatically for every event that you
create. This automation is a way to fill in certain standard values that do not change, such as the
application name, or to set some properties based on information that is available from the runtime
environment, like creation time or thread information. You can set property data automatically by creating a
content handler.

Procedure
v Use the following code sample to implement the CustomContentHandler class:

public class CustomContentHandler extends WsContentHandlerImpl {

public CustomContentHandler() {
super();
// TODO Custom initialization code goes here

Chapter 8. Adding logging and tracing to your application 93

http://www.eclipse.org/tptp/index.html
http://www.eclipse.org/tptp/index.html

}

public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
// following code will add WAS content to the Content Base Event
super.completeEvent(cbe);
// TODO Custom content can be added to the Content Base Event here
}
}

v The following shows how to implement the CustomTemplateContentHandler class:
public class CustomTemplateContentHandler extends WsTemplateContentHandlerImpl {

public CustomTemplateContentHandler() {
super();
// TODO Custom initialization code goes here
}

public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
// following code will add WAS content to the Content Base Event
super.completeEvent(cbe);
// TODO Custom content can be added to the Content Base Event here
}
}

Results

You now have a content handler or a custom content handler template based on the settings that you
specified.

Common Base Event factory home
Event Factory homes provide Event Factory instantiation that is based on a unique factory name.

Event factory home implementations are tightly coupled with content handlers that are used to populate
Common Base Events with template or default data. Event factory instances are maintained by the
associated event factory home, based on their unique name. For example, when application code requests
a named event factory, the newly created Event Factory instance is returned and persisted for future
requests for that named event factory. An abstract event factory home class provides the implementation
for the APIs in the event factory home interface. Implementers extend the abstract event factory home
class and implement the createContentHandler API to create a typed content handler that is based on the
type of event factory home implementation.

In WebSphere Application Server, the default event factory home that is obtained with a call to
EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler
handler capable of supplying both event template information, as well as WebSphere Application Server
runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades.

Creating custom Common Base Event factory homes
Use custom Common Base Event factory homes to control configuration and implementation of unique
event factories.

Before you begin

Event factory homes create and provide homes for Event Factory instances. Each event factory home has
a content handler. This content handler is assigned to every event factory the event factory home creates.
In turn, when a Common Base Event is created, the content handler from the event factory is assigned to
it. Event factory instances are maintained by the associated event factory home, based on their unique

94 Developing and deploying applications

name. For example, when application code requests a named event factory, the newly created event
factory instance is returned and persisted for future requests for that named event factory.

The following classes were added to facilitate the use of event eactory homes for logging Common Base
Events:

Class name Description

WsEventFactoryHomeImpl This class extends the
org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class.
This event factory home returns event factory instances associated with the
WsContentHandlerImpl content handler. The WsContentHandlerImpl is the
content handler used by the WebSphere Application Server by default when no
event factory template is in use.

WsTemplateEventFactory
HomeImpl

This class extends the
org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl
class. This event factory home returns event factory instances associated with
the WsTemplateContentHandlerImpl Content Handler. The
WsTemplateContentHandlerImpl is the content handler used by the WebSphere
Application Server when an Event Factory template is required.

About this task

Custom event factory homes support the use of Common Base Event for logging in WebSphere
Application Server and make logging easy and consistent between the WebSphere Application Server
runtime and the exploiters of this API. The CustomEventFactoryHome and
CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are
there to make sure the correct content handler is being used with a particular event factory. The
CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory
selection details from infrastructure users, using their own set of parameters to decide which the
appropriate event factory is.

Procedure
v The following code samples provide examples of how to implement and use the

CustomEventFactoryHome class.

1. Implementation of the CustomEventFactoryHome class is as follows:
public class CustomEventFactoryHome extends AbstractEventFactoryHome {

public CustomEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomContentHandler();
}
}

2. The following is an example of how to use the CustomEventFactoryHome class:
// get the event factory

EventFactory eventFactory=(new CustomEventFactoryHome()).getEventFactory("XYZ");
// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

Chapter 8. Adding logging and tracing to your application 95

v For the CustomTemplateEventFactoryHome class you can use the following code for implementation
and use:

1. Implement the CustomTemplateEventFactoryHome class by using this code:
public class CustomTemplateEventFactoryHome extends

EventXMLFileEventFactoryHomeImpl {

public CustomTemplateEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomTemplateContentHandler();
}
}

2. Use the CustomTemplateEventFactoryHome class by following this sample code:
// get the event factory

EventFactory eventFactory=(new
CustomTemplateEventFactoryHome()).getEventFactory("XYZ");

// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

v The CustomEventFactoryHelper class can be implemented and used by following the code below:

1. Implement the custom CustomEventFactoryHelper class using this code:
public class CustomTemplateEventFactoryHome extends

EventXMLFileEventFactoryHomeImpl {

public CustomTemplateEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomTemplateContentHandler();
}
}
Figure 4 CustomTemplateEventFactoryHome class
public class CustomEventFactoryHelper {
// name of the event factory to use
public static final String FACTORY_NAME="XYZ";

public static EventFactory getEventFactory(String param1, String param2) {
EventFactory factory=null;
switch (resolveFactory(param1,param2)) {
case 1:
factory=(new CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);
break;
case 2:
factory=(new
CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);
break;

96 Developing and deploying applications

default:
// Add default for event factory
break;
}
return factory;
}

private static int resolveFactory(String param1, String param2) {
int factory=0;
// Add code here to resolve which factory to use
return factory;
}
}

2. To use the CustomEventFactoryHelper class, use the following code:
// get the event factory

EventFactory eventFactory=
CustomEventFactoryHelper.getEventFactory("param1","param2","param3");
// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

Results

Use the information provided here to implement a custom content factory home and the associated
classes based on the settings that you specify.

Common Base Event factory context
The event factory context provides a service to look up event factory homes. Retrieve the event factory
context using a call to the EventFactoryContext.getInstance method.

Using this class, you can look up the event factory homes by name, and avoid the need to include the
typed home in code. The EventFactoryHome name must be located on the class path to be found. The
EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained
with a call to the EventFactoryContext.getInstance.getEventFactoryHome method.

In WebSphere Application Server, the EventFactoryContext context is configured with a default
EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying
both event template information, as well as WebSphere Application Server runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Common Base Event factory
Use event factories to create Common Base Events and complete event properties with associated
content handlers.

Content handlers populate data into Common Base Events when the Common Base Event invokes the
complete method. All event properties set by the application code have priority over all properties that are
specified by the content handler. Event factory implementations are tightly coupled with the content
handler instance, which is associated with the event factory when the event factory is instantiated. Factory
instances can be retrieved only from their associated event factory home. Event factory instances are
retrieved and maintained based on unique names. Event factory names are hierarchical; they are
represented using the standard Java dot-delimited, name-space naming conventions.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Chapter 8. Adding logging and tracing to your application 97

java.util.logging -- Java logging programming interface
The java.util.logging.Logger class provides a variety of methods with which data can be logged.

In the WebSphere Application Server, when using basic log and trace mode, the Java logging API
(java.util.logging) automatically creates Common Base Events for events that are logged at the
WsLevel.DETAIL level or later (including WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT,
Level.WARNING, Level.SEVERE, and WsLevel.FATAL). These Common Base Events are created using
the event factory that is associated with the logger to which the message is logged. If no event factory is
specified, WebSphere Application Server uses a default event factory which automatically fills in
WebSphere Application Server-specific information.

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that
automatically creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels

v logp: When used with the WsLevel.DETAIL level or more severe levels

v logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example,
loggers that are instantiated with calls, such as Logger.getLogger(“com.xyz.SomeLoggerName”). Loggers
instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global
methods do not use the WebSphere Application Server implementation, and do not automatically create
Common Base Events for logging requests made to them. Log records that are logged directly with the
Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers
into Common Base Events.

The following diagram illustrates how application code can log Common Base Events:

The Java logging API processing of named loggers and message-level events proceeds as follows:

98 Developing and deploying applications

1. Application code invokes the named logger (WsLevel.DETAIL or later) with event-specific data.

2. The logger creates a Common Base Event using the createCommonBaseEvent method on the event
factory that is associated with the logger.

3. The logger creates a Common Base Event using the event factory associated to the logger.

4. The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds
event-specific data.

5. The logger calls the Common Base Event complete method.

6. The Common Base Event invokes the ContentHandler completeEvent method.

7. The content handler adds XML template data to the Common Base Event (including for example, the
component name). Not all content handlers support templates.

8. The content handler adds runtime data to the Common Base Event (including for example, the
current thread name).

9. The logger passes the CommonBaseEventLogRecord record to the handlers.

10. The handlers format data and write to the output device.

Logger.properties file
Use the Logger.properties file to set logger attributes for your component.

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an
application. The Logger.properties file must be either on the WebSphere Application Server class path, or
the context class path.

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere
Application Server activity.log file. You can specify your own event factory template to be used with your
loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event
template” on page 87 for details on the Common Base Event template.

By convention, the name of the event factory template file should be the fully qualified package name of
the package using the template. The name of the file must end with the .event.xml extension. For
example, a valid event factory template file name for the com.abc.somepackage package is:
com.abc.somepackage.event.xml

When you specify the property value for the eventfactory property in the Logger.properties file, include
the full path name with no leading slash relative to the root of your class path entry. Do not include the
.event.xml extension.

For example, if the template files from the previous example are located in the com/abc/templates
directory, the valid value for the eventfactory property is:
com/abc/templates/com.abc.somepackage

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the
following entry will appear in the Logger.properties file:
com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Chapter 8. Adding logging and tracing to your application 99

Logging Common Base Events in WebSphere Application Server
The following practices ensure consistent use of Common Base Events within your components, and
between your components and WebSphere Application Server components.

Follow these guidelines:

v Use a different logger for each component. Sharing loggers across components gets in the way of
associating loggers with component-specific information.

v Associate loggers with event templates that specify source component identification. This association
ensures that the source of all events created with the logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common
Base Event factories) and indirectly created Common Base Events (events created using the Java
logging API) within the same component.

v Avoid calling the complete method on Common Base Events until you are finished adding data to the
Common Base Event and are ready to log it. This approach ensures that any decisions made by the
content handler based on data already in the event are made using the final data.

The following sample Logger.properties file entry demonstrates how to associate the
com.ibm.componentX logger with the com.ibm.componentX event factory:
com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and
indirect (Part 2) Common Base Event logging:
<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent>
version="1.0.1"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="templateEvent.xsd">

<CommonBaseEvent>
<sourceComponentId application="My application" component="com.ibm.componentX"/>
<extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">
<values>Sample ExtendedDataElement value</values>
</extendedDataElements>
< /CommonBaseEvent>

< /TemplateEvent>

Showlog commands for Common Base Events
The showlog command converts the service log from binary format into plain text.

Purpose

These showlog commands to produce output in Common Base Event XML format.

v showlog -format CBE-XML-1.0.1 filename

where:

filename
Is the service log file name.

For examples of showlog scripts, see Viewing the service log.

100 Developing and deploying applications

Chapter 9. Overview and new features for deploying
applications

View the topics in the following list to learn more about installing applications or modules on product
deployment targets.

What is new for deployers

This topic provides an overview of new and changed features of the programming model and
application serving environment as it pertains to deployment.

Learn about WebSphere applications: Overview and new features

This topic provides an overview of the programming model.

Ways to install enterprise applications or modules

This topic provides lists the ways to install Java Platform, Enterprise Edition (Java EE) application
files on product deployment targets.

Accessing the samples

The samples are a good way to become familiar with the programming model.

© IBM Corporation 2011 101

102 Developing and deploying applications

Chapter 10. Deploying applications to the Liberty profile

You can deploy web applications or OSGi applications to the Liberty profile. You deploy an application by
either dropping the application into a previously-defined “dropins” directory, or by adding an application
entry to the server configuration.

Before you begin

You can deploy applications as described in this topic, or as described in “Adding and running an
application on the Liberty profile using developer tools” on page 104.

This topic assumes that you have not disabled dynamic updates to the runtime configuration, as described
in Controlling dynamic updates.

About this task

By default, the “dropins” directory is automatically monitored. If you drop an application into this directory,
the application is automatically deployed on the server. Similarly, if the application is deleted from the
directory, the application is automatically removed from the server. The “dropins” directory can be used for
applications that do not require additional configuration, such as security role mapping. You do not have to
include the application entry or any relevant information in the server configuration. For applications that
are not in the “dropins” directory, you specify the location using an application entry in the server
configuration. The location can be on the file system, or at a URL.

Your application can be packaged as an archive file or as a directory. For applications in the “dropins”
directory, the file name and file extension are used by the application monitor to determine the type of
application, and to generate the application name and (for web applications) the context-root. For example,
if the archive file or directory is named snoop.war, the application monitor assumes that the application is a
web application, that the application name is “snoop”, and that the context-root is also snoop. For
configured applications, you specify the application type and name, and (for web applications) the
application name is also used as the context-root.

For more information about the default directory structure, and the properties that are associated with
directories (for example server.config.dir), see Liberty profile: Directory locations and properties.

Procedure
v Deploy an application by dropping it into the “dropins” directory.

For example, using the default directory structure, to deploy an application you drop it into the
${server.config.dir}/dropins directory (that is, wlp/usr/servers/server_name/dropins).

v Deploy an application by adding it to the server configuration.

Configure the application element in the server.xml configuration file. See Liberty profile:
Configuration elements in the server.xml file. You must configure the following attributes for the
application:

– id Must be unique and is used internally by the server.

– name Must be unique and depending on the application. It might be used as the context-root of the
application. For more information on how the context-root is set for an application, see “Deploying a
web application to the Liberty profile” on page 117.

– type Specifies the type of the application. The supported application types are war, ear and eba.

– location Specifies the location of the application. It can be an absolute path or a URL which you can
download the application from. It can also be the file name of your application (including file
extension if any).

© Copyright IBM Corp. 2012 103

If the application is available on the file system, the location can either be the full path name or a simple
file name. If the location does not include the full path, the application manager looks for the application
in ${server.config.dir}/apps and ${shared.app.dir}. If the application is available at a URL, the
application manager downloads the application to a temporary folder inside the server work area, then
starts the application.

Note: The location that you specify for a configured application should not be in the “dropins” directory.
If you drop an application into the “dropins” directory, and also specify the location in the
server.xml file, you are telling the server to deploy the application twice.

In the following two examples, the location is the file system. If the location is a URL, enter the URL in
the location field.

<application id="ImpactEBA" name="ImpactEBA" type="eba" location="D:/apps/ImpactEBA.eba"/>
<application id="ImpactWeb" name="ImpactWeb" type="war" location="ImpactWeb.war"/>

The second example does not include the full path. In this case, you must put the application in one of
the following locations:

– ${server.config.dir}/apps (that is, server_directory/user/servers/server_name/apps)

– ${shared.app.dir} (that is, liberty_install_location/usr/shared/apps)

Notes:

– You must create the server-level apps directory, whereas the shared apps directory is present by
default. See Liberty profile: Directory locations and properties for more information about the
properties associated with the server directories.

– The application element can be set before or after the server has started. If the element is set after
the server has started, the changes are picked up dynamically.

v Remove an application.

For applications that are included in the server configuration, remove the reference to the application
from the server.xml file. The application is then automatically removed from the server.

For applications that are deployed to the “dropins” directory, delete the application from the directory.
The application is then automatically removed from the server.

To uninstall all applications that are in the “dropins” directory, set the application monitor dropinsEnabled
property to false as described in Controlling dynamic updates.

What to do next

For all deployed applications, you can configure if application monitoring is enabled, and how often to
check for updates to applications. For the “dropins” directory, you can also configure the name and
location of the directory, and choose whether or not to deploy the applications that are in the directory. See
Controlling dynamic updates.

Adding and running an application on the Liberty profile using
developer tools
You can add applications to the server by right-clicking on the server in the Servers view then selecting
Add and Remove from the menu.

Before you begin

The Liberty profile developer tools currently support web and OSGi applications. For details on OSGi
applications support, see the Blueprint and Web Application Bundles (WAB) feature sections in the
Liberty profile: Server features topic. In addition, for details on restrictions of OSGi applications, see the
wab-1.0 feature restrictions section in the Liberty profile: Runtime environment known restrictions topic.

104 Developing and deploying applications

You can add and run an application as described in this topic, or as described in Chapter 10, “Deploying
applications to the Liberty profile,” on page 103.

About this task

When you add an application to the server, the workbench tries to determine which features are required
by the application and enable them in the server configuration for you if they are not already enabled.

Procedure
1. In the Servers view, right-click the server and select Add and Remove.

2. In the Add and Remove wizard, under the Available list, select the applications you want to add then
click Add. Or click Add All to add all available applications to the server.

3. Alternatively, you can right-click on an application in the Project Explorer view and select Run As >
Run on Server, or Debug As > Debug on Server. This adds the application to the server (if not
already added), starts the server (if not already started) and runs the application.

Results

Tip: If you are using Run on Server or Debug on Server and the server is already started, the browser
may try to load the application before the server has finished loading it. If this happens, wait for the
message in the console view that displays the application has been started and then refresh the
browser if necessary.

Publishing your application using developer tools
Publishing involves copying files (projects, resource files, and server configurations) to the correct location
for the server to find and use them. In the test environments, these files may already be in the correct
location. In some cases, temporary copies of the server configurations may be created. You can either
publish your application automatically or manually.

About this task

Automatically publishing to a server

Procedure
1. If the Automatically publish when starting servers check box on the Server preferences page

(Window > Preferences > Server > Launching) is selected, the workbench checks to see if your
project and files on the server are synchronized. If they are not, the project and the files are
automatically updated when the server is either started or restarted.

2. In the workbench, you have several options to choose for the Publishing settings. You can set these
Publishing settings by going into the Servers view, right-click the server and select Open. The Server
editor opens. In the Overview page of the server editor, under the Publishing settings, you are going to
find the following settings:

a. Never publish automatically: Specifies the workbench should never publish files to the server.

b. Automatically publish when resources change: Specifies the workbench to issue a publish after
changes on a file that is associated to the server are saved and a full time interval has passed in
the Publishing interval setting. In the workbench, the default setting is the Automatically publish
when resources change option is enabled with a value set in the publishing interval.

c. Automatically publish after a build event: Specifies the workbench to issue a publish after
changes on a file that requires a build and is associated to the server are saved, and a full time
interval has passed in the Publishing interval setting.

d. Publishing interval (in seconds): Specifies the number of seconds that needs to pass before the
workbench calls a publish to happen on the server. However, if you make a subsequent change to
the files before this time interval has completed, the publish is delayed as the timer is reset. The

Chapter 10. Deploying applications to the Liberty profile 105

workbench makes a publish to the server only after the full time interval has passed. If you set the
publishing interval to 0 seconds, an immediate publish should happen after changes on a file are
saved.

Manually publishing to a server
About this task

If you do not want to wait for the automatic publishing interval to pass or the Never publish automatically
option is enabled, at anytime you can manually request the workbench to issue a publish command to the
server. Each manual publish command causes a single publishing request to the server. To publish your
application manually you can complete one of the following in the Servers view:

Procedure
1. Select the server and then click the Publish to the server icon located on the toolbar.

2. Right-click the server and then select Publish.

Publishing settings for a WebSphere Application Server V8.5 Liberty profile
Publishing involves copying files (application, resource files, and deployment descriptor files) to the correct
location for the server to find and use them. You have the option whether you want to publish your
application on the server or run your application within the development environment without copying the
application into the directories of the server.

About this task

Run applications directly from the workspace

The Run applications directly from the workspace publishing option requests the server to run your
application from the workspace.

This publishing option should publish faster when an application contains a single root, as opposed to
containing multiple roots, because the server expects the structure of an application to have only a single
root. As a result, the workbench may require additional processing time to publish an application with
multiple roots. To determine whether the structure of your application contains a single or multiple roots
use the Project Structure Validator. For details, see Creating and configuring Java EE projects using
wizards.

CAUTION:
When you are using Run applications directly from the the workspace publishing option, the server
can lose track of your application under the following scenarios:

v If you delete your workspace, the server no longer can find your application. As a result, if you
did not put your application under source control management and the workspace is deleted,
you can lose your application from your file system.

v If you delete an application from the workspace without removing it from the server, the server
no longer can find your application. As a result, you may encounter errors when starting the
server because the server tries to start the missing application from the workspace.

Procedure
1. In the Servers view, double-click your WebSphere Application Server V8.5 Liberty profile to open the

server editor.

2. Click the Overview tab.

3. Select Run applications directly from the workspace.

4. Save and close the editor.

106 Developing and deploying applications

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.javaee.doc/topics/tcreatajavaeeprojwiz.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.javaee.doc/topics/tcreatajavaeeprojwiz.html

Packaging a Liberty profile server from the command prompt
From the command prompt you can create a compressed file containing a server runtime environment,
server configuration, and applications.

About this task

Because a Liberty server is lightweight, you might find it useful to package up your applications and server
in a compressed file. You can then store this package, distribute it to colleagues, use it to deploy the
application to a different location or to another machine, or even embed it in your product distribution.

Note: The result file is created using UTF-8 encoding for entry names, so you must use a tool capable of
opening the file using UTF-8 encoding for entry names. The jar command in a Java SDK uses this
format.

Procedure
1. Open a command prompt, then change directory to the wlp directory.

2. Stop the server.

3. Package the server.

Run the following command. If you do not specify a server name, defaultServer is used. If you do not
specify the --archive parameter, the value of server_name is used for package_file_name, and the
compressed file is created in the ${server.output.dir} directory.
v

bin/server package server_name --archive=package_file_name.zip --include=all

where package_file_name.zip is a filename that you choose. This filename can include a full path
name. If the full path is omitted, a compressed file called package_file_name.zip is created in the
${server.output.dir} directory.

You can also use the --include option with this command. For example, --include=all option
packages all the files under the server installation directory; --include=use option packages files in the
${WLP_USER_DIR} directory.

Results

If the specified server does not exist, the command does not succeed. If the specified server exists, a
compressed file is created that contains your applications and server.

Using JNDI binding for constants from the server configuration files
You can bind constants into the default JNDI namespace from the server configuration files using the
jndiEntry element on the Liberty profile.

About this task

The default JNDI namespace is available in the Liberty profile to provide bindings to miscellaneous objects
needed by applications. Any data sources declared in the server configuration files are available in the
default JNDI namespace. Additionally, you can bind Java strings and primitive data types in the
configuration file into JNDI namespace. These constants are then made available to an application at run
time, providing a very simple and portable way to pass configuration values into the application.

See Naming for more information about JNDI.

Following steps show how to bind the constants and use them in your application.

Chapter 10. Deploying applications to the Liberty profile 107

Procedure
1. To add a constant into the default JNDI namespace, the jndi-1.0 server feature must be specified in

the server.xml file of the Liberty profile server.

<featureManager>
<feature>jndi-1.0</feature>

</featureManager>

2. To bind constants into the JNDI namespace, add jndiEntry elements into the server.xml file by
specifying the jndiName and value attributes.

<jndiEntry jndiName="schoolOfAthens/defaultAdminUserName" value=’"plato"’ />
<jndiEntry jndiName="schoolOfAthens/defaultAdminPassword" value=’"republic"’ />

3. To look up the constants from an application using a JNDI context, use the following code:

Object jndiConstant = new InitialContext().lookup("schoolOfAthens/defaultAdminUserName");
String defaultAdmin = (String) jndiConstant;

Note:

v The lookup() method returns an object to the application. The type of the object is
determined by interpreting the value stored in the jndiEntry element as a Java literal string
or primitive data type. If the parsing fails, the exact value is provided as an unmodified string.

v The jndiEntry element supports the integer, floating-point, boolean, character and string
literals as described in the Java Language Specification, Java SE 7 Edition, section 3.10.
String and character literals might contain unicode escaped sequences (section 3.3), and the
octal and character escape sequences (section 3.10.6). The null literal (section 3.10.7) and
class literals (section 15.8.2) are not supported.

See the following examples of Java literals:

v The string "Hello, world" followed by a newline:
<jndiEntry jndiName="a" value=’"Hello, world.\n"’ />

v The integer with a binary value 1010101:
<jndiEntry jndiName="b" value="0b1010101" />

v The single character 'X':
<jndiEntry jndiName="c" value="’X’" />

v The double-precision floating point number 1.0:
<jndiEntry jndiName="d" value="1.0D" />

See Liberty profile: Configuration elements in the server.xml file for more information about jndiEntry
element.

Sharing common OSGi bundles for the Liberty profile
You can share common OSGi bundles by placing them in a directory and configure the server.xml file for
your server so that those common OSGi bundles are available to your enterprise applications.

Procedure
v Create a directory in your file system and place all the common OSGi bundles into the directory.

v Add the following lines into the server.xml file.

<bundleRepository>
<fileset dir="directory_path" include="*.jar"/>
</bundleRepository>

Where directory_path is the path to the directory that contains the common OSGi bundles.

v Define a dependency on the common bundle using import phrase in the manifest.mf file of your
application.

108 Developing and deploying applications

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.7
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.8.2

Configuring class loaders for Java EE applications
By default, each application can access a set of provided APIs, as well as being able to access its own
internal classes and libraries. You can override the default settings, and configure class loading for each
application.

About this task

Each Java EE application has its own class loader in a running Liberty profile server. The Liberty profile
assumes some default settings for all Java EE applications, so that they can access the supported
specification APIs (for example the Servlet APIs if the Servlet feature is enabled), and the IBM APIs. By
default, each application can access these provided APIs, as well as being able to access its own internal
classes and libraries. If you need to override the default settings and configure class loading for your
application, complete one or more of the following tasks.

Note: If you use configuration to override the default settings, you cannot deploy the application by
dropping it into the “dropins” directory.

Procedure
v “Using a Java library with a Java EE application”

v “Sharing a library across multiple Java EE applications” on page 110

v “Accessing third-party APIs from a Java EE application” on page 110

v “Removing access to third-party APIs for a Java EE application” on page 111

v “Overriding a provided API with an alternative version” on page 112

v “Providing global libraries for all Java EE applications” on page 112

Using a Java library with a Java EE application
One way of using Java libraries with an application is to include them in the application itself. This might
not always be desirable or appropriate, especially if the application is already packaged and does not
include the library.

About this task

In the following example, a library called Alexandria consists of two files:

v alexandria-scrolls.jar and

v commons-lang.jar

An application called Scholar, running on a server called Academy, needs access to this library.

Procedure
1. Create a lib/Alexandria directory in the servers/Academy directory under the ${WLP_USER_DIR}

directory.

For example: wlp/usr/servers/Academy/lib/Alexandria.

2. Copy the alexandria-scrolls.jar and commons-lang.jar files into the new folder.

3. Configure class loading for the application, so that the Alexandria library is loaded.

In the server.xml file, or an included file, add the following code:

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader>
<privateLibrary>
<fileset dir="${server.config.dir}/lib/Alexandria" includes="*.jar" scanInterval="5s" />

</privateLibrary>
</classloader>

</application>

Chapter 10. Deploying applications to the Liberty profile 109

Note: The <privateLibrary> element can also take a filesetRef attribute with a comma-separated
list of <fileset> element IDs.

Sharing a library across multiple Java EE applications
Libraries can be shared across multiple Java EE applications. All the applications can use the same
classes at run time, or each application can use its own separate copy of those classes loaded from the
same location.

About this task

In the following example, a library called Alexandria consists of two files:

v alexandria-scrolls.jar and

v commons-lang.jar

An application called Scholar and an application called Student are running on a server called Academy,
and both need access to this library.

Procedure
1. Create a lib/Alexandria directory in the servers/Academy directory under the ${WLP_USER_DIR}

directory.

For example: wlp/usr/servers/Academy/lib/Alexandria.

2. Copy the alexandria-scrolls.jar and commons-lang.jar files into the new folder.

3. Configure class loading for the application, so that the Alexandria library is loaded.

In the server.xml file, or an included file, define the library by adding the following code:

<library id="Alexandria">
<fileset dir="${server.config.dir}/lib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Note: The <library> element can also take a filesetRef attribute with a comma-separated list of
<fileset> element IDs.

4. Reference the library from the applications, so that both these applications share a single copy of the
library.

In the server.xml file, or an included file, add the following code:

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader commonLibraryRef="Alexandria" />

</application>

<application id="student" name="Student" type="ear" location="student.ear">
<classloader commonLibraryRef="Alexandria" />

</application>

Note: The <commonLibraryRef> element can take a comma-separated list of library IDs.

5. Optional: Configure another application to have its own set of classes loaded from the same JAR files.

If another application called (for example) Spy needs its own copy of the classes, the same physical
files on disk can be used. In the server.xml file, or an included file, add the following code:

<application id="spy" name="Spy" type="war" location="spy.war">
<classloader privateLibraryRef="Alexandria" />

</application>

Note: The <privateLibraryRef> element can take a comma-separated list of library IDs.

Accessing third-party APIs from a Java EE application
By default, Java EE applications do not have access to the third-party APIs available in the Liberty profile.
To enable this access, the application must be configured in the server.xml file, or an included file.

110 Developing and deploying applications

About this task

In the following example, an application called Scholar needs access to the third-party APIs that are
available in the Liberty profile.

The application also uses a common library called Alexandria. This library is located in the
${server.config.dir}/lib/Alexandria directory.

Procedure
1. Configure class loading for the application, so that the application can access the third-party APIs.

In the server.xml file, or an included file, configure the API type visibility by adding the following code:

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec, ibm-api, third-party" commonLibraryRef="Alexandria" />

</application>

2. Optional: If the application uses any common libraries, set those libraries to use the same API type
visibility setting.

In the server.xml file, or an included file, add the following code:

<library id="Alexandria" apiTypeVisibility="spec, ibm-api, third-party">
<fileset dir="${server.config.dir}/lib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Removing access to third-party APIs for a Java EE application
By default, Java EE applications do not have access to the third-party APIs available in the Liberty profile.
You can also configure this state explicitly in the server.xml file, or an included file.

About this task

In the following example, an application called Scholar had previously been configured to access
third-party APIs, as described in “Accessing third-party APIs from a Java EE application” on page 110. You
want to remove this access, and to make it explicit in the configuration that the application now uses the
default access setting.

The application also uses a common library called Alexandria. This library is located in the
${server.config.dir}/lib/Alexandria directory.

Procedure
1. Configure class loading for the application, to show that the application can no longer access the

third-party APIs.

In the server.xml file, or an included file, remove third-party from the set of values included for the
apiTypeVisibility attribute:

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec, ibm-api" commonLibraryRef="Alexandria" />

</application>

2. Optional: If the application uses any common libraries, set those libraries to use the same API type
visibility setting.

In the server.xml file, or an included file, add the following code:

<library id="Alexandria" apiTypeVisibility="spec, ibm-api">
<fileset dir="${server.config.dir}/lib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Chapter 10. Deploying applications to the Liberty profile 111

Overriding a provided API with an alternative version
If an application provides (or uses a library that provides) classes that are also available in the Liberty
profile, by default the classes from the Liberty profile are used. To change this so that the application uses
the alternative versions of these classes, the application must be configured in the server.xml file, or an
included file.

About this task

If a web application includes classes that are also present in the server runtime environment, you might
want to control which copy of each of those classes is used by the application. For example, if different
versions of the classes are present in both the application and the server runtime environment, you have
to ensure that the version packaged in the application is used.

By default, classes from the Liberty profile runtime environment are used by all Java EE applications. You
can override this behavior by using the class loader configuration delegation attribute. This configuration
is specific to a particular application, or to a shared library that can be selected for use by an application.

Example

In the following example, an application called Scholar needs to use classes that it provides (or that are
provided in a library that it uses), rather than using the copies of the classes that are available in the
Liberty profile.

v When the classes are packaged within the application, override the default parentFirst delegation
behavior with a classloader element in the server.xml configuration file or a file that it includes:

<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader delegation="parentLast" />

</application>

This tells the application class loader to look at the Liberty profile classes only after looking in the
application and its associated libraries for a class.

v When the classes are packaged in a shared library, add the delegation attribute to the classloader
element that configures the use of the shared library as follows:

<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader delegation="parentLast" commonLibraryRef="mySharedLib"/>

</application>

<library id="mySharedLib">
<fileset dir="${server.config.dir}/myLib" includes="*.jar" />

</library>

You can also use the privateLibraryRef attribute for private libraries in an application. See “Sharing a
library across multiple Java EE applications” on page 110.

Providing global libraries for all Java EE applications
You can provide global libraries that can be used by any application. You do this by putting the JAR files
for those libraries in a global library directory, then specifying use of global libraries in the class loader
configuration for each application.

About this task

Under the ${WLP_USER_DIR} directory, there are two locations in which you can place global libraries:

v shared/lib/global

v servers/server_name/lib/global

112 Developing and deploying applications

If there are files present in these locations at the time an application is started, and that application does
not have a <classloader> element configured, the application uses these libraries. If a class loader
configuration is present, these libraries are not used unless the global library is explicitly referenced.

CAUTION:
If you use global libraries, you are advised also to configure a <classloader> element for every
application. The servlet specification requires applications to share the global library class loader
in their class loader parent chain. This breaks the separation of class loaders for each application
that is otherwise possible. Consequently, applications are more likely to have long-lasting effects
on classes loaded in Liberty and on each other, and class space consistency issues are more
likely to arise between applications, especially over time as features are added and removed in a
running server. None of these considerations apply for applications that specify a <classloader>
element in their configuration, because they maintain this separation.

Example

In the following example, an application called Scholar is configured to use a common library called
Alexandria, and also to use the global library.

In the server.xml file, or an included file, enable the global library for an application by adding the
following code:

<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec" commonLibraryRef="Alexandria, global" />

</application>

The settings for the global library can also be configured explicitly, as a library element with the special ID
global. For example:

<library id="global">
<fileset dir="/path/to/folder" includes="*.jar" />

</library>

Deploying data access applications to the Liberty profile
Deploying a data access application includes more than installing your web application archive (WAR) or
enterprise archive (EAR) file onto a Liberty profile. Deployment can include tasks for configuring the data
access resources of the server and overall runtime environment.

About this task

This following topics are covered in this section:

Procedure
v Configure a data source and JDBC driver for database connectivity in a Liberty profile

v Deploy an JDBC application to the Liberty profile

v Optional: Configure connection pooling in the Liberty profile

v Optional: Develop an application-defined data source on the Liberty profile

v Optional: Configure transaction recovery for data sources on the Liberty profile

v Migrating data access applications to the Liberty profile

Deploying an existing JDBC application to the Liberty profile
You can take an existing application that uses Java Database Connectivity (JDBC) and a data source, and
deploy the application to a server.

Chapter 10. Deploying applications to the Liberty profile 113

About this task

You can take an existing JDBC application and deploy it to the Liberty profile. To do this, you add the
jdbc-4.0 server feature to the server.xml file, along with code that tells the server the JDBC driver
location and specifies properties that the JDBC driver uses to connect to the database.

This example uses the ImpactWeb sample application. This application includes a servlet called
WorkingServlet. In this example, you extend the servlet with code that tests that the JDBC application is
working as expected.

Procedure
1. Create a server.

2. Add the jdbc-4.0 and the servlet-3.0 server features to the server.xml file.

3. Add code to the server.xml file to specify the database type and the data source location.

For example:

<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib"/>
<library id="DerbyLib">
<fileset dir="C:/myDerbyLocation/lib" includes="derby.jar"/>

</library>
<dataSource id="ds1" jndiName="jdbc/exampleDS" jdbcDriverRef="DerbyEmbedded">
<properties.derby.embedded
databaseName="C:/myDerbyLocation/data/exampleDB"
createDatabase="create"

/>
</dataSource>

For information about other options for coding data source definitions, see Liberty profile: Using Ref
tags in configuration files.

4. Optional: Enable JDBC tracing.

5. Modify the WorkingServlet.java servlet.

For example, add the following code:

@Resource(name = "jdbc/exampleDS")
DataSource ds1;
Connection con = ds1.getConnection();
Statement stmt = null;
try {
stmt = con.createStatement();
// create a table
stmt.executeUpdate("create table cities

(name varchar(50) not null primary key, population int, county varchar(30))");
// insert a test record
stmt.executeUpdate("insert into cities values (’myHomeCity’, 106769, ’myHomeCounty’)");
// select a record
ResultSet result = stmt.executeQuery("select county from cities where name=’myHomeCity’");
result.next();
// display the county information for the city.
System.out.println("The county for myHomeCity is " + result.getString(1));

}
catch (SQLException e) {
e.printStackTrace();

}
finally {
try {
// drop the table to clean up and to be able to rerun the test.
stmt.executeUpdate("drop table cities");

}
catch (SQLException e) {

114 Developing and deploying applications

e.printStackTrace();
}
con.close();

}

6. Add the application to the server.

7. If it is not already running, start the server.

8. Optional: Test that the JDBC application is working as expected.

For example, run the modified WorkingServlet.java servlet. You should see the following console
output:

[AUDIT] CWWKZ0001I: The application ImpactWeb has started successfully.
[AUDIT] CWWKD0000I: The dataSource ds1 is available as jdbc/exampleDB.
[AUDIT] CWWKD0000I: The jdbcDriver DerbyEmbedded is available.
The county for myHomeCity is myHomeCounty

Enabling JDBC Tracing for the Liberty profile
JDBC tracing for the Liberty profile is enabled either through a driver-specific custom trace setting, or
using the application server supplemental JDBC tracing option.

About this task

There are two ways of using driver-specific custom trace facilities:

v Using the Java built-in logging mechanism, java.util.logging, if the driver supports it.

v Configuring a custom trace setting as a vendor property.

If your JDBC driver does not provide its own custom tracing or logging facilities, or the facilities it provides
are minimal, you can use supplemental JDBC tracing from the application server.

If you enable tracing by using either a custom vendor property or supplemental JDBC tracing, you must
add the logwriter name to the trace specification in the bootstrap.properties file. You can use any of the
following logwriters:

DB2 com.ibm.ws.db2.logwriter

Derby com.ibm.ws.derby.logwriter

Informix® JCC (uses the same driver as DB2)
com.ibm.ws.db2.logwriter

Informix JDBC
com.ibm.ws.informix.logwriter

Microsoft SQL Server JDBC Driver
com.ibm.ws.sqlserver.logwriter

DataDirect Connect for JDBC for Microsoft SQL Server
com.ibm.ws.sqlserver.logwriter

Sybase
com.ibm.ws.sybase.logwriter

Other databases (for example solidDB® and MySQL)
com.ibm.ws.database.logwriter

Because changes to trace enablement involve altering the bootstrap.properties file, you must restart the
server for the changes to take effect.

The following examples illustrate the use of the various JDBC trace methods.

Chapter 10. Deploying applications to the Liberty profile 115

Procedure
v Use java.util.logging.

If the driver you are using supports java.util.logging, you can enable it by appending the driver's
trace level to com.ibm.ws.logging.trace.specification in the bootstrap.properties file. See Using
Java logging in an application, and the JDBC vendor documentation for levels and other trace
information specific to your driver.

Here is an example for Microsoft SQL Server JDBC Driver:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*audit=enabled:com.microsoft.sqlserver.jdbc=FINE

Here is an example for Oracle JDBC:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*audit=enabled:oracle=FINE

– For Oracle, you must also enable the tracing using the system property oracle.jdbc.Trace, using
one of the following two options:

- In the bootstrap.properties file, add the setting oracle.jdbc.Trace=true

- In a Java program, add the setting System.setProperty("oracle.jdbc.Trace","true");

v Use custom trace settings.

If the driver you are using has custom trace settings, you set them as JDBC driver vendor properties in
the server.xml file. You also add the logwriter name to the trace specification in the
bootstrap.properties file.

Here is an example for DB2 JCC, using the custom property traceLevel:

– Example code for the server.xml file:
<dataSource id="db2" jndiName="jdbc/db2" jdbcDriverRef="DB2Driver" >

<properties.db2.jcc databaseName="myDB" traceLevel="-1"/>
</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.db2.logwriter=all=enabled

Here is an example for Derby Network Client:

– Example code for the server.xml file:
<dataSource id="derbyNC" jndiName="jdbc/derbyNC" jdbcDriverRef="DerbyNC" >

<properties.derby.client databaseName="myDB" createDatabase="create" traceLevel="1"/>
</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.derby.logwriter=all=enabled

Here is an example for Informix JCC. This database uses the DB2 drivers for JCC connectivity.

– Example code for the server.xml file:
<dataSource id="informixJCC" jndiName="jdbc/informixJCC" jdbcDriverRef="InformixDriverJCC" >

<properties.informix.jcc databaseName="myDB" traceLevel="-1"/>
</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.db2.logwriter=all=enabled

v Use supplemental JDBC tracing.

If your JDBC driver does not provide suitable tracing or logging facilities, you can use supplemental
JDBC tracing from the application server. The application server automatically determines whether to
enable supplemental JDBC tracing, based on the JDBC driver being used. To override this, set the data
source property supplementalJDBCTrace to true or false.

1. Enable supplemental tracing.

116 Developing and deploying applications

Here is an example for enabling supplemental tracing with the embedded Derby database.
Supplemental JDBC tracing is enabled by default for this database, so you only need to set the
logwriter in the bootstrap.properties file:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.derby.logwriter=all=enabled

Here is an example for enabling supplemental tracing with Informix JDBC. Supplemental JDBC
tracing is enabled by default for this database.

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*audit=enabled:com.ibm.ws.informix.logwriter=all=enabled

Here is an example for enabling supplemental tracing, and java.util.logging, with Microsoft SQL
Server JDBC Driver:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.sqlserver.logwriter=all=enabled:

com.microsoft.sqlserver.jdbc=all

Here is an example for enabling supplemental tracing with DataDirect Connect for JDBC for
Microsoft SQL Server:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.microsoft.sqlserver.jdbc=all

Here is an example for enabling supplemental tracing with solidDB. Supplemental JDBC tracing is
enabled by default for this database.

– Example code for the server.xml file:
<dataSource id="soliddb" jndiName="jdbc/soliddb" jdbcDriverRef="solidDBDriver">

<properties databaseName="dba" URL="jdbc:solid://localhost:2315/dba/dba" />
</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*audit=enabled:com.ibm.ws.database.logwriter=all=enabled

Here is an example for enabling supplemental tracing with Sybase. Supplemental JDBC tracing is
enabled by default for this database.

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.sybase.logwriter=all=enabled

Here is an example for enabling supplemental tracing with other databases:

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.database.logwriter=all=enabled

2. Disable supplemental tracing

To disable supplemental JDBC tracing, either set the supplementalJDBCTrace data source property
to false in the server.xml file, or remove the logwriter name from the
com.ibm.ws.logging.trace.specification property in the bootstrap.properties file:

– Example code for the server.xml file for solidDB:
<dataSource id="soliddb" jndiName="jdbc/soliddb" jdbcDriverRef="solidDBDriver" supplementalJDBCTrace="false">

<properties databaseName="dba" URL="jdbc:solid://localhost:2315/dba/dba" />
</dataSource>

– Example code for the bootstrap.properties file for solidDB:
com.ibm.ws.logging.trace.specification=*audit=enabled

Deploying a web application to the Liberty profile
By deploying a helloworld.war application, you can learn how server configurations change in the Liberty
profile.

Chapter 10. Deploying applications to the Liberty profile 117

Before you begin

The helloworld.war application uses a simple servlet to display a message on your browser. You can
create any other messages to be displayed. The coding of the application is not described within the
Liberty profile documents.

About this task

When you deploy a web application to the Liberty profile when the server is up and running, all
configurations related to the application are automatically enabled in the server.xml file . However, you
can also configure the server.xml file manually by completing the following steps.

This example uses the helloworld.war application and can be accessed via http://localhost:9090/
helloworld. In this example, we create a new Liberty profile server instance and change its default HTTP
port to 9090, then deploy the application on it.

Procedure
1. Create a server named hwserver using the command server create hwserver.

2. Create a directory apps for application deployment under the newly created server directory. The
directory should be like /usr/servers/hwserver/apps .

3. Copy the helloworld.war application into the apps directory created.

4. Change the default HTTP port of the server hwserver to 9090 by adding the following line into the
server.xml file.

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9090" />

5. Configure the application by updating the server.xml as follows:

<server description="Hello World Server">

<featureManager>
<feature>servlet-3.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9090" />

<application context-root="helloworld" type="war" id="helloworld"
location="helloworld.war" name="helloworld"/>

</server>

Where context-root specifies the entry point of the deployed application. The entry point of an
deployed application is determined in the following precedence:

v context-root in the server.xml file

v application.xml , if an EAR application

v ibm-web-ext.xml, if a web application

v name of the application in the server.xml file, if a web application

v Manifest.MF, if a WAB application

v Directory name or the file name relative to the "dropins" directory of the Liberty profile

6. Start the server in foreground using the command server run hwserver.

7. Test the application at http://localhost:9090/helloworld.

8. Optional: Stop the server if you don't need it.

118 Developing and deploying applications

Deploying a JPA application to the Liberty profile
To enable the Liberty profile to support an application that use the Java Persistence API (JPA), you add
the jpa-2.0 feature to the server.xml file. You also need to define persistence contexts and persistence
units, and configure access to the entity manager and entity manager factory.

Before you begin

This task assumes that you have created a Liberty profile server, on which you want to deploy an
application that uses JPA. See Creating a new Liberty profile server from the command prompt.

About this task

The jpa-2.0 feature provides support for applications that use application-managed and
container-managed JPA written to the JPA 2.0 specification. Support is built on top of Apache OpenJPA
with extensions to support the container-managed programming model.

Procedure
v Add the jpa-2.0 feature to the server.xml file.

v Add persistence context and persistence unit definitions to the web.xml file.

For example:

<persistence-context-ref>
<persistence-context-ref-name>example/em</persistence-context-ref-name>
<persistence-unit-name>ExamplePersistenceUnit</persistence-unit-name>

</persistence-context-ref>

<persistence-unit-ref>
<persistence-unit-ref-name>example/emf</persistence-unit-ref-name>
<persistence-unit-name>ExamplePersistenceUnit</persistence-unit-name>

</persistence-unit-ref>

v Configure access to the entity manager.

For example:

Context ctx = new InitialContext();
UserTransaction tran = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
tran.begin();
EntityManager em = (EntityManager) ctx.lookup(java:comp/env/example/em");
Thing thing = new Thing();
em.persist(thing);
tran.commit();

v Configure access to the entity manager factory.

For example:

Context ctx = new InitialContext();
EntityManagerFactory emf = (EntityManager) ctx.lookup(java:comp/env/example/emf");
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();
Thing thing = new Thing();
em.persist(thing);
tx.commit();
int id = thing.getId();
em.close();

Chapter 10. Deploying applications to the Liberty profile 119

120 Developing and deploying applications

Chapter 11. How do I deploy applications?

Follow these shortcuts to get started quickly with popular tasks.

Deploy enterprise application files.

Change the configuration of deployed enterprise application files.

Configure class loaders.

Start or stop deployed enterprise application files.

Update deployed enterprise application files.

Deploy and administer business-level applications.

Troubleshoot deployment problems

© IBM Corporation 2011 121

122 Developing and deploying applications

Chapter 12. Deploying enterprise applications

Deploying Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled
enterprise application, web, enterprise bean (EJB), or other installable modules on a server configured to
hold the files. Installed files that start and run properly are considered deployed.

Installing enterprise application files
As part of deploying an application, you install application files on a server configured to hold installable
modules.

Before you begin

Before you can install your Java Platform, Enterprise Edition (Java EE) application files on an application
server, you must assemble modules as needed.

Also, before you install the files, configure the target application server. As part of configuring the server,
determine whether your application files can be installed to your deployment targets.

About this task

You can install the following enterprise modules on a server:
v Enterprise archive (EAR)
v Enterprise bean (EJB)
v Web archive (WAR)
v Session Initiation Protocol (SIP) module (SAR)
v Resource adapter (connector or RAR)
v Application client modules

Application client files can be installed in a WebSphere Application Server configuration but cannot be run
on a server.

Complete the following steps to install your files.

Procedure
1. Determine which method to use to install your application files. The product provides several ways to

install modules.

2. Install the application files using

v Administrative console

v Drag and drop to a monitored directory

v wsadmin scripts

v Java administrative programs that use Java Management Extensions (JMX) application
programming interfaces (APIs)

v Java programs that define a Java EE DeploymentManager object in accordance with Java EE
Application Deployment specification (JSR-88)

3. Start the deployed application files using
v Administrative console
v wsadmin startApplication
v Java programs that use ApplicationManager or AppManagement MBeans
v Java programs that define a Java EE DeploymentManager object in accordance with Java EE

Application Deployment specification (JSR-88)

© Copyright IBM Corp. 2012 123

What to do next

Save the changes to your administrative configuration.

Note:

v You must use either the administrative console or wsadmin scripting to synchronization a node.
Of these two options, using the administrative console is the best way to perform this operation.
The Nodes panel in the administrative console includes the Synchronize operation.

If you need to use wsadmin scripting to synchronize a node, use the NodeSync mbean's sync()
command.

v Do not restart the node agent as part of the synchronize node process. Administration
operations, such as node synchronization for application deployment, or updates that take place
while the node agent is starting, that are initiated through the node agent, and affect the
application servers, fail until the node agent has a chance to discover the application servers.

Next, test the application. For example, point a web browser at the URL for a deployed application.
Typically, the URL is http://hostname:9060/web_module_name, where hostname is your valid web server
and 9060 is the default port number. Examine the performance of the application. If the application does
not perform as desired, edit the application configuration, then save and test it again.

If your application contains many classes with annotations and takes a long time to deploy, you can
reduce annotation searches to speed up deployment. See the topic on reducing annotation searches
during application deployment.

Installable enterprise module versions
The contents of a Java Platform, Enterprise Edition (Java EE) module affect whether you can install the
module on a deployment target. A deployment target is a server on a WebSphere Application Server
product.

Installable application modules

Select only appropriate deployment targets for a module. You must install an application, enterprise bean
(EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client module on a Version
8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6.
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

For example, because support for deployment of application client modules using the administrative
console or wsadmin AdminApp commands was added in Version 8.0, you must install a client module
using the console or an AdminApp command only to a Version 8.x target.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you can install the module on a
Version 6.x, 7.x or 8.x deployment target. Modules that call a 6.1.x API or use a 6.1.x feature can be
installed on a 6.1.x, 7.x or 8.x deployment target. Modules that call a 6.0.x API or use a 6.0.x feature can
be installed on a 6.0.x, 6.1.x, 7.x or 8.x deployment target. Modules that require 6.1.x feature pack
functionality can be installed on a 7.x or 8.x deployment target or on a 6.1.x deployment target that has
been enabled with that feature pack. Modules that require 7.x feature pack functionality can be installed on
a 8.x deployment target or on a 7.x deployment target that has been enabled with that feature pack.

Selecting options such as Precompile JavaServer Pages files, Deploy web services or Deploy
enterprise beans during application installation indicates that the application uses features of the current
product version. Do not select these options if the targets of the applications are on older version nodes.
Use the tools available in the older version, such as JspBatchCompiler, wsgen, or ejbdeploy, to update
your application with generated code before deploying your application.

124 Developing and deploying applications

Note: You must package container-managed persistence (CMP) or bean-managed persistence (BMP)
entity beans in an EJB 2.1 or earlier module. You cannot install an EJB 3.0 or EJB 3.1 module that
contains CMP or BMP entity beans. Installation fails when a CMP or BMP entity bean is packaged
in an EJB 3.0 or EJB 3.1 module. You can install EJB 2.1 or earlier modules on a 6.x, 7.x or 8.x
deployment target.

Installable RAR files

You can install a stand-alone resource adapter (connector) module, or RAR file, developed for a Version
6.0.x product to a 6.x, 7.x or 8.x deployment target. If the module calls a 6.1.x API, then you must install
the module on a 6.1.x, 7.x or 8.x deployment target. You must install a module that calls a 7.x API on a 7.x
or 8.x deployment target. You must install a module that calls a 8.x API on a 8.x deployment target.

Deployment targets

The following table lists the compatible deployment target versions for various modules. “6.x, 7.x or 8.x” for
Deployment target versions indicates that you can deploy the module to a WebSphere Application Server
Version 6, 7, or 8 server.

Table 16. Compatible deployment target versions for 6.x, 7.x and 8.x modules. Deploy modules to compatible
deployment target versions.

Module type
Module Java
support

Module calls 6.x, 7.x
or 8.x runtime APIs
or uses 6.x, 7.x or
8.x features?

Client versions that
can install module

Deployment target
versions

Application, EJB, or
web

J2EE 1.3 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Application, EJB, or
web

J2EE 1.3 Yes 6.x, 7.x or 8.x for 6.x
APIs or features

7.x or 8.x for 7.x APIs
or features

8.x for 8.x APIs or
features

6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs or
use 6.1.x features on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs or
use 6.0.x features on
any 6.x, 7.x or 8.x
deployment target.

Application, EJB,
SAR, or web

J2EE 1.4 Yes or No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Application, EJB,
SAR, or web

Java EE 5 Yes or No 7.x or 8.x 7.x or 8.x

Application, EJB,
SAR, or web

Java EE 6 Yes or No 8.x 8.x

Client Any Java EE version Yes or No 8.x 8.x

Resource adapter JCA 1.0 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Chapter 12. Deploying enterprise applications 125

Table 16. Compatible deployment target versions for 6.x, 7.x and 8.x modules (continued). Deploy modules to
compatible deployment target versions.

Module type
Module Java
support

Module calls 6.x, 7.x
or 8.x runtime APIs
or uses 6.x, 7.x or
8.x features?

Client versions that
can install module

Deployment target
versions

Resource adapter JCA 1.0 Yes 6.x, 7.x or 8.x 6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Resource adapter JCA 1.5 Yes or No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Resource adapter JCA 1.6 Yes or No JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

Ways to install enterprise applications or modules
The product provides several ways to install Java Platform, Enterprise Edition (Java EE) application files.

Installable files include enterprise archive (EAR), enterprise bean (EJB), web application archive (WAR),
Session Initiation Protocol (SIP) archive (SAR), resource adapter (connector or RAR), and application
client modules. They can be installed on a server. Application client files can be installed in a WebSphere
Application Server configuration but cannot be run on a server.

126 Developing and deploying applications

Table 17. Ways to install application files. Deploy an application or module using the administrative console,
wsadmin, programming, or deployment tools.
Option Method Modules Comments Starting after install

Administrative
console install
wizard

See topics on
installing enterprise
application files with
the console.

Click Applications > New
application > New
Enterprise Application in the
console navigation tree and
follow instructions in the
wizard.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR
v RAR
v Application client

Provides one of the easier ways to
install application files.

For applications that do not require
changes to the default bindings,
after you specify the application
file, expand Choose to generate
default bindings and mappings,
select Generate default bindings,
click the Summary step, and then
click Finish.

Click Start on the Enterprise
applications page accessed by
clicking Applications >
Application Types >
WebSphere enterprise
applications in the console
navigation tree.

Monitored directory Add an EAR file or module to
a dragDropDeployableApps
subdirectory of an application
server profile.

For base (stand-alone)
application servers, the
monitored directory is the
dragDropDeployableApps
/servers/server_name
directory of the application
server profile.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR

Use this option for drag
and drop deployment of
Java EE 5.0 and later
modules.

Provides one of the easier ways to
install applications.

You cannot specify bindings during
deployment. For applications that
require changes to the bindings,
install the application using the
administrative console install
wizard, application properties files,
or wsadmin scripts.

Monitored directory deployment
differs from rapid deployment tools
in several ways:

v Monitored directory deployment
supports deployment to base
and network deployment
environments. Rapid deployment
tools support deployment only to
the base environment.

v Monitored directory deployment
does not start a new daemon.
Rapid deployment tools start a
separate process.

v Monitored directory deployment
supports deployment of Java EE
5 and later modules. Rapid
deployment tools support
assembly of J2EE 1.3 and 1.4
modules, and deployment of all
Java EE module versions.

v Monitored directory deployment
supports use of a properties file
to specify deployment options.
Rapid deployment tools does not
support use of a properties file.

After application or module
installation or update, the
product starts the application or
module automatically.

Application
properties files

Create a properties file that
specifies to install or update
application files. Then, run the
wsadmin
applyConfigProperties
command in any of the
following ways:
v In a script
v At a command prompt
v By adding the properties

file to a
dragDropDeployableApps
/deploymentProperties
monitored directory

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR

For information on deploying
applications using properties files,
see the following topics:

v Using application properties files
to install, update, and delete
enterprise application files

v Installing enterprise application
files by adding properties files to
a monitored directory

After application or module
installation or update, the
product starts the application or
module automatically.

wsadmin scripts Invoke AdminApp object
install commands in a script
or at a command prompt.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR
v RAR
v Application client

"Getting started with scripting" in
the Using the administrative clients
PDF provides an overview of
wsadmin.

v Invoke the AdminApp
startApplication command.

v Invoke the startApplication
method on an
ApplicationManager MBean
using AdminControl.

Chapter 12. Deploying enterprise applications 127

Table 17. Ways to install application files (continued). Deploy an application or module using the administrative
console, wsadmin, programming, or deployment tools.
Option Method Modules Comments Starting after install

Java application
programming
interfaces

Install programs by
completing the steps in
Installing an application
through programming.

All EAR files Use Java Management Extensions
(JMX) MBeans to install the
application. For an overview of
Java MBean programming, see
Managing applications through
programming.

Start the application by calling
the startApplication method
on a proxy.

Rapid deployment
tools

Refer to topics
under Rapid
deployment of
J2EE applications.

Briefly, do the following:

1. Update your J2EE
application files.

2. Set up the rapid
deployment environment.

3. Create a free-form project.

4. Launch a rapid
deployment session.

5. Drop your updated
application files into the
free-form project.

J2EE modules at the
J2EE 1.3 or 1.4
specification levels,
including EAR files and
the following
stand-alone modules:
v EJB
v WAR
v SAR
v RAR
v Application client

The rapid deployment
tools do not support the
J2EE 1.2 or Java EE
5.0 and later
specification levels. Use
this option for drag and
drop deployment of
J2EE 1.3 or 1.4
modules. Unlike the
monitored directory
option, the rapid
deployment tools do not
support drag and drop
deployment of Java EE
5.0 and later modules.

Rapid deployment tools offer the
following advantages:

v You do not need to assemble
your J2EE application files prior
to deployment.

v You do not need to use other
installation tools mentioned in
this table to deploy the files.

For a list of ways in which the
rapid deployment tools differ from
monitored directory deployment,
see the monitored directory
description in this table.

Use any of the options in this
table to start the application.
Clicking Start on the Enterprise
applications page is the easiest
option.

Java programs Code programs that use Java
EE DeploymentManager
(JSR-88) methods.
Note: Application installation
using JSR-88 was deprecated
in WebSphere Application
Server Version 8.0. Use
another way listed in this
table to deploy applications or
modules.

All Java EE modules,
including EAR files and
the following
stand-alone modules:
v EJB
v WAR
v SAR
v RAR
v Application client

v Uses Java EE Application
Deployment Specification
(JSR-88).

v Can customize modules using
DConfigBeans.

Call the Java EE
DeploymentManager (JSR-88)
start method in a program to
start the deployed modules
when the module's running
environment initializes.

Installing enterprise application files with the console
Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled
enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster
configured to hold the files. Installed files that start and run properly are considered deployed.

Before you begin

Before installing enterprise application files, ensure that you are installing your application files onto a
compatible deployment target. If the deployment target is not compatible, select a different target.

Optionally, determine whether the application that you are installing uses library files that other deployed
applications also use. You can define a shared library for each of these shared files. Using shared libraries
reduces the number of library file copies on your workstation or server.

About this task

To install new enterprise application files to a WebSphere Application Server configuration, you can use
the following options:

128 Developing and deploying applications

v Administrative console
v wsadmin scripts
v Monitored directory deployment
v Application properties files
v Java MBean programs
v Java programs that call Java EE DeploymentManager (JSR-88) methods

This topic describes how to use the administrative console to install an application, EJB component,
Session Initiation Protocol (SIP) archive (SAR), or web module.

Note: After you start completing steps in the application installation wizard, click Cancel to exit if you
decide not to install the application. Do not simply move to another administrative console page
without first clicking Cancel on an application installation page.

Procedure
1. Click Applications > New application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for application installation page:

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as an
EAR file).

The EAR file that you are installing can be either on the client machine (the machine that runs the
Web browser) or on the server machine (the machine to which the client is connected). If you
specify an EAR file on the client machine, then the administrative console uploads the EAR file to
the machine on which the console is running and proceeds with application installation.

You can also specify a stand-alone web archive (WAR), SAR, or Java archive (JAR) file for
installation.

Note: If you attempt to install an application from a remote file system and the Java
virtual machine (JVM) is registered as a Microsoft Windows service, the administrative
console does not show a mapped network drive. In this scenario, the Windows service runs
as a new log on session whose security identifier (SID) is different from the user session.
Thus, the service cannot manipulate the mapped network drive, which is established by the
login user. To install the application from a remote file system, you must use the WASService
command to unregister the JVM from the Windows service. For more information, see the
documentation about the WASService command.

b. Click Next.

3. On the second Preparing for application installation page:

a. Select whether to view all installation options.
Fast Path - Prompt only when additional information is required

Displays the module mapping step as well as any steps that require you to specify needed
information to install the application successfully.

Detailed - Show all installation options and parameters
Displays all installation options.

b. Select whether to generate default bindings.

Select Generate default bindings to have the product supply default values for incomplete Java
Naming and Directory (JNDI) and other application bindings. The product does not change existing
bindings.

You do not need to specify JNDI values for EJB bean, local home, remote home, or business
interfaces of EJB 3.x modules. The product assigns container default values during run time.
Similarly, for any EJB reference within an EJB 3.x or a Web 2.4 or later module, you do not need
to specify JNDI values because the product resolves the targets automatically during run time.
Even when you select Generate default bindings, the product does not generate default values
for those JNDI values but it does generate default values for other bindings such as virtual host.

Chapter 12. Deploying enterprise applications 129

You can customize default values used in generating default bindings. “Preparing for application
installation binding settings” on page 138 describes available customization and provides sample
bindings.

c. Click Next. If security warnings are displayed, click Continue. The Install New Application pages
are displayed. If you chose to generate default bindings, you can proceed to the Summary step.
“Example: Installing an EAR file using the default bindings” on page 135 provides sample steps.

4. Specify values for installation options as needed.

You can click on a step number to move directly to that page instead of clicking Next. The contents of
the application or module that you are installing determines which pages are available.

Table 18. Wizard page descriptions. The table describes each wizard page.

Page Description

Select installation options On the Select installation options page, provide values for the settings specific
to the product. Default values are used if you do not specify a value.

Map modules to servers On the Map modules to servers page, specify deployment targets where you
want to install the modules contained in your application. Modules can be installed
on the same deployment target or dispersed among several deployment targets.
Each module must be mapped to a target server.

On single-server products, a deployment target can be an application server or
web server.

Provide options to compile
JSPs

If the Precompile JavaServer Pages files setting is enabled on the Select
installation options page and your application uses JavaServer Pages (JSP)
files, then you can specify JSP compiler options on the Provide options to
compile JSPs page.

Provide JNDI names for beans On the Provide JNDI names for beans page, specify a JNDI name for each
enterprise bean in every EJB 2.1 and earlier module. You must specify a JNDI
name for every enterprise bean defined in the application. For example, for the
EJB module MyBean.jar, specify MyBean.

As to EJB 3.x modules, you can specify JNDI names, local home JNDI names,
remote home JNDI names, or no JNDI names. If you do not specify a value, the
product provides a default value.

Bind EJB business On the Bind EJB business page, you can specify business interface JNDI names
for EJB 3.x modules. If you specified a JNDI name for a bean on the Provide
JNDI names for beans page, do not specify a business interface JNDI name on
this page for the same bean. If you do not specify the JNDI name for a bean, you
can optionally specify a business interface JNDI name. When you do not specify a
business interface JNDI name, the product provides a container default. For a
no-interface view, the business interface value is an empty string ("").

Map default data sources for
modules containing 1.x entity
beans

If your application uses EJB modules that contain Container Managed Persistence
(CMP) beans that are based on the EJB 1.x specification, for Map default data
sources for modules containing 1.x entity beans, specify a JNDI name for the
default data source for the EJB modules. The default data source for the EJB
modules is optional if data sources are specified for individual CMP beans.

Map EJB references to beans On the Map EJB references to beans page, if your application defines EJB
references, you can specify JNDI names for enterprise beans that represent the
logical names specified in EJB references.

If the EJB reference is from an EJB 3.x, or Web 2.4 or later module, the JNDI
name is optional. For earlier modules, each EJB reference defined in the
application must be bound to an EJB file.

If Allow EJB reference targets to resolve automatically is enabled, the JNDI
name is optional for all modules. The product provides a container default value or
automatically resolves the EJB reference for incomplete bindings.

130 Developing and deploying applications

Table 18. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map resource references to
resources

If your application defines resource references, for Map resource references to
resources, specify JNDI names for the resources that represent the logical names
defined in resource references. You can optionally specify login configuration
name and authentication properties for the resource. After specifying
authentication properties, click OK to save the values and return to the mapping
step. You can optionally specify extended data source properties to enable a data
source that uses heterogeneous pooling to connect to a DB2 database. Each
resource reference defined in the application must be bound to a resource defined
in your WebSphere Application Server configuration before clicking Finish on the
Summary page.

Map virtual hosts for web
modules

If your application uses web modules, for Map virtual hosts for web modules,
select a virtual host from the list to map to a web module defined in the
application. The port number specified in the virtual host definition is used in the
URL that is used to access artifacts such as servlets and JSP files in the web
module. Each web module must have a virtual host to which it maps. Not
specifying all needed virtual hosts will result in a validation error displaying after
you click Finish on the Summary page.

Map security roles to users or
groups

If the application has security roles defined in its deployment descriptor then, for
Map security roles to users or groups, specify users and groups that are
mapped to each of the security roles. Select Role to select all the roles or select
individual roles. For each role, you can specify whether predefined users such as
Everyone or All authenticated users are mapped to it. To select specific users
or groups from the user registry:
1. Select a role and click Lookup users or Lookup groups.
2. On the Lookup users or groups page displayed, enter search criteria to extract

a list of users or groups from the user registry.
3. Select individual users or groups from the results displayed.
4. Click OK to map the selected users or groups to the role selected on the Map

security roles to users or groups page.

Map RunAs roles to users If the application has Run As roles defined in its deployment descriptor, for Map
RunAs roles to users, specify the Run As user name and password for every
Run As role. Run As roles are used by enterprise beans that must run as a
particular role while interacting with another enterprise bean. Select Role to select
all the roles or select individual roles. After selecting a role, enter values for the
user name, password, and verify password and click Apply.

Ensure all unprotected 1.x
methods have the correct level
of protection

If your application contains EJB 1.x CMP beans that do not have method
permissions defined for some of the EJB methods, for Ensure all unprotected
1.x methods have the correct level of protection, specify if you want to leave
such methods unprotected or assign protection with deny all access.

Bind listeners for
message-driven beans

If your application contains message driven enterprise beans, for Bind listeners
for message-driven beans, provide a listener port name or an activation
specification JNDI name for every message driven bean.

Map default data sources for
modules containing 2.x entity
beans

If your application uses EJB modules that contain CMP beans that are based on
the EJB 2.x specification, for Map default data sources for modules containing
2.x entity beans, specify a JNDI name for the default data source and the type of
resource authorization to be used for the default data source for the EJB modules.
You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. You can optionally
specify extended data source properties to enable a data source that uses
heterogeneous pooling to connect to a DB2 database. The default data source for
EJB modules is optional if data sources are specified for individual CMP beans.

Chapter 12. Deploying enterprise applications 131

Table 18. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map data sources for all 2.x
CMP beans

If your application has CMP beans that are based on the EJB 2.x specification, on
the Map data sources for all 2.x CMP beans page, for each of the 2.x CMP
beans specify a JNDI name and the type of resource authorization for data
sources to be used.

You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. The data source
attribute is optional for individual CMP beans if a default data source is specified
for the EJB module that contains CMP beans. If a default data source for the EJB
module and a data source for individual CMP beans are not specified, then a
validation error is displayed after you click Finish and installation is canceled.

Ensure all unprotected 2.x
methods have the correct level
of protection

If your application contains EJB 2.x CMP beans that do not have method
permissions defined in the deployment descriptors for some of the EJB methods,
on the Ensure all unprotected 2.x methods have the correct level of
protection page, specify whether you want to assign a specific role to the
unprotected methods, add the methods to the exclude list, or mark them as
deselected. Methods added to the exclude list are marked as uncallable. For
methods marked deselected no authorization check is performed before their
invocation.

Provide options to perform the
EJB Deploy

If the Deploy enterprise beans setting is enabled on the Select installation
options page, then you can specify options for the EJB deployment tool on the
Provide options to perform the EJB Deploy page. On this page, you can
specify extra class paths, RMIC options, database types, and database schema
names to be used while running the EJB deployment tool.

You can specify the EJB deployment tool options on this page when installing or
updating an application that contains EJB modules. The EJB deployment tool runs
during installation of EJB 1.x or 2.x modules. The EJB deployment tool does not
run during installation of EJB 3.x modules.

Map shared libraries On the Shared library references and Shared library mapping pages, specify
shared library files for your application or web modules to use. A defined shared
library must exist to associate your application or module to the library file.

Map shared library
relationships

On the Map shared library relationships page, specify relationship identifiers
and composition unit names for shared libraries that modules in your enterprise
application reference.

When installing your enterprise application, the product creates a composition unit
for each shared library relationship in the business-level application that you
specified for Business-level application name on the Select installation
options page.

Provide JSP reloading options
for web modules

If your application uses web modules, for Provide JSP reloading options for
web modules, configure the class reloading of JavaServer Pages (JSP) files.

Map context roots for web
modules

If your application uses web modules that are defined in the application XML
deployment descriptor, for Map context roots for web modules, specify a
context root for each web module in the application.

The product does not include web modules from annotations on this page.

Initialize parameters for
servlets

If your application uses web modules that support Servlet 2.5, for Initialize
parameters for servlets, specify or override initial parameters that are passed to
the init method of web module servlet filters.

This page shows servlets from the module XML deployment descriptor. Servlet
deployment information from annotations is not available on this page.

132 Developing and deploying applications

Table 18. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map environment entries for
EJB modules

If your application uses EJB modules, for Map environment entries for EJB
modules, configure the environment entries of EJB modules such as entity,
session, or message driven beans.

Map environment entries for
client modules

If you are deploying one or more application client modules, for Map environment
entries for client modules, configure the environment entries of client modules
that are deployed as JAR files. To view the Map environment entries for client
modules page, select the Deploy client modules option on the Select installation
options page.

Map environment entries for
web modules

If your application uses web modules that support Servlet 2.5, for Map
environment entries for web modules, configure the environment entries of web
modules such as servlets and JSP files.

Map environment entries for
application level

If your application defines one or more environment entries, for Map environment
entries for application level, configure the environment entries of applications
that are deployed as EAR files.

Map resource environment
entry references to resources

If your application contains resource environment references, for Map resource
environment entry references to resources, specify JNDI names of resources
that map to the logical names defined in resource environment references. If each
resource environment reference does not have a resource associated with it, after
you click Finish a validation error is displayed.

Correct use of system identity If your application defines Run-As Identity as System Identity, for Correct use of
system identity, you can optionally change it to Run-As role and specify a user
name and password for the Run As role specified. Selecting System Identity
implies that the invocation is done using the WebSphere Application Server
security server ID and should be used with caution as this ID has more privileges.

Correct isolation levels for all
resource references

If your application has resource references that map to resources that have an
Oracle database doing backend processing, for Correct isolation levels for all
resource references, specify or correct the isolation level to be used for such
resources when used by the application. Oracle databases support
ReadCommitted and Serializable isolation levels only.

Map JASPI Provider On the Map JASPI Provider page, if your application has web modules, you can
specify values to override the JASPI settings from the global or domain security
configuration. By default, an application inherits the JASPI settings defined in the
WebSphere Application Server global or domain security configuration, and web
modules inherit the application setting.

Bind message destination
references to administered
objects

If your application uses message driven beans, for Bind message destination
references to administered objects, specify the JNDI name of the J2C
administered object to bind the message destination reference to the message
driven beans.

If the message destination reference is from an EJB 3.0 or later module, then the
JNDI name is optional and the run time provides a container default value.

Attention: If multiple message destination references link to the same message
destination, only one JNDI name is collected. When a message destination
reference links to the same message destination as a message driven bean and
the destination JNDI name has been collected already, the destination JNDI name
for the message destination reference is not collected.

Provide JNDI names for JCA
objects

If your application contains an embedded .rar file, for Provide JNDI names for
JCA objects, specify the name and JNDI name of each JCA connection factory,
administered object and activation specification.

Chapter 12. Deploying enterprise applications 133

Table 18. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Bind J2C activationspecs to
destination JNDI names

If your application contains an embedded .rar file, its activationSpec property has
the value Destination, and its introspected type is javax.jms.Destination, for
Bind J2C activationspecs to destination JNDI names, specify the jndiName
value for each activation bound to it.

Select current backend ID If your application has EJB modules for which deployment code has been
generated for multiple backend databases using an assembly tool, for Select
current backend ID, specify the backend ID representing the backend database
to be used when the EJB module runs.

For information about backend databases, see topics on the EJB deployment tool.

This step is not shown if the Deploy enterprise beans setting is enabled on the
Select installation options page and if a database type other than None is
specified on the Provide options to perform the EJB Deploy page.

Metadata for modules If your application has EJB 3.x or Web 2.5 modules, you can lock deployment
descriptors for one or more of the EJB 3.x or Web 2.5 modules. If you set the
metadata-complete attribute to true and lock deployment descriptors, the product
writes the complete module deployment descriptor, including deployment
information from annotations, to XML format.

Provide options to perform the
web services deployment

If the Deploy web services setting is enabled on the Select installation options
page and your application uses web services, then you can specify wsdeploy
command options on the Provide options to perform the web services
deployment page. For information about this page, refer to descriptions of the
wsdeploy -cp and -jardir options.

Display module build ID If the MANIFEST.MF file of a module in an enterprise application specifies a build
identifer, this page shows the build identifier of the module.

5. On the Summary page, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings.

c. Return to the Summary page.

d. Click Finish.

Results

Several messages are displayed, indicating whether your application file is installing successfully.

If Validate input off/warn/fail on the Select installation options page is set to warn, the default, several
validation warnings might be displayed. If the setting is fail, the validation warnings might cause errors.

If you receive an OutOfMemory error and the source application file does not install, your system might not
have enough memory or your application might have too many modules in it to install successfully onto the
server. If lack of system memory is not the cause of the error, package your application again so the .ear
file has fewer modules.

If lack of system memory and the number of modules are not the cause of the error, check the options you
specified on the Java virtual machine page of the application server running the administrative console.
You might increase the maximum heap size. Then, try installing the application file again.

What to do next

After the application file installs successfully, do the following:

1. Save the changes to your configuration.

134 Developing and deploying applications

For example, click the Save link in the application installation messages.

The application is registered with the administrative configuration and application files are copied to the
target directory, which is app_server_root/installedApps/cell_name by default or the directory that you
designate.

For a single-server product, application files are copied to the destination directory when the changes
are saved.

If you clicked the Save link in the application installation messages, the Preparing for the application
installation page displays again. Click Applications > Application Types > WebSphere enterprise
applications to exit the page and to see your application in the list of installed applications.

2. Start the application.

3. Test the application. For example, point a web browser at the URL for the deployed application and
examine the performance of the application. If necessary, edit the application configuration.

Example: Installing an EAR file using the default bindings
If application bindings were not specified for all enterprise beans or resources in an enterprise application
during application development or assembly, you can select to generate default bindings. After application
installation, you can modify the bindings as needed using the administrative console.

Before you begin

This topic assumes that the application can run on a web server.

About this task

This topic describes how to install a simple .ear file using the default bindings. You can follow the steps to
install any application, including applications provided from the Samples information center.

Procedure
1. Click Applications > New Application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for application install page, specify the full path name of the EAR file.

a. For Path to the new application, specify the full path name of the .ear file. For this example, the
base file name is my_appl.ear and the file resides on a server in the sample_apps directory.

b. Click Next.

3. On the second Preparing for application install page, choose to generate default bindings.

a. Expand Choose to generate default bindings and mappings.

b. Select Generate default bindings.

Using the default bindings causes any incomplete bindings in the application to be filled in with
default values. The product does not change existing bindings. By choosing this option, you can
skip many of the steps of the application installation wizard and go directly to the Summary step.

c. Click Next.

4. If application security warnings are displayed, read the warnings and click Continue.

5. On the Install New Application page, click the step number for Map modules to servers, and verify
the cell, node, and server onto which the application files will install.

a. From the Clusters and servers list, select the server onto which the application files will install.

b. Select all of the application modules.

c. Click Next.

On the Map modules to servers page, you can map modules to other servers such as web servers. If
you want a web server to serve the application, use the Ctrl key to select an application server or
cluster and the web server together in order to have the plug-in configuration file plugin-cfg.xml for
that web server generated based on the applications which are routed through it.

Chapter 12. Deploying enterprise applications 135

6. On the Install New Application page, click the step number beside Summary, the last step.

7. On the Summary page, click Finish.

What to do next

Examine the application installation progress messages. If the application installs successfully, save your
administrative configuration. You can now see the name of your application in the list of deployed
applications on the Enterprise applications page accessed by clicking Applications > Application Types
> WebSphere enterprise applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the application as needed and try installing the application again.

If the application has a web module, try opening a browser on the application.

1. Point a web browser at the URL for the deployed application.

The URL typically has the format http://host_name:9060/web_module_name, where host_name is your
valid web server and 9060 is the default port number.

2. Examine the performance of the application.

If the application does not perform as desired, edit the application configuration, then save and test it
again.

Example: Installing a web services sample with the console
The product provides a web services sample application that you can install on an application server.

Before you begin

Download and extract the JaxWSServicesSample sample application. Ensure that your product installation
has a Version 7.x or later application server onto which you can install the Web Services Sample.

About this task

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are located
in the installableApps directory within the JaxWSServicesSamples sample application.

This topic describes how to install and start the JaxWSServicesSamples.ear enterprise application using an
administrative console.

Procedure
1. Click Applications > New Application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for the application installation page, specify to install JaxWSServicesSamples.ear.

a. Click Local file system or Remote file system and specify the full path name of the
JaxWSServicesSamples.ear file.
.../installableApps/JaxWSServicesSamples.ear

b. Click Next.

3. On the second Preparing for the application installation page, select the fast path option.

a. Select Fast Path - Prompt only when additional information is required.

b. Click Next.

4. Click Next on each page until you reach the Summary page.

Do not go directly from Step 1 to the Summary page. You must click Next on each page that has
mandatory settings to enter values for those settings. Simply click Next to enter the default values. You
optionally can change the values to suit your environment.

136 Developing and deploying applications

5. On the Summary page, verify the cell, node, and server onto which the application modules will install,
and then click Finish.

6. Examine the application installation progress messages.

If the application installs successfully, the message Application JaxWSServicesSamples installed
successfully is displayed. Click Save. After the configuration changes are saved, you can see the
name of the application in the list of deployed applications on the Enterprise applications page
accessed by clicking Applications > Application Types > WebSphere enterprise applications in the
console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the server or application and try installing the application again.

Results

The JaxWSServicesSamples application is in the list of deployed applications on the Enterprise
applications page.

What to do next

After the application installs successfully, do the following:

1. Start the application.

On the Enterprise applications page, select the check boxes beside JaxWSServicesSamples, and
then click Start.

2. Test the application. Point your web browser at:

http://localhost:9080/wssamplesei/demo

If the localhost address does not load, substitute the host name (IP address) of the computer for
localhost; for example, http://9.22.33.44:9080/wssamplesei/demo.

If you have another WebSphere Application Server installation on your machine, the server port
number is likely not 9080. See the Ports table in the administrative console to find the WC_defaulthost
server port number. Click Servers > Server Types > WebSphere application servers > server1 >
Ports. The Port descriptions table lists the important ports.

Table 19. Port descriptions. Use the WC_defaulthost port in the URL to test the sample.

Port name Description

WC_adminhost Port used to open an unsecure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_adminhost_secure Port used to open a secure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_defaulthost Port used to test running applications in the URL http://host_name:server_port/
servlet_name

WC_defaulthost_secure Port used to securely test running applications in the URL http://
host_name:server_port/servlet_name

Preparing for application installation settings
Use this page to specify an application or module to install.

To view this administrative console page, click Applications > New application > New Enterprise
Application.

This page is the first Preparing for the application installation page. On this page, specify an application or
module to install. You can install an enterprise application archive (EAR file), enterprise bean (EJB)
module (JAR file), Session Initiation Protocol (SIP) module (SAR file), or web module (WAR file).

Chapter 12. Deploying enterprise applications 137

The second Preparing for the application installation page has more installation options, such as to
generate default bindings for incomplete existing bindings in your application or module.

Path to the new application
Specifies the fully qualified path to the enterprise application file.

The file can be an .ear, .jar, .sar, or .war file.

During application installation, the product typically uploads application files from a client workstation
running the browser to the server running the administrative console, and then deploys the application files
on the server. In such cases, use the web browser running the administrative console to select EAR,
WAR, SAR, or JAR modules to upload to the server.

Use Local file system when the browser and application files are on the same computer.

Use Remote file system in the following situations:

v The application file resides on any node in the current cell context. Only .ear, .jar, .sar, or .war files
are shown during the browsing.

v The application file resides on the file system of any of the nodes in a cell.

v The application file already resides on the computer running the application server. For example, the
field value might be profile_root/installableApps/test.ear.

After the product transfers the application file, the Remote file system value shows the path of the
temporary location on the server.

Preparing for application installation binding settings
Use this page to select whether to view all installation options and to change the existing bindings for you
application or module during installation. You can choose to generate default bindings for any incomplete
bindings in the application or module or to assign specific bindings during installation.

This page is the second Preparing for the application installation page.

To view this administrative console page, click Applications > New application > New Enterprise
Application, specify the path for the application or module to install, and then click Next.

The console page might not display all of the binding options listed in this topic. The contents of the
application or module that you are installing determines which options are displayed on the console page.
Also, the Specify bindings to use option displays only when updating an installed application.

How do you want to install the application?
Specifies whether to show only installation options that require you to supply information or to show all
installation options.

Table 20. Installation option descriptions. You can select a Fast Path or select to see all installation options and
parameters.

Option Description

Fast Path - Prompt only
when additional information
is required

Displays only those options that require your attention, based on the contents of
your application or module. Use the fast path to install your application more easily
because you do not need to examine all available installation options.

Detailed - Show all
installation options and
parameters

Displays all available installation options.

138 Developing and deploying applications

Specify bindings to use
Specifies whether to merge bindings when you update applications or to use new or existing bindings.

This setting is shown only when you update an installed application, and not when you install a new
application.

Table 21. Binding option descriptions. You can use merged, new, or existing bindings.

Option Description

Merge new and existing
bindings

The binding information from the updated application or modules is preferred over
the corresponding binding information from the installed version. If any element of
the binding is missing in the updated version, the corresponding element from the
installed version is used. If both the installed and the updated application or module
does not have a binding value, the default value is used. The product assigns a
default value only if you select the Generate default bindings option.

Use new bindings The binding information in the updated application or module is used. The binding
information from the updated version of the application or module is preferred over
the corresponding binding information in the installed version. The binding
information from the installed version of the application or module is ignored.

Use existing bindings The binding information from the installed version of the application or module is
preferred over the corresponding binding information from the updated version. If
any element of the binding information does not exist in the installed version, the
element from the updated version is used. That is, bindings from the updated
version of the application or module are ignored if a binding exists in the installed
version. Otherwise, the new bindings are honored and not ignored.

Generate default bindings
Specifies whether to generate default bindings and mappings. To view this setting, expand Choose to
generate default bindings and mappings. If you select Generate default bindings, then the product
completes any incomplete bindings in the application with default values. The product does not change
existing bindings.

After you select Generate default bindings, you can advance directly to the Summary step and install the
application if none of the steps have a red asterisk (*). A red asterisk denotes that the step has incomplete
data and requires a valid value. On the Summary page, verify the cell, node, and server on which the
application is installed.

transition: You do not need to specify Java Naming and Directory Interface (JNDI) values for EJB bean,
local home, remote home, or business interfaces of EJB 3.0 or later modules. The product
assigns container default values during run time. Similarly, for any EJB reference within an
EJB 3.0, EJB 3.1, Web 2.4, or Web 2.5 module, you do not need to specify JNDI values
because the product resolves the targets automatically during run time. Even when you select
Generate default bindings, the product does not generate default values for those JNDI
values but it does generate default values for other bindings such as virtual host.

If you select Generate default bindings, the product generates bindings as follows:
v Enterprise bean (EJB) JNDI names are generated in the form prefix/ejb-name. The default prefix is

ejb, but can be overridden. The ejb-name is as specified in the deployment descriptors <ejb-name> tag
or in its corresponding annotation for EJB 3.0 or later modules. The product does not generate default
values for enterprise beans in an EJB 3.0 or later module because the run time provides container
default values.

v EJB references are bound if an <ejb-link> is found. Otherwise, if a unique enterprise bean is found
with a matching home (or local home) interface as the referenced bean, the reference is resolved
automatically. The product does not generate default values for EJB reference in an EJB 3.0, EJB 3.1,
Web 2.4, or Web 2.5 module because the run time provides container default values or automatically
resolves the target references.

Chapter 12. Deploying enterprise applications 139

v Resource reference bindings are derived from the <res-ref-name> tag or its corresponding annotation
for Java Platform, Enterprise Edition (Java EE) 5 or 6 modules. This action assumes that the
java:comp/env name is the same as the resource global JNDI name.

v Connection factory bindings for EJB 2.0 and EJB 2.1 JAR files are generated based on the JNDI name
and authorization information provided. This action results in default connection factory settings for each
EJB 2.0 and EJB 2.1 JAR file in the application being installed. No bean-level connection factory
bindings are generated.

v Data source bindings for EJB 1.1 JAR files are generated based on the JNDI name, data source user
name and password options. This action results in default data source settings for each JAR file. No
bean-level data source bindings are generated.

v For EJB 2.0 or later message-driven beans deployed as Java EE Connector Architecture (JCA)
1.5-compliant resources, the JNDI names corresponding to activationSpec instances are generated in
the form eis/MDB_ejb-name. Message destination references are bound if a <message-destination-
link> is found, then the JNDI name is set to ejs/message-destination-linkName. Otherwise, the JNDI
name is set to eis/message-destination-refName.

v For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports are
derived from the message-driven bean <ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.
However, if you experience errors, complete the following actions:
v Control the global JNDI names of one or more EJB files.
v Control data source bindings for container-managed persistence (CMP) beans. That is, you have

multiple data sources and need more than one global data source.
v Map resource references to global resource JNDI names that are different from the java:comp/env

name.

In such cases, you can change the behavior with an XML document, which is a custom strategy. Use the
Specific bindings file setting to specify a custom strategy and see the setting description in this help file
for examples.

Override existing bindings
Specifies whether generated bindings are to replace existing bindings.

The default is to not override existing bindings. Select Override existing bindings to have generated
bindings replace existing bindings.

Specific bindings file
Specifies a bindings file that overrides the default binding.

Change the behavior of the default binding with an XML document, which is a custom strategy. Custom
strategies extend the default strategy so you only need to customize those areas where the default
strategy is insufficient. Thus, you only need to describe how you want to change the bindings generated
by the default strategy; you do not have to define bindings for the entire application.

Use the following examples to override various aspects of the default bindings generator:

Controlling an EJB JNDI name
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>helloEjb.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>HelloEjb</ejb-name>
<jndi-name>com/acme/ejb/HelloHome</jndi-name>
</ejb-binding>

140 Developing and deploying applications

</ejb-bindings>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

Remember: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR
deployment descriptor. Here the setting is <ejb-name>HelloEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb20.jar</jar-name>
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>Container</res-auth>

</connection-factory>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

Setting the connection factory binding for an EJB file
<?xml version="1.0">
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb20.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourCmp20</ejb-name>
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>PerConnFact</res-auth>
</connection-factory>

</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

This example shows an XML extract in a custom strategy file for setting message-destination-refs
for a specific enterprise bean.
<?xml version="1.0">
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb21.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourSession21</ejb-name>
<message-destination-ref-bindings>
<message-destination-ref-binding>
<message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>
<jndi-name>eis/somAO</jndi-name>
</message-destination-ref-binding>
</message-destination-ref-bindings>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourSession21</ejb-name>. Also ensure

Chapter 12. Deploying enterprise applications 141

that the setting for <message-destination-ref-name> matches the
message-destination-ref-name tag in the deployment descriptor. Here the setting is
<message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or Java EE client JAR file

This example shows code for overriding a resource reference binding from a WAR file. Use similar
code to override a resource reference binding from an enterprise bean (EJB) JAR file or a Java
EE client JAR file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<war-binding>
<jar-name>hello.war</jar-name>
<resource-ref-bindings>
<resource-ref-binding>
<resource-ref-name>jdbc/MyDataSrc</resource-ref-name>
<jndi-name>war/override/dataSource</jndi-name>

</resource-ref-binding>
</resource-ref-bindings>

</war-binding>
</module-bindings>

</dfltbndngs>

Restriction: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the
deployment descriptor. In the previous example, the setting is <resource-ref-
name>jdbc/MyDataSrc</resource-ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

This example shows an XML extract in a custom strategy file for overriding the Java Message
Service (JMS) activationSpec JNDI name for an EJB 2.0 or later message-driven bean deployed
as a JCA 1.5-compliant resource.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<activationspec-jndi-name>activationSpecJNDI</activationspec-jndi-name>

</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0, 2.1, or 3.0 message-driven bean

This example shows an XML extract in a custom strategy file for overriding the JMS listener port
name for an EJB 2.0 or later message-driven bean deployed against a listener port.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<listener-port>yourMdbListPort</listener-port>

</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>

</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

142 Developing and deploying applications

This example shows code for overriding an EJB reference binding from an EJB JAR file. Use
similar code to override an EJB reference binding from a WAR file or an EJB file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-ref-bindings>
<ejb-ref-binding>
<ejb-ref-name>YourEjb</ejb-ref-name>
<jndi-name>YourEjb/JNDI</jndi-name>

</ejb-ref-binding>
</ejb-ref-bindings>

</ejb-jar-binding>
</module-bindings>

</dfltbndngs>

Specify unique prefix for beans
Specifies a string that the product applies to the beginning of generated enterprise bean JNDI names. The
prefix must be unique within the cell or node.

The default is to not specify a unique prefix for beans.

Default bindings for EJB 1.1 CMP beans
Specifies the default data source JNDI name and other bindings for container-managed persistence (CMP)
1.1 beans.

The default is to not use default bindings for EJB 1.1 CMP beans.

If you select Default bindings for EJB 1.1 CMP beans, specify the JNDI name for the default data
source to be used with the CMP 1.1 beans. Also specify the user name and password for this default data
source.

Default connection factory bindings
Specifies the default connection factory JNDI name.

The default is to not use default connection factory bindings. Select Default connection factory bindings
to specify bindings for connection factories.

If you select Default connection factory bindings, specify the JNDI name for the default connection
factory to be used. Also specify whether the resource authorization is for the application or container-wide.

Use default virtual host name for web and SIP modules
Specifies the virtual host for the web module (WAR file) or Session Initiation Protocol (SIP) module (SAR
file).

The default is to not use default virtual host name for web or SIP modules. If you select Use default
virtual host name for web and SIP modules, specify a default host name.

Select installation options settings
Use this page to specify options for the installation of a Java Platform, Enterprise Edition (Java EE)
application onto a WebSphere Application Server deployment target. Default values for the options are
used if you do not specify a value. After application installation, you can specify values for many of these
options from an enterprise application settings page.

To view this administrative console page, click Applications > New application > New Enterprise
Application and then specify values as needed for your application on the Preparing for application
installation pages.

Chapter 12. Deploying enterprise applications 143

The Select installation options page is the same for the application installation and update wizards.

Precompile JavaServer Pages files
Specify whether to precompile JavaServer Pages (JSP) files as a part of installation. The default is not to
precompile JSP files.

For this option, install only onto a Version 8.5 deployment target.

If you select Precompile JavaServer Pages files and try installing your application onto an earlier
deployment target such as Version 7, the installation is rejected. You can deploy applications to only those
deployment targets that have same version as the product. If applications are targeted to servers that have
an earlier version than the product, then you cannot deploy to those targets.

Information Value
Data type Boolean
Default false

Directory to install application
Specifies the directory to which the enterprise archive (EAR) file will be installed.

By default, the EAR file is installed in the profile_root/installedApps/cell_name/application_name.ear
directory.

Setting options include the following:

v Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is
profile_root/installedApps. A directory having the EAR file name of the application being installed is
appended to ${APP_INSTALL_ROOT}/cell_name. Thus, if you do not specify a directory, the EAR file is
installed in the profile_root/installedApps/cell_name/application_name.ear directory.

v Specify a directory.

If you specify a directory for Directory to install application, the application is installed in
specified_path/application_name.ear directory. A directory having the EAR file name of the application
being installed is appended to the path that you specify for Directory to install application. For
example, if you are installing Clock.ear and specify C:/myapps on Windows computers, the application
is installed in the myapps/Clock.ear directory. The ${APP_INSTALL_ROOT} variable is set to the
specified path.

v Specify ${APP_INSTALL_ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a
different cell, specify the ${CELL} variable for the initial installation of the application. For example,
specify ${APP_INSTALL_ROOT}/${CELL} for this setting. Exporting the application creates an enhanced
EAR file that has the application and its deployment configuration. The deployment configuration retains
the cell name of the initial installation in the destination directory unless you specify the ${CELL}
variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell
name, and not the original cell name.

Important: If an installation directory is not specified when an application is installed on a single-server
configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the
server is made a part of a multiple-server configuration (using the addNode utility), the cell
name of the new configuration becomes the cell name of the deployment manager node. If
the -includeapps option is used for the addNode utility, then the applications that are
installed prior to the addNode operation still use the installation directory
${APP_INSTALL_ROOT}/cell_name. However, an application that is installed after the server is
added to the network configuration uses the default installation directory
${APP_INSTALL_ROOT}/network_cell_name. To move the application to the

144 Developing and deploying applications

${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,
explicitly specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
${APP_INSTALL_ROOT}/current_cell_name.

v If the application has been exported and you are installing the exported EAR file in a different cell or
location, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear if you did not specify
${APP_INSTALL_ROOT}/${CELL} for the initial installation.

The exported EAR file is an enhanced EAR file that has the application and its deployment
configuration. The deployment configuration retains the value for Directory to install application that
was used for the previous installation of the application. Unless you specify a different value for
Directory to install application for this installation, the enhanced EAR file will be installed to the same
directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration
uses the cell name of the initial installation in the destination directory. If you are installing on a different
cell, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear, where cell_name is the name of
the cell to which you want to install the enhanced EAR file. If you do not designate the current cell
name, cell_name will be the original cell name even though you are installing the enhanced EAR file on
a cell that has a different name.

v Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a
pathmap variable in any installation.

This Directory to install application field is the same as the Location (full path) setting on an
Application binaries page.

Information Value
Data type String
Units Full path name

Distribute application
Specifies whether the product expands application binaries in the installation location during installation
and deletes application binaries during uninstallation. The default is to enable application distribution.
Application binaries for installed applications are expanded to the directory specified.

On single-server products, the binaries are deleted when you uninstall and save changes to the
configuration.

On multiple-server products, the binaries are deleted when you uninstall and save changes to the
configuration and synchronize changes.

If you disable this option, then you must ensure that the application binaries are expanded appropriately in
the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes, a
later saving of the configuration or manual synchronization does not move the application binaries
to the nodes for you.

This Distribute application field is the same as the Enable binary distribution, expansion and cleanup
post uninstallation setting on an Application binaries page.

Information Value
Data type Boolean
Default true

Chapter 12. Deploying enterprise applications 145

Use binary configuration
Specifies whether the application server uses the binding, extensions, and deployment descriptors located
with the application deployment document, the deployment.xml file (default), or those located in the
enterprise archive (EAR) file. Select this setting for applications installed on Version 6.0 or later
deployment targets only.

The default (false) is to use the binding, extensions, and deployment descriptors located in
deployment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,
enable this setting (true).

This Use binary configuration field is the same as the Use configuration information in binary setting
on an Application binaries page.

Information Value
Data type Boolean
Default false

Deploy enterprise beans
Specifies whether the EJBDeploy tool runs during application installation.

The tool generates code needed to run Enterprise JavaBeans (EJB) files. You must enable this setting in
the following situations:
v The EAR file was assembled using an assembly tool such as Rational Application Developer and the

EJBDeploy tool was not run during assembly.
v The EAR file was not assembled using an assembly tool such as Rational Application Developer.
v The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to Version

5.0.

If an EJB module is packaged in a web archive (WAR), you do not need to enable this setting.

The EJB deployment tool runs during installation of EJB 1.x or 2.x modules. The EJB deployment tool
does not run during installation of EJB 3.x modules.

For this option, install only onto a Version 8.5 deployment target.

If you select Deploy enterprise beans and try installing your application onto an earlier deployment target
such as Version 7, the installation is rejected. You can deploy applications to only those targets that have
same WebSphere version as the product. If applications are targeted to servers that have an earlier
version than the product, then you cannot deploy to those targets.

Also, if you select Deploy enterprise beans and specify a database type on the Provide options to
perform the EJB Deploy page, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, set the database type to
"" (null) on the Provide options to perform the EJB Deploy page.

Enabling this setting might cause the installation program to run for several minutes.

Information Value
Data type Boolean
Default true (false for EJB 3.0 modules)

Application name
Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

146 Developing and deploying applications

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 22. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Application name field is the same as the Name setting on an Enterprise application settings page.

Information Value
Data type String

Create MBeans for resources
Specifies whether to create MBeans for resources such as servlets or JSP files within an application when
the application starts. The default is to create MBeans.

This field is the same as the Create MBeans for resources setting on a Startup behavior page.

Information Value
Data type Boolean
Default true

Override class reloading settings for web and EJB modules
Specifies whether the product run time detects changes to application classes when the application is
running. If this setting is enabled and if application classes are changed, then the application is stopped
and restarted to reload updated classes.

The default is not to enable class reloading.

This field is the same as the Override class reloading settings for web and EJB modules setting on a
Class loading and update detection page.

Information Value
Data type Boolean
Default false

Reload interval in seconds
Specifies the number of seconds to scan the application's file system for updated files. The default is the
value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of
the EAR file.

The reloading interval attribute takes effect only if class reloading is enabled.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable
reloading, specify zero (0). The range is from 0 to 2147483647.

Chapter 12. Deploying enterprise applications 147

This Reload interval in seconds field is the same as the Polling interval for updated files setting on a
Class loading and update detection page.

Information Value
Data type Integer
Units Seconds
Default 3

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Deploy web services
Specifies whether the web services deploy tool wsdeploy runs during application installation.

The tool generates code needed to run applications using web services. The default is not to run the
wsdeploy tool. You must enable this setting if the EAR file contains modules using web services and has
not previously had the wsdeploy tool run on it, either from the Deploy menu choice of an assembly tool or
from a command line.

For this option, install only onto a Version 8.5 deployment target.

If you select Deploy web services and try installing your application onto an earlier deployment target, the
installation is rejected. You can deploy applications to only those targets that have same version as the
product. If applications are targeted to servers that have an earlier version than the product, then you
cannot deploy to those targets.

Information Value
Data type Boolean
Default false

Validate input off/warn/fail
Specifies whether the product examines the application references specified during application installation
or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)
beans or using resource references or resource environment references defined in deployment descriptors.
The validation checks whether the resource referred to by the application is defined in the scope of the
deployment target of that application.

148 Developing and deploying applications

Select off for no resource validation, warn for warning messages about incorrect resource references, or
fail to stop operations that fail as a result of incorrect resource references.

This Validate input off/warn/fail field is the same as the Application reference validation setting on an
Enterprise application settings page.

Information Value
Data type String
Default warn

Process embedded configuration
Specifies whether the embedded configuration should be processed. An embedded configuration consists
of files such as resource.xml and variables.xml. When selected or true, the embedded configuration is
loaded to the application scope from the .ear file. If the .ear file does not contain an embedded
configuration, the default is false. If the .ear file contains an embedded configuration, the default is true.

This setting affects installation of enhanced EAR files. An enhanced EAR file results when you export an
installed application.

When false, an enhanced EAR file is installed like any other application and the product ignores its
embedded configuration.

If you exported the application from a cell other than the current cell and did not specify the $(CELL)
variable for Directory to install application when first installing the application, deselect this setting
(false) to expand the enhanced EAR file in the profile_root/installedApps/current_cell_name directory.
Otherwise, if this setting is selected (true), the enhanced EAR file is expanded in the
profile_root/installedApps/original_cell_name directory, where original_cell_name is the cell on which
the application was first installed. If you specified the $(CELL) variable for Directory to install application
when you first installed the application, installation expands the enhanced EAR file in the
profile_root/installedApps/current_cell_name directory.

Information Value
Data type Boolean
Default false (deselected)

File permission
Specifies access permissions for application binaries for installed applications that are expanded to the
directory specified.

The Distribute application option must be enabled to specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set
in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Table 23. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Chapter 12. Deploying enterprise applications 149

Table 23. File permission string sets for list options (continued). Select a list option or specify a file permission
string in the text field.

Multiple-selection list option File permission string set

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the application, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

best-practices: Using regular expressions for file matching pattern compares an entire string URI against
the specified file permission pattern. You must provide more precise matching patterns
using regular expressions as defined by Java programming API. For example, suppose
the following directory and file URIs are processed during a file permission operation:

Table 24. Example URIs for file permission operations. Results are shown following this table.
Number Example URL

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

150 Developing and deploying applications

best-practices: Regardless of the operation system, always use a forward slash (/) as a file path
separator in file patterns.

You cannot unset read permission on a file on Windows operating systems. With POSIX style
permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions
for application binaries in the node-level configuration. The node-level file permissions specify the
maximum (most lenient) permissions that can be given to application binaries. Access permissions
specified here at application level can only be the same as or more restrictive than those specified at the
node level.

This setting is the same as the File permissions field on the Application binaries page.

Information Value
Data type String

Application build identifier
Specifies an uneditable string that identifies the build version of the application.

This Application build identifier field is the same as the Application build level field on the Application
binaries page.

Information Value
Data type String

Business-level application name
Specifies whether the product creates a new business-level application with the enterprise application that
you are installing or makes the enterprise application a composition unit of an existing business-level
application.

The default is to create a new business-level application with a setting value of
WebSphere:blaname=Anyasset,blaedition=BASE. When you select to create a new business-level
application from the drop-down list, the product creates a business-level application that has the same
name as your enterprise application. If a business-level application with the name of your enterprise
application exists already, the product does not create a new business-level application; it adds your
enterprise application as a composition unit to that existing business-level application.

If you need to use the Shared library relationship and mapping settings page to specify dependency
relationships on existing shared libraries in the business-level application, select the business-level
application name from the drop-down list. No shared libraries are shown in the page if you choose to
create a new business-level application and a business-level application with the default name exists
already.

To add your enterprise application to an existing business-level application, select an existing
business-level application from the drop-down list. The product makes your enterprise application a
composition unit of the existing business-level application.

Information Value
Data type String

Chapter 12. Deploying enterprise applications 151

Information Value
Default Create a new business-level application that has the same name as the

enterprise application that you are installing.

WebSphere:blaname=Anyasset,blaedition=BASE

Asynchronous request dispatch type
Specifies whether web modules can dispatch requests concurrently on separate threads and, if so,
whether the server or client dispatches the requests. Concurrent dispatching can improve servlet response
time.

If operations are dependant on each other, do not enable asynchronous request dispatching. Select
Disabled. Concurrent dispatching might result in errors when operations are dependant.

Select Server side to enable the server to dispatch requests concurrently. Select Client side to enable
the client to dispatch requests concurrently.

Information Value
Data type String
Default Disabled

Allow EJB reference targets to resolve automatically
Specifies whether the product assigns default JNDI values for or automatically resolves incomplete EJB
reference targets.

Select this option to enable EJB reference targets to resolve automatically if the references are from EJB
2.1 or earlier modules or from Web 2.3 or earlier modules. If you enable this option, the runtime container
provides a default value or automatically resolves the EJB reference for any EJB reference that does not
have a binding.

If you selected Generate default bindings on the Preparing for application installation page, then you do
not need to select this option. The product generates default values.

If you select Allow EJB reference targets to resolve automatically, all modules in the application must
share one deployment target. If you select this option and all of the application modules do not share a
common server, after you click Finish on the Summary page, the product displays a warning message
and does not install the application. You must deselect this setting before you click Finish to install the
application.

Information Value
Data type Boolean
Default false

Deploy client modules
Specifies whether to deploy client modules.

Select this option (set to true) if the file to deploy has one or more client modules and you want to
configure environment entries for the client modules. Also select this option to configure resources such as
EJB references, resource references, resource environment references, or message destination
references. Selecting this option enables you to view the Map environment entries for client modules page.
If you are deploying the client modules to a federated node of a deployment manager (Federated) or to an
application server (Server Deployed), select this option and set Client deployment mode to the
appropriate value for the deployment target, Federated or Server Deployed.

152 Developing and deploying applications

If you select this option, install the client modules only onto a Version 8.0 or later deployment target.

Information Value
Data type Boolean
Default false

Client deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated), a federated node
of a deployment manager (Federated), or an application server (Server Deployed).

The choice of client deployment mode affects how java: lookups are handled. All Java URL name spaces
(global, application, module, and component) are local in isolated client processes. The name spaces
reside on a server in federated and server deployed client processes. The server chosen as a target for a
client module determines where those name spaces are created. All java: lookups for federated or server
deployed client modules are directed to the target server. The client module does not actually run in the
target server. Multiple instances of the same client module will all share the component name space in the
Federated and Server Deployed modes. Choosing the Federated mode is simply a declaration of intent
to launch the client module using Java Network Launching Protocol (JNLP), but the Java Naming and
Directory Interface (JNDI) mechanics of federated and server deployed modes are the same.

Information Value
Data type String
Default Isolated

Validate schema
Specifies whether to validate the deployment descriptors against published Java EE deployment descriptor
schemas. When this option is selected, the product analyzes each deployment descriptor to determine the
Java EE specification version for the deployment descriptor, selects the appropriate schema, and then
checks the deployment descriptor against the Java EE deployment descriptor schema. Validation errors
result in error messages.

A Java EE deployment descriptor schema is also known as a DTD.

If you select this option, install your application or module only onto a Version 8.0 or later deployment
target.

Information Value
Data type Boolean
Default false

Manage modules settings
Use this page to specify deployment targets where you want to install the modules that are contained in
your application. Modules can be installed on the same deployment target or dispersed among several
deployment targets.

On single-server products, a deployment target can be an application server or web server.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules. This page is the similar to the Map
modules to servers page on the application installation and update wizards.

On this page, each Module must map to one or more targets, identified under Server. To change a
mapping:

1. In the list of mappings, select each module that you want mapped to the same target or targets.

Chapter 12. Deploying enterprise applications 153

2. From the Clusters and servers list, select one or more targets. Select only appropriate deployment
targets for a module. You cannot install modules that use WebSphere Application Server Version 8.x
features on a Version 7.x or 6.x target server. Similarly, you cannot install modules that use Version 7.x
features on a Version 6.x target server.

Use the Ctrl key to select multiple targets. For example, to have a web server serve your application,
press the Ctrl key and then select an application server and the web server together. The product
generates the plug-in configuration file, plugin-cfg.xml, for that web server based on the applications
which are routed through it.

3. Click Apply.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

If you accessed this Manage modules page from a console enterprise application page for an already
installed application, you can also use this page to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed
module settings page shows the values specified. On the settings page, you can change existing
configuration values and link to additional console pages that assist you in configuring the module.

To manage a module, select the module name in the list and click a button:

Table 25. Button descriptions. Use the buttons to manage modules.
Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted from the application in the
configuration repository and also from all of the nodes where the application is installed and running or expected to run.

Update Opens a wizard that helps you update modules in an application. If a module has the same URI as a module already
existing in the application, the new module replaces the existing module. If the new module does not exist in the
application, it is added to the deployed application.

Remove File Deletes a file from a module of a deployed application.

Export File Accesses the Export a file from an application page, which you use to export a file of an enterprise application or
module to a location of your choice.

If the browser does not prompt for a location to store the file, click File > Save as and specify a location to save the file
that is shown in the browser.

Clusters and servers
Lists the names of available deployment targets. This list is the same for every application that is installed
in the cell.

From this list, select only appropriate deployment targets for a module. You must install an application,
enterprise bean (EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client
module on a Version 8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6.
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

You must install an application, EJB, SAR, or web module on a Version 8.x or 7.x target under any of the
following conditions:
v The module supports Java EE 5.
v The module calls a 7.x runtime API.
v The module uses a 7.x product feature.

154 Developing and deploying applications

If a module supports J2EE 1.4, then you must install the module on a Version 6.x, 7.x or 8.x deployment
target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed on a 6.1.x, 7.x or 8.x
deployment target. Modules that require 6.1.x feature pack functionality can be installed on a 6.1.x
deployment target that has been enabled with that feature pack or on a 7.x or 8.x deployment target.

You can install an application or module developed for a Version 5.x product on any deployment target.

Module
Specifies the name of a module in the installed (or deployed) application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Module type
Specifies the type of module, for example, a web module or EJB module.

This setting is shown on the Manage modules page accessed from a console enterprise application page.

Server
Specifies the name of each deployment target to which the module currently is mapped.

To change the deployment targets for a module, select one or more targets from the Clusters and
servers list and click Apply. The new mapping replaces the previous mapping.

Client module settings
Use this page to configure a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules > client_module_name. This page is
viewable only if the selected application contains a client module and the client deployment mode is a
value other than isolated.

URI
Specifies the location of the client module relative to the root of the application.

Alternate deployment descriptor
Specifies the alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Client module property settings
Use this page to configure the deployment mode of a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Client module deployment mode. This page is viewable
only if the selected application contains a client module.

Client module deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated) or an application
server (Server Deployed).

Information Value
Data type String
Default Isolated

Chapter 12. Deploying enterprise applications 155

Provide options to compile JavaServer Pages settings
Use this page to specify options to be used by the JavaServer Pages (JSP) compiler.

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Precompile JavaServer Pages files on the Select installations options page.
Thus, to view this page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show me all installation options and parameters > Next > Next
or Continue > Precompile JavaServer Pages files > Next > Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this page only when installing or updating an application that
contains web modules. After the application is installed, you must edit the JSP engine configuration
parameters of a web module WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a module within the application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

JSP class path
Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application
installation. This class path is not saved when the application installation is complete and is not used when
the application is running. This class path is used only to identify resources outside of the application
which are necessary for JSP compilation and which will be identified by other means (such as shared
libraries) after the application is installed. In network deployment configurations, this class path is specific
to the deployment manager machine.

To specify that multiple web modules use the same class path:
1. In the list of web modules, select the Select check box beside each web module that you want to use

a particular class path.
2. Expand Apply Multiple Mappings.
3. Specify the desired class path.
4. Click Apply.

Use full package names
Specifies whether the JSP engine generates and loads JSP classes using full package names.

156 Developing and deploying applications

When full package names are used, precompiled JSP class files can be configured as servlets in the
web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP
classes are generated in the same package, which has the benefit of smaller file-system paths.

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class
loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml
file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level
Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,
and 15. The default value is 13 for pre-Java EE 5 web modules, which specifies source level 1.3 and 15 for
Java EE 5 and later web modules.

Disable JSP runtime compilation
Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file
does not exist.

When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the
JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. You can install an application without JSP source, but the application must have precompiled
class files.

For a single web application class loader to load all JSP classes, this compiler option and the Use full
package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

EJB JNDI names for beans
Use this page to view and modify the Java Naming and Directory Interface (JNDI) names of
non-message-driven enterprise beans in your application or module.

If your application uses Enterprise JavaBeans (EJB) 2.1 and earlier modules, on the Provide JNDI names
for beans panel, specify a JNDI name for each enterprise bean in every EJB 2.1 and earlier module. You
must specify a JNDI name for every EJB 2.1 and earlier enterprise bean defined in the application. For
example, for the EJB module MyBean.jar, specify MyBean.

The JNDI name for an EJB module can be used for both EJB 3.x modules and pre-EJB 3.0 modules. For
a pre-EJB 3.0 module, you need to provide a JNDI name for the bean. For an EJB 3.x module, you have
three options

v Provide no JNDI names at all

v Select the radio button to provide a JNDI name for the bean, or

v Select the radio button to provide local or remote home JNDI names.

If no JNDI name is provided, the run time provides a default value. If JNDI name for the bean is provided,
you cannot provide any JNDI name for business interface in the Provide JNDI names for business
interfaces panel.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application > EJB JNDI names.

Chapter 12. Deploying enterprise applications 157

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Target Resource JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Information Value
Data type String

Bind EJB business settings
Use this administrative console page to specify Java Naming and Directory (JNDI) name bindings for each
enterprise bean with a business interface in an EJB module. Each enterprise bean with a business
interface in an EJB module must be bound to a JNDI name. For any business interface that does not
provide a JNDI name, or if its bean does not provide a JNDI name, a default binding name is provided. If
its bean provides a JNDI name, the default JNDI name for the business interface is provided on top of its
bean JNDI name by appending the package-qualified class name of the interface.

If you specify the JNDI name for a bean in the Provide JNDI names for beans page, do not specify any
business interface JNDI name in this page for the same bean. If you do not specify the JNDI name for a
bean in the Provide JNDI names for beans page, you can optionally specify a business interface JNDI
name. If you do not specify a business interface JNDI name, the run time provides a container default.

To view this page in the administrative console, click Applications > Application Types > WebSphere
enterprise applications > application_name > Bind EJB business.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the EJB module that contains the enterprise beans that bind to the JNDI name.

Bean
Specifies the enterprise bean that binds to the JNDI name.

158 Developing and deploying applications

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Business Interface
Specifies the enterprise bean business interface in an EJB module.

For a no-interface view, the business interface value is an empty string ("").

JNDI Name
Specifies the JNDI name associated with the enterprise bean business interface in an EJB module.

Map default data sources for modules containing 1.x entity beans
Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map default data sources for modules containing 1.x
entity beans.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping
target of the EJB module only if you bound them together during application assembly. For every data
source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you
select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Select
Select the check boxes of the rows that you want to edit.

Chapter 12. Deploying enterprise applications 159

EJB Module
The name of the module that contains the 1.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

Information Value
Data type String

User name
The user name and password that comprise the authentication alias for securing the data source.

EJB references
Use this page to view and modify the Enterprise JavaBeans (EJB) references to the enterprise beans.
References are logical names used to locate external resources for enterprise applications. References
are defined in the application's deployment descriptor file. At deployment, the references are bound to the
physical location (global Java Naming and Directory Interface (JNDI) name) of the resource in the target
operational environment.

If your application defines EJB references, for Map EJB references to beans, specify JNDI names for
enterprise beans that represent the logical names that are specified in EJB references. Each EJB
reference defined in the application must be bound to an EJB file before clicking Finish in the Summary
panel.

If the EJB reference is from an EJB 3.x, Web 2.4, Web 2.5, or Client 5.0 module, the JNDI name is
optional. If the Allow EJB reference targets to resolved automatically option is enabled, the JNDI name
is optional for all modules. The runtime provides a container default or automatically resolves the EJB
reference if a binding is not provided.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > EJB references.

Values are displayed for Lookup name and EJB Link if they are configured in the application. Only one of
these values is allowed. If both are set, the value must be overridden by a target resource JNDI name.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

160 Developing and deploying applications

Resource Reference
Specifies the name of the EJB reference that is used in the enterprise bean, if applicable, and declared in
the deployment descriptor of the application module.

Class
Specifies the name of a Java class associated with this enterprise bean.

Target Resource JNDI Name
Specifies the JNDI name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Information Value
Data type String

Resource references
Use this page to designate how the resource references of application modules map to the actual
resources that are configured for the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource references.

You can also view this page during the Map resource references to resources step when you install an
application.

v If your application uses any of the following resource types, you can set or reset their mapping
configurations:

– Default messaging JMS queues destinations

– Default messaging JMS topic destinations

– Data source

– Generic JMS connection factory

– Mail session

– J2C connection factory

– JMS queue connection factory for the JMS provider of WebSphere MQ

– JMS queue destination for WebSphere MQ

– JMS topic connection factory for WebSphere MQ

– JMS topic destination for WebSphere MQ

– Unified JMS connection factory for WebSphere MQ

– URL configuration

v The page is composed of sections that correspond to each applicable resource type. Each section
heading is the class name for the resource. If your application contains only one applicable resource
type, you see only one section.

v Each section contains a table. Each table row depicts a resource reference within a specific module of
your application.

v The rows contain the JNDI names of resource mapping targets for your references only if you bound
them together during application assembly. You can modify those bindings on this administrative
console page.

v To set your mappings:

1. Select a row. If you want to apply the same mapping to multiple rows, complete the steps in the
section, Set multiple JNDI names.

Chapter 12. Deploying enterprise applications 161

2. Click Browse to view a new page listing of all resources that are available mapping targets for your
application references.

3. Select a resource and click Apply. The console displays the Resource references page again. The
JNDI name of the selected resource mapping displays in the Target Resource JNDI Name field.

4. Repeat the previous steps as necessary.

5. If you are editing the resource references of an existing enterprise application, click OK. You now
return to the general configuration page for your enterprise application. If you are installing the
application and have completed the Map resource references to resources step, continue to the
next step.

v For data sources and connection factories: Sections for these resource types contain an additional
set of steps for modifying your security settings. Use the last column in the displayed table to view the
authorization type for each resource configuration per application module. You can modify the
corresponding authentication method only if the authorization type is container. Container-managed
authorization indicates that the product performs signon to the resource rather than the enterprise bean
code. The reconfiguring process differs slightly for each authentication method option:

– When you want to assign no authentication method to a resource:

1. Determine which resource configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select None from the authentication
method options that are displayed above the table.

4. Click Apply.

– When you want to assign the WebSphere Application Server DefaultPrincipalMapping login
configuration to a resource:

1. You must apply this option to each resource individually if you want to designate different
authentication data aliases. See the topic, J2EE connector security, for more information about
the default mapping configuration.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select Use default method from the list of
authentication method options that are displayed above the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

– When you want to assign a trusted context to a resource:

1. You must have a data source that is running at least DB2 Version 9.1 for z/OS®, and the data
source must have trusted context enabled.

2. You must have a data source server that is running at least DB2 Version 9.1 for z/OS, and the
data source must have trusted context enabled.

3. Select the appropriate table rows that have trusted context enabled.

4. Click Modify Resource Authentication Method and select Use trusted connections from the
authentication method options that are displayed above the table.

5. Select an authentication alias from the list that matches an alias that is already defined in the
DB2 data source. If you do not have an alias defined that is suitable, you must define a new
alias.

6. Click Apply.

7. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

– When you want to assign a custom Java Authentication and Authorization Service (JAAS) login
configuration to a resource:

1. See the topic, J2EE connector security, for more information about custom JAAS login
configurations.

162 Developing and deploying applications

2. Select the appropriate table row.

3. Click Modify Resource Authentication Method and select Use custom login configuration
from the authentication method options that are displayed above the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

Set multiple JNDI names
Use this option to set the same JNDI name on multiple resources with one operation.

Click Set multiple JNDI names to display a menu of JNDI names. If you make a selection from this list, it
is applied to the Target Resource JNDI Name field of all the selected rows of the table.

Modify Resource Authentication Method
Use this panel to toggle the display of a panel above the table rows.

This use of this panel is described in the For data sources and connection factories section.

Extended Properties
Use this panel to set additional properties on the selected resource.

Select a single table row and click Extended Properties to set additional properties on the selected
resource. For more details on using this function, see the documentation on extending DB2 data source
definitions at the application level.

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

Bean
The name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Resource Reference
The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the
deployment descriptor of the application module.

Target Resource JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the
resource reference.

Information Value
Data type String

Login configuration
This column applies to data sources and connection factories only and refers to the authorization type and
the authentication method for securing the resource.

Chapter 12. Deploying enterprise applications 163

Virtual hosts settings
Use this page to specify virtual hosts for web modules contained in your application. Web modules can be
installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Virtual hosts. This page is the same as the Map virtual
hosts for web modules page on the application installation and update wizards.

On this page, each web module must map to a previously defined virtual host, identified under Virtual
host. You can see information on previously defined virtual hosts by clicking Environment > Virtual hosts
in the administrative console. Virtual hosts enable you to associate a unique port with a module or
application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port
number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets
and JavaServer Pages (JSP) files in a web module. For example, the alias myhost:8080 is the
host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its
aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

Unless you want to isolate your web module from other modules or resources on the same node (physical
machine), default_host is a suitable virtual host for your web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the
administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not
select admin_host unless the web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each web module that you want mapped to
a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one
virtual host in step 1:
a. Expand Apply Multiple Mappings.
b. Select the desired virtual host from the Virtual Host drop-down list.
c. Click Apply.

3. Click OK.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Web module
Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

Virtual host
Specifies the name of the virtual host to which the Web module is currently mapped.

Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,
select a different virtual host from the list.

164 Developing and deploying applications

Do not specify the same virtual host for different web modules that have the same context root and are
deployed on targets belonging to the same node even if the web modules are contained in different
applications. Specifying the same virtual host causes a validation error.

Security role to user or group mapping
Use this page to specify the users and groups that are mapped to the security roles that are used with the
enterprise application.

To view this administrative console page, click Applications > Application types > WebSphere
enterprise applications >application_name. Under Detail Properties, click Security role to user/group
mapping.

Table 26. User and group mapping. User and group mapping.

Button Resulting action

Map Users Lists the users that are mapped to the specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Groups Lists the groups that are mapped to this specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Special Subjects This choice appears if multiple realms are being used. It enables you to map any of the
following Special Subjects to a selected role:

v All authenticated in application realm: All authenticated users that are in the
applications realm, which specifies whether to map all of the authenticated users to a
specified role. When you map all authenticated users to a specified role, all of the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

v Everyone: map everyone to the selected role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

v None: Do not map anyone to the selected role

Attention:

v If the secured realm cannot be reached, the left list is replaced with 3 text fields (that
is, name, realm, and uid). You can add the user when the secured realm is not
available.

It is not possible to map two subjects to the same role in this release of WebSphere
Application Server.

Role
Lists the specific capabilities to a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all
of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Mapped users
Lists the users that are mapped to the specified role within this application.

Chapter 12. Deploying enterprise applications 165

Special subjects
Lists which special subjects are mapped to the security role when an application uses multiple realms.

Mapped groups
Lists the groups that are mapped to this specified role within this application.

JASPI authentication enablement for applications
Use this page to enable or disable Java Authentication SPI (JASPI) authentication for an application or
web module, and to specify the name of a JASPI authentication provider to be used for authenticating
messages for the application or web module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications. Select an application, and under Detail Properties, select JASPI provider.

Select JASPI provider
Select to indicate the web modules in the application that you wish to specify or to override the default
JASPI authentication settings for.

Select one of the JASPI provider names to choose a provider to use to perform authentication of web
requests for the selected Web module or the application.

To specify how JASPI authentication is performed for the selected web module or the application, choose
one of the following:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain security
configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for the
selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are the
settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider is used to perform authentication of web
requests for the selected application or web module.

If JASPI authentication is enabled, and a specific provider name is not specified, then the default provider
name is used. For more information, read about configuring a new JASPI authentication provider using the
administrative console.

If JASPI authentication is disabled, or if no default provider is selected, JASPI authentication is not
performed. Web authentication is then performed according to another authentication mechanism as
selected in the cell or domain security configuration.

User RunAs collection
Use this page to map a specified user identity and password to a RunAs role. This panel enables you to
specify application-specific privileges for individual users to run specific tasks using another user identity.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Detail properties, click User runAs roles.

166 Developing and deploying applications

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise
beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Note:

The use of the username field is dependent on whether system authorization facility (SAF)
delegation is enabled or disabled.

v SAF delegation is enabled. The username field is NOT used.

v SAF delegation is disabled. The username field is used.

Information Value
Data type: String

Password
Specifies the password for the RunAs user.

Note:

The use of the password field is dependent on whether system authorization facility (SAF)
delegation is enabled or disabled.

v SAF delegation is enabled. The password field is NOT used.

v SAF delegation is disabled. The password field is used.

Information Value
Data type: String

Role
Maps specific capabilities to a user.

The authorization policy is only enforced when global security is enabled.

Ensure all unprotected 1.x methods have the correct level of
protection
Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the
correct level of protection before you map users to roles.

This administrative console page is displayed during the application deployment process. To access the
administrative console page, click Application > New application > New Enterprise Application. The
page is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the
application deployment steps. On this administrative console page, you can specify whether users can
access specific EJB modules.

EJB module
Specifies the EJB module name.

Chapter 12. Deploying enterprise applications 167

URI
Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Deny all access
Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Information Value
Default: Cleared

Bind listeners for message-driven beans settings
Use this page to specify bindings for message-driven beans in your application or module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message Driven Bean listener bindings. This page is
the same as the Bind listeners for message-driven beans page on the application installation and
update wizards.

Each message-driven bean must be bound to a listener port name or to an activation specification Java
Naming and Directory Interface (JNDI) name.

Provide a listener port name if your application uses either of the following Java Message Service (JMS)
providers:
v WebSphere MQ messaging provider
v Generic messaging provider

Provide an activation specification JNDI name if your application's resources are configured using the
default messaging provider or any generic J2C resource adapter that supports inbound messaging.

Not providing valid listener port names or activation specification JNDI names results in the following
errors:

v If neither a listener port name or an activation specification JNDI name is specified for a message
driven bean, then a validation error is displayed after you click Finish on the Summary page.

v If multiple message driven beans are linked to the same destination, specify the same destination JNDI
name for each message driven bean. If you specify different destination JNDI names, a validation error
is displayed and all JNDI specifications after the first one are ignored.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to
a particular binding.

2. Expand Apply Multiple Mappings.

3. Complete one of the following steps:

v Specify a listener port name.

v Select a target resource JNDI name for an activation specification. Optionally specify the following
parameters:
Destination JNDI name

For resource adapters that support JMS, specify javax.jms.Destinations so the resource
adapter can service messages from the JMS destination. A destination JNDI name set as
part of application deployment take precedence over properties set on an activation
specification administrative object.

ActivationSpec authentication alias
Specify an authentication alias that is used to access the user name and password that are

168 Developing and deploying applications

set on the configured J2C activation specification. Authentication alias properties set as part
of application deployment take precedence over properties set on an activation specification
administrative object.

4. Click Apply.

5. Click OK or Next.

Module
Specifies the name of the module that contains the enterprise bean.

Bean
Specifies name of an enterprise bean in the application.

URI
Specifies the location of the module relative to the root of the application EAR file.

Messaging Type
Specifies the type of message-driven bean.

Listener Bindings
Specifies a listener port name or an activation specification JNDI name for the message-driven bean.
When a message-driven enterprise bean is bound to an activation specification JNDI name you can also
specify the destination JNDI name and the authentication alias.

Bindings specify JNDI names for the referenceable and referenced artifacts in an application. An example
JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The binding
definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Map data sources for all 2.x CMP beans
Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console panel, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.
Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target

Chapter 12. Deploying enterprise applications 169

of the EJB module only if you bound them together during application assembly. For every data source
that is displayed, you see the corresponding security configuration.

Set Multiple JNDI Names
Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple
JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type
Specifies the authorization type that you to use for the modules. Select one or more modules, click Set
Authorization Type, and select the authorization type.

You can choose:

v Per application - indicates that the enterprise bean code performs signon.

v Container - indicates that the application server performs signon to the data source.

Modify Resource Authentication Method
Specifies the resource authentication method for the modules that you have configured with
container-managed authorization. Select one or more modules, click Modify Resource Authentication
Method, and select the authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

170 Developing and deploying applications

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows you want to edit.

EJB Module
Specifies the name of the module that contains the 2.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB
module.

Information Value
Data type String

Resource authorization
Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties
When selected, you will be directed to a panel on which you can specify extended properties that the
module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when
you select this option.

Map data sources for all 2.x CMP beans settings
Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources
that are available to the application.

To view this administrative console page, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans.

Chapter 12. Deploying enterprise applications 171

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of
the data source mapping target of the bean only if you bound them together during application assembly.
For every data source that is displayed, you see the corresponding security configuration.

Set Multiple JNDI names
Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or
more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules
with that JNDI name.

Information Value
Data type Drop-down list

Set Authorization Type
Specify the authorization type for securing the data source. Select one or more EJB modules from the
table to set the authorization type.

Select either Container or Application from the displayed list. Container-managed authorization indicates
that WebSphere Application Server performs signon to the data source. Application-managed authorization
indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method
Specify the authorization type and the authentication method for securing the data source. Select one or
more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

172 Developing and deploying applications

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

Target resource JNDI name
Specifies the resource to which the CMP bean is bound.

Resource authorization
Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Ensure all unprotected 2.x methods have the correct level of
protection
Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the
correct level of protection before you map users to roles.

This administrative console page is displayed during the application deployment process. To access the
administrative console page, click Applications > New application > application_name. The page is

Chapter 12. Deploying enterprise applications 173

displayed as Ensure all unprotected 2.x methods have the correct level of protection in the
application deployment steps. On this administrative console page, you can specify whether users can
access specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next
to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB
module before you click Apply.

Uncheck
Select this option if you do not want the application server to verify the access permissions for the EJB
module. Everyone can access the EJB module.

Information Value
Default: Selected

Exclude
Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Information Value
Default: Deselected

Role
Specifies the EJB level of protection based on the security role.

The roles listed in this menu are obtained from the application scope. If the selected role is not in the
module, then it is added to the modules or Java archive (JAR) files.

Information Value
Default: Deselected

EJB module
Specifies the name of the module.

If a module name appears in this list, then the module contains unprotected EJB methods.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Protection type
Specifies the level of protection that is assigned to a particular module name.

After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is
displayed in this column.

Provide options to perform the EJB Deploy settings
Use this page to specify options for the enterprise bean (EJB) deployment tool. The tool generates code
needed to run enterprise bean files. You can specify extra class paths, Remote Method Invocation
compiler (RMIC) options, database types, and database schema names to be used while running the EJB
deployment tool.

174 Developing and deploying applications

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Deploy enterprise beans on the Select installation options page. Thus, to view
this page, click Applications > New Application > New Enterprise Application > application_path >
Next > Detailed - Show all installation options and parameters > Next > Deploy enterprise beans >
Next > Step: Provide options to perform the EJB Deploy.

You can specify the EJB deployment tool options on this page when installing or updating an application
that contains EJB modules. The EJB deployment tool runs during installation of EJB 1.x or 2.x modules.
The EJB deployment tool does not run during installation of EJB 3.x modules.

The options that you specify set parameter values for the ejbdeploy command. The tool, and thus the
ejbdeploy command, is run on the enterprise archive (EAR) file during installation after you click Finish on
the Summary page of the wizard.

Class path
Specifies the class path of one or more zipped or Java archive (JAR) files on which the JAR or EAR file
being installed depends.

To specify the class paths of multiple entries, the file names must be fully qualified, separated by a path
separator that the target server uses, and enclosed in double quotation marks.

On Windows operating systems, the path separator is a semicolon (;). For example:
path\myJar1.jar;path\myJar2.jar;path\myJar3.jar

On the other supported operating systems, the path
separator is a colon (:). For example:
path/myJar1.jar:path/myJar2.jar:path/myJar3.jar

Class path is the same as the ejbdeploy command parameter -cp class_path.

Information Value
Data type String
Default null

RMIC
Specifies whether the EJB deployment tool passes RMIC options to the Remote Method Invocation
compiler. Refer to RMI Tools documentation for information on the options.

Separate options by a space and enclose them in double quotation marks. For example:
"-nowarn -verbose"

The RMIC setting is the same as the ejbdeploy command parameter -rmic “options”.

Information Value
Data type String
Default null

Database type
Specifies the name of the database vendor, which is used to determine database column types, mapping
information, Table.sql, and other information. Select a database type or the empty choice from the
drop-down list. The list contains the names of valid database vendors. Selecting the empty choice sets the
database type to "" (null).

Chapter 12. Deploying enterprise applications 175

If you specify a database type, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, select the empty choice
to set the database type to null.

Note: The backend IDs SQL92 (1992 SQL Standard) and SQL99 (1999 SQL Standard) are deprecated.
Although the SQL92 and SQL99 backend IDs are available in the list on the Provide options to
perform the EJB Deploy page, they are deprecated.

Database type is the same as the ejbdeploy command parameter -dbvendor name.

Information Value
Data type String
Default DB2UDB_V82

Database schema
Specifies the name of the schema that you want to create.

The EJB deployment tool saves database information in the schema document in the JAR or EAR file,
which means that the options do not need to be specified again. It also means that when a JAR or EAR is
generated, the correct database must be defined at that point because it cannot be changed later.

If the name of the schema contains any spaces, the entire name must be enclosed in double quotes. For
example:
"my schema"

Database schema is the same as the ejbdeploy command parameter -dbschema “name”.

Information Value
Data type String
Default null

Database access type
Specifies the database access type for a DB2 database that supports Structured Query Language for Java
(SQLJ). Use SQLJ to develop data access applications that connect to DB2 databases. SQLJ is a set of
programming extensions that support use of the Java programming language to embed statements that
provide SQL (Structured Query Language) database requests.

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Available database access types include JDBC and SQLJ.

Information Value
Data type String
Default JDBC

SQLJ class path
Specifies the class path of the DB2 SQLJ tool sqlj.zip file. The product uses this class path to run the
DB2 SQLJ tool during application installation and generate SQLJ profiles (.ser files).

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Specify the drive and directory where the sqlj.zip file resides. For example:

176 Developing and deploying applications

On Windows operating systems, specify c:\SQLJ\sqlj.zip.

On all other operating systems, specify /SQLJ/sqlj.zip.

When you reinstall an application EAR file, the product deletes any existing SQLJ profiles and creates new
profiles.

If you do not specify a class path, the product displays a warning about the missing class path. After you
specify a valid class path, you can continue using the wizard for the application installation.

You can customize or add bindings to the generated SQLJ profile after the product installs the application.
Use the administrative console SQLJ profiles and pureQuery bind files page accessed by clicking
Applications > Application Types > WebSphere enterprise applications > application_name > SQLJ
profiles and pureQuery bind files.

Information Value
Data type String
Default null

JDK compliance level
Specifies the Java developer kit compiler compliance level as 1.4, 5.0, 6.0, or 7.0 when you include
application source files for compilation.

The default is to use whatever developer kit version the ejbdeploy command is using. For example, if your
application is using new functionality defined in Version 7.0 or you are including source files (which is not
recommended), then you must specify the Version 7.0 level.

The JDK compliance level that you specify must be the same level as the default Java SDK for the
application server to which you are deploying your application. For example, if you select 7.0 for the JDK
compliance level on this page, you must ensure that JDK 7.0 is installed and that the default Java SDK for
the application server is set to 7.0. The Java SDKs page of the administrative console lists the software
development kits that are installed on the node and enables you to select a default SDK for the node or
server. To view the Java SDKs page, click Servers > Server Types > WebSphere application servers >
server_name > Java SDKs.

JDK compliance level is the same as the ejbdeploy command parameter -complianceLevel “1.4”|
“5.0”| “6.0”| “7.0”.

Information Value
Data type String
Default null (empty string)

Shared library reference and mapping settings
Use the Shared library references and Shared library mapping pages to associate defined shared libraries
with an application or web module. A shared library is an external Java archive (JAR) file that is used by
one or more applications. Using shared libraries enables multiple applications deployed on a server to use
a single library, rather than use multiple copies of the same library. After you associate shared libraries
with an application or module, the application or module class loader loads classes represented by the
shared libraries and makes those classes available to the application or module.

To view the Shared library references console page, click Applications > Application Types >
WebSphere enterprise applications > application_name > Shared library references. To view the
Shared library mapping page, click Reference shared libraries on the Shared library references page.

Chapter 12. Deploying enterprise applications 177

These pages are the same as the Map shared libraries and Map shared libraries to an entire application or
module pages in the application installation and update wizards.

On the Shared library references page, the first element listed is the application. The other elements are
modules in the application.

To associate shared libraries with your application or module:

1. Select an application or module.

2. Click Reference shared libraries.

3. On the Shared library mapping page, select one or more shared libraries that the application or
modules uses in the Available list, click >> to add them to the Selected list, and click OK.

A defined shared library for a file that your application or module uses must exist to associate your
application or module to the library.

If no shared libraries are defined and the application is installed already, on the Shared library mapping
page, click New and define a shared library.

You can otherwise define a shared library as follows:

1. Click Environment > Shared libraries.

2. Specify whether the shared library is visible at the cell, node or server level.

3. Click New.

4. On the settings page for the new shared library, specify a name and one or more class paths. If the
libraries are platform-specific files such as .dll, .so, or *SRVPGM objects, also specify a native library
path. Then, click Apply.

5. Save the administrative configuration.

Application
Specifies the name of the application that you are installing or that you selected on the Enterprise
applications page.

Module
Specifies the name of the module associated with the shared libraries.

URI
Specifies the location of the module relative to the root of the application EAR file.

Shared libraries
Specifies the name of the shared library files associated with the application or module.

Shared library relationship and mapping settings
Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

178 Developing and deploying applications

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:

1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.

4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.

6. Click OK.

Module
Specifies the name of the module associated with the shared libraries.

URI
Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers
Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names
Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

This setting is only in the application installation and update wizards.

Match target
Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

JSP and JSF option settings
Use this page to configure the class reloading of web modules such as JavaServer Pages (JSP) files and
to select a JSF implementation to use with this application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > JSP and JSF options. This page is the same as the
Provide JSP reloading options for web modules page on the application installation and update
wizards.

The following note applies to the files with an .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or

Chapter 12. Deploying enterprise applications 179

module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a web module in the installed or deployed application.

URI
Specifies the location of the module that is relative to the root of the application (EAR file).

JSP enable class reloading
Specifies whether to enable class reloading when JSP files are updated.

A web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the
ibm-web-ext.xmi file is set to true.

Java Platform, Enterprise Edition 5 (Java EE 5) and later applications IBM extension files are in .xml file
format. For applications versions earlier than Java EE 5, they are in the .xmi file format.

JSP reload interval in seconds
Specifies the number of seconds to scan the application file system for updated JSP files. The default is
the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the
web module.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload
interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

Java EE 5 applications and later IBM extension files are in .xml file format. For applications versions
earlier than Java EE 5, they are in the .xmi file format.

Sun Reference Implementation 1.2
Select this option to use the Sun Reference Implementation 1.2 JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

MyFaces 2.0
Select this option to use the MyFaces JSF implementation. This is the default JSF implementation.

180 Developing and deploying applications

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

In a mixed-version cell, a Version 7 node uses MyFaces 1.2 if the MyFaces selection is toggled, while a
Version 8 and later node uses MyFaces 2.0. For WebSphere Application Server versions before Version 7
(for example, Version 6.1 and earlier), this toggle is ineffective because JSF implementation switching was
not supported before Version 7.

Context root for web modules settings
Use this page to specify the context root for web modules during or after installation of an application onto
a WebSphere Application Server deployment target.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Context root for web modules. This page is the same
as the Context root for web modules page on the application installation and update wizards.

Web Module
Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

URI
Specifies the location of the module relative to the root of the application EAR file.

Context Root
Specifies the context root of the web application (WAR).

A context root for each web module is defined in the application deployment descriptor during application
assembly. Use this field to assign a different context root to a web module. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access
the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then
the URL is http://host:port/gettingstarted/MySession.

Initial parameters for servlets settings
Use this page to specify initial parameters that are passed to the init method of web module servlet filters.
You can specify initial parameter values for servlets in web modules during or after installation of an
application onto a WebSphere Application Server deployment target. The <param-value> values specified
in <init-param> statements in the web.xml file of web modules are used by default.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Init parameters for servlets. This page is the same as
the Init parameters for servlets in each web module panel on the application installation and update
wizards.

Module
Specifies the name of a module in the application that you are installing or that you are viewing after
installation.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Chapter 12. Deploying enterprise applications 181

Servlet
Specifies a unique name for the servlet within the application.

A servlet is a Java program that uses the Java Servlet Application Programming Interface (API). You must
package servlets in a Web archive (WAR) file or web module for deployment to an application server.
Servlets run on a Java-enabled web server and extend the capabilities of a web server, similar to the way
applets run on a browser and extend the capabilities of a browser.

Name
Specifies the name of the initial parameter passed to the init method of the web module servlet filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter name of
attribute:
<init-param>

<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>

Value
Specifies the value assigned to an initial parameter passed to the init method of the web module servlet
filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter value of
tests.Filter.DoFilter_Filter.SERVLET_MAPPED for the init parameter attribute:
<init-param>

<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>

Description
Specifies information on the initial parameter.

Environment entries for client modules settings
Use this page to configure the environment entries of application client modules that are deployed as Java
archive (JAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for client modules.

This page is the same as the Map environment entries for client modules page on the application
installation and update wizards. To view the Map environment entries for client modules page in a wizard,
you must select the Deploy client modules option on the Select installation options page.

Client module
Specifies the name of a client module.

URI
Specifies the location of the client module relative to the root of the application.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the client module.

Type
Specifies a data type for the environment entry defined by the env-entry property in the client module.

182 Developing and deploying applications

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the client module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for EJB modules settings
Use this page to configure the environment entries of Enterprise JavaBeans (EJB) modules such as entity,
session, or message driven beans.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for EJB modules. This page is the
same as the Map environment entries for EJB modules page on the application installation and update
wizards.

Module
Specifies the name of an EJB module.

URI
Specifies the location of the EJB module relative to the root of the application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the EJB module.

Type
Specifies a data type for the environment entry defined by the env-entry property in the EJB module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the EJB
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for web modules settings
Use this page to configure the environment entries of Web modules such as servlets and JavaServer
Pages (JSP) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for web modules. This page is the
same as the Environment entries for web modules page on the application installation and update wizards.

Chapter 12. Deploying enterprise applications 183

Module
Specifies the name of a web module.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the web module.

Type
Specifies a data type for the environment entry defined by the env-entry property in the web module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the web
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for application settings
Use this page to configure the environment entries of applications that are deployed as enterprise archive
(EAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for the application.

This page is the same as the Map environment entries for application level page on the application
installation and update wizards. To view this page, the application must define one or more environment
entries.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the application.

Type
Specifies a data type for the environment entry defined by the env-entry property in the application.

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the application.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Resource environment references
Use this page to designate how the resource environment references of application modules map to
remote resources, which are represented in the product as resource environment entries.

184 Developing and deploying applications

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource environment references.

Each row of the table depicts a resource environment reference within a specific module of your
application. If you bound any references to resource environment entries during application assembly, you
see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource
environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that
you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the
Available Resources page. The Available Resources page shows all resource environment entries that
are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that
you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

Table column heading descriptions:

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

EJB
The name of an enterprise bean that is accessed by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Reference binding
The name of a resource environment reference that is declared in the deployment descriptor of the
application module. The reference corresponds to a resource that is bound as a resource environment
entry into the JNDI name space of the application server.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the
mapping target of the resource environment reference.

Information Value
Data type String

Message destination reference settings
If your application uses message-driven beans, use this page to specify the Java Naming and Directory
Interface (JNDI) name of the J2C administered object to bind the message destination reference to the
message-driven beans. You must map each message destination reference that is defined in your
application to an administered object.

Chapter 12. Deploying enterprise applications 185

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message destination references. This page is the same
as the Bind message destination references to administered objects page on the application
installation and update wizards.

If the message destination reference is from an EJB 3.0 or later module, then the JNDI name is optional
and the run time provides a container default value.

Attention: If multiple message destination references link to the same message destination, only one
JNDI name is collected. When a message destination reference links to the same message destination as
a message-driven bean and the destination JNDI name has been collected already, the destination JNDI
name for the message destination reference is not collected.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to
a particular binding.

2. Expand Apply Multiple Mappings.

3. Complete one of the following steps:

v Specify a message destination name.

v Select a target resource JNDI name for a message destination.

4. Click Apply.

5. Click OK or Next.

Module
Specifies the name of the module that contains the bean.

Bean
Specifies name of a bean in the application.

URI
Specifies the location of the module relative to the root of the enterprise archive (EAR) file.

Message destination object
Specifies the message destination object.

Type
Specifies the type of object.

Target Resource JNDI Name
Specifies the Java Naming and Directory Interface (JNDI) name of the bean.

This is a data entry field. To change the JNDI name bound to this bean, type the new name in this field.

Select current backend ID settings
Use this page to select a backend identifier for container-managed persistence (CMP) beans that contain
mappings for multiple backend databases.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Select current backend ID. This page is displayed in the wizards if Database type is
blank on the Provide options to perform the EJB Deploy page.

186 Developing and deploying applications

A backend can represent different database vendors, or simply alternative mappings and table qualifiers. If
a Java archive (JAR) file for an enterprise bean defines CMP beans that contain mappings for multiple
backend databases, you must select a current backend ID to be used when the module is installed on a
deployment target. The backend ID determines the persister classes that get loaded at deployment.

Module
Specifies the name of the module that contains the bean.

URI
Specifies the location of the module relative to the root of the application EAR file.

Current backend ID
Specifies the current backend ID to be used when the module is installed on a deployment target.

Provide JNDI names for JCA objects settings
Use this page to configure Java Naming and Directory Interface (JNDI) name values for J2C objects
(J2CConnectionFactory, J2CActivationSpec, and J2CAdminObject) in your application or modules. If your
application contains an embedded resource archive (RAR) file, specify the name and JNDI name of each
JCA connection factory, administered object, and activation specification.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Provide JNDI names for JCA objects.

Connector module
Specifies the name of a connector module of the RAR file.

URI
Specifies the location of the module that is relative to the root of the RAR file.

Object identifier
Specifies the name of the J2C object. The object can be a JCA connection factory, administered object, or
activation specification.

Bindings
Specifies the name and Java Naming and Directory Interface (JNDI) name of the J2C object.

These are data entry fields. To change the name or JNDI name bound to this object, type the new names
in the fields.

Correct use of the system identity
Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in
your application.

This administrative console page is displayed during the application deployment process. To access the
administrative console , click Application > New application > New Enterprise Application. The is
displayed as Correct use of System Identity in the application deployment steps.

To use this page, complete the following steps:

1. Select an application that supports security and click Next.

2. Select Detailed - Show all installation options and parameters and click Next.

3. Select the Correct use of system identity step.

Chapter 12. Deploying enterprise applications 187

Bean
A component that implements a business task or business entity and resides in an EJB container. Entity
beans, session beans, and message-driven beans are all enterprise beans.

Module
In Java EE programming, a software unit that consists of one or more components of the same container
type and one deployment descriptor of that type. Examples include EJB, Web, and application client
modules.

URI
A Uniform Resource Identifier (URI) is a unique address that is used to identify content on the Web, such
as a page of text, a video or sound clip, a still or animated image, or a program.

Method signature
The combination of a name of a method along with the number and types of the parameters and their
order.

Role
Specifies the RunAs role that is used for this EJB method.

Username
Specifies the user name that is assigned to the RunAs role for this EJB method.

The user name is used in conjunction with the RunAs role that you select for the Role.

Requirements for setting data access isolation levels
This article discusses the criteria and effects of setting isolation levels for data access components that
comprise Enterprise JavaBeans (EJB) 2.x and later modules.

In an EJB 1.1 module, you can set the isolation level at the method level or bean level. This capability also
applies to container-managed persistence (CMP) 1.1 beans that you assemble into EJB 2.x modules.
WebSphere Application Server permits the deployment descriptor of a CMP bean to declare the version
level of 1.1, regardless of the overall module version.

However, the ability to set isolation level at the method or bean level does not apply to other enterprise
beans within an EJB 2.x module, including CMP 2.x beans. WebSphere Application Server Version 5.0
removed this capability from EJB 2.0 modules to deliver an architecture that ultimately provides more
efficient connection use.

Consequently, later versions of the product enforce the following restrictions on declaring isolation level for
CMP 2.x beans—as well as session beans, message-driven beans, and bean managed persistence (BMP)
beans that you assemble into EJB 2.x modules:

v You cannot specify isolation level on the EJB method level or bean level.

v If you configure a JDBC application, a bean-managed persistence (BMP) bean, or a servlet to
participate in global transactions, any connection that is shared cannot accept a user-specified isolation
level. WebSphere Application Server can only set a user-specified isolation level on a connection that is
not shared within a global transaction. Generally, you want to refrain from specifying isolation levels on
shareable connections.

The configuration for the isolation level is determined by the type of bean that is used by the component:

Isolation level on connections used by 2.x CMP beans
In a EJB 2.x module, when a CMP 2.x bean uses a new data source to access a backend
database, the isolation level is determined by the WebSphere Application Server run time, based
on the type of access intent assigned to the bean or the calling method. Other non-CMP

188 Developing and deploying applications

connection users can access this same data source and also use the access intent and
application profile support to manage their concurrency control.

Connections used by other 2.x enterprise beans and other non-CMP components
For all other JDBC connection instances (connections other than those used by CMP beans), you
can specify an isolation level on the data source resource reference. For shareable connections
that run in global transactions, this method is the only way to set the isolationLevel for
connections. Trying to directly set the isolation level through the setTransactionIsolation() method
on a shareable connection that runs in a global transaction is not allowed. To use a different
isolation level on connections, you must provide a different resource reference. Set these defaults
through your assembly tool.

Each resource reference associates with one isolation level. When your application uses this
resource reference Java Naming and Directory Interface (JNDI) name to look up a data source,
every connection returned from this data source using this resource reference has the same
isolation level.

Components needing to use shareable connections with multiple isolation levels can create
multiple resource references, giving them different JNDI names, and have their code look up the
appropriate data source for the isolation level they need. In this way, you use separate
connections with the different isolation levels enabled on them.

It is possible to map these multiple resource references to the same configured data source. The
connections still come from the same underlying pool, however; the connection manager does not
allow sharing of connections requested by resource references with different isolation levels.
Consider the following scenario:

v A data source is bound to two resource references: jdbc/RRResRef and jdbc/RCResRef.

v RRResRef has the RepeatableRead isolation level defined. RCResRef has the ReadCommitted
isolation level defined.

If your application wants to update the tables or a BMP bean updates some attributes, it can use
the jdbc/RRResRef JNDI name to look up the data source instance. All connections returned from
the data source instance have a RepeatableRead isolation level. If the application wants to
perform a query for read only, then it is better to use the jdbc/RCResRef JNDI name to look up the
data source.

The product does not require you to set the isolation level on a data source resource reference for
a non-CMP application module. If you do not specify isolation level on the resource reference, or if
you specify TRANSACTION_NONE, the WebSphere Application Server run time uses a default
isolation level for the data source. Application Server uses a default setting based on the JDBC
driver.

For most drivers, WebSphere Application Server uses an isolation level default of
TRANSACTION_REPEATABLE_READ. For Oracle drivers, however, Application Server uses an
isolation level of TRANSACTION_READ_COMMITTED. Use the following table for quick
reference:

Database: Default isolation level:

DB2 RR

Oracle RC

Sybase RR

Informix RR

Apache Derby RR

SQL Server RR

Chapter 12. Deploying enterprise applications 189

Note: These same default isolation levels are used in cases of direct JNDI lookups of a data
source.

v RR = JDBC Repeatable read (TRANSACTION_REPEATABLE_READ)

v RC = JDBC Read committed (TRANSACTION_READ_COMMITTED)

To customize the default isolation level, you can use the webSphereDefaultIsolationLevel custom
property for the data source. In most cases you should define the isolation level in the deployment
descriptor when you package the EAR file, but in certain situations you might need to customize
the default isolation level. This property will have no effect if any of the previous options are used,
and this custom property is provided for those situations in which there is no other means of
setting the isolation level.

Use the following values for webSphereDefaultIsolationLevel custom property:

Possible values JDBC isolation level DB2 isolation level

8 TRANSACTION_SERIALIZABLE Repeatable Read (RR)

4 (default) TRANSACTION_REPEATABLE_READ Read Stability (RS)

2 TRANSACTION_READ_COMMITTED Cursor Stability (CS)

1 TRANSACTION_READ_UNCOMMITTED Uncommitted Read (UR)

To define this custom property for a data source:

1. Click Resources > JDBC provider > JDBC_provider.

2. Click Data sources in the Additional Properties section.

3. Click the name of the data source.

4. Click Custom properties.

5. Create the webSphereDefaultIsolationLevel custom property.

a. Click New.

b. Enter webSphereDefaultIsolationLevel for the name field.

c. Enter one of the possible values in the value field.

Application Server sets the isolation level by prioritizing the available settings. Application Server will set
the isolation level based on the values for the following, in this order:

1. Resource reference isolation level

2. Isolation level that is specified by the access intent policy

3. Custom property that configures an isolation level

4. Application Server's default setting.

Metadata for module settings
Use this page to instruct a Java Platform, Enterprise Edition (Java EE) enterprise bean (EJB) deployment
descriptor, web module deployment descriptor, or JCA resource adapter archive (RAR) module to ignore
annotations that specify deployment information.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Metadata for modules. This page is the same as the
Metadata for modules page on the application installation and update wizards.

If your application contains Java EE 5 or later modules, you can select to lock the deployment descriptor
of one or more of the modules on the Metadata for modules page. If you select a metadata-complete
attribute check box (set the metadata-complete attribute to true) and lock deployment descriptors, the
product writes the complete module deployment descriptor, including deployment information from
annotations, to XML format.

190 Developing and deploying applications

Annotations are a standard mechanism of adding metadata to Java classes. You can use metadata to
simplify development and deployment of Java EE 5 or later artifacts. Prior to the introduction of Java
language annotations, deployment descriptors were the standard mechanism used by Java EE
components. These deployment descriptors were mapped to XML format, which facilitated their
persistence. If you select to lock deployment descriptors, the product merges Java EE annotation-based
metadata with the XML-based existing deployment descriptor metadata and persists the result.

When applications contain a large number of Java classes, the deployment processing time for the
annotations can increase. To minimize the performance impact, you can use one of the following methods:

v Determine whether the module needs to use Java EE 5 or 6. If the module does not need to use Java
EE 5 or 6, the annotations within the Java classes are not scanned.

v Use the “metadata-complete attribute” in the module descriptor if the module uses Java EE 5 or later
and it does not contain any annotations. This attribute disables the annotations processing for the
module, but Java EE 5 or later modules might still be placed in the descriptor file. If you are migrating
your application, but you are not adding annotations, consider using this attribute value.

v Restructure the application to place the utility Java archive (JAR) files into shared libraries if those JAR
files do not have annotation information. Consider this method if you cannot set the “metadata-complete
attribute.”

v Move the JAR files in the WEB-INF/lib directory to the root directory of the enterprise archive (EAR) file.
Nested archives, such as a JAR file that is within a web application archive (WAR) that is within an EAR
file, are very cumbersome to search through because of the multiple levels of compression.

Module
Specifies the name of a module in the installed (or deployed) application.

Information Value
Data type String

URI
Specifies the location of the module relative to the root of the EAR file.

Information Value
Data type String

metadata-complete attribute
Specifies whether to write the complete module deployment descriptor, including deployment information
from annotations, to extensible markup language (XML) format.

By default, a metadata-complete attribute check box is not selected and the product does not write out
annotation data to a module deployment descriptor.

If your modules do not have a metadata-complete attribute or the metadata-complete attribute is set to
false, you can select a check box and instruct the product to write out annotation data to a module
deployment descriptor.

Note: If your Java EE 5 or later application uses annotations and a shared library, do not select
metadata-complete attribute. When your application uses annotations and a shared library, setting
the metadata-complete attribute to true causes the product to incorrectly represent an @EJB
annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For web
modules, setting the metadata-complete attribute to true might cause InjectionException errors. If
you must select metadata-complete attribute (set the metadata-complete attribute to true), avoid
errors by not using a shared library, by placing the shared library in either the classes or lib
directory of the application server, or by fully specifying the metadata in the deployment descriptors.

Chapter 12. Deploying enterprise applications 191

After you select a check box, you cannot deselect (clear) the check box and the module is no longer
shown in the list of modules on this page. If you select all the check boxes, the link to this page is no
longer shown on the enterprise application settings page.

Information Value
Data type Boolean
Default false (deselected)

Provide options to perform the web services deployment settings
Use this page to specify options for web services deployment.

This administrative console page is a step in the application installation and update wizards.

To view this page, you must select Deploy web services on the Select installation options page.

To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options page.

4. Select Deploy web service.

5. Click Next to get to the Step: Provide options to perform the web services deployment page.

You can specify the web services deployment options on this page only when installing or updating an
application that uses web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command
adds product-specific deployment classes to a web services-compatible enterprise archive (EAR) file or an
application client Java archive (JAR) file. These classes include:
v Stubs
v Serializers and deserializers
v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary page of the
wizard.

Deploy web services option - Classpath
Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on
Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the
entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

Information Value
Data type String
Default null

192 Developing and deploying applications

Deploy web services option - Extension Directories
Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this
directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

Information Value
Data type String
Default null

Display module build ID settings
Use this page to view the build identifier of a module in a Java Platform, Enterprise Edition (Java EE)
enterprise archive (EAR file). The build identifier for a module is shown if the MANIFEST.MF file of a module
or application specifies a build identifer.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Display module build IDs. This page is the same as the
Display module build IDs page on the application installation and update wizards.

Module
Specifies the name of a module in the installed (or deployed) application.

Information Value
Data type String

URI
Specifies the location of the module relative to the root of the application EAR file.

Information Value
Data type String

Build ID
Specifies the build identifier for a module if the MANIFEST.MF file specifies a build identifer.

You cannot modify the build ID on this page because this field is read-only.

Information Value
Data type String

Installing enterprise application files by adding them to a monitored
directory
You can install an enterprise application file on an application server by dragging or copying an enterprise
archive (EAR), web application archive (WAR), Java archive (JAR), or Session Initiation Protocol (SIP)
archive (SAR) to a monitored directory. An enterprise application file must conform to the Java Platform,
Enterprise Edition (Java EE) specification.

Before you begin

Develop and assemble the EAR, JAR, WAR, or SAR file. You can use a supported assembly tool such as
an IBM Rational Application Developer for WebSphere Software product to specify bindings and assemble
the file.

Chapter 12. Deploying enterprise applications 193

Installing an EAR, JAR, WAR, or SAR file by adding it to a monitored directory does not change existing
Java Naming and Directory (JNDI) and other application bindings. If you must set binding values during
deployment, install the file using the administrative console application installation wizard, a wsadmin
script, or a properties file that sets bindings. See Installing enterprise application files by adding properties
files to a monitored directory.

By default, monitored directory deployment is not enabled. Before you can use monitored directory
deployment, you must enable it. See Setting monitored directory deployment values.

Restriction: Installing an EAR, JAR, WAR, or SAR file by adding it to a monitored directory is available
only on distributed and z/OS operating systems. It is not supported on IBM i operating
systems.

Note: Do not use monitored directory deployment in a production environment where the application must
remain continuously available. Instead, in production environments, use an automated process that
staggers application updates to each application server by first draining requests from each server,
updating the application, and then restarting the server. For information about this automated
process, see IBM WebSphere Developer Technical Journal: Maintain continuous availability while
updating WebSphere Application Server enterprise applications.

About this task

You can deploy an EAR, JAR, WAR, or SAR file to an application server by dragging or copying the file to
a monitored directory.

For base (stand-alone) application servers, the monitored directory is the monitoredDeployableApps/
servers/server_name directory of the application server profile.

The product scans a monitored directory for new applications no more frequently than every five seconds,
by default. After finding a new EAR, JAR, WAR, or SAR file in a monitored directory, the product installs
the file on the application server and starts the application or module.

After you add an EAR file to a monitored directory, the product creates a temporary copy of the EAR file in
another directory and installs the file on the server. After you add a JAR, WAR, or SAR file to a monitored
directory, the product creates a temporary copy of the archive in another directory, wraps the archive in an
EAR file named archive_extension.ear, and installs the new EAR file. For example, simpleApp.war is
installed as simpleApp_war.ear. The original archive that you added to the monitored directory is not
changed.

You can update application files the same way. If you later add an updated EAR, JAR, WAR, or SAR file
to the same monitored directory, the product stops the previously deployed application, installs the updated
file on the application server, and starts the updated application or module. For example, suppose you
previously deployed my_app.ear by dragging it to a monitored directory. If you later drag a file named
my_app.ear to the monitored directory, the product replaces the previously deployed EAR file with the
updated EAR file that has the same name. The server must be running for the product to notice changes
to files in its monitored directory.

You can use a graphical file browser to drag or copy the EAR, JAR, WAR, or SAR file. Alternatively, you
can use operating system commands to copy a file into a monitored monitoredDeployableApps
subdirectory.

Procedure
1. Ensure that the application server on which you want to install the enterprise application file is running.

2. Ensure that monitored directory deployment is enabled.

See Setting monitored directory deployment values.

194 Developing and deploying applications

3. Browse the file structure of the computer and find the monitored directory.

For base (stand-alone) application servers, the monitored directory is under the application server
profile. The directory path is:

v app_server_root/profiles/application_server_profile_name/monitoredDeployableApps/servers/
server_name

For stand-alone servers, the product creates a monitored server_name directory automatically.

4. Copy the EAR, JAR, WAR, or SAR file that you want to deploy to the monitored directory.

Choose a file that is not already deployed to the target monitored directory, unless you want to update
a currently deployed file.

Results

The product adds a directory having the same name as the file to the installedApps/cell_name directory
of the profile.

Also, the product writes messages about the application deployment to the SystemOut.log file in the
app_server_root/logs/server_name directory. The messages start with the CWLDD message key.

The messages indicate that the product deployed the application file and that the application is running.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Example

Suppose you want to install the sample DynaCacheEsi.ear file by copying the EAR file to a monitored
directory. You can find the sample EAR file in the app_server_root/installableApps directory.

Deploying an EAR file on a stand-alone application server

1. Ensure that the application server on which you want to install the DynaCacheEsi.ear file is running.

To see if the server is running, you can use the serverStatus -all command. To start the server, you
can use the startServer server_name command.

For example, suppose the stand-alone application server has a profile name of AppSrv02. Run the
serverStatus command from a command prompt at the app_server_root/profiles/AppSrv02/bin
directory:
serverStatus -all

If the server is not running, start the server.

For example, to start an application server named server1 on AppSrv02, run the startServer
command from a command prompt at the app_server_root/profiles/AppSrv02/bin directory:
startServer server1

The Server server1 open for e-business message indicates that the server is running.

2. Locate the monitored directory.

For the stand-alone AppSrv02 profile, the monitored directory is app_server_root/profiles/AppSrv02/
monitoredDeployableApps/servers/server1.

3. Copy the DynaCacheEsi.ear file in the app_server_root/installableApps directory to the monitored
directory.

Chapter 12. Deploying enterprise applications 195

4. Verify that the directory for installed applications exists.

v app_server_root/profiles/AppSrv02/installedApps/cell_name/DynaCacheEsi.ear

5. Verify that DynaCacheEsi.ear is in the list of installed enterprise applications and is running.

What to do next

Test the deployed application or module. For example, point a web browser at the URL for a deployed
application and examine the performance of the application.

If the deployment is not successful, read messages in the SystemOut.log file, fix the error condition, and
add the application or module to the monitored directory again.

Setting monitored directory deployment values
Before you can use monitored directory deployment, you must enable it. You can optionally change the
default monitored directory and polling interval values. By default, monitored directory deployment is not
enabled, the monitored directory is app_server_root/monitoredDeployableApps, and the polling interval is 5
seconds.

Before you begin

See topics on monitored directory deployment to determine whether monitored directory deployment offers
a suitable way to deploy your enterprise application files:

v Installing enterprise application files by adding them to a monitored directory

v Installing enterprise application files by adding properties files to a monitored directory

Restriction: Installing an enterprise application file by adding a file to a monitored directory is available
only on distributed and z/OS operating systems. It is not supported on IBM i operating
systems.

About this task

You can use an administrative console or wsadmin scripting to enable or disable monitored directory
deployment and change the monitored directory and polling interval.

A monitoredDirectoryDeployment object has the following attributes:

enabled
Default is false. Set to true to enable monitored directory deployment.

monitoredDirectory
Default is USER_INSTALL_ROOT}/monitoredDeployableApps. Optionally set to a different file system
directory. To change the default monitored directory, specify a different directory path for this
setting. List the entire value for the directory, including the environment variable.

For base (stand-alone) application servers, the default monitored directory is the
monitoredDeployableApps/servers/server_name directory of the application server profile.

pollingInterval
Default is 5 seconds. Optionally set to a different number of seconds. Valid values are 5 or higher.
The product changes 0 (zero) or negative values to 5 when the server starts.

Procedure
v Use the Global deployment settings page of an administrative console to set monitored directory values.

1. Click Applications > Global deployment settings.

2. To enable monitored directory deployment, select Monitor directory to automatically deploy
applications.

196 Developing and deploying applications

To disable monitored directory deployment, clear Monitor directory to automatically deploy
applications.

3. To change the monitored directory path, specify a new value for Monitored directory.

Ensure that the directory that you specified for Monitored directory exists. The product does not
create the directory for you.

4. To change the polling interval, specify the number of seconds for Polling interval.

5. Click Apply.

6. Restart the application server.

To view a default value, after a non-default value is set, clear the field.

v Use wsadmin scripting to set monitored directory values.

1. Start wsadmin at a command prompt for the bin directory of the profile.

2. Set the cell context for the profile to a variable.

Run the AdminConfig getid command and set a variable for the cell name of the profile. For
example, to set the c1 variable to the myNode01Cell cell name, run the following command:

Using Jython:
c1 = AdminConfig.getid(’/Cell:helyarNode01Cell/’)

Using Jacl:
set c1 [$AdminConfig getid /Cell:myNode01Cell/]

3. Set the monitoredDirectoryDeployment attribute of the cell to a variable.

Run the AdminConfig showAttribute command and set a variable for the monitored directory
deployment attribute of the cell. For example, to set the md variable to the
monitoredDirectoryDeployment attribute, run the following command:

Using Jython:
md = AdminConfig.showAttribute(c1, "monitoredDirectoryDeployment")

Using Jacl:
set md [$AdminConfig showAttribute $c1 monitoredDirectoryDeployment]

4. Set monitored directory values.

– To enable monitored directory deployment, run the AdminConfig modify command and set the
enabled attribute to true.

Using Jython:
AdminConfig.modify(md, [[’enabled’, "true"]])

Using Jacl:
$AdminConfig modify $md {{enabled true}}

To disable monitored directory deployment, run the modify command and set the enabled
attribute to false. The product converts values other than true or false to a boolean value of
false.

Using Jython:
AdminConfig.modify(md, [[’enabled’, "false"]])

Using Jacl:
$AdminConfig modify $md {{enabled false}}

– To change the polling interval, run the modify command and set the pollingInterval attribute to
a positive integer. Values other than integers result in a com.ibm.ws.scripting.ScriptingException
error.

Using Jython:
AdminConfig.modify(md, [[’pollingInterval’, "10"]])

Using Jacl:
$AdminConfig modify $md {{pollingInterval 10}}

– To change the monitored directory, run the modify command and set the monitoredDirectory
attribute to a directory on the computer.

Chapter 12. Deploying enterprise applications 197

Using Jython:

AdminConfig.modify(md, [[’monitoredDirectory’, "/newPath"]])

AdminConfig.modify(md, [[’monitoredDirectory’, "C:/newPath"]])

Using Jacl:

$AdminConfig modify $md {{monitoredDirectory /newPath}}

$AdminConfig modify $md {{monitoredDirectory C:/newPath}}

Ensure that the specified monitored directory exists. The product does not create the newPath
directory for you.

– To clear an attribute value and reset it to the default value, run the unsetAttributes command.

Using Jython:
AdminConfig.unsetAttributes(md, ’enabled’)

AdminConfig.unsetAttributes(md, ’pollingInterval’)

AdminConfig.unsetAttributes(md, ’monitoredDirectory’)

Using Jacl:
$AdminConfig unsetAttributes $md {enabled}

$AdminConfig unsetAttributes $md {pollingInterval}

$AdminConfig unsetAttributes $md {monitoredDirectory}

5. To view monitored directory values, run the AdminConfig show command.

Using Jython:
print AdminConfig.show(md)

Using Jacl:
$AdminConfig show $md

Running the show command displays attribute values such as the following:
[enabled false]
[monitoredDirectory ${USER_INSTALL_ROOT}/monitoredDeployableApps]
[pollingInterval 5]

6. Save configuration changes.

Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

7. Restart the application server.

Results

The product sets monitored directory deployment attributes to the values that you specified.

What to do next

If you enabled monitored directory deployment, deploy your applications by adding files to a monitored
directory.

198 Developing and deploying applications

Global deployment settings
Use this page to manage settings that apply to all applications or to a subset of application types.

You can also use this page to change settings for monitored directory deployment.

Restriction: Monitored directory deployment is available only on distributed or z/OS operating systems. It
is not supported on IBM i operating systems.

To view this administrative console page, click Applications > Global deployment settings.

Monitor directory to automatically deploy applications:

Specifies whether to enable monitored directory deployment.

You can use monitored directory deployment to install or update an enterprise application file on an
application server, or to uninstall an application file that was previously installed using monitored directory
deployment.

You can install or update an application file by dragging or copying an enterprise archive (EAR), web
archive (WAR), Java archive (JAR), or Session Initiation Protocol (SIP) archive (SAR) to a monitored
directory. The application file must conform to the Java Platform, Enterprise Edition (Java EE)
specification. To uninstall a deployed application file, remove it from the monitored directory.

You can also install, update, or uninstall an application file by dragging or copying an application properties
file to a monitored directory. The properties file must specify the deployment actions to be performed.

By default, monitored directory deployment is disabled.

Information Value
Data type Boolean
Default false (clear checkbox)

Monitored directory:

Specifies the directory to use for monitored directory deployment. The default monitored directory is
monitoredDeployableApps. Using this setting, you can specify a different default monitored directory.

For deployment by dragging or copying an enterprise application file to a monitored directory, the directory
to which you add enterprise application files depends upon the product profile:

v For base (stand-alone) application servers, the default monitored directory is the
monitoredDeployableApps/servers/server_name directory of the application server profile.

For deployment using properties files, the monitored directory is a subdirectory, named
deploymentProperties, of the directory specified by this setting; for example, monitoredDeployableApps/
deploymentProperties.

To change the default monitored directory, specify a different directory path for this setting. List the entire
value for the directory, including the environment variable. You must select the Monitor directory to
automatically deploy applications option to change this setting.

To view the default value, after a non-default value is set, clear the field.

Information Value
Data type String
Default ${USER_INSTALL_ROOT}/monitoredDeployableApps

Chapter 12. Deploying enterprise applications 199

Polling interval:

Specifies the number of seconds that elapse before the product scans a monitored directory for new
applications.

The product scans a monitored directory for new applications no more frequently than every 5 seconds, by
default.

To change this setting, specify a value of 5 or higher. The product changes 0 (zero) or negative values to 5
when the server starts. Monitor directory to automatically deploy applications must be enabled to
change this setting.

To view the default value, after a non-default value is set, clear the field.

Information Value
Data type Integer
Default 5

Installing enterprise application files by adding properties files to a
monitored directory
You can use application properties files to install enterprise application files on a server, update deployed
applications or modules, or uninstall deployed applications or modules. Drag or copy a properties file to a
monitored directory and the product performs the deployment action described in the properties file. The
enterprise application files that you can install, update, or uninstall using properties files include enterprise
archive (EAR), web archive (WAR), Java archive (JAR), and Session Initiation Protocol (SIP) archive
(SAR) files. An enterprise application file must conform to the Java Platform, Enterprise Edition (Java EE)
specification.

Before you begin

Develop and assemble the EAR, JAR, WAR, or SAR file. You can use a supported assembly tool such as
an IBM Rational Application Developer for WebSphere Software product to specify bindings and assemble
the file.

Unlike the procedure described in Installing enterprise application files by adding them to a monitored
directory, which does not change existing Java Naming and Directory (JNDI) and other application
bindings, you can set bindings in a properties file.

By default, monitored directory deployment is not enabled. Before you can use monitored directory
deployment, you must enable it. See Setting monitored directory deployment values.

Restriction: Installing an EAR, JAR, WAR, or SAR file by adding a properties file to a monitored directory
is available only on distributed or z/OS operating systems. It is not supported on IBM i
operating systems.

About this task

You can deploy an EAR, JAR, WAR, or SAR file to an application server by dragging or copying an
application properties file to a monitoredDeployableApps/deploymentProperties monitored directory. The
product scans a monitored directory for new properties files no more frequently than every 5 seconds, by
default. After finding a new properties file in a monitored directory, the product automatically runs the
wsadmin applyConfigProperties command, installs the application or module on the application server,
and starts the application or module.

200 Developing and deploying applications

You do not need to start wsadmin or enter any commands to deploy the application or module. Simply add
a properties file to a monitored directory. The product runs the wsadmin applyConfigProperties command
for you.

You can also use a properties file to update or delete a deployed application or module. The server must
be running so that the product can detect changes to files in its monitored directory.

This topic assumes that you use a graphical file browser to drag or copy the properties file. Alternatively,
you can use operating system commands to copy a file into a monitoredDeployableApps/
deploymentProperties monitored directory.

Procedure
1. Create a properties file that defines the deployment task you want to complete.

The examples at the end of this topic provides sample application properties files for use in monitored
directories.

The properties files that you use in monitored directories are like the properties files described in the
topic about using application properties files to install, update, and delete enterprise application files.
However, properties files that are used for monitored directories differ slightly:

v You do not need to specify statements such as CreateDeleteCommandProperties=true in the header.

v To uninstall an enterprise application, you specify DELETE=true in the header of the properties
section.

Only specify application resource type operations, ImplementingResourceType=Application, in the
properties file. If the properties file contains a non-application resource type such as
ImplementingResourceType=Server, the product will return an error message and not perform the
operation on the resource type.

You can use an edited properties file to install or update an application. To extract the properties file of
a deployed enterprise application to edit or use as a template, run the extractConfigProperties
command:

v Extract application properties to a file that uses the old application output format.
AdminTask.extractConfigProperties(’[-propertiesFileName myApp.props -configData Deployment=MyApplication]’)

Running this Jython example produces a file named myApp.props that lists the properties of an
Application configuration object named MyApplication. By default, the extractConfigProperties
command produces output that displays all columns, including hidden and non-hidden columns, of
install task and task data values in separate rows. The mutables row shows which columns you can
edit (true) and which you cannot edit (false).
...
taskName=MapModulesToServers
mutables={false false true false false false} #readonly
row0={module uri server ModuleVersion moduletype moduletypeDisplay} # readonly

...

This format is shown in the example Install an enterprise application with various task options using
the old application output format.

v Extract application properties to a file that uses the simple output format.
AdminTask.extractConfigProperties(’[-propertiesFileName myApp.props -configData Deployment=MyApplication

-options [[SimpleOutputFormat true]]]’)

Running this Jython example with the SimpleOutputFormat option set to true produces a file named
myApp.props that lists the properties of an Application configuration object named MyApplication in
an easier to read format. The output displays non-hidden columns of application properties in
columnName=value pairs. Hidden columns of application properties are not included in the output.
...
taskName=MapModulesToServers
row0={ module="My EJB Module" #readonly

uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
server=WebSphere:cell=!{cellName},node=!{nodeName},
server=!{serverName} }

...

Chapter 12. Deploying enterprise applications 201

This format is shown in the example Install an enterprise application with various task options using
the simple output format.

For more information about extracting application properties and the output formats, see the topic on
using application properties files to install, update, and delete enterprise application files.

2. Ensure that the application server on which you want to install the enterprise application file is running.

3. Ensure that monitored directory deployment is enabled.

See Setting monitored directory deployment values.

4. Open a file browser and create the deploymentProperties monitored directory.

For base (stand-alone) application servers, the monitored directory is under the application server
profile. After you create the deploymentProperties directory, the directory path is app_server_root/
profiles/application_server_profile_name/monitoredDeployableApps/deploymentProperties.

5. Copy the properties file to the deploymentProperties monitored directory.

Results

The product adds a directory having the same name as the file to the installedApps/cell_name directory
of the profile.

Also, the product writes messages about the application deployment to the SystemOut.log file in the
app_server_root/logs/server_name directory. The messages start with the CWLDD message key.

The messages indicate that the product deployed the application file and that the application is running.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Example

The following example properties files provide templates that you can modify to deploy your applications:
v Install an enterprise application on a deployment target
v Install an enterprise application with various task options using the old application output format
v Install an enterprise application with various task options using the simple output format
v Update a single file in a deployed enterprise application
v Remove a single file from a deployed enterprise application
v Update a single module in a deployed enterprise application
v Remove a single module from a deployed enterprise application
v Replace, add, or delete multiple files of a deployed enterprise application
v Replace the entire deployed enterprise application
v Uninstall an application from a deployment target
v Edit the deployment options of a deployed application
v Edit web module deployment properties

Install an enterprise application on a deployment target

Table 27. Required properties. Specify the properties in this table in the properties file.

Property Description

Name Specifies the name of application to install.

TargetServer Specifies the name of server on which application to be installed

202 Developing and deploying applications

Table 27. Required properties (continued). Specify the properties in this table in the properties file.

Property Description

TargetNode Specifies the name of node on which application to install

EarFileLocation Specifies the location of the enterprise archive (EAR file). Provide a fully qualified path
name.

#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
TargetServer=!{serverName}
TargetNode=!{nodeName}
EarFileLocation=/temp/HelloWorld.ear
#TargetCluster=cluster1

EnvironmentVariablesSection
#
#
#Environment Variables
cellName=myCell
nodeName=myNode
serverName=myServer

Install an enterprise application with various task options using the old application output format

The example properties install an enterprise application with task options. The properties file displays all
columns, including hidden and non-hidden columns, of install task and task data values in separate rows.
The mutables row shows which columns you can edit (true) and which you cannot edit (false).
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}
EarFileLocation=c:/temp/HelloWorld.ear

#
SubSection 1.0.2 # MapModulesToServers Section. taskName
and row0 should not be edited. row0 contains column names
for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapModulesToServers
mutables={false false true false false false} #readonly
row0={module uri server ModuleVersion moduletype moduletypeDisplay} # readonly
row1={“My Web Module” myWebModule.war,WEB-INF/web.xml
WebSphere:cell=!{cellName},node=!{nodeName},server=!{serverName} 14
moduletype.web "Web Module"}
row2={"My EJB module" MyEjbModule.jar,META-INF/ejb-jar.xml
WebSphere:cell=!{cellName},node=!{nodeName},server=
!{serverName} 13 moduletype.ejb "EJB Module"}

Chapter 12. Deploying enterprise applications 203

#
SubSection 1.0.3 # MapRolesToUsers Section. taskName and
row0 should not be edited. row0 contains column names for
the tasks.
#ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapRolesToUsers
row0={role role.everyone role.all.auth.user role.user
role.group role.all.auth.realms role.user.access.ids
role.group.access.ids} #readonly
mutables={false true true true true true true true}
#readonly
row1={administrator AppDeploymentOption.No
AppDeploymentOption.No "adminuser" "admingroup"
AppDeploymentOption.No "" ""}

#
SubSection 1.0.4 # BindJndiForEJBNonMessageBinding
Section. taskName and row0 should not be edited. row0
contains column names for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#Properties
#
taskName=BindJndiForEJBNonMessageBinding
row0={EJBModule EJB uri JNDI ModuleVersion
localHomeJndi remoteHomeJndi} #readonly
mutables={false false false true false true true} #readonly
row1={"My EJB module" myEjb myEjbModule.jar,META-INF/ejb-
jar.xml myEjb 20 "" “"}

#
SubSection 1.0.5 # MapEJBRefToEJB Section. taskName and
row0 should not be edited. row0 contains column names for
the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#Properties
#
taskName=MapEJBRefToEJB
row0={module EJB uri referenceBinding class JNDI
ModuleVersion} #readonly
mutables={false false false false false true false}
#readonly
row1={"My EJB module" myEJB MyEjbModule.jar,META-INF/ejb-
jar.xml myEJB com.ibm.defaultapplication.Increment
Increment 23}

#
SubSection 1.0.6 # DataSourceFor20EJBModules Section.
taskName and row0 should not be edited. row0 contains

204 Developing and deploying applications

column names for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#
#Properties
#
taskName=DataSourceFor20EJBModules
row0={AppVersion EJBModule uri JNDI resAuth
login.config.name auth.props dataSourceProps} #readonly
mutables={false false false true true true true true}
#readonly
row1={13 "My EJB module" MyEjbModule.jar,META-INF/ejb-
jar.xml MyDataSource cmpBinding.perConnectionFactory "" ""
""}

#
SubSection 1.0.7 # DataSourceFor20CMPBeans Section.
taskName and row0 should not be edited. row0 contains
column names for the task.#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=DataSourceFor20CMPBeans
row0={AppVersion EJBVersion EJBModule EJB uri JNDI resAuth
login.config.name auth.props} #readonly
mutables={false false false false false true true true
true} #readonly
row1={13 13 "My EJB module" MyEjb MyEjbModule.jar,META-
INF/ejb-jar.xml myDataSource
cmpBinding.perConnectionFactory "" ""}

#
SubSection 1.0.8 # MapWebModToVH Section. taskName and
row0 should not be edited. row0 contains column names for
the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}

#
Properties
#
taskName=MapWebModToVH
row0={webModule uri virtualHost} #readonly
mutables={false false true} #readonly
row1={"My Web Application" MyWebModule.war,WEB-INF/web.xml
default_host}
#

#
SubSection 1.0.9 # CtxRootForWebMod Section. taskName and
row0 should not be edited. row0 contains column names for
the task.#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties

Chapter 12. Deploying enterprise applications 205

#
taskName=CtxRootForWebMod
row0={webModule uri web.contextroot} #readonly
mutables={false false true} #readonly
row1={"My Web Application" MyWebModule.war,WEB-INF/web.xml
/}

#
SubSection 1.0.10 # MapSharedLibForMod Section. taskName
and row0 should not be edited. row0 contains column names
for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapSharedLibForMod
row0={module uri sharedLibName} #readonly
mutables={false false true} #readonly
row2={"My Web Application" MyWebModule.war,WEB-INF/web.xml
""}
row1={myApp META-INF/application.xml ""}#

#
SubSection 1.0.11 # JSPReloadForWebMod Section. taskName
and row0 should not be edited. row0 contains column names
for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=JSPReloadForWebMod
row0={webModule uri jspReloadEnabled jspReloadInterval}
#readonly
mutables={false false true true} #readonly
row1={"My Web Application" MyWebModule.war,WEB-INF/ibm-web-
ext.xmi AppDeploymentOption.Yes}
#

#
SubSection 1.0.35 # SharedLibRelationship Section.
taskName and row0 should not be edited. row0 contains
column names for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=SharedLibRelationship
row0={module uri relationship compUnitName matchTarget
origRelationship} #readonly
mutables={false false true true true false} #readonly
row2={"My Web Application" MyWebModule.war,WEB-INF/web.xml
"" "" AppDeploymentOption.Yes ""}
row1={myApp META-INF/application.xml "" ""
AppDeploymentOption.Yes ""}

206 Developing and deploying applications

#

EnvironmentVariablesSection
#
Environment Variables
#
applicationName=myApp
cellName=myCell
nodeName=myNode
serverName=myServer

Install an enterprise application with various task options using the simple output format

The example properties install an enterprise application with task options. The example shows application
properties that have been extracted with the SimpleOutputFormat option. With this option, the properties
file displays non-hidden columns of application properties in columnName=value pairs. Hidden columns of
application properties are not included in the output. You might find that extracting application properties
files with the SimpleOutputFormat option produces a format that is easier to read and edit.
#

Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}
EarFileLocation=c:/temp/HelloWorld.ear

#
SubSection 1.0.2 # MapModulesToServers Section. taskName
and lines marked as "#readonly" should not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapModulesToServers
row0={ module="My EJB Module" #readonly

uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
server=WebSphere:cell=!{cellName},node=!{nodeName},
server=!{serverName} }

row1={ module="My Web Module" #readonly
uri=myWebModule.war,WEB-INF/web.xml #readonly
server=WebSphere:cell=!{cellName},node=!{nodeName},
server=!{serverName} }

#
SubSection 1.0.3 # MapRolesToUsers Section. taskName and
lines marked as "#readonly" should not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapRolesToUsers
row0={ role="All Role" #readonly

role.everyone=AppDeploymentOption.No
role.all.auth.user=AppDeploymentOption.Yes
role.user=""
role.group=""

Chapter 12. Deploying enterprise applications 207

role.all.auth.realms=AppDeploymentOption.No
role.user.access.ids=""
role.group.access.ids="" }

#
SubSection 1.0.4 # BindJndiForEJBNonMessageBinding
Section. taskName and lines marked as "#readonly" should
not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#Properties
#
taskName=BindJndiForEJBNonMessageBinding
row0={ EJBModule="My EJB Module" #readonly

EJB=myEjb #readonly
uri=myEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=myEjb
localHomeJndi=""
remoteHomeJndi="" }

#
SubSection 1.0.5 # MapEJBRefToEJB Section. taskName and
lines marked as "#readonly" should not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#Properties
#
taskName=MapEJBRefToEJB
row0={ module="My EJB Module" #readonly

EJB=myEJB #readonly
uri=MyejbModule.jar,META-INF/ejb-jar.xml #readonly
referenceBinding=myEJB #readonly
class=com.ibm.defaultapplication.Increment #readonly
JNDI=myejb }

#
SubSection 1.0.6 # DataSourceFor20EJBModules Section.
taskName and lines marked as "#readonly" should not be
edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
#
#Properties
#
taskName=DataSourceFor20EJBModules
row0={ EJBModule="My EJB Module"

#readonly
uri=myEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=MyDatasource
resAuth=cmpBinding.perConnectionFactory
login.config.name=""
auth.props=""

208 Developing and deploying applications

dataSourceProps="" }

#
SubSection 1.0.7 # DataSourceFor20CMPBeans Section.
taskName and lines marked as "#readonly" should not be
edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=DataSourceFor20CMPBeans
row0={ EJBModule="My EJB Module” #readonly

EJB=MyEjb #readonly
uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=MyDatasource
resAuth=cmpBinding.perConnectionFactory
login.config.name=""
auth.props="" }

#
SubSection 1.0.8 # MapWebModToVH Section. taskName and
lines marked as "#readonly" should not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}

#
Properties
#
taskName=MapWebModToVH
row0={ webModule="My Web Application" #readonly

uri=myWebModule.war,WEB-INF/web.xml
#readonly
virtualHost=default_host }

#
SubSection 1.0.9 # CtxRootForWebMod Section. taskName and
lines marked as "#readonly" should not be edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

Properties
#
taskName=CtxRootForWebMod
row0={ webModule="My Web Application" #readonly

uri=myWebModule.war,WEB-INF/web.xml
#readonly
web.contextroot=/ }

#
SubSection 1.0.10 # MapSharedLibForMod Section.
taskName and lines marked as "#readonly" should not be
edited.
#
ResourceType=Application
ImplementingResourceType=Application

Chapter 12. Deploying enterprise applications 209

ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=MapSharedLibForMod
row0={ module=myApp” #readonly

uri=META-INF/application.xml #readonly
sharedLibName="" }

row1={ module="My Web Application" #readonly
uri=MyWebModule.war,WEB-INF/web.xml #readonly
sharedLibName="" }

#
SubSection 1.0.11 # JSPReloadForWebMod Section. taskName
and lines marked as "#readonly" should not be
edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=JSPReloadForWebMod
row0={ webModule="My Web Application" #readonly

uri=MyWebModule.war,WEB-INF/web.xml
#readonly

jspReloadEnabled=AppDeploymentOption.Yes
jspReloadInterval=10 }

#
SubSection 1.0.35 # SharedLibRelationship Section.
taskName and lines marked as "#readonly" should not be
edited.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=SharedLibRelationship
row0={ module=myApp #readonly

uri=META-INF/application.xml #readonly
relationship=""
matchTarget=AppDeploymentOption.Yes }

row1={ module="My Web Application" #readonly
uri=MyWebModule.war,WEB-INF/web.xml
#readonly
relationship=""
matchTarget=AppDeploymentOption.Yes }

EnvironmentVariablesSection
#
Environment Variables
#
applicationName=myApp
cellName=myCell
nodeName=myNode
serverName=myServer

Update a single file in a deployed enterprise application

210 Developing and deploying applications

The example properties add a single file to a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
Update=true
operationType=add
contentType=file
contentURI=test.war/com/ibm/addMe.jsp
contentFile=/temp/addMe.jsp

Remove a single file from a deployed enterprise application

The example properties delete a single file from a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
Update=true
operationType=delete
contentType=file
contentURI=test.war/com/ibm/addMe.jsp

Update a single module in a deployed enterprise application

The example properties add a single module to a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
Update=true
operationType=add
contentType=moduleFile
#contextRoot=”/mywebapp” # required for web module only
contentURI=Increment.jar
contentFile=/apps/app1/Increment.jar
deployEJB=false

Remove a single module from a deployed enterprise application

The example properties delete a single module from a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello

Chapter 12. Deploying enterprise applications 211

Update=true
operationType=delete
contentType=moduleFile
contentURI=test.war

Replace, add, or delete multiple files of a deployed enterprise application

This option specifies to update multiple files of an installed application by uploading a compressed file.
Depending on the contents of the compressed file, a single use of this option can replace files in, add new
files to, and delete files from the installed application. Each entry in the compressed file is treated as a
single file and the path of the file from the root of the compressed file is treated as the relative path of the
file in the installed application.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in
the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative
path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the
module, if the file is inside a module, and the relative path of the file from the root of the module separated
by a forward slash (/).

To remove a file from the installed application, specify metadata in the compressed file using a file named
META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must
be an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can
contain a string pattern such as a regular expression that identifies multiple files. The file paths for the files
to be deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

For more information about the metadata .props file to include in compressed files, see the "Replace, add,
or delete multiple files" section in Preparing for application update settings.

The example properties use the myAppPartial.zip compressed file to update a deployed application
named hello:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
Update=true
operationType=update
contentType=partialapp
contentFile=/temp/MyApp/myAppPartial.zip

Replace the entire deployed enterprise application

The example properties update the entire deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello
Update=true

212 Developing and deploying applications

operationType=update
contentType=app
contentFile=/apps/app1/newApp1.ear
useDefaultBindings=true

Uninstall an application from a deployment target

The example properties uninstall a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application
DELETE=true

Properties
Name=hello

Edit the deployment options of a deployed application

The example properties update the deployment options of a deployed application:
#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}

#
SubSection 1.0.1 # AppDeploymentOptions Section. taskName
and row0 should not be edited. row0 contains column names
for the task.
#
ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#
Properties
#
taskName=AppDeploymentOptions
row1={$(APP_INSTALL_ROOT)/$(CELL)
AppDeploymentOption.Yes
AppDeploymentOption.No
AppDeploymentOption.No
AppDeploymentOption.No
""
off .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755
"WASX.SERV1 [x0617.27]"
AppDeploymentOption.No
AppDeploymentOption.No}
mutables={true true true true true true true true false true true}
row0={installed.ear.destination
distributeApp
useMetaDataFromBinary
createMBeansForResources
reloadEnabled
reloadInterval
validateinstall
filepermission
buildVersion
allowDispatchRemoteInclude
allowServiceRemoteInclude} #readonly

#
EnvironmentVariablesSection

Chapter 12. Deploying enterprise applications 213

#
#
#Environment Variables
applicationName=newhello

Edit web module deployment properties

The example properties edit the deployment properties of a web module:
#
WebModuleDeployment
#
ResourceType=WebModuleDeployment
ImplementingResourceType=Application
ResourceId=Cell=!{cellName}:Deployment=!{applicationName}:ApplicationDeployment=
:WebModuleDeployment=uri#web.war

#
#Properties
#
startingWeight=90000 #integer,required,default(1)
deploymentId=1 #required
classloaderMode=PARENT_FIRST ENUM(PARENT_FIRST|PARENT_LAST),default(PARENT_FIRST)
altDD=null
uri=web.war #required
#applicationDeployment=Cell=!{cellName}:Deployment=!{applicationName}:ApplicationDeployment=
#ObjectName(ApplicationDeployment)

EnvironmentVariablesSection
#
#
#Environment Variables
cellName=myCell
applicationName=myApp

What to do next

If the properties file deploys an application or module, test the deployed application or module. For
example, enter the URL for a deployed application in a web browser and examine the performance of the
application.

If the deployment is not successful, read messages in the SystemOut.log file, fix the error condition, and
add the properties file to the monitored directory again.

Installing enterprise modules with JSR-88
You can install Java Platform, Enterprise Edition (Java EE) modules on an application server provided by
a WebSphere Application Server product using the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) was
deprecated in WebSphere Application Server Version 8.0. Use another option to deploy applications
to a server. The closest option to using the Java EE Deployment API is using Java Management
Extensions (JMX) MBean programming. For information on deployment options, see “Ways to
install enterprise applications or modules.”

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of Java EE
applications and stand-alone modules to Java EE product platforms. The Java EE Application Deployment

214 Developing and deploying applications

specification Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/
index.html as part of the Java 2 Platform, Enterprise Edition (J2EE) 1.4 Application Server Developer
Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/
deployment/.

About this task

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors
to configure, deploy and manage applications on any Java EE product platform. The tool provider typically
supplies software tools and an integrated development environment (IDE) for developing and assembly of
Java EE application modules. The Java EE platform provides application management functions that
deploy, undeploy, start, stop, and otherwise manage Java EE applications.

WebSphere Application Server is a Java EE specification-compliant platform that implements the JSR-88
APIs. Complete the following steps to deploy (install) Java EE modules on an application server provided
by the WebSphere Application Server platform.

Procedure
1. Code a Java program that can access the JSR-88 DeploymentManager class for the product.

a. Write code that finds the JAR manifest attribute J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest attribute
J2EE-DeploymentFactory-Implementation-Class. The following product application management
JAR files contain this attribute and provide support.

Table 28. JAR files that contain the manifest attribute. Enable your code to find the DeploymentFactory using the
JAR manifest attribute.

Environment JAR file containing the manifest attribute

Application server app_server_root/plugins/com.ibm.ws.admin.services.jar

Application client app_client_root/plugins/com.ibm.ws.j2ee.client.jar

Thin application client app_client_root/runtimes/com.ibm.ws.admin.client_8.0.0.jar

After your code finds the DeploymentFactory, the deployment tool can create an instance of the
WebSphere DeploymentFactory and register the instance with its DeploymentFactoryManager.

Example code for the application server environment follows. The example code requires that you
use the development kit shipped with the product or use the pluggable client for deployment of
stand-alone modules. See WebSphere Application Server detailed system requirements at
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921 for information on supported
development kits.
import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;
import javax.enterprise.deploy.spi.DeploymentManager;
import javax.enterprise.deploy.spi.factories.DeploymentFactory;
import java.util.jar.JarFile;
import java.util.jar.Manifest;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.
File jsr88Jar = new File(wasHome + "/plugins/com.ibm.ws.admin.services.jar");
JarFile jarFile = new JarFile(jsr88Jar);
Manifest manifest = jarFile.getManifest();
Attributes attributes = manifest.getMainAttributes();
String key = "J2EE-DeploymentFactory-Implementation-Class";
String className = attributes.getValue(key);
// Get an instance of the DeploymentFactoryManager
DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.
Class deploymentFactory = Class.forName(className);
DeploymentFactory deploymentFactoryInstance =

Chapter 12. Deploying enterprise applications 215

(DeploymentFactory) deploymentFactory.newInstance();

// Register the DeploymentFactory instance with the DeploymentFactoryManager.
dfm.registerDeploymentFactory(deploymentFactoryInstance);

// Provide WebSphere Application Server URI, user ID, and password.
// For more information, see the step that follows.
wsDM = dfm.getDeploymentManager(

"deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for the product.

The product URI for deployment has the following format:
"deployer:WebSphere:host:port"

The example in the previous step, "deployer:WebSphere:myserver:8880", tries to connect to host
myserver at port 8880 using the SOAP connector, which is the default.

You can specify an Internet Protocol Version 6 (IPv6) address for the host element in the URI for
deployment. Enclose the IPv6 address in square brackets ([]); for example:
"deployer:WebSphere:[IPv6_address]:port"

Also, you can add an optional parameter, connectorType, to the URI for deployment. For example,
to use the RMI connector to access myserver, code the URI as follows:
"deployer:WebSphere:myserver:2809?connectorType=RMI"

2. Optional: Code a Java program that can customize or deploy Java EE applications or modules using
the JSR-88 support provided by the product.

3. Start the deployed Java EE applications or stand-alone Java EE modules using the JSR-88 API used
to start applications or modules.

What to do next

Test the deployed applications or modules. For example, point a web browser at the URL for a deployed
application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans
You can configure Java Platform, Enterprise Edition (Java EE) applications or stand-alone modules during
deployment using the DConfigBean class in the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) was
deprecated in WebSphere Application Server Version 8.0. Use another option to deploy applications
to a server. The closest option to using the Java EE Deployment API is using Java Management
Extensions (JMX) MBean programming. For information on deployment options, see “Ways to
install enterprise applications or modules.”

This topic assumes that you are deploying (installing) Java EE modules on an application server provided
by the product using the WebSphere Application Server support for JSR-88.

Read about the JSR-88 specification and using the DConfigBean class at http://java.sun.com/j2ee/tools/
deployment/.

About this task

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of
J2EE applications and modules during deployment. Your code can inspect DConfigBean instances to get
platform-specific configuration attributes. The DConfigBean instances provided by WebSphere Application
Server contain a single attribute which has an array of java.util.Map objects. The map entries contain

216 Developing and deploying applications

http://java.sun.com/j2ee/tools/deployment/
http://java.sun.com/j2ee/tools/deployment/

configuration attributes, for which your code can get and set values.

Procedure
1. Write code that installs Java EE modules on an application server using JSR-88.

2. Write code that accesses DConfigBeans generated by the product during JSR-88 deployment. You (or
a deployer) can then customize the accessed DConfigBeans instances.

The following pseudocode shows how a Java EE tool provider can get DConfigBean instance
attributes generated by the product during JSR-88 deployment and set values for the attributes.
import javax.enterprise.deploy.model.*;
import javax.enterprise.deploy.spi.*;
{
DeploymentConfiguration dConfig = ___; // Get from DeploymentManager
DDBeanRoot ddRoot = ___; // Provided by J2EE tool

// Obtain root bean.
DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot(dr);

// Configure DConfigBean.
configureDCBean (dcRoot);
}

// Get children from DConfigBeanRoot and configure each child.
method configureDCBean (DConfigBean dcBean)
{

// Get DConfigBean attributes for a given archive.
BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());
IndexedPropertyDescriptor ipDesc =

(IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

// Get the 0th map.
int index = 0;
Map map = (Map)

ipDesc.getIndexedReadMethod().invoke
(dcBean, new Object[]{new Integer(index)});

while (map != null)
{

// Iterate over the map and set values for attributes.

// Set the map back into the DCBean.
ipDesc.getIndexedWriteMethod().invoke

(dcBean, new Object[]{new Integer(index), map});

// Get the next entry in the indexed property
map = (Map)

ipDesc.getIndexedReadMethod().invoke
(dcBean, new Object[]{new Integer(++index)});

}
}

Chapter 12. Deploying enterprise applications 217

218 Developing and deploying applications

Chapter 13. Deploying and administering business-level
applications

Deploying a business-level application consists of creating the business-level application on a Version 7.0
or later server.

Before you begin

A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. It is a WebSphere configuration artifact, similar to a server, that is
stored in the product configuration repository. A business-level application can contain artifacts such as
Java Platform, Enterprise Edition (Java EE) applications or modules, shared libraries, data files, and other
business-level applications. You might use a business-level application to group related artifacts or to add
capability to an existing application. For example, suppose you want to add capability provided in a Java
archive (JAR) to a Java EE application already deployed on a product server. You can add that capability
by creating a new business-level application and adding the JAR file and the deployed Java EE application
to the business-level application. In some cases, you do not even need to change the deployed Java EE
application configuration to add the capability.

Before creating a business-level application, you must develop the artifacts to go in the application and
configure the target server. Before choosing a deployment target for the application, ensure that the target
version is 7.0 or later.

About this task

When creating a business-level application, you can configure the application enough to enable it to run on
the server. Later, you can configure the application and its contents further, start or stop the application,
and otherwise manage its activity.

The topics in this section describe how to deploy and administer a business-level application or its
contents using the administrative console. You can also use programming or wsadmin scripting.

Procedure
v Import assets to a repository.

v View, delete, update, or export assets.

v Create a business-level application.

v Start the application.

v Stop the application.

v Update the application and its configuration units.

v Delete the application.

What to do next

After making changes to administrative configurations of your applications in the administrative console,
ensure that you save the changes.

Business-level applications
A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. A business-level application is a WebSphere configuration artifact,
similar to a server or cluster, that is stored in the product configuration repository.
v Business-level application characteristics

© Copyright IBM Corp. 2012 219

v Comparisons to Java EE applications

Business-level application characteristics

A business-level application has the following characteristics:

v A business-level application is an administration model of the definition of an enterprise-level application
that consists of WebSphere and non-WebSphere artifacts. The business-level application might not
explicitly manage the lifecycle of every artifact. It is a model for defining an application.

v A business-level application does not represent or contain application binary files. It is a configuration
that lists one or more composition units, which represent the application binary files. A business-level
application uses the binary files to run the application business logic. Administration of binary files is
separate from administration of the application definition.

v A business-level application supports recursive composition by reference that facilitates hierarchical
assembly of business-level applications and individual deployed artifacts within or outside a WebSphere
product. The composition at its lowest level consists of configured instances of application binary files
that run in a specific runtime environment such as an application server. Installable packages or
archives, such as Java archives (JAR) or enterprise archive (EAR) files, typically deliver the business
logic that these configured instances represent to corresponding runtime platforms.

The following diagram shows the composition model for business-level applications:

Composition
Application

EJB
module

Configuration

Library Web
module

Enterprise
application

Business Logic

EJB JAR

Java
library

WAR EAR

Application
Application

A business-level application does not introduce new programming, runtime, or packaging models:

v You do not need to change your application business logic. The business-level application function does
not introduce new application programming interfaces (APIs).

v You do not need to change your application runtime settings. The product supports all of the runtime
characteristics, such as security, class loading and isolation, required by individual programming models
to which business components are written.

v You do not need to change your application packaging. There is no specific unique packaging model
that provides a business-level application definition.

Typically, you first create an empty business-level application and then add composition units to it. The
business-level application name must be unique within a cell. The business level application itself has
minimal configuration data associated with it, solely the list of composition units, but individual composition
units might save application-specific configuration data.

220 Developing and deploying applications

A business-level application is defined in the product configuration repository under profile_root/config/
cells/cell_name/blas/business_level_application_name/bver/BASE/bla.xml.

Comparisons to Java EE applications

Business-level applications can consist of or aggregate Java Platform, Enterprise Edition (Java EE)
applications and modules with non-Java EE artifacts. The contents of Java EE applications integrate with
business-level application concepts for deployment and management of applications. Existing Java EE
application management APIs continue to work after you add Java EE application or modules to a
business-level application. The business-level application management API accepts Java EE contents and
configurations and delegates to existing Java EE management APIs. Control operations such as starting
and stopping a Java EE composition unit are delegated to ApplicationManager MBean on application
servers that start and stop Java EE applications.

Table 29. Java EE concepts compared to business-level application concepts. Business-level application concepts
include assets, composition units, and deployable units.

Java EE concept
Business-level application
concept Description

EAR or stand-alone
module for
deployment

Asset Java EE application contents are assets.

Java EE application
created at the end of
application install

Composition unit A Java EE application is in an enterprise archive (EAR)
file. The product saves the EAR file in the product
repository as a composition unit.

Java EE modules
within the EAR file

Deployable units in the asset Each module in the EAR file is a deployable unit that you
can install on independent deployment targets. The EAR
file is still managed as a single asset in its entirety.

Java EE application
installation using the
administrative
console,
programming, or
wsadmin commands

Multiple business-level
application management
commands

During Java EE application
deployment, you can specify the
name of the business-level
application to include the Java
EE application. If the
business-level application name
is not set, the product creates a
default business-level
application with the same name
as the Java EE application
name. The product adds a
composition unit with the same
name as the Java EE
application name under the
business-level application. You
can deploy multiple Java EE
applications under a single
business-level application.

You can make a Java EE application a business-level
application and add it to another business-level application:

1. Install the Java EE application (EAR file) using the
enterprise application installation console wizard,
programming, or wsadmin. Keep the default selection
to create a business-level application that has the
same name as the Java EE application.

2. Create an empty business-level application.

3. Add the EAR file business-level application to the
empty business-level application. The EAR file
business-level application is a composition unit of the
containing business-level application.

Or, you can make a Java EE application an asset and add
it to another business-level application:

1. Import an EAR file as an asset. It has an asset type
aspect of Java EE ear.

2. Create an empty business-level application.

3. Add the Java EE application asset to the business-level
application. The EAR file asset is a composition unit of
the containing business-level application.

4. Collect targets for each deployable unit (Java EE
module).

Uninstall Java EE
application

Multiple business-level
application management
commands

You delete the Java EE application composition unit from
the business-level application:

1. Remove the composition unit for the Java EE
application from the business-level application.

2. If the EAR file is an asset, delete the asset.

Chapter 13. Deploying and administering business-level applications 221

Table 29. Java EE concepts compared to business-level application concepts (continued). Business-level application
concepts include assets, composition units, and deployable units.

Java EE concept
Business-level application
concept Description

Start the Java EE
application.

Start the composition unit. Starting a business-level application starts any Java EE
application in it.

Stop the Java EE
application.

Stop the composition unit. Stopping a business-level application stops any Java EE
application in it.

Assets
An asset represents one or more application binary files that are stored in an asset repository. Typical
assets include application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
library files, and other resource files.

An asset repository stores the binary files for the asset. The product configuration repository provides a
default asset repository.

Assets in the configuration repository are managed by the product management domain. The configuration
repository stores asset binary files in app_server_root/config/cells/cell_name/assets/asset_name/aver/
BASE/bin/.

An asset name must be unique within a cell, the product administrative domain.

The product creates an asset.xml file when an asset is registered with the product configuration. The file
contains information about the asset such as its name, destination location, and dependencies on other
assets.

You must register files as assets before you can add them to one or more business-level applications. At
the time of asset registration, you can import the physical application files into the product configuration
repository or you can specify an external location where the asset resides.

Composition units
A composition unit represents a configured asset in a business-level application. A composition unit
enables the asset contents to interact with other assets in the application. It also enables the product run
time to load and run asset contents.

The product supports three types of composition units:

Asset composition units
Composition units created from assets by configuring each deployable unit of the asset to run on
deployment targets.

Shared library composition units
Composition units created from JAR-based assets by ignoring all the deployable objects from the
asset and treating the asset JAR file as a library of classes.

Business-level application composition units
Composition units created from business-level applications that are added to existing
business-level applications.

A composition unit contains the following information:

v Configuration information that binds contents of an asset with a specific hosting run time and adds the
configuration necessary for the run time to load and run the asset

v References to external services, components, or other resources that the asset uses

222 Developing and deploying applications

v Customized configurations for service definitions, references and other relevant configuration data

v A list of deployment targets or runtime environments along with the runtime environment-specific
configuration where the composition unit runs.

For example, a composition unit for an enterprise bean (EJB) Java archive (JAR) asset is an EJB module
instance that contains necessary EJB binding information, such as EJB Java Naming and Directory
Interface (JNDI) names and ejb-ref resolutions, along with a list of application servers where the EJB
JAR runs.

The product creates a composition unit from only one asset. However, multiple composition units can
share a single asset. This is particularly useful in scenarios where different configurations use the same
application binary files to provide different runtime behavior.

The following rules apply to a composition unit:

v A composition unit can exist only in a business-level application.

v Because a composition unit contains application-specific configuration and wiring information, multiple
business-level applications cannot share an asset or shared library composition unit.

The following graphic shows the use of composition units in business-level applications. Assume that you
have unprocessed files, such as archives, that you want to use in business-level applications. Before you
can add the files to business-level applications, you must first import the files as assets, which adds the
files to the product repository. Next, you add the assets to business-level applications, which creates
composition units for the assets. Business-level applications can contain asset composition units, shared
library composition units, or business-level composition units.
Unprocessed
files

Asset
Axis2 archive

Axis2
archive

Asset
repository

Composition
unit

Business level application
composition

Asset
EJB JAR file

JAR file

Asset
JAR file

JAR file

Composition unit

JAX-WS instance

Composition unit

EJB module instance

Composition unit

Shared library instance

Business
level
application

Business
level
application

Business
level
application

Composition
unit

Importing assets
You must register application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
libraries, and other resource files with the product configuration as assets before you can add the assets
to one or more business-level applications. Importing an asset registers it with the product configuration.

Chapter 13. Deploying and administering business-level applications 223

Before you begin

This topic assumes that you have one or more application binary files that you want to add to a
business-level application. You must register those binary files as assets before you can add them to the
business-level application.

About this task

Before a business-level application that uses an asset can be started on the target run time, the asset
binaries must be extracted to a deployer-defined location on the file system that is local to the target run
time. Importing an asset extracts binaries to a location that is local to the target run time.

The application server run time that reads the asset binaries either at application start time or while
serving an incoming client request determines the extraction format of the asset binaries. The extraction
format might include unzipping of Java archive (JAR) or compressed (zip) files.

This topic describes how to import an asset using the administrative console. Alternatively, you can use
the wsadmin tool or programming.

Procedure
1. Click Applications > New Application > New Asset in the console navigation tree.

2. On the Upload asset page, specify the asset package to import.

a. Specify the full path name of the asset.

b. Click Next.

3. On the Select options for importing an asset page, specify asset settings.

You typically can click Next and use the default values.

a. Optional: For Asset description, specify a brief description of the asset.

b. Optional: For Asset binaries destination URL, specify the target location of the asset.

This setting specifies the location to which the product extracts the asset. After an asset is
imported, the product looks for the asset in this location when a running application uses the asset.

If you do not specify a value, the product installs the asset to the default location,
${profile_root}/installedAssets/asset_name/BASE/.

c. Optional: For Asset type aspects, examine the asset content type and version specified by the
product. You cannot change this setting value.

The type aspect typically denotes the type of application contents, such as a specification to which
the application is written. For example, an enterprise bean (EJB) that supports the EJB Version 2.0
specification has the aspects type=EJB,version=2.0.

If the type aspect is none and if the asset is a JAR file, then the product associates a javarchive
type aspect with the asset by default.

d. For File permissions, specify any file permissions that are set on asset binary files so the target
run time can read or run the asset. Importing the asset extracts its binary files on the disk local to
the target runtime environment.

Try importing the asset using the default value. For detailed information on the File permissions
setting, refer to the Select options for importing an asset page online help.

Restriction: OSGi applications do not use a File permissions setting.

e. For Current asset relationships, add assets that the asset you are importing needs to run or
remove assets that are not needed.

When the product imports a JAR asset, the product detects asset relationships automatically by
matching the dependencies defined in the JAR manifest with the assets that are already imported
into the administrative domain.

224 Developing and deploying applications

f. For Validate asset, specify whether the product validates the asset.

The setting is deselected by default. This false (no) value is appropriate for most assets. Only
select true (yes) to validate an asset when needed.

The product does not save the value specified for Validate asset. Thus, if you select to validate the
asset (yes) now and later update the asset, when you update the asset you must enable this
setting again for the product to validate the updated files.

Restriction: OSGi applications do not use a Validate asset setting.

g. Click Next.

4. On the Summary page, click Finish.

Results

Several messages are displayed, indicating whether your asset is imported successfully.

An asset can contain multiple deployable objects as defined by the application contents of that asset. A
deployable object is a part of the asset that you can map to a deployment target such as an application
server. If the product imports the asset successfully, then appropriate deployable objects are identified in
the asset and are further used when a composition unit is created from that asset.

If the asset importing is not successful, read the messages and try importing the asset again. Correct the
values noted in the messages.

What to do next

If the product imports the asset successfully and displays the list of assets on the Assets page, then click
Save.

Add a composition unit to a business-level application using the asset that you imported. An asset included
in a business-level application is represented by a composition unit.

Upload asset settings
Use this page to specify the asset to register with the asset repository. You can add registered assets to a
business-level application.

To view this administrative console page, click Applications > New application > New Asset.

Importing an asset registers the asset with the asset repository.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

During asset importing, asset files typically are uploaded from a client workstation running the browser to
the server running the administrative console, where they are registered. In such cases, use the web
browser running the administrative console to select files to upload to the server.

Path to the asset
Specifies the fully qualified path to the asset.

Specify one of the following supported assets:
v A single file, such as an enterprise bean (EJB) file
v An archive of files, such as a Java archive (JAR) or a compressed .zip file
v An archive of archives, such as an enterprise archive (EAR) or shared library file

Chapter 13. Deploying and administering business-level applications 225

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Asset settings
Use this page to specify options for the registration of an asset with the asset repository. Default values for
the options are used if you do not specify a value. If the asset is an OSGi application, additional
information about bundle download status is displayed.

To view this administrative console page, click Applications > Application Types > Assets >
asset_name. This page is similar to the Select options for importing an asset page on the asset import
and update wizards.

Asset name
Specifies a logical name for the asset. An asset name must be unique within a cell and cannot contain an
unsupported character.

An asset name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 30. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Asset name field is the same as the Name setting on an Assets page.

Information Value
Data type String

Asset description
Specifies a description for the asset.

Asset binaries destination URL
Specifies the directory to which the product imports the asset file.

Information Value
Data type String
Units Full path name

226 Developing and deploying applications

Asset type aspects
Specifies the type of asset content. Examples of asset type include Java archive (JAR) files, shared
libraries, enterprise application archive (EAR) files, and enterprise bundle archive (EBA) files.

The asset type suggests the content of the asset. An asset packaged as a JAR file might contain a web
module, portlet, or web service. An asset packaged as an EBA file contains an OSGi application.

This setting is read-only. You cannot edit this setting.

Information Value
Data type String
Units File type
Default none

File permissions
Specifies access permissions for asset binaries that the product expands to the asset binaries destination
URL.

Restriction: OSGi applications do not use a File permissions setting.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the list. List selections overwrite file permissions set in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Table 31. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the asset, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the
specified file permission pattern. You must provide more precise matching patterns using regular
expressions as defined by Java programming API. For example, suppose the product processes the
following directory and file URIs during a file permission operation:

Chapter 13. Deploying and administering business-level applications 227

Table 32. Example URIs for file permission operations. Results are shown following this table.
Number Example URL

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in
file patterns.

You cannot unset read permission on a file on Windows operating systems. With POSIX style
permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the asset level. You can also specify access permissions for
asset binaries in the node-level configuration. The node-level file permissions specify the maximum (most
lenient) permissions that can be given to asset binaries. Access permissions specified here at asset level
can only be the same as or more restrictive than those specified at the node level.

Information Value
Data type String

Current asset relationships
Specifies the assets to which this asset is related.

To add or remove a relationship, use the Manage relationships page:

1. Click Manage Relationships. The Selected list on the right lists the current asset relationships.

2. To add a relationship, select an asset in the Available list on the left and click >>.

228 Developing and deploying applications

3. To remove a relationship, select an asset in the Selected list on the right and click <<.

4. Click OK.

Information Value
Data type String
Default none

Validate asset
Specifies whether the product examines the asset references specified during asset importing or updating
and, if validation is enabled, warns you of incorrect references or fails the operation.

Restriction: OSGi applications do not use a Validate asset setting.

An asset typically refers to resources using data sources for container-managed persistence (CMP) beans
or using resource references or resource environment references defined in deployment descriptors. The
validation checks whether the resource referred to by the asset is defined in the scope of the deployment
target of that asset.

Select true (enable the check box) for resource validation and to stop operations that fail as a result of
incorrect resource references. Select false (empty check box) for no resource validation.

Information Value
Data type String
Default false (empty check box)

EBA Dependencies
For an enterprise bundle archive (EBA) asset, displays the current bundle download status for all bundles
in the asset. This item is only displayed if your asset is an EBA asset, which means that it contains an
OSGi application.

You cannot update an EBA asset until bundle downloads are complete from any previous update, and until
the business-level application that uses the asset has picked up the previous updates by being restarted.
Before you try and update bundle versions, you can use the EBA dependency information to check the
bundle download status of the asset. The status displayed is one of the following values:

v Bundles downloading...

v Bundle downloads are complete.

v No bundles downloads are required.

Note: In addition to the information given here, you can also check the bundle download status indirectly,
by checking the status of the associated EBA composition unit as described in Checking and
updating the EBA asset version used by a business-level application.

If bundle downloads for the asset are complete, or no bundle downloads are required, you can update the
asset using either of the methods described in Maintaining bundle versions for an EBA asset.

If bundle downloads for the asset are complete, and a new version of the EBA asset is available, restart
the business-level application to bring the EBA composition unit up-to-date and to run the newer
configuration.

Managing assets
After application binary files are imported and registered with the product management domain as assets,
you can view, update and export those assets.

Chapter 13. Deploying and administering business-level applications 229

Before you begin

Import one or more assets. The name of each imported assets is shown on the list of assets on the
administrative console Assets page.

About this task

You can view the contents of assets, update assets, remove assets from the product management
domain, or export copies of assets to a target location. This topic describes how to perform these asset
management operations from the administrative console Assets page. Alternatively, you can use
programming or the wsadmin tool.

Procedure
v View or edit asset settings.

1. Go to the administrative console Assets page.

Click Applications > Application Types > Assets.

2. Click the asset name in the list of assets. The Asset settings page displays the values that are
specified for the asset.

3. Optional: Change the asset settings as needed and click OK to save the changes.

v Remove one or more assets from the product management domain.

v Update the contents of an asset.

v Export an asset to a target location.

What to do next

Create a business level application and add the asset to the business-level application.

Asset collection
Use this page to view a list of assets in the asset repository and to manage those assets. After importing
an asset, you can add the asset to a business-level application.

Assets include Java archive (JAR) and compressed files that are used by applications installed on a
server.

To view this administrative console page, click Applications > Application Types > Assets.

To view the values specified for an asset, click the asset name in the list. The displayed asset settings
page shows the values specified. On the settings page, you can change existing asset values.

To manage an asset, enable the Select check box beside the asset name in the list and click a button:

Table 33. Button descriptions. Use the buttons to manage assets.

Button Resulting action

Import Opens a wizard that helps you add an asset to the asset repository.

Delete Removes the asset from the asset repository and deletes the asset binaries from the file
system of all nodes where the assets are installed.

On single-server installations, deletion occurs after the configuration is saved.

Update Opens a wizard that helps you update asset files. You can replace a file or module that
exists on the server with a file or module that has the same name. Or you can add a
new file or module, provided the new file or module does not have the same name as an
asset that already exists on the server.

230 Developing and deploying applications

Table 33. Button descriptions (continued). Use the buttons to manage assets.

Button Resulting action

Export Accesses the Export asset page, which you use to export an asset to a file at a location
of your choice. Use the Export action to back up an asset.

Name
Specifies the name of the asset. Asset names must be unique within a cell and cannot contain an
unsupported character.

Description
Specifies a description for the asset.

Updating assets
You can use the Update asset wizard to update classes, composites, wsdl, xsd, and definitions.xml files
in an asset.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

About this task

You can update all or part of the contents of assets that are in the product management domain. Complete
the steps in the Procedure to update an asset using the administrative console Update asset wizard.
Alternatively, you can update assets using programming or the wsadmin tool.

The following update limitations exist if the asset you are updating is a Service Component Architecture
(SCA) asset:

v You cannot delete a composite file that a composition unit is using. If a delete is attempted, a warning
message is sent to the Update asset log.

v You cannot update an sca-contribution.xml file.

– SCA cannot detect deployable composites that are either added or deleted. Therefore, during
deployment of a new composition unit, you do not see the new deployable composite in the
deployables option list.

– SCA cannot detect dependencies that are added/removed during the Update asset process.

- If a new import package is added and if a class in an existing composition unit is updated to
require this new package, then the Update asset wizard fails with a ClassNotFoundException.
Deployment of any new composition units from the updated asset are successful as the
dependencies are detected during deployment operation.

- If a new export package/namespace is added, then it has no affect on the existing composition
unit and the Update asset wizard completes successfully.

v You cannot update configuration metadata such as composite, XSD, or WSDL files in a dependent SCA
asset that is deployed as a shared library. You can only update binary files that do not contain
annotations which the SCA programming model uses or depends on.

v Because the Update asset wizard uses the new composite definition file provided in the asset for the
existing composition unit, the following post deployment related changes to the composite configuration
are not saved.

– Binding resources: If you want to save this information, export all the data to the composite definition
file in the new asset before you do the update.

– Component reference target URIs: If you want to save this information, export all the data to the
composite definition file in the new asset before you do the update.

Chapter 13. Deploying and administering business-level applications 231

– Component properties: If you want to save this information, export all the data to the composite
definition file in the new asset before you do the update.

– HTTP Endpoint URL information: You need to reconfigure this information after the Update asset
wizard finishes.

v For web services policy set attachments, during Update asset processing:

– If there is a policy set specified for an endpoint in the updated composite definition file, SCA checks
to see if a policy set has already been attached to that endpoint in the deployed composition unit. If
an attachment already exists for that endpoint, the attachment is removed, and the policy set listed in
the new composite file for that endpoint is attached. In this situation, if you have made any post
deployment policy set configuration changes, these changes are lost.

– If there is no policy set defined for an endpoint in the update composite definition file, then any
existing attachments to that endpoint are removed.

Policy set bindings follow these same rules.

v For RunAs and RoleToUser mapping definitions, during Update asset processing:

– For implementation.java, implementation.spring and implementation.osgiapp, any new roles defined
in the definition.xml file in the asset are picked up and users can be mapped to these roles using
either the editCompositionUnit command or the administrative console. Any existing role mappings
for the original roles are preserved.

– For implementation.jee, the runAs and RoleToUser mappings are defined in the JEE application
instead of in the SCA asset or SCA composition unit. Therefore, SCA does not do anything with
these mappings during Update asset processing.

v The user defined virtual host that hosts web content for binding.ws, binding.atom, binding.http with
wireformat.jsonrpc and implementation.widget is not supported. A virtual host mapping of default_host
is used during Update asset processing.

Procedure
1. Go to the Update asset wizard.

a. Click Applications > Application Types > Assets to access the Assets page.

b. Select the check box beside the asset that you want to update.

c. Click Update.

2. On the Update asset page, specify whether you want replace an entire asset or update its contents
and, as needed, the replacement file or module.

a. Select an update option.

You can update asset contents by adding, deleting, or updating a single file or module in the asset,
or by merging multiple files or modules. Update options include the following:
v Replace entire asset
v Replace specific asset contents
v Add module or file to asset
v Remove file or module from asset
v Merge asset contents

The online help for the Update asset page describes the options.

b. If you are updating specific asset contents or removing a file or module, specify the path beginning
with the asset archive file.

For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/
greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/
greeting.class.

c. If you are updating the entire asset, updating an asset file or module, or merging asset contents,
specify the full path name of the new file or module.

d. Click Next.

232 Developing and deploying applications

3. On the Select options for updating an asset page, specify asset settings and click Next.

The online help for the Select options for importing an asset page describes the settings.

4. On the Summary page, click Finish.

Results

If you update an asset packaged as a library JAR file that is not a Java Platform, Enterprise Edition (Java
EE) archive, then the product automatically distributes the updated asset to all of the composition units
that use the asset.

However, if you update a Java EE asset, then the product does not automatically distribute the updated
Java EE archive to composition units created from that asset, which are Java EE applications. You must
select every Java EE application created from that asset and use the Update button to update the Java
EE application individually by specifying the update contents.

What to do next

Create a business-level application and add the asset to the business-level application.

Update asset settings
Use this page to select whether you want replace an entire asset or update its contents. You can update
asset contents by adding, deleting, or updating a single file or module in the asset, or by merging multiple
files or modules into an asset. Updating an asset registers the updated files with the product management
domain.

To view this administrative console page, click Applications > Application Types > Assets, select the
asset to update, and then click Update.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

When you replace an asset or update an asset by adding a file or module, asset files typically are
uploaded from a client workstation running the browser to the server machine running the administrative
console, where they are registered. In such cases, use the web browser running the administrative
console to select files to upload to the server machine.

The specified asset that you are installing must be one of the following supported assets:
v A single file, such as an enterprise bean (EJB) file
v An archive of files, such as a Java archive (JAR) or a compressed .zip file
v An archive of archives, such as an enterprise archive (EAR) or shared library file

Replace entire asset:

Under Select the type of update to perform, specifies to replace the entire asset installed on the server
with a new (updated) asset.

After selecting this option, specify whether the asset is on a local or remote file system and the full path
name of the asset. The path provides the location of the updated asset before installation.

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be

Chapter 13. Deploying and administering business-level applications 233

profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Replace specific asset contents:

Under Select the type of update to perform, specifies to replace a file or module of the asset installed
on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

3. Click Next.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

Add a module or file to an asset:

Under Select the type of update to perform, specifies to add a file to the asset installed on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

Remove a file or module from an asset:

Under Select the type of update to perform, specifies to remove a file or module from the asset installed
on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file to be
removed that starts from the root of the asset file. For example, if the file is located at
com/company/greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/
greeting.class.

2. Click Next.

Merge asset contents:

Under Select the type of update to perform, specifies to compare the new file or module with the file or
module of the asset installed on the server. If the file or module exists, it is replaced. Otherwise, it is
added to the installed asset.

After selecting this option, specify whether the new file or module is on a local or remote file system and
the full path name of the file or module. The path provides the location of the updated asset before
installation.

234 Developing and deploying applications

The Replace entire asset description describes options for specifying the full path name of a file or
module to merge using Local file system and Remote file system options.

Update associated composition unit:

Specifies whether to update the composition units that are associated with an enterprise (Java EE) asset.
This option applies to enterprise assets only.

The default value is NONE. Specify ALL to update all of the composition units that are associated with the
enterprise asset.

Deleting assets
You can remove application binary files that are registered as assets from the product management
domain.

Before you begin

Import one or more assets. The name of each imported asset is shown on the list of assets on the
administrative console Assets page.

About this task

You can remove assets from the product management domain, provided the asset does not have an
existing composition unit. If an asset has one or more composition units defined in the management
domain, then you cannot delete that asset until those composition units are removed.

This topic describes how to delete assets using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

Procedure
1. Go to the Delete asset page.

a. Click Applications > Application Types > Assets to access the Assets page.

b. Select the check box beside the asset that you want to delete.

c. Click Delete.

2. On the Delete asset page, click OK to confirm that you want the specified asset removed from the
product management domain.

Click Cancel to return to the Assets page and not delete the asset.

Results

The product deletes the asset from the product management domain.

What to do next

On the Assets page, verify that the deleted asset is no longer in the list of imported assets.

Exporting assets
After application binary files are imported and registered with the product management domain as assets,
you can export those assets.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

Chapter 13. Deploying and administering business-level applications 235

About this task

You can export copies of assets to a target location. Exporting stores application binary files, enabling you
to back up the files or edit them. The file resulting from exporting an asset contains configuration
information for the asset.

This topic describes how to export an asset from the administrative console Assets page. Alternatively, you
can use programming or the wsadmin tool.

Procedure
1. Go to the Export asset page.

a. Click Applications > Application Types > Assets to access the Assets page.

b. Select the check box beside the asset that you want to export.

c. Click Export.

2. On the Export asset page, click the asset name or identifier.

To cancel the export operation and return to the Assets page, click Back.

3. Specify the target location for the asset file.

What to do next

Examine the target file to verify that the asset exported correctly. You can later edit this file and import the
edited asset.

Creating business-level applications
You can create an empty business-level application and then add assets, shared libraries, business-level
applications, and other artifacts as composition units to the empty business-level application.

Before you begin

Configure each target application server as needed. You must deploy a business-level application to a
Version 7.0 or later server.

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, programming, or the wsadmin
tool.

Procedure
1. Select a way to create your business level application.

Table 34. Ways to create business level applications. You can create business-level applications using the
administrative console, programming, or wsadmin.

Option Method

Administrative console
business-level application creation
wizard

See “Creating business-level
applications with the console” on
page 237.

Click Applications > New application > New Business-level Application and
follow instructions in the wizard.

236 Developing and deploying applications

Table 34. Ways to create business level applications (continued). You can create business-level applications using
the administrative console, programming, or wsadmin.

Option Method

Administrative console Java
Platform, Enterprise Edition (Java
EE) application installation wizard

See “Installing enterprise
application files with the console”
on page 128.

Click Applications > New application > New Enterprise Application and
follow instructions in the wizard.

The product creates a new business-level application with the enterprise
application that you install or makes the enterprise application a composition unit
of an existing business-level application. See the Business-level application
name setting on the Select installation options wizard page.

2. Create your business-level application using the administrative console, programming or wsadmin.

3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the Business-level applications page.

What to do next

After you create a business-level application, you can do the following to add composition units to it:

1. Import any assets needed by your business-level application.

2. Add assets, shared libraries, or other business-level applications as composition units.

3. Save the changes to your administrative configuration.

4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then save and run it again.

Creating business-level applications with the console
You can create an empty business-level application and then add assets or business-level applications as
composition units to the empty business-level application.

Before you begin

Before you create a business-level application, decide upon an application name. Optionally, determine
which assets, shared libraries, or business-level applications that the new business-level application
needs.

About this task

This topic describes how to create an empty business-level application and then add assets as
composition units to the application using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.

a. Click Applications > New application > New Business Level Application.

b. On the New business-level application page, specify a unique name for the application and a
description, and then click OK.

Chapter 13. Deploying and administering business-level applications 237

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unavailable.

2. Optional: Add one or more assets, non-Java EE shared libraries, or business-level applications to a
business-level application.

The product adds these assets as composition units of your business-level application.

v If the asset that you want to add to your business-level application is a Java Platform, Enterprise
Edition (Java EE) application or module that is not yet deployed, see step 3.

v If the asset is a Java EE shared library, see step 4.

a. Import the assets or create the business-level applications that you want to add to the
business-level application.

b. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name.

c. On the business-level application settings page, specify the type of composition unit to add.

v To add an asset, under Deployed assets, click Add > Add Asset.

v To add a shared library, under Deployed assets, click Add > Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

d. On the Add page, select a unit from the list of available units, and then click Continue.

If you are adding one or more deployable unit assets and you have multiple imported assets
available, you can select more than one deployable unit.

e. On the Set options page, change the composition unit settings as needed, and then click Next.

This page is not shown when you add a Java EE asset as a shared library or if you have multiple
deployable unit assets. If the application installation or update wizard displays and you want to add
a Java EE asset as a shared library, see step 4.

f. On the Map composition unit to a target page, change the deployment target as needed, and then
click Next.

This page is not shown when you add a business-level application.

g. If you are adding one or more deployable unit assets, specify composition unit relationship options.

See “Relationship options settings” on page 246.

h. On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name,cuedition=version] indicates that the addition is
successful. Click Manage application.

If the product adds the unit successfully, the name of the unit is shown on the list of composition
units on the Adding composition unit to the business-level application page.

If the unit addition is not successful, read the messages and try adding the unit again. Correct the
problems noted in the messages.

i. On the Adding composition unit to the business-level application page, click Save.

The product creates composition units for the asset, shared library, or business-level application. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

3. Optional: Install a Java EE application or module, and add it as a composition unit to your
business-level application.

When installing an enterprise archive (EAR) file or a stand-alone Java EE module using the application
installation wizard, you can specify a business-level application to which to add the EAR file or module.
You can also specify relationships to any shared libraries that your Java EE application or module
uses. The product creates composition units that represent those relationships.

238 Developing and deploying applications

a. Click Applications > New application > New Enterprise Application.

b. On the first Preparing for the application installation page, specify the Java EE application or
module to install and click Next.

c. On the second Preparing for the application installation page, select Detailed - Show all
installation options and parameters, specify whether to generate default bindings and mappings
as needed for the application or module, and click Next.

d. On the Select installation options page of the wizard, select your business-level application for
Business-level application name and click Next. The product creates a composition unit that has
the same name as the Java EE application or module and adds the unit to your business-level
application.

If you do not specify a value for Business-level application name, then the product creates a
default business-level application that has the same name as the Java EE application that you are
installing. The product does not add the Java EE application as a composition unit to the
business-level application that you created in step 1.

e. Optional: On the Map shared library relationship page of the wizard, specify relationship identifiers
and composition unit names for shared libraries that modules in your Java EE application use. The
product creates a composition unit for each shared library relationship in your business-level
application.

You can map shared library relationships when installing your Java EE application or module or,
after installation, return to the Map shared library relationship page and specify shared library
relationships. See step 4.

f. Complete the other application installation wizard options as needed to install the Java EE
application or module.

The product creates composition units for the application, module, or shared library relationships. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

4. Optional: After installation of a Java EE application or module, you can specify composition units for
relationships to shared libraries that are used by your business-level application. Specify relationships
to shared libraries on the Map shared library relationship page of the application installation or update
wizard.

a. If you have not done so already, import a Java EE asset such as an enterprise bean (EJB) or web
module (WAR) that uses a shared library file.

If the product displays javaarchive for Asset type aspects on the asset settings page, continue to
step 4b.

If the product does not display javaarchive for Asset type aspects on the asset settings page,
then the asset is not a Java EE asset. Use step 2 to add a shared library to your business-level
application.

b. Go to a settings page for your business-level application.

Click Applications > Application Types > Business-level applications >
your_application_name.

c. Under Deployed assets, click Add > Add Shared Library.

d. On the Add composition unit page, select the Java EE asset that you imported and then click
Continue.

The Java EE application installation or update wizard displays. Select the Java EE application or
module that uses the asset, and complete the steps in the wizard.

e. On the Select installation options page of the wizard, select your business-level application for
Business-level application name.

f. On the Map shared library relationship page of the wizard, specify a relationship identifier and
composition unit name for the asset.

g. Complete the other wizard options as needed.

Chapter 13. Deploying and administering business-level applications 239

The product creates a composition unit for the shared library relationship. The unit name is shown in
the list of deployed asset composition units on the settings page of your business-level application.

Results

The name of your business-level application is shown on the Business-level applications page in the list of
applications.

What to do next

After you create the application, save the changes to your configuration and start the application as
needed.

Business-level application collection
Use this page to view and manage business-level applications.

To view this administrative console page, click Applications > Application Types > Business-level
applications.

To view the values specified for an application configuration, click the application name in the list. The
displayed application settings page shows the values specified. On the settings page, you can change
existing configuration values and link to additional console pages that assist you in configuring the
application.

To manage a business-level application, enable the Select check box beside the application name in the
list and click a button:

Table 35. Button descriptions. Use the buttons to manage business-level applications.

Button Resulting action

Start Attempts to run the application. After the application starts successfully, the state of the
application changes to Started if the application starts on all deployment targets, else the
state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops
successfully, the state of the application changes to Stopped if the application stops on
all deployment targets, else the state changes to Partial Stop.

New Opens a wizard that helps you add assets, shared libraries, or business-level
applications as composition units to your application.

Delete Deletes the application from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Name:

Specifies the name of the business-level application. Application names must be unique within a cell and
cannot contain an unsupported character.

Description:

Specifies a description for the business-level application.

Status:

Indicates whether the application deployed on the application server is started, stopped, or unknown.

240 Developing and deploying applications

Table 36. Application status. The status indicates whether the application is running.

Icon Application status Description

Started Application is running.

Partial start Application is in the process of changing from a Stopped state to a Started
state. Application is starting to run but is not fully running yet. Or, it cannot fully
start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial stop Application is in the process of changing from a Started state to a Stopped
state. Application has not stopped running yet.

Unknown Status cannot be determined.

On single-server installations, an application with an unknown status might, in
fact, be running but have an unknown status because the server running the
administrative console cannot communicate with the server running the
application.

Pending Status is temporarily unknown pending an event that a user did not initiate,
such as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a web server is always Unknown.

New business-level application settings
Use this page to name and describe a new business-level application.

To view this administrative console page, click Applications > New application > New Business-level
Application.

Name:

Specifies a logical name for the business-level application. An application name must be unique within a
cell and cannot contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 37. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

Information Value
Data type String

Description:

Chapter 13. Deploying and administering business-level applications 241

Specifies a description for the application.

This field is the same as the Description setting on a Business-level applications page.

Shared library relationship and mapping settings
Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:

1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.

4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.

6. Click OK.

Module:

Specifies the name of the module associated with the shared libraries.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers:

Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names:

Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

This setting is only in the application installation and update wizards.

Match target:

Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

242 Developing and deploying applications

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

Add composition unit settings
Use this page to specify options for the composition unit to be added to the business-level application. The
product assigns a default value for an option when you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > business-level_application_name > Add > Add unit_type.

Name:

Specifies the name of the composition unit to be added to the business-level application.

The table lists available composition units. Select a unit from this list.

Description:

Specifies a description for the composition unit.

Add asset settings
Use this page to add one or more assets to a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > Add > Add Asset.

Deployable units:

Specifies the imported assets available for use in a business-level application. The list of deployable units
includes only imported assets, and not shared libraries or business-level applications.

From this list, select one or more deployable units to add as composition units to your business-level
application.

Set options settings
Use this page to specify options for the composition unit to be added to the business-level application. The
product supplies default values for the options if you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name. On the business-level application settings page, specify the type of
composition unit to add:

v To add an asset, under Deployed assets, click Add > Add Asset.

v To add a shared library, under Deployed assets, click Add > Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

Backing identifier:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

Chapter 13. Deploying and administering business-level applications 243

The identifier has the format: WebSphere:unit_typename=unit_name,unit_typeversion=version_number. For
example, for the MyApp.jar asset, the backing identifier might be WebSphere:assetname=MyApp.jar.

Information Value
Data type String
Units Composition unit identifier

Name:

Specifies the name of the composition unit.

For example, for the MyApp.jar asset, the name might be MyApp.jar.

A unit name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot contain
any of the following characters:

Table 38. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

Information Value
Data type String

Description:

Specifies a description for the composition unit.

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business-level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Information Value
Data type Integer
Default 1
Range 0 to 2147483647

Start composition unit upon distribution:

244 Developing and deploying applications

Specifies whether to start the composition unit after the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

Information Value
Data type Boolean
Default false

Restart behavior on update:

Specifies whether the product restarts deployment targets after updates to the composition unit.

Usually, a composition unit is mapped to one or more deployment targets. This setting determines whether
the product restarts those targets after editing the composition unit.

Table 39. Restart behavior on update options. Depending on your selection, the product restarts all target nodes,
the nodes controlled by sync plug-ins, or no nodes.

Option Description

ALL The product restarts each target node of the composition unit after editing the composition unit.

DEFAULT The product restarts the nodes controlled by the sync plug-ins after editing the composition unit.

NONE The product does not restart nodes after editing the composition unit.

Map target settings
Use this page to map a composition unit to a deployment target. The product assigns a default target
when you do not specify a target.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > composition_unit_name > Modify Target. The Map target page is
similar to the Map composition unit to a target page in the add composition unit wizard.

On single-server products, a deployment target can be an application server or web server.

On this page, map a composition unit to one or more desired targets.

Current targets:

Specifies the existing deployment targets for the composition unit.

Available:

Lists the names of available deployment targets. This list is the same for every composition unit that is
registered in the cell.

From this list, select only appropriate deployment targets for a composition unit.

If the unit calls a Version 8.5 application programming interface (API) or uses an 8.5 feature, then you
must map the unit to an 8.5 deployment target. If the unit supports Java Platform, Enterprise Edition (Java
EE) 6, then you must map the unit to an 8.0 or later deployment target.

If the unit calls a Version 7.x API, uses a 7.x feature, or supports Java EE 5, then you must map the unit
to an 8.x or 7.x deployment target.

Chapter 13. Deploying and administering business-level applications 245

If the unit supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you must map the unit to an 8.x,
7.x or 6.x deployment target. You can map units that call a 6.x API or use a 6.x feature to an 8.x, 7.x or
6.x deployment target.

To map a composition unit to a deployment target, select a target from the Available list and click >>. The
target name is displayed in the Selected list.

Selected:

Lists the names of desired deployment targets.

When you click OK, the product maps the composition unit to the deployment targets in the Selected list.

To remove a deployment target from the Selected list, select the target and click <<.

Relationship options settings
Use this page to specify relationship options for deployable or composition units in an asset deployed as
part of a business-level application. Specifying a relationship declares a dependency relationship that a
deployable unit or composition unit has on another asset deployed as a shared library in the same
business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > Relationship options. This help also
pertains to wizard pages that are shown when you add multiple deployable or composition unit assets to a
business-level application. These pages are shown for the Define relationship with existing
composition units and Options for creating new composition units to satisfy asset relationships
wizard steps.

A business-level application consists of composition units. When you add an asset to a business-level
application, the product creates a composition unit for the asset. The composition unit name can be
different from the name of the asset being deployed. The list of deployed assets shown for a
business-level application consists of the composition unit names for the deployed assets. The
relationships defined in this page are composition unit relationships. The deployable units listed for a
composition unit are those you chose from the associated asset when adding the asset. Composition unit
relationships are expressed as deployable unit dependencies on other composition units belonging to the
same business-level application. Only a composition unit for an asset deployed as a shared library can be
specified as a dependency. You can map each deployable unit to a target independently from the others.
Modifying relationships in this page only affects the composition unit, not the associated asset.

To specify relationship options, select a deployable unit and click a button.

Button Resulting action
Set Relationships Displays a page through which you can add or change relationships for the deployable

unit. Specify a relationship if a deployable unit depends on another asset deployed as a
shared library in order to run.

This button is on the Set relationship options page.
Enable Match Targets If the deployable unit has a dependency relationship defined, click Enable Match

Targets to map the related deployed assets to the same deployment targets as the
dependent deployable unit.

Disable Match Targets If the deployable unit has a dependency relationship defined, click Disable Match
Targets if the related deployed assets do not need to be deployed to the same targets
as the deployable unit.

Deployable unit name or composition unit name:

246 Developing and deploying applications

Specifies the name of the deployable unit or the composition unit of the selected deployed asset.

Relationship:

Specifies the composition unit names for all relationships defined for the associated deployable unit.

This setting is on the Set relationship options page.

By default, a deployable unit has no relationships. To add or change related composition units, do the
following:
1. Select the deployable unit.
2. Click Set Relationships.
3. Select the composition units that the deployable unit requires by moving them from the Available list

to the Selected list.
4. Click OK.

Match targets:

Indicates the match targets value selected for the associated deployable unit. The default value is true.

A match targets value of true maps the composition units listed under Relationship to the same
deployment targets as the associated deployable unit. Typically, you must deploy related composition units
to the same targets as the dependent deployable unit in order for the deployable unit to run.

A false value indicates that the related composition unit can map to deployment targets which are
different from the deployment targets of the deployable unit.

To set the value to true, select the deployable unit and click Enable Match Targets. To set the value to
false, select the deployable unit and click Disable Match Targets. To set this value, the deployable unit
must have a related composition unit.

Business-level application settings
Use this page to configure a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name.

This page is the same as the Adding composition unit to the business-level application page.

Name
Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 40. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

Chapter 13. Deploying and administering business-level applications 247

Table 40. Characters that you cannot use in a name (continued). The product does not support these characters in
a name.

Unsupported characters

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

Information Value
Data type String

Description
Specifies a description for the business-level application.

Deployed assets
Specifies the asset and shared library composition units in the business-level application. A composition
unit is a registered asset or shared library that has additional configuration information, which you specify
when adding the asset to the application.

For each composition unit, the table provides a name, description, asset type, and the runtime status of
the composition unit.

Table 41. Deployed assets button descriptions. Use the buttons to add or delete composition units.

Button Resulting action

Add > Add Asset For assets that contain Java Platform, Enterprise Edition (Java EE) applications or modules,
opens the application installation wizard. On the Select installation options page of this wizard,
you can specify a Business-level application name value that identifies the target
business-level application. On the Map shared library relationships page, you can identify the
shared library files that individual modules need to run and specify composition unit names for
the module-shared library relationships.

For non-Java EE assets, opens a wizard that helps you add an asset as a composition unit to
your business-level application.

Add > Add Shared
Library

Opens a wizard that helps you add a library file as a composition unit to your business-level
application.

Delete Deletes the composition unit from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Business-level applications
Specifies the business-level applications in this business-level application.

The table provides a name, description, and the runtime status of each contained business-level
application.

Table 42. Business-level applications button descriptions. Use the buttons to add or delete composition units.

Button Resulting action

Add Opens a wizard that helps you add a business-level application to your business-level
application.

248 Developing and deploying applications

Table 42. Business-level applications button descriptions (continued). Use the buttons to add or delete composition
units.

Button Resulting action

Delete Deletes the business-level application from the product configuration repository and deletes
the application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Composition unit settings
Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

v “Settings that are common to all composition units”

v “Additional composition unit settings for SCA composites” on page 251

v “Additional composition unit settings for OSGi applications” on page 251

Settings that are common to all composition units

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.

Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

The identifier has the format WebSphere:unit_typename=unit_name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

Information Value
Data type String
Units Configuration unit identifier

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a

Chapter 13. Deploying and administering business-level applications 249

business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

Information Value
Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Information Value
Data type Boolean
Default false

Recycle behavior on update:

Specifies whether the product restarts the composition unit after the composition unit is updated.

The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Table 43. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after the part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Target mapping:

Specifies the current targets for the composition unit.

To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

250 Developing and deploying applications

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units
in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started
first.

Additional composition unit settings for SCA composites

SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

Table 44. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description

Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.

SCA composite properties:

Specifies the names and values of SCA composite properties in the application.

Table 45. Column descriptions. Provides the name and value of SCA composite properties.

Column Description

Property Name Specifies the name of an SCA composite property.

Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.

SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

Table 46. Column descriptions. Provides the source and target of wires.

Column Description

Wire Source Specifies the source of a wire in the SCA composite.

Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Additional composition unit settings for OSGi applications

OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are
complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

Chapter 13. Deploying and administering business-level applications 251

There are four distinct deployment statuses for an EBA composition unit:

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.

The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and
configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

Example: Creating a business-level application
You can add many different types of artifacts to business-level applications. For example, you can add
Java Platform, Enterprise Edition (Java EE) applications or modules, Java archives (JAR files), data in
compressed files, and other business-level applications.

About this task

An example of creating a simple business-level application follows. This example assumes that you have a
compressed file, such as a compressed file, or other archive available on your computer or on a remote
server that you can use to complete the example.

If you do not have a compressed file available, look in product directories. Installing the product samples
adds several sample files to the /samples directory. You can use these sample files in a business-level
application.

Procedure
1. Import assets.

a. Click Applications > New application > New Asset in the console navigation tree.

b. On the Upload asset page, specify the asset package to import and click Next.

For example, specify a compressed file such as a compressed file and click Next.

c. On the Select options for importing an asset page, click Next.

d. On the Summary page, click Finish.

e. On the Adding asset to repository page, if messages show that the operation completed, click
Manage assets.

252 Developing and deploying applications

f. On the Assets page, click Save.

The file name displays in the list of assets.

2. Create an empty business-level application named MySampleBLA.

a. Click Applications > New application > New Business Level Application.

b. On the New business-level application page, specify a unique name such as MySampleBLA and a
description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unavailable.

3. Add the asset composition unit to your business-level application.

a. On the Business-level applications page, click the application name in the list of applications.

b. On the business-level application settings page, click Add > Add Asset.

c. On the Add composition unit page, select an asset composition unit from the list of available units,
and then click Continue.

For example, select the compressed file asset and then click Continue.

d. On the Set options page, click Next.

e. On the Map composition unit to a target page, change the target server as needed, and then click
Next.

f. On the Summary page, click Finish. Several messages are displayed. A message having the
format Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful.

g. If the addition is successful, click Manage application.

h. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets.

4. Start the business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, select the check box beside your application.

c. Click Start.

When the business-level application is running, a green arrow displays for Status. If the business-level
application does not start, ensure that the deployment target to which the application maps is running
and try starting the application again.

What to do next

You can add other assets to your business-level application.

Starting business-level applications
You can start a business-level application that is not running (has a status of Stopped). The application
must contain code that can run on a server to start.

Before you begin

The application must be installed on a server. By default, the application starts automatically when the
server starts.

About this task

You can start and stop business-level applications manually using the administrative console or wsadmin
commands.

Chapter 13. Deploying and administering business-level applications 253

This topic describes how to use the administrative console to start a business-level application.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. Select the check box for the application you want started.

3. Click Start. The product runs the application and changes the state of the application to Started. The
status is changed to partially started if not all servers on which the application is deployed are
running.

Results

A message stating that the application started displays at the top the page.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

If the application contains Service Component Architecture (SCA) composites and does not start, check for
the following problems:

v If SCA composite assets do not start, ensure that each asset is mapped to a Version 8 deployment
target or to a Version 7 deployment target that supports SCA composites.

v If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to
the business-level application. You cannot change the target after deployment.

v If the META-INF/sca-deployables directory has multiple SCA composite files and the application does
not start because the product cannot obtain the CompUnitInfoLoader value, place only the file that
contains the composite in the META-INF/sca-deployables directory. You can place the other composite
files anywhere else within the archive.

What to do next

To restart a running application, select the application you want to restart, click Stop and then click Start.

Stopping business-level applications
You can stop a business-level application that is running and has a status of Started).

Before you begin

The application must be running on a product server.

254 Developing and deploying applications

About this task

You can stop applications manually using the administrative console or wsadmin commands.

This topic describes how to use the administrative console to stop a business-level application.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. Select the check box for the application you want stopped.

3. Click Stop. The product stops the processing of the application and changes the state of the
application to Stopped.

Results

The status of the application changes and a message stating that the application stopped displays at the
top the page.

What to do next

To restart a stopped application, select the application you want to restart, and then click Start.

Updating business-level applications
You can update business-level applications by deleting or changing composition units, or by mapping
composition units to different deployment targets.

Before you begin

Determine the changes that you want to make to your application. Also, determine whether the changed
application can run on your deployment targets.

The administrative console Server pages show the versions for deployment targets.

If you want to change a composition unit that contains an enterprise bundle archive (EBA) asset, see
Modifying the configuration of an EBA asset.

About this task

Updating consists of adding new composition units to an application, replacing or removing composition
units, or mapping composition units to different deployment targets.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

This topic describes how to update business-level applications using the administrative console.
Alternatively, you can use programming or the wsadmin tool.

Procedure
v Delete composition units from your business-level application.

1. Go to the business-level application settings page.

Chapter 13. Deploying and administering business-level applications 255

Click Applications > Application Types > Business-level applications > application_name in
the console navigation tree.

2. Select each composition unit of the application that you want to delete.

3. Click Delete.

4. On the Delete composition unit from business-level application page, confirm the deletion and click
OK.

v Add new or updated assets, shared libraries, or other business-level applications to your business-level
application.

1. Update asset binary files or shared libraries as needed.

2. If you are adding new assets that are not registered with the product management domain, import
the assets.

3. If you are updating existing assets, use the Update option to update asset files.

Before updating a shared library, you must manually stop all Java EE applications that depend on
that shared library. After updating the shared library, manually restart the Java EE applications.
Java EE applications do not automatically restart when a shared library is updated.

4. On the business-level application settings page, specify the type of composition unit to add.

– To add an asset, under Deployed assets, click Add > Add Asset.

– To add a shared library, under Deployed assets, click Add > Add Shared Library.

– To add a business-level application, under Business-level applications, click Add.

5. On the New composition unit page, select a unit from the list of available units, and then click
Continue.

6. On the Set options page, change the composition unit settings as needed, and then click Next.

7. On the Map composition unit to a target page, change the deployment target as needed, and then
click Next.

This page is not shown when you add a business-level application.

8. On the Summary page, click Finish.

9. If the product adds the unit successfully, click Manage application.

If the unit addition is not successful, read the messages, and try adding the unit again. Correct the
errors noted in any messages.

10. On the Adding composition unit to the business-level application page, click Save.

11. Repeat these steps to add any other assets, shared libraries, or applications needed by the
business-level application.

The business-level application settings page displays the configuration unit names.

v Map composition units to different deployment targets.

1. On the composition unit settings page, select the composition unit that you want to change.

2. Under Current targets, click Modify Target.

3. On the Map targets page, change the target.
a. From the list of available clusters and servers, select a different deployment target.
b. Click >> to add the deployment target to the Selected list.
c. To remove a deployment target from the Selected list, select the target and click <<.
d. Click OK.

The business-level application settings page displays the selected deployment target.

What to do next

Save the changes to your administrative configuration.

256 Developing and deploying applications

Deleting business-level applications
After an application no longer is needed, you can delete it.

About this task

Deleting a business-level application removes the application from the product configuration repository and
it deletes the application binaries from the file system of all nodes where the application files are installed.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. If you need to retain a copy of the application, back up composition units of the application.

3. Delete composition units of the application.

a. On the Business-level applications page, click the name of the business-level application that you
want to delete.

b. On the business-level application settings page, delete each composition unit of the application.
Deployed assets and business-level applications can be composition units of a business-level
application.

Select one or more composition units and click Delete.

For Service Component Architecture (SCA) business-level applications that use an OSGi
implementation in an enterprise bundle archive (EBA) composition unit, delete the SCA composition
unit before attempting to delete the EBA composition unit, otherwise the product returns an error.
An EBA composition unit that is used for the implementation cannot be deleted until the SCA
composition unit that uses the implementation.osgiapp is deleted.

c. On the Delete composition unit from Business-level application page, confirm the deletion and click
OK.

d. Repeat steps b and c until the business-level application that you want to delete has no more
composition units.

Deleting a composition unit removes the configuration from the profile_root/config/cells/cell_name/
cus directory.

4. Delete the business-level application.

a. Select the application that you want to delete.

b. Click Delete.

Unless the application is used by another business-level application, deleting a business-level
application removes the configuration from the profile_root/config/cells/cell_name/blas directory.

5. On the Delete business-level application page, confirm the deletion and click OK.

6. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the changes.

Deleting the HelloWorldAsync business-level application

Example: Creating an SCA business-level application with the console describes how to create the
HelloWorldAsync business-level application. You can delete this application using the console.

1. Go to the Business-level applications page and, if HelloWorldAsync is running, change its status to
Stopped.
a. Click Applications > Application Types > Business-level applications.

Chapter 13. Deploying and administering business-level applications 257

b. Select HelloWorldAsync.
c. Click Stop.

2. Go to the business-level applications settings page for HelloWorldAsync and delete the helloworldws
composition unit.
a. Click Applications > Application Types > Business-level applications > HelloWorldAsync.
b. From Deployed assets, select helloworldws.
c. Click Delete.
d. On the Delete composition unit from Business-level application page, confirm the deletion and click

OK.
e. Click the Save link to save the changes.

3. From the business-level applications page, delete the HelloWorldAsync application.
a. Click Applications > Application Types > Business-level applications.
b. Select HelloWorldAsync.
c. Click Delete.
d. On the Delete business-level application page, click OK.
e. Click the Save link to save the changes.

4. Optionally, from the Assets page, delete the helloworld-ws-asynch.jar asset from the asset repository.
a. Click Applications > Application Types > Assets.
b. Select helloworld-ws-asynch.jar.
c. Click Delete.
d. On the Delete asset page, click OK.
e. Click the Save link to save the changes.

What to do next

If using the administrative console Delete options does not fully delete a business-level application or its
composition units, you can delete the business-level application and its composition units manually from a
stand-alone server. Suppose you want to delete a business-level application named ExampleBLA, and
ExampleBLA is not used by another business-level application. Complete the following steps to manually
delete the ExampleBLA configurations from the blas and cus directories:

1. Delete the profile_root/config/cells/cell_name/blas/ExampleBLA directory.

2. Delete the profile_root/config/cells/cell_name/cus/ExampleBLA directory.

3. Save changes made to the administrative configuration.

258 Developing and deploying applications

Chapter 14. Troubleshooting deployment

When you are having problems deploying an application, perform some basic diagnostics and verify your
system configuration to solve the problem.

Before you begin

Try to install your application on a product server. Ensure that your application can be installed to the
deployment target. For example, if your application contains modules that support Java Platform,
Enterprise Edition (Java EE) 6 or use a Version 8 product feature or API, you must install the application
to a Version 8 deployment target.

About this task

Determine which of the following steps apply to the deployment problem and read the suggested topics.

Procedure
v If you cannot install the application, troubleshoot problems deploying applications.

See the topics on application deployment problems and troubleshooting tips.

v If you can install the application but it does not start, troubleshoot problems starting applications.

See the topics on application deployment and startup problems.

v If your application contains many classes with annotations and takes a long time to deploy, reduce
annotation searches to speed up deployment.

See the topic on reducing annotation searches during application deployment.

v If you cannot uninstall the application, see the topic on application uninstallation problems.

What to do next

If the topics in this information center do not resolve the deployment problem, examine current information
available from IBM Support on known problems and their resolution. IBM Support has documents that can
save you time gathering information needed to resolve this problem. Before opening a PMR, see topic on
troubleshooting help from IBM.

Application deployment problems
You might encounter problems when deploying, installing, or promoting applications. This topic suggests
ways to resolve the problems.

What kind of problem are you having?

v “Application does not display ” on page 260

v “Unable to save a deployed application” on page 260

v “java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the assembly
tool, administrative console or the wsadmin tool” on page 261

v “WASX7015E error running wsadmin command $AdminApp installInteractive or $AdminApp install” on
page 261

v “Cannot install a CMP or BMP entity bean in an EJB 3.0 module” on page 261

v “Data definition language (DDL) generated by an assembly tool throws SQL error on target platform” on
page 262

v “ADMA0004E: Validation failed” on page 262

v “Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file” on page 262

© Copyright IBM Corp. 2012 259

v “Timeout!!!error displays when attempting to install an enterprise application in the administrative
console ” on page 263

v “NameNotFoundException message when deploying an application that contains an EJB module” on
page 263

v “During application installation, the call to EJB deploy causes an exception” on page 264

v “Compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version 5.x or
earlier” on page 264

v “After installing the application onto a different machine, the application does not run” on page 264

v “A single file replaces all application files during application update” on page 264

Check the following first:
v Verify that the logical name that you have specified to appear on the console for your application,

enterprise bean module or other resource does not contain invalid characters such as these: - / \ : * ? "
< > |.

v If the application was installed using the wsadmin $AdminApp install command with the -local flag,
restart the server or rerun the command without the -local flag.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, check to see if the problem is identified and documented.

Application does not display

Application installed using the wsadmin tool, but the application does not display under Applications >
Application Types > WebSphere Enterprise Applications.

The application might be installed but you have not saved the configuration:
1. Verify that the application subdirectory is located under the app_server_root/installedApps directory.
2. Run the $AdminApp list command and verify that the application is not among those displayed.

v In the bin directory, run the wsadmin.bat or wsadmin.sh command.
v From the wsadmin prompt, enter $AdminApp list and verify that the problem application is not

among the items that display.
3. Reinstall your application using the wsadmin tool. Run the $AdminConfig save command in the

wsadmin tool before exiting.

Unable to save a deployed application

If you are unable to save a deployed application, the problem might be that too many files are opened,
exceeding the limit of the operating system.

On the SuSE9 or other Linux platform, you can either increase the number of files that can be
opened to resolve the problem or you can modify the application to close files with disciplines. To increase
the number of files that you can open at the same time, run the following command in the shell before
invoking the process that needs to open a number of files:
ulimit -n number_of_files

Only root has authority to adjust the maximum number of files for each process. Complete the following
steps to modify the application to close files with disciplines:

1. After you open a file and complete your work, call the close method of the file to release the file handle
back to the operating system.

2. Using the java.io.FileInputStream and the FileOutputStream classes as examples, you can invoke their
close method to release any system resources that are associated with the stream.

260 Developing and deploying applications

java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the
assembly tool, administrative console or the wsadmin tool

If you see this error when attempting to generate deployed code in an assembly tool, installing an
application or module in the administrative console, or using the wsadmin tool to install an application or
module, the file path length of the temporary system file might be exceeded.

To verify this problem, check the TEMP and TMP environment variables for your system. Long environment
variables add path length to the file names accessed by the EJB deployment tool.

To resolve the problem:
1. Stop all WebSphere Application Server processes and close all DOS prompts.
2. Set the TEMP and TMP environment variables to something short, for example C:\TMP and C:\TEMP.
3. Reinstall the application.

Otherwise, try rebooting and redeploying or reinstalling the application.

WASX7015E error running wsadmin command $AdminApp installInteractive or
$AdminApp install

This problem has two possible causes:
v If the full text of the error is similar to:

WASX7015E: Exception running command:
"$AdminApp installInteractive C:/Documents and Settings/

myUserName/Desktop/MyApp/myapp.ear";
exception information:
com.ibm.bsf.BSFException: error while
evaluating Jacl expression: can’t find method "installInteractive"
with 3 argument(s) for class
"com.ibm.ws.scripting.AdminAppClient"

The file and path name are incorrectly specified. In this case, since the path included spaces, it was
interpreted as multiple parameters by the wsadmin program.

Enter the path of the .ear file correctly. In this case, by enclosing it in double quotes:
$AdminApp installInteractive "C:\Documents
and Settings\myUserName\Desktop\MyApps\myapp.ear"

v If the full text of the error is similar to:
WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";
exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:
Cannot read input file
"c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

The application path is incorrectly specified. In this case, you must use "forward-slash" (/) separators in
the path.

Cannot install a CMP or BMP entity bean in an EJB 3.0 module

When installing an EJB 3.0 module that contains a container-managed persistence (CMP) or
bean-managed persistence (BMP) entity bean, the installation fails.

The product does not support installation of applications that have a CMP or BMP entity bean packaged in
an EJB 3.0 module. You must package CMP or BMP entity beans in an EJB 2.1 or earlier module.

To resolve this problem:

1. Package the CMP or BMP entity beans in EJB 2.1 or earlier modules.

2. Try installing your application with the EJB 2.1 or earlier modules.

Chapter 14. Troubleshooting deployment 261

Data definition language (DDL) generated by an assembly tool throws SQL error
on target platform

If you receive SQL errors in attempting to execute data definition language (DDL) statements generated by
an assembly tool on a different platform, for example if you are deploying a container-managed
persistence (CMP) enterprise bean designed on Windows onto a UNIX operating system server, try the
following actions:
v Browse the DDL statements for dependencies on specific user identifiers and passwords, and correct as

necessary.
v Browse the DDL statements for dependencies on specific server names, and correct as necessary.
v Refer to the message reference of the vendor for causes and suggested actions regarding specific SQL

errors. For IBM DB2, you can view the message references online.

If you receive the following error after executing a DDL file created on the Windows operating system or
on operating systems such as AIX® or Linux, the problem might come from a difference in file formats:
SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"
was found following " ". Expected tokens may include: " ".
SQLSTATE=42601

To resolve this problem:
v Edit the DDL in the vi editor, removing the Ctl-M character

at the beginning of each line.
v Regenerate the deployment code for the application EAR file on a Linux platform.

ADMA0004E: Validation failed

If you see the following error when trying to install an application through the administrative console or the
wsadmin command prompt:
AppDeploymentException: [ADMA0014E: Validation failed.
ADMA0004E: Validation error in task Specifying the Default Datasource for
EJB Modules JNDI name is not
specified for module beannameBean Jar with URI filename.jar,META-INF/ejb-jar.xml.
You have not specified the
data source for each CMP bean belonging to this module. Either specify the data
source for each CMP beans or
specify the default data source for the entire module.]

one possible cause is that, in WebSphere Application Server Version 4.0, it was mandatory to have a data
source defined for each CMP bean in each JAR. In Version 5.0 and later releases, you can specify either
a data source for a container-managed persistence (CMP) bean or a default data source for all CMP
beans in the JAR file. Thus during installation interaction, such as the installation wizard in the
administrative console, the data source fields are optional, but the validation performed at the end of the
installation checks to see that at least one data source is specified.

To correct this problem, step through the installation again, and specify either a default data source or a
data source for each CMP-type enterprise bean.

If you are using the wsadmin tool, use the $AdminApp installInteractive filename command to receive
prompts for data sources during installation, or to provide them in a response file.

Specify data sources as an option to the $AdminApp install command.

Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file

The web application tmp.war installs on WebSphere Application Server Versions 5.0 and 5.1, but fails on a
WebSphere Application Server Version 6.0 or later server. The application fails to install because the
WEB-INF/ibm-web-bnd.xmi file contains xmi tags that the underlying WCCM model no longer recognizes.

262 Developing and deploying applications

The following error messages display:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
[2/24/05 14:53:10:297 CST] 000000bc SystemErr R
AppDeploymentException:
com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
[2/24/05 14:53:10:297 CST] 000000bc SystemErr R
com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
!Stack_trace_of_nested_exce!
com.ibm.etools.j2ee.exception.WrappedRuntimeException: Exception occurred loading
WEB-INF/ibm-web-bnd.xmi
!Stack_trace_of_nested_exce!

To work around this problem, remove the xmi:type=EJBLocalRef tag from the ibm-web-bnd.xmi file.
Removing this tag does not affect the application because the tag was previously used for matching the
cross document reference type. The application now works for the WebSphere Application Server Version
5.1 and later releases.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

“Timeout!!!”error displays when attempting to install an enterprise application in
the administrative console

This error can occur if you attempt to install an enterprise application that has not been deployed.

To correct this problem:
v Open the file_name.ear file in an assembly tool and then click Deploy. This action creates a file with a

name like Deployed_file_name.ear.
v In the administrative console, install the deployed EAR file.

NameNotFoundException message when deploying an application that contains an
EJB module

If you specify that the EJB deployment tool be run during application installation and the installation fails
with a NameNotFoundException message, ensure that the input JAR or EAR file does not contain source
files. If there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before
generating the deployment code.

To work around this problem, either remove the source files or include all dependent classes and resource
files on the class path. Otherwise, the source files or the lack of access to dependent classes and
resource files might cause problems during rebuilding of your application on the server.

Chapter 14. Troubleshooting deployment 263

During application installation, the call to EJB deploy causes an exception

When you specify that the EJB deployment tool be run during application installation and if installation fails
with the error command line too long, the problem is that the deployment command generated during
installation exceeds the character limit for a command line on the Windows platform.

To work around this problem, you can reduce the length of the EAR file name, reduce the length of the
JAR file name within the EAR file, reduce the class path or other options specified for deployment, or
change the %TEMP% location of the Windows system to make its path shorter.

Compilation errors and EJB deploy fails when installing an EJB JAR file generated
for Version 5.x or earlier

When installing an old application that uses EJB modules that were built to run on WebSphere Application
Server Version 5.x or earlier, compilation errors result and EJB deploy fails. The EJB JAR file contains
Java source for the old generated code. The old Java source was generated for Version 5.x or before but,
when deployed to a WebSphere Application Server Version 6.x or later product, it is compiled using the
Version 6.0 or later runtime JAR files.

To work around this problem, remove all .java files from the application EAR file. After the Java source
files are removed, you can deploy the application onto a server successfully.

After installing the application onto a different machine, the application does not
run

If your application uses application level resources, its application level node information must be correct
for the application to run as expected.

When you add application level resources to an application and deploy the application onto a machine,
ensure that the application level node information is correct. Otherwise, when you install the application
onto a different machine, it is installed to the wrong location and the application does not run as expected.

You can update the application level node information using an assembly tool. Update the nodeName from
deploymentTargets of the deployment.xml file under ibmconfig. Also, ensure that binariesURL from
deployedObject of the deployment.xml file has the correct path.

A single file replaces all application files during application update

If you select the Replace or add a single file option of the application update wizard and the currently
deployed application consists of several files, specify the full path name of the file to be replaced or added
for Specify the path beginning with the installed application archive file to the file to be replaced or
added.

A full path name usually has the structure directory_path/file_name and resembles the following:
PriceChangeSession.jar/priceChangeSession/priceChangeSessionBean.class

Do not specify less than the full path name for Specify the path beginning with the installed
application archive file to the file to be replaced or added. For example, do not specify only a directory
path:
PriceChangeSession.jar/priceChangeSession

If you specify less than a full path name, all files in the directory of the currently deployed application might
be replaced by the single new file that was specified under Specify the path to the file.

264 Developing and deploying applications

Application deployment troubleshooting tips
When you first test or run a deployed application, you might encounter problems.

Select the problem you are having with testing or the first run of deployed code for WebSphere Application
Server:
v “Application startup problems” on page 270.
v “Web resource is not displayed” on page 275.
v “A client program does not work” on page 274.

You can use the following administrative console pages to inspect the configuration of your applications
and JMS resources:

v For a view of the JMS resources for a given application, see the following page: ae/
AppToSIBRefs_DetailForm.dita.

v For a view of the applications and JMS resources for a given default messaging provider destination,
see the following page: ae/AppsFromSIBRefs_DetailForm.dita.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, see Troubleshooting help from IBM.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support webpage.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents page for information to gather to send to IBM
Support page.

Application startup errors
Use this information for troubleshooting problems that occur when starting an application.

What kind of error do you see when you start an application?
v “HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server” on page 266
v “File serving problems” on page 266
v “Graphics do not appear in the JSP file or servlet output” on page 267
v “SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file” on page 267
v “After modifying and saving a JSP file, the change does not show up in the browser ” on page 269
v “Error message: /jspname.jsp(9,0) Include: Mandatory attribute page missing” on page 269
v “The Java source generated from a JSP file is not retained in the temp directory ” on page 269
v “Error Enterprise Application [application name you typed in] not found” on page 269
v “Translation problem with non-English browser input” on page 270
v “Scroll bars do not appear around items in the browser window” on page 270
v “Error Page cannot be displayed, server not found or DNS error” on page 270

The following note applies to the ibm-web-ext.xmi references throughout this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

Chapter 14. Troubleshooting deployment 265

http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

HTTP server and Application Server are working separately, but requests are not
passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,
but browser requests sent to the HTTP server for pages are not being served, a problem exists in the
WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than
forwarding it to the WebSphere Application Server.
a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.
b. Browse the plug-in log file as described below.

2. Refresh the plugin-cfg.xml file that determines which requests sent to the HTTP server are forwarded
to the WebSphere Application Server, and to which Application Server.

Use the console to refresh this file:
v In the WebSphere Application Server administrative console, expand the Environment tree control.
v Click Update WebSphere Plugin.
v Stop and restart the HTTP server.
v Retry the web request.

3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.
Make sure the timestamps with the most recent plug-in information stanza, which is printed out when
the plug-in is loaded, correspond to the time the web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the plugin-cfg.xml file to Trace and
reloading the request. Browse the plugin_install_root/logs/Web_server_name/http_plugin.log file.
You should be able to see the plug-in attempting to match the request URI with the various URI
definitions for the routes in the plugin-cfg.xml. Check which rules the plug-in is not matching against
and then figure out if you need to add additional ones. If you just recently installed the application you
might need to manually regenerate the plug-in configuration to pick up the new URIs related to the
new application.

For further details on troubleshooting plug-in-related problems, see Webserver plug-in troubleshooting tips
located in the Administering applications and their environment PDF book.

File serving problems

If text output appears on your JSP- or servlet-supported web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your web application
WebSphere Application Server follows the J2EE standard, which means that the document root is the
web_module_name.war directory of your deployed web application.

Typically this directory will be found in the install_root/installedApps/nodename/appname.ear directory
or install_root/installedApps/nodename/appnameNetwork.ear directory.

266 Developing and deploying applications

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.
That is, if the invoices.html file is stored in Windows directory web_module_name.war\invoices, then
links from other pages in the web application to display it should read “invoices\invoices.html”, not
“invoices.html”.

v Verify that your web application is configured to enable file serving (in other words, that it is enabled to
display static resources like image and .html files):
1. View the file serving property of the hosting web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information
about the assembly tool, refer to the assembly tools section of the Developing and deploying
applications PDF book.

2. Edit the fileServingEnabled property in the deployed web application ibm-web-ext.xmi configuration
file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf
directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your web application.
The product follows the J2EE standard, which means that the document root is the
web_module_name.war directory of your deployed web application.

Typically, this directory is found in the install_root/installedApps/nodename/appname.ear directory or
install_root/installedApps/nodename/appnameNetwork.ear directory.

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic
reflects that; for example, if the banner.gif file is stored in Windows directory web_module_name.war/
images, the tag to display it should read: , not .

v Verify that your web application is configured to enable file serving (that is, display of static resources
like image and .html files).
1. View the file serving property of the hosting web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information
about the assembly tool, refer to the assembly tools section of the Developing and deploying
applications PDF book.

2. Edit the fileServingEnabled property in the deployed web application ibm-web-ext.xmi configuration
file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf
directory.

3. After completing the previous step:
– In the administrative console, expand the Environment tree control .
– Click Update WebSphere Plugin.
– Stop and restart the HTTP server and retry the web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the
most likely cause is that the JSP file Java source failed (was incorrect) during the javac compilation
phase.

Check the SystemErr.log file for a compiler error message, such as:

Chapter 14. Troubleshooting deployment 267

C:\WASROOT\temp\ ... test.war_myJsp.java:14: \Duplicate variable declaration: int myInt was int myInt
int myInt = 122;
String myString = "number is 122";
static int myStaticInt=22;
int myInt=121;

^

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran
successfully, then there is something different about the new server environment that prevents the JSP file
from running. Browse the text of the error for a statement like:
Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the
class path. Find the MyClass.class file, and place it on the web module WEB-INF/classes directory, or
place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by doing the following:

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc
root, if any/filename.ext. The document root for a web application is the application_name.WAR
directory of the installed application.
– For example, to access the myJsp.jsp file, located in c:\WebSphere\ApplicationServer\

installedApps\myEntApp.ear\myWebApp.war\invoices on myhost.mydomain.com, and assuming the
context root for the myWebApp web module is myApp, the URL is http://myhost.mydomain.com/
myApp/invoices/myJsp.jsp.

– JSP serving is enabled by default. File serving for HTML and image files must be enabled as a
property of the web module, in an assembly tool, or by setting the fileServingEnabled property to
true in the ibm-web-ext.xmi file of the installed web application and restarting the application. For
more information about the assembly tool, refer to the assembly tools section of the Developing and
deploying applications PDF book.

v For servlets served by class name, the URL is http://hostname/Web_module_context_root/servlet/
packageName.className.

For example, to access myCom.myServlet.class, located in c:\WebSphere\ApplicationServer\
installedApps\ myEntApp.ear\myWebApp.war\WEB-INF\classes, and assuming the context root for the
myWebApp module is “myApp”, the URL would be http://myhost.mydomain.com/myApp/servlet/
myCom.MyServlet.

v Serving servlets by class name must be enabled as a property of the web module, and is enabled by
default. File serving for HTML and image files must be enabled as a property of the Web application, in
an assembly tool, or by setting the fileServingEnabled property to true in the ibm-web-ext.xmi file of
the installed web application and restarting the application. For more information about the assembly
tool, refer to the assembly tools section of the Developing and deploying applications PDF book.

Correct the URL in the “from” HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the
calling resource context. For example:
v an HREF in http://[hostname]/myapp/servlet/MyServlet to ServletB resolves to “http://hostname/

myapp/servlet/ServletB”

268 Developing and deploying applications

v an HREF in http://[hostname]/myapp/servlet/MyServlet to “servlet/ServletB” resolves to
“http://hostname/myapp/servlet/servlet/ServletB” (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to “/ServletB” resolves to
“http://hostname/ServletB” (an error, if ServletB requires the same context root as MyServlet)

After modifying and saving a JSP file, the change does not show up in the
browser

It is probable that the web application is not configured for servlet reloading, or the reload interval is too
high.

To correct this problem, in an assembly tool, check the Reloading Enabled flag and the Reload Interval
value in the IBM Extensions for the web module in question. Enable reloading, or if it is already enabled,
then set the Reload Interval lower. For more information about the assembly tool, refer to the assembly
tools section of the Developing and deploying applications PDF book.

Error message: /jspname.jsp(9,0) Include: Mandatory attribute page missing

The error “Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing” appears when
attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSP directive, in
this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The Java source generated from a JSP file is not retained in the temp directory

It is probable that the JSP processor is not configured to keep generated Java source.

In an assembly tool, check the JSP Attributes under Assembly Property Extensions for the web module in
question. Make sure the keepgenerated attribute is there and is set to true. If not, set this attribute and
restart the web application. To see the results of this operation, delete the class file from the temp directory
to force the JSP processor to translate the JSP source into Java source again. For more information about
the assembly tool, refer to the assembly tools section of the Developing and deploying applications PDF
book.

Error “Enterprise Application [application name you typed in] not found”

The JSP Batch Compiler fails with the message “Enterprise Application [application name you typed in] not
found”

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that
resides in the applications directory is expected as an argument to the JspBatchCompiler tool, not just
the display name.

The directory path is install_root\config\cells\node_nameNetwork\applications.

For example:
v “JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp” is correct, as

opposed to
v “JspBatchCompiler -enterpriseapp.name sampleApp”, which is incorrect.

Chapter 14. Troubleshooting deployment 269

Translation problem with non-English browser input

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,
ensure that the request parameters are encoded according to the expected character set before reading.
For example, if the site is Chinese, the target .jsp file should have a line:
req.setCharacterEncoding("gb2312");

before any req.getParameter method calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,
which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars
to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

Error “Page cannot be displayed, server not found or DNS error”

Error “Page cannot be displayed, server not found or DNS error” appears when attempting to browse a
JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To
correct this problem, increase the ConnectionIOTimeOut value:

1. From the administrative console, select System administration Deployment manager
Administration Services Custom Properties

2. Select ConnectionIOTimeOut.

3. Increase the ConnectionIOTimeOut value.

4. Click OK.

Application startup problems
When an application is not starting or starting with errors, the problem could be from one of various
sources.

What kind of error do you see when you start an application?
v “WSVR0100W: An error occurred initializing, application_name java.lang.NullPointerException when

starting a migrated application” on page 271
v A “java.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean” on page

271 error occurs
v A “ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter” on page 272 error occurs
v “NMSV0605E: A Reference object looked up from the context... error when starting an application” on

page 272.
v A parsing error when running an application that uses the JSF configuration occurs.
v “A Page Not Found, Array Index Out of Bounds, or other error when an updated application restarts” on

page 273

If none of these errors match the error you see:

v Browse the log files of the application server for this application looking for clues. By default, these files
are: app_server_root/logs/server_name/SystemErr.log and SystemOut.log.

270 Developing and deploying applications

v Look up any error or warning messages in the message reference table by clicking the Reference view
and expanding Messages.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, see IBM Support troubleshooting information.

WSVR0100W: An error occurred initializing, application_name
java.lang.NullPointerException when starting a migrated application

After you migrate an enterprise application to Version 8.0, the application might not start. Attempts to start
the application result in an error such as WSVR0100W: An error occurred initializing, application_name
java.lang.NullPointerException.

Examine the deployment.xml file of the migrated application, and remove targetMapping statements such
as the following:
<targetMappings xmi:id=“DeploymentTargetMapping_1279594183813” enable=“true”/>"

Then, try starting the application again. The Version 8.0 runtime has an application validation process that
might not support migrated targetMappings settings.

java.lang.ClassNotFoundException: classname
Bean_AdderServiceHome_04f0e027Bean

An similar exception occurs when you try to start an undeployed application containing enterprise beans,
or containing undeployed enterprise bean modules.

Enterprise JavaBeans modules created in an assembly tool intentionally have incomplete configuration
information. Deploying these modules completes the configuration by reading the module's deployment
descriptor and completing platform- or installation-dependent settings and adding related classes to the
Enterprise JavaBeans JAR file.

To avoid this problem, do the following:
v Use an assembly tool and administrative console to generate deployment code and install the

application or Enterprise JavaBeans module onto a server.
1. Uninstall the application or Enterprise JavaBeans module in the administrative console.
2. Configure your assembly tool so the target server is a WebSphere Application Server installation. If

you do not have access to the target server, you can specify a false location such as /temp.
Specifying a false location enables you to assemble and generate deployment code for the
enterprise bean.

3. In the Project Explorer view of an assembly tool, right-click the enterprise bean (Enterprise
JavaBeans) in the undeployed .ear file containing the Enterprise JavaBeans module or the
stand-alone undeployed Enterprise JavaBeans JAR file, and click Deploy. If your assembly tool can
access the WebSphere Application Server target server, deployment code is generated for the
Enterprise JavaBeans and the assembly tool attempts to install the application or module onto the
target server. If your assembly tool cannot access the WebSphere Application Server target server
or the installation fails, use the deployment code that is generated for the next step.

For information on using an assembly tool, refer to the topic on assembling applications.

Chapter 14. Troubleshooting deployment 271

4. Use the wsadmin $AdminApp install command or the administrative console to install the deployed
version created by the assembly tool.

v If you use the wsadmin $AdminApp install command, uninstall it and then reinstall using the -EJBDeploy
option. Follow the install command with the $AdminConfig save command.

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module
with version 1.1 using The Relational Resource Adapter

This error occurs when an enterprise bean developed to the Enterprise JavaBeans 1.1 specification is
deployed with a WebSphere Application Server V5 J2C-compliant data source, which is the default data
source. By default, persistent enterprise beans created under WebSphere Application Server V4.0 using
the Application Assembly Tool fulfill the Enterprise JavaBeans 1.1 specification. To run on WebSphere
Application Server V6, these enterprise beans must be associated with a WebSphere Application Server
V4.0-type data source.

Either modify the mapping in the application of enterprise beans to associate 1.x container managed
persistence (CMP) beans to associate them with a V4.0 data source or delete the existing data source and
create a V4.0 data source with the same name.

To modify the mapping in the application of enterprise beans, in the WebSphere Application Server
administrative console, select the properties for the problem application and use Map resource
references to resources or Map data sources for all 1.x CMP beans to switch the data source the
enterprise bean uses. Save the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same name:
1. In the administrative console, click Resources > Manage JDBC Providers > JDBC_provider_name

> Data sources.
2. Delete the data source associated with the Enterprise JavaBeans 1.1 module.
3. Click Resources > Manage JDBC Providers > JDBC_provider_name > Data sources (Version 4).
4. Create the data source for the Enterprise JavaBeans 1.1 module.
5. Save the configuration and restart the application.

NMSV0605E: “A Reference object looked up from the context...” error when
starting an application

If the full text of the error is similar to:
[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E:

A Reference object looked up from the context
"java": with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the JNDI Naming Manager
and an exception resulted. Reference data follows:
Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory
Reference Factory Class Location URLs:
Reference Class Name: java.lang.Object
Type: JndiLookupInfo
Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL="";

initialContextFactory=""

then the problem might be that the data source intended to support a CMP enterprise bean is not correctly
associated with the enterprise bean.

To resolve this problem:
1. Select the Use this Data Source in container managed persistence (CMP) check box in the data

source “General Properties” panel of the administrative console.
2. Verify the JNDI name in either of the following ways:

v Verify that the JNDI name given in the administrative console under Resources > Manage JDBC
Providers > DataSource > JNDI Name for DataSource matches the JNDI name given for CMP or
BMP resource bindings at the time of assembling the application in an assembly tool.

272 Developing and deploying applications

v Check the JNDI name for CMP or BMP resource bindings specified in the code by J2EE application
developer. Open the deployed .ear folder in an assembly tool, and look for the JNDI name for your
entity beans under CMP or BMP resource bindings. Verify that the names match.

Parsing error when running an application that uses the JSF configuration

If you are using double-byte characters in the profile name, you receive a parsing error when running an
application that uses the JavaServer Faces (JSF) configuration. The problem is related to the JSF
configuration that is part of the jsf-ibm.jar, which is included when building JSF applications in Rational
Application Developer. The configuration files are referencing entities from inside the main
faces-config.xml file.

Avoid using double-byte characters when you create a profile.

A Page Not Found, Array Index Out of Bounds, or other error when an updated
application restarts

If an application is updated while it is running, WebSphere Application Server automatically stops the
application or only its changed components, updates the application logic, and restarts the stopped
application or its components. For more information on the restarting of updated applications, refer to
Fine-grained recycle behavior in IBM WebSphere Developer Technical Journal: System management for
WebSphere Application Server V6 -- Part 5 Flexible options for updating deployed applications.

A Page Not Found, Array Index Out of Bounds, or other error might occur during restarting.

To minimize the occurrence of such errors, update applications in a test environment before updating the
applications in a production environment. Do not put changes directly into a production environment.

Reducing annotation searches during application deployment
Enterprise applications that contain many classes with annotations might take a long time to deploy. Java
EE 5 introduced annotations to add metadata to Java classes. Because of performance issues associated
with reflection and because classes are not always loadable at deployment, bytecode scanning technology
is used to retrieve annotation metadata. Java EE 5 or later applications with many classes might
experience long deployment times because every class within the application is inspected during
deployment. You can reduce the number of annotations to inspect by specifying the modules and Java
packages to ignore for annotations processing in the amm.filter.properties file or by configuring system
properties.

Before you begin

Install an application that supports Java Platform, Enterprise Edition (Java EE) 5 or later on a product
server. If deployment is unreasonably slow and you will be deploying this application again in the future,
complete a procedure in this topic to reduce the number of classes that are searched for annotations
during deployment.

About this task

The product provides a configurable filtering function to reduce the number of classes that are searched
for annotations. You can identify which modules or Java packages to ignore for annotations processing
through two properties:
v Ignore-Scanning-Archives
v Ignore-Scanning-Packages

A default set of values is provided in the amm.filter.properties file in app_server_root/properties. The
property values provide both coarse and fine grained control over the search scope for annotations

Chapter 14. Troubleshooting deployment 273

http://www.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

processing. Use of the Ignore-Scanning-Archives property reduces deployment time more than use of the
Ignore-Scanning-Packages property. The syntax for the Ignore-Scanning-Archives and
Ignore-Scanning-Packages properties follows the comma-separated value convention. No wildcard or
regular expressions are permitted and values are case-sensitive.

The default set of values can be changed by an administrator or augmented by a user using one of the
following steps.

Procedure
v Place an amm.filter.properties file in the profile_root/properties directory.

v Use system properties to supply values for the Ignore-Scanning-Archives and Ignore-Scanning-
Packages properties.

– The com.ibm.ws.amm.scan.context.filter.archives system property supplies values for the
Ignore-Scanning-Archives property.

– The com.ibm.ws.amm.scan.context.filter.packages system property supplies values for the
Ignore-Scanning-Packages property.

See the topic on Java virtual machine custom properties.

v Add Ignore-Scanning-Archives and Ignore-Scanning-Packages entries to the application manifest,
META-INF/MANIFEST.MF.

Note: When updating the application manifest, follow line-length limitations and other constraints for the
manifest.

v Add Ignore-Scanning-Archives and Ignore-Scanning-Packages entries to the module manifest.

Note: When updating the module manifest, follow line-length limitations and other constraints for the
manifest.

What to do next

Install the application again. If deployment continues to be slow, specify more modules and Java packages
to ignore.

A client program does not work
What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server
resources (JSP files, servlet, or HTML pages) or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP
server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same
host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port
(such as the default port 80).

To resolve this problem, either:
v Open the IIS administrative panel, and edit the properties of the default web server to change the port

number to a value other than 80
v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

274 Developing and deploying applications

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180

Plants by WebSphere Catalog Manager (pbwsCatalogMgr) exceptions

When you federate a stand-alone server into a Deployment Manager cell, the bootstrap port number of the
application server may change. This will cause the client to not be able to communicate with the server,
thus causing an exception. The following scenario may cause an exception when you start Plants by
WebSphere:
1. Install a stand-alone WebSphere Application Server.
2. Run the Plants by WebSphere example.
3. Create a Deployment Manager (DMGR) using the Profile Management tool or by using the

manageprofiles command.
4. Federate the stand-alone WebSphere Application Server into a Deployment Manager cell using the

addNode command.
5. Start pbwsCatalogMgr.

To avoid the exception, locate the new (changed) port number on the server and modify the client
configuration to match the port number on the server.

1. Go to was_server_root\profiles\your_server_name\config\cells\your_cell\nodes\your_node.

a. Open the serverindex.xml file.

b. Locate the BOOTSTRAP_ADDRESS port number of the application server, for example 9810.

2. Assign this port number to the client to communicate with your newly-federated application server. Go
to was_client_root\bin and edit the setupClient.bat file.

3. Locate the line 'SET SERVERPORTNUMBER' and set the value for it to 9810.

If you have security enabled, ensure that the bus security is also enabled and that a user is defined to
the bus connector role before running pbwsCatalogMgr.

4. Restart the node agent and the application server.

The client is now properly set up to start pbwsCatalogMgr.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Web resource is not displayed
Use this information to troubleshoot problems that occur when attempting to display a resource in a
browser.

If you are not able to display a resource in your browser, follow these steps:
1. Verify that your HTTP server is healthy by accessing the URL http://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and
running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page
cannot be displayed or something similar, try to diagnose your web server problem.

3. If the HTTP server appears to function correctly, the Application Server might not be serving the target
resource. Try to access the resource directly through the Application Server instead of through the
HTTP server.

If you cannot access the resource directly through the Application Server, verify that the URL used to
access the resource is correct.

If the URL is incorrect and it is created as a link from another JavaServer Pages (JSP) file, servlet, or
HTML file, try correcting it in the browser URL field and reloading, to confirm that the problem is a
malformed URL. Correct the URL in the "from" HTML file, servlet or JSP file.

If the URL appears to be correct, but you cannot access the resource directly through the Application
Server, verify the health of the hosting application server and web module:

Chapter 14. Troubleshooting deployment 275

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

a. View the hosting application server and web module in the administrative console to verify that they
are up and running.

b. Copy a simple HTML or JSP file, such as SimpleJsp.jsp, which is in the WebSphere Application
Server directory structure, to your web module document root, and try to access the file. If
successful, the problem is with the resource.

View the JVM log of your Application Server to find out why your resource cannot be found or
served .

4. If you can access the resource directly through the Application Server, but not through an HTTP server,
the problem lies with the HTTP plug-in, the component that communicates between the HTTP server
and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image
files, see the steps for enabling file serving.

6. If certain resources display correctly, but you cannot display a servlet by its class name:
v Verify that the servlet is in a directory in the web module class path, such as in the

/web_module_name.war/WEB-INF/classes directory.
v Verify that you specify the full class name of the servlet, including its package name, in the URL.
v Verify that "/servlet" precedes the class name in the URL. For example, if the root context of a

web module is "myapp", and the servlet is com.mycom.welcomeServlet, then the URL reads:
http://hostname/myapp/servlet/com.mycom.welcomeServlet

v Verify that serving the servlets by class name is enabled for the hosting web module by opening the
source web module in an assembly tool and browsing the serve servlets by classname setting in the
IBM Extensions property page. If necessary, enable this flag and redeploy the web module. For
more information about the assembly tool, refer to the assembly tools section of the Developing and
deploying applications PDF book.

v For servlets or other resources served by mapped URLs, the URL is http://hostname/Web module
context root/mappedURL.

If none of these steps fixes your problem, see if the problem has been identified and documented by
looking at available online support (hints and tips, technotes, and fixes). If you do not find your problem
listed there, see Troubleshooting help from IBM.

Diagnosing web server problems

If you are unable to view the welcome page of your HTTP server, determine if the server is operating
properly.

Look in the Services panel for the service corresponding to your HTTP server, and verify that
the state is Started. If not, start it. If the service does not start, try starting it manually from the command
prompt. If you are using IBM HTTP Server, the command is IHS_install_dir\apache .

Run the ps -ef | grep httpd command. There should be
several processes running with a name of "httpd". If not, start your HTTP server manually. If you are
using IBM HTTP Server, the command is IHS_install_dir/bin/apachectl start.

If the HTTP server does not start:

v Examine the HTTP server error log for clues.

v Try restoring the HTTP server to its configuration prior to installing WebSphere Application Server and
restarting it. If you are using IBM HTTP Server:
– Rename the file IHS_install_dir\httpd.conf.
– Copy the httpd.conf.default file to the httpd.conf directory.
– If Apache is running, stop and restart it.

v For the Sun ONE (iPlanet) Web Server, restore the obj.conf configuration file for Sun ONE V4.1 and
both obj.conf and magnus.conf files for Sun ONE V6.0 and later.

v For the Microsoft Internet Information Server (IIS), remove the WebSphere Application Server plug-in
through the IIS administrative GUI.

276 Developing and deploying applications

If restoring the HTTP server default configuration file works, manually review the configuration file that has
WebSphere Application Server updates to verify directory and file names for WebSphere Application
Server files. If you cannot manually correct the configuration, you can uninstall and reinstall WebSphere
Application Server to create a clean HTTP configuration file.

If restoring the default configuration file does not help, contact technical support for the web server you are
using. If you are using IBM HTTP Server with WebSphere Application Server, check available online
support (hints and tips, technotes, and fixes). If you do not find your problem listed there, see
Troubleshooting help from IBM.

Accessing a web resource through the application server and bypassing the HTTP
server

You can bypass the HTTP server and access a web resource through the application server. It is not
recommended to serve a production website in this way, but it provides a good diagnostic tool when it is
not clear whether a problem resides in the HTTP server, WebSphere Application Server, or the HTTP
plug-in.

To access a web resource through the Application Server:
1. Determine the port of the HTTP service in the target application server.

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
application_server > Web container.

b. Under the Additional Properties of the web container, click HTTP Transports. You see the ports
listed for virtual hosts served by the application server.

c. There can be more than one port listed. In the default application server (server1), for example,
9060 is the port reserved for administrative requests, 9443 and 9043 are used for SSL-encrypted
requests. To test the sample "snoop" servlet, for example, use the default application port 9080,
unless it changes.

2. Use the HTTP transport port number of the application server to access the resource from a browser.
For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

3. If you are still unable to access the resource, verify that the HTTP transport port is in the "Host Alias"
list:
a. Click Servers > Server Types > WebSphere application servers > application_server > Web

container > HTTP transports to check the Default virtual host and the HTTP transport ports used
by this application server.

b. Click Environment > Virtual hosts > default_host > Host Aliases to check if the HTTP transport
port exists. Add an entry if necessary. For example, if the HTTP port for your application is server
is 9080, add a host alias of *:9082.

Application uninstallation problems
When you try to uninstall an application or node, you might encounter problems. This topic suggests ways
to resolve uninstallation problems.

What kind of problem are you having?
v After uninstalling an application through wsadmin tool, the application continues to run and throws

"DocumentIOException"

If none of these steps fixes your problem:
v Make sure that the application and its web and EJB modules are in a stopped state before uninstalling.
v If you are uninstalling or installing an application using wsadmin, make sure that you are using the

-conntype NONE option to invoke wsadmin and enable local mode. To use the -conntype NONE option,
stop the hosting application server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at the available online
support (hints and tips, technotes, and fixes).

v If you don't find your problem listed there, contact IBM support

Chapter 14. Troubleshooting deployment 277

After uninstalling application through the wsadmin tool, the application throws
"DocumentIOException"

If this exception occurs after the application was uninstalled using wsadmin with the -conntype NONE
option:
v Restart the server or,
v Rerun the uninstall command without the -conntype NONE option.

278 Developing and deploying applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 279

280 Developing and deploying applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 281

http://www.ibm.com/legal/copytrade.shtml

282 Developing and deploying applications

Index

A
applications

installation bindings 138
settings

installation 137
assets 230

deleting 235
exporting 235
importing 224
managing 230
settings 226

adding 243
updating 233
uploading 225

updating 231
authentication

JASPI enablement
applications 166

B
backend ID

settings 186
business-level applications 219, 240

assets 222
composition units 222
creating 236, 252

administrative console 237
deleting 257
settings 241, 247
starting 253
stopping 254
updating 255

C
class loaders 27

Java EE 21
Java EE applications 28
settings 27
web modules 30
WebSphere server 26

client modules
property settings 155
settings 155

cnfiguration elements
jndiEntry 107

common OSGi bundles
sharing 108

composition units
settings 249

adding 243
configuration elements

bundleRepository 108
context-root 118

context-root
deploying 103

D
deployment

applications 123
business-level applications 219
EAR files

default bindings 135
enterprise application files

monitored directory 193, 200
enterprise modules with JSR-88 214
Java EE application files

WebSphere targets 123
Java EE files

administrative console 128
Java EE modules

deployment targets 124, 126
monitored directory values 196
settings 199

E
EJB Deploy

settings 175
Enterprise JavaBeans (EJB)

JNDI names for beans 157
references 160
settings

binding EJB business settings 158
entity manager

configuring 119
environment entries

settings
applications 184
client module 182
EJB modules 183

I
installation options

settings 143

J
JDBC applications

deploying 114
JDBC driver location

deploying 114
JDBC drivers

deploying 114
JDBC tracing options 115
JNDI

settings
JCA objects 187

JNDI binding for constants 107
JPA applications

configuring 119

© Copyright IBM Corp. 2012 283

L
Liberty profile

adding 104
Liberty server

packaging 107

M
messages

settings
destination references 186

metadata
settings

modules 190
module build ID

settings 193
module customization

DConfigBeans 216
modules

settings 153

O
options

relationship options
settings 246

settings 243
OSGi applications

deploying 103
running 104

S
server features

deploying 114
Servers view

configuring 104
shared library reference and mapping

settings 177
shared library relationship and mapping

settings 178, 242

T
target mapping

settings 245

V
virtual hosts

settings 164

W
web applications

settings
initial parameters for servlets 181

web services
samples installation 136
settings

options to perform web services deployment 192

284 Developing and deploying applications

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Overview and new features for developing applications
	Chapter 2. How do I develop applications?
	Migrating to Java Platform, Enterprise Edition (Java EE) 6
	Migrating to Java Platform, Standard Edition (Java SE) 6

	Chapter 3. Designing applications
	Chapter 4. Obtaining an integrated development environment (IDE)
	Chapter 5. Debugging applications
	Debugging components in the IBM Rational Application Developer for WebSphere
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters

	Chapter 6. Assembling applications
	Application assembly and enterprise applications
	Development and assembly tools
	Generating code for web service deployment
	Assembling applications: Resources for learning

	Chapter 7. Class loading
	Class loaders
	Configuring class loaders of a server
	Class loader collection
	Class loader ID
	Class loader order
	Class loader settings
	Class loader ID
	Class loader order

	Configuring application class loaders
	Configuring web module class loaders
	Class loading: Resources for learning

	Chapter 8. Adding logging and tracing to your application
	Using Java logging in an application
	Using a logger
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters

	Java logging
	Configuring the logger hierarchy
	Creating log resource bundles and message files
	Logger.properties file for configuring logger settings

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Logging Common Base Events in WebSphere Application Server
	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	Common Base Event structure
	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination

	Logging with Common Base Event API and the Java logging API
	Generate Common Base Event content with the default event factory
	Common Base Event content handler
	Creating custom Common Base Event content handlers
	Common Base Event factory home
	Creating custom Common Base Event factory homes
	Common Base Event factory context
	Common Base Event factory

	java.util.logging -- Java logging programming interface
	Logger.properties file
	Logging Common Base Events in WebSphere Application Server
	Showlog commands for Common Base Events

	Chapter 9. Overview and new features for deploying applications
	Chapter 10. Deploying applications to the Liberty profile
	Adding and running an application on the Liberty profile using developer tools
	Publishing your application using developer tools
	Manually publishing to a server
	Publishing settings for a WebSphere Application Server V8.5 Liberty profile

	Packaging a Liberty profile server from the command prompt
	Using JNDI binding for constants from the server configuration files
	Sharing common OSGi bundles for the Liberty profile
	Configuring class loaders for Java EE applications
	Using a Java library with a Java EE application
	Sharing a library across multiple Java EE applications
	Accessing third-party APIs from a Java EE application
	Removing access to third-party APIs for a Java EE application
	Overriding a provided API with an alternative version
	Providing global libraries for all Java EE applications

	Deploying data access applications to the Liberty profile
	Deploying an existing JDBC application to the Liberty profile
	Enabling JDBC Tracing for the Liberty profile

	Deploying a web application to the Liberty profile
	Deploying a JPA application to the Liberty profile

	Chapter 11. How do I deploy applications?
	Chapter 12. Deploying enterprise applications
	Installing enterprise application files
	Installable enterprise module versions
	Ways to install enterprise applications or modules

	Installing enterprise application files with the console
	Example: Installing an EAR file using the default bindings
	Example: Installing a web services sample with the console
	Preparing for application installation settings
	Path to the new application

	Preparing for application installation binding settings
	How do you want to install the application?
	Specify bindings to use
	Generate default bindings
	Override existing bindings
	Specific bindings file
	Specify unique prefix for beans
	Default bindings for EJB 1.1 CMP beans
	Default connection factory bindings
	Use default virtual host name for web and SIP modules

	Select installation options settings
	Precompile JavaServer Pages files
	Directory to install application
	Distribute application
	Use binary configuration
	Deploy enterprise beans
	Application name
	Create MBeans for resources
	Override class reloading settings for web and EJB modules
	Reload interval in seconds
	Deploy web services
	Validate input off/warn/fail
	Process embedded configuration
	File permission
	Application build identifier
	Business-level application name
	Asynchronous request dispatch type
	Allow EJB reference targets to resolve automatically
	Deploy client modules
	Client deployment mode
	Validate schema

	Manage modules settings
	Clusters and servers
	Module
	URI
	Module type
	Server

	Client module settings
	URI
	Alternate deployment descriptor

	Client module property settings
	Client module deployment mode

	Provide options to compile JavaServer Pages settings
	Web module
	URI
	JSP class path
	Use full package names
	JDK source level
	Disable JSP runtime compilation

	EJB JNDI names for beans
	Module
	Bean
	URI
	Target Resource JNDI name

	Bind EJB business settings
	Module
	Bean
	URI
	Business Interface
	JNDI Name

	Map default data sources for modules containing 1.x entity beans
	Select
	EJB Module
	URI
	JNDI name
	User name

	EJB references
	Module
	Bean
	URI
	Resource Reference
	Class
	Target Resource JNDI Name

	Resource references
	Set multiple JNDI names
	Modify Resource Authentication Method
	Extended Properties
	Select
	Module
	Bean
	URI
	Resource Reference
	Target Resource JNDI name
	Login configuration

	Virtual hosts settings
	Web module
	Virtual host

	Security role to user or group mapping
	Role
	Mapped users
	Special subjects
	Mapped groups

	JASPI authentication enablement for applications
	Select JASPI provider

	User RunAs collection
	Username
	Password
	Role

	Ensure all unprotected 1.x methods have the correct level of protection
	EJB module
	URI
	Deny all access

	Bind listeners for message-driven beans settings
	Module
	Bean
	URI
	Messaging Type
	Listener Bindings

	Map data sources for all 2.x CMP beans
	Set Multiple JNDI Names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization
	Extended Datasource Properties

	Map data sources for all 2.x CMP beans settings
	Set Multiple JNDI names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB
	EJB Module
	URI
	Target resource JNDI name
	Resource authorization

	Ensure all unprotected 2.x methods have the correct level of protection
	Uncheck
	Exclude
	Role
	EJB module
	Protection type

	Provide options to perform the EJB Deploy settings
	Class path
	RMIC
	Database type
	Database schema
	Database access type
	SQLJ class path
	JDK compliance level

	Shared library reference and mapping settings
	Application
	Module
	URI
	Shared libraries

	Shared library relationship and mapping settings
	Module
	URI
	Relationship identifers
	Composition unit names
	Match target

	JSP and JSF option settings
	Web module
	URI
	JSP enable class reloading
	JSP reload interval in seconds
	Sun Reference Implementation 1.2
	MyFaces 2.0

	Context root for web modules settings
	Web Module
	URI
	Context Root

	Initial parameters for servlets settings
	Module
	URI
	Servlet
	Name
	Value
	Description

	Environment entries for client modules settings
	Client module
	URI
	Name
	Type
	Description
	Value

	Environment entries for EJB modules settings
	Module
	URI
	Bean
	Name
	Type
	Description
	Value

	Environment entries for web modules settings
	Module
	URI
	Name
	Type
	Description
	Value

	Environment entries for application settings
	Name
	Type
	Description
	Value

	Resource environment references
	Select
	Module
	EJB
	URI
	Reference binding
	JNDI name

	Message destination reference settings
	Module
	Bean
	URI
	Message destination object
	Type
	Target Resource JNDI Name

	Select current backend ID settings
	Module
	URI
	Current backend ID

	Provide JNDI names for JCA objects settings
	Connector module
	URI
	Object identifier
	Bindings

	Correct use of the system identity
	Bean
	Module
	URI
	Method signature
	Role
	Username

	Requirements for setting data access isolation levels
	Metadata for module settings
	Module
	URI
	metadata-complete attribute

	Provide options to perform the web services deployment settings
	Deploy web services option - Classpath
	Deploy web services option - Extension Directories

	Display module build ID settings
	Module
	URI
	Build ID

	Installing enterprise application files by adding them to a monitored directory
	Setting monitored directory deployment values
	Global deployment settings

	Installing enterprise application files by adding properties files to a monitored directory
	Installing enterprise modules with JSR-88
	Customizing modules using DConfigBeans

	Chapter 13. Deploying and administering business-level applications
	Business-level applications
	Assets
	Composition units

	Importing assets
	Upload asset settings
	Path to the asset

	Asset settings
	Asset name
	Asset description
	Asset binaries destination URL
	Asset type aspects
	File permissions
	Current asset relationships
	Validate asset
	EBA Dependencies

	Managing assets
	Asset collection
	Name
	Description

	Updating assets
	Update asset settings

	Deleting assets
	Exporting assets

	Creating business-level applications
	Creating business-level applications with the console
	Business-level application collection
	New business-level application settings
	Shared library relationship and mapping settings
	Add composition unit settings
	Add asset settings
	Set options settings
	Map target settings
	Relationship options settings

	Business-level application settings
	Name
	Description
	Deployed assets
	Business-level applications

	Composition unit settings
	Settings that are common to all composition units
	Additional composition unit settings for SCA composites
	Additional composition unit settings for OSGi applications

	Example: Creating a business-level application

	Starting business-level applications
	Stopping business-level applications
	Updating business-level applications
	Deleting business-level applications

	Chapter 14. Troubleshooting deployment
	Application deployment problems
	Application deployment troubleshooting tips
	Application startup errors
	Application startup problems
	Reducing annotation searches during application deployment
	A client program does not work
	Web resource is not displayed
	Application uninstallation problems

	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	I
	J
	L
	M
	O
	S
	T
	V
	W

