
IBM WebSphere Application Server for Distributed
Platforms, Version 8.5

Developing WebSphere applications

���

Note
Before using this information, be sure to read the general information under “Notices” on page 2241.

Compilation date: June 7, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . xvii

Using this PDF . xix

Chapter 1. Developing ActivitySessions . 1
Developing an enterprise application to use ActivitySessions 1

Developing an enterprise bean or enterprise application client to manage ActivitySessions 2
ActivitySession service application programming interfaces 3

Assembling applications that use ActivitySessions . 4
Setting EJB module ActivitySession deployment attributes 4
Setting Web module ActivitySession deployment attributes 7

Chapter 2. Developing Application profiling . 9
Using the TaskNameManager interface . 9

TaskNameManager interface . 11
Assembling applications for application profiling . 12

Chapter 3. Developing Asynchronous beans . 15
Developing work objects, event listeners, and asynchronous scopes. 15

Developing work objects to run code in parallel . 15
Developing event listeners . 19
Developing asynchronous scopes . 22

Assembling timer and work managers . 26
Assembling applications that use work managers and timer managers 26

Chapter 4. Developing applications that use the Bean Validation API 29
Bean Validation . 29
Bean validation built-in constraints . 32
Using bean validation in the product . 33

Bean validation in RAR modules . 35
Bean validation in JPA . 37

Chapter 5. Developing Client applications . 45
Developing client applications . 45

Choosing a type of client. 46
Installing, updating, rolling back, and uninstalling the Application Client for IBM WebSphere

Application Server . 47
Developing stand-alone thin client applications. 72
Developing a Java EE client application . 73
Developing a Java thin client application . 77
Developing ActiveX client application code . 77
Developing applet client code . 93
Running the Pluggable Application Client code. 95
Example: Enabling logging and tracing for application clients 110

Chapter 6. Developing Communications Enabled Applications 113
Developing communications enabled applications . 113

Developing SIP communications applications . 113

Chapter 7. Developing data access resources . 115
Developing data access applications . 115

Developing data access applications . 115
Example: Setting client information with the setClientInformation(Properties) API 199

© Copyright IBM Corp. 2012 iii

Changing the error detection model to use the Exception Checking Model 200
Exceptions pertaining to data access . 200

Assembling data access applications . 238
Creating or changing a resource reference. 239
Assembling resource adapter (connector) modules. 241

Chapter 8. Developing Dynamic caching . 243
Configuring cacheable objects with the cachespec.xml file 243

Verifying the cacheable page. 244
cachespec.xml file. 245
Example: Configuring the dynamic cache service . 255
cacheinstances.properties file . 257

Chapter 9. Developing Dynamic and EJB query . 263
Developing applications that use EJB query . 263

EJB query language . 263
Using the dynamic query service . 286

Chapter 10. Developing EJB applications . 297
Developing EJB 2.x enterprise beans. 297

Partial column update feature for container managed persistence 297
Setting partial update for container-managed persistent beans 299

Developing EJB 3.x enterprise beans. 299
Enterprise JavaBeans (EJB) 3.1 specification. 299
Enterprise JavaBeans (EJB) 3.0 specification. 300
Application exceptions . 300
EJB 3.x module considerations . 304
EJB metadata annotations. 305
EJB 3.x interceptors . 307
Create stubs command . 312
Create stubs command . 314

Developing entity beans . 317
Defining data sources for entity beans . 317
Lightweight local operational mode for entity beans 318
Applying lightweight local mode to an entity bean 319
Developing read-only entity beans . 319

Creating timers using the EJB timer service for enterprise beans 320
Clustered environment considerations for timer service 330

Developing enterprise beans . 340
Developing message-driven beans. 343
Enterprise bean development best practices . 345
WebSphere extensions to the Enterprise JavaBeans specification 346
Setting the run time for batched commands with JVM arguments 347
Setting the run time for deferred create with JVM arguments 347
Setting persistence manager cache invalidation . 348
Setting the system property to enable remote EJB clients to receive nested or root-cause

exceptions . 348
Unknown primary-key class . 348

Developing applications using the embeddable EJB container. 349
Embeddable EJB container . 353
Running an embeddable container. 354
Embeddable EJB container functions . 356
Embeddable EJB container configuration properties 356

Configuring EJB 3.1 session bean methods to be asynchronous. 361
Configuring remote asynchronous EJB method results 366
Configuring EJB asynchronous methods using scripting 367

iv Developing WebSphere applications

EJB 3.1 asynchronous methods. 369
Developing client code that calls EJB asynchronous methods. 370
Bean implementation programming model for EJB asynchronous methods 374
EJB container work manager for asynchronous methods 374
EJB asynchronous methods settings . 375

Developing session beans . 377
Configuring EJB 3.1 session bean methods to be asynchronous. 377
Developing stateful session beans . 392
Developing a session bean to have a No-Interface Local view 396
Developing singleton session beans . 397

Programming to use message-driven beans . 406
Developing message-driven beans. 407
Designing an enterprise application to use message-driven beans 409
Developing an enterprise application to use message-driven beans. 411

Assembling EJB 2.1 enterprise beans . 415
Assembling EJB 2.x modules . 415
Sequence grouping for container-managed persistence in assembled EJB modules 415
Setting the run time for CMP sequence groups . 416

Assembling EJB 3.x enterprise beans . 417
EJB 3.0 and EJB 3.1 application bindings overview 417
EJB 3.x module packaging overview . 443
Assembling EJB 3.x modules . 448

Assembling EJB modules . 448
EJB modules . 449
EJB content in WAR modules . 450
EJB 3.x module packaging overview . 455
Defining container transactions for EJB modules 459
References in application deployment descriptor files 459
EJB references . 460
EJB JNDI names for beans . 461
Bind EJB business settings . 462

Developing EJB 2.x entity beans that use access intents 462
Using the AccessIntent API . 462

Assembling access intents to EJB 2.x entity beans. 464
Applying access intent policies to beans . 464
Configuring read-read consistency checking with an assembly tool 466
Access intent service. 467
Applying access intent policies to methods. 468

Developing applications that use the Java Persistence API 470
Developing JPA 2.x applications for a Java EE environment 470
Developing JPA 2.x applications for a Java SE environment 472
Bean validation in JPA . 475
wsjpa properties . 482
Criteria API . 483
wsappid command . 483
wsenhancer command . 485
wsmapping command . 487
wsreversemapping command . 490
wsschema command. 492
wsdbgen command . 495
ANT task WsJpaDBGenTask . 497
SQL statement batching for JPA applications . 498
Database generated version ID with JPA . 499
Mapping persistent properties to XML columns for JPA 500
Directory conventions . 501

Assembling applications that use the Java Persistence API 504

Contents v

Assembling a JPA application in a Java EE environment 504
Assembling JPA applications for a Java SE environment 505
Using JPA access intent . 506
Associating persistence providers and data sources 511

Chapter 11. Developing Internationalization service 513
Task overview: Globalizing applications . 513

Globalization . 513
Working with locales and character encodings . 515
Language versions offered by this product . 516
Globalization: Resources for learning . 517

Task overview: Internationalizing interface strings (localizable-text API) 518
Identifying localizable text . 518
Creating message catalogs . 519
Composing language-specific strings . 519
Preparing the localizable-text package for deployment 527

Task overview: Internationalizing application components (internationalization service). 529
Internationalization service. 530
Assembling internationalized applications . 530
Using the internationalization context API . 535
Administering the internationalization service . 554

Chapter 12. Developing Mail, URLs, and other Java EE resources 561
Developing applications that use the JavaMail API . 561

JavaMail API. 561
Debugging mail sessions . 561

Chapter 13. Developing Messaging resources . 565
Programming to use asynchronous messaging . 565

Programming to use JMS and messaging directly 566
Programming for interoperation with WebSphere MQ 580
Programming to use message-driven beans . 599

Chapter 14. Developing Naming and directory . 611
Developing applications that use JNDI . 611

Example: Getting the default initial context . 615
Example: Getting an initial context by setting the provider URL property 618
Example: Setting the provider URL property to select a different root context as the initial context 620
Example: Looking up an EJB home or business interface with JNDI 621
JNDI interoperability considerations . 624
JNDI caching . 625
JNDI cache settings . 625
JNDI to CORBA name mapping considerations . 627

Developing applications that use CosNaming (CORBA Naming interface) 627
Example: Getting an initial context with CosNaming 627
Example: Looking up an EJB home with CosNaming 630

Chapter 15. Developing Object pools . 633
Using object pools. 633

Object pool managers . 634
Object pool managers collection . 636
Object pool service settings . 639
Object pools: Resources for learning . 639
MBeans for object pool managers and object pools 640

Chapter 16. Developing Object Request Broker (ORB) 641

vi Developing WebSphere applications

Developing Object Request Brokers . 641
Client-side programming tips for the Object Request Broker service 641

Directory conventions . 643

Chapter 17. Developing OSGi applications . 647
OSGi application design guidelines . 647
Developing an OSGi application . 648

Creating a service bundle . 649
Creating a client bundle. 653
Creating an OSGi application . 656

Developing a composite bundle . 659
Converting existing applications to OSGi applications 660

Converting an enterprise application to an OSGi application 660
Converting a Spring application to an OSGi application 664

Accessing Enterprise JavaBeans in OSGi applications 670
Sample OSGi applications . 672

OSGi blog sample application . 673
OSGi blabber sample application . 678

Chapter 18. Developing Portlet applications . 685
Portlet aggregation and preferences . 685

Supported optional features of the JSR-286 Portlet Specification 685
Portlet aggregation using JavaServer Pages . 689
Portlet preferences . 695
Portlet coordination . 696
Converting portlet fragments to an HTML document 697

Assembling portlets . 698
Portlet Uniform Resource Locator (URL) addressability 698
Example: Configuring the extended portlet deployment descriptor to disable PortletServingServlet 700

Chapter 19. Developing SCA composites . 701
Selecting the implementation type for an SCA composite 701
Developing Service Component Architecture (SCA) services 702

Developing SCA services from existing WSDL files. 703
Developing SCA services with existing Java code 708
Developing SCA service clients . 712
Developing asynchronous SCA services and clients 717
Using business exceptions with SCA interfaces . 722
Considerations for developing SCA applications using EJB bindings 726

Specifying bindings in an SCA environment . 729
Configuring the SCA default binding . 731
Using the SCA default binding to find and locate SCA services 735
Configuring the SCA web service binding . 736
Configuring EJB bindings in SCA applications . 749
Configuring EJB bindings in SCA OASIS applications 754
Configuring the SCA JMS binding . 758
Using Atom bindings in SCA applications . 795
Using HTTP bindings in SCA applications . 800
Using Widget implementation in JavaScript with Atom or HTTP bindings 805
Resolving SCA references . 809
Routing HTTP requests to an SCA service when using an external web server 811
Interoperability between Open SCA client services and WebSphere Process Server SCA modules 813

Creating wire format handlers . 815
Wire format handler errors. 817

Interoperating between SCA OASIS and OSOA composites 819
Using existing Java EE modules and components as SCA implementations 821

Contents vii

Using non-SCA enhanced Java EE applications as SCA component implementations 823
Using SCA enhanced Java EE applications as SCA component implementations 825
SCA annotations . 832
Rewiring EJB references to SCA references . 833

Using OSGi applications as SCA component implementations 834
SCA programming model support in OSGi applications 837

Using Spring 2.5.5 containers in SCA applications . 840
Additional Spring component implementation features 844

Chapter 20. Developing Scheduler service . 845
Developing and scheduling tasks . 845

Accessing schedulers . 846
Developing a task that calls a session bean . 847
Developing a task that sends a Java Message Service message 849
Scheduling long-running tasks . 850
Receiving scheduler notifications . 851
Submitting a task to a scheduler . 852
Task management methods using a scheduler . 853
Identifying tasks that are currently running . 855
Stopping tasks that are failing . 855
Scheduler tasks and Java EE context . 856
Securing scheduler tasks . 859
Scheduler configuration or topology . 860
Scheduler interface . 861

Chapter 21. Developing security . 865
Developing extensions to the WebSphere security infrastructure 865

Developing stand-alone custom registries . 865
Implementing custom password encryption . 872
Developing applications that use programmatic security 873
Customizing web application login . 906
Secure transports with JSSE and JCE programming interfaces 914
Configuring Federal Information Processing Standard Java Secure Socket Extension files 917
WebSphere Application Server security standards configurations 919
Configuring WebSphere Application Server for the Suite B security standard 923
Transitioning WebSphere Application Server to the SP800-131 security standard 925
Configuring WebSphere Application Server for SP800-131 standard strict mode 928
Implementing tokens for security attribute propagation 929
Developing a custom interceptor for trust associations 961
Enabling a plugpoint for custom password encryption 967
Implementing a custom authentication provider using JASPI 970

Chapter 22. Developing Startup beans . 981
Using startup beans . 981

Enabling startup beans in the administrative console 982
Startup beans service settings . 983

Chapter 23. Developing Service integration . 985
Programming mediations . 985

Serializing the content of SIMessage . 986
Writing a mediation handler . 986
Adding mediation function to handler code . 987
Writing a routing mediation . 1018
Writing a mediation that maps between attachment encoding styles 1019

Using durable subscriptions . 1020
Sending web service messages directly over the bus from a JAX-RPC client 1022

viii Developing WebSphere applications

sib: URL syntax . 1023

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1027
Developing SIP applications. 1027

Developing SIP applications that support PRACK 1027
Setting up SIP application composition. 1028
SIP servlets . 1030
Developing applications that use the Asynchronous Invocation API 1039

Chapter 25. Developing Spring applications . 1043
Configuring access to a Spring application data source 1043

Chapter 26. Developing Transactions . 1045
Developing components to use transactions . 1045

Configuring transactional deployment attributes 1045
Using component-managed transactions . 1049
Using one-phase and two-phase commit resources in the same transaction 1050

Chapter 27. Developing web applications . 1055
Developing web applications . 1055

Developing servlets . 1056
Developing JSP files . 1069
Developing JSF files . 1095
Defining an extension for the registry filter . 1104
Contexts and Dependency Injection (CDI) . 1109
Developing servlet applications using asyncrhonous request dispatcher 1113

Assembling web applications . 1114
Assembling web applications . 1114
Configuring JavaServer Faces implementation . 1117

Developing session management in servlets . 1118
Assembling so that session data can be shared . 1120

Chapter 28. Developing web services . 1123
Using JAXB for XML data binding . 1123

Using JAXB schemagen tooling to generate an XML schema file from a Java class 1124
Using JAXB xjc tooling to generate JAXB classes from an XML schema file 1128
Using the JAXB runtime to marshal and unmarshal XML documents 1130
xjc command for JAXB applications . 1131
schemagen command for JAXB applications . 1133

Developing JAX-WS web services (bottom-up) . 1135
Setting up a development environment for web services 1135
Developing JAX-WS web services with annotations 1136
Generating Java artifacts for JAX-WS applications 1159
Enabling MTOM for JAX-WS web services . 1167
Enforcing adherence to WSDL bindings in JAX-WS web services 1174
Developing a webservices.xml deployment descriptor for JAX-WS applications 1175
Completing the JavaBeans implementation for JAX-WS applications 1179
Completing the EJB implementation for JAX-WS applications 1179

Developing JAX-WS web services with WSDL files (top-down) 1180
Setting up a development environment for web services 1180
Generating Java artifacts for JAX-WS applications from a WSDL file 1181
Enabling MTOM for JAX-WS web services . 1186
Enforcing adherence to WSDL bindings in JAX-WS web services 1193
Developing a webservices.xml deployment descriptor for JAX-WS applications 1194
Completing the JavaBeans implementation for JAX-WS applications 1198
Completing the EJB implementation for JAX-WS applications 1198

Contents ix

Developing JAX-WS clients . 1199
Developing a JAX-WS client from a WSDL file . 1199
Developing deployment descriptors for a JAX-WS client 1202
Developing a dynamic client using JAX-WS APIs 1204
Invoking JAX-WS web services asynchronously 1206
Implementing extensions to JAX-WS web services clients. 1209

Developing JAX-RPC web services . 1220
Setting up a development environment for web services 1220
Developing a service endpoint interface from JavaBeans for JAX-RPC applications 1221
Developing a service endpoint interface from enterprise beans for JAX-RPC applications 1222
Developing a WSDL file for JAX-RPC applications 1223
Completing the JavaBeans implementation for JAX-RPC applications 1242
Completing the EJB implementation for JAX-RPC applications 1242
Configuring the webservices.xml deployment descriptor for JAX-RPC web services 1243
Configuring the webservices.xml deployment descriptor for handler classes 1244
Configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web services 1245

Developing JAX-RPC web services with WSDL files (top-down) 1247
Setting up a development environment for web services 1247
Developing Java artifacts for JAX-RPC applications from a WSDL file 1248
Developing EJB implementation templates and bindings from a WSDL file for JAX-RPC web

services . 1249
Completing the JavaBeans implementation for JAX-RPC applications 1251
Completing the EJB implementation for JAX-RPC applications 1251
Configuring the webservices.xml deployment descriptor for JAX-RPC web services 1252
Configuring the webservices.xml deployment descriptor for handler classes 1253
Configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web services 1254

Developing JAX-RPC web services clients . 1256
Developing client bindings from a WSDL file for a JAX-RPC Web services client 1256
Changing SOAP message encoding to support WSI-Basic Profile 1258
Configuring the JAX-RPC web services client deployment descriptor with an assembly tool 1259
Configuring the JAX-RPC client deployment descriptor for handler classes 1259
Configuring the JAX-RPC web services client bindings in the ibm-webservicesclient-bnd.xmi

deployment descriptor . 1263
Implementing extensions to JAX-RPC web services clients 1267

Assembling web services applications . 1281
Assembling web services applications . 1281
Assembling web services-enabled clients . 1294

Chapter 29. Developing web services - Addressing (WS-Addressing) 1299
Using the Web Services Addressing APIs: Creating an application that uses endpoint references 1299

Creating a JAX-WS web service application that uses Web Services Addressing 1299
Creating a JAX-RPC web service application that uses Web Services Addressing 1304
Example: Creating a web service that uses the JAX-WS Web Services Addressing API to access

a generic web service resource instance . 1310
Using the IBM proprietary Web Services Addressing SPIs: Performing more advanced Web Services

Addressing tasks . 1312
Specifying and acquiring message-addressing properties by using the IBM proprietary Web

Services Addressing SPIs . 1312
Interoperating with Web Services Addressing endpoints that do not support the default

specification supported by WebSphere Application Server 1314
Enabling Web Services Addressing support for JAX-WS applications 1315

Enabling Web Services Addressing support for JAX-WS applications using policy sets 1319
Enabling Web Services Addressing support for JAX-WS applications using deployment

descriptors . 1346
Enabling Web Services Addressing support for JAX-WS applications using addressing

annotations . 1347

x Developing WebSphere applications

Enabling Web Services Addressing support for JAX-WS applications using addressing features 1349
Enabling Web Services Addressing support for JAX-WS applications using WS-Policy 1350
Web Services Addressing annotations . 1351
Web Services Addressing security . 1353
Invoking JAX-WS web services asynchronously 1354

Enabling Web Services Addressing support for JAX-RPC applications 1357
Disabling Web Services Addressing support . 1359

Chapter 30. Developing web services - Invocation framework (WSIF) 1361
Using WSIF to invoke web services . 1361

Linking a WSIF service to the underlying implementation of the service. 1361
Developing a WSIF service . 1377
Interacting with the Java EE container in WebSphere Application Server 1390
Invoking a WSDL-based web service through the WSIF API 1391
Running WSIF as a client . 1397

Chapter 31. Developing web services - Notification (WS-Notification) 1399
Developing applications that use WS-Notification . 1399

Writing a WS-Notification application that exposes a web service endpoint 1400
Writing a WS-Notification application that does not expose a web service endpoint 1401
Filtering the message content of publications . 1402
Example: Subscribing a WS-Notification consumer 1403
Example: Pausing a WS-Notification subscription 1406
Example: Publishing a WS-Notification message 1407
Example: Creating a WS-Notification pull point . 1409
Example: Getting messages from a WS-Notification pull point 1410
Example: Registering a WS-Notification publisher 1411
Example: Creating a Notification consumer web service skeleton 1413

Chapter 32. Developing web services - Reliable messaging (WS-ReliableMessaging). 1415
Developing a reliable web service application . 1415

Controlling WS-ReliableMessaging sequences programmatically 1416
Providing transactional recoverable messaging through WS-ReliableMessaging. 1418
Configuring endpoints to only support clients that use WS-ReliableMessaging 1419

Chapter 33. Developing web services - RESTful services 1421
Planning JAX-RS web applications . 1421

Planning to use JAX-RS to enable RESTful services 1421
Defining the resources in RESTful applications. 1422
Defining the URI patterns for resources in RESTful applications 1423
Defining resource methods for RESTful applications 1425
Defining the HTTP headers and response codes for RESTful applications. 1427
Defining media types for resources in RESTful applications 1428
Defining parameters for request representations to resources in RESTful applications 1431
Defining exception mappers for resource exceptions and errors 1434

Developing JAX-RS web applications . 1435
Getting started with IBM JAX-RS . 1435
Setting up a development environment for JAX-RS applications 1437
Development and assembly tools. 1438
Directory conventions . 1439
Configuring JAX-RS web applications . 1441
Implementing clients using the Apache Wink REST client 1447
Implementing a client using the unmanaged RESTful web services JAX-RS client 1450
Migrating a Feature Pack for Web 2.0 JAX-RS application to WebSphere Version 8 1451
Disabling the JAX-RS runtime environment . 1452

Assembling JAX-RS web applications . 1454

Contents xi

Chapter 34. Developing web services - Security (WS-Security) 1457
Developing applications that use Web Services Security 1457

Configuring HTTP basic authentication for JAX-RPC web services programmatically 1457
Developing message-level security for JAX-WS web services 1458
Developing message-level security for JAX-RPC web services 1675
Web Services Security service provider programming interfaces 1677

Configuring Web Services Security during application assembly 1678
Configuring HTTP outbound transport level security with an assembly tool 1679
Configuring HTTP basic authentication for JAX-RPC web services with an assembly tool 1680
Configuring XML digital signature for Version 5.x web services with an assembly tool 1680
Configuring XML encryption for Version 5.x web services with an assembly tool 1707
Configuring XML basic authentication for Version 5.x web services with an assembly tool 1719
Configuring identity assertion for Version 5.x web services with an assembly tool 1727
Configuring signature authentication for Version 5.x web services with an assembly tool 1734
Configuring pluggable tokens for Version 5.x web services with an assembly tool 1740

Chapter 35. Developing web services - Transaction support (WS-Transaction) 1751
Creating an application that uses the Web Services Business Activity support 1751

Business activity API . 1752

Chapter 36. Developing web services - Transports 1757
Configuring the SOAP over JMS transport for JAX-WS web services 1757

SOAP over JMS protocol. 1757
JMS endpoint URL syntax . 1760
IBM proprietary SOAP over JMS protocol (deprecated). 1761
IBM proprietary JMS endpoint URL syntax (deprecated) 1765
Invoking web service requests transactionally using SOAP over JMS transport 1766
Invoking one-way JAX-RPC web service requests transactionally using the JMS transport

(deprecated) . 1767
Configuring SOAP over JMS message types . 1768

Chapter 37. Developing web services - UDDI registry 1771
Developing with the UDDI registry . 1771

UDDI registry client programming. 1771
Using the UDDI registry user interface . 1786
Using the JAXR provider for UDDI . 1792

Chapter 38. Developing Work area . 1801
Developing applications that use work areas . 1801

Developing applications that use work areas . 1801
Configuring work area partitions . 1806
Configuring work area partitions . 1806
Work area partition service . 1807
The Work area partition manager interface . 1811
Example: Using the work area partition manager . 1814
Work area partition collection . 1815

Name . 1815
Description . 1815
Enable service at server startup . 1815
Bidirectional . 1815
Maximum send size. 1815
Maximum receive size . 1816
Deferred attribute serialization . 1816
Enable Web service propagation . 1816
Work area partition settings . 1816

Accessing a user defined work area partition . 1817

xii Developing WebSphere applications

Propagating work area context over Web services 1817

Chapter 39. XML applications . 1819
Overview of XML support . 1819

XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions 1819
Overview of the XML Samples application . 1821
Using the XML API to perform operations. 1824

Building and running a sample XML application 1825
Running the IBM Thin Client for XML . 1827
Performing basic operations . 1828
Precompiling . 1872
Using resolvers . 1890
Using external variables and functions . 1898
Creating items and sequences. 1914
Working with collations . 1918
Executing using the command-line tools . 1920
Using a message handler and managing exceptions. 1925

Chapter 40. Deploying client applications. 1929
Deploying applet client code . 1929
Running an ActiveX client application . 1930

Starting an ActiveX application and configuring service programs 1930
Starting an ActiveX application and configuring non-service programs 1931
setupCmdLineXJB.bat, launchClientXJB.bat and other ActiveX batch files 1932

Deploying and running a Java EE client application 1933
Deploying a Java EE client application . 1933
Running a Java EE client application with launchClient 2014
Downloading and running a Java EE client application using Java Web Start 2020

Running the IBM Thin Client for Enterprise JavaBeans (EJB) 2034
Running Java thin client applications . 2037

Running a Java thin client application on a client machine 2039
Running a Java thin client application on a server machine 2039

Chapter 41. Deploying data access resources . 2041
Deploying data access applications . 2041

Available resources . 2043
Map data sources for all 1.x CMP beans . 2044
Map default data sources for modules containing 1.x entity beans. 2045
Map data sources for all 2.x CMP beans settings 2046
Map data sources for all 2.x CMP beans . 2048

Installing a resource adapter archive . 2050
Installing resource adapters embedded within applications 2051
Install RAR . 2052

Deploying SQLJ applications . 2053
Deploying SQLJ applications that use container-managed persistence (CMP) 2054
Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans 2056
Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications 2058
Using embedded SQLJ with the DB2 for z/OS Legacy driver 2066
Directory conventions . 2070

Installing a resource adapter archive . 2072
Installing resource adapters embedded within applications 2073
Install RAR . 2074

Chapter 42. Deploying EJB applications . 2075
Deploying EJB 3.x enterprise beans. 2075

EJB module settings . 2075

Contents xiii

Directory conventions . 2075
Deploying EJB modules . 2078

EJB 3.0 and EJB 3.1 deployment overview . 2079
EJBDEPLOY relationships – troubleshooting tips 2081
Directory conventions . 2081

Chapter 43. Deploying messaging resources . 2085
Deploying enterprise applications. 2085

Deploying an enterprise application to use JMS 2085
Deploying enterprise applications developed as message-driven beans. 2086

Chapter 44. Deploying OSGi applications . 2093
Deploying an OSGi application as a business-level application 2093

Adding an EBA asset to a composition unit by using the administrative console. 2095
Adding an EBA asset to a composition unit by using wsadmin commands. 2098

Debugging bundles at run time . 2119
Debugging bundles at run time by using the WebSphere Application Server administrative console 2119
Debugging bundles at run time by using the command-line console 2122

Chapter 45. Deploying SCA composites . 2131
Deploying SCA business-level applications . 2131

Importing assets . 2132
SCA application package deployment . 2138
Creating SCA business-level applications . 2139
Updating SCA composite artifacts . 2172
Viewing SCA composite definitions . 2174
Viewing SCA domain information . 2174
Viewing and editing JMS bindings on references and services of SCA composites. 2175
Exporting WSDL and XSD documents . 2177

Deploying OSGi applications that use SCA . 2178
Multiple SCA implementation packaging considerations 2180

Chapter 46. Deploying SIP applications . 2183
Deploying SIP applications through the console . 2183
Deploying SIP applications through scripting . 2184

Chapter 47. Deploying web applications . 2185
Deploying JavaServer Pages and JavaServer Faces files 2185

JSP class loading settings . 2185
JavaServer Pages (JSP) runtime reloading settings 2186
JSP and JSF option settings . 2191
JSP run time compilation settings . 2193
Provide options to compile JavaServer Pages settings 2193

Chapter 48. Deploying web services . 2197
Deploying web services applications onto application servers 2197

Provide options to perform the web services deployment settings 2198
wsdeploy command. 2199
JAX-WS application deployment model . 2201

Using a third-party JAX-WS web services engine . 2202
Deploying web services client applications . 2204
Making deployed web services applications available to clients 2205

Configuring web services client bindings . 2206
Configuring endpoint URL information for HTTP bindings 2210
Configuring endpoint URL information for JMS bindings 2212
Configuring endpoint URL information to directly access enterprise beans 2215

xiv Developing WebSphere applications

Publishing WSDL files using the administrative console 2216
Publishing WSDL files using a URL . 2218

Running an unmanaged web services JAX-RPC client 2219
Running an unmanaged web services JAX-WS client 2221
Testing web services-enabled clients . 2223

Chapter 49. Deploying web services - RESTful services 2225
Deploying JAX-RS web applications. 2225

Chapter 50. Deploying web services - Security (WS-Security) 2227
Deploying applications that use SAML . 2227

Propagating SAML tokens . 2227
Creating SAML attributes in SAML tokens . 2231
Establishing security context for web services clients using SAML security tokens 2233

Chapter 51. Deploying web services - Transports 2235
Invoking JAX-WS web services asynchronously using the HTTP transport. 2235

Using the JAX-WS asynchronous response servlet 2235
Using the JAX-WS asynchronous response listener 2236

Invoking JAX-WS web services asynchronously using the SOAP over JMS transport. 2237
Using the JAX-WS JMS asynchronous response message listener 2237

Notices . 2241

Trademarks and service marks . 2243

Index . 2245

Contents xv

xvi Developing WebSphere applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 xvii

xviii Developing WebSphere applications

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 xix

xx Developing WebSphere applications

Chapter 1. Developing ActivitySessions

This page provides a starting point for finding information about ActivitySessions, a WebSphere extension
for reducing the complexity of commitment rules and limitations that are associated with one-phase commit
resources.

Use ActivitySessions to extend the scope and group multiple local transactions. With this capability, you
can commit these transactions based on either deployment criteria or through explicit program logic.

Developing an enterprise application to use ActivitySessions
This topic provides an overview of the high-level tasks for using ActivitySessions in enterprise applications.

About this task

Before you use ActivitySessions in enterprise applications, consider the following points:
v An application that is accessed under an ActivitySession context can receive a

javax.transaction.InvalidTransactionException RemoteException, thrown by the Enterprise JavaBeans
(EJB) container when servicing any application method. This exception occurs when an instance of an
enterprise bean that has an ActivitySession-based activation policy becomes involved with concurrent
global and local transactions.

v To enable an enterprise bean to participate in an ActivitySession context and support
ActivitySession-based operations, it must be configured with an ActivationPolicy of
ACTIVITY_SESSION. A bean configured with ActivationPolicy of either TRANSACTION or ONCE
cannot participate in an ActivitySession context.

v A session bean can either use container-managed ActivitySessions or implement bean-managed
ActivitySessions; entity beans can use only container-managed ActivitySessions. A bean is deployed to
be bean-managed or container-managed with respect to ActivitySession management by setting its
transaction type deployment attribute to be bean-managed or container-managed when you deploy the
enterprise bean. A bean that uses bean-managed transactions can use bean-managed ActivitySessions;
a bean that uses container-managed transactions can use container-managed ActivitySessions.

v If you want a session bean or an enterprise application client to manage its own ActivitySessions, you
must write the code that explicitly demarcates the boundaries of an ActivitySession, as described in
Developing an enterprise bean or J2EE client to manage ActivitySessions.

The following high level tasks illustrate how to use an ActivitySession in an enterprise application:

Procedure
v Develop an enterprise application that uses one or more enterprise beans that are persisted to

non-transactional data stores. Use this approach for an application that needs to coordinate multiple
one-phase resource managers, for example, for two or more entity enterprise beans whose persistence
is delegated to LocalTransaction resource adapters.

In this scenario, the enterprise beans that the application uses have an Activation policy of
ActivitySession and a local transaction containment policy with a boundary of ActivitySession and
resolution-control of ContainerAtBoundary. The container synchronizes the EJB state data with the
one-phase resource managers at ActivitySession completion, and no application code needs to be
aware of ActivitySession support.

v Develop an enterprise application in which an enterprise bean accesses a resource manager multiple
times in different business methods. Use this approach for an application that needs to extend a
resource manager local transaction (RMLT) over several business methods of an enterprise bean
instance.

In this scenario, the enterprise beans that the application uses have an Activation policy of
ActivitySession and a local transaction containment policy with a boundary of ActivitySession and
resolution-control of Application. The application logic starts and ends the RMLTs, for example, using the

© IBM Corporation 2009 1

javax.resource.cci.LocalTransaction interface offered by a LocalTransaction Connector, but is not
constrained to start and commit the LocalTransaction in the same method.

v Develop an enterprise client application to use an ActivitySession to scope EJB activation and
load-balancing. Use this approach for an application client that needs to access an entity bean instance
several times in the same client session, either without needing to run under a transaction context, or
with the need to run under a number of distinct and serially-executed transactions.

In this scenario, the enterprise beans that the application uses have an Activation policy of
ActivitySession and a local transaction containment policy appropriate to the function of the enterprise
bean. The enterprise client application can represent a period of user activity, for example a signon
period, during which a number of interactions occur with one or more enterprise beans. If the enterprise
client application begins an ActivitySession and invokes the enterprise beans within the scope of the
unit of work (UOW) that the ActivitySession represents, the container on the ActivitySession boundary
activates the enterprise bean instances. The instances remain in the active state until the container
passivates them at the end of the ActivitySession. Workload affinity management based on the
ActivitySession is a platform quality of service. Global transactions can begin and end within the
ActivitySession, if they are wholly encapsulated by the ActivitySession and run serially. EJB instances
that are activated at the ActivitySession boundary remain active across the serial global transactions.

v Develop a Web application client to participate in an ActivitySession context. A Web application that
runs in the WebSphere® Web container can participate in an ActivitySession context. Web applications
can use the UserActivitySession interface to begin and end an ActivitySession context. Also, the
ActivitySession can be associated with an HttpSession, thereby extending access to the ActivitySession
over multiple HTTP invocations and supporting EJB activation periods that can be determined by the
lifecycle of the Web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor attributes associated
with the Web application module.

Example

For examples of using ActivitySessions in enterprise applications, see the topic about ActivitySessions
samples.

Developing an enterprise bean or enterprise application client to
manage ActivitySessions
Use this task to write the code needed by a session EJB or enterprise application client to manage an
ActivitySession, based on the example code extract provided.

About this task

In most situations, an enterprise bean can depend on the EJB container to manage ActivitySessions within
the bean. In these situations, all you need to do is set the appropriate ActivitySession attributes in the EJB
module deployment descriptor, as described in the topic about configuring EJB module ActivitySession
deployment attributes.. Further, in general, it is practical to design your enterprise beans so that all
ActivitySession management is handled at the enterprise bean level.

However, in some cases you may need to have a session bean or enterprise application client participate
directly in ActivitySessions. You then need to write the code needed by the session bean or enterprise
application client to manage its own ActivitySessions.

Note: Session beans that use BMT and have an Activate at setting of Activity session can manage
ActivitySessions. Entity beans cannot manage ActivitySessions; the EJB container always manages
ActivitySessions within entity beans.

When preparing to write code needed by a session bean or enterprise application client to manage
ActivitySessions, consider the points described in the topic about ActivitySession and transaction contexts.

2 Developing WebSphere applications

To write the code needed by a session EJB or enterprise application client to manage an ActivitySession,
complete the following steps, based on the following example code extract.

Procedure
1. Get an initial context for the ActivitySession.

2. Get an implementation of the UserActivitySession interface, by a JNDI lookup of the URL
java:comp/websphere/UserActivitySession. The UserActivitySession interface is used to begin and end
ActivitySessions and to query various attributes of the active ActivitySession associated with the
thread.

3. Set the timeout, in seconds, after which any subsequently started ActivitySessions are automatically
completed by the ActivitySession service. If the session bean or enterprise application client does not
specifically set this value, the default timeout (300 seconds) is used.

The default timeout can also be overridden for each application server, on the server-> Activity
Session Service panel of the administrative console.

4. Start the ActivitySession, by calling the beginSession() method of the UserActivitySession.

5. Within the ActivitySession, call business methods to do the work needed. You can also call other
methods of UserActivitySession to manage the ActivitySession; for example, to get the status of the
ActivitySession or to checkpoint all the ActivitySession resources involved in the ActivitySession.

6. End the ActivitySession, by calling the endSession() method of the UserActivitySession.

Example

The following code extract provides a basic example of using the UserActivitySession interface:
// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas =
(UserActivitySession)ic.lookup("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

ActivitySession service application programming interfaces
The ActivitySession service provides an application programming interface that is available to Web
applications, session Enterprise JavaBeans (EJBs), and Java platform for enterprise applications client
applications for application-managed demarcation of ActivitySession context.

Applications use the UserActivitySession interface, which provides demarcation scope methods.

ActivitySession API

The ActivitySession service provides the UserActivitySession interface for use by EJB Session beans
using bean-managed context demarcation, Web application components that are configured with the
ActivitySession control attribute set to Web Application, and Java platform for enterprise applications
client applications. This UserActivitySession interface defines the set of ActivitySession operations that are
available to an application component. To obtain an implementation of this interface, use a Java Naming
and Directory Interface (JNDI) lookup of the URL java:comp/websphere/UserActivitySession. The
UserActivitySession interface is used to begin and end ActivitySessions and to query various attributes of
the active ActivitySession that is associated with the thread.

Chapter 1. Developing ActivitySessions 3

For more information about the ActivitySession API, see the application programming interface (API)
reference information.

The ActivitySession API and the implementation of its interfaces is contained in the
com.ibm.websphere.ActivitySession package.

Programming Examples

The following code extract provides a basic example of using the UserActivitySession interface:
// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas =
(UserActivitySession)ic.lookup("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

Assembling applications that use ActivitySessions
You can set the ActivitySession deployment attributes for an enterprise bean or a Web application.

About this task

For an enterprise bean, you can set the ActivitySession deployment attributes so that the bean can
participate in an ActivitySession context and support ActivitySession-based operations.

For a Web application, you can set the ActivitySession deployment attributes so that the application can
start UserActivitySessions and perform work scoped within ActivitySessions.

Procedure
v Set EJB module ActivitySession deployment attributes.

v Set Web module ActivitySession deployment attributes.

Setting EJB module ActivitySession deployment attributes
Use this task to set the ActivitySession deployment attributes for an enterprise bean to enable the bean to
participate in an ActivitySession context and support ActivitySession-based operations.

Before you begin

This task description assumes that you have an Enterprise Archive (EAR) file, which contains an
application enterprise bean that can be deployed in WebSphere Application Server. For more details, see
the topic about assembling applications.

About this task

You configure the deployment attributes of an application by using an assembly tool. This topic describes
the use of Rational® Application Developer to configure the ActivitySession deployment attributes. These
attributes are in addition to other deployment attributes, for example, “Load at”, which specifies when the
bean loads its state from the database. For details about the fields in the assembly tool, and for
associated task help, refer to the Rational Application Developer information.

4 Developing WebSphere applications

To set the ActivitySession deployment attributes for an enterprise bean, complete the following steps:

Procedure
1. Start the assembly tool. For more information, refer to the Rational Application Developer information.

2. Create or edit the application EAR file.

Note: Ensure that you set the target server as WebSphere Application Server Version 7.0.

For example, to change attributes of an existing application, use the Import wizard to import the EAR
file into the assembly tool. To start the Import wizard:

a. Click File > Import > EAR file.

b. Click Next, then select the EAR file.

c. In the Target server field, select WebSphere Application Server v7.0.

d. Click Finish.

3. In the Project Explorer view of the Java EE perspective, right-click the EJB module for the enterprise
bean instance, then click Open With > Deployment Descriptor Editor. A property dialog notebook
for the enterprise bean instance is displayed in the property pane.

4. In the property pane, select the Beans tab.

5. Select the bean that you want to change.

6. In the WebSphere Extensions section, under Bean Cache, set the Activate at attribute to
ActivitySession:

An enterprise bean with this activation policy is activated and passivated as follows:
v On an ActivitySession boundary, if an ActivitySession context is present on activation.
v On a transaction boundary, if a transaction context, but no ActivitySession context, is present on

activation.
v Otherwise, on an invocation boundary.

7. In the Local Transactions group box, set the Boundary attribute to ActivitySession: When this
setting is used, the local transaction must be resolved within the scope of any ActivitySession in
which it was started or, if no ActivitySession context is present, within the same bean method in which
it was started.

A setting of ActivitySession does not apply to any EJB home methods, for example, create or finder
methods. EJB home methods cannot participate in an ActivitySession because this situation might
cause deadlocks.

8. For entity beans, or session beans, set the ActivitySession properties for each EJB method.

a. In the property pane, select the ActivitySession tab.

b. In the Configure ActivitySession policies field, click Add or Edit to set the ActivitySession
kind attribute for methods of the enterprise bean. This specifies how the container must manage
the ActivitySession boundaries when delegating a method invocation to an enterprise bean's
business method:
Never The container invokes bean methods without an ActivitySession context.

v If the client invokes a bean method from within an ActivitySession context, the
container throws an InvalidActivityException exception, which is a
javax.rmi.RemoteException.

v If the client invokes a bean method from outside an ActivitySession context, the
container behaves in the same way as if the Not Supported value was set. The client
must call the method without an ActivitySession context.

Mandatory
The container always invokes the bean method within the ActivitySession context
associated with the client. If the client attempts to invoke the bean method without an
ActivitySession context, the container throws an ActivityRequiredException exception to
the client. The ActivitySession context is passed to any EJB object or resource accessed
by an enterprise bean method.

Chapter 1. Developing ActivitySessions 5

The ActivityRequiredException exception is javax.rmi.RemoteException.
Requires new

The container always invokes the bean method within a new ActivitySession context,
regardless of whether the client invokes the method within or outside an ActivitySession
context. The new ActivitySession context is passed to any enterprise bean objects or
resources that are used by this bean method.

Any received ActivitySession context is suspended for the duration of the method and
resumed after the method ends. The container starts a new ActivitySession before
method dispatch and completes it after the method ends.

Required
The container invokes the bean method within an ActivitySession context. If a client
invokes a bean method from within an ActivitySession context, the container invokes the
bean method within the client ActivitySession context. If a client invokes a bean method
outside an ActivitySession context, the container creates a new ActivitySession context
and invokes the bean method from within that context. The ActivitySession context is
passed to any enterprise bean objects or resources that are used by this bean method.

Not supported
The container invokes bean methods without an ActivitySession context. If a client
invokes a bean method from within an ActivitySession context, the container suspends the
association between the ActivitySession and the current thread before invoking the
method on the enterprise bean instance. The container then resumes the suspended
association when the method invocation returns. The suspended ActivitySession context
is not passed to any enterprise bean objects or resources that are used by this bean
method.

Supports
If the client invokes the bean method within an ActivitySession, the container invokes the
bean method within an ActivitySession context. If the client invokes the bean method
without a ActivitySession context, the container invokes the bean method without an
ActivitySession context. The ActivitySession context is passed to any enterprise bean
objects or resources that are used by this bean method.

c. Click Next.

d. Select the methods to which the ActivitySession kind policy is to be applied.

e. Click Finish.

How the container manages the ActivitySession boundaries when delegating a method invocation
depends on both the ActivitySession kind set here, and the Container transaction type, as
described in the topic about configuring transactional deployment attributes. For more detail about the
relationship between these two properties, see the topic about ActivitySession and transaction
container policies in combination.

9. Save your changes to the deployment descriptor.

a. Close the Deployment Descriptor Editor.

b. When prompted, click Yes to save changes to the deployment descriptor.

10. Verify the archive files. For more information about verifying files using Rational Application
Developer, refer to the Rational Application Developer information.

11. From the popup menu of the project, click Deploy to generate EJB deployment code.

12. Optional: Test your completed module on a WebSphere Application Server installation. Right-click a
module, click Run on Server, and follow the instructions in the displayed wizard.

Important: Use Run On Server for unit testing only. The assembly tool controls the WebSphere
Application Server installation and, when an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use the Run
On Server option on production servers.

6 Developing WebSphere applications

What to do next

After assembling your application, use a systems management tool to deploy the EAR file onto the
application server that is to run the application. For example, to use the administrative console, see the
topic about deploying and administering enterprise applications.

Setting Web module ActivitySession deployment attributes
Use this task to set the ActivitySession deployment attributes for a Web application to start
UserActivitySessions and perform work scoped within ActivitySessions.

Before you begin

This task assumes that you have an Enterprise Archive (EAR) file that contains an application enterprise
bean that can be deployed in WebSphere Application Server. For more details, see the topic about
assembling applications.

About this task

You can configure the deployment attributes of an application by using an assembly tool. This topic
describes the use of Rational Application Developer to configure the deployment attributes.

To set the ActivitySession deployment attributes for a Web application, complete the following steps:

Procedure
1. Start the assembly tool. For more information, refer to the Rational Application Developer information.

2. Create or edit the Web module. For example, to change attributes of an existing module, click File >
Open, then select the archive file for the module. For example, to change attributes of an existing
module, use the Import wizard to import the EAR or WAR file into the assembly tool. To start the
Import wizard:

a. Click File > Import.

b. Expand the Web folder, click WAR file, then click Next.

c. Select the WAR file, then click Finish.

3. In the Project Explorer view of the Java EE perspective, right-click the component instance, right-click
Deployment Descriptor Editor, then click Open With . A property dialog notebook for the Web
module is displayed in the property pane.

4. In the property pane, select the Extended services tab.

5. Select the servlet that you want to change.

6. In the ActivitySession section, set the ActivitySession control kind attribute to Application,
Container, or None.
Application

The Web application is responsible for starting and ending ActivitySessions, as follows:
v If an HttpSession is active when an application begins an ActivitySession, the container

associates the ActivitySession with the HttpSession.
v If an ActivitySession is started in the absence of an HttpSession, the application must

ensure it is completed before the dispatched method completes; otherwise, an exception
results.

v If an HttpSession is associated with a request dispatched to an application with this
ActivitySession control value, and if that HttpSession has an ActivitySession associated
with it, the container dispatches the request in the context of that ActivitySession. For
example, the container resumes the ActivitySession context onto the thread before the
dispatch.

Chapter 1. Developing ActivitySessions 7

v A Web application can use both transactions and ActivitySessions. Any transactions started
within the scope of an ActivitySession must be ended by the Web component that started
them and within the same request dispatch.

Container
A servlet has no access to UserActivitySessions. Any HttpSession started by the servlet has
an ActivitySession automatically associated with it by the container, and this ActivitySession is
put onto the thread of execution. If such a servlet is dispatched by a request that has an
HttpSession containing no ActivitySession, then the container starts an ActivitySession and
associates it with the HttpSession and the thread.

A Web application can use both transactions and ActivitySessions. Any transactions started
within the scope of an ActivitySession must be ended by the Web component that started
them and within the same request dispatch.

None A servlet has no access to UserActivitySession. An HttpSession started by the servlet does
not have an ActivitySession automatically associated with it by the container. If such a servlet
is dispatched by a request that has an HttpSession containing an ActivitySession, then the
container dispatches the request in the context of that ActivitySession. For example, the
container resumes the ActivitySession context onto the thread before the dispatch.

7. To apply the changes and close the assembly tool, click OK. Otherwise, to apply the values but keep
the property dialog open for additional edits, click Apply.

8. Save your changes to the deployment descriptor.

a. Close the deployment descriptor editor.

b. When prompted, click Yes to save changes to the deployment descriptor.

9. Verify the archive files. For more information about verifying files using Rational Application
Developer, refer to the Rational Application Developer information.

10. From the popup menu of the project, click Deploy to generate EJB deployment code.

11. Optional: Test your completed module on a WebSphere Application Server installation. Right-click a
module, click Run on Server, and follow the instructions in the displayed wizard.

Important: Use Run On Server for unit testing only. The assembly tool controls the WebSphere
Application Server installation and, when an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use the Run
On Server option on production servers.

What to do next

After assembling your application, use a systems management tool to deploy the WAR file. For example,
to use the administrative console, see the topic about deploying and administering enterprise applications.

8 Developing WebSphere applications

Chapter 2. Developing Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

Using the TaskNameManager interface
Using the TaskNameManager interface, you can programmatically set the current task name. It enables
both overriding of the current task associated with the thread of execution and resetting of the current task
with the original task.

About this task

Except for J2EE 1.3 applications that are running on a server where the 5.x Compatibility Mode attribute is
selected, this interface cannot be used within Enterprise JavaBeans that are configured for
container-managed transactions or container-managed ActivitySessions because units of work can only be
associated with a task at the exact time that the unit of work is initiated. The call to set the task name
must therefore be invoked before the unit of work is begun. Units of work cannot be named after they are
begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

Application profiling does not support queries of the task that is in operation at run time. Instead,
applications interact with logical task names that are declaratively configured as application managed
tasks. Logical references enable the actual task name to be changed without having to recompile
applications.

Wherever possible, avoid setting tasks programmatically. The declarative method results in more portable
function that can be easily adjusted without requiring redevelopment and recompilation.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the client
process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking
the launchClient command.

Procedure
1. Configure application-managed tasks. Application profiling requires that a task name reference be

declared for any task that is to be set programmatically. Task name references introduce a level of
indirection so that the actual task set at run time can be adjusted by reassembly without requiring
recoding or recompilation. Any attempt to set a task name that is undeclared as a task reference
results in the raising of an exception. If a unit of work has already begun when a task name is set,
then that existing unit of work is not associated with the task name. Only units of work that are begun
after the task name is set are associated with the task.

© IBM Corporation 2009 9

Configure application-managed tasks as described in the following topics. To complete these tasks see
the assembly tool information center:

v Configure application managed tasks for web components.

v Configure application managed tasks for application clients.

v Configure application managed tasks for Enterprise JavaBeans.

2. Perform a Java Naming and Directory Interface (JNDI) lookup on the TaskNameManager interface:
InitialContext ic = new InitialContext();
TaskNameManager tnManager = ic.lookup
("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the application profiling service is
disabled.

3. Set the task name:
try {
tnManager.setTaskName("updateAccount");
}
catch (IllegalTaskNameException e) {
// task name reference not configured. Handle error.
}
// . . .
//

The name passed to the setTaskName() method ("updateAccount" in this example) is actually a task
name reference that you configured in step one.

4. Begin a UserTransaction

Note: If you are using a J2EE 1.3 application with the 5.x Compatibility mode set, the task name set
in step 3 is now the active task name and you can disregard this step.

If you are using a J2EE application and the compatibility mode is not set, or if you are using a J2EE
1.4 application, you must begin a transaction for the task name to become active. A task name can
only be associated with a transaction. Furthermore, it is associated with a transaction when that
transaction is begun, and that task name is associated with the transaction for the life of the
transaction. Therefore, the task name set above is not active at this point. You must begin a
UserTransaction as the following code snippet illustrates:
try{

InitialContext initCtx = new InitialContext();
userTran = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");
userTran.begin();

}
catch(Exception e){
}
// . . .
//

Notice the resetTaskName() method on the TaskNameManager interface. Resetting the task name has
no effect unless called by a J2EE 1.3 application running on a server for which the 5.x Compatibility
Mode attribute is selected on the Application Profile Service's console page. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database access. A
call to resetTask() should only be used by J2EE 1.3 applications when the 5.x Compatibility mode is
set to undo the effects of any setTaskName() method operations and reestablish whatever task name
was current when the component began execution. If the setTaskName() method has not been called,
the resetTaskName() method has no effect.

10 Developing WebSphere applications

TaskNameManager interface
The TaskNameManager is the programmatic interface to the application profiling function. Because on rare
occasions it may be necessary to programmatically set the current task name, the TaskNameManager
interface enables both overriding of the current task associated with the thread of execution and resetting
of the current task with the original task.

Application profiling enables you to identify particular units of work to the WebSphere Application Server
runtime environment. The run time can tailor its support to the exact requirements of that unit of work.
Access intent is currently the only runtime component that makes use of the application profiling
functionality. For example, you can configure one transaction to load an entity bean with strong update
locks and configure another transaction to load the same entity bean without locks.

Application profiling introduces two concepts in order to achieve this function: tasks and profiles.

A task is a configurable name for a unit of work. Unit of work in this case means either a transaction or an
ActivitySession.

A profile is simply a mapping of a task to a set of access intent policies that are configured on entity
beans. When an invocation on a bean (whether by a finder method, a container managed relationship
(CMR) getter, or a dynamic query) requires data to be retrieved from the back end system, the task of the
active unit of work associated with the request is used to determine the exact requirement of the
transaction. The same bean loads and behaves differently in the context of the task-to-profile mapping.
Each profile provides the developer an opportunity to reconfigure the application's access intent.

Except for J2EE 1.3 applications that are executing on a server where the 5.x Compatibility Mode attribute
is selected, this interface cannot be used within Enterprise JavaBeans that are configured for
container-managed transactions or container-managed ActivitySessions because units of work can only be
associated with a task at the exact time that the unit of work is initiated. The call to set the task name
must therefore be started before the unit of work is begun. Units of work cannot be named after they are
begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

The TaskNameManager interface is available to all J2EE components using the following Java Naming
and Directory Interface (JNDI) lookup:
java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**
* The TaskNameManager is the programmatic interface
* to the application profiling function. Using this interface,
* programmers can set the current task name on the
* thread of execution. The task name must have been
* configured in the deployment descriptors as a task
* reference associated with a task. The set task
* name’s scope is the duration of the method
* invocation in the EJB and Web components and for
* the duration of the client process, or until the
* resetTaskName() method is invoked.
*/
public interface TaskNameManager {

/**
* Set the thread’s current task name to the specified
* parameter. The task name must have been configured as
* a task reference with a corresponding task or the
* IllegalTaskName exception is thrown.
*/
public void setTaskName(String taskName) throws IllegalTaskNameException;

/**

Chapter 2. Developing Application profiling 11

* Sets the thread’s task name to the value that was set
* at, or imported into, the beginning of the method
* invocation (for EJB and Web components) or process
* (for J2EE clients).
*/
public void resetTaskName();

}

Assembling applications for application profiling
To enable application profiling, you must configure tasks, create an application profile, and declaratively
configure a unit of work on necessary methods.

Before you begin

Application profiling enables multiple access intent policies to be configured on the same entity bean, each
specified for a particular unit of work. You can use the one of the default policies or create your own. To
create your own access intent policy, see the topic, Creating a custom access intent policy, in the
assembly tool information center.

Procedure
1. Configure tasks. Declaratively configure tasks as described in the following topics that are located in

the assembly tool information center:
v Configuring container-managed tasks for Enterprise Java Beans.
v Configuring container-managed tasks for web components.
v Configuring container-managed tasks for application clients.

On rare occasions, you might find it necessary to configure tasks programmatically. Application
profiling supports this requirement with a simple interface that enables a task name to be set before a
unit of work is programmatically initiated. Setting a task name and then initiating a transaction or
ActivitySession causes the task to be associated with the new unit of work. This interface cannot be
used within Enterprise JavaBeans that are configured for container-managed transactions or
container-managed ActivitySessions because units of work can only be associated with a task at the
exact time that the unit of work is initiated. The call to set the task name must therefore be invoked
before the unit of work is begun. Units of work cannot be named after they are begun. See the topic,
Using the TaskNameManager interface.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console
page, then tasks configured on J2EE 1.3 applications are not necessarily associated with units
of work and can arbitrarily be applied and overridden. This is not a recommended mode of
operation and can lead to unexpected deadlocks during database access. Tasks are not
communicated on requests between applications that are running under the Application Profiling
5.x Compatibility Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the
client process. You can do this by specifying the -CCDappprofileCompatibility=true option when
invoking the launchClient command.

2. Create an application profile. See the assembly tool information center to complete this task.

3. Declaratively configure a unit of work on necessary methods. In step one of this article, you defined a
task on a method. The task defined on a method only becomes active when a unit of work is begun on
that method's behalf. The method must begin a new unit of work for the configured task to be applied.
If the method runs under an imported unit of work, then the configured task on the method is ignored
and the task (if any) associated with the imported unit of work is used. If the container begins a new
unit of work when the method executes, then it is associated with the configured task name. Therefore,
the last step in assembling applications for application profiling is to define a unit of work on any

12 Developing WebSphere applications

method that has a task name (and eventually an Application Profile) associated with it. A unit of work
can either be a transaction or an ActivitySession. See the topic, Defining container transactions for EJB
modules, for a description on how to configure a transaction on an EJB module. The topic, Configuring
transactional deployment attributes, describes how to define other transaction attributes. The topic,
Using the ActivitySession service, describes how to use and create an ActivitySession unit of work. For
more information about the relationships between tasks and units of work, see the topic, Tasks and
units of work considerations.

What to do next

To complete the following tasks using assembly tools see the assembly tool documentation. The following
tasks can be done using assembly tools:

v Automatic configuration of application profiling

The assembly tool includes a static analysis engine that can assist you in configuring application
profiling. The tool examines the compiled classes and the deployment descriptor of a Java EE
application to determine the entry point of transactions, calculate the set of entities enlisted in each
transaction, and determine whether the entities are read or updated during the course of each identified
transaction.

v Automatically configure application profiles and tasks.

Automatically configure application profiling for an application through static analysis.

v Apply profile-scoped access intent policies to entity beans.

Configure entities with access intent for an application profile.

v Create a custom access intent policy.

Define a custom access intent policy, which can be configured for Enterprise JavaBeans (EJB) 2.x and
3.0 entity beans.

v Create an application profile.

An application profile contains a set of access intent policies applied to an application's entity beans.
The access intent policies are only applied for requests that are associated with tasks configured on the
application profile.

v Configure container-managed tasks for application clients.

For application clients that programmatically begin either a transaction or ActivitySession only, you must
configure an application client's container-managed task to associate requests from the client with an
application profile.

v Configure container-managed tasks for Web components.

For Web components that programmatically set the configured task and then programmatically begin
either a transaction or ActivitySession only, you can configure Web components application-managed
tasks to associate requests from a servlet or JavaServer Pages (JSP) file with application profiles.

v Configure container-managed tasks for Enterprise JavaBeans.

For methods that cause a new transaction or ActivitySession to be started either by the container or
programmatically by the EJB developer, you can configure an enterprise bean's container-managed
tasks to associate requests from the bean with application profiles.

v Configure container-managed tasks for application clients.

For application clients that programmatically begin either a transaction or ActivitySession only, you must
configure an application client's container-managed task to associate requests from the client with an
application profile.

v Configure application-managed tasks for Web components.

For Web components that programmatically begin either a transaction or ActivitySession only, you can
configure a Web component's container-managed task to associate requests from a servlet or JSP file
with an application profile.

v Configure application-managed tasks for Enterprise JavaBeans.

Chapter 2. Developing Application profiling 13

For Enterprise JavaBeans that programmatically set the configured task and then programmatically
begin either a transaction or ActivitySession only, you can configure EJB application-managed tasks to
associate requests from the bean with application profiles.

14 Developing WebSphere applications

Chapter 3. Developing Asynchronous beans

This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Developing work objects, event listeners, and asynchronous scopes

Developing work objects to run code in parallel
You can run work objects in parallel, or in a different Java Platform, Enterprise Edition (Java EE) context,
by wrapping the code in a work object.

Before you begin

Your administrator must have configured at least one work manager using the administrative console.

About this task

To run code in parallel, wrap the code in a work object.

Procedure
1. Create a work object.

A work object implements the com.ibm.websphere.asynchbeans.Work interface. For example, you can
create a work object that dynamically subscribes to a topic and any component that has access to the
event source can add an event on demand:
class SampleWork implements Work
{
boolean released;
Topic targetTopic;
EventSource es;
TopicConnectionFactory tcf;

public SampleWork(TopicConnectionFactory tcf, EventSource es, Topic targetTopic)
{
released = false;
this.targetTopic = targetTopic;
this.es = es;
this.tcf = tcf;
}

synchronized boolean getReleased()
{
return released;
}

public void run()
{
try
{
// setup our JMS stuff.
TopicConnection tc = tcf.createConnection();
TopicSession sess = tc.createSession(false, Session.AUTOACK);
tc.start();

MessageListener proxy = es.getEventTrigger(MessageListener.class, false);
while(!getReleased())
{

© Copyright IBM Corp. 2012 15

// block for up to 5 seconds.
Message msg = sess.receiveMessage(5000);
if(msg != null)
{
// fire an event when we get a message
proxy.onMessage(msg);
}
}
tc.close();
}
catch (JMSException ex)
{
// handle the exception here
throw ex;
}
finally
{
if (tc != null)
{
try
{
tc.close();
}
catch (JMSExceptin ex1)
{
// handle exception
}
}
}
}

// called when we want to stop the Work object.
public synchronized void release()
{
released = true;
}
}

As a result, any component that has access to the event source can add an event on demand, which
allows components to subscribe to a topic in a more scalable way than by simply giving each client
subscriber its own thread. The previous example is fully explored in the WebSphere Trader Sample.
Refer to the Samples section of the Information Center for details.

2. Determine the number of work managers needed by this application component.

3. Look up the work manager or managers using the work manager resource reference (or logical name)
in the java:comp namespace. (For more information on resource references, refer to the References
topic.)
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

The resource reference for the work manager (in this case, wm/myWorkManager) must be declared as a
resource reference in the application deployment descriptor.

4. Call the WorkManager.startWork() method using the work object as a parameter. For example:
Work w = new MyWork(...);
WorkItem wi = wm.startWork(w);

The startWork() method can take a startTimeout parameter. This specifies a hard time limit for the
Work object to be started. The startWork() method returns a work item object. This object is a handle
that provides a link from the component to the now running work object.

5. [Optional] If your application component needs to wait for one or more of its running work objects to
complete, call the WorkManager.join() method. For example:

16 Developing WebSphere applications

WorkItem wiA = wm.start(workA);
WorkItem wiB = wm.start(workB);
ArrayList l = new ArrayList();
l.add(wiA);
l.add(wiB);
if(wm.join(l, wm.JOIN_AND, 5000)) // block for up to 5 seconds
{

// both wiA and wiB finished
}
else
{

// timeout

// we can check wiA.getStatus or wiB.getStatus to see which, if any, finished.
}

This method takes an array list of work items which your component wants to wait on and a flag that
indicates whether the component will wait for one or all of the work objects to complete. You also can
specify a timeout value.

6. Use the release() method to signal the unit of work to stop running. The unit of work then attempts to
stop running as soon as possible. Typically, this action is completed by toggling a flag using a
thread-safe approach like the following example:
public synchronized void release()
{
released = true;
}

The Work.run() method can periodically examine this variable to check whether the loop exits or not.

Work objects
A work object is a type of asynchronous bean used by application components to run code in parallel or in
a different Java Platform, Enterprise Edition (Java EE) context.

A work object implements the com.ibm.websphere.asynchbeans.Work interface. A work object is
essentially a java.lang.Runnable object that is serializable and provides additional methods. For details,
refer to the Interface Work in the generated API documentation.

A component wanting to run work in parallel, or in a different Java EE context, locates a work manager in
Java™ Naming and Directory Interface (JNDI), then calls the WorkManager.startWork() method using the
work object as a parameter.

The startWork() method returns a work item object. This object is a handle that provides a link from the
component to the now running work object. The work item object is typically used when the component
needs to wait for one or more of its running work objects to complete. The WorkManager.join() method
takes an array list of work items that the component wants to wait on, and a flag indicating whether the
component will wait for all or one of the work objects to complete. A timeout can be specified, which
prevents the component from waiting indefinitely.

The application does not create Java SE Development Kit 6 (JDK 6) threads because they are not
managed threads. Plus, these threads are not affiliated with the Java EE environment, which makes them
useless inside an application server. In addition, these threads have no Java EE context (for example, a
java:comp) and are not authenticated when they fire. Work object threads are fully supported by the
application server and have the same properties as other asynchronous beans.

Example: Creating work objects
You can create a work object that dynamically subscribes to a topic and any component that has access
to the event source can add an event on demand.

Chapter 3. Developing Asynchronous beans 17

The following is an example of a work object that dynamically subscribes to a topic:
class SampleWork implements Work
{
boolean released;
Topic targetTopic;
EventSource es;
TopicConnectionFactory tcf;

public SampleWork(TopicConnectionFactory tcf, EventSource es, Topic targetTopic)
{
released = false;
this.targetTopic = targetTopic;
this.es = es;
this.tcf = tcf;
}

synchronized boolean getReleased()
{
return released;
}

public void run()
{
try
{
// setup our JMS stuff.
TopicConnection tc = tcf.createConnection();
TopicSession sess = tc.createSession(false, Session.AUTOACK);
tc.start();

MessageListener proxy = es.getEventTrigger(MessageListener.class, false);
while(!getReleased())
{
// block for up to 5 seconds.
Message msg = sess.receiveMessage(5000);
if(msg != null)
{
// fire an event when we get a message
proxy.onMessage(msg);
}
}
tc.close();
}
catch (JMSException ex)
{
// handle the exception here
throw ex;
}
finally
{
if (tc != null)
{
try
{
tc.close();
}
catch (JMSExceptin ex1)
{
// handle exception
}
}
}
}

// called when we want to stop the Work object.
public synchronized void release()

18 Developing WebSphere applications

{
released = true;
}
}

As a result, any component that has access to the event source can add an event on demand, which
allows components to subscribe to a topic in a more scalable way than by simply giving each client
subscriber its own thread. The previous example is fully explored in the WebSphere Trader Sample. See
the Samples section of the Information Center for details.

Developing event listeners
Application components that listen for events can use the EventSource.addListener() method to register an
event listener object (a type of asynchronous bean) with the event source to which the events will be
published. An event source also can fire events in a type-safe manner using any interface.

About this task

Notifications between components within a single EAR file are handled by a special event source. See the
Using the application notification service topic for more information about notifications.

Procedure
1. Create an event listener object, which can be any type. For example, see the following interface code:

interface SampleEventGroup
{
void finished(String message);

}

class myListener implements SampleEventGroup
{
public void finished(String message)
{
// This will be called when we ’finish’.
}

}

2. Register the event listener object with the event source. For example, see the following code:
InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener l = new myListener();
es.addListener(l);

This enables the myListener.finished() method to be called whenever the event is fired. The following
code example shows how this event might be fired:
InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener proxy = es.getEventTrigger(myListener.class);
// fire the ’event’ by calling the method
// representing the event on the proxy
proxy.finished("done");

Example

You can fire a listenerCountChanged event that produces a proxy for the interface on which the method
fires. Calling the method corresponding to the event on the proxy implements the EventSourceEvents
interface. The same proxy can be used to send multiple events simultaneously.

The following code example demonstrates how to fire a listenerCountChanged event:
// Imagine this snippet inside an EJB or servlet method.
// Make an inner class implementing the required event interfaces.
EventSourceEvents listener = new Object() implements EventSourceEvents.class
{
void listenerCountChanged(EventSource es, int old, int newCount)

Chapter 3. Developing Asynchronous beans 19

{
try
{

InitialContext ic = new InitialContext();
// Here, the asynchronous bean can access an environment variable of
// the component which created it.
int i = (Integer)ic.lookup("java:comp/env/countValue").intValue());
if(newCount == i)
{
// do something interesting
}
// call this event when the following code executes:
}
catch(NamingException e)
{
}
}
void listenerExceptionThrown(EventSource es, Object listener,

String methodName, Throwable exception)
{
}
void unexpectedException(EventSource es, Object runnable, Throwable exception)
{
}
}
// register it.
es.addListener(listener);

...

// now fire an event which the previous listener receives.
EventSourceEvents proxy = (EventSourceEvents)

es.getEventTrigger(EventSourceEvents.class, false);

proxy.listenerCountChanged(es, 0, 1);

// now, fire another event, you can call any of the methods.
proxy.listenerCountChanged(es, 4, 5);

The output in this example is a proxy for the interface on which the method fires. Then, call the method
corresponding to the event on the proxy. This action causes the same method with the same parameters
to be called on any event listeners that implement the EventSourceEvents interface and that were
previously registered with the EventSource "es". The same proxy can be used to send multiple events
simultaneously.

The boolean parameter on the getEventTrigger() method is sameTransaction. When the sameTransaction
parameter is false, a new transaction is started for each event listener invoked and these event listeners
can be called in parallel to the caller. However, the event() method is blocked until all of the event listeners
are notified. If the sameTransaction parameter is true, then the current transaction (if any) on the thread is
used for all of the event listeners. The event listeners share the transaction of the method that fired the
event. For that reason, all event listeners must run serially in an undetermined order. The order that
listeners are called is undefined, and the order in which listeners are registered does not act as a guide for
the order used at run time. The method on the proxy does not return until all of the event listeners are
called, which means that this action is a synchronous operation.

The parameters that references and listeners pass do not interfere with the function of these references,
unless you configure the method to do so. For example, event listeners can be used as collaborators and
add data to a map, which was a parameter. Each event listener runs on its own transaction, independent
of any transaction that is active on the thread. Extreme care must be taken when the sameTransaction
parameter is false because the parameters can be accessed by multiple threads.

20 Developing WebSphere applications

Using the application notification service
During the application lifetime, individual J2EE components (servlets or enterprise beans) within a single
EAR file might need to signal each other. There is an event source in the java:comp namespace that is
bound into all components within an EAR file that can be used for notification.

About this task

The JNDI name for this event source, in the java:comp namespace that is bound into all components
within an EAR file, is:
java:comp/websphere/ApplicationNotificationService

Components within the same application can fire asynchronous events and register event listeners using
this application notification service. Startup beans can be used to register these event listeners at
application startup or they can be registered dynamically at run time.

Procedure

To have your enterprise bean or servlet use the application notification service, write code similar to the
following example:
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)

ic.lookup("java:comp/websphere/ApplicationNotificationService");
// now, the application can add a listener using the EventSource.addListener method.
// MyEventType is an interface.
MyEventType myListener = ...;
AppES.addListener(myListener);

// later another component can fire events as follows
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)
ic.lookup("java:comp/websphere/ApplicationNotificationService");

// This highlights a constant string on the EventSource interface which
// specifies the ’java:comp/websphere/ApplicationNotificationService’ string.
ic.lookup(appES.APPLICATION_NOTIFICATION_EVENT_SOURCE)
// now, the application can add a listener using the EventSource.addListener method.
MyEventType proxy = appES.getEventTrigger(MyEventType.class, false);
proxy.someEvent(someArguments);

Example

Example: Firing a listenerCountChanged event
You can fire a listenerCountChanged event that produces a proxy for the interface on which the method
fires. Calling the method corresponding to the event on the proxy implements the EventSourceEvents
interface. The same proxy can be used to send multiple events simultaneously.

The following code example demonstrates how to fire a listenerCountChanged event:
// imagine this snippet inside an EJB or servlet method.
// Make an inner class implementing the required event interfaces.
EventSourceEvents listener = new Object() implements EventSourceEvents.class
{
void listenerCountChanged(EventSource es, int old, int newCount)
{
try
{

InitialContext ic = new InitialContext();
// Here, the asynchronous bean can access an environment variable of
// the component which created it.
int i = (Integer)ic.lookup("java:comp/env/countValue").intValue());
if(newCount == i)
{

Chapter 3. Developing Asynchronous beans 21

// do something interesting
}
// call this event when the following code executes:
}
catch(NamingException e)
{
}
}
void listenerExceptionThrown(EventSource es, Object listener,

String methodName, Throwable exception)
{
}
void unexpectedException(EventSource es, Object runnable, Throwable exception)
{
}

}
// register it.
es.addListener(listener);

...

// now fire an event which the previous listener receives.
EventSourceEvents proxy = (EventSourceEvents)

es.getEventTrigger(EventSourceEvents.class, false);

proxy.listenerCountChanged(es, 0, 1);

// now, fire another event, you can call any of the methods.
proxy.listenerCountChanged(es, 4, 5);

The output in this example is a proxy for the interface on which the method fires. Then, call the method
corresponding to the event on the proxy. This action causes the same method with the same parameters
to be called on any event listeners that implement the EventSourceEvents interface and that were
previously registered with the EventSource "es". The same proxy can be used to send multiple events
simultaneously.

The boolean parameter on the getEventTrigger() method is sameTransaction. When the sameTransaction
parameter is false, a new transaction is started for each event listener invoked and these event listeners
can be called in parallel to the caller. However, the event() method is blocked until all of the event listeners
are notified. If the sameTransaction parameter is true, then the current transaction (if any) on the thread is
used for all of the event listeners. The event listeners share the transaction of the method that fired the
event. For that reason, all event listeners must run serially in an undetermined order. The order that
listeners are called is undefined, and the order in which listeners are registered does not act as a guide for
the order used at run time. The method on the proxy does not return until all of the event listeners are
called, which means that this action is a synchronous operation.

The parameters that references and listeners pass do not interfere with the function of these references,
unless you configure the method to do so. For example, event listeners can be used as collaborators and
add data to a map, which was a parameter. Each event listener runs on its own transaction, independent
of any transaction that is active on the thread. Extreme care must be taken when the sameTransaction
parameter is false because the parameters can be accessed by multiple threads.

Developing asynchronous scopes
Asynchronous scopes are units of scoping that comprise a set of alarms, subsystem monitors, and child
asynchronous scopes. You can create asynchronous scopes, starting with the parent.

About this task

Using asynchronous scopes can involve some or all of the following steps:

22 Developing WebSphere applications

Procedure
1. Create asynchronous scopes. Create the parent asynchronous scope object by using a unique

parameter name that calls the AsynchScopeManager.createAsynchScope() method. You can store
properties in an asynchronous scope object. This storage provides Java 2 Enterprise Edition (J2EE)
applications with a way to store a non-serializable state that otherwise cannot be stored in a session
bean. You also can create child asynchronous scopes, which is useful for scoping data beneath the
parent.

2. Listen for alarm notifications

a. Create a listener object by implementing the AlarmListener interface. For more information, refer to
the AlarmListener interface in the generated API documentation.

b. Supply this object to the AlarmManager.create() method, as the target for the alarm. The create()
method takes the following parameters:
Target for the alarm

The target on which the fired() method is called when the alarm is fired.
Context

The context object for the alarm. This object is useful for supplying alarm-specific data to
the listener and supports a single listener for multiple alarms.

Interval
The number of milliseconds before the alarm fires.

After the specified interval, the alarm fires and the fired() method of the listener is called with the
firing alarm as a parameter. The alarm object is returned. By calling methods on this object, you
can cancel or reschedule the alarm.

3. Monitor remote systems.

a. Implement a mechanism for detecting messages sent from the remote system. For example,
publish and subscribe messaging.

b. Create a subsystem manager object by calling the SubsystemMonitorManager.create() method with
the following parameters:
Name Each subsystem monitor must have a unique name.
Heartbeat interval

The expected interval, in milliseconds, between heartbeats.
Missed heart beats until stale or suspect

The number of heartbeats that can be missed before the subsystem is marked as stale.
Missed heart beats until dead

The number of heartbeats that can be missed before the system is marked as dead.

c. Create an object that implements the SubsystemMonitorEvents interface. For more information, see
the SubsystemMonitorEvents in the generated API documentation.

d. Add an instance of this object to the subsystem monitor using the SubsystemMonitor.addListener()
method.

e. Whenever a heartbeat message arrives from the remote system, call the SubsystemMonitor ping()
method.

The subsystem monitor configures alarms to track the heartbeat status of the remote system. When
the ping() method is called, the alarms are reset. If an alarm fires, the ping() method is not called; that
is, the application did not receive a heartbeat from the monitored subsystem.

Example

Asynchronous scopes are useful in stateful server applications. An application can have a startup bean
that creates an asynchronous scope on a named work manager. The application also might create
subsystem monitors to monitor the health of any remote systems on which the application is dependent.

When a client attaches to the server, the application creates a child asynchronous scope that is owned by
the application asynchronous scope for the client and named using the client ID. A subsystem monitor for

Chapter 3. Developing Asynchronous beans 23

monitoring the client might be created on the client asynchronous scope. If the client times out, a callback
can clean up the client state on the server. Callbacks can be attached to the application subsystem
monitors, on behalf of the client. When a remote system becomes unavailable, the client code in the
server is notified and an event is sent to the client to warn that a critical remote system has failed. For
example, the failure might be a data feed in an electronic trading application.

Asynchronous scopes
An asynchronous scope (AsynchScope object) is a unit of scoping provided for use with asynchronous
beans.

Asynchronous scopes are collections of alarms, subsystem monitors, and child asynchronous scopes that
enable a relationship to form. Each asynchronous scope uses a single work manager.

Each AsynchScope object owns and controls the life cycle of the following objects:
Child asynchronous scopes

Each AsynchScope object extends the AsynchScopeManager interface, which is a factory for
AsynchScope objects. (For more information on the AsynchScopeManager interface, refer to the
generated API documentation). Any asynchronous scope can therefore create named
asynchronous scopes (children). Child asynchronous scopes can be useful for scoping data
underneath the parent. All of the child asynchronous scopes must be uniquely named. These
children are destroyed if the parent asynchronous scope is destroyed.

Alarms
Each asynchronous scope has an associated alarm manager. All of the alarms created by the
alarm manager are automatically cancelled if the associated asynchronous scope is destroyed.

Subsystem monitors
Each asynchronous scope has a subsystem monitor manager, which manages a set of subsystem
monitors associated with the asynchronous scope. When the asynchronous scope is destroyed, all
of the associated subsystem monitors also are destroyed.

In summary, asynchronous scopes can be organized into an acyclic tree. The life cycle of each
asynchronous scope is directly coupled to that of its parent asynchronous scope. Each asynchronous
scope is associated with a set of alarms and subsystem monitors, and an optional set of child
asynchronous scopes. These objects are cancelled and destroyed when the asynchronous scope is
destroyed.

Asynchronous scope state

Each asynchronous scope has an associated map, in which applications can store their state in the form
of name and value pairs.

Asynchronous scope events

Each asynchronous scope is also an event source. Applications can therefore register event listeners
against the asynchronous scope. The event listeners can receive notification if, for example, the
AsynchScope object is about to be destroyed.

Applications also can use this event source to fire events only to listeners of this asynchronous scope. For
example, an AsynchScope object created for a client session might be used to fire asynchronous events to
parties interested in that client.

Alarms
An alarm runs Java Platform, Enterprise Edition (Java EE) context-aware code at a given time interval.
Alarm objects are fine-grained, nonpersistent, transient, and can fire at millisecond intervals.

24 Developing WebSphere applications

Alarms are run using a thread pool associated with the work manager that owns the associated
asynchronous scope. You must create a work manager instance to create an alarm. Refer to the
Configuring work managers topic for more information.

The AlarmManager.createAlarm() method takes an application-written object that implements the
AlarmListener interface. For more information on the AlarmListener interface, refer to the generated API
documentation. The fired method is called when the alarm expires. The createAlarm() method returns a
non-serializable handle, which can be used to cancel or reset the alarm. All of the pending alarms are
cancelled when its associated AsynchScope object is destroyed.

best-practices: The Java SE Development Kit 6 (JDK6)already has a timer mechanism, so why create a
new one? The JDK 6 is a Java Platform, Standard Edition (Java SE) feature that knows
nothing about the Java EE environment. Timers fired by the Java SE feature do not run
on a managed thread and are therefore unusable inside an application server. These
timers also lack a Java EE context (that is, a java:comp value) and are not authenticated
when they fire. The asynchronous scope alarms are fully supported by the product and
have the same properties as any other asynchronous bean.

Alarm performance

The alarm subsystem is designed to handle a large number of alarms. However, do not expect alarms to
process heavy loads when they are firing because this activity slows the processing of later alarms. If an
alarm needs to process a heavy load, design a work object that is activated by a work manager. This
procedure moves the heavy processing to a different thread and enables the alarm threads to process
alarms unhampered. All of the alarms owned by asynchronous scopes that are owned by a single work
manager share a common thread pool. The properties of this thread pool can be tuned at the work
manager level using the administrative console.

Subsystem monitors
A subsystem monitor is an object that monitors the health of a remote system. It uses an event source to
inform all registered listeners of the health of the system.

AdvancedJava Platform, Enterprise Edition (Java EE) applications often rely on remote, non-managed,
non-Java EE systems. These remote systems can periodically send clients a message to indicate that they
are working. A subsystem monitor is a set of alarms that tracks indicator messages or heart beats from a
remote system.

An application creates a subsystem monitor by calling the SubsystemMonitorManager.create() method with
the following parameters:
Name Each subsystem monitor must be uniquely named.
Heart beat interval

The time period, in milliseconds, between arriving heart beat messages.
Missed heart beats until stale or suspect

The number of heart beats that can be missed before the subsystem is marked as stale. This
designation indicates that the subsystem might be having problems.

Missed heart beats until dead
The number of heart beats that can be missed before the system is considered down. The system
then is marked as dead.

The subsystem monitor configures alarms to track the heart beat status. Whenever the ping() method is
called, the alarms are reset. If an alarm fires, the ping() method has not been called; that is, the
application did not receive a heart beat from the monitored subsystem. When the number of Missed heart
beats until stale value has elapsed without a ping, a stale event is fired. Later, if the number of Missed
heart beats until dead value elapses without a ping, a dead event is fired. If a ping is received after a
stale or dead notification, a fresh event is sent, which indicates that the subsystem is alive again.

Chapter 3. Developing Asynchronous beans 25

Make the Missed heart beats until dead value greater or equal to the Missed heart beats until stale
value. If Missed heart beats until stale value equals the Missed heart beats until dead value, then a
stale event is not published. Only a dead event is published.

You can register a listener that implements the SubsystemMonitorEvents interface for applications that
require notification of events. For more information on the SybsystemMonitorEvents interface, refer to the
generated API documentation.

Heart beat messages can be transmitted using a variety of mechanisms. The application must call the
SubsystemMonitor ping() method whenever a heart beat message arrives from a remote system, but the
method used to detect these messages is up to the application. For example, you might use a Java
Message Service (JMS) publish or subscribe implementation or even a third-party Java messaging product
that does not implement JMS.

Asynchronous scopes: Dynamic message bean scenario
Java Platform, Enterprise Edition (Java EE) now supports message-driven beans, but the beans are static.
This scenario provides information about how to set up the environment to enable the dynamic message
bean.

All of the message sources must be known in advance and bound at deployment time. This action is not
always viable, especially in fluid messaging environments such as those found in brokerages. Some
environments have publish-subscribe topic spaces that are continually changing and clients need servers
that can subscribe on demand to an arbitrary topic.

An asynchronous bean application can create a work object that performs a blocking receive on a Java
Message Service (JMS) topic and then publishes the message as an event on an application-defined
event source. Clients requiring a subscription to that message can add an event listener to the event
source. The event source can inform the work object when there are no listeners. Then, the event source
can shut down and make the JMS and thread resources available. The work object registers a listener
with its own event source. When the count is one again, the work object knows that it is the only listener
and it is time to shut down the work object. The WebSphere Trader Sample uses this pattern to
dynamically subscribe to JMS topics at run time to gather stock prices. For more information, see the
overview of the samples.

How does the server catch clients that disconnect or crash? It creates a subsystem monitor to watch the
client and adds an event listener to catch dead events. When a dead event occurs, the server application
can clean up the client server state. For example, the server application can remove the client event
listener from the dynamic message bean, thereby allowing the server to subscribe to a dynamic topic only
when it is needed.

Assembling timer and work managers

Assembling applications that use work managers and timer managers
The work manager and timer manager objects are both supported for assembling applications that
implement the asynchronous bean technology. You can assemble either work managers or time managers.

Before you begin

Configure at least one work manager or timer manager using the administrative console.

About this task

Complete the steps to either assemble work managers or time managers.

26 Developing WebSphere applications

Procedure
1. Assemble applications that use asynchronous beans work managers.

2. Assemble applications that use CommonJ work managers.

3. Assemble applications that use CommonJ timer managers.

Assembling applications that use a CommonJ WorkManager
When a work manager has been configured, if it references a logical work manager it must be bound to a
physical work manager using an assembly tool. Then resources can be created and bound to a physical
work manager.

Before you begin

Your administrator needs to configure at least one work manager using the administrative console.

About this task

If your application references one or more logical work managers, the logical work managers must be
bound to one or more physical work managers using an assembly tool, such as Rational Application
Developer.

Procedure
1. Declare a resource reference for each work manager (required action by the application developer).

This forms an EAR file. (For more information on resource references, refer to the References. topic)

2. Bind each resource reference to a physical work manager, using an assembly tool, such as Rational
Application Developer.

3. Add a resource reference with the type commonj.work.WorkManager to the application deployment
descriptor. The application can look up this work manager using its resource reference name in
java:comp. Now, you can use an assembly tool or Rational Application Developer to specify which
resource references are bound to the physical commonj.work.WorkManager.

Attention: The previous steps outline the same process used for data sources.

Assembling applications that use timer managers
When a work manager has been configured, if it references a logical work manager it must be bound to a
physical work manager using an assembly tool. Then resources can be created and bound to a physical
timer.

Before you begin

Your administrator needs to configure at least one timer manager using the administrative console.

About this task

If your application references one or more logical timer managers, the logical timer managers must be
bound to one or more physical timer managers using an assembly tool, such as the Rational Application
Developer.

Procedure
1. Declare a resource reference for each timer manager (required action by the application developer).

This forms an EAR file. (For more information on resource references, refer to the References topic.)

2. Bind each resource reference to a physical timer manager, using an assembly tool.

3. Add a resource reference with the type commonj.timers.TimerManager to the application deployment
descriptor. The application then can look up this timer manager using its resource reference name in
java:comp. The assembly tool can specify which resource references are bound to a physical timer
manager.

Chapter 3. Developing Asynchronous beans 27

Attention: The previous steps outline the same process used for data sources.

Assembling applications that use asynchronous beans work managers
When a work manager has been configured, if it references a logical work manager it must be bound to a
physical work manager using an assembly tool. Then resources can be created and bound to a physical
work managers.

Before you begin

Your administrator needs to configure at least one work manager using the administrative console.

About this task

If your application references one or more logical work managers, the logical work managers must be
bound to one or more physical work managers using an assembly tool.

The CommonJ 1.1 interfaces are supported. Both asynchronous beans and CommonJ interfaces can use
one configuration work manager object. The type of interface implemented is resolved during the JNDI
lookup time. The type of interface used is determined by the one specified in the resource-reference,
instead of the one specified in the configuration object. So, there can be one resource-reference for each
interface, per configuration object. Each resource-reference lookup returns the appropriate type of
instance. For example, there are two resource-references defined for the wm/MyWorkManager: wm/ABWorkMgr
and wm/CommonJWorkMgr. The WebSphere Application Server run time returns the correct interface for each
resource-reference lookup.

Procedure
1. Declare a resource reference for each work manager (required action by the application developer).

This action results in an EAR file. For more information on resource references, refer to the
References topic.

2. Use an assembly tool to bind each resource reference to a physical work manager.

3. Add a resource reference with the type com.ibm.websphere.asynchbeans.WorkManager to the
application deployment descriptor. The application then can look up this work manager using its
resource reference name in java:comp. The assembly tool or Rational Application Developer then can
specify which resource references are bound to a physical work manager.

Attention: Use the same previous steps to configure data sources.

28 Developing WebSphere applications

Chapter 4. Developing applications that use the Bean
Validation API

The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate Enterprise JavaBeans in all layers of an application, including, presentation,
business and data access. Before the Bean Validation specification, the JavaBeans were validated in each
layer. To prevent the reimplementation of validations at each layer, developers bundled validations directly
into their classes or copied validation code, which was often cluttered. Having one implementation that is
common to all layers of the application simplifies the developers work and saves time.

Bean Validation
The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate JavaBeans in all layers of an application, including presentation, business, and data
access.

Before the Bean Validation specification, JavaBeans were validated in each layer. To prevent the
re-implementation of validations at each layer, developers bundled validations directly into their classes or
copied validation code, which was often cluttered. Having one implementation that is common to all layers
of the application simplifies the developers work and saves time.

The Bean Validation specification defines a metadata model and an API that are used to validate
JavaBeans for data integrity. The metadata source is the constraint annotations defined that can be
overridden and extended using XML validation descriptors. The set of APIs provides an ease of use
programming model allowing any application layer to use the same set of validation constraints. Validation
constraints are used to check the value of annotated fields, methods, and types to ensure that they adhere
to the defined constraint.

Constraints can be built in or user-defined. Several built-in annotations are available in the
javax.validation.constraints package. They are used to define regular constraint definitions and for
composing constraints. For a list of built-in constraints, see the topic, “Bean validation built-in constraints”
on page 32. For more details about the Bean Validation metadata model and APIs see the JSR 303 Bean
Validation specification document.

The following example is a simple Enterprise JavaBeans (EJB) class that is decorated with built-in
constraint annotations.
public class Home {

@Size(Max=20)
String builder;
@NotNull @Size(Max=20)
String address;

public String getAddress() {
return address;

}

public String getBuilder() {
return address;

}
public String setAddress(String newAddress) {

return address = newAddress;
}

public String setBuilder(String newBuilder) {
return builder = newBuilder;

}
}

© Copyright IBM Corp. 2012 29

The @Size annotations on builder and address specify that the string value assigned should not be
greater 20 characters. The @NotNull annotation on address indicates that it cannot be null. When the
Home object is validated, the builder and address values are passed to the validator class defined for the
@Size annotation. The address value is also be passed to the @NotNull validator class. The validator
classes handle checking the values for the proper constraints and if any constraint fails validation, a
ConstraintViolation object is created, and is returned in a set to the caller validating the Home object.

Validation APIs

The javax.validation package contains the bean validation APIs that describe how to programmatically
validate JavaBeans.

ConstraintViolation is the class describing a single constraint failure. A set of ConstraintViolation classes is
returned for an object validation. The constraint violation also exposes a human readable message
describing the violation.

ValidationException are raised if a failure happens during validation.

The Validator interface is the main validation API and a Validator instance is the object that is able to
validate the values of the Java object fields, methods, and types. The bootstrapping API is the mechanism
used to get access to a ValidatorFactory that is used to create a Validator instance. For applications
deployed on the product, bootstrapping is done automatically. There are two ways for applications to get
the validator or the ValidatorFactory. One way is injection, for example, using the @Resource annotation,
and the other way is the java: lookup.

The following example uses injection to obtain a ValidatorFactory and a Validator:
@Resource ValidatorFactory _validatorFactory;
@Resource Validator _validator;

Attention: When using @Resource to obtain a Validator or ValidatorFactory, the authenticationType and
shareable elements must not be specified.

The following example uses JNDI to obtain a ValidatorFactory and a Validator:
ValidatorFactory validatorFactory = (ValidatorFactory)context.lookup("java:comp/ValidatorFactory");
Validator validator = (Validator)context.lookup("java:comp/Validator");

Constraint metadata request APIs

The metadata APIs support tool providers, provides integration with other frameworks, libraries, and Java
Platform, Enterprise Edition technologies. The metadata repository of object constraints is accessed
through the Validator instance of a given class.

XML deployment descriptors

Besides declaring constraints in annotations, support exists for using XML to declare your constraints.

The validation XML description is composed of two kinds of xml files. The META-INF/validation.xml file
describes the bean validation configuration for the module. The other XML file type describes constraints
declarations and closely matches the annotations declaration method. By default, all constraint
declarations expressed through annotations are ignored for classes described in XML. It is possible to
force validation to use both the annotations and the XML constraint declarations by using the
ignore-annotation="false" setting on the bean. The product ensures that application modules deployed
containing a validation.xml file and constraints defined in XML files are isolated from other module
validation.xml and constraint files by creating validator instances specific to the module containing the XML
descriptors.

30 Developing WebSphere applications

Advanced bean validation concepts

The Bean Validation API provides a set of built-in constraints and an interface that enables you to declare
custom constraints. This is accomplished by creating constraint annotations and declaring an annotation
on a bean type, field, or property. Composing constraints is also done by declaring the constant on
another constraint definition.

The following example shows creating a CommentChecker constraint that is defined to ensure a comment
string field is not null. The comment text is enclosed by brackets, such as [text].
package com.my.company;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import javax.validation.Constraint;
import javax.validation.Payload;

@Documented
@Constraint(validatedBy = CommentValidator.class)
@Target({ METHOD, FIELD })
@Retention(RUNTIME)
public @interface CommentChecker {

String message() default "The comment is not valid.";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
...}

The next example shows the constraint validator that handles validating elements with the
@CommentChecker annotation. The constraint validator implements the ConstraintValidator interface
provided by the Bean Validation API.
package com.my.company;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
public class CommentValidator implements ConstraintValidator<CommentChecker, String> {

public void initialize(CommentChecker arg0) {
}
public boolean isValid(String comment, ConstraintValidatorContext context) {

if (comment == null) {
// Null comment is not allowed, fail the constraint.
return false;

}
if (!comment.contains("[") && !comment.contains("]")) {

// Can’t find any open or close brackets, fail the constraint
return false;

}
// Ignore leading and trailing spaces
String trimmedComment = comment.trim();
return // validate ’[’ prefix condition

trimmedComment.charAt(0) == ’[’ &&
// validate ’]’ suffix condition
trimmedComment.charAt(trimmedComment.length()!-1) == ’]’;

}
}

After the @CommentChecker is defined, it can be used to ensure that the comment string field is a valid
comment based on the CommentValidator isValid() implementation. The following example shows the use
of the @CommentChecker constraint. When the myChecker bean is validated, the comment string is
validated by the CommentValidator class to ensure the constraints defined are met.

Chapter 4. Developing applications that use Bean Validation API 31

package com.my.company;
public myChecker {

@CommentChecker
String comment = null;
...

}

The product provides a specific bean validation provider, but it might be necessary for an application to
use or require another provider.

This method can be accomplished by using the validator methods to set the provider programmatically and
create a validation factory. Or, by using the validation.xml default-provider element. The specific provider
that is defined and used to create the validation factory and not the default provider provided by the
application server in the default implementation. If you want to ensure that the user-provided
implementation does not conflict with the default implementation, the server or application class loading
parameter, the class loader order should be set to be loaded with local class loader first (parent last). See
additional information in the class loading documentation on how to set this setting.

The Bean Validation specification indicates that if more than one validation.xml file is found in the class
path, a ValidationException occurs. However, WebSphere Application Server supports an environment
where multiple teams develop modules that are assembled and deployed into the Application Server
together. In this environment, all EJB modules within an application are loaded with the same class loader
and it is possible to configure the application class loaders so that all EJB and web archive (WAR)
modules are loaded by a single class loader. Because of this, the product provides support for multiple
validation.xml files in the same class path.

When an application using bean validation and XML descriptors contains multiple EJB modules and web
modules, each validation.xml file is associated with a validation factory that is specific to that module. In
this environment, any constraint-mapping elements that are defined are only looked up in the module
where the validation.xml file is defined. For example, if an EJB module building.jar contains a
META-INF/validation.xml file and the validation.xml file defined the following constraints, both the
META-INF/constraints-house.xml and META-INF/constraints-rooms.xml files must also be located in the
building.jar file:
<constraint-mapping>META-INF/constraints-house.xml</constaint-mapping>
<constraint-mapping>META-INF/constraints-rooms.xml</constraint-mapping>

The exception to this behavior is when all bean validation constraints classes and configuration are visible
to all application modules. In a case where a single validation.xml file is defined in an EAR file, and no
other validation.xml files are visible in a module's class path, any module that creates a validator factory or
validator will use the validation.xml file that is defined in the EAR file. This makes it possible for other
modules to create a validator factory that uses the validation.xml file of another module, if the class path
has been configured so that both modules are visible on the same class path and only one validation.xml
file is visible to those modules.

For a more detailed understanding about the Bean Validation APIs and metadata see the JSR 303 Bean
Validation specification document.

Bean validation built-in constraints
Use this information to look up information about Bean Validation API built-in constraints.

The Bean Validation API is supported by constraints that are primarily expressed through annotations. The
constraints are added to a class, field, or method of an Enterprise JavaBeans (EJB) component. The
annotated element value is checked by the constraint.

32 Developing WebSphere applications

Constraints can be built in or user defined. Several built-in annotations are available in the
javax.validation.constraints package. They are used to define regular constraint definitions and for
composing constraints.

The following table is a list of constraints and usage.

Table 1. Bean validation built-in constraints. Use of bean validation built-in constraints
Constraint Usage

@Null Specifies that the configuration property decorated with this annotation must have a null value. This constraint
accepts any type.

@NotNull Specifies that the configuration property decorated with this annotation must not have a null value. That is, the
property is required. This constraint accepts any type.

@AssertTrue Specifies that the configuration property decorated with this annotation must be true. Supported value types are
boolean and Boolean. Null elements are considered valid.

@AssertFalse Specifies that the configuration property decorated with this annotation must be false. Supported value types are
boolean and Boolean. Null elements are considered valid.

@Min Specifies that the configuration property decorated with this annotation must have a value greater than or equal to
the specified minimum. Supported value types are BigDecimal, BigInteger, byte, short, int, long and their
respective wrappers. Null elements are considered valid.

@Max Specifies that the configuration property decorated with this annotation must have a value less than or equal to
the specified maximum. Supported value types are BigDecimal, BigInteger, byte, short, int, long and their
respective wrappers. Null elements are considered valid.

@DecimalMin Specifies that the configuration property decorated with this annotation must have a value higher or equal to the
specified minimum. Supported value types are BigDecimal, BigInteger, String, byte, short, int, long and their
respective wrappers. Null elements are considered valid.

@DecimalMax Specifies that the configuration property decorated with this annotation must have a value lower or equal to the
specified maximum. Supported value types are BigDecimal, BigInteger, String, byte, short, int, long and their
respective wrappers. Null elements are considered valid.

@Size Specifies that the configuration property decorated with this annotation must have a value between the specified
boundaries (included). Supported value types are String (string length is evaluated), Collection (collection size is
evaluated), Map (map size is evaluated), Array (array length is evaluated). Null elements are considered valid.

@Digits Specifies that the configuration property decorated with this annotation must have a value within accepted range.
Supported value types are BigDecimal, BigInteger, String, byte, short, int, long and their respective wrappers. Null
elements are considered valid.

@Past Specifies that the configuration property decorated with this annotation must have a date in the past. Now is
defined as the current time according to the virtual machine. The calendar is used if the compared type is of type
Calendar and the calendar is based on the current timezone and the current locale. Supported value types are
java.util.Date, java.util.Calendar. Null elements are considered valid.

@Future Specifies that the configuration property decorated with this annotation must have a date in the future. Now is
defined as the current time according to the virtual machine. The calendar is used if the compared type is of type
Calendar and the calendar is based on the current timezone and the current locale. Supported value types are
java.util.Date, java.util.Calendar. Null elements are considered valid.

@Pattern Specifies that the configuration property decorated with this annotation must match the following regular
expression. The regular expression follows the Java regular expression conventions java.util.regex.Pattern.
Supported type value is String. Null elements are considered valid.

Using bean validation in the product
The Java Enterprise Edition (Java EE) 6 specification includes the Bean Validation API that is a standard
mechanism for validating JavaBeans in all layers of an application.

About this task

Before the Bean Validation specification, JavaBeans were validated in each layer. To prevent the
reimplementation of validations at each layer, developers bundled validations directly into their classes or
copied validation code, which was often cluttered. Having one implementation that is common to all layers
of the application simplifies the developers work and saves time.

Bean validation is common to all layers of an application. Specifically, web applications have the following
layers:

v Presentation

Chapter 4. Developing applications that use Bean Validation API 33

This layer represents how the user interacts with the application and might be built on a thin client or
rich client.

v Business

This layer coordinates the application, processes commands, makes logical decisions and evaluations
and performs calculations. It also moves and processes data between the two other layers. The EJB
contains business logic in WebSphere Application Server.

v Data access

Your data is stored and retrieved from a database or file system at this layer. The business layer
processes the data and sends it in usable form to the user interface. WebSphere Application Server
supports several databases and methods of retrieving data. This layer also defines persistence.

For WebSphere Application Server, these layers are built and administered with several components in the
product that are necessary for developing and deploying applications.

The product provides support for the Bean Validation API in the Java Platform, Enterprise Edition (Java
EE) environment by providing a bean validation service in multiple Java EE technologies including Java
Servlets, Enterprise JavaBeans, Java Persistence API (JPA) 2.0, Java EE Connector API (JCA) 1.6 and
Java ServerFaces (JSF) 2.0. Bean validation provides these technologies a way to maintain data integrity
in an integrated and standard environment.

Enterprise application development involves multiple teams developing numerous applications and
modules that are assembled and deployed in an application server environment. The product ensures that
each application and module data is validated independently. Validation is performed using only the
constraints defined for the application and module.

What to do next
v Data access resources:

Bean validation in RAR modules.

The product validates resource adapter archive (RAR) Enterprise JavaBeans (EJB) constraints in
compliance with the JCA version 1.6 specification. Resource adapters can use the built-in bean
validation constraint annotations or provide a bean validation XML configuration to specify the validation
requirements of resource adapter configuration properties to the application server.

v Using bean validation in JPA

A new feature defined by the JPA 2.0 specification is the ability to seamlessly integrate with the Bean
Validation API. With minimal effort, JPA 2.0 can be coupled with the validation provider for runtime data
validation. By combining these two technologies, you get a standardized persistence solution with the
added ability to perform standardized data validation.

v Using bean validation with JSF

JSF previously was able do bean validation, but now it provides built-in support of the Bean Validation
specification.

v Using bean validation in web container

The web container provides an instance of ValidatorFactory and makes it available to JSF
implementations by storing it in a servlet context attribute named
javax.faces.validator.beanValidator.ValidatorFactory.

v Using bean validation with the embeddable container.

To use bean validation with the embeddable EJB container, the javax.validation classes must exist in
the class path. That can be done in one of two ways:

– Include the JPA thin client that is located in the directory ${WAS_INSTALL_ROOT}\runtimes\
com.ibm.ws.jpa.thinclient_8.0.0.jar in the class path. See the topic, Running an embeddable
container, and the information about JPA, for more information.

– Include a third party bean validation provider Java archive (JAR) file in the class path of the
embeddable EJB container run time.

34 Developing WebSphere applications

Bean validation in RAR modules
WebSphere Application Server validates resource adapter archive (RAR) JavaBeans constraints in
compliance with the Java Connector Architecture (JCA) version 1.6 specification.

Resource adapters can specify the validation requirements of configuration properties to the Application
Server through annotations in the source code of the resource adapter, constraint specifications in a
resource adapter validation descriptor, or a mixture of both. In specifying these constraints, resource
adapters can use the built-in bean validation constraints supplied with the Application Server, custom bean
validation constraints supplied either by the application developer or a third party, or a mixture of both.
Resource adapter developers can apply constraints to the fields and JavaBeans-compliant properties of
the following JCA types:

v ResourceAdapter

v ManagedConnectionFactory

v ActivationSpec

v AdministeredObject

At run time, the application server creates instances of bean types declared by the resource adapter. Each
instance is validated immediately upon setting its configuration properties, before placing the instance into
service.

When validating a RAR bean, the Application Server creates an instance of a validator factory according to
the bean validation deployment descriptor discovered by the Application Server. A validator instance is
then obtained from the factory and used to validate the bean instance.

If validation fails, the Application Server throws a constraint violation exception and reports all violations to
the system log. The effects of the exception for each RAR bean type and problem determination
information are documented in the topic, Troubleshooting bean validation in RAR modules.

Note: The Bean Validation specification requires that no more than one validation.xml is visible on the
class path. This requirement is violated whenever two or more stand-alone RARs provide a
validation descriptor. See the section, “RAR bean validation descriptor” in this topic, for more
information. When more than one validation.xml is visible to the Application Server class loaders,
the Application Server or application modules might fail to acquire the default ValidatorFactory and
subsequently cannot perform bean validation. For example, the server cannot validate beans of a
RAR embedded in an application whenever the embedded RAR lacks a validation configuration,
and two or more stand-alone RARs provide configurations. To avoid trouble, install stand-alone
RARs that provide a bean validation descriptor as isolated whenever possible.

Built-in constraint annotations

Note: Use built-in constraint annotations to specify the range and mandatory attributes of configuration
properties rather than provide custom annotations for the same purpose. The following constraints
are useful, but you can use all bean validation built-in constraints. See the topic Bean validation
built-in constraints for a complete list of the constraints.

v @Min

Specifies the minimum value of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum.

v @Max

Specifies the maximum value of the configuration property decorated with this annotation. The value
must less than or equal to the specified maximum.

v @Size

Chapter 4. Developing applications that use Bean Validation API 35

Specifies the range of values of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum and be less than or equal to the specified
maximum.

v @NotNull

Specifies the value of the configuration property decorated with this annotation must not be null. That is,
the property is required.

The following example is a RAR bean class that is decorated with built-in constraint annotations.

The value of the serverName configuration property must not be null, and the value of the instanceCount
property must be at least 1 when the Application Server creates and configures an instance of the
MyConnector class. Otherwise, a constraint validation exception occurs and, in the case of
ResourceAdapter bean, the resource adapter fails to start. See the topic Troubleshooting bean validation
in RAR modules for more information.
package com.my.company;

@Connector(...)
public class MyConnector implements ResourceAdapter, Serializable
{
@ConfigProperty(type=java.lang.String.class,defaultValue="WAS")
private String serverName;

@NotNull()
public String getServerName() {return serverName;}

private Integer instanceCount = 0;

@Min(value=1)
public Integer getInstanceCount() {return instanceCount;}
...

RAR bean validation descriptor

Bean validation constraints can be declared through an XML descriptor supplied by a RAR module. In the
simplest case, a RAR validation descriptor consists of the validation configuration declared in the
validation.xml file and zero or more XML files that declare RAR bean validation constraints. Files
containing constraint declarations are specified in the constraint-mapping elements of the validation
configuration (validation.xml).

You must package the validation descriptor in the META-INF directory of a RAR module. Any custom
constraint annotation classes that are declared in the validation descriptor must also be packaged in the
RAR module.

The following example is a simple RAR validation descriptor that declares constraint metadata like the
code shown in the section, “Built-in constraint annotations.”
<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns=http://jboss.org/xml/ns/javax/validation/configuration
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/configuration validation-configuration-1.0.xsd>

<constraint-mapping>META-INF/constraints.xml</constraint-mapping>
</validation-config>

The constraints XML file is also located in the META-INF directory and looks like the following:
<constraint-mappings
xmlns=http://jboss.org/xml/ns/javax/validation/mapping
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-1.0.xsd>
<default-package>com.my.company</default-package>
<bean class="MyConnector" ignore-annotations="true">
<field name="serverName">
<valid/>
<!-- @NotNull() -->
<constraint annotation="javax.validation.constraints.NotNull">
<message>Value is not null</message>
</constraint>
</field>
<field name="instanceCount">
<valid/>

36 Developing WebSphere applications

<!-- @Min(1) -->
<constraint annotation="javax.validation.constraints.Min">
<message>Minimum possible value is 1</message>
<element name="value">1</element>
</constraint>
</field>
</bean>
<constraint-mapping>

The packaged RAR module, MyResourceAdapter.rar, looks like the following:
my/
company/
MyConnector.class

. . .
META-INF
/validation.xml
/constraints.xml

Third-party bean validation

WebSphere Application Server supports using different bean validation implementations. If a resource
adapter requires a bean validation implementation different from the implementation that is provided by the
product, and the RAR provides the bean validation implementation, you must package the JAR file that
contains the bean validation implementation in the RAR module root directory.

The RAR module must also contain a single validation configuration descriptor (validation.xml), which
can be packaged in the META-INF directory of the RAR module, or in the META-INF/services directory of
the bean validation JAR file, but not both.

RAR bean validation configuration discovery

When validating RAR beans, the Application Server bootstraps the bean validation configuration, specific
to the RAR, according to the bean validation descriptor supplied in the RAR META-INF directory. If the
descriptor does not exist, the server bootstraps the configuration using the first validation descriptor
discovered in the RAR class loading context, such as that supplied in a third-party bean validation that is
packaged in the RAR. Finally, the server uses the default validation configuration provided by the product.

The server then creates a validator factory specific to the discovered bean validation configuration and
uses this factory to create validator instances for validating the RAR bean instances. When you deploy a
RAR that supplies a bean validation descriptor, you must take additional steps to ensure that the class
loader that loads the RAR loads the bean validation descriptor and classes packaged in the RAR.

For an embedded RAR, after you have deployed the application that embeds the RAR, you must set the
delegation mode of the application class loader to Parent-Last (Child-First). See the topic Configuring
application class loaders for more information.

For a stand-alone RAR, you must install the RAR as an isolated resource provider. See the topic
Resource Adapter settings for more information.

Bean validation in JPA
Data validation is a common task that occurs in all layers of an application, including persistence. The
Java Persistence API (JPA) 2.0 provides support for the Bean Validation API so that data validation can be
done at run time. This topic includes a usage scenario where bean validation is used in the JPA
environment of a sample digital image gallery application.

The Bean Validation API provides seamless validation across technologies on Java Enterprise Edition 6
(Java EE 6) and Java Platform, Standard Edition (JSE) environments. In addition to JPA 2.0, these
technologies include JavaServer Faces (JSF) 2.0 and Java EE Connector Architecture (JCA) 1.6. You can
read more about bean validation in the topic, Bean Validation API.

Chapter 4. Developing applications that use Bean Validation API 37

There are three core concepts of bean validation: constraints, constraint violation handling, and the
validator. If you are running applications in an integrated environment like JPA, there is no need to
interface directly with the validator.

Validation constraints are annotations or XML code that are added to a class, field, or method of a
JavaBeans component. Constraints can be built in or user-defined. They are used to define regular
constraint definitions and for composing constraints. The built-in constraints are defined by the bean
validation specification and are available with every validation provider. For a list of built-in constraints, see
the topic, Bean validation built-in constraints. If you need a constraint different from the built-in constraints,
you can build your own user-defined constraint.

Constraints and JPA

The following usage scenario illustrates how a built-in constraint is used in the JPA architecture of a
sample digital image gallery application.

In the first code example, a built-in constraint is added to a simple entity of the JPA model called image.
An image has an ID, image type, file name, and image data. The image type must be specified and the
image file name must include a valid JPEG or GIF extension. The code shows the annotated image entity
with some built-in bean validation constraints applied.
package org.apache.openjpa.example.gallery.model;

import javax.persistence.Entity;
import javax.persistence.EnumType;
import javax.persistence.Enumerated;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;

@Entity
public class Image {

private long id;
private ImageType type;
private String fileName;
private byte[] data;

@Id
@GeneratedValue
public long getId() {

return id;
}

public void setId(long id) {
this.id = id;

}

@NotNull(message="Image type must be specified.")
@Enumerated(EnumType.STRING)
public ImageType getType() {

return type;
}

public void setType(ImageType type) {
this.type = type;

}

@Pattern(regexp = ".*\\.jpg|.*\\.jpeg|.*\\.gif",
message="Only images of type JPEG or GIF are supported.")

public String getFileName() {
return fileName;

}

38 Developing WebSphere applications

public void setFileName(String fileName) {
this.fileName = fileName;

}

public byte[] getData() {
return data;

}

public void setData(byte[] data) {
this.data = data;

}
}

The Image class uses two built-in constraints, @NotNull and @Pattern. The @NotNull constraint ensures
that an ImageType element is specified and the @Pattern constraint uses regular expression pattern
matching to ensure that the image file name is suffixed with a supported image format. Each constraint
has corresponding validation logic that gets started at run time when the image entity is validated. If either
constraint is not met, the JPA provider throws a ConstraintViolationException with the defined message.
The JSR-303 specification also makes provisions for the use of a variable within the message attribute.
The variable references a keyed message in a resource bundle. The resource bundle supports
environment-specific messages and globalization, translation, and multicultural support of messages.

You can create your own custom validator and constraints. In the previous example, the Image entity used
the @Pattern constraint to validate the file name of the image. However, it did not check constraints on the
actual image data itself. You can use a pattern-based constraint; however, you do not have the flexibility
that you would if you created a constraint specifically for checking constraints on the data. In this case you
can build a custom method-level constraint annotation. The following is a custom or user-defined
constraint called ImageContent.
package org.apache.openjpa.example.gallery.constraint;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

import javax.validation.Constraint;
import javax.validation.Payload;

import org.apache.openjpa.example.gallery.model.ImageType;

@Documented
@Constraint(validatedBy = ImageContentValidator.class)
@Target({ METHOD, FIELD })
@Retention(RUNTIME)
public @interface ImageContent {

String message() default "Image data is not a supported format.";
Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};
ImageType[] value() default { ImageType.GIF, ImageType.JPEG };

}

Next, you must create the validator class, ImageContentValidator. The logic within this validator gets
implemented by the validation provider when the constraint is validated. The validator class is bound to the
constraint annotation through the validatedBy attribute on the @Constraint annotation as shown in the
following code:
package org.apache.openjpa.example.gallery.constraint;
import java.util.Arrays;
import java.util.List;
import javax.validation.ConstraintValidator;

Chapter 4. Developing applications that use Bean Validation API 39

import javax.validation.ConstraintValidatorContext;
import org.apache.openjpa.example.gallery.model.ImageType;
/**
* Simple check that file format is of a supported type
*/

public class ImageContentValidator implements ConstraintValidator<ImageContent, byte[]> {
private List<ImageType> allowedTypes = null;
/**
* Configure the constraint validator based on the image
* types it should support.
* @param constraint the constraint definition
*/
public void initialize(ImageContent constraint) {

allowedTypes = Arrays.asList(constraint.value());
}
/**
*Validate a specified value.
*/
public boolean isValid(byte[] value, ConstraintValidatorContext context) {

if (value == null) {
return false;

}
// Verify the GIF header is either GIF87 or GIF89
if (allowedTypes.contains(ImageType.GIF)) {

String gifHeader = new String(value, 0, 6);
if (value.length >= 6 &&

(gifHeader.equalsIgnoreCase("GIF87a") ||
gifHeader.equalsIgnoreCase("GIF89a"))) {
return true;

}
}
// Verify the JPEG begins with SOI and ends with EOI
if (allowedTypes.contains(ImageType.JPEG)) {

if (value.length >= 4 &&
value[0] == 0xff && value[1] == 0xd8 &&
value[value.length - 2] == 0xff && value[value.length -1] == 0xd9) {
return true;

}
}
// Unknown file format
return false;

}
}

Apply this new constraint to the getData() method on the Image class; for example:
@ImageContent

public byte[] getData() {
return data;

}

When validation of the data attribute occurs, the isValid() method in the ImageContentValidator is started.
This method contains logic for performing simple validation of the format of the binary image data. A
potentially overlooked feature in the ImageContentValidator is that it can also validate for a specific image
type. By definition, it accepts JPEG or GIF formats, but it can also validate for a specific format. For
example, by changing the annotation to the following code example, the validator is instructed to only
permit image data with valid JPEG content:
@ImageContent(ImageType.JPEG)

public byte[] getData() {
return data;

}

Type-level constraints are also a consideration because you might need to validate combinations of
attributes on an entity. In the previous examples validation constraints were used on individual attributes.
Type-level constraints make it possible to provide collective validation. For example, the constraints

40 Developing WebSphere applications

applied to the image entity validate that an image type is set (not null), the extension on the image file
name is of a supported type, and the data format is correct for the indicated type. But, for example, it does
not collectively validate that a file named img0.gif is of type GIF and the format of the data is for a valid
GIF file image. For more information about type-level constraints, see the white paper, OpenJPA Bean
Validation Primer, and the section "Type-level constraints."

Validation groups

Bean validation uses validation groups to determine what type of validation and when validation occurs.

There are no special interfaces to implement or annotations to apply to create a validation group. A
validation group is denoted by a class definition.

Note: When using groups, use simple interfaces. Using a simple interface makes validation groups more
usable in multiple environments. Whereas, if a class or entity definition is used as a validation
group, it might pollute the object model of another application by bringing in domain classes and
logic that do no make sense for the application. By default, if a validation group or multiple groups
is not specified on an individual constraint, it is validated using the javax.validation.groups.Default
group. Creating a custom group is as simple as creating a new interface definition.

For more information about validation groups, read the white paper, OpenJPA Bean Validation Primer, and
the section "Validation groups."

JPA domain model

In addition to the Image entity are Album, Creator and Location persistent types. An Album entity contains
a reference to collection of its Image entities. The Creator entity contains a reference to the album entities
that the image Creator contributed to and a reference to the Image entities created. This provides full
navigational capabilities to and from each of the entities in the domain. An embeddable location, has been
added to image to support storing location information with the image.

The Album and Creator entities have standard built-in constraints. The embeddable location is more
unique in that it demonstrates the use of the @Valid annotation to validate embedded objects. To embed
location into an image, a new field and corresponding persistent properties are added to the Image class;
for example:
private Location location;

@Valid
@Embedded
public Location getLocation() {

return location;
}

public void setLocation(Location location) {
this.location = location;

}

The @Valid annotation provides chained validation of embeddable objects within a JPA environment.
Therefore, when image is validated, any constraints on the location it references are also validated. If
@Valid is not specified, the location is not validated. In a JPA environment, chained validation through
@Valid is only available for embeddable objects. Referenced entities and collections of entities are
validated separately to prevent circular validation.

Bean validation and the JPA environment

The JPA 2.0 specification makes integration with the Bean Validation API simple. In a JSE environment,
bean validation is enabled by default when you provide the Bean Validation API and a bean validation

Chapter 4. Developing applications that use Bean Validation API 41

provider on your runtime class path. In a Java EE 6 environment, the application server includes a bean
validation provider so there is no need to bundle one with your application. In both environments, you must
use a Version 2.0 persistence.xml file.

A Version 1.0 persistence.xml provides no means to configure bean validation. Requiring a Version 2.0
persistence.xml prevents a pure JPA 1.0 application from incurring the validation startup and runtime
costs. This is important given that there is no standard means for a 1.0-based application to disable
validation. In a Java EE 6 environment, enable validation in an existing 1.0 application by modifying the
root element of your persistence.xml file. The following example represents the persistence.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0" >

...
</persistence>

Bean validation provides three modes of operation within the JPA environment:

v Auto

Enables bean validation if a validation provider is available within the class path. Auto is the default.

v Callback

When callback mode is specified, a bean validation provider must be available for use by the JPA
provider. If not, the JPA provider throws an exception upon instantiation of a new JPA entity manager
factory.

v None

Disables bean validation for a particular persistence unit.

Auto mode simplifies deployment, but can lead to problems if validation does not take place because of a
configuration problem.

Note: Use either none or callback mode explicitly for consistent behavior.
Also, if none is specified, JPA optimizes at startup and does not attempt to perform unexpected validation.
Explicitly disabling validation is especially important in a Java EE 6 environment where the container is
mandated to provide a validation provider. Therefore, unless specified, a JPA 2.0 application started in a
container has validation enabled. This process adds additional processing during life cycle events.

There are two ways to configure validation modes in JPA 2.0. The simplest way is to add a
validation-mode element to the persistence.xml with the wanted validation mode as shown in the
following example:
<persistence-unit name="auto-validation">

...
<!-- Validation modes: AUTO, CALLBACK, NONE -->
<validation-mode>AUTO</validation-mode>
...

</persistence-unit>

The other way is to configure the validation mode programmatically by specifying the
javax.persistence.validation.mode property with value auto, callback, or none when creating a new JPA
entity manager factory as shown in the following example:
Map<String, String> props = new HashMap<String, String>();

props.put("javax.persistence.validation.mode", "callback");
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("validation", props);

Bean validation within JPA occurs during JPA life cycle event processing. If enabled, validation occurs at
the final stage of the PrePersist, PreUpdate, and PreRemove life cycle events. Validation occurs only after

42 Developing WebSphere applications

all user-defined life cycle events, since some of those events can modify the entity that is being validated.
By default, JPA enables validation for the default validation group for PrePersist and PreUpdate life cycle
events. If you must validate other validation groups or enable validation for the PreRemove event, you can
specify the validation groups to validate each life cycle event in the persistence.xml as shown in the
following example:
<persistence-unit name="non-default-validation-groups">

<class>my.Entity</class>
<validation-mode>CALLBACK</validation-mode>
<properties>
<property name="javax.persistence.validation.group.pre-persist"

value="org.apache.openjpa.example.gallery.constraint.SequencedImageGroup"/>
<property name="javax.persistence.validation.group.pre-update"

value="org.apache.openjpa.example.gallery.constraint.SequencedImageGroup"/>
<property name="javax.persistence.validation.group.pre-remove"

value="javax.validation.groups.Default"/>
</property>
</persistence-unit>

The following example shows various stages of the JPA life cycle, including persist, update, and remove:
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("BeanValidation");
EntityManager em = emf.createEntityManager();

Location loc = new Location();
loc.setCity("Rochester");
loc.setState("MN");
loc.setZipCode("55901");
loc.setCountry("USA");

// Create an Image with non-matching type and file extension
Image img = new Image();
img.setType(ImageType.JPEG);
img.setFileName("Winter_01.gif");
loadImage(img);
img.setLocation(loc);

// *** PERSIST ***
try {

em.getTransaction().begin();
// Persist the entity with non-matching extension and type
em.persist(img);

} catch (ConstraintViolationException cve) {
// Transaction was marked for rollback, roll it back and
// start a new one
em.getTransaction().rollback();
em.getTransaction().begin();
// Fix the file type and re-try the persist.
img.setType(ImageType.GIF);
em.persist(img);
em.getTransaction().commit();

}

// *** UPDATE ***
try {

em.getTransaction().begin();
// Modify the file name to a non-matching file name
// and commit to trigger an update
img.setFileName("Winter_01.jpg");
em.getTransaction().commit();

} catch (ConstraintViolationException cve) {
// Handle the exception. The commit failed so the transaction
// was already rolled back.
handleConstraintViolation(cve);

}
// The update failure caused img to be detached. It must be merged back

Chapter 4. Developing applications that use Bean Validation API 43

// into the persistence context.
img = em.merge(img);

// *** REMOVE ***
em.getTransaction().begin();
try {

// Remove the type and commit to trigger removal
img.setType(ImageType.GIF);
em.remove(img);

} catch (ConstraintViolationException cve) {
// Rollback the active transaction and handle the exception
em.getTransaction().rollback();
handleConstraintViolation(cve);

}
em.close();
emf.close();

Exceptions

Validation errors can occur in any part of JPA life cycle.

If one or more constraints fail to validate during a life cycle event, a ConstraintViolationException is thrown
by the JPA provider. The ConstraintViolationException thrown by the JPA provider includes a set of
ConstraintViolations that occurred. Individual constraint violations contain information regarding the
constraint, including: a message, the root bean or JPA entity, the leaf bean which is useful when validating
JPA embeddable objects, the attribute which failed to validate, and the value that caused the failure. The
following is a sample exception handling routine:
private void handleConstraintViolation(ConstraintViolationException cve) {

Set<ConstraintViolation<?>> cvs = cve.getConstraintViolations();
for (ConstraintViolation<?> cv : cvs) {

System.out.println("--");
System.out.println("Violation: " + cv.getMessage());
System.out.println("Entity: " + cv.getRootBeanClass().getSimpleName());
// The violation occurred on a leaf bean (embeddable)
if (cv.getLeafBean() != null && cv.getRootBean() != cv.getLeafBean()) {

System.out.println("Embeddable: " +
cv.getLeafBean().getClass().getSimpleName());

}
System.out.println("Attribute: " + cv.getPropertyPath());
System.out.println("Invalid value: " + cv.getInvalidValue());

}
}

Constraint violation processing is typically simple when using attribute-level constraints. If you are using a
type-level validator with type-level constraints, it can be more difficult to determine which attribute or
combination of attributes failed to validate. Also, the entire object is returned as the invalid value instead of
an individual attribute. In cases where specific failure information is required, use of an attribute-level
constraint or a custom constraint violation might be provided as described in the Bean Validation
specification.

Sample

The JPA model and image gallery application usage scenario provided in this topic can be implemented
through a sample that is provided in the white paper, OpenJPA Bean Validation primer.

44 Developing WebSphere applications

Chapter 5. Developing Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located. More introduction...

Developing client applications
A client application performs business logic and makes use of the framework provided by an underlying
client. Developing the code for a client application depends on the objects and functions you want to
exploit, and the programming model that you want to use.

Before you begin

Install the software development resources needed to develop client applications for use with WebSphere
Application Server. During code development, you do not need access to the WebSphere Application
Server. However, to assemble some types of client applications you need to install files for the client that
provides the framework for the client application. Instead of installing WebSphere Application Server you
can install the Application Client feature, which provides the same resources and clients to aid
development of client applications.

About this task

To use a client application to access a remote object on an application server, develop your client
application code as described in the following steps and the related topics. These topics only describe the
client-specific considerations; they do not describe general client programming models, which you should
already be familiar with. Samples for different types of client applications are provided with the Application
Client.

Procedure
1. Choose the type of client that you want to use as a framework for your client application. Decision

factors for choosing a client include whether you want to run a client application on Java EE or J2SE;
whether you want ease of use with a small installation footprint or full-function with medium-large
footprint; and whether you need licence to copy or redistribute the client. For more information about
choosing the type of client, see “Choosing a type of client” on page 46.

2. Develop the client application code. The following substeps are a high-level general procedure.
Information specific to a type of client is given in the related tasks.

a. Create an instance of the object that you want to access on the remote server. You can use full
Java Naming and Directory Interface (JNDI) support to get a suitable reference to administered
objects from the server's JNDI namespace. Alternatively, you can get suitable references to objects
programmatically without using JNDI.

Using the javax.naming.InitialContext class, the client application program uses the lookup
operation to access the Java Naming and Directory Interface (JNDI) namespace. The InitialContext
class provides the lookup method to locate resources.

You can compare the use of JNDI and programmatic techniques by looking at the samples
provided for the Java EE client and Java thin client in an Application Client installation (for
example, in C:\wac70\samples\src\):

© IBM Corporation 2009 45

v Java EE client use of JNDI for BasicCalculatorHome: TechnologySamplesJ2EEClient\
BasicCalculator\com\ibm\websphere\samples\technologysamples\basiccalcclient\
BasicCalculatorClientJ2EE.java

v Java thin client programmatic retrieval of BasicCalculatorHome: TechnologySamplesThinClient\
BasicCalculator\com\ibm\websphere\samples\technologysamples\basiccalcthinclient\
BasicCalculatorClientThin.java

b. Create a connection to the server. If the server runs with security enabled, you can configure
secure connections.

c. Work with the objects to perform your business requirements. For example, send and receive JMS
messages, update database entries, handle error conditions, and close resources used.

3. Compile or assemble the client application. This creates the JAR or EAR file that you can deploy to
make the client application available for use.

To compile your client application, include the JAR files needed in the CLASSPATH setting for the
javac command; for example, any extra JAR files for the client application's own classes, JAR files for
IBM® Thin clients used, and JAR files for JDBC provider classes.

Attention: IBM-provided clients are not packaged with JDBC provider classes. For example, the
WebSphere Application Server Version 7.0 Java Thin application client is not packaged with Apache
Derby 10.2 classes. If your client application needs to use a database class (such as through the JNDI
lookup of a datasource), you must obtain the class files from the database provider and make them
available when compiling and running the client application.

What to do next

After you develop a client application, deploy it into the environment you want it to run.

Choosing a type of client
A client provides the framework for client applications that run separately from your application server.

About this task

Decision factors for choosing a client include whether you want to run a client application on Java
Platform, Enterprise Edition (Java EE) or Java Platform, Standard Edition (J2SE) ; whether you want ease
of use with a small installation footprint or full-function with medium to large footprint; and whether you
need licence to copy or redistribute the client.

A usual first decision to make is do you want a client application that runs on Java EE or J2SE?. This
leads you to choose from the main types of clients, as described in this topic. Otherwise, if you want to run
an ActiveX program, or a Java applet, to interact with enterprise beans on WebSphere Application Server,
your decision is only for one of those types of client.

Procedure
v J2SE

If you want to run a lightweight client application, without the resource and processing cost of the Java
EE platform for WebSphere Application Server on the client machine, then choose either the Java thin
client or the stand-alone thin clients to run on J2SE.

– If you want a client with a small installation footprint, that you can embed into your application, and
that runs under an IBM, Sun, or HP-UX JRE, choose the stand-alone clients. Each client is an
embeddable single jar with small footprint; for example, the Thin Client for JMS with WebSphere
Application Server, com.ibm.ws.sib.client.thin.jms_7.0.0.jar needs about 2 MB of disk space.
For notable restrictions of stand-alone clients, see the client comparison table in Client applications.

– If you want a full-function client with medium to large footprint, that runs under the IBM JRE supplied,
choose the Java thin client.

46 Developing WebSphere applications

- If you run your client application to use the installed files of Application Client for WebSphere
Application Server, you need about 400 MB of disk space (as part of the Application Client
installation). Choose this option if you intend to copy and redistribute the Java thin client, within
your licensing agreement.

- If you run your client application to use the installed files of the WebSphere Application Server,
you need about 1 GB of disk space (as part of the Application Server installation). Choose this
option if you do not mind the larger footprint, and you want maintenance support for the Java thin
client.

However, the thin clients running on J2SE do not support a Java EE container that provides easy
access to system services for object resolution, security, Reliability Availability and Servicability (RAS),
and other services. Also, thin clients running on J2SE do not initialize any of the services that the client
application might require.

v Java EE

If you want to run a Java client application that makes full use of the Java EE platform features of
WebSphere Application Server, then choose the Java EE client.

– If you run your client application to use the installed files of Application Client for WebSphere
Application Server, you need about 400 MB of disk space (as part of the Application Client
installation). Choose this option if you intend to copy and redistribute the Java EE client, within your
licensing agreement.

– If you run your client application to use the installed files of the WebSphere Application Server, you
need about 1 GB of disk space (as part of the Application Server installation). Choose this option if
you do not mind the larger footprint, and you want maintenance support for the Java EE client.

The Java EE client provides a container that client applications can use to access system services. The
Java EE client also initializes the runtime environment for client applications.

v ActiveX to Enterprise JavaBeans (EJB) Bridge

If you want ActiveX programs to access enterprise beans on WebSphere Application Server, choose this
client.

v Applet client

If you want a browser-based Java client application program that provides a richer and more robust
environment than the one offered by the Applet > Servlet > enterprise bean model, choose this client.

What to do next

Develop your client application to use the type of client that you have chosen.

Installing, updating, rolling back, and uninstalling the Application
Client for IBM WebSphere Application Server
IBM Installation Manager is a common installer for many IBM software products that you use to install,
update, roll back, and uninstall the Application Client for IBM WebSphere Application Server.

Before you begin

Before you start to use the installation tools, prepare for choosing and installing the variety of options and
features provided by the Application Client. Read through all the steps in this article and read the related
articles before installing the Application Client:

It is recommended that you have 350 MB of temporary disk space available before starting the installation.

Restrictions:

v Application Client for WebSphere Application Server ships only with the 32-bit
WebSphere Application Server.

Chapter 5. Developing Client applications 47

v Installation Manager console mode, which is included in Installation Manager Version
1.4.3 and later, does not work with WebSphere Application Server Version 8.5 offerings
on systems other than z/OS.

Tip: Although almost all of the instructions in this section of the information center will work with earlier
versions of IBM Installation Manager, the information here is optimized for users who have installed
or upgraded to Installation Manager Version 1.5 or later.

About this task

The Application Client provides resources and clients to aid development of client applications for use with
WebSphere Application Server. The Application Client is a source for the clients (as runtime frameworks)
for client applications, either to run on the Application Client machine or to be distributed with client
applications that are to run on other machines.

To assemble some types of client applications, you need to install the client that provides the framework
for the client application. Instead of installing WebSphere Application Server, you can install the Application
Client feature, which provides the same resources and clients to aid development of client applications.

Similarly, running some types of client applications for use with WebSphere Application Server requires
that the associated client is deployed with the client application. For client applications that only need a
small fraction of the Application Client, you can install the Application Client onto a convenient machine,
such as the machine used to develop the client application, then package the client application with only
the clients that it needs. For example, this means that a standalone client application is deployed on only
the required fraction of the clients provided with the Application Client.

Note: For information on installing and removing fix packs for WebSphere Application Server offerings on
distributed operating systems using the Installation Manager command line, read the following
articles in this information center:

v Installing fix packs on distributed operating systems using the command line

v Uninstalling fix packs from distributed operating systems using the command line

Procedure
v “Installing the Application Client using the GUI” on page 50

v “Installing the Application Client using response files” on page 55

v “Installing the Application Client using the command line” on page 61

v “Installing and removing features in the Application Client” on page 65

v “Installing fix packs on the Application Client using the GUI” on page 67

v “Uninstalling fix packs from the Application Client using the GUI” on page 68

v “Uninstalling the Application Client using the GUI” on page 69

v “Uninstalling the Application Client using response files” on page 69

v “Uninstalling the Application Client using the command line” on page 71

Results

Notes on logging and tracing:

v An easy way to view the logs is to open Installation Manager and go
to File > View Log. An individual log file can be opened by selecting it
in the table and then clicking the Open log file icon.

v Logs are located in the logs directory of Installation Manager's
application data location. For example:

– Administrative installation:

48 Developing WebSphere applications

C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

– Non-administrative installation:
C:\Documents and Settings\user_name\Application Data\IBM\Installation Manager\logs

– Administrative
installation:

/var/ibm/InstallationManager/logs

– Non-administrative
installation:

user_home/var/ibm/InstallationManager/logs

v The main log files are time-stamped XML files in the logs directory,
and they can be viewed using any standard web browser.

v The log.properties file in the logs directory specifies the level of
logging or tracing that Installation Manager uses. To turn on tracing, for
example, create a log.properties file with the following content:

com.ibm.ws=DEBUG
com.ibm.cic.agent.core.Engine=DEBUG
global=DEBUG

Restart Installation Manager as necessary, and Installation Manager
outputs traces.

Notes on troubleshooting:

v By default, some HP-UX systems are configured to not use
DNS to resolve host names. This could result in Installation Manager not
being able to connect to an external repository.

You can ping the repository, but nslookup does not return anything.

Work with your system administrator to configure your machine to use
DNS, or use the IP address of the repository.

v In some cases, you might need to bypass existing checking mechanisms
in Installation Manager.

– On some network file systems, disk space might not be reported
correctly at times; and you might need to bypass disk-space checking
and proceed with your installation.

To disable disk-space checking, specify the following system property in
the config.ini file in IM_install_root/eclipse/configuration and
restart Installation Manager:

cic.override.disk.space=sizeunit

where size is a positive integer and unit is blank for bytes, k for kilo, m
for megabytes, or g for gigabytes. For example:

cic.override.disk.space=120 (120 bytes)
cic.override.disk.space=130k (130 kilobytes)
cic.override.disk.space=140m (140 megabytes)
cic.override.disk.space=150g (150 gigabytes)
cic.override.disk.space=true

Installation Manager will report a disk-space size of Long.MAX_VALUE.
Instead of displaying a very large amount of available disk space, N/A
is displayed.

– To bypass operating-system prerequisite checking, add
disableOSPrereqChecking=true to the config.ini file in
IM_install_root/eclipse/configuration and restart Installation
Manager.

Chapter 5. Developing Client applications 49

If you need to use any of these bypass methods, contact IBM Support for
assistance in developing a solution that does not involve bypassing the
Installation Manager checking mechanisms.

v For more information on using Installation Manager, read the IBM
Installation Manager Version 1.5 Information Center.

Read the release notes to learn more about the latest version of
Installation Manager. To access the release notes, complete the following
task:

– Click Start > Programs > IBM Installation Manager >
Release Notes.

– Go to the documentation
subdirectory in the directory where Installation Manager is installed, and
open the readme.html file.

Installing the Application Client using the GUI
You can use the Installation Manager GUI to install the Application Client.

Before you begin

Install Installation Manager:

1. Perform one of the following procedures:

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

a. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

1) Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage® site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

2) Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the
necessary product repositories from the Passport Advantage site.

1) Download the files from the Passport Advantage site.

2) Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

3) Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

1) Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

2) Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web
browser. This is a remote web-based repository location that you must add to your

50 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

Installation Manager preferences before the Installation Manager GUI can access
the files in this repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are
accessing the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the
product from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple
disks for one product into a repository. You can copy packages from Passport
Advantage or a web-based repository into a local repository for example. For more
information on the Packaging Utility, go to the IBM Installation Manager Version 1.5
Information Center.

b. Change to the location containing the Installation Manager installation files, and run one of the
following commands:

Administrative installation:

– install.exe

– ./install

Non-administrative installation:

– userinst.exe

– ./userinst

Group-mode installation:
./groupinst

Notes on group mode:

– Group mode allows multiple users to use a single instance of IBM Installation
Manager to manage software packages.

– Group mode is not available on Windows operating systems.

– If you do not install Installation Manager using group mode, you will not be able to
use group mode to manage any of the products that you install later using this
Installation Manager.

– Make sure that you change the installation location from the default location in the
current user's home directory to a location that is accessible by all users in the group.

– Set up your groups, permissions, and environment variables as described in the
Group mode road maps in the IBM Installation Manager Version 1.5 Information
Center before installing in group mode.

– For more information on using group mode, read the Group mode road maps in the
IBM Installation Manager Version 1.5 Information Center.

The installer opens an Install Packages window.

c. Make sure that the Installation Manager package is selected, and click Next.

d. Accept the terms in the license agreements, and click Next.

The program creates the directory for your installation.

e. Click Next.

f. Review the summary information, and click Install.

– If the installation is successful, the program displays a message indicating that installation is
successful.

– If the installation is not successful, click View Log File to troubleshoot the problem.

Chapter 5. Developing Client applications 51

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you
want to use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install
the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the product repositories from the Passport Advantage site.

b. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install
the product from the web-based repositories. Use Installation Manager to install the product from
the web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This
is a remote web-based repository location that you must specify for the value of the
-repositories parameter so that the imcl command can access the files in this repository to
install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Add the product repository to your Installation Manager preferences.

a. Start Installation Manager.

b. In the top menu, click File > Preferences.

c. Select Repositories.

d. Perform the following actions:

1) Click Add Repository.

2) Enter the path to the repository.config file in the location containing the repository files.

For example:

v C:\repositories\product_name\local-repositories

v /var/repositories/product_name/local-
repositories

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

3) Click OK.

e. Deselect any locations listed in the Repositories window that you will not be using.

f. Click Apply.

g. Click OK.

52 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

h. Click File > Exit to close Installation Manager.

Procedure
1. Start Installation Manager.

Tip: If you installed Installation Manager using group
mode, you can start it in group mode with the ./IBMIM command.

v Group mode allows users to share packages in a common location and manage them with
the same instance of Installation Manager.

v For more information on using group mode, read the Group mode road maps in the IBM
Installation Manager Version 1.5 Information Center.

2. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with on
the program website.

Installation Manager searches its defined repositories for available packages.

3. Perform the following actions.

a. Select Application Client for IBM WebSphere Application Server and the appropriate version.

Note: If you are installing the ILAN version of this product, select Application Client for IBM
WebSphere Application Server (ILAN).

If you already have the Application Client installed on your system, a message displays indicating
that the Application Client is already installed. For a given Installation Manager, you can install
only one Application Client.

Tip: If the Search service repositories during installation and updates option is selected on
the Installation Manager Repository preference page and you are connected to the Internet,
you can click Check for Other Versions and Extensions to search for updates in the
default update repositories for the selected packages. In this case, you do not need to add
the specific service-repository URL to the Installation Manager Repository preference page.

b. Select the fixes to install.

Any recommended fixes are selected by default.

If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

c. Click Next.

Note: Installation Manager might prompt you to update to the latest level of Installation Manager
when it connects to the repository. Update to the newer version before you continue if you are
prompted to do so. Read the IBM Installation Manager Version 1.5 Information Center for
information about automatic updates.

4. Accept the terms in the license agreements, and click Next.

5. Specify the installation root directory for the product binaries, which are also referred to as the core
product files or system files.

The panel also displays the shared resources directory and disk-space information.

Restrictions:

v Deleting the default target location and leaving an installation-directory field empty
prevents you from continuing.

v Do not use symbolic links as the destination directory.

Symbolic links are not supported.

v Do not use a semicolon in the directory name.

Chapter 5. Developing Client applications 53

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

The Application Client cannot install properly if the target directory includes a
semicolon.

A semicolon is the character used to construct the class path on
Windows systems.

v The maximum path length on the Windows Server 2008, Windows Vista,
and Windows 7 operating systems is 60 characters.

6. Click Next.

7. Select any features that you want to install.

Choose from the following optional features:

v IBM Developer Kit, Java 2 Technology Edition

This option installs the IBM Developer Kit, Java 2 Technology Edition.

This feature includes a development kit and a runtime-environment package. The
runtime-environment package is always installed with the Java EE and Java thin application client
feature even if this feature is not installed.

– Java 2 Runtime Environment

This option installs the Java 2 runtime environment.

This feature includes the Java 2 runtime environment of IBM Developer Kit, Java 2 Technology
Edition.

– Developer Kit

This option installs the developer kit.

This feature includes the developer kit of IBM Developer Kit, Java 2 Technology Edition.

v Samples

This option installs executable and source-code examples of programming in both Java EE and
non-Java EE client environments.

v Standalone Thin Clients, Resource Adapters, and Embeddable Containers

IBM thin clients and resource adapters provide a set of clients and resource adapters for a variety
of technologies, such as JAX-WS, JAX-RPC, JAX-RS, XML, EJB, JPA, JMS, and more. An
embeddable container runs in a standalone Java Platform, Standard Edition environment. For
example, you can use the embeddable EJB container to run enterprise beans outside the
application server.

– Standalone thin clients and resource adapters

This option installs the runtime for standalone thin clients.

– Embeddable EJB container

This option installs the embeddable EJB container.

The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise
beans in a standalone Java Platform, Standard Edition environment. You can run enterprise
beans using this embeddable container outside the application server. The embeddable EJB
container is a part of the EJB 3.1 specification and is primarily used for unit testing enterprise
beans business logic.

Tip: You can run the Installation Manager later to modify this installation and add or remove features.

8. Click Next.

9. Enter the host name and port number of the Websphere Application Server to which you want to
connect.

10. Click Next.

11. Review the summary information, and click Install.

v If the installation is successful, the program displays a message indicating that installation is
successful.

54 Developing WebSphere applications

Note: The program might also display important post-installation instructions as well.

v If the installation is not successful, click View Log File to troubleshoot the problem.

12. Click Finish.

13. Click File > Exit to close Installation Manager.

Installing the Application Client using response files
You can install the Application Client using Installation Manager response files.

Before you begin

Install Installation Manager on each of the systems onto which you want to install the product.

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the files from the Passport Advantage site.

b. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must add to your Installation
Manager preferences before the Installation Manager GUI can access the files in this
repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

Chapter 5. Developing Client applications 55

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Change to the location containing the Installation Manager installation files, and run one of the
following commands to install Installation Manager:

Administrative installation:

– installc.exe -acceptLicense -log log_file_path_and_name

– ./installc -acceptLicense -log
log_file_path_and_name

Non-administrative installation:

– userinstc.exe -acceptLicense -log log_file_path_and_name

– ./userinstc -acceptLicense -log
log_file_path_and_name

Group-mode installation:
./groupinstc -acceptLicense -dataLocation

application_data_location -log log_file_path_and_name -installationDirectory
Installation_Manager_home

Notes on group mode:

– Group mode allows multiple users to use a single instance of IBM Installation Manager to
manage software packages.

– Group mode is not available on Windows operating systems.

– If you do not install Installation Manager using group mode, you will not be able to use
group mode to manage any of the products that you install later using this Installation
Manager.

– Make sure that you change the installation location from the default location in the
current user's home directory to a location that is accessible by all users in the group.

– Set up your groups, permissions, and environment variables as described in the Group
mode road maps in the IBM Installation Manager Version 1.5 Information Center before
installing in group mode.

– For more information on using group mode, read the Group mode road maps in the IBM
Installation Manager Version 1.5 Information Center.

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you want to
use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install the
product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

1. Download the product repositories from the Passport Advantage site.

2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

56 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This is
a remote web-based repository location that you must specify for the value of the -repositories
parameter so that the imcl command can access the files in this repository to install the
product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation repositories.
You can copy multiple packages into one repository or copy multiple disks for one product
into a repository. You can copy packages from Passport Advantage or a web-based
repository into a local repository for example. For more information on the Packaging Utility,
go to the IBM Installation Manager Version 1.5 Information Center.

About this task

Using Installation Manager, you can work with response files to install the Application Client in a variety of
ways. You can record a response file using the GUI as described in the following procedure, or you can
generate a new response file by hand or by taking an example and modifying it.

Procedure
1. Optional: Record a response file to install the Application Client: On one of your systems, perform

the following actions to record a response file that will install the Application Client.

a. From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

b. Start Installation Manager from the command line using the -record option.

For example:

v Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\install_response_file.xml

v Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/install_response_file.xml

v Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/install_response_file.xml

Tip: When you record a new response file, you can specify the -skipInstall parameter. Using this
parameter has the following benefits:

v No files are actually installed, and this speeds up the recording.

v If you use a temporary data location with the -skipInstall parameter, Installation Manager
writes the installation registry to the specified data location while recording. When you start
Installation Manager again without the -skipInstall parameter, you then can use your
response file to install against the real installation registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that
location for future recording sessions.

Chapter 5. Developing Client applications 57

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

For more information, read the IBM Installation Manager Version 1.5 Information Center.

c. Add the appropriate repositories to your Installation Manager preferences.

1) In the top menu, click File > Preferences.

2) Select Repositories.

3) Perform the following actions for each repository:

a) Click Add Repository.

b) Enter the path to the repository.config file in the remote web-based repository or the local
directory into which you unpacked the repository files.

For example:

v Remote repositories:
https://downloads.mycorp.com:8080/WAS_85_repository

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

v Local repositories:

– C:\repositories\appclient\local-repositories

– /var/repositories/appclient/local-
repositories

c) Click OK.

4) Click Apply.

5) Click OK.

d. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.

Installation Manager searches its defined repositories for available packages.

e. Perform the following actions.

1) Select Application Client for IBM WebSphere Application Server and the appropriate
version.

Note: If you are installing the ILAN version of this product, select Application Client for IBM
WebSphere Application Server (ILAN).

If you already have the Application Client installed on your system, a message displays
indicating that the Application Client is already installed. For a given Installation Manager, you
can install only one Application Client.

2) Click Next.

f. Accept the terms in the license agreements, and click Next.

g. Specify the installation root directory for the Application Client binaries, which are also referred to
as the core product files or system files.

The panel also displays the shared resources directory and disk-space information.

Restrictions:

v Deleting the default target location and leaving an installation-directory field empty
prevents you from continuing.

v Do not use symbolic links as the destination directory.

Symbolic links are not supported.

v Do not use a semicolon in the directory name.

The Application Client cannot install properly if the target directory includes a
semicolon.

58 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

A semicolon is the character used to construct the class path on
Windows systems.

v The maximum path length on the Windows Server 2008, Windows
Vista, and Windows 7 operating systems is 60 characters.

h. Click Next.

i. Select any features that you want to install.

Choose from the following optional features:

v IBM Developer Kit, Java 2 Technology Edition

This option installs the IBM Developer Kit, Java 2 Technology Edition.

This feature includes a development kit and a runtime-environment package. The
runtime-environment package is always installed with the Java EE and Java thin application client
feature even if this feature is not installed.

– Java 2 Runtime Environment

This option installs the Java 2 runtime environment.

This feature includes the Java 2 runtime environment of IBM Developer Kit, Java 2
Technology Edition.

– Developer Kit

This option installs the developer kit.

This feature includes the developer kit of IBM Developer Kit, Java 2 Technology Edition.

v Samples

This option installs executable and source-code examples of programming in both Java EE and
non-Java EE client environments.

v Standalone Thin Clients, Resource Adapters, and Embeddable Containers

IBM thin clients and resource adapters provide a set of clients and resource adapters for a
variety of technologies, such as JAX-WS, JAX-RPC, JAX-RS, XML, EJB, JPA, JMS, and more.
An embeddable container runs in a standalone Java Platform, Standard Edition environment. For
example, you can use the embeddable EJB container to run enterprise beans outside the
application server.

– Standalone thin clients and resource adapters

This option installs the runtime for standalone thin clients.

– Embeddable EJB container

This option installs the embeddable EJB container.

The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise
beans in a standalone Java Platform, Standard Edition environment. You can run enterprise
beans using this embeddable container outside the application server. The embeddable EJB
container is a part of the EJB 3.1 specification and is primarily used for unit testing enterprise
beans business logic.

Tip: You can run the Installation Manager later to modify this installation and add or remove
features.

j. Click Next.

k. Enter the host name and port number of the Websphere Application Server to which you want to
connect.

l. Click Next.

m. Review the summary information, and click Install.

v If the installation is successful, the program displays a message indicating that installation is
successful.

Note: The program might also display important post-installation instructions as well.

Chapter 5. Developing Client applications 59

v If the installation is not successful, click View Log File to troubleshoot the problem.

n. Click Finish.

o. Click File > Exit to close Installation Manager.

p. Optional: If you are using an authenticated remote repository, create a keyring file for installation.

1) From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

2) Start Installation Manager from the command line using the -record option.

For example:

v Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-keyring C:\IM\im.keyring
-record C:\temp\keyring_response_file.xml

v Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-keyring /var/IM/im.keyring
-record /var/temp/keyring_response_file.xml

v Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-keyring user_home/var/IM/im.keyring
-record user_home/var/temp/keyring_response_file.xml

3) When a window opens that requests your credentials for the authenticated remote repository,
enter the correct credentials and save them.

4) Click File > Exit to close Installation Manager.

For more information, read the IBM Installation Manager Version 1.5 Information Center.

2. Use the response files to install the Application Client:

a. Optional: Use the response file to install the keyring: Go to a command line on each of the
systems on which you want to install the product, change to the eclipse/tools subdirectory in the
directory where you installed Installation Manager, and install the keyring.

For example:

v Administrator or non-administrator:
imcl.exe -acceptLicense
input C:\temp\keyring_response_file.xml
-log C:\temp\keyring_log.xml

v Administrator:
./imcl -acceptLicense
input /var/temp/keyring_response_file.xml
-log /var/temp/keyring_log.xml

v Non-administrator:
./imcl -acceptLicense
input user_home/var/temp/keyring_response_file.xml
-log user_home/var/temp/keyring_log.xml

b. Use the response file to install the product : Go to a command line on each of the systems on
which you want to install the product, change to the eclipse/tools subdirectory in the directory
where you installed Installation Manager, and install the product.

For example:

v Administrator or non-administrator:
imcl.exe -acceptLicense
input C:\temp\install_response_file.xml
-log C:\temp\install_log.xml
-keyring C:\IM\im.keyring

v Administrator:
./imcl -acceptLicense
input /var/temp/install_response_file.xml
-log /var/temp/install_log.xml
-keyring /var/IM/im.keyring

v Non-administrator:

60 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

./imcl -acceptLicense
input user_home/var/temp/install_response_file.xml
-log user_home/var/temp/install_log.xml
-keyring user_home/var/IM/im.keyring

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the
installation image or repository for this product.

v The program might write important post-installation instructions to standard output.

Read the IBM Installation Manager Version 1.5 Information Center for more information.

Example

The following is an example of a response file for installing the Application Client.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.APPCLIENT.v85’
profile=’Application Client for IBM WebSphere Application Server V8.5’
features=’javaee.thinclient.core.feature,javaruntime,developerkit,embeddablecontainer’ installFixes=’none’/>

</install>
<profile id=’Application Client for IBM WebSphere Application Server V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\AppClient’>

<data key=’eclipseLocation’ value=’C:\Program Files\IBM\WebSphere\AppClient’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’user.select.64bit.image,com.ibm.websphere.APPCLIENT.v85’ value=’false’/>
<data key=’user.appclient.serverHostname’ value=’localhost’/>
<data key=’user.appclient.serverPort’ value=’2809’/>
<data key=’cic.selector.nl’ value=’en’/>
</profile>
</agent-input>

Note: In the following list, the optional feature offering names are enclosed in parentheses:

v IBM Developer Kit, Java 2 Technology Edition

– Java 2 Runtime Environment (javaruntime)

– Developer Kit (developerkit)

v Samples (samples)

v Standalone Thin Clients, Resource Adapters, and Embeddable Containers

– Standalone Thin Clients Runtime (standalonethinclient.resourceadapter.runtime)

– Standalone Thin Clients Samples (standalonethinclient.resourceadapter.samples)

– Embeddable EJB Container (embeddablecontainer)

If no features are specified, the required features and those selected by default (javaruntime,
developerkit, and embeddablecontainer) are installed. To install only the features that you want,
specify the list of features explicitly.

Tip: See Sample response file: Installing the Application Client for IBM WebSphere Application Server for
an annotated sample of a response file for performing this procedure.

Installing the Application Client using the command line
You can install the Application Client using the Installation Manager command line.

Before you begin

Important: Before installing the product, you must read the license agreement that you can find with the
product files. Signify your acceptance of the license agreement by specifying -acceptLicense
in the command as described below.

Chapter 5. Developing Client applications 61

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

Install Installation Manager on each of the systems onto which you want to install the product.

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the files from the Passport Advantage site.

b. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must specify for the value of
the -repositories parameter so that the imcl command can access the files in this
repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Change to the location containing the Installation Manager installation files, and run one of the
following commands:

Administrative installation:

62 Developing WebSphere applications

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

– installc.exe -acceptLicense -log log_file_path_and_name

– ./installc -acceptLicense -log
log_file_path_and_name

Non-administrative installation:

– userinstc.exe -acceptLicense -log log_file_path_and_name

– ./userinstc -acceptLicense -log
log_file_path_and_name

Group-mode installation:
./groupinstc -acceptLicense -dataLocation

application_data_location -log log_file_path_and_name -installationDirectory
Installation_Manager_home

Notes on group mode:

– Group mode allows multiple users to use a single instance of IBM Installation Manager to
manage software packages.

– Group mode is not available on Windows operating systems.

– If you do not install Installation Manager using group mode, you will not be able to use
group mode to manage any of the products that you install later using this Installation
Manager.

– Make sure that you change the installation location from the default location in the
current user's home directory to a location that is accessible by all users in the group.

– Set up your groups, permissions, and environment variables as described in the Group
mode road maps in the IBM Installation Manager Version 1.5 Information Center before
installing in group mode.

– For more information on using group mode, read the Group mode road maps in the IBM
Installation Manager Version 1.5 Information Center.

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you want to
use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install the
product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

1. Download the product repositories from the Passport Advantage site.

2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This is
a remote web-based repository location that you must specify for the value of the -repositories
parameter so that the imcl command can access the files in this repository to install the
product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Chapter 5. Developing Client applications 63

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation repositories.
You can copy multiple packages into one repository or copy multiple disks for one product
into a repository. You can copy packages from Passport Advantage or a web-based
repository into a local repository for example. For more information on the Packaging Utility,
go to the IBM Installation Manager Version 1.5 Information Center.

Procedure
1. Optional: If the repository requires a username and password, create a keyring file to access this

repository.

For more information on creating a keyring file for Installation Manager, read the IBM Installation
Manager Version 1.5 Information Center.

2. Log on to your system.

3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.

4. Verify that the product repository is available.

imcl.exe listAvailablePackages -repositories source_repository

./imcl listAvailablePackages -repositories source_repository

You should see one or more levels of the offering.

5. Use the imcl command to install the product.

imcl.exe install com.ibm.websphere.APPCLIENT.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory
-accessRights access_mode
-preferences preference_key=value
-properties property_key=value
-keyring keyring_file -password password
-acceptLicense

./imcl install com.ibm.websphere.APPCLIENT.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory
-accessRights access_mode
-preferences preference_key=value
-properties property_key=value
-keyring keyring_file -password password
-acceptLicense

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the
installation image or repository for this product.

v The offering_version, which optionally can be attached to the offering ID with an underscore,
is a specific version of the offering to install (8.5.0.20110503_0200 for example).

– If offering_version is not specified, the latest version of the offering and all interim fixes
for that version are installed.

– If offering_version is specified, the specified version of the offering and no interim fixes
for that version are installed.

The offering version can be found attached to the end of the offering ID with an underscore
when you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

64 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

v You can also specify none, recommended or all with the -installFixes argument to indicate
which interim fixes you want installed with the offering.

– If the offering version is not specified, the -installFixes option defaults to all.

– If the offering version is specified, the -installFixes option defaults to none.

v You can add a list of features that are separated by commas.

In the following list, the optional feature IDs are enclosed in parentheses:

– IBM Developer Kit, Java 2 Technology Edition

- Java 2 Runtime Environment (javaruntime)

- Developer Kit (developerkit)

– Samples (samples)

– Standalone Thin Clients, Resource Adapters, and Embeddable Containers

- Standalone Thin Clients Runtime (standalonethinclient.resourceadapter.runtime)

- Standalone Thin Clients Samples (standalonethinclient.resourceadapter.samples)

- Embeddable EJB Container (embeddablecontainer)

Tip: If no features are specified, the required features and those selected by default
(javaruntime, developerkit, and embeddablecontainer) are installed. To install only the
features that you want, specify the list of features explicitly.

v The -accessRights parameter is not required if you previously specified the mode in which
to install Installation Manager.

v The program might write important post-installation instructions to standard output.

For more information on using the imcl command to install the product, see the IBM Installation
Manager Version 1.5 Information Center.

Installing and removing features in the Application Client
You can use Installation Manager to install or remove a feature in the Application Client for IBM
WebSphere Application Server.

Procedure
v Use the Installation Manager GUI to install or remove a feature in the Application Client for IBM

WebSphere Application Server.

1. Stop all servers and applications on the Application Client installation that is being modified.

2. Start Installation Manager.

3. Make sure that your Installation Manager preferences are pointing to the appropriate web-based or
local repositories containing the Application Client for IBM WebSphere Application Server.

4. Click Modify.

5. Select the package group to modify.

6. Click Next.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.

7. Expand Application Client for IBM WebSphere Application Server.

8. Check the appropriate checkbox to install a feature, or clear the appropriate checkbox to remove a
feature if you already have it installed.

– IBM Developer Kit, Java 2 Technology Edition

This option installs the IBM Developer Kit, Java 2 Technology Edition.

This feature includes a development kit and a runtime-environment package. The
runtime-environment package is always installed with the Java EE and Java thin application
client feature even if this feature is not installed.

Chapter 5. Developing Client applications 65

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

- Java 2 Runtime Environment

This option installs the Java 2 runtime environment.

This feature includes the Java 2 runtime environment of IBM Developer Kit, Java 2
Technology Edition.

- Developer Kit

This option installs the developer kit.

This feature includes the developer kit of IBM Developer Kit, Java 2 Technology Edition.

– Samples

This option installs executable and source-code examples of programming in both Java EE and
non-Java EE client environments.

– Standalone Thin Clients, Resource Adapters, and Embeddable Containers

IBM thin clients and resource adapters provide a set of clients and resource adapters for a
variety of technologies, such as JAX-WS, JAX-RPC, JAX-RS, XML, EJB, JPA, JMS, and more.
An embeddable container runs in a standalone Java Platform, Standard Edition environment.
For example, you can use the embeddable EJB container to run enterprise beans outside the
application server.

- Standalone thin clients and resource adapters

This option installs the runtime for standalone thin clients.

- Embeddable EJB container

This option installs the embeddable EJB container.

The embeddable EJB container is a Java Archive (JAR) file that you can use to run
enterprise beans in a standalone Java Platform, Standard Edition environment. You can run
enterprise beans using this embeddable container outside the application server. The
embeddable EJB container is a part of the EJB 3.1 specification and is primarily used for unit
testing enterprise beans business logic.

9. Click Next.

10. Review the summary information, and click Modify.

– If the modification is successful, the program displays a message indicating that installation is
successful.

– If the modification is not successful, click View Log File to troubleshoot the problem.

11. Click Finish.

12. Click File > Exit to close Installation Manager.

v Use an Installation Manager response file to install or remove a feature in the Application Client for IBM
WebSphere Application Server.

You can record this response file using the GUI and Installation Manager's record mode, or you can
manually create or modify a response file to suit your needs.

Go to the IBM Installation Manager Version 1.5 Information Center for more information.

Example: Here is a response file that modifies an existing Application Client for IBM
WebSphere Application Server installation:

<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.APPCLIENT.v85" />
</server>
<install modify=’true’>
<offering id=’com.ibm.websphere.APPCLIENT.v85’
profile=’Application Client for IBM WebSphere Application Server V8.5’
features=’samples,standalonethinclient.resourceadapter.runtime’/>

</install>
<uninstall modify=’true’>
<offering id=’com.ibm.websphere.APPCLIENT.v85’
profile=’Application Client for IBM WebSphere Application Server V8.5’
features=’embeddablecontainer,developerkit’/>

</uninstall>
<profile id=’Application Client for IBM WebSphere Application Server V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\AppClient’>

66 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

<data key=’eclipseLocation’ value=’C:\Program Files\IBM\WebSphere\AppClient’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’user.select.64bit.image,com.ibm.websphere.APPCLIENT.v85’ value=’false’/>
<data key=’user.appclient.serverHostname’ value=’localhost’/>
<data key=’user.appclient.serverPort’ value=’2809’/>
<data key=’cic.selector.nl’ value=’en’/>
</profile>
</agent-input>

In the following list, the optional feature offering IDs are enclosed in parentheses:

– IBM Developer Kit, Java 2 Technology Edition

- Java 2 Runtime Environment (javaruntime)

- Developer Kit (developerkit)

– Samples (samples)

– Standalone Thin Clients, Resource Adapters, and Embeddable Containers

- Standalone Thin Clients Runtime (standalonethinclient.resourceadapter.runtime)

- Standalone Thin Clients Samples (standalonethinclient.resourceadapter.samples)

- Embeddable EJB container (embeddablecontainer)

Tip: See Sample response file: Modifying the Application Client for IBM WebSphere Application Server
for an annotated sample of a response file for performing this procedure.

v Use the Installation Manager imcl command-line tool to install or remove a feature in the Application
Client for IBM WebSphere Application Server.

Read “Installing the Application Client using the command line” on page 61, “Uninstalling the Application
Client using the command line” on page 71, and the IBM Installation Manager Version 1.5 Information
Center for more information.

Installing fix packs on the Application Client using the GUI
You can update the Application Client to a later version using the Installation Manager GUI.

Before you begin

Make sure that the web-based or local service repository location is listed and checked or that the Search
service repositories during installation and updates option is selected on the Repositories panel in
your Installation Manager preferences. For more information on using service repositories with Installation
Manager, read the IBM Installation Manager Version 1.5 Information Center.

About this task

Perform this procedure to use the Installation Manager GUI to update the Application Client.

Note: For information on installing and removing fix packs for WebSphere Application Server offerings on
distributed operating systems using the Installation Manager command line, read the following
articles in this information center:

v Installing fix packs on distributed operating systems using the command line

v Uninstalling fix packs from distributed operating systems using the command line

Procedure
1. Start Installation Manager.

2. Click Update.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

3. Select the package group to update.

4. Click Next.

Chapter 5. Developing Client applications 67

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

5. Select the version to which you want to update under Application Client for IBM WebSphere
Application Server.

6. Click Next.

7. Accept the terms in the license agreements, and click Next.

8. Select the optional features that you want in your updated installation.

9. Review the summary information, and click Update.

v If the installation is successful, the program displays a message indicating that installation is
successful.

v If the installation is not successful, click View Log File to troubleshoot the problem.

10. Click Finish.

11. Click File > Exit to close Installation Manager.

Uninstalling fix packs from the Application Client using the GUI
You can roll back the Application Client to an earlier version using the Installation Manager GUI.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the package.
By default, these files are stored on your computer when you install a package. If you change the default
setting or delete the saved files, Installation Manager requires access to the repository that was used to
install the earlier version.

About this task

Perform this procedure to use the Installation Manager GUI to roll back the Application Client to an earlier
version.

Note: For information on installing and removing fix packs for WebSphere Application Server offerings on
distributed operating systems using the Installation Manager command line, read the following
articles in this information center:

v Installing fix packs on distributed operating systems using the command line

v Uninstalling fix packs from distributed operating systems using the command line

Procedure
1. Start Installation Manager.

2. Click Roll Back.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

3. Select the package group to roll back.

4. Click Next.

5. Select the version to which you want to roll back under Application Client for IBM WebSphere
Application Server.

6. Click Next.

7. Review the summary information, and click Roll Back.

v If the rollback is successful, the program displays a message indicating that the rollback is
successful.

v If the rollback is not successful, click View Log File to troubleshoot the problem.

8. Click Finish.

9. Click File > Exit to close Installation Manager.

68 Developing WebSphere applications

Uninstalling the Application Client using the GUI
Use the Installation Manager GUI to uninstall the Application Client.

Procedure
1. Uninstall the Application Client.

a. Stop all servers and applications on the Application Client installation that contains the product.

b. Start Installation Manager.

c. Click Uninstall.

d. In the Uninstall Packages window, perform the following actions.

1) Select Application Client for IBM WebSphere Application Server and the appropriate
version.

Note: If you are uninstalling the ILAN version of this product, select Application Client for
IBM WebSphere Application Server (ILAN).

2) Click Next.

e. Review the summary information.

f. Click Uninstall.

v If the uninstallation is successful, the program displays a message that indicates success.

v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.

h. Click File > Exit to close Installation Manager.

2. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.

Read the IBM Installation Manager Version 1.5 Information Center for information about performing this
procedure.

Uninstalling the Application Client using response files
You can uninstall the Application Client using Installation Manager response files.

Before you begin

Optional: Perform or record the installation of Installation Manager and installation of the Application
Client to a temporary installation registry on one of your systems so that you can use this
temporary registry to record the uninstallation without using the standard registry where
Installation Manager is installed.

Read “Installing the Application Client using response files” on page 55 for more information:

About this task

Using Installation Manager, you can work with response files to uninstall the Application Client in a variety
of ways. You can record a response file using the GUI as described in the following procedure, or you can
generate a new response file by hand or by taking an example and modifying it.

Procedure
1. Stop all servers and applications on the Application Client installation that contains the product.

2. Optional: Record a response file to uninstall the Application Client: On one of your systems,
perform the following actions to record a response file that will uninstall the Application Client:

Chapter 5. Developing Client applications 69

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

a. From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

b. Start Installation Manager from the command line using the -record option.

For example:

v Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\uninstall_response_file.xml

v Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/uninstall_response_file.xml

v Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/uninstall_response_file.xml

Tip: If you choose to use the -skipInstall parameter with a temporary installation registry created
as described in Before you begin, Installation Manager uses the temporary installation registry
while recording the response file. It is important to note that when the -skipInstall parameter is
specified, no packages are installed or uninstalled. All of the actions that you perform in
Installation Manager simply update the installation data that is stored in the specified
temporary registry. After the response file is generated, it can be used to uninstall the
Application Client, removing the Application Client files and updating the standard installation
registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that
location for future recording sessions.

For more information, read the IBM Installation Manager Version 1.5 Information Center.

c. Click Uninstall.

d. In the Uninstall Packages window, perform the following actions.

1) Select Application Client for IBM WebSphere Application Server and the appropriate
version.

Note: If you are uninstalling the ILAN version of this product, select Application Client for
IBM WebSphere Application Server (ILAN).

2) Click Next.

e. Review the summary information.

f. Click Uninstall.

v If the uninstallation is successful, the program displays a message that indicates success.

v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.

h. Click File > Exit to close Installation Manager.

3. Use the response file to uninstall the Application Client: From a command line on each of the
systems from which you want to uninstall the Application Client, change to the eclipse/tools
subdirectory in the directory where you installed Installation Manager and use the response file that
you created to uninstall the Application Client.

For example:

v Administrator or non-administrator:
imcl.exe
input C:\temp\uninstall_response_file.xml
-log C:\temp\uninstall_log.xml

v Administrator:
./imcl
input /var/temp/uninstall_response_file.xml
-log /var/temp/uninstall_log.xml

70 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

v Non-administrator:
./imcl
input user_home/var/temp/uninstall_response_file.xml
-log user_home/var/temp/uninstall_log.xml

Go to the IBM Installation Manager Version 1.5 Information Center for more information.

4. Optional: List all installed packages to verify the uninstallation.

./imcl listInstalledPackages

imcl listInstalledPackages

5. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.

Read the IBM Installation Manager Version 1.5 Information Center for information about using the
uninstall script to perform this procedure.

Example

The following is an example of a response file for uninstalling the Application Client:
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<uninstall modify=’false’>
<offering id=’com.ibm.websphere.APPCLIENT.v85’
profile=’Application Client for IBM WebSphere Application Server V8.5’
features=’javaee.thinclient.core.feature,javaruntime,developerkit,samples,standalonethinclient.resourceadapter.runtime,embeddablecontainer’/>

</uninstall>
<profile id=’Application Client for IBM WebSphere Application Server V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\AppClient’>

<data key=’eclipseLocation’ value=’C:\Program Files\IBM\WebSphere\AppClient’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’user.select.64bit.image,com.ibm.websphere.APPCLIENT.v85’ value=’false’/>
<data key=’user.appclient.serverHostname’ value=’localhost’/>
<data key=’user.appclient.serverPort’ value=’2809’/>
<data key=’cic.selector.nl’ value=’en’/>
</profile>
</agent-input>

Tip: See Sample response file: Uninstalling the Application Client for IBM WebSphere Application Server
for an annotated sample of a response file for performing this procedure.

Uninstalling the Application Client using the command line
You can uninstall the Application Client using the Installation Manager command line.

Procedure
1. Log on to your system.

2. Stop all servers and applications on the Application Client installation.

3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.

4. Use the imcl command to uninstall the offering.

imcl.exe uninstall com.ibm.websphere.APPCLIENT.v85,optional_feature_ID
-installationDirectory installation_directory

./imcl uninstall com.ibm.websphere.APPCLIENT.v85,optional_feature_ID
-installationDirectory installation_directory

You can remove a list of features that are separated by commas. If a list of features is not specified,
the entire product is uninstalled. In the following list, the optional feature IDs are enclosed in
parentheses:

Chapter 5. Developing Client applications 71

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

v IBM Developer Kit, Java 2 Technology Edition

– Java 2 Runtime Environment (javaruntime)

– Developer Kit (developerkit)

v Samples (samples)

v Standalone Thin Clients, Resource Adapters, and Embeddable Containers

– Standalone Thin Clients Runtime (standalonethinclient.resourceadapter.runtime)

– Standalone Thin Clients Samples (standalonethinclient.resourceadapter.samples)

– Embeddable EJB Container (embeddablecontainer)

Go to the IBM Installation Manager Version 1.5 Information Center for more information.

Developing stand-alone thin client applications
Develop the application code, then assemble the code into a client application that you can deploy on a
client machine.

Procedure
v Get server objects and resources.

A stand-alone client application can get suitable server objects and resources (like connection factories,
JMS queues, and data sources) programmatically without using JNDI. Alternatively, a client application
can use full JNDI support provided by the Thin Client for EJB.

v Compile stand-alone thin client applications. To compile your client application, include the JAR files
needed in the CLASSPATH setting for the javac command; for example, any extra JAR files for the
client application's own classes, JAR files for IBM Thin clients used, and JAR files for JDBC provider
classes.

For the stand-alone thin clients, the following JAR files are provided in the /runtimes/ directory of either
an Application Client installation or Application Server installation:

Table 2. JAR files for stand-alone thin clients. The product provides JAR files for stand-alone thin clients
descriptions.
JAR file Description

com.ibm.jaxws.thinclient_8.5.0.jar IBM Thin Client for Java API for XML-based Web Services (JAX-WS). This file enables a Java
SE client application to use the JAX-WS programming model to invoke web services that are
hosted by the application server. You must use the endorsed APIs JAR file when starting Java
because the Thin Client for JAX-WS requires APIs that are more current than what is available in
JDKs to support JAX-WS 2.2 and JAXB 2.2 implementations.

com.ibm.ws.ejb.thinclient_8.5.0.jar Thin Client for Enterprise Java Beans (EJB) . This file enables a Java SE client application to
access remote Enterprise Java Beans on a server through Java Naming and Directory Interface
(JNDI) look up. If this file is running with a non-IBM product JRE on a non-IBM product platform,
the IBM ORB implementation library, com.ibm.ws.orb_8.5.0.jar, is also needed.

com.ibm.ws.jpa.thinclient_8.5.0.jar IBM Thin Client for Java Persistence API (JPA). This file allows a Java SE client application to
use the Java Persistence API (JPA) to store and retrieve persistent data without the use of an
application server.

com.ibm.ws.messagingClient.jar With the com.ibm.ws.ejb.thinclient_8.5.0.jar file, this file enables a Java SE client application to
use WebSphere MQ messaging provider JMS resources from the WebSphere Application Server
JNDI namespace. WebSphere MQ client jar files are also needed, and must be obtained from
the WebSphere MQ product.

com.ibm.ws.orb_8.5.0.jar The IBM ORB implementation library. This file is needed if the IBM Thin Client for EJB is running
with a non-IBM product JRE on a non-IBM product platform.

com.ibm.ws.sib.client.thin.jms_8.5.0.jar IBM Thin Client for Java Messaging Service (JMS). This file enables a Java SE client application
to use JMS resources of the default messaging provider. For languages other than US English,
you also need the additional language files from sibc.nls.zip, which provides language-specific
resource bundles.

com.ibm.ws.sib.client_ExpeditorDRE_8.5.0.jar The JMS Client packaged for Lotus® Expeditor.

com.ibm.ws.webservices.thinclient_8.5.0.jar IBM Thin Client for Java API for XML-based RPC (JAX-RPC). This file enable a Java SE client
application to use the JAX-RPC programming model to invoke web services that are hosted by
the application server.

72 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

If you are running two or more of these stand-alone thin clients together, you must obtain all the clients
that you are using from the same installation of Application Client for WebSphere Application Server, the
same installation of the WebSphere Application Server product, or the same service refresh.

What to do next

After developing and compiling a stand-alone thin client application, you can deploy and run the client
application.

Using JMS resources
If you are using JMS resources with the Thin Client for JMS with WebSphere Application Server, you can
choose either to obtain these resources programmatically or using the Java Naming and Directory
Interface (JNDI). Stand-alone Java SE JMS thin client applications that connect to an external WebSphere
MQ queue manager can get administratively-created WebSphere MQ messaging provider JMS resources
from the WebSphere Application Server Java Naming and Directory Interface (JNDI) namespace.

About this task

If you are using the Thin Client for JMS with WebSphere Application Server, you can obtain suitable JMS
connection factories and references to JMS queues or topics programmatically without using JNDI.
Alternatively, full JNDI support might be obtained from the Thin Client for EJB with WebSphere Application
Server. For further information, refer to the Using JMS resources with the Thin Client for JMS with
WebSphere Application Server topic.

If you are using a stand-alone Java SE JMS thin client application that connects to an external
WebSphere MQ queue manager and want to obtain administratively-created WebSphere MQ messaging
provider JMS resources from the WebSphere Application Server JNDI namespace, refer to the Obtaining
WebSphere MQ JMS resources in the thin client environment topic.

Developing a Java EE client application
This topic provides the steps that are required to develop code for a Java Platform, Enterprise Edition
(Java EE) client application.

About this task

Procedure
1. Write the client application program. Write the Java EE client application on any development machine.

At this stage, you do not require access to the WebSphere Application Server.

2. Assemble the client application JAR file using an assembly tool.

The JNDI namespace knows what to return on a lookup because of the information assembled by the
assembly tool.

Assemble the client application on any development machine with the assembly tool installed.

When you assemble your client application, provide the required information to initialize the runtime
environment for your client application. For information about how to provide the required information,
see the documentation for the assembly tool.

When you configure resources for use by your client application, consider the following items:
v Resource environment references are different than resource references. Resource environment

references enables your client application to use a logical name to look up a resource bound into
the server JNDI namespace. A resource reference enables your application to use a logical name to
look up a local Java EE resource. The Java EE specification does not specify a particular
implementation of a resource. The following table contains supported resource types and identifies
the resources to which the WebSphere Application Server provides a client implementation.

Chapter 5. Developing Client applications 73

Table 3. Supported resource types and resource identifiers. Supported resource types

Resource Type Client Configuration Notes® Client implementation
provided by WebSphere
Application Server

javax.sql.DataSource Supports specification of any
data source implementation
class

No

java.net.URL Supports specification of
custom protocol handlers

Provided by Java Runtime
Environment files

javax.mail.Session Supports custom protocol
configuration

Yes - POP3/POP3S,
SMTP/SMTPS, IMAP/IMAPS

javax.jms.QueueConnectionFactory,
javax.jms.TopicConnectionFactory, javax.jms.Queue,
javax.jms.Topic

Supports configuration of
WebSphere embedded
messaging, IBM MQ Series
and other JMS providers

Yes - WebSphere embedded
messaging

3. Assemble the Enterprise Archive (EAR) file.

The application is contained in an enterprise archive (EAR file). The EAR file is composed of:
v Enterprise bean, application client, and user-defined modules or JAR files
v Web applications or WAR files
v Metadata describing the applications or application XML files

What to do next

After developing the Java EE client application code, deploy the application onto the client machines
where the client application is to run.

Java EE client application class loading
When you run your Java Platform, Enterprise Edition (Java EE) application client, a hierarchy of class
loaders is created to load classes used by your application.

The following list describes the hierarchy of class loaders:
v The Application Client for WebSphere Application Server (Application Client) run time sets this value to

the WAS_LOGGING environment variable.
v The extensions class loader is a child to the bootstrap class loader. This class loader contains JAR files

in the java/jre/lib/ext directory or those JAR files defined by the -Djava.ext.dirs parameter on the
Java command. The Application Client client run time does not set -Djava.ext.dirs parameters. So it
uses the JAR files in the java/jre/lib/ext directory.

v The system class loader contains JAR files and classes that are defined by the -classpath parameter
on the Java command. The Application Client run time sets this parameter to the WAS_CLASSPATH
environment variable.

v The WebSphere class loader loads the Application Client run time and any classes placed in the
Application Client user directories. The directories used by this class loader are defined by the
WAS_EXT_DIRS environment variable. The WAS_BOOTCLASSPATH, WAS_CLASSPATH, and the WAS_EXT_DIRS
environment variables are set in the app_server_root/bin/setupCmdLine script for WebSphere
Application Server installations, or in the app_server_root/bin/setupClient script for client installations.

As the Java EE application client run time initializes, additional class loaders are created as children of the
WebSphere class loader. If your client application uses resources such as Java DataBase Connectivity
(JDBC) API, Java Message Service (JMS) API, or Uniform Resource Locator (URL), a different class
loader is created to load each of those resources. Finally, the Application Client run time sets the
WebSphere class loader to load classes within the EAR file by processing the client JAR manifest
repeatedly. The system class path, defined by the CLASSPATH environment variable is never used and is
not part of the hierarchy of class loaders.

74 Developing WebSphere applications

To package your client application correctly, you must understand which class loader loads your classes.
When the Java code loads a class, the class loader used to load that class is assigned to it. Any classes
subsequently loaded by that class will use that class loader or any of its parents, but it will not use children
class loaders.

In some cases the Application Client run time can detect when your client application class is loaded by a
different class loader from the one created for it by the Application Client run time. When this detection
occurs, you see the following message:
WSCL0205W: The incorrect class loader was used to load [0]

This message occurs when your client application class is loaded by one of the parent class loaders in the
hierarchy. This situation is typically caused by having the same classes in the EAR file and on the hard
drive. If one of the parent class loaders locates a class, that class loader loads it before the Application
Client run time class loader. In some cases, your client application still functions correctly. In most cases,
however, you receive “class not found” exceptions.

Configuring the classpath fields

When packaging your Java EE client application, you must configure various class path fields. Ideally, you
should package everything required by your application into your EAR file. This is the easiest way to
distribute your Java EE client application to your clients. However, you should not package such resources
as JDBC APIs, JMS APIs, or URLs. In the case of these resources, use class path references to access
those classes on the hard drive. You might also have other classes installed on your client machines that
you do not need to redistribute. In this case, you also want to use classpath references to access the
classes on the hard drive, as described later in this topic.

Referencing classes within the EAR file

WebSphere product Java EE applications do not use the system class path. Use the MANIFEST Class
path entry to refer to other JAR files within the EAR file. Configure these values using an assembly tool.
For example, if your client application needs to access the path of the EJB JAR file, add the deployed
enterprise bean module name to your application client class path. The format of the Class path field for
each of the different modules (Application Client, EJB, Web) is the same:
v The values must refer to JAR and class files that are contained within the EAR file.
v The values must be relative to the root of the EAR file.
v The values cannot refer to absolute paths in the file systems.
v Multiple values must be separated by spaces, not colons or semicolons.

Attention: This is the Java method for allowing applications to function platform independent.

Typically, you add modules (JAR files) to the root of the EAR file. In this case, you only need to specify the
name of the module (JAR file) in the Class path field. If you choose to add a module with a path, you need
to specify the path relative to the root of the EAR file.

For referencing class files, you must specify the directory relative to the root of the EAR file. With an
assembly tool, you can add individual class files to the EAR file. It is recommended that these additional
class files are packaged in a JAR file. Add this JAR file to the module Class path fields. If you add class
files to the root of the EAR file, add ./ to the module Class path fields.

Consider the following example directory structure in which the file myapp.ear contains an application
client JAR file named myclient.jar and a mybeans.jar EJB module. Additional classes reside in
class1.jar and utility/class2.zip files. A class file named xyz.class is not packaged in a JAR file but
is in the root of the EAR file. Specify ./ mybeans.jar utility/class2.zip class1.jar as the value of the
Classpath property. The search order is: myapp.ear/myclient.jar myapp.ear/xyz.class
myapp.ear/mybeans.jar myapp.ear/utility/class2.zip myapp.ear/class1.jar

Chapter 5. Developing Client applications 75

Referencing classes that are not in the EAR file

Use the launchClient -CCclasspath parameter. This parameter is specified at run time and takes
platform-specific class path values, which means multiple values are separated by semi-colons or colons.
The client and the server are similar in this respect.

Resource class paths

When you configure resources used by your client application using the Application Client Resource
Configuration Tool, you can specify class paths that are required by the resource. For example, if your
application is using a JDBC to a DB2® database, add db2java.zip to the class path field of the database
provider. These class path values are platform-specific and require semi-colons or colons to separate
multiple values.

On WebSphere Application Server for i5/OS®, if you use the IBM Developer Kit for Java JDBC provider to
access DB2/400, you do not have to add the db2_classes.jar file to the class path. However, if you use
the IBM Toolbox for Java JDBC provider, specify the location of the jt400.jar file.

Using the launchClient API

If you use the launchClient command, the WebSphere class loader hierarchy is created for you. However,
if you use the launchClient API, you must perform this setup yourself. Copy the launchClient shell
command in defining the Java system properties.

Assembling Java EE client applications
Application client projects contain programs that run on networked client systems. An application client
project is deployed as a Java archive (JAR) file.

About this task

Assemble a client module to contain client application code. Group enterprise beans, web components,
and resource adapter code in separate modules.

Use an assembly tool to assemble an application client module in any of the following ways:
v Import an existing application client JAR file.
v Create a new application client module.

Procedure
1. Start an assembly tool.

2. If you have not done so already, configure the assembly tool for work on Java Platform, Enterprise
Edition (Java EE) modules. Ensure that Java EE capability is enabled.

3. Migrate application client JAR files created with the Assembly Toolkit, Application Assembly Tool (AAT)
or a different tool to an assembly tool. To migrate files, import your application client JAR files to the
assembly tool.

4. Create a new client application.

5. Verify the contents of the new client application in either of the following ways:

v In the Project Explorer view, expand Application Client Projects and view the new module.

v Click Window > Show View > Navigator to see the associated files for the application client
module in a Navigator view.

What to do next

After you finish assembling all of your application's modules, you are ready to deploy your application.

76 Developing WebSphere applications

Developing a Java thin client application
Develop the application code, then assemble the code into a client application that you can deploy on a
client machine.

About this task

To develop a Java thin client application, you developing the application code, generate the client bindings
needed for the enterprise bean and CORBA objects, and package these pieces together to install on the
client machine.

With the Java thin client, the client application must code explicitly the fully-qualified location for each
resource that it uses. For example, a Java thin client application that looks up an enterprise bean Home
contains the following code:
java.lang.Object ejbHome =

initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

The Java thin client application must know the fully-qualified physical location of the enterprise bean Home
in the namespace. If this location changes, the thin client application must also change the value placed
on the lookup() statement.

To compile a Java thin client application, include the client jars file needed by the application in the
CLASSPATH setting for the javac command.

Developing ActiveX client application code
This topic provides an outline for developing an ActiveX Windows program, such as Visual Basic,
VBScript, and Active Server Pages, to use the WebSphere ActiveX to EJB bridge to access enterprise
beans.

Before you begin

Important: This topic assumes that you are familiar with ActiveX programming and developing on the
Windows platform. For information about the programming concepts of ActiveX application
clients and the ActiveX to EJB bridge, refer to the ActiveX to Enterprise JavaBeans™ (EJB)
Bridge topic, and related topics.

Consider the information given in ActiveX to EJB bridge as good programming guidelines.

About this task

To use the ActiveX to EJB bridge to access a Java class, develop your ActiveX program to complete the
following steps:

Procedure
1. Create an instance of the XJB.JClassFactory object.

2. Create Java virtual machine (JVM) code within the ActiveX program process, by calling the XJBInit()
method of the XJB.JClassFactory object. After the ActiveX program has created an XJB.JClassFactory
object and called the XJBInit() method, the JVM code is initialized and ready for use.

3. Create a proxy object for the Java class, by using the XJB.JClassFactory FindClass() and
NewInstance() methods. The ActiveX program can use the proxy object to access the Java class,
object fields, and methods.

4. Call methods on the Java class, using the Java method invocation syntax, and access Java fields as
required.

Chapter 5. Developing Client applications 77

5. Use the helper functions to do the conversion in cases where automatic conversion is not possible.
You can convert between the following data types:
v Java Byte and Visual Basic Byte
v Visual Basic Currency types and Java 64-bit

6. Implement methods to handle any errors returned from the Java class. In Visual Basic or VBScript, use
the Err.Number and Err.Description fields to determine the actual Java error.

Example
v Viewing a System.out message

v ActiveX client application using helper methods for data type conversion

Viewing a System.out message: The ActiveX to Enterprise JavaBeans (EJB) bridge does not have a
console available to view Java System.out messages. To view these messages when running a
stand-alone client program (such as Visual Basic), redirect the output to a file.

The following example illustrates how to redirect output to a file:
launchClientXJB.bat MyProgram.exe > output.txt
v To view the System.out messages when running a Service program such as Active Server Pages,

override the Java System.out OutputStream object to FileOutputStream. For example, in VBScript:
’Redirect system.out to a file
’ Assume that oXJB is an initialized XJB.JClassFactory object
Dim clsSystem
Dim oOS
Dim oPS
Dim oArgs

’ Get the System class
Set clsSystem = oXJB.FindClass("java.lang.System")

’ Create a FileOutputStream object
’ Create a PrintStream object and assign to it our FileOutputStream

Set oArgs = oXJB.GetArgsContainer oArgs.AddObject "java.io.OutputStream", oOS
Set oPS = oXJB.NewInstance(oXJB.FindClass("java.io.PrintStream"), oArgs)

’ Set our System OutputStream to our file
clsSystem.setOut oPS

ActiveX client application using helper methods for data type conversion. Generally, data type conversion
between ActiveX (Visual Basic and VBScript) and Java methods occurs automatically, as described in
ActiveX to EJB bridge, converting data types. However, the byte helper function and currency helper
function are provided for cases where automatic conversion is not possible.
v Byte helper function

Because the Java Byte data type is signed (-127 through 128) and the Visual Basic Byte data type is
unsigned (0 through 255), convert unsigned Bytes to a Visual Basic Integers, which look like the Java
signed byte. To make this conversion, you can use the following helper function:

Private Function GetIntFromJavaByte(Byte jByte) as Integer
GetIntFromJavaByte = (CInt(jByte) + 128) Mod 256 - 128

End Function
v Currency helper function

Visual Basic 6.0 cannot properly handle 64-bit integers like Java methods can (as the Long data type).
Therefore, Visual Basic uses the Currency type, which is intrinsically a 64-bit data type. The only side
effect of using the Currency type (the Variant type VT_CY) is that a decimal point is inserted into the
type. To extract and manipulate the 64-bit Long value in Visual Basic, use code like the following
example. For more details on this technique for converting Currency data types, see Q189862,
“HOWTO: Do 64-bit Arithmetic in VBA”, on the Microsoft Knowledge Base.

78 Developing WebSphere applications

’ Currency Helper Types
Private Type MungeCurr

Value As Currency
End Type
Private Type Munge2Long

LoValue As Long
HiValue As Long

End Type

’ Currency Helper Functions
Private Function CurrToText(ByVal Value As Currency) As String

Dim Temp As String, L As Long
Temp = Format$(Value, "#.0000")
L = Len(Temp)
Temp = Left$(Temp, L - 5) & Right$(Temp, 4)
Do While Len(Temp) > 1 And Left$(Temp, 1) = "0"

Temp = Mid$(Temp, 2)
Loop
Do While Len(Temp) > 2 And Left$(Temp, 2) = "-0"

Temp = "-" & Mid$(Temp, 3)
Loop
CurrToText = Temp

End Function

Private Function TextToCurr(ByVal Value As String) As Currency
Dim L As Long, Negative As Boolean
Value = Trim$(Value)
If Left$(Value, 1) = "-" Then

Negative = True
Value = Mid$(Value, 2)

End If
L = Len(Value)
If L < 4 Then

TextToCurr = CCur(IIf(Negative, "-0.", "0.") & _
Right$("0000" & Value, 4))

Else
TextToCurr = CCur(IIf(Negative, "-", "") & _

Left$(Value, L - 4) & "." & Right$(Value, 4))
End If

End Function

’ Java Long as Currency Usage Example
Dim LC As MungeCurr
Dim L2 As Munge2Long

’ Assign a Currency Value (really a Java Long)
’ to the MungeCurr type variable
LC.Value = cyTestIn

’ Coerce the value to the Munge2Long type variable
LSet L2 = LC

’ Perform some operation on the value, now that we
’ have it available in two 32-bit chunks
L2.LoValue = L2.LoValue + 1

’ Coerce the Munge value back into a currency value
LSet LC = L2
cyTestIn = LC.Value

What to do next

After you develop the ActiveX client application code, deploy and run the ActiveX application.

Chapter 5. Developing Client applications 79

Example: Using an ActiveX client application to access a Java class or object
This reference topic provides an example of using Java proxy objects with the ActiveX to Enterprise
JavaBeans (EJB) bridge.

To use Java proxy objects with the ActiveX to Enterprise JavaBeans (EJB) bridge:

v After an ActiveX client program (Visual Basic, VBScript, or Active Server Pages (ASP)) has initialized
the XJB.JClassFactory object and thereby, the Java virtual machine (JVM), the client program can
access Java classes and initialize Java objects. To complete this action, the client program uses the
XJB.JClassFactory FindClass() and NewInstance() methods.

v In Java programming, two ways exists to access Java classes: direct invocation through the Java
compiler and through the Java Reflection interface. Because the ActiveX to Java bridge needs no
compilation and is a complete run-time interface to the Java code, the bridge depends on the latter
Reflection interface to access its classes, objects, methods and fields. The XJB.JClassFactory
FindClass() and NewInstance() methods behave very similarly to the Java Class.forName() and the
Method.invoke() and Field.invoke() methods.

v XJB.JClassFactory.FindClass() takes the fully qualified class name as its only parameter and returns a
Proxy Object (JClassProxy). You can use the returned Proxy object like a normal Java Class object and
call static methods and access static fields. You can also create a Class Instance (or object), as
described later in this section. For example, the following Visual Basic code extract returns a Proxy
object for the java.lang.Integer Java class:

...
Dim clsMyString as Object
Set clsMyString = oXJB.FindClass("java.lang.Integer")

v After the proxy is created, you can access its static information directly. For example, you can use the
following code extract to convert a decimal integer to its hexadecimal representation:

...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v The equivalent Java syntax is: static String toHexString(int i). Because ints units in Java
programming are really 32-bit (which translates to Long in Visual Basic), the CLng() function converts
the value from the default int to a long. Also, even though the toHexString() function returns a
java.lang.String, the code extract does not return an Object proxy. Instead, the returned java.lang.String
is automatically converted to a native Visual Basic string.

To create an object from a class, you use the JClassFactory.NewInstance() method. This method
creates an Object instance and takes whatever parameters your class constructor needs. Once the
object is created, you have access to all of its public instance methods and fields. For example, you can
use the following Visual Basic code extract to create an instance of the java.lang.Integer string:

...
Dim oMyInteger as Object
set oMyInteger = oXJB.NewInstance(CLng(255))

Dim strMyInteger as String
strMyInteger = oMyInteger.toString

Example: ActiveX client application calling Java methods
In the ActiveX to Enterprise Java Beans (EJB) bridge, methods are called using the native language
method invocation syntax.

The following differences between Java invocation and ActiveX Automation invocation exist:
v Unlike Java methods, ActiveX does not support method (and constructor) polymorphism; that is, you

cannot have two methods in the same class with the same name.
v Java methods are case-sensitive, but ActiveX Automation is not case-sensitive.
v To compensate for Java polymorphic behavior, give the exact parameter types to the method call. The

parameter types determine the correct method to invoke. For a listing of correct types to use, see
ActiveX to EJB bridge, converting data types.

80 Developing WebSphere applications

v For example, the following Visual Basic code fails if the CLng() method was not present or the
toHexString syntax was incorrectly typed as ToHexString:

...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v Sometimes it is difficult to force some development environments to leave the case of your method calls
unchanged. For example, in Visual Basic if you want to call a method close() (lowercase), the Visual
Basic code capitalizes it “Close()”. In Visual Basic, the only way to effectively work around this behavior
is to use the CallByName() method. For example:

o.Close(123) ’Incorrect...
CallByName(o, “close”, vbMethod, 123) ’Correct...

or in VBScript, use the Eval function:

o.Close(123) ’Incorrect...
Eval(“o.Close(123)”) ’Correct...

v The return value of a function is always converted dynamically to the correct type. However, you must
take care to use the set keyword in Visual Basic. If you expect a non-primitive data type to return, you
must use set. (If you expect a primitive data type to return, you do not need to use set.) See the
following example for more explanation:

Set oMyObject = o.getObject
iMyInt = o.getInt

v In some cases, you might not know the type of object returning from a method call, because wrapper
classes are converted automatically to primitives (for example, java.lang.Integer returns an ActiveX
Automation Long). In such cases, you might need to use your language built-in exception handling
techniques to try to coerce the returned type (for example, On Error and Err.Number in Visual Basic).

v Methods with character arguments

Because ActiveX Automation does not natively support character types supported by Java methods, the
ActiveX to EJB bridge uses strings (byte or VT_I1 do not work because characters have multiple bytes
in Java code). If you try to call a method that takes a char or java.lang.Character type you must use the
JMethodArgs argument container to pass character values to methods or constructors. For more
information about how this argument container is used, see Methods with “Object” Type as Argument
and Abstract Arguments.

v Methods with “Object” Type as Argument and Abstract Arguments

Because of the polymorphic nature of Java programming, the ActiveX to Java bridge uses direct
argument type mapping to find a method. This method works well in most cases, but sometimes
methods are declared with a Parent or Abstract class as an argument type (for example,
java.lang.Object). You need the ability to send an object of arbitrary type to a method. To acquire this
ability, you must use the XJB.JMethodArgs object to coerce your parameters to match the parameters
on your method. You can get a JMethodArgs instance by using the JClassFactory.GetArgsContainer()
method.

The JMethodArgs object is a container for method parameters or arguments. This container enables
you to add parameters to it one-by-one and then you can send the JMethodArgs object to your method
call. The JClassProxy and JObjectProxy objects recognize the JMethodArgs object and attempt to find
the correct method and let the Java language coerce your parameters appropriately.

For example, to add an element to a Hashtable object the method syntax is Object put(Object key,
Object value). In Visual Basic, the method usage looks like the following example code:

Dim oMyHashtable as Object
Set oMyHashtable = _

oXJB.NewInstance(oXJB.FindClass(“java.utility.Hashtable”))

’ This line will not work. The ActiveX to EJB bridge cannot find a method
’ called “put” that has a short and String as a parameter:
oMyHashtable.put 100, “Dogs”
oMyHashtable.put 200, “Cats”

’ You must use a XJB.JMethodArgs object instead:

Chapter 5. Developing Client applications 81

Dim oMyHashtableArgs as Object
Set oMyHashtableArgs = oXJB.GetArgsContainer
oMyHashtableArgs.AddObject(“java.lang.Object”, 100)
oMyHashtableArgs.AddObject(“java.lang.Object”, “Dogs”)

oMyHashtable.put oMyHashTableArgs
’ Reuse the same JMethodArgs object by clearing it.
oMyHashtableArgs.Clear
oMyHashtableArgs.AddObject(“java.lang.Object”, 200)
oMyHashtableArgs.AddObject(“java.lang.Object”, “Cats”)

oMyHashtable.put oMyHashTableArgs

ActiveX client programming best practices
The best way to access Java components is to use the Java language. It is recommended that you do as
much programming as possible in the Java language and use a small simple interface between your COM
Automation container (for example, Visual Basic) and the Java code. This interface avoids any overhead
and performance problems that can occur when moving across the interface.

best-practices: The following topics are covered:
v Visual Basic guidelines
v CScript and Windows Scripting Host
v Active Server Pages guidelines
v J2EE guidelines

Visual Basic guidelines

The following guidelines are intended to help optimize your use of the ActiveX to EJB bridge with Visual
Basic:
v Launch the Visual Basic replication through the launchClientXJB.bat file. If you want to run your Visual

Basic application through the Visual Basic debugger, run the Visual Basic integrated development
environment (IDE) within the ActiveX to EJB bridge environment. After you create your Visual Basic
project, you can launch it from a command line; for example, launchClientXJB MyApplication.vbp. You
can also launch the Visual Basic application alone in the ActiveX to EJB environment, by changing the
Visual Basic shortcut on the Windows Start menu so that the launchClientXJB.bat file precedes the call
to the VB6.EXE file.

v Exit the Visual Basic IDE before debugging programs.

Because the Java virtual machine (JVM) code attaches to the running process, you must exit the Visual
Basic editor before debugging your program. If you run the process, then exit your program within the
Visual Basic IDE, the JVM code continues to run and you reattach the same JVM code when XJBInit()
is called by the debugger. This causes problems if you try to update XJBInit() arguments (for example,
classpath) because the changes are not be applied until you restart the Visual Basic program.

v Store the XJB.JClassFactory object globally.

Because you cannot unload or reinitialize the JVM code, cache the resulting XJB.JClassFactory object
as a global variable. The overhead of treating this object as a global variable or passing a single
reference around is much less than recreating a new XJB.JClassFactory object and calling the XJBInit()
argument more than once.

CScript and Windows Scripting Host

The following guidelines intend to help optimize your use of the ActiveX to EJB bridge with CScript and
Windows Scripting Host (WSH):
v Launch in ActiveX to EJB environment.

Launch the VBScript files in the ActiveX to EJB bridge environment, to run VBScript files in .vbs files.
Two common ways exist to launch your script:
– launchClientXJB MyScript.vbs
– launchClientXJB cscript MyScript.vbs

82 Developing WebSphere applications

Active Server Pages guidelines

The following guidelines intend to help optimize your use of the ActiveX to EJB bridge with Active Server
Pages software:
v Use the ActiveX to EJB Helper functions from the Active Server Pages Application.

Because Active Server Pages (ASP) code typically use VBScript, you can use the included helper
functions in any VBScript environment with minor changes. For more information about these helper
functions, see Helper functions for data type conversion. To run outside of the ASP environment,
remove or change all references to the Server, Request, Response, Application and Session objects; for
example, change Server.CreateObject to CreateObject.

v Set JRE path globally in system.

The XJB.JClassFactory object must be able to find the Java run time dynamic link library (DLL) when
initializing. In Internet Information Server, you cannot specify a path for its processes independently; you
must set the process paths in the system PATH variable. You can only have a single JVM version
available on a machine using the ASP application. Also, remember that after you change the system
PATH variable you must reboot the Internet Information Server machine so that the Internet Information
Server can see the change.

v Set the system TEMP environment variable.

If the system TEMP environment variable is not set, Internet Information Server stores all temporary
files in the WINNT directory, which is usually not desired.

v Use high isolation or an isolated process.

When using the ActiveX to Java bridge with Active Server Pages software, creating your web application
in its own process is recommended. You can only load one JVM instruction in a single process and if
you want to have more than one application running with different JVM environment options (for
example, different classpaths), then you need to have separate processes.

v Use the Application Unload option.

When debugging your application, use Unload when viewing your ASP application properties in the
Internet Information Server administration console to unload the process from memory and thereby
unload the JVM code.

v Run one process per application.

Use only one ASP application per J2EE application or JVM environment, in your ASP environment. If
you need separate class paths or JVM settings, you need separate ASP applications (virtual directories
with high isolation or an isolated process).

v Store the XJB.JClassFactory object in application scope.

Because of the one-to-one relationship required between a JVM instruction and a process, and because
the JVM code can never detach or shut down from a process independently, cache the
XJB.JClassFactory object at application scope and call the XJBInit() method only once.

Because the ActiveX to EJB bridge employs a free-threaded marshaler, take advantage of the
multi-threaded nature of Internet Information Server and the ASP environment. If you choose to
reinitialize the XJB.JClassFactory object at Page scope (local variables), then the XJBInit() method can
only initialize your local XJB.JClassFactory variable. It is more efficient to use the XJBInit() method
once.

v Use VBScript conversion functions.

Because VBScript code only supports variant data types, use the CStr(), CByte(), CBool(), CCur(),
CInt(), Clng(), CSng() and CDbl() functions to tell the activeX to EJB bridge which data type you are
using; for example oMyObject.Foo(CDbl(1.234)).

J2EE guidelines

The following guidelines are intended to help optimize your use of the ActiveX to EJB bridge with the J2EE
environment;
v Store client container objects globally.

Chapter 5. Developing Client applications 83

Because you can only have one JVM instruction per process, and a single J2EE client container
(com.ibm.websphere.client.applicationclient.launchClient) per JVM instruction, initialize your J2EE client
container only once and reuse it. For ASP applications, store the J2EE client container in an application
level variable and initialize it only once (either on the Application_OnStart() event in the global.asa file
or by checking to see if it IsEmpty()).

A side effect to storing the client container object globally is that you cannot change the client container
parameters without destroying the object and creating a new one. These parameters include the EAR
file, BootstrapHost, class path, and so on. If you run a Visual Basic application and want to change the
client container parameters, you must end the application and restart it. If you run an Active Server
Pages application, you must first unload the application from Internet Information Server (see “Use the
Application Unload Button” under Active Server Pages guidelines). Then load the Active Server Pages
application with the different client container parameters. The parameters set the first time the Active
Server Pages application loads. Since the client container is stored on the Internet Information Server,
all the browser clients share the parameters using the Active Server Pages application. This behavior is
normal for Active Server Pages code, but can be confusing when you try to run to different WebSphere
Application Servers using the same Active Server Pages application, which is not supported.

v Reuse custom temporary directory for EAR file extraction.

By default, the client container launches and extracts the application .ear file to your temp directory and
then sets up the thread class loader to use the extracted EAR file directory and the JAR files included in
the client JAR manifest. This process is time consuming and because of some limitations with JVM
shutdown through Java Native Interface (JNI) and file locking, these files are never cleaned up.

Specifically, each time the client container launch() method is called, it extracts the EAR file to a random
directory name in your temporary directory on your hard drive. The current Java thread class loader is
then changed to point to this extracted directory which in turn locks the files within. In a normal J2EE
Java client, these files automatically clean up after the application exits. This cleanup occurs when the
client container shutdown hook is called (which never happens in the ActiveX to EJB bridge), which
leaves the temporary directory there.

To avoid these problems, you can specify a directory to extract the EAR file by setting the
com.ibm.websphere.client.applicationclient.archivedir Java system property before calling the client
container launch() method. If the directory does not exist or is empty, you extract the EAR file normally.
If the EAR file was previously extracted, the directory is reused. This feature is particularly important for
server processes (for example, ASP), which can stop and restart, potentially calling the launchClient()
method several times.

If you need to update your EAR file, delete the temporary directory first. The next time you create the
client container object, it extracts the new EAR file to the temporary directory. If you do not delete the
temporary directory or change the system property value to point to a different temporary directory, the
client container reuses the currently extracted EAR file, and does not use your changed EAR file.

Note: When specifying the com.ibm.websphere.client.applicationclient.archivedir property, ensure that
the directory you specify is unique for each EAR file you use. For example, do not point
MyEar1.ear and MyEar2.ear files to the same directory.

If you choose not to use this system property, go regularly to your Windows temp directory and delete
the WSTMP* subdirectories. Over a relatively short period of time, these subdirectories can waste a
significant amount of space on the hard drive.

ActiveX client programming, tips for passing arrays
Arrays are very similar between Java and Automation containers like Visual Basic and VBScript. This topic
provides some important points to consider when passing arrays back and forth between these containers.

Here are some important points to consider when passing arrays back and forth between these containers:
v Java arrays cannot mix types. All Java arrays contain a single type, so when passing arrays of variants

to a Java array, you must make sure that all of the elements in the variant array are of the same base
type. For example, in Visual Basic code:

84 Developing WebSphere applications

...
Dim VariantArray(1) as Variant
VariantArray(0) = CLng(123)
VariantArray(1) = CDbl(123.4)
oMyJavaObject.foo(VariantArray) ’ Illegal!

VariantArray(0) = CLng(123)
VariantArray(1) = CLng(1234)
oMyJavaObject.foo(VariantArray) ’ This works

v Arrays of primitive types are converted using the rules defined in primitive data type conversion.
v Arrays of Java objects are handled through arrays of JObjectProxy objects.
v Arrays of JObjectProxy objects must be fully initialized and of the correct associated Java type. When

initializing an array in Visual Basic (for example, Dim oJavaObjects(1) as Object), you must set each
object to a JObjectProxy object before you send the array to a Java object. The bridge is unable to
determine the type of null or empty object values.

v When receiving an array from a Java method, the lower-bound is always zero. Java methods only
support zero-based arrays.

v Nested or multidimensional arrays are treated as zero-based multidimensional arrays in Visual Basic
and VBScript containers.

v Uninitialized arrays or Array Types are unsupported. When calling a Java method that takes an array of
objects as a parameter, you must fully initialize the array of JObjectProxy objects.

ActiveX client programming, Java field programming tips
Using the ActiveX to Enterprise JavaBeans (EJB) bridge to access Java fields has the same case
sensitivity issue that it has when invoking methods. Field names must use the same case as the Java field
syntax.

Visual Basic code has the same problem with unsolicited case changing on fields as it does with methods.
(For more information about this problem, see ActiveX to EJB bridge, calling Java methods). You might
use the CallByName() function to set a field in the same way that you call a method in some cases. For
fields, use VBLet for primitive types and VBSet for objects. For example:

o.MyField = 123 ’Incorrect...
CallByName(o, “MyField”, vbLet, 123) ’Correct...

or in VBScript:

o.MyField = 123 ’Incorrect...
Eval(“o.myField = 123”) ’Correct...

ActiveX client programming, JClassProxy and JObjectProxy classes
The majority of tasks for accessing your Java classes and objects are handled with the JClassProxy and
JObjectProxy objects. This topic provides reference information about the object classes of the ActiveX to
Enterprise Java Beans (EJB) bridge.

JClassFactory is the object used to access the majority of Java Virtual Machine (JVM) features. This
object handles JVM initialization, accesses classes and creates class instances (objects). Use the
JClassProxy and JObjectProxy objects to access the majority of your Java classes and objects:
v XJBInit(String astrJavaParameterArray())

Initializes the JVM environment using an array of strings that represent the command line parameters
you normally send to the java.exe file.

If you have invalid parameters in the XJBInit() string array, the following error is displayed:
Error: 0x6002 “XJBJNI::Init() Failed to create VM” when calling XJBInit()

If you have C++ logging enabled, the activity log displays the invalid parameter.
v JClassProxy FindClass(String strClassName)

Uses the current thread class loader to load the specified fully qualified class name and returns a
JClassProxy object representing the Java Class object.

Chapter 5. Developing Client applications 85

v JObjectProxy NewInstance()

Creates a Class instance for the specified JClassProxy object using the parameters supplied to call the
Class constructor. For more information about using the JMethodArgs method, see ActiveX to EJB
bridge, calling Java methods.

JObjectProxy NewInstance(JClassFactory obj, Variant vArg1, Variant vArg2, Variant vArg3, ...)
JObjectProxy NewInstance(JClassFactory obj, JMethodArgs args)
v JMethodArgs GetArgsContainer()

Returns a JMethodArgs object (Class instance).

You can create a JClassProxy object from the JClassFactory.FindClass() method and from any Java
method call that normally return a Java Class object. You can use this object as if you had direct access
to the Java Class object. All of the class static methods and fields are accessible as are the
java.lang.Class methods. In case of a clash between static method names of the reflected user class
and those of the java.lang.Class (for example, getName()), the reflected static methods would execute
first.

For example, the following is a static method called getName(). The java.lang.Class object also has a
method called getName():
– In Java:

class foo{
foo(){};
public static String getName(){return “abcdef”;}
public static String getName2(){return “ghijkl”;}
public String toString2(){return “xyz”;}
}

– In Visual Basic:
...
Dim clsFoo as Object
set clsFoo = oXJB.FindClass(“foo”)
clsFoo.getName() ’ Returns “abcdef” from the static foo class
clsFoo.getName2() ’ Returns “ghijkl” from the static foo class
clsFoo.toString() ’ Returns “class foo” from the java.lang.Class object.
oFoo = oXJB.NewInstance(clsFoo)
oFoo.toString() ’ Returns some text from the java.lang.Object’s

’ toString() method which foo inherits from.
oFoo.toString2() ’ Returns “xyz” from the foo class instance

You can create a JObjectProxy object from the JClassFactory.NewInstance() method, and can be
created from any Java method call that normally returns a Class instance object. You can use this
object as if you had direct access to the Java object and can access all the static methods and fields
of the object. All of object instance methods and fields are accessible (including those accessible
through inheritance).

The JMethodArgs object is created from the JClassFactory.GetArgsContainer() method. Use this
object as a container for method and constructor arguments. You must use this object when
overriding the object type when calling a method (for example, when sending a java.lang.String
JProxyObject type to a constructor that normally takes a java.lang.Object type).

You can use two groups of methods to add arguments to the collection: Add and Set. You can use
Add to add arguments in the order that they are declared. Alternatively, you can use Set to set an
argument based on its position in the argument list (where the first argument is in position 1).

For example, if you had a Java Object Foo that took a constructor of Foo (int, String, Object), you
could use a JMethodArgs object as shown in the following code extract:
...
Dim oArgs as Object
set oArgs = oXJB.GetArgsContainer()

oArgs.AddInt(CLng(12345))
oArgs.AddString(“Apples”)
oArgs.AddObject(“java.lang.Object”, oSomeJObjectProxy)

Dim clsFoo as Object

86 Developing WebSphere applications

Dim oFoo as Object
set clsFoo = oXJB.FindClass(“com.mypackage.foo”)
set oFoo = oXJB.NewInstance(clsFoo, oArgs)

’ To reuse the oArgs object, just clear it and use the add method
’ again, or alternatively, use the Set method to reset the parameters
’ Here, we will use Set
oArgs.SetInt(1, CLng(22222))
oArgs.SetString(2, “Bananas”)
oArgs.SetObject(3, “java.lang.Object”, oSomeOtherJObjectProxy)

Dim oFoo2 as Object
set oFoo2 = oXJB.NewInstance(clsFoo, oArgs)

v AddObject (String strObjectTypeName, Object oArg)

Adds an arbitrary object to the argument container in the next available position, casting the object to
the class name specified in the first parameter. Arrays are specified using the traditional [] syntax; for
example:

AddObject(“java.lang.Object[][]”, oMy2DArrayOfFooObjects)

or

AddObject(“int[]”, oMyArrayOfInts)
v AddByte (Byte byteArg)

Adds a primitive byte value to the argument container in the next available position.
v AddBoolean (Boolean bArg)

Adds a primitive boolean value to the argument container in the next available position.
v AddShort (Integer iArg)

Adds a primitive short value to the argument container in the next available position.
v AddInt (Long lArg)

Adds a primitive int value to the argument container in the next available position.
v AddLong (Currency cyArg)

Adds a primitive long value to the argument container in the next available position.
v AddFloat (Single fArg)

Adds a primitive float value to the argument container in the next available position.
v AddDouble (Double dArg)

Adds a primitive double value to the argument container in the next available position.
v AddChar (String strArg)

Adds a primitive char value to the argument container in the next available position.
v AddString (String strArg)

Adds the argument in string form to the argument container in the next available position.
v SetObject (Integer iArgPosition, String strObjectTypeName, Object oArg)

Adds an arbitrary object to the argument container in the specified position casting it to the class name
or primitive type name specified in the second parameter. Arrays are specified using the traditional []
syntax; for example:
SetObject(1, “java.lang.Object[][]”, oMy2DArrayOfFooObjects)

or
SetObject(2, “int[]”, MyArrayOfInts)

v SetByte (Integer iArgPosition, Byte byteArg)

Sets a primitive byte value to the argument container in the position specified.
v SetBoolean (Integer iArgPosition, Boolean bArg)

Sets a primitive boolean value to the argument container in the position specified.
v SetShort (Integer iArgPosition, Integer iArg)

Sets a primitive short value to the argument container in the position specified.
v SetInt (Integer iArgPosition, Long lArg)

Chapter 5. Developing Client applications 87

Sets a primitive int value to the argument container in the position specified.
v SetLong (Integer iArgPosition, Currency cyArg)

Sets a primitive long value to the argument container in the position specified.
v SetFloat (Integer iArgPosition, Single fArg)

Sets a primitive float value to the argument container in the position specified.
v SetDouble (Integer iArgPosition, Double dArg)

Sets a primitive double value to the argument container in the position specified.
v SetChar (Integer iArgPosition, String strArg)

Sets a primitive char value to the argument container in the position specified.
v SetString (Integer iArgPosition, String strArg)

Sets a java.lang.String value to the argument container in the position specified.
v Object Item(Integer iArgPosition)

Returns the value of an argument at a specific argument position.
v Clear()

Removes all arguments from the container and resets the next available position to one.
v Long Count()

Returns the number of arguments in the container.

ActiveX client programming, Java virtual machine initialization tips
Initialize the Java virtual machine (JVM) code with the ActiveX to Enterprise Java Beans (EJB) bridge. For
an ActiveX client program (Visual Basic, VBScript, or ASP) to access Java classes or objects, the first step
that the program must do is to create Java virtual machine (JVM) code within its process.

To create JVM code, the ActiveX program calls the XJBInit() method of the XJB.JClassFactory object.
When an XJB.JClassFactory object is created and the XJBInit() method called, the JVM is initialized and
ready to use.
v To enable the XJB.JClassFactory to find the Java run-time description definition language (DLL) when

initializing, the Java Runtime Environment (JRE) bin and bin\classic directories must exist in the
system path environment variable.

v The XJBInit() method accepts only one parameter: an array of strings. Each string in the array
represents a command line argument that for a Java program you would normally specify on the
Java.exe command line. This string interface is used to set the class path, stack size, heap size and
debug settings. You can get a listing of these parameters by typing java -? from the command line.

v If you set a parameter incorrectly, you receive a 0x6002 “Failed to initialize VM” error message.
v Due to the current limitations of Java Native Interface (JNI), you cannot unload or reinitialize the JVM

code after it has loaded. Therefore, after the XJBInit() method has been called once, subsequent calls
have no effect other than to create a duplicate JClassFactory object for you to access. It is best to store
your XJB.JClassFactory object globally and continue to reuse that object.

v The following Visual Basic extract shows an example of initializing JVM code:

Dim oXJB as Object
set oXJB = CreateObject(“XJB.JClassFactory”)
Dim astrJavaInitProps(0) as String
astrJavaInitProps(0) = _

“-Djava.class.path=.;c:\myjavaclasses;c:\myjars\myjar.jar”
oXJB.XJBInit(astrJavaInitProps)

ActiveX to Java primitive data type conversion values
All primitive Java data types are automatically converted to native ActiveX Automation types. However, not
all Automation data types are converted to Java types (for example, VT_DATE). Variant data types are
used for data conversion.

Variant data types are a requirement of any Automation interface, and are used automatically by Visual
Basic and VBScript. The following tables provide details about how primitive data types are converted
between Automation types and Java types.

88 Developing WebSphere applications

Table 4. ActiveX to Java primitive data type conversion. Conversion details for primitive data types

Visual Basic Type Variant Type Java Type Notes

Byte VT_I1 byte Byte in Visual Basic is
unsigned, but is signed in
Java data type.

Boolean VT_BOOL boolean

Integer VT_I2 short

Long VT_I4 int

Currency VT_CY long

Single VT_R4 float

Double VT_R8 double

String VT_BSTR java.lang.String

String VT_BSTR char

Date VT_DATE n/a

Example: ActiveX client application using helper methods for data type conversion:

Generally, data type conversion between ActiveX (Visual Basic and VBScript) and Java methods occurs
automatically, as described in ActiveX to EJB bridge, converting data types. However, the byte helper
function and currency helper function are provided for cases where automatic conversion is not possible:
v Byte helper function

Because the Java Byte data type is signed (-127 through 128) and the Visual Basic Byte data type is
unsigned (0 through 255), convert unsigned Bytes to a Visual Basic Integers, which look like the Java
signed byte. To make this conversion, you can use the following helper function:

Private Function GetIntFromJavaByte(Byte jByte) as Integer
GetIntFromJavaByte = (CInt(jByte) + 128) Mod 256 - 128

End Function
v Currency helper function

Visual Basic 6.0 cannot properly handle 64-bit integers like Java methods can (as the Long data type).
Therefore, Visual Basic uses the Currency type, which is intrinsically a 64-bit data type. The only side
effect of using the Currency type (the Variant type VT_CY) is that a decimal point is inserted into the
type. To extract and manipulate the 64-bit Long value in Visual Basic, use code like the following
example. For more details on this technique for converting Currency data types, see “Q189862,
HOWTO: Do 64-bit Arithmetic in VBA”, on the Microsoft Knowledge Base.

’ Currency Helper Types
Private Type MungeCurr

Value As Currency
End Type
Private Type Munge2Long

LoValue As Long
HiValue As Long

End Type

’ Currency Helper Functions
Private Function CurrToText(ByVal Value As Currency) As String

Dim Temp As String, L As Long
Temp = Format$(Value, "#.0000")
L = Len(Temp)
Temp = Left$(Temp, L - 5) & Right$(Temp, 4)
Do While Len(Temp) > 1 And Left$(Temp, 1) = "0"

Temp = Mid$(Temp, 2)
Loop
Do While Len(Temp) > 2 And Left$(Temp, 2) = "-0"

Chapter 5. Developing Client applications 89

Temp = "-" & Mid$(Temp, 3)
Loop
CurrToText = Temp

End Function

Private Function TextToCurr(ByVal Value As String) As Currency
Dim L As Long, Negative As Boolean
Value = Trim$(Value)
If Left$(Value, 1) = "-" Then

Negative = True
Value = Mid$(Value, 2)

End If
L = Len(Value)
If L < 4 Then

TextToCurr = CCur(IIf(Negative, "-0.", "0.") & _
Right$("0000" & Value, 4))

Else
TextToCurr = CCur(IIf(Negative, "-", "") & _

Left$(Value, L - 4) & "." & Right$(Value, 4))
End If

End Function

’ Java Long as Currency Usage Example
Dim LC As MungeCurr
Dim L2 As Munge2Long

’ Assign a Currency Value (really a Java Long)
’ to the MungeCurr type variable
LC.Value = cyTestIn

’ Coerce the value to the Munge2Long type variable
LSet L2 = LC

’ Perform some operation on the value, now that we
’ have it available in two 32-bit chunks
L2.LoValue = L2.LoValue + 1

’ Coerce the Munge value back into a currency value
LSet LC = L2
cyTestIn = LC.Value

ActiveX client programming, handling error codes
All exceptions thrown in Java code are encapsulated and thrown again as a COM error through the
ISupportErrorInfo interface and the EXCEPINFO structure of IDispatch::Invoke(), the Err object in Visual
Basic and VBScript. Because there are no error numbers associated with Java exceptions, whenever a
Java exception is thrown, the entire stack trace is stored in the error description text and the error number
assigned is 0x6003.

In Visual Basic or VBScript, you need to use the Err.Number and Err.Description fields to determine the
actual Java error. Non-Java errors are thrown as you would expect via the IDispatch interface; for
example, if a method cannot be found, then error 438 “Object doesn't support this property or method” is
thrown.

Table 5. Error numbers and descriptions.. Error numbers and descriptions in VBScript

Error number Description

0x6001 Java Native Interface (JNI) error

0x6002 Initialization error

0x6003 Java exception. Error description is the Java Stack Trace.

0x6FFF General Internal Failure

90 Developing WebSphere applications

ActiveX client programming, threading tips
The ActiveX to Enterprise JavaBeans (EJB) bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid environment such as Active
Server Pages (ASP). Each thread created in the ActiveX process is mirrored in the Java environment
when the thread communicates through the ActiveX to EJB bridge.

When all references to Java objects (there are no JObjectProxy or JClassProxy objects) are loaded in an
ActiveX thread, the ActiveX to EJB bridge detaches the thread from the Java virtual machine (JVM) code.
Therefore, you must be careful that any Java code that you access from a multithreaded Windows
application is thread safe. Visual Basic code and VBScript applications are both essentially single
threaded. Therefore, Visual Basic and VBScript applications do not have threading issues in the Java
programs they access. Active Server Pages and multithreaded C and C++ programs can have issues.

Consider the following scenario:
1. A multithreaded Windows Automation Container (our ActiveX Process) starts. It exists on Thread A.
2. The ActiveX Process initializes the ActiveX to EJB bridge, which starts the JVM code. The JVM

attaches to the same thread and internally calls it Thread 1.
3. The ActiveX Process starts two threads: B and C.
4. Thread B in the ActiveX Process uses the ActiveX to EJB bridge to access an object that was created

in Thread A. The JVM attaches to thread B and calls it Thread 2.
5. Thread C in the ActiveX Process never talks to the JVM code, so the JVM never needs to attach to it.

This is a case where the JVM code does not have a one-to-one relationship between ActiveX threads
and Java threads.

6. Thread B later releases all of the JObjectProxy and JClassProxy objects that it used. The Java Thread
2 is detached.

7. Thread B again uses the ActiveX to EJB bridge to access an object that was created in Thread A. The
JVM code attaches again to the thread and calls it Thread 3.

Table 6. Thread scenario.. Thread scenario

ActiveX process JVM access by ActiveX process

Thread A - Created in 1 Thread 1 - Attached in 2

Thread B - Created in 4 Thread 2 - Attached in 4, detached in 6 Thread 3 -
Attached in 7

Thread C - Created in 4

Threads and Active Server Pages

Active Server Pages (ASP) in Microsoft Internet Information Server is a multithreaded environment. When
you create the XJB.JClassFactory object, you can store it in the Application collection as an
Application-global object. All threads within your ASP environment can now access the same ActiveX to
EJB bridge object. Active Server Pages by default creates 10 Apartment Threads per ASP process per
CPU. This means that when your ActiveX to EJB bridge object is initialized any of the 10 threads can call
this object, not just the thread that created it.

If you need to simulate single-apartment behavior, you can create a Single-Apartment Threaded ActiveX
dynamic link library (DLL) in Visual Basic code and encapsulate the ActiveX to the EJB bridge object. This
encapsulation guarantees that all access to the JVM object is on the same thread. You need to use the
<OBJECT> tag to assign the XJB.JClassFactory to an Application object and must be aware of the
consequences of introducing single-threaded behavior to a web application.

The Microsoft KnowlegeBase has several articles about ASP and threads, including:
v Q243543 INFO: Do Not Store STA Objects in Session or Application
v Q243544 INFO: Component Threading Model Summary Under Active Server Pages
v Q243548 INFO: Design Guidelines for VB Components Under ASP

Chapter 5. Developing Client applications 91

Example: Enabling logging and tracing for activeX client applications
The ActiveX to EJB bridge provides two logging and tracing formats: Windows Application Event Log and
Java Trace Log.

v Windows Event Log

The Windows Application Event Log shows JNI errors, Java console error messages, and XJB
initialization messages. This log is most useful for determining XJBInit() errors and any unusual
exceptions that do not come from the Java environment. By default, critical error logging will be enabled
and debug and event logging is disabled.

To enable or disable logging of certain event types to the Windows Event Log, specify one or more
parameters to XJBInit(). If more than one parameter is set, they will be processed in the order in which
they appear in the input string array to the XJBInit() method. Once the XJBInit() method is initialized,
these parameters can no longer be set/reset for the life of the process. Using Java
java.lang.System.setProperty() to set these values also has no effect.
– -Dcom.ibm.ws.client.xjb.native.logging.debug=enabled|disabled

Enables or disables debug level messages from displaying in the Windows operating system event
log. This level of logging is most useful and shows most internal errors, user programming issues or
configuration problems.

– -Dcom.ibm.ws.client.xjb.native.logging.event=enabled|disabled

Enables or disables event level messages from appearing in the Windows operating system event
log.

– -Dcom.ibm.ws.client.xjb.native.logging.*=enabled|disabled

Enables or disables both event and debug level messages from appearing in the Windows operating
system event log. It is not possible to disable some critical error messages from being displayed in
the error log. Only debug and event level messages can be disabled.

To view the Windows application event log with the Event Viewer, complete the following steps:

1. Click Start > Control Panel.

2. Double-click Administrative Tools.

3. Double-click Event Viewer.

All ActiveX to EJB bridge events display the text WebSphere XJB in the source column and in the
application log.

When using the Event Viewer, you can get help information by clicking the menu choice Action > Help.

v Java trace log

The Java trace log displays information that you can use to debug method calls, class lookups, and
argument coercion problems. Because the Java portion of the bridge mirrors the function of the COM
IDispatch interface, the information in the trace log is similar to what you have come to expect from an
IDispatch interface. To understand the trace log, you need a fundamental understanding of IDispatch.

To enable user-logging, add the following parameters to the XJBInit() input string array:
"-DtraceString=com.ibm.ws.client.xjb.*=event=enabled"
"-DtraceFile=C:\MyTrace.txt"

Example: Viewing a System.out message
The ActiveX to Enterprise JavaBeans (EJB) bridge does not have a console available to view Java
System.out messages. To view these messages when running a stand-alone client program (such as
Visual Basic), redirect the output to a file.

This example redirects output to a file:
launchClientXJB.bat MyProgram.exe > output.txt
v To view the System.out messages when running a Service program such as Active Server Pages, you

need to override the Java System.out OutputStream object to FileOutputStream. For example, in
VBScript:

92 Developing WebSphere applications

’Redirect system.out to a file
’ Assume that oXJB is an initialized XJB.JClassFactory object
Dim clsSystem
Dim oOS
Dim oPS
Dim oArgs

’ Get the System class
Set clsSystem = oXJB.FindClass(“java.lang.System”)

’ Create a FileOutputStream object
’ Create a PrintStream object and assign to it our FileOutputStream

Set oArgs = oXJB.GetArgsContainer oArgs.AddObject “java.io.OutputStream”, oOS
Set oPS = oXJB.NewInstance(oXJB.FindClass(“java.io.PrintStream”), oArgs)

’ Set our System OutputStream to our file
clsSystem.setOut oPS

Developing applet client code
Applet clients are capable of communicating over the HTTP protocol and the RMI-IIOP protocol.

About this task

Unlike typical applets that reside on either web servers or WebSphere Application Servers and can only
communicate using the HTTP protocol, applet clients are capable of communicating over the HTTP
protocol and the RMI-IIOP protocol. This additional capability gives the applet direct access to enterprise
beans.

Standard applets require the HTML <APPLET> tag to identify the applet to the browser. If you replace the
<OBJECT> and <EMBED> tags, make sure that you specify appropriate values for <OBJECT> and <EMBED> tags,
especially the <OBJECT classid and <EMBED type values.

In the code for your applet client, when you initialize an instance of the InitialContext class, you must set
properties to specify the computer name, domain, and port, and to identify this program (the client) as an
applet.

Example
v Applet client tag requirements

v Applet client code requirements

Applet client tag requirements: Standard applets require the HTML <APPLET> tag to identify the applet to
the browser. The <APPLET> tag invokes the Java virtual machine (JVM) of the browser. It can also be
replaced by <OBJECT> and <EMBED> tags. The following code example illustrates the applet code using the
<APPLET> tag:
<APPLET code=”MyAppletClass.class” archive=”Applet.jar, EJB.jar” width="600" height="500" >
</APPLET>

The following code example illustrates the applet code using the <OBJECT> and <EMBED> tags.
<OBJECT classid="clsid: 8AD9C840-044E-11D1-B3E9-00805F499D93"
width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE=’Applet.jar, EJB.jar’>
<PARAM TYPE="application/x-java-applet;version=1.5.0">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.5.0" CODE=MyAppletClass.class
ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"

Chapter 5. Developing Client applications 93

scriptable="false">
<NOEMBED>
</COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
Windows is required.
</EMBED>
</OBJECT>

Attention: To successfully invoke the applet client in WebSphere Application Server version 6.1 or later,
the <OBJECT classid and <EMBED type values need to be those shown in the preceding example.

For more information about the <APPLET> tag, see the article, Using applet, object and embed Tags.

Applet client code requirements: The code used by an applet to talk to an enterprise bean is the same as
that used by a stand-alone Java program or a servlet, except for one additional property called
java.naming.applet. This property informs the InitialContext and the Object Request Broker (ORB) that
this client is an applet rather than a stand-alone Java application or servlet. The following code example
illustrates the applet code using the <APPLET> tag:

When you initialize an instance of the InitialContext class, the first two lines in this code snippet illustrate
what both a stand-alone Java program and a servlet issue to specify the computer name, domain, and
port. In this example, <yourserver.yourdomain.com> is the computer name and domain where WebSphere
Application Server resides, and 900 is the configured port. After the bootstrap values
(<yourserver.yourdomain.com>:900) are defined, the client to server communications occur within the
underlying infrastructure. In addition to the first two lines for applets, you must add the third line to your
code, which identifies this program as an applet, for example:
prop.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900)
prop.put(Context.APPLET, this);

Example: Applet client tag requirements
Standard applets require the HTML <APPLET> tag to identify the applet to the browser. The <APPLET> tag
invokes the Java virtual machine (JVM) of the browser. It can also be replaced by <OBJECT> and <EMBED>
tags.

The following code example illustrates the applet code using the <APPLET> tag.
<APPLET code=”MyAppletClass.class” archive=”Applet.jar, EJB.jar” width="600" height="500" >
</APPLET>

The following code example illustrates the applet code using the <OBJECT> and <EMBED> tags.
<OBJECT classid="clsid: 8AD9C840-044E-11D1-B3E9-00805F499D93"
width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE=’Applet.jar, EJB.jar’>
<PARAM TYPE="application/x-java-applet;version=1.5.0">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.5.0" CODE=MyAppletClass.class
ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"
scriptable="false">
<NOEMBED>
</COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
Windows is required.
</EMBED>
</OBJECT>

94 Developing WebSphere applications

Attention: To successfully invoke the applet client in WebSphere Application Server version 6.1 or later,
the <OBJECT classid and <EMBED type values need to be those shown in the preceding example.

For more information about the <APPLET> tag, see Using applet, object and embed Tags.

Example: Applet client code requirements
The code used by an applet to talk to an enterprise bean is the same as that used by a stand-alone Java
program or a servlet, except for one additional property called java.naming.applet. This property informs
the InitialContext and the Object Request Broker (ORB) that this client is an applet rather than a
stand-alone Java application or servlet.

When you initialize an instance of the InitialContext class, the first two lines in this code snippet illustrate
what both a stand-alone Java program and a servlet issue to specify the computer name, domain, and
port. In this example, <yourserver.yourdomain.com> is the computer name and domain where WebSphere
Application Server resides, and 900 is the configured port. After the bootstrap values
(<yourserver.yourdomain.com>:900) are defined, the client to server communications occur within the
underlying infrastructure. In addition to the first two lines for applets, you must add the third line to your
code, which identifies this program as an applet, for example:
prop.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900)
prop.put(Context.APPLET, this);

Running the Pluggable Application Client code
This topic provides steps for installing and using the Pluggable Application Client.

Before you begin

Remember: The Pluggable Application Client is available only on Windows systems.

Both Java Platform, Enterprise Edition (Java EE) application clients and Thin application clients can
access JMS resources provided by the default messaging provider.

Important: The Pluggable Application Client is deprecated. It is replaced by the stand-alone thin client,
IBM Thin Client for EJB.

Procedure
1. Install the Pluggable Application Client.

Read “Installing and uninstalling the Pluggable Application Client for WebSphere Application Server” for
more information,

2. Set the Java application pluggable client environment by using the setupClient command.

3. Add your specific Java client application JAR files to the CLASSPATH and start your Java client
application from this environment, after setting the environment variables.

4. Run a Java command to invoke your client application.
"%JAVA_HOME%\bin\java" %WAS_LOGGING% -Djava.security.auth.login.config=
"%app_client_root%\properties\wsjaas_client.conf"
-classpath "%WAS_CLASSPATH%;<list_of_your_application_jars_and_classes>
-Djava.ext.dirs="%JAVA_JRE%\lib\ext;%WAS_EXT_DIRS%;%WAS_HOME%\plugins;%WAS_HOME%\lib\WMQ\java\lib"
-Djava.naming.provider.url=iiop://<your_application_client_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Djava.endorsed.dirs="%WAS_ENDORSED_DIRS%"
%CLIENT_ROOT% %CLIENTSAS% %CLIENTSSL% <fully_qualified_class_name_to_run>

Installing and uninstalling the Pluggable Application Client for WebSphere
Application Server
IBM Installation Manager is a common installer for many IBM software products that you use to install and
uninstall the Pluggable Application Client for WebSphere Application Server.

Chapter 5. Developing Client applications 95

Before you begin

Important: The Pluggable Application Client is deprecated. It is replaced by the standalone thin client,
IBM Thin Client for EJB.

The Pluggable Application Client runs only on the Windows platform and requires that you have previously
installed the Sun Java Runtime Environment (JRE) Version 1.6.0 or later. In all other aspects, the
Pluggable Application Client and the IBM Thin Client for EJB are similar.

Tip: Although almost all of the instructions in this section of the information center will work with earlier
versions of IBM Installation Manager, the information here is optimized for users who have installed
or upgraded to Installation Manager Version 1.5 or later.

About this task

Perform one of these procedures to install or uninstall the Pluggable Application Client for IBM WebSphere
Application Server.

Procedure
v “Installing the Pluggable Application Client using the GUI”

v “Installing the Pluggable Application Client using response files” on page 100

v “Installing the Pluggable Application Client using the command line” on page 105

v “Uninstalling the Pluggable Application Client using the GUI” on page 107

v “Uninstalling the Pluggable Application Client using response files” on page 108

v “Uninstalling the Pluggable Application Client using the command line” on page 110

Installing the Pluggable Application Client using the GUI:

You can use the Installation Manager GUI to install the Pluggable Application Client.

Before you begin

Install Installation Manager:

1. Perform one of the following procedures:

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

a. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

1) Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

2) Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the
necessary product repositories from the Passport Advantage site.

1) Download the files from the Passport Advantage site.

2) Install Installation Manager on your system.

96 Developing WebSphere applications

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

3) Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

1) Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from
the Passport Advantage site, or using a file containing the most current version of
Installation Manager from the IBM Installation Manager download website.

2) Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

Note: This location does not contain a web page that you can access using a web
browser. This is a remote web-based repository location that you must specify for
the value of the -repositories parameter so that the imcl command can access the
files in this repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are
accessing the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the
product from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple
disks for one product into a repository. You can copy packages from Passport
Advantage or a web-based repository into a local repository for example. For more
information on the Packaging Utility, go to the IBM Installation Manager Version 1.5
Information Center.

b. Change to the location containing the Installation Manager installation files, and as an
administrator, run the following command:
install.exe

The installer opens an Install Packages window.

c. Make sure that the Installation Manager package is selected, and click Next.

d. Accept the terms in the license agreements, and click Next.

The program creates the directory for your installation.

e. Click Next.

f. Review the summary information, and click Install.

– If the installation is successful, the program displays a message indicating that installation is
successful.

– If the installation is not successful, click View Log File to troubleshoot the problem.

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you
want to use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install
the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Chapter 5. Developing Client applications 97

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the product repositories from the Passport Advantage site.

b. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install
the product from the web-based repositories. Use Installation Manager to install the product from
the web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This
is a remote web-based repository location that you must specify for the value of the
-repositories parameter so that the imcl command can access the files in this repository to
install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Add the product repository to your Installation Manager preferences.

a. Start Installation Manager.

b. In the top menu, click File > Preferences.

c. Select Repositories.

d. Perform the following actions:

1) Click Add Repository.

2) Enter the path to the repository.config file in the location containing the repository files.

For example:
C:\repositories\product_name\local-repositories

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

3) Click OK.

e. Deselect any locations listed in the Repositories window that you will not be using.

f. Click Apply.

g. Click OK.

h. Click File > Exit to close Installation Manager.

Procedure

1. Start Installation Manager.

2. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with on
the program website.

Installation Manager searches its defined repositories for available packages.

98 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

3. Perform the following actions.

a. Select Pluggable Application Client for IBM WebSphere Application Server and the
appropriate version.

Attention: Pluggable Application Client has limitations when running on Windows Server 2008
as a non-administrator user. Specifically, the versioninfo.bat and historyinfo.bat files that are
located in the ..\PlugClient\bin directory return invalid path errors. The errors occur because of
the inability of non-administrator users to access Oracle JRE components due to user
permissions.

Note: If you are installing the ILAN version of this product, select Pluggable Application Client
for IBM WebSphere Application Server (ILAN).

If you already have the Pluggable Application Client installed on your system, a message displays
indicating that the Pluggable Application Client is already installed. For a given Installation
Manager, you can install only one Pluggable Application Client.

Tip: If the Search service repositories during installation and updates option is selected on
the Installation Manager Repository preference page and you are connected to the Internet,
you can click Check for Other Versions and Extensions to search for updates in the
default update repositories for the selected packages. In this case, you do not need to add
the specific service-repository URL to the Installation Manager Repository preference page.

b. Select the fixes to install.

Any recommended fixes are selected by default.

If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

c. Click Next.

Note: Installation Manager might prompt you to update to the latest level of Installation Manager
when it connects to the repository. Update to the newer version before you continue if you are
prompted to do so. Read the IBM Installation Manager Version 1.5 Information Center for
information about automatic updates.

4. Accept the terms in the license agreements, and click Next.

5. Specify the installation root directory for the product binaries, which are also referred to as the core
product files or system files.

The panel also displays the shared resources directory and disk-space information.

Restrictions:

v Deleting the default target location and leaving an installation-directory field empty
prevents you from continuing.

v Do not use a semicolon in the directory name.

The Pluggable Application Client cannot install properly if the target directory
includes a semicolon.

A semicolon is the character used to construct the class path on Windows systems.

6. Click Next.

7. Optional: Select Pluggable Application Client Samples if you want to install the samples.

Tip: You can run the Installation Manager later to modify this installation and add or remove the
samples feature.

8. Click Next.

9. Enter the host name and port number of the Websphere Application Server to which you want to
connect, and click Next.

10. Enter the location of the SUN JRE to use with the clients.

Chapter 5. Developing Client applications 99

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

11. Optional: Enter the location of the SUN SDK to use when compiling the sample clients.

12. Click Next.

13. Review the summary information, and click Install.

v If the installation is successful, the program displays a message indicating that installation is
successful.

Note: The program might also display important post-installation instructions as well.

v If the installation is not successful, click View Log File to troubleshoot the problem.

14. Click Finish.

15. Click File > Exit to close Installation Manager.

Installing the Pluggable Application Client using response files:

You can install the Pluggable Application Client using Installation Manager response files.

Before you begin

Install Installation Manager on each of the systems onto which you want to install the product.

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the files from the Passport Advantage site.

b. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

100 Developing WebSphere applications

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must specify for the value of
the -repositories parameter so that the imcl command can access the files in this
repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Change to the location containing the Installation Manager installation files, and run one of the
following commands to install Installation Manager:

Administrative installation:
installc.exe -acceptLicense -log log_file_path_and_name

Non-administrative installation:
userinstc.exe -acceptLicense -log log_file_path_and_name

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you want to
use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install the
product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

1. Download the product repositories from the Passport Advantage site.

2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This is
a remote web-based repository location that you must specify for the value of the -repositories
parameter so that the imcl command can access the files in this repository to install the
product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation repositories.
You can copy multiple packages into one repository or copy multiple disks for one product
into a repository. You can copy packages from Passport Advantage or a web-based

Chapter 5. Developing Client applications 101

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

repository into a local repository for example. For more information on the Packaging Utility,
go to the IBM Installation Manager Version 1.5 Information Center.

About this task

Using Installation Manager, you can work with response files to install the Pluggable Application Client in a
variety of ways. You can record a response file using the GUI as described in the following procedure, or
you can generate a new response file by hand or by taking an example and modifying it.

Procedure

1. Optional: Record a response file to install the Pluggable Application Client: On one of your
systems, perform the following actions to record a response file that will install the Pluggable
Application Client.

a. From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

b. Start Installation Manager from the command line using the -record option.

For example:
IBMIM.exe -skipInstall "C:\temp\imRegistry" -record C:\temp\install_response_file.xml

Tip: When you record a new response file, you can specify the -skipInstall parameter. Using this
parameter has the following benefits:

v No files are actually installed, and this speeds up the recording.

v If you use a temporary data location with the -skipInstall parameter, Installation Manager
writes the installation registry to the specified data location while recording. When you start
Installation Manager again without the -skipInstall parameter, you then can use your
response file to install against the real installation registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that
location for future recording sessions.

For more information, read the IBM Installation Manager Version 1.5 Information Center.

c. Add the appropriate repositories to your Installation Manager preferences.

1) In the top menu, click File > Preferences.

2) Select Repositories.

3) Perform the following actions for each repository:

a) Click Add Repository.

b) Enter the path to the repository.config file in the remote web-based repository or the local
directory into which you unpacked the repository files.

For example:

v Remote repositories:
https://downloads.mycorp.com:8080/WAS_85_repository

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

v Local repositories:
C:\repositories\plugclient\local-repositories

c) Click OK.

4) Click Apply.

5) Click OK.

d. Click Install.

102 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.

Installation Manager searches its defined repositories for available packages.

e. Perform the following actions.

1) Select Pluggable Application Client for IBM WebSphere Application Server and the
appropriate version.

Note: If you are installing the ILAN version of this product, select Pluggable Application
Client for IBM WebSphere Application Server (ILAN).

If you already have the Pluggable Application Client installed on your system, a message
displays indicating that the Pluggable Application Client is already installed. For a given
Installation Manager, you can install only one Pluggable Application Client.

2) Select the fixes to install.

Any recommended fixes are selected by default.

If there are recommended fixes, you can select the option to show only recommended fixes
and hide non-recommended fixes.

3) Click Next.

f. Accept the terms in the license agreements, and click Next.

g. Specify the installation root directory for the Pluggable Application Client binaries, which are also
referred to as the core product files or system files.

The panel also displays the shared resources directory and disk-space information.

Restrictions:

v Deleting the default target location and leaving an installation-directory field empty
prevents you from continuing.

v Do not use a semicolon in the directory name.

The Pluggable Application Client cannot install properly if the target directory
includes a semicolon.

A semicolon is the character used to construct the class path on Windows
systems.

h. Click Next.

i. Optional: Select Pluggable Application Client Samples if you want to install the samples.

Tip: You can run the Installation Manager later to modify this installation and add or remove the
feature.

j. Click Next.

k. Enter the host name and port number of the Websphere Application Server to which you want to
connect, and click Next.

l. Enter the location of the SUN JRE to use with the clients.

m. Optional: Enter the location of the SUN SDK to use when compiling the sample clients.

n. Click Next.

o. Review the summary information, and click Install.

v If the installation is successful, the program displays a message indicating that installation is
successful.

Note: The program might also display important post-installation instructions as well.

v If the installation is not successful, click View Log File to troubleshoot the problem.

p. Click Finish.

q. Click File > Exit to close Installation Manager.

Chapter 5. Developing Client applications 103

r. Optional: If you are using an authenticated remote repository, create a keyring file for installation.

1) From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

2) Start Installation Manager from the command line using the -record option.

For example:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-keyring C:\IM\im.keyring
-record C:\temp\keyring_response_file.xml

3) When a window opens that requests your credentials for the authenticated remote repository,
enter the correct credentials and save them.

4) Click File > Exit to close Installation Manager.

For more information, read the IBM Installation Manager Version 1.5 Information Center.

2. Use the response files to install the Pluggable Application Client:

a. Optional: Use the response file to install the keyring: Go to a command line on each of the
systems on which you want to install the Pluggable Application Client, change to the eclipse/tools
subdirectory in the directory where you installed Installation Manager, and install the keyring.

For example:
imcl.exe -acceptLicense
input C:\temp\keyring_response_file.xml
-log C:\temp\keyring_log.xml

b. Use the response file to install the Pluggable Application Client: Go to a command line on
each of the systems on which you want to install the Pluggable Application Client, change to the
eclipse/tools subdirectory in the directory where you installed Installation Manager, and install the
Pluggable Application Client.

For example:
imcl.exe -acceptLicense
input C:\temp\install_response_file.xml
-log C:\temp\install_log.xml
-keyring C:\IM\im.keyring

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the
installation image or repository for this product.

v The program might write important post-installation instructions to standard output.

Read the IBM Installation Manager Version 1.5 Information Center for more information.

Example

The following is an example of a response file for installing the Pluggable Application Client.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.PLUGCLIENT.v85’
profile=’Pluggable Application Client for IBM WebSphere Application Server V8.5’
features=’pluggableclient.core.feature’ installFixes=’none’/>

</install>
<profile id=’Pluggable Application Client for IBM WebSphere Application Server V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\PlugClient’>

<data key=’eclipseLocation’ value=’C:\Program Files\IBM\WebSphere\PlugClient’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’user.select.64bit.image,com.ibm.websphere.PLUGCLIENT.v85’ value=’false’/>
<data key=’user.appclient.serverHostname’ value=’localhost’/>
<data key=’user.appclient.serverPort’ value=’2809’/>
<data key=’user.plugclient.sunJreHome’ value=’C:\Program Files\Java\jre6’/>
<data key=’user.plugclient.sunJdkHome’ value=’C:\Program Files\Java\jdk1.6.0_21’/>
<data key=’cic.selector.nl’ value=’en’/>
</profile>
</agent-input>

104 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

Tip: See Sample response file: Installing the Pluggable Application Client for IBM WebSphere Application
Server for an annotated sample of a response file for performing this procedure.

Installing the Pluggable Application Client using the command line:

You can install the Pluggable Application Client using the Installation Manager command line.

Before you begin

Important: Before installing the product, you must read the license agreement that you can find with the
product files. Signify your acceptance of the license agreement by specifying -acceptLicense
in the command as described below.

Install Installation Manager on each of the systems onto which you want to install the product.

v If you want to use the Installation Manager that is included with this product, perform the following
actions:

1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

a. Download the files from the Passport Advantage site.

b. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.

a. Install Installation Manager on your system.

You can install Installation Manager using the product media, using a file obtained from the
Passport Advantage site, or using a file containing the most current version of Installation
Manager from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must specify for the value of
the -repositories parameter so that the imcl command can access the files in this
repository to install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Chapter 5. Developing Client applications 105

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation
repositories. You can copy multiple packages into one repository or copy multiple disks
for one product into a repository. You can copy packages from Passport Advantage or a
web-based repository into a local repository for example. For more information on the
Packaging Utility, go to the IBM Installation Manager Version 1.5 Information Center.

2. Change to the location containing the Installation Manager installation files, and run one of the
following commands:

Administrative installation:
installc.exe -acceptLicense -log log_file_path_and_name

Non-administrative installation:
userinstc.exe -acceptLicense -log log_file_path_and_name

v If you already have Installation Manager Version 1.5.2 or later installed on your system and you want to
use it to install and maintain the product, obtain the necessary product files.

There are three basic options for installing the product.

– Access the physical media, and use local installation

You can access the product repositories on the product media. Use Installation Manager to install the
product from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

1. Download the product repositories from the Passport Advantage site.

2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.PLUGCLIENT.v85

Note: This location does not contain a web page that you can access using a web browser. This is
a remote web-based repository location that you must specify for the value of the -repositories
parameter so that the imcl command can access the files in this repository to install the
product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Notes:

– If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

– With the Packaging Utility, you can create and manage packages for installation repositories.
You can copy multiple packages into one repository or copy multiple disks for one product
into a repository. You can copy packages from Passport Advantage or a web-based
repository into a local repository for example. For more information on the Packaging Utility,
go to the IBM Installation Manager Version 1.5 Information Center.

Procedure

1. Optional: If the repository requires a username and password, create a keyring file to access this
repository.

106 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

For more information on creating a keyring file for Installation Manager, read the IBM Installation
Manager Version 1.5 Information Center.

Tip: When creating a keyring file, append /repository.config at the end of the repository URL
location if the imutilsc command is unable to find the URL that is specified.

2. Log on to your system.

3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.

4. Verify that the product repository is available.
imcl.exe listAvailablePackages -repositories source_repository

You should see one or more levels of the offering.

5. Use the imcl command to install the product.
imcl.exe install com.ibm.websphere.PLUGCLIENT.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory
-accessRights access_mode
-preferences preference_key=value
-properties property_key=value
-keyring keyring_file -password password
-acceptLicense

Tips:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the
installation image or repository for this product.

v The offering_version, which optionally can be attached to the offering ID with an underscore,
is a specific version of the offering to install (8.5.0.20110503_0200 for example).

– If offering_version is not specified, the latest version of the offering and all interim fixes for
that version are installed.

– If offering_version is specified, the specified version of the offering and no interim fixes for
that version are installed.

The offering version can be found attached to the end of the offering ID with an underscore
when you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate
which interim fixes you want installed with the offering.

– If the offering version is not specified, the -installFixes option defaults to all.

– If the offering version is specified, the -installFixes option defaults to none.

v The -accessRights parameter is not required if you previously specified the mode in which to
install Installation Manager.

v The program might write important post-installation instructions to standard output.

For more information on using the imcl command to install the product, see the IBM Installation
Manager Version 1.5 Information Center.

Uninstalling the Pluggable Application Client using the GUI:

Use the Installation Manager GUI to uninstall the Pluggable Application Client.

Procedure

1. Uninstall the Pluggable Application Client.

a. Stop all servers and applications on the Pluggable Application Client installation.

b. Start Installation Manager.

c. Click Uninstall.

Chapter 5. Developing Client applications 107

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

d. In the Uninstall Packages window, perform the following actions.

1) Select Pluggable Application Client for IBM WebSphere Application Server and the
appropriate version.

Note: If you are uninstalling the ILAN version of this product, select Pluggable Application
Client for IBM WebSphere Application Server (ILAN).

2) Click Next.

e. Review the summary information.

f. Click Uninstall.

v If the uninstallation is successful, the program displays a message that indicates success.

v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.

h. Click File > Exit to close Installation Manager.

2. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.

Read the IBM Installation Manager Version 1.5 Information Center for information about performing this
procedure.

Uninstalling the Pluggable Application Client using response files:

You can uninstall the Pluggable Application Client using Installation Manager response files.

Before you begin

Optional: Perform or record the installation of Installation Manager and installation of the Pluggable
Application Client to a temporary installation registry on one of your systems so that you can
use this temporary registry to record the uninstallation without using the standard registry where
Installation Manager is installed.

About this task

Using Installation Manager, you can work with response files to uninstall the Pluggable Application Client in
a variety of ways. You can record a response file using the GUI as described in the following procedure, or
you can generate a new response file by hand or by taking an example and modifying it.

Procedure

1. Stop all servers and applications on the Pluggable Application Client installation that contains the
product.

2. Optional: Record a response file to uninstall the Pluggable Application Client: On one of your
systems, perform the following actions to record a response file that will uninstall the Pluggable
Application Client:

a. From a command line, change to the eclipse subdirectory in the directory where you installed
Installation Manager.

b. Start Installation Manager from the command line using the -record option.

For example:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\uninstall_response_file.xml

Tip: If you choose to use the -skipInstall parameter with a temporary installation registry created
as described in Before you begin, Installation Manager uses the temporary installation registry
while recording the response file. It is important to note that when the -skipInstall parameter is

108 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

specified, no packages are installed or uninstalled. All of the actions that you perform in
Installation Manager simply update the installation data that is stored in the specified
temporary registry. After the response file is generated, it can be used to uninstall the
Pluggable Application Client, removing the Pluggable Application Client files and updating the
standard installation registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that
location for future recording sessions.

For more information, read the IBM Installation Manager Version 1.5 Information Center.

c. Click Uninstall.

d. In the Uninstall Packages window, perform the following actions.

1) Select Pluggable Application Client for IBM WebSphere Application Server and the
appropriate version.

Note: If you are uninstalling the ILAN version of this product, select Pluggable Application
Client for IBM WebSphere Application Server (ILAN).

2) Click Next.

e. Review the summary information.

f. Click Uninstall.

v If the uninstallation is successful, the program displays a message that indicates success.

v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.

h. Click File > Exit to close Installation Manager.

3. Use the response file to uninstall the Pluggable Application Client: From a command line on each
of the systems from which you want to uninstall the Pluggable Application Client, change to the
eclipse/tools subdirectory in the directory where you installed Installation Manager and use the
response file that you created to uninstall the Pluggable Application Client.

For example:
imcl.exe
input C:\temp\uninstall_response_file.xml
-log C:\temp\uninstall_log.xml

Go to the IBM Installation Manager Version 1.5 Information Center for more information.

4. Optional: List all installed packages to verify the uninstallation.

./imcl listInstalledPackages

imcl listInstalledPackages

5. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.

Read the IBM Installation Manager Version 1.5 Information Center for information about using the
uninstall script to perform this procedure.

Example

The following is an example of a response file for uninstalling the Pluggable Application Client.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<uninstall modify=’false’>

Chapter 5. Developing Client applications 109

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

<offering id=’com.ibm.websphere.PLUGCLIENT.v85’
profile=’Pluggable Application Client for IBM WebSphere Application Server V8.5’
features=’pluggableclient.core.feature,pluggableclient.samples’/>

</uninstall>
<profile id=’Pluggable Application Client for IBM WebSphere Application Server V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\PlugClient’>

<data key=’eclipseLocation’ value=’C:\Program Files\IBM\WebSphere\PlugClient’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’user.select.64bit.image,com.ibm.websphere.PLUGCLIENT.v85’ value=’false’/>
<data key=’user.appclient.serverHostname’ value=’localhost’/>
<data key=’user.appclient.serverPort’ value=’2809’/>
<data key=’user.plugclient.sunJreHome’ value=’C:\Program Files\Java\jre6’/>
<data key=’user.plugclient.sunJdkHome’ value=’C:\Program Files\Java\jdk1.6.0_21’/>
<data key=’cic.selector.nl’ value=’en’/>
</profile>
</agent-input>

Tip: See Sample response file: Uninstalling the Pluggable Application Client for IBM WebSphere
Application Server for an annotated sample of a response file for performing this procedure.

Uninstalling the Pluggable Application Client using the command line:

You can uninstall the Pluggable Application Client using the Installation Manager command line.

Procedure

1. Log on to your system.

2. Stop all servers and applications on the Pluggable Application Client installation.

3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.

4. Use the imcl command to uninstall the offering.
imcl.exe uninstall com.ibm.websphere.PLUGCLIENT.v85,optional_feature_ID
-installationDirectory installation_directory

Go to the IBM Installation Manager Version 1.5 Information Center for more information.

Example: Enabling logging and tracing for application clients
The ActiveX to EJB bridge provides two logging and tracing formats: Windows Application Event Log and
Java Trace Log.

v Windows Event Log

The Windows Application Event Log shows JNI errors, Java console error messages, and XJB
initialization messages. This log is most useful for determining XJBInit() errors and any unusual
exceptions that do not come from the Java environment. By default, critical error logging will be enabled
and debug and event logging is disabled.

To enable or disable logging of certain event types to the Windows Event Log, specify one or more
parameters to XJBInit(). If more than one parameter is set, they will be processed in the order in which
they appear in the input string array to the XJBInit() method. Once the XJBInit() method is initialized,
these parameters can no longer be set/reset for the life of the process. Using Java
java.lang.System.setProperty() to set these values also has no effect.
– -Dcom.ibm.ws.client.xjb.native.logging.debug=enabled|disabled

Enables or disables debug level messages from displaying in the Windows operating system event
log. This level of logging is most useful and shows most internal errors, user programming issues or
configuration problems.

– -Dcom.ibm.ws.client.xjb.native.logging.event=enabled|disabled

Enables or disables event level messages from appearing in the Windows operating system event
log.

– -Dcom.ibm.ws.client.xjb.native.logging.*=enabled|disabled

Enables or disables both event and debug level messages from appearing in the Windows operating
system event log. It is not possible to disable some critical error messages from being displayed in
the error log. Only debug and event level messages can be disabled.

Viewing the Windows application event log with the event viewer:

110 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp

To open the event viewer in the Windows operating system:

1. Click Start > Settings > Control Panel.

2. Double-click Administrative Tools.

3. Double-click Event Viewer.

All ActiveX to EJB bridge events display the text WebSphere XJB in the source column and in the
application log. For information about using Event Viewer, click the Action menu in Event Viewer, and
then click Help.

To open the even viewer in the Windows operating system, click Start > Programs > Administrative
Tools > Event Viewer. All ActiveX to EJB bridge events have the text WebSphere XJB in the source
column and display in the application log. For information about using Event Viewer, click the Help
menu in Event Viewer.

v Java trace log

The Java trace log displays information that you can use to debug method calls, class lookups, and
argument coercion problems. Since the Java portion of the bridge mirrors the function of the COM
IDispatch interface, the information in the trace log is similar to what you have come to expect from an
IDispatch interface. To understand the trace log, you need a fundamental understanding of IDispatch.

To enable user-logging, add the following parameters to the XJBInit() input string array:
"-DtraceString=com.ibm.ws.client.xjb.*=event=enabled"
"-DtraceFile=C:\MyTrace.txt"

Chapter 5. Developing Client applications 111

112 Developing WebSphere applications

Chapter 6. Developing Communications Enabled Applications

Communications Enabled Applications (CEA) is a functionality that provides the ability to add dynamic web
communications to any application or business process. The product provides a suite of integrated
telephony and collaborative web services that extends the interactivity of enterprise and web commerce
applications. With the CEA capability, enterprise solution architects and developers can use a single core
application to enable multiple modes of communication. Enterprise developers do not need to have
extensive knowledge of telephony or Session Initiation Protocol (SIP) to implement CEA. The CEA
capability delivers call control, notifications, and interactivity and provides the platform for more complex
communications.

Developing communications enabled applications

Developing SIP communications applications
Before you begin

Procedure
v Use the Session Initiation Protocol (SIP) application router to select the order in which SIP applications

are triggered.

When configuring a SIP application router, you can either use the default application router or create a
custom application router.

v Use the Asynchronous Invocation API to transfer events that require processing in the context of a
Session Initiation Protocol (SIP) application session to any server in a cluster based on the related
application session ID.

The Asynchronous Invocation API transfers the event task to the correct server.

v Use the Domain Resolver API to perform DNS lookups of SIP URIs using the RFC 3263 protocol.

The Domain Resolver API provides an interface that enables an application to perform DNS queries for
SIP URIs.

v Create a SIP servlet request that includes proprietary header fields.

SIP proprietary header fields enable certain SIP settings to be implemented on a per message basis.
SIP settings set at the SIP container level apply to all SIP messages handled by that SIP container.

Domain Resolver API
Use the Domain Resolver API to perform DNS lookups of SIP URIs using the RFC 3263 protocol. These
lookups can be performed synchronously if you want to avoid having to preserve state in order to handle
an asynchronous callback. They can also be performed asynchronously if you need a better performing
interface.

The Domain Resolver API provides an interface that enables an application to perform DNS queries for
SIP URIs. When the Domain Resolver API is used asynchronously, a listener is called after the DNS query
completes. You can use one of the following methods in your application code to access the Domain
Resolver API:

v Get an attribute from the ServletContext using com.ibm.ws.sip.container.domain.resolver as a key.
getServletContext().getAttribute("com.ibm.ws.sip.container.domain.resolver")

v Use @resource injection.
@resource
DomainResolver resolver

Use one of the following methods to perform the URI lookup:

v Use the SIPURI method if a synchronous API which will return the result of the URI resolve request
response.

© Copyright IBM Corp. 2012 113

DomainResolver
locate(SIPURI)

v locate(SIPURI, Listener) – an asynchronous API which will signal the listener once it is finished. When
the result is cached the listener will be triggered on the same caller thread.
DomainResolver
locate(SIPURI, Listener)

For more information about this API, expand the Reference > Programming interfaces > APIs -
Application Programming Interfaces section in the Feature Pack for Communications Enabled
Applications Information Center navigation. Then scroll down to the
com.ibm.ws.sip.container.domain.resolver API.

For more information about DNS servers, see the topic Using DNS procedures to locate SIP servers

SIP proprietary header fields
You can create a SIP servlet request that includes proprietary header fields. SIP proprietary header fields
enable certain SIP settings to be implemented on a per message basis. SIP settings set at the SIP
container level apply to all SIP messages handled by that SIP container.

To include one or more proprietary header fields in a message, set up your SIP servlet request such that it
includes one or more SipServletMessage.setHeader(string_name, string value) methods. When the
application calls SipServletRequest.send() to send the request, the message object that is passed to the
SIP stack for transmission includes the propriety header information. The SIP stack then creates a client
transaction to send out the request, and adjusts the SIP configuration settings for this specific request
based on any proprietary header fields that are included in the message object. The stack removes the
proprietary header fields before the message is sent out to the network.

Proprietary header fields used to specify timer values

The following proprietary header fields are available for specifying timer values for a specific message.
The application can set multiple timer values in one message instance, but cannot specify multiple values
for the same proprietary header field.

IBM-TransactionTimeout
Use this header field to specify, in milliseconds, the length of the client transaction timeout. This
header is equivalent to specifying a value for timer B in INVITE client transactions, and timer F in
non-INVITE client transactions.

IBM-RetransmissionInterval
Use this header field to specify, in milliseconds, the length of the request retransmission interval.
This header is equivalent to specifying a value for timer A in INVITE client transactions, and timer
E in non-INVITE client transactions.

IBM-RetransmissionMaxInterval
Use this header field to specify, in milliseconds, the maximum retransmission interval. This header
is equivalent to specifying a value for timer T2 in non-INVITE client transactions, and timer B in
INVITE client transactions.

114 Developing WebSphere applications

Chapter 7. Developing data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as, JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Developing data access applications

Developing data access applications
You can use data access applications to manipulate data from outside sources for use within your
application serving environment.

About this task

You can access data in various ways:
v using standard or extended APIs
v using container-managed persistence beans
v using bean-managed persistence beans, session beans, or web components.
v using Service Data Objects (SDO)

Procedure
1. Decide how to implement data access.

The Enterprise JavaBeans (EJB) programming model provides several distinct server-side component
types: entity, session, and message-driven beans, and servlets. Of these types, entity beans are
typically used to model business components in an application. Entity beans have both state and
behavior.

The state of entity beans is persistent and is stored in a database. As changes are made to an entity
bean, its state is kept in synchronization with the database record representing the bean. There are
two types of entity beans provided by the EJB model and these two types differ in the mechanism
used to provide persistence. These two types of entity beans are container-managed persistence
(CMP) beans and bean-managed persistence (BMP) beans.

v With BMP beans, the developer manually produces code to manage the persistent state of the
bean.

© Copyright IBM Corp. 2012 115

v With CMP beans, the EJB container manages the persistent state of the bean. Persistent state
management is a complex and difficult task; using CMP beans allows the developer to concentrate
on business logic by delegating persistence behavior to the container.

Typical examples of CMP beans are Customer, Account, and so on. Because CMP beans are
objects, their data (state) is accessed using field accessors. For example, a Customer entity bean is
likely to have fields such as name and phoneNumber. These pieces of data are accessed using the
accessor methods getName()/setName() and getPhoneNumber()/setPhoneNumber(). As a
developer, you are not concerned with how this data is eventually stored and retrieved from the
backend database and can assume that the integrity of the data is maintained by the container.

See the topic, Developing enterprise beans for information on developing entity beans.

Tips:

v To maximize the efficiency of application requests to relational databases, consider using
Structured Query Language in Java (SQLJ) when developing BMP and CMP beans. This
option is available for applications that use the DB2 JDBC Universal Driver to access DB2
databases.

v Also consider using cursor holdability for potential performance gains; see the topic, JDBC
application cursor holdability support, for details.

An alternative to developing entity beans is using the Service Data Objects (SDO) framework, which is
a unified framework for data application development. With SDO, you do not need to be familiar with a
technology-specific API in order to access and utilize data. You need to know only one API, the SDO
API, which lets you work with data from multiple sources, including relational databases, entity EJB
components, XML pages, web services, the Java Connector Architecture, JavaServer Pages, and
more.

2. Look up a data source or connection factory using a resource reference. See the topic, Looking up
data sources with resource references for relational access for more information. Do not perform this
step if you work with CMP beans. The EJB container handles this process for CMP beans.

To run applications on WebSphere Application Server, your code must use resource references to
logically named data sources or connection factories. Mapping the resource references to actual
resources is usually done at assembly time. The Application Server administrator configures those
resources.

v For relational database access, administrators configure a JDBC provider and associated data
sources, which work with the embedded WebSphere Relational Resource Adapter.

v For non-relational database access, administrators install a Java Platform, Enterprise Edition (Java
EE) Connector Architecture (JCA) resource adapter onto an application server and configure
associated connection factories.

Generic work context implementation provides a mechanism for a resource adapter to control the
contexts in which instances of work submitted by the resource adapter to the product work manager
for execution are executed. By submitting a work instance that implements the WorkContextProvider
interface, the resource adapter can propagate various types of context to the WebSphere Application
Server. The application server then, if it supports the propagated context type, sets the provided
context as the execution context of the work instance during its execution.

3. Get a connection to a data source or a connection factory. See the "Getting connections" section of the
topic, Connection life cycle for details.) Do not perform this step if you work with CMP beans. The EJB
container handles this process for CMP beans.

The connection management architecture for both relational and procedural access to enterprise
information systems (EIS) is based on the Java EE Connector Architecture (JCA) specification. The
Connection Manager (CM), which pools and manages connections within an application server, is
capable of managing connections obtained through both resource adapters (RAs) defined by the JCA
specification, and data sources defined by the JDBC Extensions Specification.

116 Developing WebSphere applications

Using Bean Validation in RAR modules
WebSphere Application Server validates resource archive (RAR) JavaBeans constraints in compliance with
the Java Connector Architecture (JCA) version 1.6 specification.

Bean validation in RAR modules:

WebSphere Application Server validates resource adapter archive (RAR) JavaBeans constraints in
compliance with the Java Connector Architecture (JCA) version 1.6 specification.

Resource adapters can specify the validation requirements of configuration properties to the Application
Server through annotations in the source code of the resource adapter, constraint specifications in a
resource adapter validation descriptor, or a mixture of both. In specifying these constraints, resource
adapters can use the built-in bean validation constraints supplied with the Application Server, custom bean
validation constraints supplied either by the application developer or a third party, or a mixture of both.
Resource adapter developers can apply constraints to the fields and JavaBeans-compliant properties of
the following JCA types:

v ResourceAdapter

v ManagedConnectionFactory

v ActivationSpec

v AdministeredObject

At run time, the application server creates instances of bean types declared by the resource adapter. Each
instance is validated immediately upon setting its configuration properties, before placing the instance into
service.

When validating a RAR bean, the Application Server creates an instance of a validator factory according to
the bean validation deployment descriptor discovered by the Application Server. A validator instance is
then obtained from the factory and used to validate the bean instance.

If validation fails, the Application Server throws a constraint violation exception and reports all violations to
the system log. The effects of the exception for each RAR bean type and problem determination
information are documented in the topic, Troubleshooting bean validation in RAR modules.

Note: The Bean Validation specification requires that no more than one validation.xml is visible on the
class path. This requirement is violated whenever two or more stand-alone RARs provide a
validation descriptor. See the section, “RAR bean validation descriptor” in this topic, for more
information. When more than one validation.xml is visible to the Application Server class loaders,
the Application Server or application modules might fail to acquire the default ValidatorFactory and
subsequently cannot perform bean validation. For example, the server cannot validate beans of a
RAR embedded in an application whenever the embedded RAR lacks a validation configuration,
and two or more stand-alone RARs provide configurations. To avoid trouble, install stand-alone
RARs that provide a bean validation descriptor as isolated whenever possible.

Built-in constraint annotations

Note: Use built-in constraint annotations to specify the range and mandatory attributes of configuration
properties rather than provide custom annotations for the same purpose. The following constraints
are useful, but you can use all bean validation built-in constraints. See the topic Bean validation
built-in constraints for a complete list of the constraints.

v @Min

Specifies the minimum value of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum.

v @Max

Chapter 7. Developing data access resources 117

Specifies the maximum value of the configuration property decorated with this annotation. The value
must less than or equal to the specified maximum.

v @Size

Specifies the range of values of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum and be less than or equal to the specified
maximum.

v @NotNull

Specifies the value of the configuration property decorated with this annotation must not be null. That is,
the property is required.

The following example is a RAR bean class that is decorated with built-in constraint annotations.

The value of the serverName configuration property must not be null, and the value of the instanceCount
property must be at least 1 when the Application Server creates and configures an instance of the
MyConnector class. Otherwise, a constraint validation exception occurs and, in the case of
ResourceAdapter bean, the resource adapter fails to start. See the topic Troubleshooting bean validation
in RAR modules for more information.
package com.my.company;

@Connector(...)
public class MyConnector implements ResourceAdapter, Serializable
{
@ConfigProperty(type=java.lang.String.class,defaultValue="WAS")
private String serverName;

@NotNull()
public String getServerName() {return serverName;}

private Integer instanceCount = 0;

@Min(value=1)
public Integer getInstanceCount() {return instanceCount;}
...

RAR bean validation descriptor

Bean validation constraints can be declared through an XML descriptor supplied by a RAR module. In the
simplest case, a RAR validation descriptor consists of the validation configuration declared in the
validation.xml file and zero or more XML files that declare RAR bean validation constraints. Files
containing constraint declarations are specified in the constraint-mapping elements of the validation
configuration (validation.xml).

You must package the validation descriptor in the META-INF directory of a RAR module. Any custom
constraint annotation classes that are declared in the validation descriptor must also be packaged in the
RAR module.

The following example is a simple RAR validation descriptor that declares constraint metadata like the
code shown in the section, “Built-in constraint annotations.”
<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns=http://jboss.org/xml/ns/javax/validation/configuration
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/configuration validation-configuration-1.0.xsd>

<constraint-mapping>META-INF/constraints.xml</constraint-mapping>
</validation-config>

The constraints XML file is also located in the META-INF directory and looks like the following:
<constraint-mappings
xmlns=http://jboss.org/xml/ns/javax/validation/mapping
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-1.0.xsd>
<default-package>com.my.company</default-package>
<bean class="MyConnector" ignore-annotations="true">
<field name="serverName">
<valid/>
<!-- @NotNull() -->

118 Developing WebSphere applications

<constraint annotation="javax.validation.constraints.NotNull">
<message>Value is not null</message>
</constraint>
</field>
<field name="instanceCount">
<valid/>
<!-- @Min(1) -->
<constraint annotation="javax.validation.constraints.Min">
<message>Minimum possible value is 1</message>
<element name="value">1</element>
</constraint>
</field>
</bean>
<constraint-mapping>

The packaged RAR module, MyResourceAdapter.rar, looks like the following:
my/
company/
MyConnector.class

. . .
META-INF
/validation.xml
/constraints.xml

Third-party bean validation

WebSphere Application Server supports using different bean validation implementations. If a resource
adapter requires a bean validation implementation different from the implementation that is provided by the
product, and the RAR provides the bean validation implementation, you must package the JAR file that
contains the bean validation implementation in the RAR module root directory.

The RAR module must also contain a single validation configuration descriptor (validation.xml), which
can be packaged in the META-INF directory of the RAR module, or in the META-INF/services directory of
the bean validation JAR file, but not both.

RAR bean validation configuration discovery

When validating RAR beans, the Application Server bootstraps the bean validation configuration, specific
to the RAR, according to the bean validation descriptor supplied in the RAR META-INF directory. If the
descriptor does not exist, the server bootstraps the configuration using the first validation descriptor
discovered in the RAR class loading context, such as that supplied in a third-party bean validation that is
packaged in the RAR. Finally, the server uses the default validation configuration provided by the product.

The server then creates a validator factory specific to the discovered bean validation configuration and
uses this factory to create validator instances for validating the RAR bean instances. When you deploy a
RAR that supplies a bean validation descriptor, you must take additional steps to ensure that the class
loader that loads the RAR loads the bean validation descriptor and classes packaged in the RAR.

For an embedded RAR, after you have deployed the application that embeds the RAR, you must set the
delegation mode of the application class loader to Parent-Last (Child-First). See the topic Configuring
application class loaders for more information.

For a stand-alone RAR, you must install the RAR as an isolated resource provider. See the topic
Resource Adapter settings for more information.

Troubleshooting bean validation in RAR modules:

RAR beans that fail validation are not placed into service. When constraint violations occur, applications
encounter resource connectivity issues that are different according to the bean type and how the RAR is
deployed. This topic explains how to understand, service, and prevent these known issues.

Chapter 7. Developing data access resources 119

RAR bean constraint violations

WebSphere Application Server displays a constraint violation exception and reports all constraint violations
to the system log when it validates RAR bean instances that violate one or more constraints. The cause of
all constraint violation must be determined and resolved to restore full connectivity to the affected
resource.

Problem determination starts with consulting the RAR provider documentation for the valid values of the
configuration properties that are indicated in the violations. If the property values are invalid, you must
reconfigure them according to the documentation and restart the resource adapter. If the adapter is
embedded in an application, then restart the application to restart the adapter; if the adapter is
stand-alone, then restart the application server.

If a valid configuration property value is indicated in a violation, then the constraint might be incorrectly
specified for the bean, or the bean is incorrectly computing the property value. In these cases, the RAR
vendor must correct the problem.

If the problem is caused by a faulty constraint definition (implementation), then the bean validation provider
must correct the problem. In these cases, if the RAR is provided by IBM, or the RAR uses the bean
validation implementation supplied by the Application Server, then contact IBM support to continue problem
determination.

ResourceAdapter beans

ResourceAdapter beans are validated when the server starts a Java 2 Connector (J2C) resource adapter.
When validation fails, the server rejects the ResourceAdapter instance and the resulting constraint
violation exception causes the J2C resource adapter to fail. Applications cannot establish outbound
connections to the resource, and the resource cannot deliver messages to applications. For an embedded
adapter, the application that embeds the adapter fails to start. In-doubt transactions that involve the
resource cannot be recovered.

The following example is a ResourceAdapter bean, MyConnector, at heap address 7efa7efa. Two
validation constraints are violated. The constraint violation exception causes
J2CResourceAdapter_1285109360562 to fail:
[9/29/10 10:51:24:125 CDT] 00000000 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyConnector@7efa7efa failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:

ConstraintViolationImpl{interpolatedMessage=’The minimum size is 2’, propertyPath=dataBaseName, rootBeanClass=class
com.my.company.adapter.MyConnector, messageTemplate=’The minimum size is 2’}

ConstraintViolationImpl{interpolatedMessage=’must be greater than or equal to 10’, propertyPath=idleTimeout, rootBeanClass=class
com.my.company.adapter.MyConnector, messageTemplate=’{javax.validation.constraints.Min.message}’}

...
[9/29/10 10:51:24:468 CDT] 00000000 RALifeCycleMa E
J2CA0128E: An Exception occurred while trying to start ResourceAdapter
cells/IBM-46DF84D297BNode01Cell/nodes/IBM-46DF84D297BNode01/resources.xml#J2CResourceAdapter_1285109360562. The exception is:

com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.RAWrapperImpl.createAndConfigureRA(
at com.ibm.ejs.j2c.RAWrapperImpl.startRA(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.startRA(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.resourceProviderEvent(
. . .

ManagedConnectionFactory beans

ManagedConnectionFactory JavaBeans are validated during the initial Java Naming and Directory
Interface (JNDI) lookup of a J2C connection factory.

When validation fails, the Application Server rejects the ManagedConnectionFactory instance and displays
a naming exception to the application that performs the lookup. This exception indicates the causal
constraint violation exception (javax.validation.ConstraintValidationException).

120 Developing WebSphere applications

Applications cannot establish outbound connections to the resource. In-doubt transactions started over
connections to the resource that were created by the connection factory cannot be recovered.

The following example is a ManagedConnectionFactory bean, MyMcf, at heap address 7dd07dd0, Two
validation constraints are violated. The constraint violation exception causes the application to not obtain a
connection factory that is required to create a connection to the resource, MyConnector:
[9/30/10 7:58:58:734 CDT] 00000023 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyMcf@7dd07dd0 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’must be less than or equal to 30’, propertyPath=mcfProperty2,

rootBeanClass=class com.my.company.adapter.MyMcf, messageTemplate=’{javax.validation.constraints.Max.message}’}
ConstraintViolationImpl{interpolatedMessage=’The value should be greater than 10’, propertyPath=mcfProperty4,

rootBeanClass=class com.my.company.adapter.MyMcf, messageTemplate=’The value should be greater than 10’}
....
[9/30/10 7:58:58:765 CDT] 00000023 ConnectionFac E
J2CA0009E: An exception occurred while trying to instantiate the ManagedConnectionFactory class com.my.company.adapter.MyMcf
used by resource j2c/MyConnector : com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.ServerFunction.validate(
at com.ibm.ejs.j2c.J2CUtilityClass.createMCFEntry(
...
at javax.naming.InitialContext.lookup(
at com.my.company.app.MyEjbImpl.testJbv(
. . .

ActivationSpec bean violations

ActivationSpec beans are validated when the applications starts. This is when the Application Server
initially activates message endpoints bound to J2C activation specifications. These activation specifications
name the bean class in their configuration. When validation fails, the endpoint fails to activate and the
resulting constraint violation exception causes the application hosting the endpoint to fail.

Because the J2C resource adapter that contains the activation specification is started, applications can still
establish connections to the resource. The resource can deliver messages to endpoints that have
successfully activated. If the activation specification is defined within an embedded resource adapter, the
server stops the adapter in the course of stopping the application. Failed transactional messages delivered
by previous instances of the resource adapter that contains the activation specification cannot be
recovered.

The following example is an ActivationSpec bean, MyActSpec, at heap address 51625162. Two validation
constraints are violated. The log shows the constraint violation exception that causes the application,
my_company_app, to fail:
[9/29/10 10:52:05:125 CDT] 00000009 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyActSpec@51625162 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’Size should be between 2 and 4’, propertyPath=asProperty1,

rootBeanClass=class com.my.company.adapter.MyActSpec, messageTemplate=’Size should be between 2 and 4’}
ConstraintViolationImpl{interpolatedMessage=’Should be < 30’, propertyPath=asProperty2,

rootBeanClass=class com.my.company.adapter.MyActSpec, messageTemplate=’Should be < 30’}
[9/29/10 10:52:05:171 CDT] 00000009 RAWrapperImpl E
J2CA0089E: The method activateEndpoint on ResourceAdapter JavaBean
cells/IBM-46DF84D297BNode01Cell/nodes/IBM-46DF84D297BNode01/resources.xml#J2CResourceAdapter_1285109389828

failed with the following exception:
javax.resource.ResourceException: com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.validateActivation...(at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.createAndInitializ...(
at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.activateEndpoint(
...
[9/29/10 10:52:05:750 CDT] 00000009 ApplicationMg A WSVR0217I: Stopping application: my_company_app
. . .

AdministeredObject beans

AdministeredObject beans are validated when the server starts a J2C resource adapter that contains the
administered object in its configuration. When validation fails, the server rejects the AdministeredObject
instance and the resulting constraint violation exception causes the resource adapter to fail.

Chapter 7. Developing data access resources 121

The following example is an AdministeredObject beans, MyAdminObj, at heap address 3a803a80. Two
validation constraints are violated. The log shows the constraint violation exception that causes resource
adapter to fail:
[9/29/10 10:51:25:125 CDT] 00000000 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyAdminObj@3a803a80 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’The value should be greater than 10’, propertyPath=aoProperty4,
rootBeanClass=class com.my.company.adapter.MyAdminObj, messageTemplate=’The value should be greater than 10’}

...
[9/29/10 10:51:25:218 CDT] 00000000 AdminObjectSe A
J2CA0017I: An exception occurred while building the serializable for JNDI deployment of jms/MyAdminObj :
com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.AdminObjectSerBuilderImpl._createAndValidate...(
at com.ibm.ejs.j2c.AdminObjectSerBuilderImpl.createAndValidate...(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.startRA(
. . .

JCA 1.6 support for annotations in RAR modules
The Java Connector Architecture (JCA) Version 1.6 specification adds support for Java annotations in
resource archive (RAR) modules. Annotations are a means of specifying metadata, or configuration data,
for a RAR module in the class files that make up the module.

Before JCA 1.6, this metadata was specified only in the deployment descriptor, but now you can specify
this metadata using either a deployment descriptor or annotations. Metadata that is specified in
annotations is merged into the deployment descriptor of a RAR module when it is updated, if the module is
not marked metadata-complete in the deployment descriptor and if the module version is 1.6 or later.

The metadata-complete element defines whether the deployment descriptor for the resource adapter
module is complete or whether the class files that are available to the module and packaged with the
resource adapter should be examined for annotations that specify deployment information. If the
metadata-complete is set to true, the application server deployment tool must ignore any annotations that
specify deployment information, which might be present in the class files of the application. If
metadata-complete is not specified, or is set to false, the deployment tool must examine the class files of
the application for annotations, as specified by the JCA 1.6 Specification. If the deployment descriptor is
not included, or is included but not marked metadata-complete, the deployment tool processes
annotations.

Application servers must assume that metadata-complete is true for resource adapter modules with
deployment descriptors that meet the requirements of JCA specification 1.5 and earlier. For a complete list
of the supported annotations and their usage, consult the JCA specification.

The JCA Version 1.6 specification also adds support for Bean Validation constraint annotations in RAR
modules. You can specify Bean Validation constraint metadata for RAR JavaBeans by decorating your
classes with Bean Validation constraint annotations or by supplying XML validation descriptors. The
Application Server validates the constraints of all JCA 1.6 RAR JavaBeans instances before placing them
into service at run time.

Extensions to data access APIs
If a single data access API does not provide a complete solution for your applications, use WebSphere
Application Server extensions to achieve interoperability between both the JCA and JDBC APIs.

Applications that draw from diverse and complex resource management configurations might require use
of both the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) API and the Java
Database Connectivity (JDBC) API. However, in some cases the JDBC programming model does not
completely integrate with the JCA (even though full integration is a foundation of the JCA specification).
These inconsistencies can limit data access options for an application that uses both APIs. WebSphere
Application Server provides API extensions to resolve the compatibility issues.

For example:

122 Developing WebSphere applications

Without the benefit of an extension, applications using both APIs cannot modify the properties of a
shareable connection after making the connection request, if other handles exist for that connection. (If no
other handles are associated with the connection, then the connection properties can be altered.) This
limitation stems from an incompatibility between the connection-configuration policies of the APIs:

The Connector Architecture (JCA) specification supports relaying to the resource adapter the specific
properties settings at the time you request the connection (using the getConnection() method) by passing
in a ConnectionSpec object. The ConnectionSpec object contains the necessary connection properties
used to get a connection. After you obtain a connection from this environment, your application does not
need to alter the properties. The JDBC programming model, however, does not have the same interface to
specify the connection properties. Instead, it gets the connection first, then sets the properties on the
connection.

WebSphere Application Server provides the following extensions to fill in such gaps between the JDBC
and JCA specifications:
v WSDataSource interface - this interface extends the javax.sql.DataSource class, and enables a

component or an application to specify the connection properties through the WebSphere Application
Server JDBCConnectionSpec class to get a connection.
– getConnection(JDBCConnectionSpec) - this method returns a connection with the properties

specified in the JDBCConnectionSpec class.
– For more information see the WSDataSource API documentation topic (as listed in the API

documentation index).
v JDBCConnectionSpec interface - this interface extends the

com.ibm.websphere.rsadapter.WSConnectionSpec class, which extends the
javax.resources.cci.ConnectionSpec class. The standard ConnectionSpec interface provides only the
interface marker without any get() and set() methods. The WSConnectionSpec and the
JDBCConnectionSpec interfaces define a set of get() and set() methods used by the WebSphere
Application Server run time. This interface enables the application to specify all the essential connection
properties in order to get an appropriate connection. You can create this class from the WebSphere
WSRRAFactory class. For more information see the JDBCConnection API documentation topic (as listed
in the API documentation index).

v WSRRAFactory class - this is a factory class for the WebSphere Relational Resource Adapter, which
allows the user to create a JDBCConnectionSpec object or other resource adapter related object. For
more information see the WSRRAFactory API documentation topic (as listed in the API documentation
index).

v WSConnection interface - this is an interface that allows users to call WebSphere proprietary methods
on SQL connections; those methods are:
– setClientInformation(Properties props) - See the topic, Example: Setting the client information with

the setClientInformation(Properties) API, for more information and examples of setting client
information.

– Properties getClientInformation() - This method returns the properties object that is set using
setClientInformation(Properties). Note that the properties object returned is not affected by
implicit settings of client information.

– WSSystemMonitor getSystemMonitor() - This method returns the SystemMonitor object from the
backend database connection if the database supports System Monitors. The backend database will
provide some connection statistics in the SystemMonitor object. The SystemMonitor object returned
is wrapped in a WebSphere object (com.ibm.websphere.rsadapter.WSSystemMonitor) to shield
applications from dependency on any database vendor code. See
com.ibm.websphere.rsadapter.WSSystemMonitor Java documentation for more information. The
following code is an example of using the WSSystemMonitor class:
import com.ibm.websphere.rsadapter.WSConnection;
...
try{
InitialContext ctx=new InitialContext();
// Perform a naming service lookup to get the DataSource object.
DataSource ds=(javax.sql.DataSource]ctx.lookup("java:comp/jdbc/myDS");
} catch (Exception e) {;}

Chapter 7. Developing data access resources 123

WSConnection conn=(WSConnection)ds.getConnection();
WSSystemMonitor sysMon=conn.getSystemMonitor();
if (sysMon!=null) // indicates that system monitoring is supported on the current backend database
{
sysMon.enable(true);
sysMon.start(WSSystemMonitor.RESET_TIMES);
// interact with the database
sysMon.stop();
// collect data from the sysMon object
}
conn.close();

The WSConnection interface is part of the plugins_root/com.ibm.ws.runtime.jar file.

Example: Using IBM extended APIs for database connections.

Using the WSDataSource extended API, you can code your JDBC application to define connection
properties through an object prior to obtaining a connection. This behavior increases the chances that the
application can share a connection with another component, such as a CMP.

If your application runs with a shareable connection that might be shared with other container-managed
persistence (CMP) beans within a transaction, it is recommended that you use the WebSphere Application
Server extended APIs to get the connection. When you use these APIs, you cannot port your application to
other application servers.

You can code with the extended API directly in your JDBC application; instead of using the DataSource
interface to get a connection, use the WSDataSource interface. The following code segment illustrates
WSDataSource:
import com.ibm.websphere.rsadapter.*;

...

// Create a JDBCConnectionSpec and set connection properties. If this connection is shared with
the CMP bean, make sure that the isolation level is the same as the isolation level that is mapped by
the Access Intent defined on the CMP bean.

JDBCConnectionSpec connSpec = WSRRAFactory.createJDBCConnectionSpec();

connSpec.setTransactionIsolation(CONNECTION.TRANSACTION_REPEATABLE_READ);

connSpec.setCatalog("DEPT407");

//Use WSDataSource to get the connection

Connection conn = ((WSDataSource)datasource).getConnection(connSpec);

Example: Using IBM extended APIs to share connections between CMP beans and BMP
beans.

Within an application component that accesses data through JDBC objects (such as a bean-managed
persistence (BMP) bean), you can use a WebSphere extended API to define connection properties through
an object prior to obtaining a connection. This behavior increases the chances that the BMP bean can
share a connection with a container-managed persistence (CMP) bean.

If your BMP bean runs with a shareable connection that might be shared with other container-managed
persistence (CMP) beans within a transaction, it is recommended that you use the WebSphere Application
Server extended APIs to get the connection. When you use these APIs, you cannot port your application to
other application servers.

In this case, use the extended API WSDataSource interface rather than the DataSource interface. To
ensure that both the CMP and bean-managed persistence (BMP) beans are sharing the same physical

124 Developing WebSphere applications

connection, define the same access intent profile on both the CMP and BMP beans. Inside your BMP
method, you can get the right isolation level from the relational resource adapter helper class.
package fvt.example;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.ejb.CreateException;
import javax.ejb.DuplicateKeyException;
import javax.ejb.EJBException;
import javax.ejb.ObjectNotFoundException;
import javax.sql.DataSource;

// following imports are used by the IBM extended API
import com.ibm.websphere.appprofile.accessintent.AccessIntent;
import com.ibm.websphere.appprofile.accessintent.AccessIntentService;
import com.ibm.websphere.rsadapter.JDBCConnectionSpec;
import com.ibm.websphere.rsadapter.WSCallHelper;
import com.ibm.websphere.rsadapter.WSDataSource;
import com.ibm.websphere.rsadapter.WSRRAFactory;

/**
* Bean implementation class for Enterprise Bean: Simple
*/

public class SimpleBean implements javax.ejb.EntityBean {
private javax.ejb.EntityContext myEntityCtx;

// Initial context used for lookup.

private javax.naming.InitialContext ic = null;

// define a JDBCConnectionSpec as instance variable

private JDBCConnectionSpec connSpec;

// define an AccessIntentService which is used to get
// an AccessIntent object.

private AccessIntentService aiService;

// AccessIntent object used to get Isolation level

private AccessIntent intent = null;

// Persitence table name

private String tableName = "cmtest";

// DataSource JNDI name

private String dsName = "java:comp/env/jdbc/SimpleDS";

// DataSource

private DataSource ds = null;

// bean instance variables.

private int id;
private String name;

/**
* In setEntityContext method, you need to get the AccessIntentService
* object in order for the subsequent methods to get the AccessIntent
* object.
* Other ejb methods will call the private getConnection() to get the
* connection which has all specific connection properties
*/

Chapter 7. Developing data access resources 125

public void setEntityContext(javax.ejb.EntityContext ctx) {
myEntityCtx = ctx;

try {
aiService =
(AccessIntentService) getInitialContext().lookup(
"java:comp/websphere/AppProfile/AccessIntentService");

ds = (DataSource) getInitialContext().lookup(dsName);
}
catch (javax.naming.NamingException ne) {
throw new javax.ejb.EJBException(
"Naming exception:" + ne.getMessage());

}
}

/**
* ejbCreate
*/

public fvt.example.SimpleKey ejbCreate(int newID)
throws javax.ejb.CreateException, javax.ejb.EJBException {
Connection conn = null;
PreparedStatement ps = null;

// Insert SQL String

String sql = "INSERT INTO" + tableName + "(id, name) VALUES (?, ?)";

id = newID;
name = "";

try {
// call the common method to get the specific connection

conn = getConnection();
}
catch (java.sql.SQLException sqle) {
throw new EJBException("SQLException caught:" + sqle.getMessage());
}
catch (javax.resource.ResourceException re) {
throw new EJBException(
"ResourceException caught:" + re.getMessage());

}

try {
ps = conn.prepareStatement(sql);
ps.setInt(1, id);
ps.setString(2, name);

if (ps.executeUpdate() != 1) {
throw new CreateException("Failed to add a row to the DB");
}
}
catch (DuplicateKeyException dke) {
throw new javax.ejb.DuplicateKeyException(
id + "has already existed");

}
catch (SQLException sqle) {
throw new javax.ejb.CreateException(sqle.getMessage());
}
catch (CreateException ce) {
throw ce;
}
finally {
if (ps != null) {
try {
ps.close();
}
catch (Exception e) {
}
}

126 Developing WebSphere applications

}
return new SimpleKey(id);
}

/**
* ejbLoad
*/

public void ejbLoad() throws javax.ejb.EJBException {

Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

String loadSQL = null;

try {
// call the common method to get the specific connection

conn = getConnection();
}
catch (java.sql.SQLException sqle) {
throw new EJBException("SQLException caught:" + sqle.getMessage());
}
catch (javax.resource.ResourceException re) {
throw new EJBException(
"ResourceException caught:" + re.getMessage());

}

// You need to determine which select statement to be used based on the
// AccessIntent type:
// If READ, then uses a normal SELECT statement. Otherwise uses a
// SELECT...FORUPDATE statement
// If your backend is SQLServer, then you can use different syntax for
// the FOR UPDATE clause.

if (intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ) {
loadSQL = "SELECT * FROM" + tableName + "WHERE id = ?";
}
else {
loadSQL = "SELECT * FROM" + tableName + "WHERE id = ? FOR UPDATE";
}

SimpleKey key = (SimpleKey) getEntityContext().getPrimaryKey();

try {
ps = conn.prepareStatement(loadSQL);
ps.setInt(1, key.id);
rs = ps.executeQuery();
if (rs.next()) {
id = rs.getInt(1);
name = rs.getString(2);
}
else {
throw new EJBException("Cannot load id =" + key.id);
}
}
catch (SQLException sqle) {
throw new EJBException(sqle.getMessage());
}
finally {
try {
if (rs != null)
rs.close();

}
catch (Exception e) {
}
try {
if (ps != null)
ps.close();

}
catch (Exception e) {

Chapter 7. Developing data access resources 127

}
try {
if (conn != null)
conn.close();

}
catch (Exception e) {
}
}
}

/**
* This method will use the AccessIntentService to get the access intent;
* then gets the isolation level from the DataStoreHelper
* and sets it in the connection spec; then uses this connection
* spec to get a connection which has the specific connection
* properties.
**/

private Connection getConnection()
throws java.sql.SQLException, javax.resource.ResourceException, EJBException {

// get current access intent object using EJB context
intent = aiService.getAccessIntent(myEntityCtx);

// Assume this bean only supports the pessimistic concurrency
if (intent.getConcurrencyControl()
!= AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC) {
throw new EJBException("Bean supports only pessimistic concurrency");
}

// determine correct isolation level for currently configured database
// using DataStoreHelper
int isoLevel =
WSCallHelper.getDataStoreHelper(ds).getIsolationLevel(intent);
connSpec = WSRRAFactory.createJDBCConnectionSpec();
connSpec.setTransactionIsolation(isoLevel);

// Get connection using connection spec
Connection conn = ((WSDataSource) ds).getConnection(connSpec);
return conn;
}

Recreating database tables from the exported table data definition language
When the WebSphere Application Server deployment tooling deploys an EJB jar file containing
container-managed persistence (CMP) enterprise beans, it selects the target database and creates a
corresponding Table.ddl file. This file contains the SQL statement necessary to generate the database
table for your CMP beans.

About this task

The following steps demonstrate the process for creating tables in DB2.

Procedure
1. Extract the Table.ddl file from your CMP enterprise bean JAR file and save it on your database

server.

v Save the file to a working directory, such as C:\temp, on your DB2 machine.

2. Run the Table.ddl file.

v Run the command C:\temp>db2cmd, replacing C:\temp with your chosen directory. A DB2
command window is displayed, in which you enter the following commands (replacing C:\temp with
your chosen directory):

a. C:\temp>db2 connect to your_db_name

b. C:\temp>db2 -tf Table.ddl //This command runs and creates tables for your CMP enterprise
bean.

128 Developing WebSphere applications

c. C:\temp>db2 disconnect all

Note: If you run DB2 on supported UNIX systems, use these
same commands. Run them from a user with permissions for DB2, rather than from a DB2
command window.

Results

The database tables are created.

Container managed persistence bean associated technologies
WebSphere Application Server delivers container-managed persistence (CMP) services beyond the
standards set by the Enterprise JavaBeans (EJB) specification.

According to the specification, the EJB container synchronizes the state of CMP beans with the underlying
database, and manages the relationships (container-managed relationships, or CMR's) among entity
beans. Thus the EJB specification relieves bean developers from writing any database-specific code;
instead, they can focus on writing business logic. WebSphere Application Server offers the following
additional CMP functions to increase development efficiency even more, as well as optimize the run-time
performance of business logic:
Entity bean inheritance

Inheritance is a key aspect of object-oriented software development and is a capability currently
missing from the EJB specification.

The use of inheritance enables a developer to define fields, relationships, and business logic in a
superclass entity bean that are inherited by all subclasses. See the section EJB inheritance of the
Rational Application Developer documentation for details on using inheritance with WebSphere
Application Server and entity beans.

Access Intent Policies
Access intent policies provide Java Platform, Enterprise Edition (Java EE) application developers
the mechanism by which they can indicate the intent of an application's interaction with the
essential state for entity beans in order that the persistence mechanisms can make appropriate
optimizations. For example, if it is known that an entity is not updated during the course of a
transaction, then the persistence management is able to ease up on the concurrency control and
still maintain data integrity by disallowing update operations on that bean for the duration of the
transaction.

Caching data across transactions
Data caching across transactions is a configurable option set by the bean deployer that can
greatly improve performance. Essentially, this is for data that changes infrequently. The option is
known as LifetimeInCache. The data for an entity configured for lifetime in cache is stored in a
cache until its specified lifetime expires. Requests on the entity during that configured lifetime use
the cached data, and do not result in the execution of queries against the underlying data store.
Lifetime can be expressed as time elapsed since the data was retrieved from the data store or
until a specific time of day or week. The LifetimeInCache value can be one of the following:
Off The LifetimeInCache setting is ignored. Beans of this type are only cached in a transaction

scoped cache. The cached data for this instance is not valid when the transaction is
completed.

ElapsedTime
The value in the LifetimeInCache setting is added to the current time when the transaction
(in which the bean instance is retrieved) is completed. The cached data for this instance is
not valid after this time. The value of the LifetimeInCache setting can add up to minutes,
hours, days, and so on.

ClockTime
The value of LifetimeInCache represents a particular time of day. The value is added to
the immediately preceding or following midnight to calculate a future time value, which is

Chapter 7. Developing data access resources 129

then treated as for Elapsed Time. Using this setting enables you to specify that all
instances of this bean type have their cached data invalidated at a specific time no matter
when the data were retrieved.

The use of preceding or following midnight to calculate a future time value depends on the
value of LifetimeInCache. If LifetimeInCache plus preceding midnight is earlier than the
current time, then the following midnight is used.

When you use the ClockTime setting, the value of LifetimeInCache must not represent
more than 24 hours. If it does, the cache manager subtracts increments of 24 hours from
it until a value less than or equal to 24 hours is achieved. To invalidate data at 12
midnight, you set LifetimeInCache to zero (0).

WeekTime
This setting is similar to ClockTime, except the value of LifetimeInCache is added to the
preceding or following Sunday midnight (actually, 11:59 PM on Saturday plus 1 minute). In
this case, the LifetimeInCache value can represent more than 24 hours, but not more than
7 days.

See the LifetimeInCache help sections of the assembly tool for more details.

Note:

Because the data used by an entity bean can be loaded by previous transactions, if you
configure the bean as LifeTimeInCache, the isolation level and update lock (access intent
policies) for the bean are lost for the current transaction. This can cause data integrity
problems if your application has logic to calculate information from read-only data, and then
save the result in another bean. This makes it important to perform read-read consistency
checking to ensure the data get locked properly if loading the data from in-memory cache;
otherwise, data is updated to the database without knowing the underlining data is
changed, causing previous changes to be lost. For more information, see the topic
Configuring read-read consistency checking with an assembly tool.

Read-only entity beans
Declaring entity beans as read-only potentially increases the performance enhancement offered by
caching. Both features operate on the same principle: to minimize the overhead incurred by
frequent reloading of entity beans from data in persistent storage. When you designate entity
beans as read-only, you can specify the reload requirements and frequency, according to the
needs of your application.

To use this function, you declare the bean type as read-only by selecting a particular set of bean
caching options, through a selection list within the assembly tooling. See Configuring read-read
consistency checking with an assembly tool for details.

Container-managed persistence restrictions and exceptions:

Some external software that directly impact your applications can limit container-managed persistence
(CMP) features. However, you can work around these limitations.

In each case, only very specific behaviors of the software place restrictions on your CMP beans. The
following tips help you prevent these behaviors.

CMP deployment and Sybase IMAGE type restriction

When deploying enterprise beans with container managed persistence (CMP) types that are non-primitive
and do not have a natural JDBC mapping, the deployment tool maps the CMP type to a binary type in the
database, where it is stored as a serialized instance. For Sybase, the tool uses the JDBC type LONG
VARBINARY. The Sybase driver maps LONG VARBINARY to the native type IMAGE.

130 Developing WebSphere applications

Although the type VARBINARY has fewer restrictions than IMAGE in Sybase, you cannot use it because it
is limited to a size of 255 bytes, which is too small for typical serialized Java objects.

The specific restrictions on the IMAGE type are:

v You cannot use the IMAGE type in the WHERE clause of an SQL query. You can encounter this
restriction whenever an enterprise bean contains an EJB-QL query that has a CMP type in the WHERE
clause, which maps to the IMAGE type in the Sybase relational database.

v You cannot use IMAGE type in select queries marked DISTINCT. This situation arises in these user
scenarios:

– When the DISTINCT key word is specified in an EJB-QL select query having a Java type mapping to
IMAGE.

– When Enterprise beans have finder and ejbSelect() methods returning java.util. Set and have CMP
types mapping to IMAGE.

To work around this restriction, edit the EJB mappings in the Rational Application Developer toolset and do
either of the following:

v If you are sure that the serialized instance of the CMP type is never larger than 255 bytes, you can
change the CMP type mapping from IMAGE or LONG VARBINARY to VARBINARY.

v Map the CMP type to multiple RDB fields through a composer. For example, if the CMP type is a Java
object X with an int field and a string field, then map X to two RDB fields INTEGER and VARCHAR,
using a composer. Refer to the Rational Application Developer documentation for more information
about using composers.

A ClassCastException exception occurs when running CMP 1.1 beans

If you created your Enterprise JavaBeans (EJB) application using Rational Application Developer or
WebSphere Studio Application Developer Integration Edition, Version 4.0.x , and the application contains
container managed persistence (CMP) 1.1 beans with associations (relationships), you might receive a
java.lang.ClassCastException exception when you run your application on WebSphere Application Server.

Note: Business processes modeled with WebSphere Studio Application Developer Integration Edition
Version 5.0 or earlier are deprecated.

The cast operation generated by Rational Application Developer or WebSphere Studio Application
Developer Integration Edition, Version 4.0.x, does not use the javax.rmi.PortableRemoteObject.narrow(...)
object to convert the remote object to the remote interface of CMP beans in the XToYLink.java (or
YToXLink.java) class where X and Y are CMP 1.1 beans.

Recommended response:

1. Locate the following methods in all link classes, for example, XToYLink.java and YToXLink.java where
X and Y are CMP 1.1 beans:
public void secondaryAddElementCounterLinkOf(javax.ejb.EJBObject anEJB)
public void secondaryRemoveElementCounterLinkOf(javax.ejb.EJBObject anEJB)
public void secondarySetCounterLinkOf(javax.ejb.EJBObject anEJB)

2. Add the javax.rmi.PortableRemoteObject.narrow(...) object to convert the remote object to the remote
interface of CMP beans.

For example, change the following original method:
public void secondaryAddElementCounterLinkOf(javax.ejb.EJBObject anEJB) throws java.rmi.RemoteException {

if (anEJB != null)
((X) anEJB).secondaryAddY((Y) getEntityContext().getEJBObject());

to:

Chapter 7. Developing data access resources 131

public void secondaryAddElementCounterLinkOf(javax.ejb.EJBObject anEJB) throws java.rmi.RemoteException {
if (anEJB != null)

((X) anEJB).secondaryAddY((Y)
javax.rmi.PortableRemoteObject.narrow(getEntityContext().getEJBObject(), Y.class));

Application performance and entity bean behavior:

WebSphere Application Server allows you to override two behaviors that are required by the Enterprise
JavaBeans (EJB) specification, because your application might benefit from handling these aspects of
bean data management in a slightly different manner.

Application-managed persistent store synchronization for findBy methods

Sections 10.5.3 and 12.1.4.2 of the EJB 2.0 and 2.1 specifications require that prior to running a query as
part of any findBy method (except for findByPrimaryKey), the EJB container writes out to persistent
storage the state of any entity beans of the type that are enlisted in the current transaction. Stated another
way, the container performs the following actions:

1. Creates a list of beans that are both enlisted in the current transaction and are of the same type that
the findby method is returning

2. Stores the state of these enterprise beans to persistent storage before running the query

If the state of an EJB instance is not altered in the current transaction, the store operation is skipped for
that instance. This practice ensures that the query is performed on the most current state of all the
persistent data, reducing the chance of data integrity issues.

However, there are scenarios where it is inefficient and wasteful for the EJB container to automatically
perform this action on every findBy method. Examples of this would be where the application itself ensures
that the most current data is used on findBy queries, or where the application can tolerate some
non-current data as part of the query results.

WebSphere Application Server allows you to initiate the synchronization process under application control,
and to disable the container-managed synchronization for specific EJB types within your application.
Careful use of these functions can improve the performance of your application without sacrificing data
integrity. Refer to the topic Manipulating the synchronization of entity beans and datastores.

Avoiding ejbStore invocations on non-modified entity bean instances

The EJB specification requires that the EJB container invoke the user-provided ejbStore method on all
entity beans within a transaction when that transaction is committed. For container-managed persistence
(CMP) beans (as opposed to bean-managed persistence beans) this operation is usually unnecessary,
because this method on CMP beans is often empty. Even in cases where the method is not empty, the
application might only require the method to be called if the bean's persistent state is modified during the
current transaction.

WebSphere Application Server provides a mechanism for you to indicate if you want this behavior for
specific EJB types within the application. See the topic Avoiding ejbStore invocations on non-modified
EntityBean instances.

Manipulating synchronization of entity beans and datastores
You can indicate that a particular Enterprise JavaBeans (EJB) type should not synchronize its state to
persistent storage prior to each findBy invocation by using environment variables or a marker interface.

About this task

There are two options available for indicating that a particular EJB type should not synchronize its state to
persistent storage prior to each findBy invocation:

132 Developing WebSphere applications

v Set an EJB environment variable within the bean's deployment descriptor

v Have the bean implementation class implement a marker interface. This second technique is especially
useful if you have a number of bean implementations that all extend a single root class; in this case you
can have the root class implement the marker interface, causing all beans that extend this class to
inherit the behavior as well.

Procedure
v To use the EJB environment variable technique, edit the EJB deployment descriptor using any

standard Java Platform, Enterprise Edition (Java EE) development tool. For information on your tool
options, see the topic, Assembly tools.

1. Start the tool.

2. Select the EJB deployment descriptor of the bean with which you want to work.

3. Create an EJB environment variable with the name com/ibm/websphere/ejbcontainer/
disableFlushBeforeFind.

4. Set the type of this variable to java.lang.Boolean.

5. Set the value to True to prevent the pre-find synchronization, or False to enable the default
behavior.

6. Save your changes.

v To use a marker interface, code your bean implementation class to implement the
com.ibm.websphere.ejbcontainer.disableFlushBeforeFind interface. The bean implementation class
need not directly implement the interface; any parent class can implement the interface. See the
com.ibm.websphere.ejbcontainer package in the Reference > Developer > API documentation
section of the information center.

Ensuring data integrity for queries performed during a transaction

If you choose to disable the automatic pre-find synchronization for certain bean types, it is very
important that your application use other means to ensure that queries performed during the transaction
are not performed on data that might no longer be valid. You can use the flushCache method on the
com.ibm.websphere.ejbcontainer.EJBContextExtension class (an extension of javax.ejb.EJBContext) to
perform a manual synchronization to persistent storage at times that are defined by the application. For
more information on EJBContextExtension and its related classes SessionContextExtension,
EntityContextExtension and MessageDrivenContextExtension, see the
com.ibm.websphere.ejbcontainer package in the Reference > Developer > API documentation
section of the information center.

Avoiding ejbStore invocations on non-modified EntityBean instances
You can configure your EntityBean instances to bypass an invocation of the ejbStore method if they have
not been modified during the current transaction.

About this task

There are two options available for indicating that a particular Enterprise JavaBeans (EJB) type should
only have its ejbStore method invoked if the bean has been modified during the current transaction:

v Set an EJB environment variable within the bean's deployment descriptor

v Have the bean implementation class implement a marker interface. This second technique is especially
useful if you have a number of bean implementations that all extend a single root class; in this case you
may have the root class implement the marker interface, causing all beans that extend this class to
inherit the behavior as well.

Procedure
v To use the EJB environment variable technique, edit the EJB deployment descriptor using any

standard Java Platform, Enterprise Edition (Java EE) development tool. Use the following steps as a
guide. For information on your tool options, see the topic, Assembly tools.

Chapter 7. Developing data access resources 133

1. Start the tool.

2. Select the EJB deployment descriptor of the bean you want to work with.

3. Create an EJB environment variable with the name com/ibm/websphere/ejbcontainer/
disableEJBStoreForNonDirtyBeans.

4. Set the type of this variable to java.lang.Boolean.

5. Set the value to True to avoid the ejbStore invocation, or False to enable the default behavior.

6. Save your changes.

v To use a marker interface, code your bean implementation class to implement the
com.ibm.websphere.ejbcontainer.DisableEJBStoreForNonDirtyBeans interface. The bean
implementation class need not directly implement the interface; any parent class can implement the
interface. See the com.ibm.websphere.ejbcontainer package in the Reference > Developer > API
documentation section of the information center.

Resource reference benefits
WebSphere Application Server requires your code to reference application server resources (such as data
sources or J2C connection factories) through logical names, rather than access the resources directly in
the Java Naming and Directory Interface (JNDI) name space. These logical names are called resource
references.

Application Server requires use of resource references for the following reasons:
v If application code looks up a data source directly in the JNDI naming space, every connection that is

maintained by that data source inherits the properties that are defined in the application. Consequently,
you create the potential for numerous exceptions if you configure the data source to maintain shared
connections among multiple applications. For example, an application that requires a different
connection configuration might attempt to access that particular data source, resulting in application
failure.

v It relieves the programmer from having to know the name of the actual data source or connection
factory at the target application server.

v You can set the default isolation level for a data source through resource references. With no resource
reference you get the default for the JDBC driver you use.

The following example of using a resource reference invokes a data source by creating a place holder for
it through the lookup method. Using the logical name jdbc/Section, the code stores the place holder in the
JNDI subcontext java:comp/env/; hence jdbc/Section becomes a resource reference. (The subcontext
java:comp/env/ is the name space that WebSphere Application Server provides exclusively for object
references within application code.)
javax.sql.DataSource specificDataSource =

(javax.sql.DataSource) (new InitialContext()).lookup("java:comp/env/jdbc/Section");
//The method InitialContext()).lookup creates the logical name, or resource reference, jdbc/Section.

Generally, an actual data source is configured later as an administrative task.

The logical name jdbc/Section is officially declared as a resource reference in the application deployment
descriptor. You can then associate the resource reference with the JNDI name of the actual data source in
several ways:

v If you know the data source JNDI name at the point of application assembly, specify the name on the
resource references Bindings page.

v Specify the data source JNDI name during application deployment.

v Map the resource reference to the data source JNDI name when you configure the application after
deployment.

This act of association is called binding the resource reference to the data source.

See the article, Application bindings, for information on all types of required resource bindings.

134 Developing WebSphere applications

Requirements for setting data access isolation levels:

This article discusses the criteria and effects of setting isolation levels for data access components that
comprise Enterprise JavaBeans (EJB) 2.x and later modules.

In an EJB 1.1 module, you can set the isolation level at the method level or bean level. This capability also
applies to container-managed persistence (CMP) 1.1 beans that you assemble into EJB 2.x modules.
WebSphere Application Server permits the deployment descriptor of a CMP bean to declare the version
level of 1.1, regardless of the overall module version.

However, the ability to set isolation level at the method or bean level does not apply to other enterprise
beans within an EJB 2.x module, including CMP 2.x beans. WebSphere Application Server Version 5.0
removed this capability from EJB 2.0 modules to deliver an architecture that ultimately provides more
efficient connection use.

Consequently, later versions of the product enforce the following restrictions on declaring isolation level for
CMP 2.x beans—as well as session beans, message-driven beans, and bean managed persistence (BMP)
beans that you assemble into EJB 2.x modules:

v You cannot specify isolation level on the EJB method level or bean level.

v If you configure a JDBC application, a bean-managed persistence (BMP) bean, or a servlet to
participate in global transactions, any connection that is shared cannot accept a user-specified isolation
level. WebSphere Application Server can only set a user-specified isolation level on a connection that is
not shared within a global transaction. Generally, you want to refrain from specifying isolation levels on
shareable connections.

The configuration for the isolation level is determined by the type of bean that is used by the component:

Isolation level on connections used by 2.x CMP beans
In a EJB 2.x module, when a CMP 2.x bean uses a new data source to access a backend
database, the isolation level is determined by the WebSphere Application Server run time, based
on the type of access intent assigned to the bean or the calling method. Other non-CMP
connection users can access this same data source and also use the access intent and
application profile support to manage their concurrency control.

Connections used by other 2.x enterprise beans and other non-CMP components
For all other JDBC connection instances (connections other than those used by CMP beans), you
can specify an isolation level on the data source resource reference. For shareable connections
that run in global transactions, this method is the only way to set the isolationLevel for
connections. Trying to directly set the isolation level through the setTransactionIsolation() method
on a shareable connection that runs in a global transaction is not allowed. To use a different
isolation level on connections, you must provide a different resource reference. Set these defaults
through your assembly tool.

Each resource reference associates with one isolation level. When your application uses this
resource reference Java Naming and Directory Interface (JNDI) name to look up a data source,
every connection returned from this data source using this resource reference has the same
isolation level.

Components needing to use shareable connections with multiple isolation levels can create
multiple resource references, giving them different JNDI names, and have their code look up the
appropriate data source for the isolation level they need. In this way, you use separate
connections with the different isolation levels enabled on them.

It is possible to map these multiple resource references to the same configured data source. The
connections still come from the same underlying pool, however; the connection manager does not
allow sharing of connections requested by resource references with different isolation levels.
Consider the following scenario:

v A data source is bound to two resource references: jdbc/RRResRef and jdbc/RCResRef.

Chapter 7. Developing data access resources 135

v RRResRef has the RepeatableRead isolation level defined. RCResRef has the ReadCommitted
isolation level defined.

If your application wants to update the tables or a BMP bean updates some attributes, it can use
the jdbc/RRResRef JNDI name to look up the data source instance. All connections returned from
the data source instance have a RepeatableRead isolation level. If the application wants to
perform a query for read only, then it is better to use the jdbc/RCResRef JNDI name to look up the
data source.

The product does not require you to set the isolation level on a data source resource reference for
a non-CMP application module. If you do not specify isolation level on the resource reference, or if
you specify TRANSACTION_NONE, the WebSphere Application Server run time uses a default
isolation level for the data source. Application Server uses a default setting based on the JDBC
driver.

For most drivers, WebSphere Application Server uses an isolation level default of
TRANSACTION_REPEATABLE_READ. For Oracle drivers, however, Application Server uses an
isolation level of TRANSACTION_READ_COMMITTED. Use the following table for quick
reference:

Database: Default isolation level:

DB2 RR

Oracle RC

Sybase RR

Informix® RR

Apache Derby RR

SQL Server RR

Note: These same default isolation levels are used in cases of direct JNDI lookups of a data
source.

v RR = JDBC Repeatable read (TRANSACTION_REPEATABLE_READ)

v RC = JDBC Read committed (TRANSACTION_READ_COMMITTED)

To customize the default isolation level, you can use the webSphereDefaultIsolationLevel custom
property for the data source. In most cases you should define the isolation level in the deployment
descriptor when you package the EAR file, but in certain situations you might need to customize
the default isolation level. This property will have no effect if any of the previous options are used,
and this custom property is provided for those situations in which there is no other means of
setting the isolation level.

Use the following values for webSphereDefaultIsolationLevel custom property:

Possible values JDBC isolation level DB2 isolation level

8 TRANSACTION_SERIALIZABLE Repeatable Read (RR)

4 (default) TRANSACTION_REPEATABLE_READ Read Stability (RS)

2 TRANSACTION_READ_COMMITTED Cursor Stability (CS)

1 TRANSACTION_READ_UNCOMMITTED Uncommitted Read (UR)

To define this custom property for a data source:

1. Click Resources > JDBC provider > JDBC_provider.

2. Click Data sources in the Additional Properties section.

3. Click the name of the data source.

4. Click Custom properties.

136 Developing WebSphere applications

5. Create the webSphereDefaultIsolationLevel custom property.

a. Click New.

b. Enter webSphereDefaultIsolationLevel for the name field.

c. Enter one of the possible values in the value field.

Application Server sets the isolation level by prioritizing the available settings. Application Server will set
the isolation level based on the values for the following, in this order:

1. Resource reference isolation level

2. Isolation level that is specified by the access intent policy

3. Custom property that configures an isolation level

4. Application Server's default setting.

Data source lookups for enterprise beans and web modules:

During either application assembly or deployment, you must bind the resource reference to the Java
Naming and Directory Interface (JNDI) name of the actual resource in the runtime environment. You can
take this action in the assembly tool or as one of the steps during installation of the application enterprise
archive (EAR) file.

Bean-managed persistence bean: When developing your bean-managed persistence (BMP) bean you
generally lack knowledge about the name of the data source on the target application server. In your code,
do not look up the data source directly. Instead, you look up the resource reference from the
java:comp/env namespace file. Let us assume that you look up the resource reference named ref/ds, for
example:
javax.sql.DataSource dSource = (javax.sql.DataSource)((new InitialContext()).lookup("java:comp/env/ref/ds"));

In the assembly tool, you specify the name ref/ds in the Resource Reference page on the General Tab. If
you know the name of the data source you can specify it in this Resource References page on the
Bindings Tab. Note that if you do not specify it here , you must provide this JNDI name when you install
the application EAR file.

Container-managed persistence bean: The data source binding process for the container-managed
persistence (CMP) bean is the same process that you perform for bean-managed persistence (BMP)
beans. Use the data source JNDI name as a WebSphere binding property for each bean during
application assembly.

Servlets and JavaServer Pages Files: In a servlet application, you look up the data source exactly as you
look it up in the BMP bean case.

Direct and indirect JNDI lookup methods for data sources:

You can use a direct or indirect method for the Java Naming and Directory Interface (JNDI) name (such as
jdbc/DataSource) to look up a data source.

Direct

When you use a JNDI name such as jdbc/myDatasource, the application server assigns default values to
the resource reference data. An informational message resembling the following is logged to document the
default values:
[10/5/07 11:40:38:468 CDT] 0000002e ConnectionFac W
J2CA0294W: Direct JNDI lookup of resource jdbc/myDatasource.
The following default values are used:

[Resource-ref CMConfigData key items]
res-auth: 1 (APPLICATION)
res-isolation-level: 0 (TRANSACTION_NONE)

Chapter 7. Developing data access resources 137

res-sharing-scope: true (SHAREABLE)
loginConfigurationName: null
loginConfigProperties: null

[Resource-ref non-key items]
isCMP1_x: false (not CMP1.x)
isJMS: false (not JMS)
commitPriority 0
Java EE Name: not set
Resource ref name: not set
isCMP: false (not set)

The first of these attributes, res-auth, dictates what type of authentication is done. This default setting says
that the component-managed authentication alias is used if you do not specify an activation specification
or you do not specify the username and password on the getConnection call. It says that the
container-managed alias is not used.

The second of these settings, res-isolation-level, says that the isolation level is set to the "default" settings.
For an enterprise bean, you can set this in the Enterprise JavaBeans (EJB) bean itself. For a servlet
getting a connection, this results in the isolation level being Repeatable_Read. This is a fairly restrictive
isolation level. This can lead to lowered performance, because application requests will lock more rows
than with a less restrictive isolation level.

Finally, the res-sharing-scope is set to Shareable, meaning a Shareable connection is used. For some
applications, a Shareable connection is fine. For others, in particular those servlets that get multiple
connections within a single service() method, it is not.

To avoid any surprises that might accompany these settings, you should change your application to use an
indirect JNDI name instead of the direct JNDI name, and you should create a resource reference.

Indirect

To use values that are different from the defaults, use an assembly tool to define your resource reference.
The resource reference can also be created in the EJB Deployment Descriptor (ejb-jar.xml), Web
Deployment Descriptor (web.xml), or Application Client Deployment Descriptor (application-client.xml)
editors using an assembly tool. After you define the resource reference, you can do an indirect JNDI
lookup (using the java:comp/env context). Then the values for the resource reference properties that are
defined in the resource reference are used and the J2CA0122I message no longer appears. Read the
topic on creating a resource reference for more information.

Access intent service:

The access intent service enables developers to precisely tune the management of application
persistence.

Access intent enables developers to configure applications so that the Enterprise JavaBeans (EJB)
container and its agents can make performance optimizations for entity bean access. Entity beans and
entity bean methods are configured with access intent policies. A policy is acted upon by either the
combination of the WebSphere EJB container and Persistence Manager (for container-managed
persistence (CMP) entities) or by bean-managed persistence (BMP) entities directly. Note that access
intent policies apply to entity beans only.

Predefined access intent policies

Seven predefined access intent policies are available. The policies are composed of different attributes.
The access type is of primary interest and controls the isolation level, lock type, and duration of locks
obtained when bean data is read from the database.

138 Developing WebSphere applications

A pessimistic access type indicates to hold locks for the duration of the transaction under which the data
loads. An optimistic type indicates to drop locks immediately after the data is read from the backend. A
read type indicates that the run time must not allow updates to the data; any attempt to do so on data
read under a read type results in an exception. Update types permit you to change data.

Though a pessimistic update policy is designed to hold update locks on data records, it does not block
threads with other policies that try to access the same data records. When two threads that run pessimistic
update policies access a given record, they serialize (but not block) other threads that run pessimistic read
or optimistic policies and try to access the same record.

The seven access intent policies and their attribute definitions follow:
wsPessimisticUpdate

v Access type = Pessimistic update
v Collection scope = Transaction
v Collection increment = 1
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsOptimisticUpdate
v Access type = Optimistic update
v Collection scope = Transaction
v Collection increment = 25
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsOptimisticRead
v Access type = Optimistic read
v Collection scope = Transaction
v Collection increment = 25
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsPessimisticRead
v Access type = Pessimistic read
v Collection scope = Transaction
v Collection increment = 25
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsPessimisticUpdate-Exclusive
v Access type = Pessimistic update
v Exclusive = true
v Collection scope = Transaction
v Collection increment = 1
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsPessimisticUpdate-NoCollision
v Access type = Pessimistic update
v No collision = true
v Collection scope = Transaction
v Collection increment = 25
v Resource manager prefetch increment = 0
v Read ahead hint = null

wsPessimisticUpdateWeakestLockAtLoad
v *default policy
v Access type = Pessimistic Update
v Promote = true
v Collection scope = transaction
v Collection increment = 25
v Resource manager prefetch increment = 0

Chapter 7. Developing data access resources 139

v Read ahead hint = null

To support connection sharing, you must ensure that all data loaded in the same transaction is under the
same isolation level. Verify that all participating methods that drive loads are configured with either a
pessimistic access type or an optimistic access type.

Access intent -- isolation levels and update locks:

WebSphere Application Server access intent policies provide a consistent way of defining the isolation
level for CMP bean data across the different relational databases in your environment.

Within a deployed application, the combination of an access intent policy concurrency definition and
access type signifies the isolation level value that Application Server sets on a database connection. See
the articles, Concurrency control, and Access intent and isolation, for more information on concurrency and
access type. This combination of properties also signifies the update lock flag that Application Server
passes to the database through a JDBC prepared statement.

Databases do not provide as many isolation level definitions as WebSphere Application Server. Databases
define an isolation level as one of only three types. Furthermore, only one parameter indicates the type of
isolation level that the databases set on incoming connections. Each of the three types can be represented
by a different parameter value, as determined by each database vendor. For example, one database might
define an isolation level as RR (JDBC Repeatable read), whereas a different database might define the
same isolation level as RC (JDBC Read committed).

Because of this inconsistency, WebSphere Application Server does not map access intent policies to the
parameter values. Instead, Application Server maps access intent policies to the types of isolation level
that are common across all database vendors.

Table 7. Access intent policies relationship to database isolation levels and update lock settings. The following
matrix shows how access intent policies correspond to different database isolation levels and update lock settings.
Access Intent profile Isolation level Update lock

implementation

DB2 Oracle* SyBase Informix Apache Derby SQL Server

wsPessimisticUpdate-
Weakest LockAtLoad
(Default policy)

RR RC RR RR RR RR No (*Oracle, Yes)

wsPessimisticUpdate RR RC RR RR RR RR Yes

wsPessimisticRead RR RC RR RR RR RR No

wsOptimisticUpdate RC RC RC RC RC RC No

wsOptimisticRead RC RC RC RC RC RC No

wsPessimisticUpdate
No-Collisions

RC RC RC RC RC RC No

wsPessimisticUpdate-
Exclusive

S S S S S S Yes

v RC = JDBC Read Committed
v RR = JDBC Repeatable Read
v S = JDBC Serializable
v * Oracle does not support JDBC Repeatable Read (RR). Therefore, wsPessimisticUpdate-

weakestLockAtLoad and wsPessimisticUpdate behave the same way on Oracle as do
wsPessismisticRead and wsOptimisticRead. Because of an Oracle restriction, the OracleXADataSource
JDBC class cannot run with an S transaction isolation level. Therefore, you cannot use this class to run
an application containing enterprise beans with access intent policies that are configured to cause the
bean to load with S isolation.

v Setting access intent policies per EJB method support is deprecated for Version 6.0. It is recommended
that you set access intent only for the entire bean.

140 Developing WebSphere applications

New for MS SQL Server 2005: MS SQL Server 2005 offers a new option for the Read Committed
isolation level and a new option for the Serializable isolation level:

v Read Committed with Snapshots

v Transaction Snapshot (for Serializable)

Both options use optimistic locking. To use Read Committed with
Snapshots instead of Read Committed, enable the
READ_COMMITTED_SNAPSHOT setting for the database according to
the MS SQL Server 2005 documentation. To use Transaction Snapshot
instead of Serializable, configure the custom data source property,
snapshotSerializable, to "true" and enable the
ALLOW_SNAPSHOT_ISOLATION setting for the database according to
the MS SQL Server 2005 documentation.

Structured Query Language (SQL) keywords and restrictions

Table 8. SQL keywords and restrictions. The following table shows which SQL keywords are used during update
intent locking, as well as any restrictions imposed on the SQL.
Database SQL syntax used for locking

update
join restrictions order by

restrictions
subselect
restrictions

aggregation
restrictions

DB2 FOR UPDATE OF not allowed not allowed not allowed not allowed

DB2 UDB for
iSeries® (V5R3
and earlier)

FOR UPDATE OF not allowed allowed with
limitations*

allowed with
limitations*

not allowed

DB2 UDB for
iSeries (V5R4 and
later)

WITH RS/RR USE AND KEEP
EXCLUSIVE LOCKS

not allowed allowed with
limitations*

allowed with
limitations*

not allowed

DB2 on z/OS®

V8.x
WITH RS/RR USE AND KEEP
UPDATE LOCKS

none none none none

DB2 UDB
workstation V8.2

WITH RS/RR USE AND KEEP
UPDATE LOCKS

none none none none

Oracle FOR UPDATE none none none none

Apache Derby FOR UPDATE OF not allowed not allowed not allowed not allowed

Informix FOR UPDATE not allowed not allowed not allowed not allowed

Sybase FOR UPDATE not allowed not allowed not allowed not allowed

Sqlserver UPDLOCK not allowed not allowed not allowed not allowed

Note: For details on the limitations for these permitted SQL restrictions, refer to the DB2 Universal
Database™ for iSeries SQL Reference. You can find this document in the iSeries Information
Center, Version 5 Release 4. In the Contents navigation area, click Database > Reference > SQL
Reference.

Custom finder SQL dynamic enhancement:

To ensure data integrity for applications using custom finders defined on Enterprise JavaBeans (EJB)
version 1.1 home interfaces, WebSphere Application Server Version 6.x uses custom finder Structured
Query Language (SQL) dynamic enhancement to maintain correct SQL locking semantics.

WebSphere Application Server uses SQL clauses applied to the custom finder SQL statements for those
custom finders defined with the Update attribute and certain method-level isolation level settings. These
dynamic enhancements are applied only if the backend data store supports these clauses.

This support takes affect at run time when the run time attempts to execute container-managed
persistence (CMP) persistence operations associated with the custom finders. To ensure that the SQL
dynamic enhancements occur correctly for custom finders defined on an EJB version 1.1 home interface
accessing a backend data store that requires the special SQL locking clauses, WebSphere Application
Server provides new Java Virtual Machine (JVM) and bean (module) properties. These properties enable

Chapter 7. Developing data access resources 141

you to indicate which custom finders should be enhanced, provided the backend store supports the SQL
clauses. For more information about these properties, Custom finder SQL dynamic enhancement
properties.

There are several important items to consider when using this functionality:

v This support only applies to EJB version 1.1 CMP Custom Finder methods

v Option A CMP beans and CMP beans involved in an inheritance relationship are not supported

Custom finder SQL dynamic enhancement properties:

Use this page to modify custom finder SQL dynamic enhancement properties settings.

To ensure that the Structured Query Language (SQL) dynamic enhancements occur correctly for custom
finders defined on an EJB 1.1 Home interface that uses a backend data store that requires the special
SQL locking clauses, the following Java virtual machine (JVM) and bean (module) properties are provided.
These properties enable you to indicate which custom finders to enhance, assuming the backend data
store supports the SQL clauses.

For IBM i and distributed platforms, to view this administrative console page, click Servers > Server
Types > WebSphere application servers > server_name > Java and process management > Process
definition > Java virtual machine > Custom properties

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent:

Used to indicate which enterprise beans should have custom finder SQL dynamic enhancement enabled at
runtime.

This property takes effect at the server level. Any EJB 1.1 home interface-defined custom finder (prefix
named find) that has Update as an access intent is a candidate for custom finder SQL dynamic
enhancement based on its specified isolation level. If the backend data store requires special SQL
semantics, they are applied. The particular SQL used varies according to the isolation level you choose for
beans in the application, as well the backend data base being used. If set to all, custom finder SQL
dynamic enhancement is enabled for all custom finders defined in any beans that are installed into the
container. If set to J2EENAME[:J2EENAME], where J2EENAME is a fully qualified package or bean
name, custom finder SQL dynamic enhancement is enabled for only the custom finders defined in the
beans that are installed into the container and represented by the bean names denoted.

Information Value
Data type String
Range Valid values are all or J2EENAME[:J2EENAME]
Default Enhancement behavior not active

Note: Some of your applications might use custom finders that have been manually coded and already
contain the SQL locking clauses, or keywords ORDER BY and DISTINCT on the SELECT
operation. In these instances, if the run time attempts SQL dynamic enhancement, the possibility
exists of introducing malformed SQL statements to the underlying backend data store. If an
application contains these custom finders, then you must be careful when specifying the value for
the JVM property com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent. A value of all
causes custom finder SQL dynamic enhancement to occur for every custom finder method defined
with an access intent of Update found in all beans that are installed in the application server, thus
introducing malformed SQL for that subset of custom finders.

To prevent this from happening, do not set the server-wide setting to all. Instead, use the bean
method level property,

142 Developing WebSphere applications

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel to indicate on a per
bean basis only those custom finder methods that should have the custom finder SQL dynamic
enhancement executed on them at run time.

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel:

Used to indicate custom finder SQL dynamic enhancement be enabled at the method level on a particular
bean.

When a bean is defined with this property set to a list of one or more custom finder methods, any custom
finder (prefix named find) defined on the home interface that has a matching method name and parameter
signature has SQL locking semantics applied at run time. This occurs only if the custom finder method has
an access intent of Update specified and the backend data store supports the SQL clauses. The particular
SQL used varies according to the isolation level chosen for the application as well as the backend data
store being used.

Information Value
Data type String
Range Valid value is a string of this form:

method1(parm1,parm2,..parmn):method2(parm1,parm2,..parmn):methodn(...)

Accessing data using Java EE Connector Architecture connectors
To access data from a Java EE Connector Architecture (JCA) compliant application in WebSphere
Application Server, you configure and use resource adapters and connection factories.

About this task

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying enterprise information system (EIS). Examples of
connections include database connections, Java Message Service connections, and SAP R/3 connections.

As indicated in the Java EE Connector Architecture (JCA) Specification, each enterprise information
system (EIS) needs a resource adapter and a connection factory. This connection factory is then accessed
through the following programming model. If you use Rational Application Development tools, most of the
following deployment descriptors and code are generated for you. This example shows the manual method
of accessing an EIS resource.

Procedure
1. Declare a connection factory resource reference in your application component deployment

descriptors, as described in this example:
<resource-ref>

<description>description</description>
<res-ref-name>eis/myConnection</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Application</res-auth>

</resource-ref>

2. During the deployment process, configure each resource adapter and associated connection factory
through the console. See the topics on installing a resource adapter and configuring a connection
factory for more information.

3. Locate the corresponding connection factory for the EIS resource adapter using Java Naming and
Directory Interface (JNDI) lookup in your application component, during run time.

4. Get the connection to the EIS from the connection factory.

5. Create an interaction from the connection object.

6. Create an InteractionSpec object. Set the function to execute in the InteractionSpec object.

7. Create a record instance for the input and output data used by function.

Chapter 7. Developing data access resources 143

8. Execute the function through the Interaction object.

9. Process the record data from the function.

10. Close the connection.

Example

The following code segment shows how an application component might create an interaction and
implement it on the EIS:
javax.resource.cci.ConnectionFactory connectionFactory = null;
javax.resource.cci.Connection connection = null;
javax.resource.cci.Interaction interaction = null;
javax.resource.cci.InteractionSpec interactionSpec = null;
javax.resource.cci.Record inRec = null;
javax.resource.cci.Record outRec = null;

try {
// Locate the application component and perform a JNDI lookup

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
connectionFactory = (javax.resource.cci.ConnectionFactory)

ctx.lookup("java:comp/env/eis/myConnection");

// create a connection
connection = connectionFactory.getConnection();

// Create Interaction and an InteractionSpec
interaction = connection.createInteraction();
interactionSpec = new InteractionSpec();
interactionSpec.setFunctionName("GET");

// Create input record
inRec = new javax.resource.cci.Record();

// Execute an interaction
interaction.execute(interactionSpec, inRec, outRec);

// Process the output...

} catch (Exception e) {
// Exception Handling

}
finally {

if (interaction != null) {
try {

interaction.close();
}
catch (Exception e) {/* ignore the exception*/}

}
if (connection != null) {

try {
connection.close();

}
catch (Exception e) {/* ignore the exception */}

}
}

JDBC application cursor holdability support
The cursor holdability feature can reduce the overhead of JDBC interaction with your relational database,
thereby helping to increase application performance.

By activating cursor holdability, you keep a result set available across transaction boundaries for use by
multiple JDBC calls. The holdability setting triggers a database cursor to keep newly updated rows active
beyond the commit of the transaction that generated the new values, or result set. Hence the cursor
makes the result set available for use by statements in a subsequent transaction.

144 Developing WebSphere applications

Setting cursor holdability

Use one of the following techniques to set cursor holdability. For more details, see the JDBC 3.0
specification, available at the Oracle website at http://www.oracle.com/technetwork/java/index.html.

v Specify the ResultSet.HOLD_CURSORS_OVER_COMMIT parameter when creating or preparing a
statement using the createStatement, prepareStatement, or prepareCall methods.

v Invoke the setHoldability method on the Connection object. The cursor holdability value that you set with
this method becomes the default. If you specify cursor holdability on the Statement object, that value
overrides the value that you specified on the connection.

You cannot specify cursor holdability on a shareable connection after that connection is referenced by a
second handle. Invoking the holdability method at this point generates an exception. If you want to set
cursor holdability on a shareable connection, invoke the method before the connection is enlisted.
Otherwise a shareable connection retains the same holdability value that applied in the previous
enlistment.

v Check your database documentation to see if the product supports cursor holdability as a data source
property. DB2, for example, responds to the holdability trigger if you set it as a data source custom
property. See the topic, Custom property settings, for more information.

The impact of connection and transaction behaviors on cursor holdability

Setting cursor holdability in WebSphere Application Server results in the following behavior for different
transaction events:

v When a connection is closed, all statements and result sets are closed even if you have set cursor
holdability.

v When a transaction is rolled back, all result sets are closed even if you have set cursor holdability.

v When a local transaction is committed, both shareable and unshareable connections can have an open
result set across a transaction boundary.

v When a global transaction is committed, unshareable connections can have an open result set across a
transaction boundary. For shareable connections, the statements and result sets are closed even if you
have set cursor holdability; the holdability value does not impact shareable connections participating in
global transactions.

v When a local transaction scope ends, either at the method level or the activity session level, all
statements and result sets for shareable connections are closed. Statements and result sets for
unshareable connections remain open until the close method is called on the connection.

Note: For a global transaction with an unshareable connection, the backend database has responsibility
for supporting cursor holdability.

Data access bean types
For easy data access programming, WebSphere Application Server provides a special class library that
implements many methods of the Java Database Connectivity (JDBC) API for you. The library is
essentially a set of Service Data Objects (SDO).

To make things clearer, you can refer to the classes by the name of the Java archive (JAR) file that
contains them:

databeans.jar - This JAR file ships with WebSphere Application Server. This file contains classes that
enable you to access the database using the JDBC API.

ivjdab.jar - This JAR file ships with Visual Age for Java. This file contains all of the classes in the
databeans.jar file and classes that support easy use of the data access beans from the Visual Age for
Java Visual Composition Editor.

Chapter 7. Developing data access resources 145

http://www.oracle.com/technetwork/java/index.html

dbbeans.jar - This JAR file ships with Rational Application Developer. This file contains a set of data
access beans to more closely conform to the JDBC 2.0 RowSet standard.

The com.ibm.db package is provided to support existing applications that use data access beans.

IBM strongly suggests that any new applications using data access beans be developed using the
com.ibm.db.beans package that is provided with Rational Application Developer.

Example: Using data access beans. Data access beans are essentially a class library that makes it easier
to access a database. The library contains a set of beans with methods that access the database through
the Java Database Connectivity (JDBC) API. This example shows using data access beans in WebSphere
Application Server Version 5 and later to create new applications that use the com.ibm.db.beans package.
package example;
import com.ibm.db.beans.*;
import java.sql.SQLException;

public class DBSelectExample {

public static void main(String[] args) {

DBSelect select = null;

select = new DBSelect();
try {

// Set database connection information
select.setDriverName("COM.ibm.db2.jdbc.app.DB2Driver");
select.setUrl("jdbc:db2:SAMPLE");
select.setUsername("userid");
select.setPassword("password");

// Specify the SQL statement to be executed
select.setCommand("SELECT * FROM DEPARTMENT");

// Execute the statement and retrieve the result set into the cache
select.execute();

// If result set is not empty
if (select.onRow()) {
do {
// display first column of result set
System.out.println(select.getColumnAsString(1));
System.out.println(select.getColumnAsString(2));
} while (select.next());
}

// Release the JDBC resources and close the connection
select.close();

} catch (SQLException ex) {
ex.printStackTrace();
}
}

}

Accessing data from application clients
To access a database directly from a Java Platform, Enterprise Edition (Java EE) application client, you
retrieve a javax.sql.DataSource object from a resource reference configured in the client deployment
descriptor. This resource reference is configured as part of the deployment descriptor for the client
application, and provides a reference to a pre-configured data source object.

146 Developing WebSphere applications

About this task

Note that data access from an application client uses the JDBC driver connection functionality directly from
the client side. It does not take advantage of the additional pooling support available in the application
server run time. For this reason, your client application should utilize an enterprise bean running on the
server side to perform data access. This enterprise bean can then take advantage of the connection reuse
and additional added functionality provided by the product run time.

Procedure
1. Import the appropriate JDBC API and naming packages:

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

2. Create the initial naming context:
InitialContext ctx = new InitialContext();

3. Use the InitialContext object to look up a data source object from a resource reference.
javax.sql.DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/myDS");
//where jdbc/myDS is the name of the resource reference

4. Get a java.sql.Connection from the data source.
v If no user ID and password are required for the connection, or if you are going to use the

defaultUser and defaultPassword that are specified when the data source is created in the
Application Client Resource Configuration tool (ACRCT) in a future step, use this approach:
java.sql.Connection conn = ds.getConnection();

v Otherwise, you should make the connection with a specific user ID and password:
java.sql.Connection conn = ds.getConnection("user", "password");
//where user and password are the user id and password for the connection

5. Run a database query using the java.sql.Statement, java.sql.PreparedStatement, or
java.sql.CallableStatement interfaces as appropriate.
Statement stmt = conn.createStatement();
String query = "Select FirstNme from " + owner.toUpperCase() + ".Employee where LASTNAME = ’" + searchName + "’";
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) { firstNameList.addElement(rs.getString(1));
}

6. Close the database objects used in the previous step, including any ResultSet, Statement,
PreparedStatement, or CallableStatement objects.

7. Close the connection. Ideally, you should close the connection in a finally block of the try...catch
statement wrapped around the database operation. This action ensures that the connection gets
closed, even in the case of an exception.
conn.close();

Service Data Objects version 2.1.1
Service Data Objects (SDO) is a framework for data application development that provides an architecture
and application programming interfaces (API). The product includes an implementation of SDO 2.1.1
interfaces. After the product is installed and SDO is enabled, SDO 2.1.1 becomes the default SDO
implementation when programming with SCA or SDO interfaces.

transition: For backwards compatibility, deprecated functions like JDBMediator continue to use previous
SDO implementations described in “Data access with Service DataObjects, API versions 1.0
and 2.01”. Otherwise, SDO clients are bound to the SDO 2.1.1 implementation.

SDO 2.1.1 is a Java standard approved by the Java Community Process (JSR 235). For details on SDO
2.1.1, refer to the JSR 235 specification.

The product implementation complies with JSR 235, and provides some implementation-specific
extensions. These extensions align with the latest direction of the SDO 3.0 specification under

Chapter 7. Developing data access resources 147

development at OASIS. Although there is no guarantee, these 3.0 API extensions will likely be officially
standardized in future versions of SDO. Table 1 lists the 3.0 API extensions included in the product.

Table 9. SDO 3.0 API extensions included in the product. The SDO 3.0 API extensions might be standardized in
future specifications.

SDO interface or class name Method or constant SDO 3.0 extension change

interface commonj.sdo.Type; getHelperContext() New SDO 3.0 method

interface commonj.sdo.helper.TypeHelper: SDO_URI New SDO 3.0 constant

SDO_JAVA_URI New SDO 3.0 constant

SDO_XML_URI New SDO 3.0 constant

interface commonj.sdo.Sequence: add(String) Removed deprecated method

add(int, String) Removed deprecated method

interface commonj.sdo.helper.HelperContext: getIdentifier() New SDO 3.0 method

class commonj.sdo.helper.HelperProvider: Replaced SPI with SDO 3.0 version

class commonj.sdo.helper.SDO New API in SDO 3.0

interface commonj.sdo.helper.HelperContextFactory New API in SDO 3.0

class commonj.sdo.impl.Environment New SPI in SDO 3.0

class commonj.sdo.impl.Resolvable New SPI in SDO 3.0

For information on SDO HelperContext, see “Creating and accessing SDO HelperContext”.

Creating and accessing SDO HelperContext objects:

The Service Component Architecture (SCA) implementation complies with Service Data Objects (SDO)
2.1.1 (JSR 235), and provides some implementation-specific extensions. These extensions align with the
latest direction of the OASIS SDO 3.0 specification under development. One of the extensions introduces
an API for creating and managing HelperContext objects, which are in the SDO class and
HelperContextFactory interface.

About this task

This topic describes how to create and access SDO HelperContext in non-SCA applications.

In versions of SDO previous to 3.0, including SDO 2.1.1, there is no standard way to create HelperContext
objects. SDO helper classes are accessible from the default HelperContext and are typically accessed
using their corresponding INSTANCE fields, for example, TypeHelper.INSTANCE. The use of INSTANCE
fields is discouraged in SDO 2.1.1, and will likely be deprecated in SDO 3.0. Instead of using INSTANCE
fields, code your applications to access helpers using their corresponding accessor method on the
HelperContext interface, for example, helperContext.getTypeHelper(). In SDO 2.1.1, the only
HelperContext available through standard APIs is the default helper context:
HelperProvider.getDefaultContext().

The proposed SDO 3.0 scoping solution, which is available in the product, is more flexible and is
described in this topic.

A HelperContext represents a metadata scope in SDO. In SDO 3.0 available in the product, a
HelperContext is created using a HelperContextFactory. The HelperContextFactory interface is as follows:
public interface HelperContextFactory {

/**
* Create a new HelperContext in this implementation. Once created the HelperContext
* can be looked up as follows (Note if the identifier is null or "" it is not registered):

148 Developing WebSphere applications

* SDO.getHelperContext(identifier);
* @param identifier - A unique identifier that can be used to access the HelperContext.
* @param properties - Properties required to initialize the HelperContext.
* @return a HelperContext object
* @throws IllegalArgumentException If a different HelperContext is already
* registered with the specified identifier.
*/
public HelperContext createHelperContext(String identifier, Map<String, Object> properties)

throws IllegalArgumentException;
/**
* Create a new HelperContext in this implementation. Once created the HelperContext
* can be looked up as follows (Note if the identifier is null or "" it is not registered):
* SDO.getHelperContext(identifier);
* @param identifier - A unique identifier that can be used to access the HelperContext.
* @param classLoader - The class loader for the generated static classes (if any).
* @param properties - Properties required to initialize the HelperContext.
* @return a HelperContext object
* @throws IllegalArgumentException If a different HelperContext is already
* registered with the specified identifier.
*/

public HelperContext createHelperContext(String identifier, ClassLoader classLoader,
Map<String, Object> properties) throws IllegalArgumentException;

}

There can be more than one HelperContextFactory available in an SDO environment, but one is the
default. The default HelperContextFactory is accessible through the interface commonj.sdo.helper.SDO.

Procedure

1. Using the default factory, create a HelperContext object in your code.

The following example uses the default factory to create the HelperContext hc:
HelperContext hc =
SDO.getHelperContextFactory().createHelperContext("ScopeManagerTestID", options);

The identifier string, "ScopeManagerTestID", must be unique within a Java virtual machine (JVM). If you
are not concerned with the actual value, generate a guaranteed unique one using the Java UUID
class, for example:
hc = SDO.getHelperContextFactory().createHelperContext(

UUID.randomUUID().toString(), options);

2. Access the HelperContext object in your code.

The SDO run time manages HelperContext objects. Access an existing HelperContext object using the
SDO.getHelperContext(identifier) method:
hc = SDO.getHelperContext("ScopeManagerTestID");

The identifier of a HelperContext can be accessed using the getIdentifier() method:
String id = hc.getIdentifier();

Results

A HelperContext object is defined and accessible.

What to do next

Use SDO in an SCA application. When SDO is used in an SCA application, the SCA run time typically
creates the HelperContext objects and identifiers. Refer to topics on using SDO 2.1.1 in SCA applications.

Because the SCA run time manages the HelperContext objects and identifiers when using SDO in SCA
applications, the method used to create and access SDO HelperContext in SCA applications is different
than that used in non-SCA applications. An SCA application can access SDO HelperContext using a
DefaultHelperContext annotation; for example:

Chapter 7. Developing data access resources 149

import com.ibm.websphere.soa.sca.sdo.DefaultHelperContext;

@DefaultHelperContext
public HelperContext defaultHelperContext;

Using SDO 2.1.1 in SCA applications:

The Service Component Architecture (SCA) implementation complies with Service Data Objects (SDO)
2.1.1 (JSR 235). You can use SDO 2.1.1 in your SCA applications.

Before you begin

Read SDO data binding for SCA applications to better understand how to work with SDO in SCA Java
clients and implementations. For more information, read about using business exceptions with SCA
interfaces.

Consider installing a Rational Application Developer product with SCA Development Tools that you can use
to assemble service-oriented application components based on open SCA specifications. See the Rational
Application Developer documentation.

About this task

SDO is supported in both the OSOA and OASIS applications. Unless otherwise specified, the information
in this topic pertains to applications for both the OSOA and OASIS specifications.

To use SDO 2.1.1 in an SCA application, access the default HelperContext programmatically in a Java or
Java Platform, Enterprise Edition (Java EE) component implementation type and then develop one or
more SCA composites that use SDO following a bottom-up or top-down approach.

Procedure

1. Develop one or more SCA components that use SDO.

a. Decide whether you are going to use a top-down or bottom-up approach to developing your SCA
component implementations.

The section on top-down and bottom-up development in SDO data binding for SCA applications
describes the approaches. The top-down approach is typically preferred in SCA service architecture
and development.

b. Use a top-down approach (starting from WSDL and XSD files) or a bottom-up approach (starting
from Java files) to develop SCA composites that use SDO.

v Use a top-down approach to develop SCA composites.

v Use a bottom-up approach to develop SCA composites.

c. Access the default HelperContext programmatically.

You can access the default HelperContext programmatically in a Java or Java EE component
implementation type. You cannot access the default HelperContext programmatically in a Spring
component implementation type.

Restriction: You cannot use array types for Java parameters. You cannot map from schema elements
declared with the attribute, maxOccurs="unbounded" to array types. Instead, map the
element to a List, such as a List<DataObject> or List<String>.

2. If you are using a top-down development approach, package your WSDL and XSD files in an SCA
contribution.

Packaging WSDL and XSD files in an appropriate contribution enables your component to access the
schema definitions. The section on schema registration in SDO data binding for SCA applications
describes the registration.

150 Developing WebSphere applications

Consider packaging your WSDL and XSD files so that they can be accessed across various parts of
your application from a shared in-memory instance. For details, see Implementing shared scopes in
SCA applications that use SDO.

3. Deploy your SCA composites that use SDO in an SCA business-level application.

See topics on SCA contributions and shared scopes for information on how to establish a shared SDO
scope. Otherwise, there are no special deployment considerations for applications using the SDO data
binding.

Results

You have developed and deployed an SCA composite that uses SDO in a business-level application.

What to do next

Test the deployed SCA composites.

SDO data binding for SCA applications:

Service Data Objects (SDO) is a framework for data application development that provides an architecture
and application programming interfaces (API). Product support for Service Component Architecture (SCA)
includes an implementation of SDO 2.1.1 interfaces. To work with SDO in SCA Java clients and
implementations, it is helpful to understand SDO data binding concepts.

The product supports SDO for both OSOA and OASIS specifications, unless otherwise stated in this topic.

The SDO data binding support consists of the following concepts:
v Scope management
v Wire format serialization or deserialization
v Top-down and bottom-up development
v Schema registration
v Shared scopes
v JAX-WS based programming model

Scope management

In SDO, a scope typically corresponds to a commonj.sdo.helper.HelperContext instance. This scope sets
visibility boundaries for SDO types. In the product runtime environment, the SCA layer defines
HelperContext objects on SCA application boundaries, which are meaningful boundaries from an SCA
perspective. Together, SCA and SDO define a default HelperContext for a given application and enable the
SCA application to access the HelperContext programmatically.

In the product runtime environment, the primary SCA application scope is tied to the deployable
composite. There is a 1-1 relationship between a deployable composite and an SCA default HelperContext
that is managed in the runtime environment. To determine the default HelperContext of an SCA
component, you must identify the deployable composite which defines this component to the SCA domain.

Wire format serialization or deserialization

An important use of SDO is to serialize or deserialize application data to and from the data format “on the
wire” (the “wire format”) for the various binding configurations. The SCA runtime environment uses the
default HelperContext with its registered schema definitions to perform this serialization or deserialization.
This process is relevant for serializing or deserializing input argument values and return values of SCA
service interfaces when the client or implementation uses the SDO data binding.

Chapter 7. Developing data access resources 151

Top-down and bottom-up development

Both top-down (starting from WSDL and XSD files) and bottom-up (starting from Java files) approaches
can be used with SDO in SCA applications. This section briefly explains three different usage patterns.
You can combine aspects of all three patterns in a single application.

v Top-down, strongly typed

In this usage pattern, start with a composite definition file that uses the <interface.wsdl> element in
describing a component service interface; for example:
<service ...>
<interface.wsdl ...> Refers to WSDL with updateAccount

The doc-lit-wrapped WSDL and XSD definition uses a specific type, and not xsd:anyType:
<element name=“updateAccount”>
<complexType>
<sequence>
<element name=“person” type=“p:Person”/>

This definition maps to a Java method; for example:
void updateAccount(DataObject person)

With this usage pattern, you can write your Java code so that is reusable, even later with types other
than p:Person. You can potentially reuse the same dynamically typed Java code with multiple strongly
typed interfaces, without having to regenerate any Java code.

You can also write your Java code so that the SDO usage is tightly coupled with a specific XSD type.
Further, you can mix the tightly coupled and dynamically typed programming styles in the same SCA
Java application.

v Top-down, weakly typed

In this usage pattern, start with a composite definition file that uses the <interface.wsdl> element; for
example:
<service ...>
<interface.wsdl ...> Refers to WSDL with updateAccount

The doc-lit-wrapped WSDL and XSD definition uses xsd:anyType:
<element name=“updateAccount”>
<complexType>
<sequence>
<element name=“arg0” type=“xsd:anyType”/>

This definition maps to a Java method; for example:
void updateAccount(DataObject arg0)

This usage pattern is like top-down, strongly-typed. With the top-down, weakly typed usage pattern both
WSDL and XSD files map to equivalent Java code. However, you might write your Java code to enable
it to handle any type of data, as opposed to the top-down, strongly-typed usage pattern where you
expect a specific type, even though you work with it through the dynamic SDO APIs.

v Bottom-up

In this usage pattern, you start with a Java interface method such as:
void updateAccount(DataObject arg0)

The method maps to a WSDL or XSD definition such as:
<element name=“updateAccount”>
<complexType>
<sequence>
<element name=“arg0” type=“xsd:anyType”/>

Depending on the bindings, you might view or work directly with the WSDL and XSD files to which the
Java object maps. When mapping from Java to XSD, the SCA runtime environment maps
commonj.sdo.DataObject to xsd:anyType.

You cannot use java.lang.Object as a dynamic, generic interface method parameter or return type,
instead of commonj.sdo.DataObject. The SCA runtime environment relies on introspection of the method
type to signal that it uses SDO, and not JAXB, to work with this type; for example, to construct the
argument values upon deserializing data on the wire.

152 Developing WebSphere applications

In each of the usage patterns, you can mix styles within a single operation. For example, suppose you
have the following doc-lit-wrapped WSDL definition:
<element name=“updateAccount”>
<complexType>
<sequence>
<element name=“arg0” type=“xsd:anyType”/>
<element name=“id” type=“xsd:string”/>

The WSDL definition maps to the following Java method:
void updateAccount(DataObject arg0, String id)

The arg0 field is dynamically typed by DataObject, while the id field is statically typed by String.

Schema registration

The SCA runtime environment provides mechanisms to register schema definitions from your SCA
application (for example, in WSDL and XSD files packaged with your application) to the default
HelperContext of your SCA application. All schema definitions packaged within the same contribution Java
archive (JAR) file as the one your deployable composite is contributed within are registered with the
default HelperContext of that deployable composite.

Schema registration is important because it affects the exact details of your application SDO programming
model. For example, the DataFactory.create() methods can be used to create DataObject instances of
the corresponding schema definitions that are registered in the runtime environment, without having to
reference or load the XSD files containing these schema definitions in application code.

Some styles of interface definition and programming result in DataObject instances of unknown type.
Within the SDO type system, the XSD type of such an object is the SDO-equivalent of xsd:anyType.
Methods might return different values depending on whether the instance is of a known, specific type or
the anyType-equivalent.

For example, SDO API calls such as the following might return different results depending on whether the
object instances are recognized in the SDO type system as instances of a registered XSD type. For the
following call, get(int propertyIndex) returns a List for xsd:anyType:
dataObjectInstance.get(1);

The following call returns an empty List for xsd:anyType:
dataObjectInstance.getType().getDeclaredProperties();

Shared scopes

Shared scopes are only supported for applications based on OSOA specifications.

SCA contribution support enables convenient packaging of WSDL and XSD definition files used by multiple
SCA application composites using the contribution import and export mechanism. The common WSDL and
XSD files can be packaged into a single contribution JAR file, which is like a shared library.

The SDO data binding function further uses the SCA contribution support by enabling you to establish a
shared scope (HelperContext) for your SDO types. This reduces the memory footprint involved in loading
schema definitions from large WSDL and XSD files used across your application and in constructing the
corresponding SDO Type definitions from them.

The shared scope is maintained at the level of a business-level application. For any business-level
application, all references to an SDO Type that correspond to a schema definition from an XSD or WSDL
file imported from a shared contribution resolve to a single SDO Type instance in a single scope
(HelperContext).

Chapter 7. Developing data access resources 153

For shared scopes, there are two restrictions:

v A contribution that exports schema definitions cannot, in turn, import other schema definitions from
another contribution.

v You cannot divide namespaces across more than one contribution. That is, you cannot package schema
definitions in a given target namespace in one contribution and then import others in that same target
namespace from a second contribution.

JAX-WS based programming model

In the product, the mapping between a WSDL operation and Java method is defined by JAX-WS. Within
that operation-level mapping, it is the mapping between specific XSD types and the corresponding Java
parameter types that is defined by the particular data binding (SDO in this case, rather than JAXB). Other
than the type mapping, the programming model is independent of the choice of data binding.

One consequence of this capability is that the JAX-WS annotations such as @RequestWrapper,
@ResponseWrapper, @WebParam, @WebResult are significant in SCA applications using SDO.

Another important consequence is that the product uses JAX-WS to define the mapping between a Java
exception that occurs in Java clients and implementations, and the fault bean that is serialized on the wire.
Thus, the fault bean can be an SDO (of type commonj.sdo.DataObject). In which case, SDO is used to
serialize or deserialize the fault bean to or from the wire format.

Using a top-down approach to develop SCA components that use SDO:

You can use a top-down approach that starts from Web Services Description Language (WSDL) or XML
definition files to develop Service Component Architecture (SCA) component implementations that use
Service Data Objects (SDO) 2.1.1 (JSR 235).

Before you begin

Consider installing a Rational Application Developer product with SCA Development Tools that you can use
to assemble service-oriented application components based on open SCA specifications. See the Rational
Application Developer documentation.

Access the default HelperContext programmatically in a Java or Java Platform, Enterprise Edition (Java
EE) component implementation type. Complete step 1 of Using SDO 2.1.1 in SCA applications.

About this task

This topic describes how to develop SCA composites that use SDO following a top-down approach.

Unless otherwise specified, this topic describes how to develop both OSOA and OASIS SCA composites
that use SDO.

Procedure

1. Describe the service interface in your WSDL and XSD definition files.

The following example WSDL and XSD files describe a service interface.

Example WSDL file, test.wsdl
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://test" xmlns:tns="http://test"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Test">

<wsdl:types>
<schema targetNamespace="http://test" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:p="http://person">

154 Developing WebSphere applications

<import namespace="http://person" schemaLocation="person.xsd"/>

<element name="updateAccount">
<complexType>
<sequence>
<element name="person" type="p:Person"/>
<element name="code" type="xsd:string"/>

</sequence>
</complexType>

</element>

<element name="updateAccountResponse">
<complexType>
<sequence>
<element name="response" type="p:Status"/>

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

<wsdl:message name="PersonRequestMessage">
<wsdl:part element="tns:updateAccount" name="parameters"/>

</wsdl:message>

<wsdl:message name="PersonResponseMessage">
<wsdl:part element="tns:updateAccountResponse" name="parameters"/>

</wsdl:message>

<wsdl:portType name="Test">
<wsdl:operation name="updateAccount">
<wsdl:input message="tns:PersonRequestMessage" name="ReqMsgName"/>
<wsdl:output message="tns:PersonResponseMessage" name="RespMsgName"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="TestSoapBinding" type="tns:Test">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="updateAccount">
<wsdlsoap:operation soapAction="urn:updateAccount"/>
<wsdl:input name="ReqMsgName">
<wsdlsoap:body use="literal"/>

</wsdl:input>
<wsdl:output name="RespMsgName">
<wsdlsoap:body use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="TestService">
<wsdl:port binding="tns:TestSoapBinding" name="TestSoapPort">
<wsdlsoap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Example XSD file, person.xsd, that test.wsdl imports
<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://person" xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="Person">
<sequence>
<element name="firstName" type="string"/>
<element name="lastName" type="string"/>

</sequence>
</complexType>

<complexType name="Status">
<sequence>
<element name="statusCode" type="int"/>
<element name="message" type="string"/>

</sequence>
</complexType>

</schema>

2. Produce a corresponding Java interface.

If you are using an IBM Rational tool that supports SCA, you do not need to complete this step. The
tool generates the code for you. Proceed to step 3.

Chapter 7. Developing data access resources 155

If you are not using a Rational tool that supports SCA, you can manually produce a Java interface
from a WSDL file by completing this step 2, which provides an example that modifies generated code.
There is not an automated tool to produce a Java interface from a command-line interface.

a. Identify the WSDL and XSD files from which you want to produce Java interfaces.

This example uses the test.wsdl and person.xsd files in step 1.

b. Run the wsimport command with the -s option to save source files.
wsimport.bat -s . test.wsdl

c. Among the generated Java files, identify the SEI.

The SEI is a Java interface, and not a class file, with a class-level @WebService annotation,
javax.jws.WebService.

In this example, the Java interface is the test/Test.java file. Running the wsimport command
produces the following output:
//
// Generated By:JAX-WS RI, IBM 2.1.1 in JDK 6 (JAXB RI, IBM JAXB 2.1.3 in JDK 1.6)
//

package test;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;
import person.Person;
import person.Status;

@WebService(name = "Test", targetNamespace = "http://test")
@XmlSeeAlso({

person.ObjectFactory.class,
test.ObjectFactory.class

})
public interface Test {

/**
*
* @param person
* @param code
* @return
* returns person.Status
*/
@WebMethod(action = "urn:updateAccount")
@WebResult(name = "response", targetNamespace = "")
@RequestWrapper(localName = "updateAccount", targetNamespace =

"http://test", className = "test.UpdateAccount")
@ResponseWrapper(localName = "updateAccountResponse", targetNamespace =

"http://test", className = "test.UpdateAccountResponse")
public Status updateAccount(

@WebParam(name = "person", targetNamespace = "")
Person person,
@WebParam(name = "code", targetNamespace = "")
String code);

}

d. Modify the SEI.

1) For all parameter and return values of generated (JAXB) types, change the Java type to
commonj.sdo.DataObject. All complex schema types must map to commonj.sdo.DataObject
Java types. Also, remove all imports of these generated JAXB types.

2) For each @RequestWrapper and @ResponseWrapper annotation, change the value of the
className element to commonj.sdo.DataObject. Otherwise, leave the JAX-WS annotations
because they are significant.

3) Remove or comment out the @XmlSeeAlso block.

Completing these steps results in the following Java interface:

156 Developing WebSphere applications

//
// Generated By:JAX-WS RI, IBM 2.1.1 in JDK 6 (JAXB RI, IBM JAXB 2.1.3 in JDK 1.6)
//

package test;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;
import commonj.sdo.DataObject;

@WebService(name = "Test", targetNamespace = "http://test")

public interface Test {

/**
*
* @param person
* @param code
* @return
* returns person.Status
*/
@WebMethod(action = "urn:updateAccount")
@WebResult(name = "response", targetNamespace = "")
@RequestWrapper(localName = "updateAccount", targetNamespace =

"http://test", className = "commonj.sdo.DataObject")
@ResponseWrapper(localName = "updateAccountResponse", targetNamespace =

"http://test", className = "commonj.sdo.DataObject")
public DataObject updateAccount(

@WebParam(name = "person", targetNamespace = "")
DataObject person,
@WebParam(name = "code", targetNamespace = "")
String code);

}

The following example shows the resulting code with JAX-WS annotations removed for readability only.
Do not remove the annotations before compiling to use the example code.
package test;
import commonj.sdo.DataObject;
public interface Test {

public DataObject updateAccount(DataObject person, String code);
}

3. Write your SCA Java client or component implementation using the dynamic SDO programming model.

The following example code shows a service implementation in Java. Read the source comments
carefully to see the differences between OSOA and OASIS.
package test.impl;

import test.Test;

// FOR OSOA
import org.osoa.sca.annotations.Service;
// FOR OASIS, commented out
// import org.oasisopen.sca.annotation.Service;

import commonj.sdo.DataObject;
import commonj.sdo.helper.DataFactory;
import commonj.sdo.helper.HelperContext;

import com.ibm.websphere.soa.sca.sdo.DefaultHelperContext;

@Service(Test.class)
public class TestImpl implements Test {

@DefaultHelperContext
protected HelperContext myDefaultHC;

public DataObject updateAccount(DataObject person, String code) {
String error_msg = null;

Chapter 7. Developing data access resources 157

if (code.equals("ERROR_STRING_IN_FIELD1")) {
error_msg = “ERROR firstName: ” + person.getString(“firstName”0);
HelperContext defaultHC = ContextHelper.getCurrentHelperContext();
DataFactory dataFactory = myDefaultHCdefaultHC.getDataFactory();
DataObject returnDO = dataFactory.create("http://person","Status");
returnDO.setInt("statusCode", -1);
returnDO.setString("message", error_msg);
return returnDO;

} else {
// process(person);
...

}
}

}

The input person DataObject is of type {http://person}Person. The returned output DataObject is of
type {http://person}Status. Both the input and output are registered in the SCA application default
HelperContext that is accessed using the myDefaultHC object.

4. In a composite definition, declare your component reference or component service interface with an
<interface.wsdl> element that refers to the original portType value.

Example accountTest.composite file for OSOA
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.ibm.com/test/soa/sca/sdo/"
name="AccountTestComposite">

<component name="AccountTestComponent">
<implementation.java class="test.impl.TestImpl"/>
<service name="Test">
<interface.wsdl interface="http://test#wsdl.interface(Test)"/>

</service>
...
</component>

</composite>

Example accountTest.composite file for OASIS
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.ibm.com/test/soa/sca/sdo/"
name="AccountTestComposite">

<component name="AccountTestComponent">
<implementation.java class="test.impl.TestImpl"/>
<service name="Test">
<interface.wsdl interface="http://test#wsdl.interface(Test)"/>

</service>
...
</component>

</composite>

5. Package the composite and deploy the component with the authored implementation along with the
WSDL or XSD files into a single contribution JAR file.

Suppose the example files are packaged into a single file, MyAccountTestContribution.jar. A listing of
the JAR file contents from the command line is as follows:
$ jar tf MyAccountTestContribution.jar

wsdl/test.wsdl
wsdl/person.xsd
test/Test.class
test/impl/TestImpl.class
META-INF/accountTest.composite
META-INF/sca-contribution.xml

Results

You have developed an SCA composite that uses SDO following a top-down approach.

What to do next

Optionally, implement shared scopes. See the topic on using SDO 2.1.1 in SCA applications.

Deploy your files that use SDO in an SCA business-level application.

158 Developing WebSphere applications

Using a bottom-up approach to develop SCA components that use SDO:

You can use a bottom-up approach that starts from Java files to develop Service Component Architecture
(SCA) component implementations that use Service Data Objects (SDO) 2.1.1 (JSR 235).

Before you begin

Consider installing a Rational Application Developer product with SCA Development Tools that you can use
to assemble service-oriented application components based on open SCA specifications. See the Rational
Application Developer documentation.

Access the default HelperContext programmatically in a Java or Java Platform, Enterprise Edition (Java
EE) component implementation type. Complete step 1 of Using SDO 2.1.1 in SCA applications.

About this task

This topic describes how to develop SCA composites that use SDO following a bottom-up approach.

Procedure

1. Start from a Java interface or implementation using type commonj.sdo.DataObject for one or more
parameters or return types.

The following example Java file provides an interface.

Logger.java (interface):
package logger;
import commonj.sdo.DataObject;
public interface Logger {

public String logDataObjectProperties (DataObject input);
}

2. Write your SCA Java client or component implementation using the dynamic SDO programming model.

The following example Java file provides a component implementation.

LoggerImpl.java (component implementation):
package logger.impl;

import logger.Logger;
import org.osoa.sca.annotations.Service;

import commonj.sdo.DataObject;
import commonj.sdo.helper.DataFactory;
import commonj.sdo.helper.HelperContext;

@Service(Logger.class)
public class LoggerImpl implements Logger {

public String logDataObjectProperties (DataObject input) {
String logMsg = "==========\n";
List props = input.getInstanceProperties();
for (int i=0; i < props.size(); i++){

Property prop = (Property)props.get(i);
logMsg += " prop[" + i + "], name = " + prop.getName() + ", val = " +

input.get(prop).toString() + "\n";
}
logMsg += "==========\n";
return logMsg;

}
}

The SDO application programming interfaces used are generic in that they do not depend on any
particular schema definitions. This behavior fits the bottom-up approach because, without a WSDL
interface describing this service, the runtime environment cannot associate the input object that is built
during deserialization with a specific XSD or SDO type.

Chapter 7. Developing data access resources 159

Results

You have developed an SCA composite that uses SDO following a bottom-up approach.

What to do next

Optionally, implement shared scopes. See the topic on using SDO 2.1.1 in SCA applications.

Deploy your files that use SDO in an SCA business-level application.

Accessing default HelperContext objects in SCA applications:

A Service Component Architecture (SCA) application can access a Service Data Objects (SDO) 2.1.1
HelperContext object. This object either uses DefaultHelperContext annotation or implements a application
programming interface (API) that uses the commonj.sdo.helper.SDO class.

Before you begin

Read SDO data binding for SCA applications to better understand how to work with SDO in SCA Java
clients and implementations.

Develop one or more SCA composites that use SDO following a top-down or bottom-up approach.

About this task

This topic describes how to create and access SDO HelperContext in SCA applications. For information
about accessing SDO HelperContext in non-SCA applications, see Creating and accessing SDO
HelperContext objects.

You can create and access SDO HelperContext in both OSOA and OASIS SCA applications.

Because the SCA run time manages the HelperContext objects and identifiers when using SDO in SCA
applications, the method used to create and access SDO HelperContext in SCA applications is different
from that used in non-SCA applications. An SCA application can access SDO HelperContext using a
DefaultHelperContext annotation, @DefaultHelperContext.

Alternatively, an SCA application can implement an API that uses the commonj.sdo.helper.SDO class, to
obtain the same SCA-managed HelperContext instance. This approach is an alternative to the annotation.
To use this approach, pass the String ID of the SCA-managed HelperContext, which is sca-default, into
the SDO.getHelperContext method.

You can access the default HelperContext programmatically in a Java or Java Platform, Enterprise Edition
(Java EE) component implementation type using either annotation injection or an API. You cannot access
the default HelperContext programmatically in a Spring component implementation type. When you use an
OSGI application as an implementation of an SCA component, you can access the default HelpContext
instance using the API mechanism. However, you cannot access the instance using the annotation
injection mechanism.

Procedure

1. Add a public or protected field or setter method of the commonj.sdo.helper.HelperContext type to your
Java implementation class.

The method can either be a Java component implementation, such as <implementation.java>, or a
Java EE implementation class, such as an EJB implementation class.

2. Annotate the field or setter method with @com.ibm.websphere.soa.sca.sdo.DefaultHelperContext.

The following example shows a field annotation:

160 Developing WebSphere applications

@DefaultHelperContext
protected HelperContext myDefaultHC;

The following example shows an annotation of a setter method:
private HelperContext helperContext;

@DefaultHelperContext
public void setHelperContext(HelperContext hc) {

this.helperContext = hc;
}

Alternative step: The following example uses the API rather than annotation:
import commonj.sdo.helper.SDO;
import com.ibm.websphere.sdox.SDOUtil;

HelperContext helperContext = SDO.getHelperContext("sca-default")
// Or the following line is equivalent to using the string value directly
HelperContext helperContext = SDO.getHelperContext(SDOUtil.SCA_DEFAULT_SCOPE);

3. Use the injected HelperContext in your implementation logic.

When your component starts, the container will inject this field, or call this setter, with the default
HelperContext instance for this component so you can use it in your implementation.
import com.ibm.websphere.soa.sca.sdo.DefaultHelperContext;
import commonj.sdo.helper.HelperContext;

// FOR OSOA
import org.osoa.sca.annotations.Service;
// FOR OASIS, commented out
// import org.oasisopen.sca.annotation.Service;
...

// This is a Java implementation of an SCA component
@Service(AccountService.class)
public class AccountServiceImpl implements AccountService {

private HelperContext helperContext;

@DefaultHelperContext
public void setHelperContext(HelperContext hc) {

this.helperContext = hc;
}

@Override
public DataObject accountMethod(DataObject account, String name) {

//

// Get dataFactory to create return object
DataFactory dataFactory = this.helperContext.getDataFactory();
DataObject retVal = dataFactory.create("http://myns", "Response");

retVal.set(..) // ... Set properties on return object

return retVal;
}

Results

You have written code that accesses the default HelperContext.

What to do next

Develop one or more SCA composites that use SDO following a bottom-up or top-down approach.

Implementing shared scopes in SCA applications that use SDO:

You can package your WSDL and XSD files so they can be accessed across various parts of a Service
Component Architecture (SCA) application that uses Service Data Objects (SDO) 2.1.1.

Chapter 7. Developing data access resources 161

Before you begin

Develop one or more SCA composites that use SDO following a top-down approach.

If you are using a top-down development approach, you must package WSDL and XSD files in an
appropriate SCA contribution so the component can access the schema definitions. Read the section on
schema registration in SDO data binding for SCA applications for details.

About this task

This topic discusses how to package WSDL and XSD files so that they can be accessed across various
parts of your application from a shared in-memory instance. The packaging establishes a shared SDO
scope. Shared SDO scope is only supported for applications developed on OSOA specifications.

Procedure

1. Package the WSDL and XSD files that have schema definitions which you want to share into a shared
contribution JAR file.

2. In the META-INF/sca-contribution.xml file within the shared contribution JAR file, export the
namespaces for which you want to share schema definitions within SDO scopes.

To export the namespaces, use the <export namespace="..."> statement.

The examples in this topic continue the example scenario described in the topic on using SDO 2.1.1 in
SCA applications.

Example META-INF/sca-contribution.xml for mySharedDefs.jar:
<?xml version="1.0" encoding="UTF-8"?>
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.ibm.com/test/soa/sca/sdo/scope/">
<export namespace="http://www.ibm.com/test/soa/sca"/>
<export namespace="http://www.ibm.com/test/soa/sca/person"/>
<export namespace="http://www.ibm.com/test/soa/sca/address"/>
...

</contribution>

3. For composite applications that reference the shared WSDL and XSD schema definitions, import the
desired namespaces from the appropriate META-INF/sca-contribution.xml file.

Import namespaces from the sca-contribution.xml file of the contribution JAR that contributes the
deployable composite which deploys the application components that reference the shared schema
definitions as SDO definitions. To import the namespaces, use the <import namespace="...">
statement.

Example META-INF/sca-contribution.xml for myImportingComposite1.jar:
<?xml version="1.0" encoding="UTF-8"?>
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.ibm.com/test/soa/sca/sdo/scope/"
xmlns:sdoscope="http://www.ibm.com/test/soa/sca/sdo/scope/">

<deployable composite="sdoscope:MyShippingComposite"/>

<import namespace="http://www.ibm.com/test/soa/sca"/>
<import namespace="http://www.ibm.com/test/soa/sca/person"/>
<import namespace="http://www.ibm.com/test/soa/sca/address"/>
...

</contribution>

Example META-INF/sca-contribution.xml for myImportingComposite2.jar:
<?xml version="1.0" encoding="UTF-8"?>
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.ibm.com/test/soa/sca/sdo/scope/"
xmlns:sdoscope="http://www.ibm.com/test/soa/sca/sdo/scope/">

<deployable composite="sdoscope:MyLoggingComposite"/>

<import namespace="http://www.ibm.com/test/soa/sca"/>

162 Developing WebSphere applications

<import namespace="http://www.ibm.com/test/soa/sca/person"/>
<import namespace="http://www.ibm.com/test/soa/sca/address"/>
...

</contribution>

Results

The packaging establishes a shared SDO scope.

Assuming the composites MyShippingComposite and MyLoggingComposite are deployed using the same
business-level application, then all SDO references to schema definitions in the namespaces exported
from the mySharedDefs.jar file (and imported from the respective JAR files contributing these two
composites) are scoped to a common, shared scope associated with the mySharedDefs.jar file. If sharing
has not been established through this mechanism, the schema definitions are created separately in each
of the two separate scopes associated with the each of the deployable composites.

What to do next

Deploy your files that use SDO in an SCA business-level application.

Data access with Service DataObjects, API versions 1.0 and 2.01
The Service Data Objects (SDO) framework is a data-centric, disconnected, XML-integrated, data access
mechanism that provides a source-independent result set.

v SDO is data-centric because it eliminates the need for client applications to work with special formats of
data, such as the object representations of the Enterprise JavaBeans (EJB) API. Instead, clients work
with easily traversable graphs of DataObjects.

v SDO is disconnected because the retrieved result is independent of any back-end data store
connections or transactions.

v SDO is XML-integrated in that it provides services to easily convert retrieved data to and from XML
format.

Put simply, SDO is a framework for data application development, which includes an architecture and API.
SDO does the following:
v Simplifies the Java Platform, Enterprise Edition (Java EE) data programming model.
v Abstracts data in a service-oriented architecture (SOA).
v Unifies data application development.
v Supports and integrates XML.
v Incorporates Java EE patterns and best practices.

The Service Data Objects framework provides a unified framework for data application development. With
SDO, you do not need to be familiar with a technology-specific API in order to access and use data. You
need to know only one API, the SDO API, which lets you work with data from multiple data sources,
including relational databases, entity EJB components, XML pages, web services, the Java Connector
Architecture, JavaServer Pages, and more.

Unlike some of the other data integration models, SDO does not stop at data abstraction. The SDO
framework also incorporates a good number of Java EE patterns and best practices, making it easy to
incorporate proven architecture and designs into your applications. For example, most web applications
today are not (and cannot) be connected to backend systems 100 percent of the time; so SDO supports a
disconnected programming model. Likewise, many applications tend to be remarkably complex, comprising
many layers of concern. How will data be stored? Sent? Presented to users in a GUI framework? The
SDO programming model prescribes patterns of usage that allow clean separation of each of these
concerns.

Chapter 7. Developing data access resources 163

SDO components

An architectural overview of SDO describes each of the components that make up the framework and
explains how they work together. The first three components listed are “conceptual” features of SDO: They
do not have a corresponding interface in the API.

SDO clients

SDO clients use the SDO framework to work with data. Instead of using technology-specific APIs
and frameworks, they use the SDO programming model and API. SDO clients work on SDO
DataObjects and do not need to know how the data they are working with is persisted or
serialized.

Data mediator services
Data mediators services (DMS) are responsible for creating a DataGraph from data sources, and
updating data sources based on changes made to a DataGraph. (A DataGraph is an envelope
object that contains service data objects.)

The DMS provides the mechanism to move data between a client and a data source. It is created
with back end specific metadata. The metadata defines the structure of the DataGraph that is
produced by the DMS as well as the query to be used against the back end. When the DMS is
requested to produce a DataGraph, it queries its targeted back end and transforms the native
result set into the DataGraph format. Once the DataGraph is returned, the DMS no longer has any
reference to it, making it stateless with respect to the DataGraph. When the DMS is requested to
flush modifications of an existing DataGraph to the back end, it extracts the changes made from
the original state of the DataGraph and flushes those changes to the back end. A DMS typically
employs some form of optimistic concurrency control strategy to detect update collisions.

WebSphere Application Server provides functionality for two separate Data Mediator Services. If
you simply need to retrieve data from a relational data source and return a DataGraph, using the
Java Database Data Mediator Service is a good choice. However, if you have business logic, then
you probably want an object-oriented (OO) rendering of the data into entity beans. One could
consider SDO as an object rendering of data like entity beans. But entity beans have better
Object-Relational (OR) mapping tools, and the EJB container and persistence manager for entity
beans offer more sophisticated caching policies. Your best choice then is the EJB Data Mediator
Service. The EJB mediator can work with these caches. Also, the entity bean programming model
is a single level store model. You can navigate from entity to entity and the container and
persistence manager either prefetches or lazily fetches in data as needed. On update, the
programmer commits the transaction and the container and persistence manager do the work of
tracking updated beans and writing them back to the data store and in memory cache.

Data sources
Data sources are not restricted to backend data sources (for example, persistence databases). A
data source contains data in its own format. As to the SDO 1.0 API, only the DMS accesses data
sources; SDO applications do not. The applications only work with SDO 1.0 DataGraphs.

Each of the following components corresponds to a Java interface in the SDO programming model.

DataObjects

As the fundamental components of SDO, DataObjects provide a common view of structured data
for SDO clients. DataObjects can hold multiple different attributes of any serializable type (such as
string or integer); more complex DataObjects can also contain simpler DataObjects. DataObjects
hold all of their data in properties.

SDO version 1.0 DataObjects are always linked together and contained in DataGraphs. The
version 1.0 DataObject interface provides simple creation and deletion methods
(createDataObject() with various signatures and delete()), and reflective methods to get their types

164 Developing WebSphere applications

(instance class, name, properties, and namespaces). The interface also supports static object
types that you create from external code generators. See the article “Dynamic and static object
types for the JDBC DMS” for more information.

DataGraphs

A DataGraph is a structured result returned in response to a service request. The DMS transforms
the native backend query results into the DataGraph, which is independent of the originating
backend data store. This makes the DataGraph easily transferable between different data sources.
The DataGraph is composed of interconnected nodes, each of which is an SDO DataObject. It is
independent of connections and transactions of the originating data source. The DataGraph tracks
changes made to it from its original source. This change history can be used by the DMS to reflect
changes back to the original data source. DataGraphs can easily be converted to and from XML
documents enabling them to be transferred between layers within a multi-tiered system
architecture. A DataGraph can be accessed in either breadth-first or depth-first manner, and it
provides a disconnected data cache that can be serialized for web services

The DataGraph returned by the mediator can contain either dynamic or generated static
DataObjects. Use of generated classes gives type safe interfaces for easier programming and
better runtime performance. The EMF generated classes must be consistent in name and type
with the schema that would be created for dynamic DataObjects except that additional attributes
and references can be defined. Only those attributes and references specified in the query are
filled in with data. Remaining attributes and references are not set.

Change summary

SDO 1.0 change summaries are contained by DataGraphs and are used to represent the changes
that have been made to a DataGraph returned by the DMS. They are initially empty (when the
DataGraph is returned to a client) and populated as the DataGraph is modified. Change
summaries are used by the DMS at backend update time to apply the changes back to the data
source. They enable the DMS to efficiently and incrementally update data sources by providing
lists of the changed properties (along with their old values) and the created and deleted
DataObjects in the DataGraph. Information is added to the change summary of a DataGraph only
when the change summary's logging is activated. Change summaries provide methods for DMS to
turn logging on and off.

Note: The SDO 1.0 change summary is not a client API; it is used only by the DMS.

Properties, types, and sequences

DataObjects hold their contents in a series of properties. Each property has a type, which is either
an attribute type such as a primitive (for example, int) or a commonly used data type (for example,
Date) or, if a reference, the type of another DataObject. Each DataObject provides read and write
access methods (getters and setters) for its properties. Several overloaded versions of these
accessors are provided, allowing the properties to be accessed by passing the property name
(String), number (int), or property metaobject itself. The String accessor also supports an
XPath-like syntax for accessing properties. For example, you can call
get(“department[number=123]”) on a company DataObject to get its first department whose
number is 123. Sequences are more advanced. They allow order to be preserved across
heterogeneous lists of property-value pairs.

For more introductory information

For a good introduction to SDO 1.0 that also includes a small sample application, refer to the IBM
developerWorks® paper “Introduction to Service DataObjects.”

Note: To fully understand the EJB data mediator service you need a good understanding of the EJB
programming model. For more information refer to the articles “Task overview: Using enterprise
beans in applications” and “Service Data Objects: Resources for learning.”

Chapter 7. Developing data access resources 165

Java DataBase Connectivity Mediator Service:

The Java Database Connectivity (JDBC) Data Mediator Service (DMS) is the Service Data Objects (SDO)
component that connects to any database that supports JDBC connectivity. It provides the mechanism to
move data between a DataGraph and a database.

A regular JDBC call returns a result set in a tabular format. This format does not directly correspond to the
object-oriented data model of Java, and can complicate navigation and update operations. When a client
sends a query for data through the JDBC DMS, the JDBC result set of tabular data is transformed into a
DataGraph composed of related DataObjects. This enables clients to navigate through a graph to locate
relevant data rather than iterating through rows of a JDBC result set. Once you have altered the
DataGraph, all of the changes can be committed together and propagated back to the database by the
JDBC DMS. Between the processes of being populated and committed, the DataGraph is disconnected
from the database, and there are no locks held on the data accessed. Once disconnected allows multiple
changes to be made to the graph without making additional round trips to the database, improving
performance.

The JDBC DMS is created with server-specific metadata. The metadata defines the structure of the
DataGraph that is produced by the DMS, as well as the query to be used against the server.

Metadata for Data Mediator Service:

A Data Mediator Service (DMS) is the Service Data Object (SDO) component that connects to the back
end database. It is created with back end specific metadata. The metadata defines the structure of the
DataGraph that is produced by the DMS as well as the query to be used against the back end.

166 Developing WebSphere applications

Metadata is composed of the following components:

Table This represents a table within the target database and is composed of the following items:

Name This is the database table name. A table might also have a property name that can be
used to specify the name of the DataObject that corresponds to this table. By default, the
property name is the same as the table name.

Columns
The subset of database table columns to return from the database. A column has a type
that corresponds to a JDBC type and it can prohibit null entries. A column has a name that
corresponds to the name in the database and an optional property name that identifies the
column name in the DataObject. By default, the property name is the same as the column
name in the database.

Primary Key
The column (or columns) used to uniquely identify a row within the table.

Note: Keys may be composed of multiple columns. The following example illustrates
creation of a compound primary key :

Chapter 7. Developing data access resources 167

Key pk = MetadataFactory.eINSTANCE.createKey();
pk.getColumns().add(xColumn);
pk.getColumns().add(yColumn);
coordinateTable.setPrimaryKey(pk);

If a table is related to this one and is the child table, it uses the same method to
create the foreign key to point to this coordinate table.

Foreign Key
The column (or columns) used to relate the table to another table in the metadata. There
is an assumed positional mapping between compound primary keys and foreign keys. For
example, if a parent table has a primary key such as (x,y) with respective types (integer,
string), then it is expected that any pointing foreign key is also (x', y') with respective types
(integer, string).

Note: Keys may be composed of multiple columns. The following example illustrates the
creation of a compound foreign key :
Key fk = MetadataFactory.eINSTANCE.createKey();
fk.getColumns().add(xColumn);
fk.getColumns().add(yColumn);
coordinateTable.getForeignKeys().add(fk);

If a table is related to this one and is the child table, it uses the same method to
create the foreign key to point to this coordinate table.

Filter A structured query language (SQL) WHERE clause predicate that can be given with or
without parameters to fill in later. This is added to the DataGraph SELECT statement
WHERE clause. It is not parsed or interpreted in any way; it is used as is. If given with
parameters to fill in later, these parameters become arguments passed into the JDBC
DMS when getting the DataGraph. Filters are used with generated queries only. If a
supplied query is given, the metadata filters are ignored.

Relationship
Relates two tables through the primary key of the parent table and the foreign key of the child
table. Relationships are composed of the following items:

Name This is the name given to the relationship, usually associated with how the two tables are
related. If Customers is the parent table and Orders is the child table, then the default
name of the relationship is Customers_Orders.

Opposite Name
This is the name used to navigate from the child DataObject to the parent DataObject.

Parent Key
The primary key of the parent table.

Child Key
The foreign key of the child table that points to the parent key.

Exclusive
By default, a Relationship causes the generated query to use an inner join operation on
the two tables involved in the relationship. This means that it only returns the parent
entries that have children, that is, child entries pointing to them. If the value of the
Exclusive attribute is set to false, the query uses a left outer join operation instead and
returns all parent entries, even those without children.

Ordering
Columns used for ordering the tables. Can be either ascending or descending. When specified,
this causes generated queries to contain an ORDER BY clause.

Dynamic and static object types for the JDBC DMS:

168 Developing WebSphere applications

DataObjects of the Service Data Object (SDO) 1.0 Specification can use static types as well as dynamic
types. If you know that a particular dataGraph schema meets all of your application query requirements,
you can generate static SDO code for potential runtime benefits.

With dynamic types, the information that defines the shape of a DataGraph is constructed at runtime. The
DataGraph schema is created by the JDBC data mediator service (DMS) from the metadata provided upon
creation. The JDBC DMS only requires the metadata and a connection to a data source to produce the
DataGraph with dynamic typing. This is the default method for creating the JDBC DMS.

If you know the shape of the DataGraph at development time, you can use a code generator to create
strongly typed interfaces (static data API code) that simplify DataGraph navigation, provide better
compile-time checking for errors, and improve performance. For more information about the metamodels
from which you can generate static SDO code, consult the introduction of the SDO 1.0 Specification. The
introduction contains a list of the specification scope requirements, where you can find a brief discussion
on support for static data API. Note that the dynamic API is still available when you use strongly typed
DataObjects.

With the code generator you create classes for each DataObject type in the DataGraph. Each class
contains getter() and setter() methods for each property in the DataObject. This enables a client to call
type-safe methods rather than passing in the name of a property. For example, instead of calling the
property DataObject.get(“CUSTFIRSTNAME”), the generated types can contain a
DataObject.getCustFirstName() method. If you are accessing a related DataObject, an accessor returns a
strongly-typed DataObject rather than a regular DataObject. For example,
DataObject.get(“Customers_Orders”) returns a DataObject, but DataObject.getOrders() returns an object
of type Order.

To use static typing with the JDBC DMS, the metadata, a connection to the data source, and the
DataGraph schema need to be provided to the JDBCMediatorFactory class create methods. In this case,
the JDBC DMS metadata does not determine the shape of the DataGraph, but does give the DMS
information about the backend data source and the way it maps to a DataGraph.

When using strongly typed DataObjects, it is important to make sure that the query matches the
DataGraph schema. The query is not required to fill all of the data objects and properties in the schema,
but a query cannot return data objects or properties that are not defined in the DataGraph schema. For
example, a DataGraph schema might define Customer and Order DataObjects, but a query might only
return Customer objects. Also, the Customer object might define properties for ID, Name, and Address, but
the query might not return an address. In this case, the value of the address property is null, and the value
is not updated in the database when the applyChanges() method is called. In this example, the query
could not return a Phone property because it has not been defined as a property on the Customer object.
When a query attempts this, the DMS returns an invalid metadata exception.

JDBC mediator supplied query:

An SDO client can supply the JDBC Data Mediator Service (DMS) with a SELECT statement to replace
the statement that is generated from the DMS metadata.

When the SDO client instantiates a DMS, the DMS uses the defining metadata to generate a basic
SELECT statement. Substituting that query gives you the ability to specify parameter markers; therefore
you have more control over the client data that populates a dataGraph. Use a standard SQL SELECT
string for a client-supplied query.

With both supplied queries and generated queries, UPDATE, INSERT, and DELETE statements are
automatically generated for each DataObject. They are applied when the mediator commits the changes
made to the DataGraph back to the database.

Chapter 7. Developing data access resources 169

Parameter DataObjects for supplied queries

Clients can use a parameter DataObject to supply arguments to an SQL SELECT query. A parameter
DataObject is a DataObject, but is not part of any DataGraph. It is constructed by the JDBC DMS when
requested by the client. The ParameterDataObject for supplied queries is created based on the query
given to the mediator. Every parameter in the query is given a name like arg0, arg1, ..., argX.

Because a parameter DataObject is a DataObject, you can set its properties using either the property
name or an index value. The properties can be referenced by their argX name, or by the number
associated with that parameter, 0, 1, ... , X. For example, your query is “SELECT CUSTFIRSTNAME
WHERE CUSTSTATE = ? AND CUSTZIP = ?”. This supplied query contains two parameters. The first
parameter corresponds with CUSTSTATE and can be set using the string “arg0” or the index 0. The
second parameter corresponds with CUSTZIP and can be set using the string “arg1” or the index 1. Here
is sample code of how they are set. This code assumes that you have already set up the metadata and
mediator with the metadata and the aforementioned supplied query. Using the index value method, you
code:
DataObject parameters = mediator.getParameterDataObject();
parameter.setString(0, "NY");
parameter.setInt(1, 12345);
DataObject graph = mediator.getGraph(parameters);

Using the property name method, you code:
DataObject parameters = mediator.getParameterDataObject();
parameters.setString("arg0", "NY");
parameters.setInt("arg1", 12345);
DataObject graph = mediator.getGraph(parameters);

The results are the same for both cases.

Limitations

The JDBC DMS generated SQL SELECT query is not fully supported on Oracle or Informix. This is
because the mediator takes advantage of the ResultSetMetaData interface in JDBC 2.0 and requires it to
be fully implemented. Oracle, Informix, DB2/390, and older supported versions of Sybase do not
implement the ResultSetMetaData interface completely. The supplied select approach can still be used
with these databases with one limitation: column names in the Metadata must be unique across all
tables. An InvalidMetadataException occurs if the select statement returns a column with a name that
appears multiple times in the metadata. For instance, if the Customer and the Order tables both contain a
column named “ID”, this would be invalid and cause problems. The way to fix this is to change the name
of at least one of the matching columns in the database to better distinguish the two columns from each
other. For the Customer table, the column name could be changed to “CUSTID,” as it is in the examples.
The Order column name could be changed to “ORDERID”. If you change the Customer column name, you
do not have to change the Order column name, but for consistency it may be a good idea.

JDBC mediator generated query:

If you do not provide a structured query language (SQL) SELECT statement, then the data mediator
service (DMS) generates one using the metadata provided at instance creation.

The internal query engine uses information in the metadata about tables, columns, relationships, filters,
and order-bys to construct a query. As with the supplied queries, UPDATE, DELETE, and INSERT
statements are automatically generated for each DataObject to be applied when the mediator commits the
changes made to the DataGraph back to the database.

170 Developing WebSphere applications

Filters

Filters define an SQL WHERE clause that might contain parameter markers. These are added to the
DataGraph SELECT statement WHERE clause. Filters are used as is; they are not parsed or interpreted in
any way so there is no error checking. If you use the wrong name, predicate, or function, it is not detected
and the generated query is not valid. If a Filter WHERE clause contains parameter markers, then the
corresponding parameter name and type are defined using Filter arguments. Parameter DataObjects fill in
these parameters before the graph is retrieved. An example of the Filters and Parameter DataObjects for
generated queries follows.

Limitation: Because of the tree-like nature of the DataGraph, any table at a branch appears in more than
one subquery in the final union with the root table appearing in all paths. This means that it is
not possible to filter on a table that appears in more than one path independent of all other
paths. All filters defined on a particular table are joined by a boolean AND, and used
everywhere that table appears.

Parameter DataObjects for generated queries

Clients use a Parameter DataObject to supply arguments that are applied to the filters provided in the
DMS metadata. A Parameter DataObject is a DataObject, but is not part of any DataGraph. It is
constructed by the JDBC DMS when requested by the client. The Parameter DataObject for generated
queries is created based on the mediator's metadata. Every argument of every filter of every table is put
into the Parameter DataObject. Unlike the supplied query Parameter DataObject, the parameters have the
name assigned to them by the Filter arguments. The Parameter DataObject uses this name to map to the
parameter to be filled in. The following sample code illustrates how a filter is created for a table in the
mediator metadata. It also demonstrates the use of a Parameter DataObject to pass filter parameter
values to a mediator instance. The sample assumes that the Customer table has already been defined:
// The factory is a MetadataFactory object
Filter filter = factory.createFilter();
filter.setPredicate("CUSTSTATE = ? AND CUSTZIP = ?");

FilterArgument arg0 = factory.createFilterArgument();
arg0.setName("customerState");
arg0.setType(Column.String);
queryInfo.getFilterArguments().add(arg0);

FilterArgument arg1 = factory.createFilterArgument();
arg1.setName("customerZipCode");
arg1.setType(Column.Integer);
queryInfo.getFilterArguments().add(arg1);

// custTable is the Customer Table object
custTable.setFilter(filter);

..... // setting up mediator

DataObject parameters = mediator.getParameterDataObject();

// Notice the first parameter is the name given to the
// argument by the FilterArgument.
parameter.setString("customerState", "NY");
parameter.setInt("customerZipCode", 12345);
DataObject graph = mediator.getGraph(parameters);

Chapter 7. Developing data access resources 171

Order-by

Ordering of query results is specified using OrderBy objects that identify a column from a table to sort the
results. This ordering can be either ascending or descending. The OrderBy objects are part of the
metadata and are automatically applied to generated queries. An example of this for a customer table
results to be sorted by first names is as follows:
// This example assumes that the custTable, a table in
// the metadata, and factory, the MetaDataFactory
// object, have already been created.
Column firstName = ((TableImpl)custTable).getColumn("CUSTFIRSTNAME");
OrderBy orderBy = factory.createOrderBy();
orderBy.setColumn(firstName);
orderBy.setAscending(true);
metadata.getOrderBys().add(orderBy);

Limitation: Even though Order-bys are defined on each table in the metadata, the RDBMS model
requires them to be applied to the final query. This has many implications. For example, you
cannot order a table and then use that in a join to another table and propagate the ordering in
the first table. Because a result set is a union of all the tables in the DataGraph, the nature of
the single result set requires that it be padded with nulls, which can affect the order-bys,
particularly in the non-root tables. This can give unexpected results.

External Tables

An external table is a table defined in the metadata that is not needed in the DataGraph returned by the
JDBC DMS. This might be appropriate when you want to filter the result set based on data from a table
but that table's data is not needed in the result set. An example of this with the Customers and Orders
relationship would be to filter the results to return all customers who ordered items with an order date of
the first of the year. In this case, you do not want any order information returned, but you do need to filter
on the order information. Making the Orders table external excludes the orders information from the
DataGraph and therefore reduces the DataGraph's size, improving efficiency. To designate a table as
external, you call the setExternal(true) method from a table object in the JDBC DMS metadata. If the client
tries to access an external table from the DataGraph, an illegal argument exception occurs.

Limitation: Many RDBMSs require that an orderby column appear in the final result set; the columns from
an external table cannot in general be used to order a result set. Order-bys are actually
applied to the result set (the word “set” is key here), and not to intermediate query results.

General limitations of generated queries

In understanding the limitations of the query generation feature in the JDBC DMS, there are two things to
keep in mind. The first is that the DataGraph imposes a model that is a directed, connected graph with no
cycles (that is, a model that is a tree) on a relational model that is a non-directed, potentially disconnected
graph with cycles. Directed means that the developer chooses the orientation of the graph by picking a
root table. Connected means that all tables that are a member of the DataGraph are reachable from the
root. Any tables that are not reachable from the root cannot be included in the DataGraph. In order for a
table to be reachable from the root, there must be at least one foreign key relationship defined between
each pair of tables in the DataGraph. No cycles means that there is only one foreign key relationship
between a pair of tables in the DataGraph. The tree nature of the DataGraph determines how the queries
are built, and what data is returned from a query.

The second item to keep in mind is the following high level description of how query generation produces
read queries for a DataGraph:
1. The JDBC DMS creates a single result set (that is, a DataGraph) whether the DataGraph is composed

from a single table or from multiple tables.

172 Developing WebSphere applications

2. Each path through the foreign key relationships in DMS Metadata from root to leaves represents a
separate path. The data for that path is retrieved by using joins across the foreign keys defined
between the tables in the path. The joins are by default inner joins.

3. All the paths in a DataGraph are unioned together in order to create a single result set by the query
that is generated by the mediator, and are thus treated independently of one another.

4. Any user-defined filtering is done first on the tables. Then the result is joined to the rest of the path.
5. Relational databases generally require order-bys to be applied to the entire final result set and not on

intermediate results.

JDBC mediator performance considerations and limitations:

Use these tips to help you determine if a JDBC Data Mediator Service suits the requirements of your
application serving environment.

Miscellaneous database limitations
v Sybase before Version 12.5.1 does not support in-line queries in the “from” clause, and therefore does

not support multiple table DataGraphs with filters. To use the Service Data Object in WebSphere
Application Server use Sybase Version 12.5.1.

v The Informix Dynamic Server does not support sub-selects, which are needed for multiple table graphs.
Use Informix Extended Parallel Server.

v Oracle 8i does not support the ANSI join syntax. The mediator in multiple table cases requires Oracle 9i
or 10g.

General performance recommendations
v Evaluate if your target projects are well suited to these technologies. In general, projects that are

read-intensive and require disconnected data are good candidates.
v Limit the number of tables in the metadata. One or two is best because relationships, with respect to

filters, become ambiguous when graphs have many branches.
v Work with small data sets as often as possible to avoid consuming excessive amounts of memory within

your applications. You can limit the amount of data returned to the SDO by specifying filters in the
metadata objects or by using paging.

v For web applications, if the DataGraph is not too large and is to be reused later, store it in the user
session.

JDBC mediator transactions:

You can specify that the JDBC mediator either act as transaction manager, or refrain from such activities
in the case of external transaction management (performed by the SDO client).

Mediator managed transactions

A JDBC connection is wrapped in a connection wrapper and passed to the Data Mediator Service (DMS)
during the instance creation. The ConnectionWrapper object contains the connection that is used by the
JDBC DMS and indicates whether the mediator manages the current transaction. When the JDBC DMS
manages the transaction, it performs commit and rollback operations as required. However, the DMS does
not perform any transaction management activities if the wrapped connection is currently engaged in
another transaction.

Using the createConnectionWrapper method for active transaction management is the general practice.

Non-mediator managed transactions

When a passive connection wrapper is passed to the DMS, the DMS takes no managerial action; a
passive wrapper is generally intended for an existing transaction that is under external management.
Commit or rollback operations are not performed by the connection wrapper in this case.

Chapter 7. Developing data access resources 173

Use the createPassiveConnectionWrapper method.

Protection against referential integrity (RI) violations

The JDBC Data Mediator Service safeguards data transactions from incurring RI violations and other
database logic violations. When the JDBC DMS applies the updates of a data graph to a back end, it
automatically orders the change operations so that they do not violate database RI policy. Similarly, the
DMS filters counter operations (such as INSERT and DELETE) so that opposing client requests can
perform updates in a logical order. The client deletes one object, and then creates an entirely separate
object with the same primary key. The DMS transforms these two operations into an update operation that
modifies the existing database object.

JDBC mediator exceptions:

JDBC mediator exceptions either surface errors reported by the database, or indicate use of non-valid
metadata in the attempt to instantiate the DMS.

174 Developing WebSphere applications

The Mediator exception is the root exception of all the data mediator services, and the JDBCMediator
exception is the root exception for the JDBC DMS in particular.

The DB exception occurs when an error is reported by the database. This can occur several ways:
v when the connection being used has the AutoCommit property set to true, but the JDBC DMS is

controlling the transaction and needs it to be set to false
v when an unsupported database is trying to be used
v when other backend database errors occur during commit or rollback.

An optimistic concurrency control (OCC) exception occurs when the applyChanges() operation results in
an data collision. When this occurs, the exception contains the original row values, current row values, and
the attempted row values. These values are used to help recover from the error.

An InvalidMetadata exception occurs for invalid metadata supplied to the JDBC DMS upon creation. This
can happen when a query requires tables or columns that are not defined in the metadata, or when there
are identical column names for different tables for the Oracle, Informix, and older supported versions of
Sybase databases.

Example: Forcing OCC data collisions and JDBC mediator exceptions, The following example forces
a collision to demonstrate detection and shows the exception that occurs as a result.
// This example assumes that a mediator has already
// been created and the first name in the list is Sam.
// It also assumes that the Customer table has an OCC
// column and the metadata has set this column to be
// the collision column.

DataObject graph1 = mediator.getGraph();
DataObject graph2 = mediator.getGraph();

DataObject customer1 = (DataObject)graph1.getList("CUSTOMER").get(0);
customer1.set("CUSTFIRSTNAME", "Bubba");

DataObject customer2 = (DataObject)graph2.getList("CUSTOMER").get(0);
customer2.set("BOWLERFIRSTNAME", "Slim");

mediator.applyChanges(graph2);

try
{
mediator.applyChanges(graph1);
}
catch (OCCException e)
{
// Since graph1 was obtained before graph2 and
// graph2 has already been submitted, trying to
// apply the same changes to graph1 causes
// this OCC Exception.

assertEquals("Sam", e.getOriginalDO(). getString("CUSTFIRSTNAME"));
assertEquals("Bubba", e.getChangedDO(). getString("CUSTFIRSTNAME"));
assertEquals("Slim", e.getDatabaseDO(). getString("CUSTFIRSTNAME"));
}

Defining optimistic concurrency control for JDBC Mediator:

Implement an optimistic concurrency control (OCC) strategy for the JDBC DMS to diagnose transaction
problems that are caused by update collisions.

Chapter 7. Developing data access resources 175

About this task

An update collision occurs when client data that populates a data graph is changed in the database before
the data graph can submit the modifications of the client. If you configure the JDBC DMS for OCC, the
DMS issues an OCC-specific exception when such a data collision happens. The OCC exception contains
collision details such as the original row values, current row values, and the attempted row values. The
client application uses these values to determine how to recover from the collision. For example, the
application can reread the data and restart the transaction.

Be aware, however, that when one exception occurs, there is no way of knowing whether more exceptions
exist deeper in the data graph schema and therefore are not displayed.

To activate OCC for the data mediator service, you must incorporate OCC columns into your database
tables.

Add an OCC Integer column to a given table, and specify that this column is to be used for OCC in the
metadata. The defined OCC collision column is reserved for the exclusive use of the mediator. If there is
no OCC column defined for a table, the DMS does not monitor and notify you of update collisions. The
following generic code segments create this setup.

Procedure

1. Create the OCC column
Column collisionColumn = table.addIntegerColumn("OCC_COUNT");

2. Ensure that it does not allow null values
collisionColumn.setNullable(false);

3. Designate the column as the table collision column
table.setCollisionColumn(collisionColumn);

For a fully-fledged code example that forces a collision to demonstrate the OCC exception, see the
topic Example: Forcing OCC data collisions and JDBC mediator exceptions.

JDBC mediator integration with presentation layer:

The JDBC Data Mediator Service (DMS) can be used in conjunction with web application presentation
layer technologies such as JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces (JSF).

This discussion assumes a general understanding of both of the JavaServer Pages Standard Tag Library
(JSTL) and JavaServer Faces (JSF) technologies. In particular for JSF, the UIData component and the
general file structure of a JSF dynamic web application should be known. For a brief overview of both JSF
and JSTL refer to the topics under Service Data Objects.

The JDBC DMS and JSTL work well together because the JSTL access code is equivalent to the code
necessary to access attributes and lists inside of a DataObject. For example, in relation to a root Customer
DataObject, the JSTL expression:
${rootDO.CUSTOMER[index].CUSTNAME}

is equivalent to the Java code for a DataObject of:
rootDO.getList("CUSTOMER").get(index).get("CUSTNAME")

The reason for this is the dot notation in the JSTL expression language correlates to a getter() method in
Java code, and the bracket notation allows you to access elements inside a list.

The JDBC DMS and JSF fit well together because the DataGraph produced by the JDBC DMS is able to
populate a JSF UIData component without having to be transformed. The UIData component uses a
dataTable tag that takes a list as its input to populate the table. This works out well with the DataGraph

176 Developing WebSphere applications

because all you need to pass into the dataTable is the root list of the DataGraph. The most common way
to lay out the DataGraph in the dataTable is to display each attribute of the DataObject from the list
retrieved from the root in its own column, and to embed each additional relationship to the DataObject in a
new dataTable contained within the parent DataObject's row. Using this method instead of a traditional
ResultSet table eliminates duplicate information and makes it easier to see the separation of the parent
object's children. An example of how the Customer and Order scenario is laid out in a dataTable is shown
in the topic Example: Using JavaServer Faces and JDBC Mediator dataTables.

Example: Using JavaServer Faces and JDBC Mediator dataTables.

This example shows code that would be located inside of a Faces JSP page. It demonstrates how to use
JavaServer Faces and JDBC Mediator dataTables in an application.

It contains the UIData component dataTable tag with all of the customer's information, along with their
orders. Each Customer attribute has its own column. The Customer Orders are embedded in another
dataTable containing each of the Order attributes in separate columns. This embedded dataTable of
Orders is like any other Customer attribute, having its own column inside each Customer row.
<h:dataTable id="table1" value=">{pc_Customers.customer}" var=
"varcustomer" styleClass="dataTable">

<h:column id="column1">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Customerid" id=
"text1"></h:outputText>

</f:facet>
<h:outputText id="text2" value=">{varcustomer.CUSTOMERID}"
styleClass="outputText">
<f:convertNumber />
</h:outputText>
</h:column>

<h:column id="column2">
<f:facet name="header">

<h:outputText styleClass="outputText" value="Custfirstname"
id="text3"></h:outputText>

</f:facet>
<h:outputText id="text4" value=">{varcustomer.CUSTFIRSTNAME}"
styleClass="outputText">
</h:outputText>

</h:column>

<h:column id="column3">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custlastname"
id="text5"></h:outputText>

</f:facet>
<h:outputText id="text6" value=">{varcustomer.CUSTLASTNAME}"
styleClass="outputText">

</h:outputText>
</h:column>

<h:column id="column4">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custstreetaddress"
id="text7"></h:outputText>

</f:facet>
<h:outputText id="text8" value=">{varcustomer.CUSTSTREETADDRESS}"
styleClass="outputText">

</h:outputText>
</h:column>

<h:column id="column5">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custcity" id="text9">
</h:outputText>

</f:facet>
<h:outputText id="text10" value=">{varcustomer.CUSTCITY}"

Chapter 7. Developing data access resources 177

styleClass="outputText">
</h:outputText>

</h:column>

<h:column id="column6">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custstate" id=

"text11"></h:outputText>
</f:facet>
<h:outputText id="text12" value=">{varcustomer.CUSTSTATE}"
styleClass="outputText">

</h:outputText>
</h:column>

<h:column id="column7">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custzipcode"

id="text13"></h:outputText>
</f:facet>
<h:outputText id="text14" value=">{varcustomer.CUSTZIPCODE}"

styleClass="outputText">
</h:outputText>

</h:column>

<h:column id="column8">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custareacode"

id="text15"></h:outputText>
</f:facet>
<h:outputText id="text16" value=">{varcustomer.CUSTAREACODE}"

styleClass="outputText">
<f:convertNumber />
</h:outputText>

</h:column>

<h:column id="column9">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Custphonenumber"

id="text17"></h:outputText>
</f:facet>
<h:outputText id="text18" value=">{varcustomer.CUSTPHONENUMBER}"
styleClass="outputText">

</h:outputText>
</h:column>

<h:column id="column10">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Customers_orders"

id="text19"></h:outputText>
</f:facet>

<h:dataTable id="table2" value=">{varcustomer.CUSTOMERS_ORDERS}"
var="varCUSTOMERS_ORDERS" styleClass="dataTable">

<h:column id="column11">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Ordernumber"

id="text20"></h:outputText>
</f:facet>
<h:outputText id="text21"

value=">{varCUSTOMERS_ORDERS.ORDERNUMBER}"
styleClass="outputText">
<f:convertNumber />

</h:outputText>
</h:column>

<h:column id="column12">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Orderdate"

id="text22"></h:outputText>
</f:facet>
<h:outputText id="text23" value=">{varCUSTOMERS_ORDERS.ORDERDATE}"

178 Developing WebSphere applications

styleClass="outputText">
<f:convertDateTime />

</h:outputText>
</h:column>

<h:column id="column13">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Shipdate"

id="text24"></h:outputText>
</f:facet>
<h:outputText id="text25"
value=">{varCUSTOMERS_ORDERS.SHIPDATE}"
styleClass="outputText">
<f:convertDateTime />

</h:outputText>
</h:column>

<h:column id="column14">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Customerid"
id="text26"></h:outputText>

</f:facet>
<h:outputText id="text27"

value=">{varCUSTOMERS_ORDERS.CUSTOMERID}" styleClass="outputText">
<f:convertNumber />

</h:outputText>
</h:column>

<h:column id="column15">
<f:facet name="header">
<h:outputText styleClass="outputText" value="Employeeid"

id="text28"></h:outputText>
</f:facet>
<h:outputText id="text29"

value=">{varCUSTOMERS_ORDERS.EMPLOYEEID}" styleClass="outputText">
<f:convertNumber />

</h:outputText>
</h:column>

</h:dataTable>
</h:column>

</h:dataTable>

JDBC mediator paging:

Paging can be useful for moving through large data sets because it can limit the amount of data pulled
into memory at any given time. The JDBC DMS API provides two interfaces that implement paging.

If the metadata provided to the data mediator service (DMS) defines customers and the page size is set to
ten, then the first page is a DataGraph containing the first ten customer DataObjects. The next page is
another DataGraph with the next ten Customers, and so forth.

One thing to note is that the JDBC DMS provides paging at the root of the graph. That is, there is no
restriction on the number of related DataObjects returned. For example, if the metadata provided to the
DMS defines customers and related orders, it is the customers that are paged. If the page size is set to
ten, then the first page is a graph with the first 10 customers and all related orders for each customer.

There are two interfaces provided by the DMS that you can take advantage of, the Pager and the
CountingPager. The Pager interface provides a cursor-like next() method capability. The next() function
returns a graph representing the next page of data from the entire data set specified by the mediator
metadata. There is also a previous() function available with the same capabilities, only going backward.
The CountingPager interface enables you to retrieve a specific page number. The following example
illustrates paging through a large set of customer instances using a CountingPager interface with a
maximum of 5 DataObjects from the root table per page.

Chapter 7. Developing data access resources 179

CountingPager pager = PagerFactory.soleInstance.createCountingPager(5);
int count = pager.pageCount(mediator);
for (int i = 1, i <= count, i++) {
DataObject graph = pager.page(i, mediator);
// Iterate through all returned customers in the
// current page.
Iterator iter = graph.getList("CUSTOMER").iterator();
while (iter.hasNext()) {
DataObject cust = (DataObject) iter.next();

System.out.println(cust.getString("CUSTFIRS NAME"));
}

}

If you try to move before the first page or after the last available page, a JDBC mediator exception occurs.

JDBC mediator serialization:

The DataGraph produced by the JDBC DMS can be serialized and written out to a file, or sent across a
network.

The following example illustrates serialization and de-serialization of a graph:
// This example assumes the creation of the Customer
// metadata and the JDBC DMS.

DataObject object = mediator.getGraph();
DataGraph origGraph = object.getDataGraph();

FileOutputStream out = new FileOutputStream("test.datagraph");
ObjectOutputStream oos = new ObjectOutputStream(out);
oos.writeObject(origGraph);
out.close();

FileInputStream in = new FileInputStream("test.datagraph");
ObjectInputStream oin = new ObjectInputStream(in);
DataGraph graph = (DataGraph) oin.readObject();
DataObject obj = (DataObject) graph.getRootObject();

// Now, the DataObject retrieved from the input stream
// obj is equal to the original variable object put
// through the output stream.

Enterprise JavaBeans Data Mediator Service:

The Enterprise JavaBeans (EJB) Data Mediator Service (DMS) is the Service Data Objects (SDO) Java
interface that, given a request in the form of EJB queries, returns data as a DataGraph containing
DataObjects of various types.

This is different from a typical EJB finder or ejbSelect method, which also takes an EJB query but returns
a collection of EJB objects that are all of the same type or a collection of container managed persistence
(CMP) values.

The EJB DMS enables you to specify an EJB query that returns a data graph (the DataGraph) of data
objects (DataObjects). The query can be expressed as a compound EJB query that is contained in a string
array of EJB query statements. One advantage of using a DataGraph is that much of the code written in
an EJB facade session bean that creates, populates, and updates copy helper objects can be replaced
with a DataGraph and a DMS.

Important: The EJB DMS has support for EJB2.x container managed persistence (CMP) entity beans
only. It does not support EJB 3.x modules.

180 Developing WebSphere applications

You can obtain a DataGraph using the getGraph call, either from EJB instances cached in the container,
or the query request can be compiled into SQL and executed directly against the data source.

Updated DataObjects can be written back to the data store by using the applyChanges method in one of
two ways. The updates can be translated into SQL and applied directly to the data store or can be written
back through EJB accessor methods. Writing back directly to the data store can improve performance
because it avoids EJB activation. However, if business logic or EJB container function is required by the
application, writing back through EJB is the preferred approach. When writing back through EJB, you can
specify a user-defined MediatorAdapter method to ensure customized handling of changed DataObjects.
This customization can include application-specific optimistic concurrency control, invoking business
methods on the EJB to perform updates, update of computed values in the DataObject, and calling
application-specific create methods on EJBHome.

Update processing is not dependent on how the DataGraph was originally retrieved. In other words, it is
possible to retrieve a DataGraph directly from the data source, but have the deferred updates applied
through the enterprise bean or the other way around.

Regardless of which update approach you use, an optimistic concurrency control algorithm is used. Fields
designated as consistency fields are read during the update to ensure that the current value is equal to the
old value DataObject field.

Runtime processing

An EJB mediator request is a compound EJB query, which consists of an ordered list of regular EJB
queries. Each query in the compound query defines an SDO. The SELECT clause of the query specifies
the CMP fields or expressions to return in the DataObject. The WHERE clause specifies the filtering
conditions. The first query in the list is considered to be the ROOT node in the DataGraph. The FROM
clause of a query, other than the first, specifies an EJB relationship that is used to create references
between DataObjects. More details about how the DataGraph schema is derived from the query can be
found in the topic DataGraph schema.

EJB data mediator service programming considerations:

When you begin writing your applications to take advantage of the Enterprise JavaBeans (EJB) data
mediator service (DMS) provided in the product, consider the following items.

EJB programming model

Only a subset of the EJB programming model is supported by the EJB data mediator service.

v When using EJB collection parameters to retrieve data from EJB instances, or when using
applyChanges to update EJB instances:

– The EJB DMS uses local interfaces for enterprise beans. Getter and setter calls for
container-managed persistence (CMP) fields must be promoted to the local interface, as well as any
EJB methods used in query expressions.

– For the mediator to create an EJB, there must be a create method using the primary key class as
the only argument method defined on the EJB home. If no such method exists, you must supply an
adapter that handles the create operation. Also, the EJBLocalHome interface defined for the EJB
must include (in addition to the create method) the following method:
findByPrimaryKey(<key class>)
remove (java.lang.Object)
create (<key class>)

v When invoking the applyChanges method directly to the database, the following occur:
– you bypass container update. You should force a refresh as soon as possible by transaction

termination and using appropriate container cache options.

Chapter 7. Developing data access resources 181

– you bypass EJB container-managed relationship (CMR) maintenance. You must rely on database RI
to maintain those relationships not retrieved into the DataGraph.

v CMP fields must be the allowed types. See “EJB mediator query syntax” on page 184 for a list of those
types.

v CMP fields of user-defined types that use EJB converters/composer are not supported.

The following table shows limitations in the EJB programming model that are not supported by the EJB
DMS.

Table 10. EJB programming model limitations with EJB DMS. The following table shows limitations in the EJB
programming model that are not supported by the EJB DMS.

retrieve direct from
db

retrieve from EJB
Container update direct to db update through EJB

EJB persistence
inheritance

No No No No

EJB cmp field with
converter

No Yes No Yes

Transactional

v All mediator calls, including create, must be done within a transaction scope – either a user transaction
or a container transaction. The various mediator calls including, create, getGraph, and applyChanges,
do not have to be called within the same transaction. In fact, most often the calls are done in separate
transactions.

Access intent

v When the mediator query references an EJB using its abstract schema name (ASN), data is retrieved
directly from the database. The access intent and isolation level used on the data source connection is
the access intent specified in the application profile for EJB dynamic query access intent. It is
recommended that you define an optimistic access intent for your application because a DataGraph is
intended to be used in a disconnected programming model.

v When the mediator is retrieving data using an EJB collection, the access intent specified in the
application profile is used if the EJB requires activation.

v During applyChanges, optimistic concurrency control is used to verify certain fields in the DataObject
before applying changes to the database. Updates are typically processed under a different transaction
from the retrieval. Therefore, to avoid lost updates it is necessary to verify that another transaction has
not updated the data. When defining the EJB to RDB mapping you can specify one or more EJB fields
as optimistic Predicates. The fields are used for verification by comparing the current database value to
the old value from the DataGraph change log. If the verification succeeds, then the current value of the
fields is written to the database. If the comparison returns false and the update fails, an exception
occurs. All of this is accomplished in a single update statement with extra predicates added, such as in
the following example. The optimisticPredicate field is myColumn1.

update myTable set myColumn1 = “new value1”, myColumn2=“new value2”
where myKey= “key value” and myColumn1 =“old value1”

v When applyChanges is done through the EJB container, the current values of the enterprise beans are
compared with the old values of the optimistic predicates fields. If the values are unequal an exception
occurs.

v Provided that you have defined one or more EJB fields as optimisticPredicates, then for the SDO to be
updateable, at least one of the optmisticPredicate fields must be retrieved into the data object.
Otherwise, applyChanges returns an exception. The field should be updated either by the caller or a
database trigger – the mediator does not automatically increment or set the field.

v Not all fields are verified, only those fields marked as optimisticPredicate in the EJB-RDB mapping.

182 Developing WebSphere applications

v Note that the EJB mapping tool allows for the possibility of no optimisticPredicate fields. In this case the
mediator will perform updates without any verification.

v Creation and deletion operations do not make use of the optimistic predicate fields.

v When applying changes through EJB instances, the EJB might have to be activated first. In this case,
the appropriate access intent associated with the EJB methods apply. It is recommended that you run
applyChanges in a profile that has pessimistic access intent, otherwise the optimistic concurrency logic
is invoked twice – once when copying data object values to the EJB, and a second time when the
persistence manager compares the old values of the EJB field values against the database record.

v The access intent used by the mediator when retrieving directly from the database is the default access
intent defined for the EJB named in the first query statement.

Best practices

v You can call getGraph on one mediator instance, update the returned DataGraph, and then call
applyChanges on a different mediator instance. However, while they do not need the same mediator
instance, they do need the same query shape. The query shape is the number and order of query
statements, the fields and relationships specified in the SELECT and FROM clauses, and so on.

v Avoid repeated calls to createMediator if possible. Use parameterized queries and use getGraph to
pass in different parameter values.

EJB data mediator service data retrieval:

An Enterprise JavaBeans (EJB) mediator request is a compound EJB query. You can obtain a DataGraph
using the getGraph call.

Directly from the data source

To retrieve data directly from the data source, specify your first EJB query to reference the Abstract
Schema Name (ASN) of the enterprise bean.

From the EJB container

To retrieve data through the EJB container, specify your first query to use an input parameter in the FROM
clause referring to the EJB collection desired.

You should use this method when there is high likelihood that your EJB instances will be cached in the
container. This way you avoid container flush and then read from the database to retrieve data.

For an example, see the topic Using the EJB data mediator service for data access.

EJB data mediator service data update:

An Enterprise JavaBeans (EJB) mediator request is a compound EJB query. You can write an updated
DataGraph back to the data source by using the applyChanges method.

The update can be applied directly to the data source or through EJB instances.

When applying changes through EJB instances an optional adapter class can be specified on the
applyChanges method. Each changed data object is first passed to the adapter applyChange method. The
adapter can process the change itself and return true, or have the EJB Mediator process the change by
returning false.

The adapter can be used to customize the optimistic concurrency (OCC) logic, or process changes to read
only DataGraph attributes, or process changes that require business logic.

Chapter 7. Developing data access resources 183

There are two forms of the applyChanges method. The first, applyChanges(DataObject) takes the
updated DataGraph and runs structured query language (SQL) insert, update, and delete statements
directly against the database, bypassing the EJB container. The second form, applyChanges(DataObject,
MediatorAdapter) processes updates using EJB instances and accessors. A null value for the
MediatorAdapter is supported.

When to use an adapter with applyChanges

v Use when there are create methods other than create(PrimaryKey)

v Use when business methods must be called instead of container-managed persistence (CMP) setter
methods

v Use when special optimistic caching logic is needed

How the adapter works

Three passes are made over the DataGraph log, passing changed DataObject to the adapter:

1. New DataObjects are passed. The adapter can create the object and set the CMP fields.
Container-managed relationships (CMR) that reference enterprise beans not yet created are deferred
until pass 2.

2. New and updated DataObjects are passed. CMRs deferred from pass 1 can be set at this time.

3. Deleted DataObjects are passed.

EJB mediator query syntax:

When you begin writing your applications to take advantage of the Enterprise JavaBeans (EJB) data
mediator service (DMS) provided in the product, consider the following items.

v The EJB DMS takes as an input argument a compound EJB query which consists of an array
containing EJB query language (QL) statements and an optional XREL command. The XREL command
is a list of EJB relationships and must appear last in the array.

v Each EJB QL query returns data in the form of a Service DataObjects (SDO) instance. All of the SDO
instances are merged into a DataGraph. The SELECT clause of each query specifies the
container-managed persistence (CMP) fields or expressions to return in the SDO. The WHERE clause
specifies the filtering conditions and you can define an ORDER BY clause. If two or more SELECTs
return the same SDO type, each SELECT must project the same CMP fields and expressions. For
updatability, the primary key fields of the EJB must be projected. JOINs, UNIONs, and aggregation are
not supported except in subqueries.

v A query in the array can refer to a prior query in the FROM clause by using the identification variable
defined in the prior query and a relationship name. This relationship can be single or collection valued.

v Relationships are constructed between data object instances in the graph when a relationship is used in
either the FROM clause or in the XREL command.

v Collection valued input arguments are supported in FROM clause If ?1 refers to a collection of Dept
EJBs then the following query is valid for the mediator. The cast syntax is required to tell the query
compiler the collection element type.
select d.deptno from (Dept) ?1 as d

v The collection input argument is useful when it is desired to build a DataGraph from EJB instances that
are cached in the EJB Container or persistence manager data cache.

v The SELECT clause can specify a list of CMP fields to retrieve (the wildcard * notation can be used to
retrieve all CMP fields) or valid EJB query language expressions. CMP fields and expressions must be
one of the following types:
– Primitive types: boolean, byte, short, integer, long, float, double, char
– Object wrapper types for the primitive types
– Java.lang.String
– Java.math.BigDecimal
– java.math.BigInteger

184 Developing WebSphere applications

– byte []
– Java.sql.Date
– java.sql.Time
– java.sql.Timestamp
– java.util.Date
– java.util.Calendar

v All primary key CMP fields must be retrieved in order for the Service Data Objects (SDO) to be
updateable; otherwise, applyChanges returns an exception.

v SDO attributes that come from EJB query language expressions such as e.salary + e.bonus AS
TOTAL_PAY cannot be updated. If you try to make an update, applyChanges returns a QueryException.

v Aggregate expressions such as SUM(e.salary) are not allowed even though they are part of the EJB
query language. Aggregate expressions can be used in subselects in the WHERE clause.

XREL keyword:

The XREL keyword is used to build relationships independent of how the data was retrieved. XREL is valid
only in Enterprise JavaBeans (EJB) Mediator queries.

XREL does not retrieve additional data, it only builds relationships from data already retrieved by the
select statements. The relationships can be one-to-one, one-to-many, many-to-one, or many-to-many. The
relationships can be unidirectional or bidirectional. If you specify a bidirectional relationship in an XREL,
the inverse relationship is also established in addition to the specified relationship.
xrel := XREL identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }

[, identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }]*

Examples: XREL keyword

This example retrieves all employees and all departments, and establishes the emps and mgr
relationships.
select e.name from EmpBean e

select d.name from DeptBean d
xrel d.emps, d.mgr

Notice that the employees are retrieved through d.emps relationship, xrel d.mgr is to establish the mgr
relationship for those employees who are also a manager.
select d.name from DeptBean d

select e.name from in(d.emps) e
xrel d.mgr

DataGraph schema:

DataGraph schema created by the EJB mediator

The schema created by the mediator for a query consists of an Eclass for each query statement. The
name of the Eclass is the Abstract Schema Name (ASN) of the Enterprise JavaBeans (EJB). The
Eattributes of the Eclass correspond to the container-managed persistence (CMP) fields or expressions
returned by the query statement.

For static DataObjects, the Eclass name can be different provided that the Map argument is used on the
createMediator call.

Each EJB relationship specified in the FROM or XREL clause adds an Ereference into the schema. EJB
relationships can be unidirectional or bidirectional. However, all Ereferences are defined as bidirectional as
this is needed to efficiently navigate the DataGraph on update. An inverse relationship name is generated
in the case of a unidirectional EJB relationship. A generated name is of the format

Chapter 7. Developing data access resources 185

<ASName_source><ASName_target>. For example, if the ASNames are EmpBean and DeptBean, and
the unidirectional relationship is dept going from EmpBean to DeptBean, the generated inverse name is
DeptBeanEmpBean.

If no ECLass argument is used on createMediator, then the mediator creates a DataGraph schema with
the following characteristics:
v the DataObject Eclass names are the corresponding EJB Abstract Schema Names (ASN)
v the DataObject attributes names and types are the expression names and types in the query SELECT

clauses
v the DataObject reference names and types come from the EJB relationships referenced in the FROM

clauses.

A dummy DataObject with the Eclass name of DataGraphRoot is also created and has containment
reference to all the DataObjects. The reference is multivalued, using the EJB ASN name.
DataObject root = m.getGraph(parms);
root.getType().getName(); // this would return the string "DataGraphRoot"

List depts = (List) root.get("DeptBean");
// the list of all DeptBean SDOs in the DataGraph

List emps = (List) root.get("EmpBean");
// the list of all EmpBean SDOs in the DataGraph

DataGraph containment patterns

References between Service Data Objects (SDO) can be defined as containment references, in which
case when an SDO is deleted the delete is cascaded to all of the contained SDO. Also, when the
DataGraph is serialized as an XML document, the contained SDO are nested within the parent SDO.
Noncontained references are expressed as path expressions in the XML document.

Containment must be defined in the DataGraph schema. When the mediator defines the schema, the root
SDO (named DataGraphRoot) contains all other SDO. EJB relationships are defined as noncontained
SDO references.

When the caller defines the DataGraph schema, there are three patterns.

ROOT_CONTAINS_ALL
In this pattern there is a dummy SDO that is the root. It is a dummy in the sense that it does not
correspond to any EJB. Its purpose is to contain all other SDOs. If the mediator generates the
graph schema, the dummy root has a class name of DataGraphRoot and it will have containing
references whose names are the EJB ASN names. If the caller uses static schema, the root can
have any name. The Eclass of the root is passed on the createMediator call.

ROOT_CONTAINS_SOME
This pattern is applicable only for static schema. There is still a dummy SDO that is the graph
root. Other SDO must either be contained by the Ereference that corresponds to the EJB
relationship used in the query statement or the SDO must be contained by the dummy root.

NO_DUMMY ROOT
This pattern is applicable only for static schema. There is no dummy root. The root SDO
corresponds to the first query statement which must return only a single instance. Non-root SDOs
must be contained by the Ereference corresponding to the EJB relationship used in the query
statement.

Using the Java Database Connectivity data mediator service for data access
The following steps demonstrate how to create the metadata for a Java Database Connectivity (JDBC)
data mediator service (DMS), as well as how to instantiate the DMS dataGraph.

186 Developing WebSphere applications

Procedure
1. Create the metadata factory. This can be used for creating metadata, tables, columns, filters, filter

arguments, database constraints, keys, order-by objects, and relationships.
MetadataFactory factory = MetadataFactory.eINSTANCE;
Metadata metadata = factory.createMetadata();

2. Create the table for the metadata. You can do this two ways. Either the metadata factory can create
the table and then the table can add itself to the already created metadata, or the metadata can add
a new table in which case a new table is created. Because it involves fewer steps, this example uses
the second option to create a table called CUSTOMER.
Table custTable = metadata.addTable("CUSTOMER");

3. Set the root table for the metadata. Again, you can do this in two ways. Either the table can declare
itself to be the root or the metadata can set its own root table. For the first option, code:
custTable.beRoot();

If you want to use the second option, you code:
metadata.setRootTable(custTable)

4. Set up the columns in the table. The example table is called CUSTOMER. Each column is created
using its type. The column types in the metadata can only be the types supported by the JDBC driver
being used. If you have questions on which types the JDBC driver being used supports, consult the
JDBC driver documentation.
Column custID = custTable.addIntegerColumn("CUSTID");
custID.setNullable(false);

This example creates a column object for this column, but does not for the remainder. The reason is
because this column is the primary key, and is used to set the table's primary key after the rest of the
columns are added. A primary key cannot be null; therefore custID.setNullable(false) prohibits this
from happening. Adding the rest of the columns:
custTable.addStringColumn("CUSTFIRSTNAME");
custTable.addStringColumn("CUSTLASTNAME");
custTable.addStringColumn("CUSTSTREETADDRESS");
custTable.addStringColumn("CUSTCITY");
custTable.addStringColumn("CUSTSTATE");
custTable.addStringColumn("CUSTZIPCODE");
custTable.addIntegerColumn("CUSTAREACODE");
custTable.addStringColumn("CUSTPHONENUMBER");

custTable.setPrimaryKey(custID);

5. Create other tables as needed. For this example, create the Orders table. Each order is made by one
Customer.
Table orderTable = metadata.addTable("ORDER");

Column orderNumber = orderTable.addIntegerColumn("ORDERNUMBER");
orderNumber.setNullable(false);

orderTable.addDateColumn("ORDERDATE");
orderTable.addDateColumn("SHIPDATE");
Column custFKColumn = orderTable.addIntegerColumn("CUSTOMERID");

orderTable.setPrimaryKey(orderNumber);

6. Create foreign keys for the tables that need relationships. In this example, orders have a foreign key
that points to the customer who made the order. In order to create a relationship between the two
tables, you must first make a foreign key for the Orders table.
Key custFK = factory.createKey();
custFK.getColumns().add(custFKColumn);

orderTable.getForeignKeys().add(custFK);

Chapter 7. Developing data access resources 187

The relationship takes two keys, the parent key and the child key. Because no specific name is given,
the default concatenation of CUSTOMER_ORDER is the name used for this relationship.
metadata.addRelationship(custTable.getPrimaryKey(), custFK);

The default relationship includes all customers who have orders. To get all customers, even if they do
not have orders, you need this line as well:
metadata.getRelationship("CUSTOMER_ORDER")

.setExclusive(false);

Now that the two tables are related to one another you can add a filter to the Customer table to find
customers with specific characteristics.

7. Specify any filters needed. In this example, set filters to the Customer table to find all the customers
in a particular state, with a certain last name, who have made orders.
Filter filter = factory.createFilter();
filter.setPredicate("CUSTOMER.CUSTSTATE = ? AND CUSTOMER.CUSTLASTNAME = ?");

FilterArgument arg1 = factory.createFilterArgument();
arg1.setName("CUSTSTATE");
arg1.setType(Column.STRING);
filter.getFilterArguments().add(arg1);

FilterArgument arg2 = factory.createFilterArgument();
arg2.setName("CUSTLASTNAME");
arg2.setType(Column.STRING);
filter.getFilterArguments().add(arg2);

custTable.setFilter(filter);

8. Add any order by objects needed. In this example, set the order by object to sort by the customer's
first name.
Column firstName = ((TableImpl)custTable).getColumn("CUSTFIRSTNAME");
OrderBy orderBy = factory.createOrderBy();
orderBy.setColumn(firstName);
orderBy.setAscending(true);
metadata.getOrderBys().add(orderBy);

This completes the creation of the metadata for this JDBC DMS.

9. Create a connection to the database. This example does not show the creation of the connection to
the database; it assumes that the SDO client calls the method connect() that does that. See the topic,

10. Instantiate and initialize the JDBC DMS object (dataGraph). The SDO client performs these actions.
For this example:
ConnectionWrapperFactory factory = ConnectionWrapperFactory.soleInstance;
connectionWrapper = factory.createConnectionWrapper(connect());
JDBCMediatorFactory mFactory = JDBCMediatorFactory.soleInstance;
JDBCMediator mediator = mFactory.createMediator(metadata, connectionWrapper);
DataObject parameters = mediator.getParameterDataObject();
parameters.setString("CUSTSTATE", "NY");
parameters.setString(’CUSTLASTNAME’, ’Smith’);
DataObject graph = mediator.getGraph(parameters);

Now that you have the dataGraph, you can manipulate the information. The example below contains
basic manipulation of data in a DataGraph object.

Example: Manipulating data in a DataGraph object

Using the simple DataGraph that was created during the task Using the Java Database
Connectivity data meditaor service for data access, some typical data manipulation follows.

First get the list of customers, then for each customer get every order, then print out the
customer's first name and order date. (For this example, assume that you already know the
last name is Smith).

188 Developing WebSphere applications

List customersList = graph.getList("CUSTOMER");
Iterator i = customersList.iterator();
while (i.hasNext())
{
DataObject customer = (DataObject)i.next();
List ordersList = customer.getList("CUSTOMER_ORDER");
Iterator j = ordersList.iterator();
while (j.hasNext())
{
DataObject order = (DataObject)j.next();
System.out.print(customer.get("CUSTFIRSTNAME") + " ");
System.out.println(order.get("ORDERDATE"));
}
}

Now change every customer with the name Will to be Matt.
i = customersList.iterator();
while (i.hasNext())
{
DataObject customer = (DataObject)i.next();
if (customer.get("CUSTFIRSTNAME").equals("Will"))
{
customer.set("CUSTFIRSTNAME", "Matt");
}
}

Delete the first Customer entry.
((DataObject) customersList.get(0)).delete();

Add a new DataObject to the graph
DataObject newCust = graph.createDataObject("CUSTOMER");
newCust.setInt("CUSTID", 12345);
newCust.set("CUSTFIRSTNAME", "Will");
newCust.set("CUSTLASTNAME", "Smith");
newCust.set("CUSTSTREETADDRESS", "123 Main St.");
newCust.set("CUSTCITY", "New York");
newCust.set("CUSTSTATE", "NY");
newCust.set("CUSTZIPCODE", "12345");
newCust.setInt("CUSTAREACODE", 555);
newCust.set("CUSTPHONENUMBER", "555-5555");

graph.getList("CUSTOMER").add(newCust);

Submit the changes.
mediator.applyChanges(graph);

11. Submit the changed information to the DMS for updating the database.

Using the EJB data mediator service for data access
The following steps use code samples to describe a simple instance of how to create the Enterprise
JavaBeans (EJB) data mediator service (DMS) metadata.

Procedure
1. A mediator instance is created using one of the create methods on the mediator factory

(com.ibm.websphere.sdo.mediator.ejb.MediatorFactory) as in the following example
import com.ibm.websphere.sdo.mediator.ejb.Mediator;
import com.ibm.websphere.sdo.mediator.ejb.MediatorFactory;
import com.ibm.webpshere.ejbquery.QueryException;
import commonj.sdo.DataObject;

try{
String[] query = { "select d.deptno,d.name from DeptBean as d" };
Mediator m = MediatorFactory.getInstance().createMediator(query, null);
DataObject root = m.getGraph();
} catch (QueryException e) { ... }

Chapter 7. Developing data access resources 189

2. There are 3 different forms of the createMediator method. The arguments are explained as follows:
createMediator(query, parms)
createMediator(query, parms, schema)
createMediator(query, parms, schema, typeMap, pattern)

Table 11. createMediator method arguments. The arguments are explained in the following table:

Type Argument Description

String query array of EJB query statements

Object parms values for input parameters of the query statements

Eclass* schema the EClass of the root DataObject

Map* typeMap a java.util.Map that maps EJB Abstract Schema Names from the
query statement into Eclass names

int* pattern the pattern used for containment

* used only when using caller provided schema

Example

Using query arguments with EJB mediator.

The following examples show how you can fine-tune your Enterprise JavaBeans (EJB) mediator
query arguments.

A simple example

This query returns a DataGraph containing multiple instances of DataObjects of type
(Eclass name) Emp. The data object attributes are empid and name and their data types
correspond to the container-managed persistence (CMP) field types.
select e.empid, e.name
from Emp as e
where e.salary > 100

The returned DataGraph serialized in its XML format looks like this:
<?xml version="1.0" encoding="ASCII"?>

<datagraph:DataGraphSchema xmlns:datagraph="datagraph.ecore">
<root>
<Emp empid="1003" name="Eric" />
<Emp empid="1004" name="Dave" />
</root>
</datagraph:DataGraphSchema>

Query parameters

This example shows how parameter markers can be used. Recall that the syntax for
parameter markers in an EJB query is a question mark followed by a number (?n). When
calling the getGraph () method on the EJBMediator, you can optionally pass an array of
values. ?n refers to the value of parm[n-1]. The array of values can also be passed on the
factory call to create the EJBMediator. Parameters passed on the getGraph() override any
parameters passed on the create call.
select e.empid, e.name
from Emp as e
where e.salary > ?1

Returning expressions and methods

This example illustrates that the data object attributes can be the return values of query
expressions. EJB query expressions include arithmetic, date-time, path expressions, and
methods. Input arguments and return values from methods are restricted to the list of

190 Developing WebSphere applications

supported data types see the topic EJB mediator query syntax. A data object containing an
updated attribute derived from an expression causes an exception to occur during the
applyChanges process unless the user has provided a MediatorAdapter to handle the
change.
select e.empid as employeeId,

e.bonus+e.salary as totalPay,
e.dept.mgr.name as managerNam,
e.computePension() as pension

from Emp as e
where e.salary > 100

Data object attribute names are derived from the CMP field names but can be overridden
by using the AS keyword in the query. When specifying an expression, the AS keyword
should always be used to give a name to the expression.

The * syntax

The notation e.* is a short cut for specifying all the CMP fields (but not container-managed
relationships) for an EJB. The following query means the same thing as e.empid, e.name
e.salary, e.bonus.
select e.* from Emp as e

No primary key in select clause

This example shows a query that does not return the primary key field. However, unless
the data object contains all the primary key fields for an EJB, updates to the DataGraph
cannot be processed by the mediator. This is because the primary key is required to
translate the changes into structured query language (SQL), or to convert DataObject
references to EJB references. An exception when applyChanges tries to run.
select e.name, e.salary from Emp as e

Order by

DataObjects can be ordered.
select d.* from Dept d order by d.name
select e.* from in(d.emps) e order by e.empid desc

This results in the Dept objects being ordered by name and the Emp objects within each
Dept being order by empid in descending order.

Navigating a multi-valued relationship

This compound query returns a DataGraph with DataObject classes Dept and Emp. The
shape of the DataGraph reflects the path expressions used in the FROM clauses.
select d.deptno, d.name, d.budget from Dept d

where d.deptno < 10
select e.empid, e.name, e.salary from in(d.emps) e

where e.salary > 10

In this case Dept is the root node in the DataGraph and there is a multivalued reference
from Dept to Emp as shown:
<?xml version="1.0" encoding="ASCII" ?>
<datagraph:DataGraphSchema xmlns:datagraph="datagraph.ecore">
<root>
<Dept deptno="1" name="WAS_Sales" budget="500.0"

emps="//@root/@Emp.1 //@root/@Emp.0" />
<Dept deptno="2" name="WBI_Sales" budget="450.0"

emps="//@root/@Emp.3 //@root/@Emp.2" />
<Emp empid="1001" name="Rob" salary="100.0" EmpDept="//@root/@Dept.0" />
<Emp empid="1002" name="Jason" salary="100.0" EmpDept="//@root/@Dept.0" />

Chapter 7. Developing data access resources 191

<Emp empid="1003" name="Eric" salary="200.0" EmpDept="//@root/@Dept.1" />
<Emp empid="1004" name="Dave" salary="500.0" EmpDept="//@root/@Dept.1" />
</root>
</datagraph:DataGraphSchema>

More on query parameters

Search conditions can be specified on any query. Input arguments are global to the query
and can be referenced by number anywhere in the compound query. In the example
above, the query arguments passed on the create or getGraph call should be in order {
deptno value, salary value, deptno value }.
select d.* from Dept as d

where d.deptno between ?1 and ?3
select e.* from in(d.emps) e

where e.salary < ?2

Navigating a path with multiple relationships

The following query navigates the path composed of EJB relationships Dept.projs and
Project.tasks and returns DataObjects for Dept, Emp and Project containing selected CMP
fields.
select d.deptno, d.name from Dept as d
select p.projid from in(d.projects) p
select t.taskid, t.cost from in (p.tasks) t

The resulting data graph in XML format is shown here.
<?xml version="1.0" encoding="ASCII" ?>
<datagraph:DataGraphSchema xmlns:datagraph="datagraph.ecore">
<root>
<Dept deptno="1" name="WAS_Sales" projects="//@root/@Project.0" />
<Dept deptno="2" name="WBI_Sales" projects="//@root/@Project.1" />
<Project projid="1" ProjectDept="//@root/@Dept.0"

tasks="//@root/@Task.0 //@root/@Task.2 //@root/@Task.1" />
<Project projid="2" ProjectDept="//@root/@Dept.1"

tasks="//@root/@Task.3" />
<Task taskid="1" cost="50.0" TaskProject="//@root/@Project.0" />
<Task taskid="2" cost="60.0" TaskProject="//@root/@Project.0" />
<Task taskid="3" cost="900.0" TaskProject="//@root/@Project.0" />
<Task taskid="7" cost="20.0" TaskProject="//@root/@Project.1" />
</root>
</datagraph:DataGraphSchema>

Navigating multiple paths

Here is a mediator query returning a DataGraph with DataObjects for Dept with related
employees and a second path that retrieves related projects and tasks.
select d.deptno, d.name from Dept d
select e.empid, e.name from in(d.emps) e
select p.projid from in(d.projects) p
select t.taskid, t.cost from in(p.tasks) where t.cost > 10

The returned DataGraph looks like this:
<?xml version="1.0" encoding="ASCII" ?>

<datagraph:DataGraphSchema xmlns:datagraph="datagraph.ecore">
<root>

<Dept deptno="1" name="WAS_Sales" projects="//@root/@Project.0"
emps="//@root/@Emp.1 //@root/@Emp.0" />

<Dept deptno="2" name="WBI_Sales" projects="//@root/@Project.1"
emps="//@root/@Emp.3 //@root/@Emp.2" />

<Project projid="1" ProjectDept = "//@root/@Dept.0"
tasks="//@root/@Task.0 //@root/@Task.2 //@root/@Task.1" />

<Project projid="2" ProjectDept="//@root/@Dept.1" tasks="//@root/@Task.3" />
<Task taskid="1" cost="50.0" TaskProject="//@root/@Project.0" />

<Task taskid="2" cost="60.0" TaskProject="//@root/@Project.0" />

192 Developing WebSphere applications

<Task taskid="3" cost="900.0" TaskProject="//@root/@Project.0" />
<Task taskid="7" cost="20.0" TaskProject="//@root/@Project.1" />
<Emp empid="1001" name="Rob" EmpDept="//@root/@Dept.0" />
<Emp empid="1002" name="Jason" EmpDept="//@root/@Dept.0" />
<Emp empid="1003" name="Eric" EmpDept="//@root/@Dept.1" />
<Emp empid="1004" name="Dave" EmpDept="//@root/@Dept.1" />

</root>
</datagraph:DataGraphSchema>

Navigating a single valued relationship

The important thing to point out here is that even though Emp is the root data object in the
graph, multiple Emp data objects will be related to the same Dept data object. So unlike
the previous examples, the data graph does not have a tree shape when you look at the
data object instances – there are multiple root Emp objects related to the same Dept
object. But then after all it is a data graph, not a data tree. Note that mediator queries
allow single valued path expressions in the FROM clause. This is a change from the
standard EJB query syntax.
select e.empid, e.name from Emp e
select d.deptno, d.name from in(e.dept) d

And the DataGraph in XML format looks like:
<?xml version="1.0" encoding="ASCII" ?>

<datagraph:DataGraphSchema xmlns:datagraph="datagraph.ecore">
<root>
<Emp empid="1001" name="Rob" dept="//@root/@Dept.0" />
<Emp empid="1002" name="Jason" dept="//@root/@Dept.0" />
<Emp empid="1003" name="Eric" dept="//@root/@Dept.1" />
<Emp empid="1004" name="Dave" dept="//@root/@Dept.1" />
<Dept deptno="1" name="WAS_Sales"

DeptEmp="//@root/@Emp.1 //@root/@Emp.0" />
<Dept deptno="2" name="WBI_Sales"

DeptEmp="//@root/@Emp.3 //@root/@Emp.2" />
</root>
</datagraph:DataGraphSchema>

Path expressions in the SELECT clause

This query is similar to the preceding one (both queries return employee data along with
department number and name) but note the data graph contains only one data object type
in this query (vs. two in the previous query). The fields deptno and name field are read
only because they are result of a path expression in the SELECT clause and are not CMP
fields of the Emp EJB.
select e.empid as EmplId , e.name as EmpName ,

e.dept.deptno as DeptNo , e.dept.name as DeptName
from Emp as e

Navigating a many: many relationship

The Emp to Task relationship is deemed a many:many relationship. The following query
retrieves employees, tasks, and projects. There is only a single occurrence of any
particular task DataObject in the DataGraph, even though it can be related to many
employees.
select e.empid, e.name from Emp as e
select t.taskid, t.description from in(e.tasks) as t
select p.projid, p.cost from in(t.proj) as p

Multiple links between data objects

The EJB mediator enables you to retrieve data based on relationships and use the XREL
command to construct one or more additional relationships based on data already
retrieved. The mediator also enables retrieval of data based on ASNname and then
construction of one or more relationships based on the data retrieved using the XREL

Chapter 7. Developing data access resources 193

command. The following query retrieves departments, employees that work in the
departments, and the employees that manage the departments.
select d.deptno, d.name from Dept d where d.name like '%Dev%’
select e.empid, e.name from in (d.emps) as e
select m.empid, m.name from in(d.manager) as m

The second and third select clauses both return instances of Emp DataObject. It is
possible that the same Emp instance is retrieved through the d.emps relationship and the
d.manager relationship. The EJB mediator creates one Emp instance, but creates both
relationships.

The following query is processed as follows. Dept DataObjects are created from the data
in the first query. Emp DataObjects are created from the data in the second query.
Relationships in the graph are then constructed for any relationship used in either the
FROM clause or an XREL keyword. During relationship construction, no additional data is
retrieved. In this example, an employee who works in a department named Dev appears in
the DataGraph. If this employee manages a department called Sales, the manages
reference is empty. The Dev department was retrieved in the first query, not the Sales
department.
select d.deptno, d.name from Dept d where d.name like '%Dev%’
select e.empid, e.name from in (d.emps) as e
xrel d.manager

The emps and manager relationship are constructed based on the DataObject instances
created from the queries. An employee whose name is ‘Dev' but works in department
‘Sales' will have a null dept relationship in the graph.
select d.deptno, d.name from Dept d where d.name like '%Dev%’
select e.empid, e.name from Emp e where e.name like 'Dev%’
xrel d.emps, d.manager

The next example shows the retrieval of data objects for all the employees, projects, and
tasks for a given department, and the linkage of employees with tasks.
select d.deptno from Dept d where d.deptno = 42
select e.empid from in(d.emps) e
select p.projid from in(d.projs) p
select t.* from in(p.tasks) t

xrel e.tasks

If a task is assigned to an employee in department 42 then that link appears in the data
graph. If the task is assigned to an employee not in department 42, then that link does not
appear in the data graph because the data object was filtered out by the query. An XREL
keyword can be followed by one or more EJB relationships. Bidirectional relationships can
refer to either role name. Both source and target of the relationship must be retrieved by
one or more queries.

Retrieving unrelated objects

The following query retrieves Dept and Task.
select d.deptno, d.name from Dept d where d.name like '%Dev%’
select t.taskid, t.startDate from Task t where t.startDate > '2005’

The following query retrieves Dept and Emps. Even though there are relationships
between Dept and Emp (namely mgr and emps), neither relationship is used in FROM or
XREL and so the resulting graph does not contain the relationship values.
select d.deptno, d.name from Dept d where d.name like '%Dev%’
select e.empid, e.name from Emp e where e.dept.name like '%Dev%’

Retrieving null or empty relationships

194 Developing WebSphere applications

This query returns departments that have no employees and employees with no
department. Presumably the application wants to assign the employees to one of the
departments. The purpose of xrel is to define the e.dept relationship (and the inverse role
d.emps) into the graph schema.
select d.deptno, d.name from Dept d where d.emps is empty
select e.empid, e.name from Emp e where e.dept is null
xrel e.dept

Collection Input parameter

A collection of enterprise beans can be passed as an input argument to the ejb mediator
and referenced in the FROM clause. Using a collection parameter satisfies the
requirement to construct a data graph from a user collection of already activated
enterprise beans.
select d.deptno, d.name from ((Dept) ?1) as d
select e.empid, e.name from in(d.emps) as e where e.salary > 10

The above query iterates through the collection of Dept beans and related Emp beans
applying the query predicates and constructing the data graph. Values will be obtained
from current values of the beans. An example of a program using an ejb collection
parameter.
// this method runs in an EJB context and within a transaction scope
public DataGraph myServiceMethod() {

InitialContext ic = new InitialContext();
DeptLocalHome deptHome = ic.lookup("java:comp/env/ejb/Dept");
Integer deptKey = new Integer(10);
DeptEJB dept = deptHome.findByPrimaryKey(deptKey));
Iterator i = dept.getEmps().iterator();
while (i.hasNext()) {
EmpEJB e = (EmpEJB)i.next();
e.setSalary(e.getSalary() * 1.10); // give everyone a 10% raise
}

// create the query collection parameter
Collection c = new LinkedList();
c.add(dept);
Object[] parms = new Object[] { c}; // put ejb collection in parm array.

// collection containing the dept EJB is passed to EJB Mediator

String[] query = new String[]
{ "select d.deptno, d.name from ((Dept)?1) as d",

"select e.empid, e.name, e.salary " +
" from in (d.employees) as e",

"select p.projno, p.name from in (d.projects) as p" };

Mediator m = EJBMediatorFactory.getInstance().createMediator(
query, parms);

DataGraph dg = m.getGraph();
return dg;
// the DataGraph contains the updated and as yet uncommitted

// salary information. Dept and Emp data
// is fetched through EJB instances active in the EJBContainer.
// Project data is retrieved from database using
// container managed relationships.

}

Using MediatorAdapter

In this example, the adapter processes CREATE events for an EMP data object. The
name and salary attributes are extracted from the data object and passed to the create
method on the EmpLocalHome.

Chapter 7. Developing data access resources 195

The create method returns an instance of Emp EJB and the primary key value is copied
back to the DataObject. The caller can then obtain the generated key value. After
processing, the adapter returns a value of true. All other changes are ignored by the
adapter and processed by the EJB Mediator.
package com.example;
import com.ibm.websphere.sdo.mediator.ejb.*;
import javax.naming.InitialContext;
import commonj.sdo.ChangeSummary;
import commonj.sdo.DataObject;
import commonj.sdo.DataGraph;
import commonj.sdo.ChangeSummary;

// example of Adapter class calling a EJB create method.

public class SalaryAdapter implements MediatorAdapter{

ChangeSummary log = null;
EmpLocalHome empHome = null;

public boolean applyChange(DataObject object, int phase){

if (object.getType().getName().equals("Emp")
&& phase == MediatorAdapter.CREATE){

try{
String name = object.getString("name");
double salary = object.getDouble("salary");
EmpLocal emp = empHome.create(name, salary);
object.set("empid", emp.getPrimaryKey()); // set primary key in SDO
return true;
} catch(Exception e){ // error handling code goes here

}
}
return true;
}

public void init (ChangeSummary log){
try {

this.log = log;
InitialContext ic = new InitialContext();
empHome = (EmpLocalHome)ic.lookup("java:comp/env/ejb/Emp");

} catch (Exception e) { // error handling code goes here
}

}

public void end(){}
}

Developing a custom DataStoreHelper class
Apply the WebSphere extension, GenericDataStoreHelper class, to create your own data store helper for
data sources that the application server does not support. With this helper class, your JDBC configuration
can use database-specific functions during transactions.

Before you begin

If you are using a configuration with a data source that is not supported by the application server, you
might want to create a custom data store helper. This helper will allow you to leverage the database to
perform functions during a transaction that would not otherwise be available. You will need to create a
user-defined DataStoreHelper class, and there is information for creating a new exception handler to catch
any exceptions that might be created with the use of your custom data handler.

196 Developing WebSphere applications

About this task

Note: The CUSTOM_HELPER constant field in the com.ibm.websphere.rsadapter.DataStoreHelper class
API is deprecated. If you create your own DataStoreHelper implementation class, do not invoke
setHelperType(DataStoreHelper.CUSTOM_HELPER). Instead, let the HelperType value be set by
the implementation class from which it inherits.

Procedure
1. Create a class that extends the existing data store helpers. Use the following code as an example; this

type of data source is based on a user-defined JDBC provider:
package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;
import javax.resource.ResourceException;

import com.ibm.websphere.appprofile.accessintent.AccessIntent;
import com.ibm.websphere.ce.cm.*;
import com.ibm.websphere.rsadapter.WSInteractionSpec;

/**
* Example DataStoreHelper class, demonstrating how to create a user-defined DataStoreHelper.
* The implementation for each method is provided only as an example. More detail is probably
* required for any custom DataStoreHelper that is created for use by a real application.
* In this example, we will override the doStatementCleanup(),getIsolationLevel(), and set userDefined
* exception map.
*/
public class ExampleDataStoreHelper extends com.ibm.websphere.rsadapter.GenericDataStoreHelper
{

public ExampleDataStoreHelper(java.util.Properties props)
{

super(props);

// Update the DataStoreHelperMetaData values for this helper.
getMetaData().setGetTypeMapSupport(false);

// Update the exception mappings for this helper.
java.util.Map xMap = new java.util.HashMap();

// Add an Error Code mapping to StaleConnectionException.
xMap.put(new Integer(2310), StaleConnectionException.class);
// Add an Error Code mapping to DuplicateKeyException.
xMap.put(new Integer(1062), DuplicateKeyException.class);
// Add a SQL State mapping to the user-defined ColumnNotFoundException
xMap.put("S0022", ColumnNotFoundException.class);
// Undo an inherited StaleConnection SQL State mapping.
xMap.put("S1000", Void.class);

setUserDefinedMap(xMap);

// If you are extending a helper class, it is
// normally not necessary to issue ’getMetaData().setHelperType(...)’
// because your custom helper will inherit the helper type from its
// parent class.

}

public void doStatementCleanup(java.sql.PreparedStatement stmt) throws SQLException
{

// Clean up the statement so it may be cached and reused.

stmt.setCursorName("");
stmt.setEscapeProcessing(true);
stmt.setFetchDirection(java.sql.ResultSet.FETCH_FORWARD);
stmt.setMaxFieldSize(0);
stmt.setMaxRows(0);
stmt.setQueryTimeout(0);

}

public int getIsolationLevel(AccessIntent intent) throws ResourceException
{

// Determine an isolation level based on the AccessIntent.

// set WebSphere default isolation level to TRANSACTION_SERIALIZABLE.
if (intent == null) return java.sql.Connection.TRANSACTION_SERIALIZABLE;

return intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_OPTIMISTIC ?
java.sql.Connection.TRANSACTION_READ_COMMITTED :
java.sql.Connection.TRANSACTION_REPEATABLE_READ;

}

Chapter 7. Developing data access resources 197

public int getLockType(AccessIntent intent) {
if (intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC) {

if (intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ) {
return WSInteractionSpec.LOCKTYPE_SELECT;

}
else {

return WSInteractionSpec.LOCKTYPE_SELECT_FOR_UPDATE;
}

}
return WSInteractionSpec.LOCKTYPE_SELECT;

}
}

2. Optional: Create your own exception handler class. Use the following code as a guide:
package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;
import com.ibm.websphere.ce.cm.PortableSQLException;

/**
* Example PortableSQLException subclass, which demonstrates how to create a user-defined
* exception for exception mapping.
*/
public class ColumnNotFoundException extends PortableSQLException
{

public ColumnNotFoundException(SQLException sqlX)
{

super(sqlX);
}

}

3. Compile the newly created DataStoreHelper class or classes. You will need the following JAR files in
your classpath to compile them:

v app_server_root/dev/JavaEE/j2ee.jar

v app_server_root/dev/was_public.jar

Note: was_public.jar contains classes from app_server_root/lib/rsahelpers.jar that are needed to
compile a custom DataStoreHelper class.

v app_server_root/plugins/com.ibm.ws.runtime.jar

v If you are using a development environment, such as Eclipse, you need to set the above JAR files
in your classpath to be able to compile. Then, create a JAR file of the project after you have finished
editing your files (see the help documentation for your development environment for specific
instructions).

v If you do not have development environment, and you are using the javac compiler:

a. Create your .java file that extends the GenericDataStoreHelper or any other data store helper, as
shown in Step 1.

b. Change to your home directory after you are done editing your file or files in the command line
utility.

c. Set the classpath using this command:

set CLASSPATH=%CLASSPATH%;app_server_root\dev\JavaEE\j2ee.jar;app_server_root\dev\was_public.jar;app_server_root\plugins\com.ibm.ws.runtime.jar

set CLASSPATH=$CLASSPATH:app_server_root/dev/JavaEE/j2ee.jar:app_server_root/dev/was_public.jar:app_server_root/plugins/com.ibm.ws.runtime.jar

d. Compile your class or classes. For example, on Windows operating systems enter the following
command (this will compile all the .java files in the directory that you specify):
C:\javac your_directory*.java

e. From the Java directory, create a JAR file of all the compiled class files in your directory. For
example, enter the following command on Windows operating systems (change myFile to the
name you want for your JAR file):
C:\Java> jar cf myFile.jar *.class

For more information on using the javac compiler go to the Oracle website for the Java compiler.

198 Developing WebSphere applications

4. Place your compiled JAR files in a directory, and update the class path for the JDBC provider to
include that location. For example, if your JAR file is c:\myFile.jar, then make sure to modify the
JDBC class path to include c:\myFile.jar.

a. Click Resources > JDBC > JDBC Providers > JDBC_provider.

b. In the Class path field, add the location of the JAR files that you compiled. For example, press
ENTER in the field and add a new line:
c:\myFile.jar

5. Configure the application server to use your new custom DataStoreHelper class.

a. From the administrative console select Resources > JDBC > Data Sources.

b. Select the data source that you want to configure with your custom DataStoreHelper class.

c. In the section labeled Data store helper class name, select Specify a user-defined data store
helper.

d. Enter the class name for the data store helper that you created.

e. Apply your changes and select OK.

Example: Setting client information with the
setClientInformation(Properties) API
You can set WebSphere Application Server client information on connections to pass that information to
your database with this API.

The following example code calls setClientInformation(Properties) on the
com.ibm.websphere.rsadapter.WSConnection object.
import com.ibm.websphere.rsadapter.WSConnection;
.....
try {

InitialContext ctx = new InitialContext();
//Perform a naming service lookup to get the DataSource object.
DataSource ds = (javax.sql.DataSource)ctx.lookup(“java:comp/jdbc/myDS”);
}catch (Exception e) {System.out.println(“got an exception during lookup:” + e);}

WSConnection conn = (WSConnection) ds.getConnection();
Properties props = new properties();
props.setProperty(WSConnection.CLIENT_ID, “user123”);
props.setProperty(WSConnection.CLIENT_LOCATION, “127.0.0.1”);
props.setProperty(WSConnection.CLIENT_ACCOUNTING_INFO, “accounting”);
props.setProperty(WSConnection.CLIENT_APPLICATION_NAME, “appname”);
props.setProperty(WSConnection.CLIENT_OTHER_INFO, “cool stuff”);
conn.setClientInformation(props);
conn.close()

Parameters

props contains the client information to be passed. Possible values are:

v WSConnection.CLIENT_ACCOUNTING_INFO

v WSConnection.CLIENT_LOCATION

v WSConnection.CLIENT_ID

v WSConnection.CLIENT_APPLICATION_NAME

v WSConnection.CLIENT_OTHER_INFO

v WSConnection.OTHER_CLIENT_TYPE

Refer to the WSConnection documentation for more details on which client information is passed to the
backend database. To reset the client information, call the method with a null parameter.

Chapter 7. Developing data access resources 199

Exceptions

This API creates an SQL exception if the database issues an exception when setting the data.

Passing client info to a db cdat_clientinfo

Changing the error detection model to use the Exception Checking
Model
The error detection model has been expanded and the data source has a configuration option that you can
use to select the exception mapping model or the exception checking model for error detection. This
configuration option allows the Error Detection Model to comply with Java Database Connectivity (JDBC)
4.0.

About this task

By default, the exception mapping Error Detection Model configuration is selected. The exception mapping
Error Detection Model replaces some exceptions raised by the JDBC driver. Exception checking does not
do this. If you want to use this configuration, no changes are needed. If you want to use the exception
checking model, you need to configure the error detection model in the application server. If you previously
changed the Error Detection Model, you can also use these steps to change the configuration back to
using to the exception mapping model.

Procedure
1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Select Resources > JDBC > Data Sources > data_source

b. Select WebSphere Application Server Data Source properties.

3. In the Error Detection Model section, click Use the WebSphere Application Server Exception
Checking Model.

Exceptions pertaining to data access
All enterprise bean container-managed persistence (CMP) beans under the Enterprise JavaBeans (EJB)
2.x specification receive a standard EJB exception when an operation fails. Java Database Connectivity
(JDBC) applications receive a standard SQL exception if any JDBC operation fails. The product provides
special exceptions for its relational resource adapter (RRA), to indicate that the connection currently held
is no longer valid.

v The connection wait timeout exception indicates that the application has waited for the number of
seconds specified by the connection timeout setting and has not received a connection. This situation
can occur when the pool is at maximum size and all of the connections are in use by other applications
for the duration of the wait. In addition, there are no connections currently in use that the application
can share because either the connection properties do not match, or the connection is in a different
transaction.

For a Version 4.0 data source, the ConnectionWaitTimeout object creates an exception that is
instantiated from the com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException class.

For Java 2 Connector (J2C) connection factories, the ConnectionWaitTimeout object generates a
resource exception of the com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException class.

When the error detection model is configured to exception mapping, later versions of data sources issue
an SQL exception of the com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException subclass. When
the error detection model is configured to exception checking, later versions of data sources issue an
SQL exception of the java.sql.SQLTransientConnectionException class with a chained exception of the
com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException class.

200 Developing WebSphere applications

v When the error detection model is configured to exception mapping, the stale connection exception
indicates that the connection is no longer valid. When the error detection model is configured to
exception checking, the JDBC driver raises a JDBC 4.0 exception, such as
java.sql.SQLRecoverableException or java.sql.SQLNonTransientConnectionException, or the JDBC
driver specifies an appropriate SQLState to indicate that the connection is no longer valid. Read the
topic Stale connections for more information about this type of exception.

Note: The userDefinedErrorMap custom property overlays existing entries in the error map by starting the
DataStoreHelper.setUserDefinedMap method. You can use the custom property to add, change, or
remove entries from the error map.

v Entries are delimited by a ; (semicolon).

v Each entry consists of a key and value, where the key is an error code (numeric value) or
SQLState, which is text enclosed in quotation marks.

v Keys and values are separated by the = (equals sign).

For example, to remove the mapping of SQLState S1000, add a mapping of error code 1062 to
duplicate key, and add a mapping of SQLState 08004 to stale connection, you can specify the
following value for userDefinedErrorMap:
"S1000"=;1062=com.ibm.websphere.ce.cm.DuplicateKeyException;"08004"=
com.ibm.websphere.ce.cm.StaleConnectionException

userDefinedErrorMap can be located in the administrative console by selecting the data source and
configuring the custom properties.

Examples Table of Contents

v Stale Connections

v Example: Handling data access exception - stale connection

v Stale Connection on Linux systems

v Example: Handling servlet JDBC connection exceptions

v Example: Handling connection exceptions for session beans in container-managed database
transactions

v Example: Handling connection exceptions for session beans in bean-managed database transactions

v Example: Handling connection exceptions for BMP beans in container-managed database transactions

v Example: Handling data access exception - ConnectionWaitTimeoutException (for the JDBC API)

v Example: Handling data access exception - ConnectionWaitTimeoutException (for Java EE Connector
Architecture)

v Example: Handling data access exception - error mapping in DataStoreHelper

v Database deadlock and foreign key conflicts

Stale Connections

The product provides a special subclass of the java.sql.SQLException class for using connection pooling
to access a relational database. This com.ibm.websphere.ce.cm.StaleConnectionException subclass exists
in both a WebSphere 4.0 data source and in the most recent version data source that use the relational
resource adapter. This class serves to indicate that the connection currently held is no longer valid.

This situation can occur for many reasons, including the following:
v The application tries to get a connection and fails, as when the database is not started.
v A connection is no longer usable because of a database failure. When an application tries to use a

previously obtained connection, the connection is no longer valid. In this case, all connections currently
in use by the application can get this error when they try to use the connection.

Chapter 7. Developing data access resources 201

v The connection is orphaned (because the application had not used it in at most two times the value of
the unused timeout setting) and the application tries to use the orphaned connection. This case applies
only to Version 4.0 data sources.

v The application tries to use a JDBC resource, such as a statement, obtained on a stale connection.
v A connection is closed by the Version 4.0 data source auto connection cleanup feature and is no longer

usable. Auto connection cleanup is the standard mode in which connection management operates. This
mode indicates that at the end of a transaction, the transaction manager closes all connections enlisted
in that transaction. This enables the transaction manager to ensure that connections are not held for
excessive periods of time and that the pool does not reach its maximum number of connections
prematurely.

A negative ramification does ensue, however, when the transaction manager closes the connections and
returns the connection to the free pool after a transaction ends. An application cannot obtain a
connection in one transaction and try to use it in another transaction. If the application tries this
connection, a stale connection exception occurs because the connection is already closed.

If you are trying to use an orphaned connection or a connection that is made unavailable by auto
connection cleanup, a stale connection exception indicates that the application has attempted to use a
connection that is already returned to the connection pool. It does not indicate an actual problem with the
connection. However, other cases of a stale connection exception indicate that the connection to the
database has gone bad, or stale. Once a connection has gone stale, you cannot recover it, and you must
completely close the connection rather than returning it to the pool.

Detecting stale connections

When a connection to the database becomes stale, operations on that connection result in an SQL
exception from the JDBC driver. Because an SQL exception is a rather generic exception, it contains state
and error code values that you can use to determine the meaning of the exception. However, the
meanings of these states and error codes vary depending on the database vendor. The connection pooling
run time maintains a mapping of which SQL state and error codes indicate a stale connection exception
for each database vendor supported. When the connection pooling run time catches an SQL exception, it
checks to see if this SQL exception is considered a stale connection exception for the database server in
use.

Recovering from stale connections

An application can catch a stale connection exception, depending on the type of error detection model that
is configured on the data source:

v When the error detection model is configured to exception mapping, the application server replaces the
exception that is raised by the JDBC driver with StaleConnectionException. In this case, the application
might trap for a stale connection exception.

v When the error detection model is configured to exception checking, the application server still consults
the error map in order to manage the connection pool, but it does not replace the exception. In this
case, the application should not trap for a stale connection exception.

Because of the differences between error detection models, the application server provides an API that
applications can use with either case to identify stale connections. The API is
com.ibm.websphere.rsadapter.WSCallHelper.getDataStoreHelper(datasource).isConnectionError(sqlexception).

Applications are not required to explicitly identify a stale connection exception. Applications are already
required to catch the java.sql.SQLException, and the stale connection exception or the exception that is
raised by the JDBC driver, always inherits data from the java.sql.SQLException. The stale connection
exception, which can result from any method that is declared to raise SQLException, is caught
automatically in the general catch-block. However, explicitly identifying a stale connection exception makes
it possible for an application to recover from bad connections. When application code identifies a stale

202 Developing WebSphere applications

connection exception, it should take explicit steps to recover, such as retrying the operation under a new
transaction and new connection.

Example: Handling data access exception - stale connection

These code samples demonstrate how to programmatically address stale connection exceptions for
different types of data access clients in different transaction scenarios.

When an application receives a stale connection exception on a database operation, it indicates that the
connection currently held is no longer valid. Although it is possible to get an exception for a stale
connection on any database operation, the most common time to see a stale connection exception issued
is after the first time the connection is retrieved. Because connections are pooled, a database failure is not
detected until the operation immediately following its retrieval from the pool, which is the first time
communication to the database is attempted. It is only when a failure is detected that the connection is
marked stale. The stale connection exception occurs less often if each method that accesses the database
gets a new connection from the pool.

Many stale connection exceptions are caused by intermittent problems with the network of the database
server. Obtaining a new connection and retrying the operation can result in successful completion without
exceptions. In some cases it is advantageous to add a small wait time between the retries to give the
database server more time to recover. However, applications should not retry operations indefinitely, in
case the database is down for an extended time.

Note: If you are developing applications for the Application Server with an integrated development
environment (IDE) like Eclipse, you might must import the app_server_root/plugins/
com.ibm.ws.runtime.jar file into the development environment to take advantage of code that is
provided.

Before the application can obtain a new connection for a retry of the operation, roll back the transaction in
which the original connection was involved and begin a new transaction. You can break down details on
this action into the following two categories:
Objects operating in a bean-managed global transaction context begun in the same method as the
database access

A servlet or session bean with bean-managed transactions (BMT) can start a global transaction
explicitly by calling begin() on a javax.transaction.UserTransaction object, which you can
retrieve from naming or from the bean EJBContext object. To commit a bean-managed transaction,
the application calls commit() on the UserTransaction object. To roll back the transaction, the
application calls rollback(). Entity beans and non-BMT session beans cannot explicitly begin
global transactions.

If an object that explicitly started a bean-managed transaction receives a stale connection
exception on a database operation, close the connection and roll back the transaction. At this
point, the application developer can decide to begin a new transaction, get a new connection, and
retry the operation.

The following code fragment shows an example of handling stale connection exceptions in this
scenario:
//get a userTransaction
javax.transaction.UserTransaction tran = getSessionContext().getUserTransaction();
//retry indicates whether to retry or not
//numOfRetries states how many retries have
// been attempted
boolean retry = false;
int numOfRetries = 0;
java.sql.Connection conn = null;
java.sql.Statement stmt = null;
do {
try {
//begin a transaction
tran.begin();

Chapter 7. Developing data access resources 203

//Assumes that a datasource has already been obtained
//from JNDI
conn = ds.getConnection();
conn.setAutoCommit(false);
stmt = conn.createStatement();
stmt.execute("INSERT INTO EMPLOYEES VALUES

(0101, ’Bill’, ’R’, ’Smith’)");
tran.commit();
retry = false;

} catch(java.sql.SQLException sqlX)
{
// If the error indicates the connection is stale, then
// rollback and retry the action
if (com.ibm.websphere.rsadapter.WSCallHelper

.getDataStoreHelper(ds)

.isConnectionError(sqlX))
{
try {
tran.rollback();

} catch (java.lang.Exception e) {
//deal with exception
//in most cases, this can be ignored

}
if (numOfRetries < 2) {
retry = true;
numOfRetries++;

} else {
retry = false;

}
}
else
{
//deal with other database exception
retry = false

}
} finally {
//always cleanup JDBC resources
try {
if(stmt != null) stmt.close();

} catch (java.sql.SQLException sqle) {
//usually can ignore

}
try {
if(conn != null) conn.close();

} catch (java.sql.SQLException sqle) {
//usually can ignore

}
}

} while (retry) ;

Objects operating in a global transaction context and transaction not begun in the same method as
the database access.

When the object which receives the stale connection exception does not have direct control over
the transaction, such as in a container-managed transaction case, the object must mark the
transaction for rollback, and then indicate to its caller to retry the transaction. In most cases, you
can do this by creating an application exception that indicates to retry that operation. However this
action is not always allowed, and often a method is defined only to create a particular exception.
This is the case with the ejbLoad() and ejbStore() methods on an enterprise bean. The next two
examples explain each of these scenarios.
Example 1: Database access method creates an application exception

When the method that accesses the database is free to create whatever exception is
required, the best practice is to catch the stale connection exception and create some
application exception that you can interpret to retry the method. The following example
shows an EJB client calling a method on an entity bean with transaction demarcation
TX_REQUIRED, which means that the container begins a global transaction when
insertValue() is called:
public class MyEJBClient
{
//... other methods here ...

public void myEJBClientMethod()
{

204 Developing WebSphere applications

MyEJB myEJB = myEJBHome.findByPrimaryKey("myEJB");
boolean retry = false;
do
{
try
{
retry = false;
myEJB.insertValue();

}
catch(RetryableConnectionException retryable)
{
retry = true;

}
catch(Exception e) { /* handle some other problem */ }

}
while (retry);

}
} //end MyEJBClient

public class MyEJB implements javax.ejb.EntityBean
{
//... other methods here ...
public void insertValue() throws RetryableConnectionException,

java.rmi.EJBException
{
try
{
conn = ds.getConnection();
stmt = conn.createStatement();
stmt.execute("INSERT INTO my_table VALUES (1)");

}
catch(java.sql.SQLException sqlX)
{
// Find out if the error indicates the connection is stale
if (com.ibm.websphere.rsadapter.WSCallHelper

.getDataStoreHelper(ds)

.isConnectionError(sqlX))
{
getSessionContext().setRollbackOnly();
throw new RetryableConnectionException();

}
else
{
//handle other database problem

}
}
finally
{
//always cleanup JDBC resources
try
{
if(stmt != null) stmt.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

}
try
{
if(conn != null) conn.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

}
}

}
} //end MyEJB

MyEJBClient first gets a MyEJB bean from the home interface, assumed to have been
previously retrieved from the Java Naming and Directory Interface (JNDI). It then calls
insertValue() on the bean. The method on the bean gets a connection and tries to insert
a value into a table. If one of the methods fails with a stale connection exception, it marks
the transaction for rollbackOnly (which forces the caller to roll back this transaction) and
creates a new retryable connection exception, cleaning up the resources before the
exception is thrown. The retryable connection exception is simply an application-defined
exception that tells the caller to retry the method. The caller monitors the retryable
connection exception and, if it is caught, retries the method. In this example, because the
container is beginning and ending the transaction; no transaction management is needed

Chapter 7. Developing data access resources 205

in the client or the server. Of course, the client could start a bean-managed transaction
and the behavior would still be the same, provided that the client also committed or rolled
back the transaction.

Example 2: Database access method creates an onlyRemote exception or an EJB
exception

Not all methods are allowed to throw exceptions defined by the application. If you use
bean-managed persistence (BMP), use the ejbLoad() and ejbStore() methods to store
the bean state. The only exceptions issued from these methods are the java.rmi.Remote
exception or the javax.ejb.EJB exception, so you cannot use something similar to the
previous example.

If you use container-managed persistence (CMP), the container manages the bean
persistence, and it is the container that sees the stale connection exception. If a stale
connection is detected, by the time the exception is returned to the client it is simply a
remote exception, and so a simple catch-block does not suffice. There is a way to
determine if the root cause of a remote exception is a stale connection exception. When a
remote exception is created to wrap another exception, the original exception is usually
retained. All remote exception instances have a detail property, which is of type
java.lang.Throwable. With this detail, you can trace back to the original exception and, if
it is a stale connection exception, retry the transaction. In reality, when one of these
remote exceptions flows from one Java Virtual Machine API to the next, the detail is lost,
so it is better to start a transaction in the same server as the database access occurs. For
this reason, the following example shows an entity bean accessed by a session bean with
bean-managed transaction demarcation.
public class MySessionBean extends javax.ejb.SessionBean
{
... other methods here ...
public void mySessionBMTMethod() throws
java.rmi.EJBException

{
javax.transaction.UserTransaction tran =
getSessionContext().getUserTransaction();
boolean retry = false;
do
{
try
{
retry = false;
tran.begin();
// causes ejbLoad() to be invoked
myBMPBean.myMethod();
// causes ejbStore() to be invoked
tran.commit();

}
catch(java.rmi.EJBException re)
{
try
{
tran.rollback();

}
catch(Exception e)
{
//can ignore

}
if (causedByStaleConnection(re))
retry = true;

else
throw re;

}
catch(Exception e)
{
// handle some other problem

}
finally
{
//always cleanup JDBC resources
try
{
if(stmt != null) stmt.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

206 Developing WebSphere applications

}
try
{
if(conn != null) conn.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

}
}

}
while (retry);

}

public boolean causedByStaleConnection(java.rmi.EJBException re)
{
// Search the exception chain for errors
// indicating a stale connection
for (Throwable t = re; t != null; t = t.getCause())
if (t instanceof RetryableConnectionException)
return true;

// Not found to be stale
return false;

}
}

public class MyEntityBean extends javax.ejb.EntityBean
{
... other methods here ...
public void ejbStore() throws java.rmi.EJBException
{
try
{
conn = ds.getConnection();
stmt = conn.createStatement();
stmt.execute("UPDATE my_table SET value=1 WHERE
primaryKey=" + myPrimaryKey);

}
catch(java.sql.SQLException sqlX)
{
// Find out if the error indicates the connection is stale
if (com.ibm.websphere.rsadapter.WSCallHelper

.getDataStoreHelper(ds)

.isConnectionError(sqlX))
{
// rollback the tran when method returns
getEntityContext().setRollbackOnly();
throw new java.rmi.EJBException(
"Exception occurred in ejbStore",
new RetryableConnectionException(sqlX));

}
else
{
// handle some other problem

}
}
finally
{
//always cleanup JDBC resources
try
{
if(stmt != null) stmt.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

}
try
{
if(conn != null) conn.close();

}
catch (java.sql.SQLException sqle)
{
//usually can ignore

}
}

}
}

In mySessionBMTMethod() of the previous example:
v The session bean first retrieves a UserTransaction object from the session context and

then begins a global transaction.

Chapter 7. Developing data access resources 207

v Next, it calls a method on the entity bean, which calls the ejbLoad() method. If
ejbLoad() runs successfully, the client then commits the transaction, causing the
ejbStore() method to be called.

v In ejbStore(), the entity bean gets a connection and writes its state to the database; if
the connection retrieved is stale, the transaction is marked rollbackOnly and a new
EJBException that wraps the RetryableConnectionException is thrown. That exception
is then caught by the client, which cleans up the JDBC resources, rolls back the
transaction, and calls causedByStaleConnection(), which determines if a stale
connection exception is buried somewhere in the exception.

v If the method returns true, the retry flag is set and the transaction is retried; otherwise,
the exception is re-issued to the caller.

v The causedByStaleConnection() method looks through the chain of detail attributes to
find the original exception. Multiple wrapping of exceptions can occur by the time the
exception finally gets back to the client, so the method keeps searching until it
encounters stale connection exception and true is returned; otherwise, there is no stale
connection exception in the list and false is returned.

v If you are talking to a CMP bean instead of to a BMP bean, the session bean is the
same. The CMP bean ejbStore() method would most likely be empty, and the container
after calling it would persist the bean with generated code.

v If a stale connection exception occurs during persistence, it is wrapped with a remote
exception and returned to the caller. The causedByStaleConnection() method would
again look through the exception chain and find the root exception, which would be
stale connection exception.

Objects operating in a local transaction context
When a database operation occurs outside of a global transaction context, a local transaction is
implicitly begun by the container. This includes servlets or JSPs that do not begin transactions with
the UserTransaction interface, as well as enterprise beans running in unspecified transaction
contexts. As with global transactions, you must roll back the local transaction before the operation
is retried. In these cases, the local transaction containment usually ends when the business
method ends. The one exception is if you are using activity sessions. In this case the activity
session must end before attempting to get a new connection.

When the local transaction occurs in an enterprise bean running in an unspecified transaction
context, the enterprise bean client object, outside of the local transaction containment, could use
the method described in the previous bullet to retry the transaction. However, when the local
transaction containment takes place as part of a servlet or JSP file, there is no client object
available to retry the operation. For this reason, it is recommended to avoid database operations in
servlets and JSP files unless they are a part of a user transaction.

Stale Connection on Linux systems

You might must set a loopback to access DB2 databases from the application server on a Linux platform.

A Linux semaphore issue can interfere with JDBC access to your DB2 database in either of these
configurations:

v Using the DB2 Universal JDBC Type 2 driver to connect to a local DB2 database

v Using the DB2 Universal JDBC Type 2 driver to access DB2 for z/OS through a DB2 Connect™

installation on the same machine as the application server. The problem occurs only if DB2 Connect
restricts local clients from running within an agent. (That is, if the DB2_IN_APP_PROCESS setting is
not the default value, or if the setting is Yes. Set the value to No to fix the problem and avoid performing
the following procedure.)

The issue often triggers the JVM logs to display the DB2 stale connection exception SQL1224. Because the
SQL exception code can vary, however, check the DB2 trace log when you encounter a stale connection.
If you see the following error data, the Linux semaphore behavior is the problem:
’71’ -SQLCC_ERR_CONN_CLOSED_BY_PARTNER and SQLCODE -XXXX

208 Developing WebSphere applications

To work around the problem, set the loopback for your database. For example, if your database name is
WAS, host name is LHOST, and database service port number is 50000, issue the following commands from
the DB2 command-line window:
db2 catalog TCPIP node RHOST remote LHOST server 50000
db2 uncatalog db WAS
db2 catalog db WAS as WASAlias at node loop authentication server
//If you connect to WASAlias, it is connect through loopback;
//If you connect to WAS, it is "normal" connect.
db2 catalog db WASAlias as WAS at node RHOST

Example: Handling servlet JDBC connection exceptions

The following code sample demonstrates how to set transaction management and connection
management properties, such as operation retries, to address stale connection exceptions within a servlet
JDBC transaction.

This example code performs the following actions:

v initializes a servlet

v looks up a data source

v specifies error messages, connection retries, and transaction rollback requirements
//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
// Import JDBC packages and naming service packages.
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import javax.transaction.*;
import com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException;
import com.ibm.websphere.rsadapter.WSCallHelper;

public class EmployeeListTran extends HttpServlet {
private static DataSource ds = null;
private UserTransaction ut = null;
private static String title = "Employee List";

// **
// * Initialize servlet when it is first loaded. *
// * Get information from the properties file, and look up the *
// * DataSource object from JNDI to improve performance of the *
// * the servlet’s service methods. *
// **

public void init(ServletConfig config)
throws ServletException

Chapter 7. Developing data access resources 209

{
super.init(config);
getDS();

}

// **
// * Perform the JNDI lookup for the DataSource and *
// * User Transaction objects. *
// * This method is invoked from init(), and from the service *
// * method of the DataSource is null *
// **

private void getDS() {
try {

Hashtable parms = new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY,

com.ibm.websphere.naming.WsnInitialContextFactory);
InitialContext ctx = new InitialContext(parms);
// Perform a naming service lookup to get the DataSource object.
ds = (DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");
ut = (UserTransaction) ctx.lookup("java:comp/UserTransaction");

} catch (Exception e) {
System.out.println("Naming service exception:" + e.getMessage());
e.printStackTrace();

}
}

// **
// * Respond to user GET request *
// **

public void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
Vector employeeList = new Vector();
// Set retryCount to the number of times you would like to retry after a
// stale connection exception
int retryCount = 5;
// If the Database code processes successfully, we will set error = false
boolean error = true;
do
{

try
{

//Start a new Transaction
ut.begin();
// Get a Connection object conn using the DataSource factory.
conn = ds.getConnection();
// Run DB query using standard JDBC coding.
stmt = conn.createStatement();
String query = "Select FirstNme, MidInit, LastName" +

"from Employee ORDER BY LastName";
rs = stmt.executeQuery(query);
while (rs.next())
{

employeeList.addElement(rs.getString(3) + ", "+ rs.getString(1)" + " + rs.getString(2));
}
//Set error to false to indicate successful completion of the database work
error=false;

}
catch (SQLException sqlX)
{
// Determine if the connection request timed out.
// This code works regardless of which error detection
// model is used. If exception mapping is enabled, then
// we need to look for ConnectionWaitTimeoutException.
// If exception checking is enabled, then look for
// SQLTransientConnectionException with a chained
// ConnectionWaitTimeoutException.

if (sqlX instanceof ConnectionWaitTimeoutException
|| sqlX instanceof SQLTransientConnectionException

210 Developing WebSphere applications

&& sqlX.getCause() instanceof ConnectionWaitTimeoutException)
{
// This exception is thrown if a connection can not be obtained from the
// pool within a configurable amount of time. Frequent occurrences of
// this exception indicate an incorrectly tuned connection pool

System.out.println("Connection Wait Timeout Exception during get connection or
process SQL:" + c.getMessage());

//In general, we do not want to retry after this exception, so set retry count to 0
//and roll back the transaction
try
{

ut.setRollbackOnly();
}
catch (SecurityException se)
{

//Thrown to indicate that the thread is not allowed to roll back the transaction.
System.out.println("Security Exception setting rollback only!" + se.getMessage());

}
catch (IllegalStateException ise)
{

//Thrown if the current thread is not associated with a transaction.
System.out.println("Illegal State Exception setting rollback only!" + ise.getMessage());

}
catch (SystemException sye)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("System Exception setting rollback only!" + sye.getMessage());

}
retryCount=0;

}
else if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(sqlX))
{
// This exception indicates that the connection to the database is no longer valid.
//Roll back the transaction, then retry several times to attempt to obtain a valid
//connection, display an error message if the connection still can not be obtained.

System.out.println("Connection is stale:" + sc.getMessage());

try
{

ut.setRollbackOnly();
}
catch (SecurityException se)
{

//Thrown to indicate that the thread is not allowed to roll back the transaction.
System.out.println("Security Exception setting rollback only!" + se.getMessage());

}
catch (IllegalStateException ise)
{

//Thrown if the current thread is not associated with a transaction.
System.out.println("Illegal State Exception setting rollback only!" + ise.getMessage());

}
catch (SystemException sye)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("System Exception setting rollback only!" + sye.getMessage());

}
if (--retryCount == 0)
{

System.out.println("Five stale connection exceptions, displaying error page.");
}

}
else
{
System.out.println("SQL Exception during get connection or process SQL: " + sq.getMessage());

//In general, we do not want to retry after this exception, so set retry count to 0
//and rollback the transaction
try
{

Chapter 7. Developing data access resources 211

ut.setRollbackOnly();
}
catch (SecurityException se)
{

//Thrown to indicate that the thread is not allowed to roll back the transaction.
System.out.println("Security Exception setting rollback only!" + se.getMessage());

}
catch (IllegalStateException ise)
{

//Thrown if the current thread is not associated with a transaction.
System.out.println("Illegal State Exception setting rollback only!" + ise.getMessage());

}
catch (SystemException sye)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("System Exception setting rollback only!" + sye.getMessage());

}
retryCount=0;

}
}
catch (NotSupportedException nse)
{

//Thrown by UserTransaction begin method if the thread is already associated with a
//transaction and the Transaction Manager implementation does not support nested
//transactions.
System.out.println("NotSupportedException on User Transaction begin:" + nse.getMessage());

}
catch (SystemException se)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("SystemException in User Transaction:" +se.getMessage());

}
catch (Exception e)
{

System.out.println("Exception in get connection or process SQL:" + e.getMessage());
//In general, we do not want to retry after this exception, so set retry count to 5
//and roll back the transaction
try
{

ut.setRollbackOnly();
}
catch (SecurityException se)
{

//Thrown to indicate that the thread is not allowed to roll back the transaction.
System.out.println("Security Exception setting rollback only!" + se.getMessage());

}
catch (IllegalStateException ise)
{

//Thrown if the current thread is not associated with a transaction.
System.out.println("Illegal State Exception setting rollback only!" + ise.getMessage());

}
catch (SystemException sye)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("System Exception setting rollback only!" + sye.getMessage());

}
retryCount=0;

}
finally
{

// Always close the connection in a finally statement to ensure proper
// closure in all cases. Closing the connection does not close and
// actual connection, but releases it back to the pool for reuse.

if (rs != null)
{

try
{

rs.close();
}
catch (Exception e)
{

212 Developing WebSphere applications

System.out.println("Close Resultset Exception:" + e.getMessage());
}

}
if (stmt != null)
{

try
{

stmt.close();
}
catch (Exception e)
{

System.out.println("Close Statement Exception:" + e.getMessage());
}

}
if (conn != null)
{

try
{

conn.close();
}
catch (Exception e)
{

System.out.println("Close connection exception:" + e.getMessage());
}

}
try
{

ut.commit();
}
catch (RollbackException re)
{

//Thrown to indicate that the transaction has been rolled back rather than committed.
System.out.println("User Transaction Rolled back!" + re.getMessage());

}
catch (SecurityException se)
{

//Thrown to indicate that the thread is not allowed to commit the transaction.
System.out.println("Security Exception thrown on transaction commit:" + se.getMessage());

}
catch (IllegalStateException ise)
{

//Thrown if the current thread is not associated with a transaction.
System.out.println("Illegal State Exception thrown on transaction commit:" + ise.getMessage());

}
catch (SystemException sye)
{

//Thrown if the transaction manager encounters an unexpected error condition
System.out.println("System Exception thrown on transaction commit:" + sye.getMessage());

}
catch (Exception e)
{

System.out.println("Exception thrown on transaction commit:" + e.getMessage());
}

}
}
while (error==true && retryCount > 0);

// Prepare and return HTML response, prevent dynamic content from being cached
// on browsers.
res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-Control", "no-cache");
res.setDateHeader("Expires", 0);
try
{

ServletOutputStream out = res.getOutputStream();
out.println("<HTML>");
out.println("<HEAD><TITLE>" + title + "</TITLE></HEAD>");
out.println("<BODY>");
if (error==true)
{

out.println("<H1>There was an error processing this request.</H1>" +

Chapter 7. Developing data access resources 213

"Please try the request again, or contact" +
"the System Administrator");

}
else if (employeeList.isEmpty())
{

out.println("<H1>Employee List is Empty</H1>");
}
else
{

out.println("<H1>Employee List </H1>");
for (int i = 0; i < employeeList.size(); i++)
{

out.println(employeeList.elementAt(i) + "
");
}

}
out.println("</BODY></HTML>");
out.close();

}
catch (IOException e)
{

System.out.println("HTML response exception:" + e.getMessage());
}

}
}

Example: Handling connection exceptions for session beans in container-managed
database transactions

The following code sample demonstrates how to roll back transactions and issue exceptions to the bean
client in cases of stale connection exceptions.
//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

import java.util.*;
import java.sql.*;
import javax.sql.*;
import javax.ejb.*;
import javax.naming.*;
import com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException;
import com.ibm.websphere.rsadapter.WSCallHelper;

/***
* This bean is designed to demonstrate Database Connections in a
* Container Managed Transaction Session Bean. Its transaction attribute *
* should be set to TX_REQUIRED or TX_REQUIRES_NEW. *
**
*/
public class ShowEmployeesCMTBean implements SessionBean {

private javax.ejb.SessionContext mySessionCtx = null;
final static long serialVersionUID = 3206093459760846163L;

private javax.sql.DataSource ds;

214 Developing WebSphere applications

//**
//* ejbActivate calls the getDS method, which does the JNDI lookup for the DataSource.
//* Because the DataSource lookup is in a separate method, we can also invoke it from
//* the getEmployees method in the case where the DataSource field is null.
//**
public void ejbActivate() throws java.rmi.EJBException {

getDS();
}
/**
* ejbCreate method
* @exception javax.ejb.CreateException
* @exception java.rmi.EJBException
*/
public void ejbCreate() throws javax.ejb.CreateException, java.rmi.EJBException {}
/**
* ejbPassivate method
* @exception java.rmi.EJBException
*/
public void ejbPassivate() throws java.rmi.EJBException {}
/**
* ejbRemove method
* @exception java.rmi.EJBException
*/
public void ejbRemove() throws java.rmi.EJBException {}

//**
//* The getEmployees method runs the database query to retrieve the employees.
//* The getDS method is only called if the DataSource variable is null.
//* Because this session bean uses Container Managed Transactions, it cannot retry the
//* transaction on a StaleConnectionException. However, it can throw an exception to
//* its client indicating that the operation is retriable.
//**

public Vector getEmployees() throws ConnectionWaitTimeoutException, SQLException,
RetryableConnectionException

{
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
Vector employeeList = new Vector();

if (ds == null) getDS();

try
{

// Get a Connection object conn using the DataSource factory.
conn = ds.getConnection();
// Run DB query using standard JDBC coding.
stmt = conn.createStatement();
String query = "Select FirstNme, MidInit, LastName" +

"from Employee ORDER BY LastName;"
rs = stmt.executeQuery(query);
while (rs.next())
{

employeeList.addElement(rs.getString(3) + ", "+ rs.getString(1)" + " + rs.getString(2));
}

}
catch (SQLException sqlX)
{
// Determine if the connection is stale
if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(sqlX))
{
// This exception indicates that the connection to the database is no longer valid.
// Roll back the transaction, and throw an exception to the client indicating they
// can retry the transaction if desired.

System.out.println("Connection is stale:" + sqlX.getMessage());
System.out.println("Rolling back transaction and throwing RetryableConnectionException");

mySessionCtx.setRollbackOnly();
throw new RetryableConnectionException(sqlX.toString());

Chapter 7. Developing data access resources 215

}
// Determine if the connection request timed out.
else if (sqlX instanceof ConnectionWaitTimeoutException

|| sqlX instanceof SQLTransientConnectionException
&& sqlX.getCause() instanceof ConnectionWaitTimeoutException)

{
// This exception is thrown if a connection can not be obtained from the
// pool within a configurable amount of time. Frequent occurrences of
// this exception indicate an incorrectly tuned connection pool

System.out.println("Connection Wait Timeout Exception during get connection or process SQL:" +
sqlX.getMessage());
throw sqlX instanceof ConnectionWaitTimeoutException ?

sqlX :
(ConnectionWaitTimeoutException) sqlX.getCause();

}
else
{
//Throwing a remote exception will automatically roll back the container managed
//transaction

System.out.println("SQL Exception during get connection or process SQL:" +
sqlX.getMessage());

throw sqlX;
}

}
finally
{
// Always close the connection in a finally statement to ensure proper
// closure in all cases. Closing the connection does not close and
// actual connection, but releases it back to the pool for reuse.

if (rs != null)
{
try
{
rs.close();

}
catch (Exception e)
{
System.out.println("Close Resultset Exception:" +

e.getMessage());
}

}
if (stmt != null)
{
try
{
stmt.close();

}
catch (Exception e)
{
System.out.println("Close Statement Exception:" +

e.getMessage());
}

}
if (conn != null)
{
try
{
conn.close();

}
catch (Exception e)
{
System.out.println("Close connection exception:" + e.getMessage());

}
}

}
return employeeList;

}

/**

216 Developing WebSphere applications

* getSessionContext method
* @return javax.ejb.SessionContext
*/
public javax.ejb.SessionContext getSessionContext() {

return mySessionCtx;
}
//**
//* The getDS method performs the JNDI lookup for the data source.
//* This method is called from ejbActivate, and from getEmployees if the data source
//* object is null.
//**

private void getDS() {
try {

Hashtable parms = new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY,

com.ibm.websphere.naming.WsnInitialContextFactory);
InitialContext ctx = new InitialContext(parms);
// Perform a naming service lookup to get the DataSource object.
ds = (DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

}
catch (Exception e) {
System.out.println("Naming service exception:" + e.getMessage());
e.printStackTrace();

}
}
/**
* setSessionContext method
* @param ctx javax.ejb.SessionContext
* @exception java.rmi.EJBException
*/
public void setSessionContext(javax.ejb.SessionContext ctx) throws java.rmi.EJBException {

mySessionCtx = ctx;
}
}

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is a Home interface for the Session Bean
*/
public interface ShowEmployeesCMTHome extends javax.ejb.EJBHome {

/**
* create method for a session bean
* @return WebSphereSamples.ConnPool.ShowEmployeesCMT
* @exception javax.ejb.CreateException
* @exception java.rmi.RemoteException
*/
WebSphereSamples.ConnPool.ShowEmployeesCMT create() throws javax.ejb.CreateException,

java.rmi.RemoteException;
}

Chapter 7. Developing data access resources 217

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is an Enterprise Java Bean Remote Interface
*/
public interface ShowEmployeesCMT extends javax.ejb.EJBObject {

/**
*
* @return java.util.Vector
*/
java.util.Vector getEmployees() throws java.sql.SQLException, java.rmi.RemoteException,
ConnectionWaitTimeoutException, WebSphereSamples.ConnPool.RetryableConnectionException;
}

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* Exception indicating that the operation can be retried
* Creation date: (4/2/2001 10:48:08 AM)
* @author: Administrator
*/
public class RetryableConnectionException extends Exception {
/**
* RetryableConnectionException constructor.
*/
public RetryableConnectionException() {

super();
}
/**
* RetryableConnectionException constructor.
* @param s java.lang.String
*/

218 Developing WebSphere applications

public RetryableConnectionException(String s) {
super(s);

}
}

Example: Handling connection exceptions for session beans in bean-managed
database transactions

The following code sample demonstrates your options for addressing stale connection exceptions. You can
set different transaction management and connection management parameters, such as the number of
operation retries, and the connection timeout interval.
//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

import java.util.*;
import java.sql.*;
import javax.sql.*;
import javax.ejb.*;
import javax.naming.*;
import javax.transaction.*;
import com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException;
import com.ibm.websphere.rsadapter.WSCallHelper;

/**
* This bean is designed to demonstrate Database Connections in a *
* Bean-Managed Transaction Session Bean. Its transaction attribute *
* should be set to TX_BEANMANAGED.
**/
public class ShowEmployeesBMTBean implements SessionBean {

private javax.ejb.SessionContext mySessionCtx = null;
final static long serialVersionUID = 3206093459760846163L;

private javax.sql.DataSource ds;

private javax.transaction.UserTransaction userTran;

//**
//* ejbActivate calls the getDS method, which makes the JNDI lookup for the DataSource
//* Because the DataSource lookup is in a separate method, we can also invoke it from
//* the getEmployees method in the case where the DataSource field is null.
//**
public void ejbActivate() throws java.rmi.EJBException {

getDS();
}
/**
* ejbCreate method
* @exception javax.ejb.CreateException
* @exception java.rmi.EJBException
*/
public void ejbCreate() throws javax.ejb.CreateException, java.rmi.EJBException {}
/**

Chapter 7. Developing data access resources 219

* ejbPassivate method
* @exception java.rmi.EJBException
*/
public void ejbPassivate() throws java.rmi.EJBException {}
/**
* ejbRemove method
* @exception java.rmi.EJBException
*/
public void ejbRemove() throws java.rmi.EJBException {}

//**
//* The getEmployees method runs the database query to retrieve the employees.
//* The getDS method is only called if the DataSource or userTran variables are null.
//* If a stale connection occurs, the bean retries the transaction 5 times,
//* then throws an EJBException.
//**

public Vector getEmployees() throws EJBException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
Vector employeeList = new Vector();

// Set retryCount to the number of times you would like to retry after a
// stale connection
int retryCount = 5;

// If the Database code processes successfully, we will set error = false
boolean error = true;

if (ds == null || userTran == null) getDS();
do
{

try
{

//try/catch block for UserTransaction work
//Begin the transaction
userTran.begin();
try
{

//try/catch block for database work
//Get a Connection object conn using the DataSource factory.
conn = ds.getConnection();
// Run DB query using standard JDBC coding.
stmt = conn.createStatement();
String query = "Select FirstNme, MidInit, LastName" +

"from Employee ORDER BY LastName";
rs = stmt.executeQuery(query);
while (rs.next())
{

employeeList.addElement(rs.getString(3) + ", "+ rs.getString(1) +" " + rs.getString(2));
}
//Set error to false, as all database operations are successfully completed
error = false;

}
catch (SQLException sqlX)
{
if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(sqlX))
{
// This exception indicates that the connection to the database is no longer valid.
// Rollback the transaction, and throw an exception to the client indicating they
// can retry the transaction if desired.

System.out.println("Stale connection:" +
se.getMessage());
userTran.rollback();
if (--retryCount == 0)
{
//If we have already retried the requested number of times, throw an EJBException.
throw new EJBException("Transaction Failure:" + sqlX.toString());

}
else

220 Developing WebSphere applications

{
System.out.println("Retrying transaction, retryCount =" +

retryCount);
}

}
else if (sqlX instanceof ConnectionWaitTimeoutException

|| sqlX instanceof SQLTransientConnectionException
&& sqlX.getCause() instanceof ConnectionWaitTimeoutException)

{
// This exception is thrown if a connection can not be obtained from the
// pool within a configurable amount of time. Frequent occurrences of
// this exception indicate an incorrectly tuned connection pool

System.out.println("Connection request timed out:" +
sqlX.getMessage());
userTran.rollback();
throw new EJBException("Transaction failure:" + sqlX.getMessage());

}
else
{

// This catch handles all other SQL Exceptions
System.out.println("SQL Exception during get connection or process SQL:" +

sqlX.getMessage());
userTran.rollback();
throw new EJBException("Transaction failure:" + sqlX.getMessage());

}
finally
{
// Always close the connection in a finally statement to ensure proper
// closure in all cases. Closing the connection does not close and
// actual connection, but releases it back to the pool for reuse.

if (rs != null) {
try {

rs.close();
}
catch (Exception e) {

System.out.println("Close Resultset Exception:" + e.getMessage());
}

}
if (stmt != null) {

try {
stmt.close();

}
catch (Exception e) {

System.out.println("Close Statement Exception:" + e.getMessage());
}

}
if (conn != null) {

try {
conn.close();

}
catch (Exception e) {

System.out.println("Close connection exception:" + e.getMessage());
}

}
}
if (!error) {

//Database work completed successfully, commit the transaction
userTran.commit();

}
//Catch UserTransaction exceptions
}
catch (NotSupportedException nse) {

//Thrown by UserTransaction begin method if the thread is already associated with a
//transaction and the Transaction Manager implementation does not support nested transactions.
System.out.println("NotSupportedException on User Transaction begin:" +

nse.getMessage());
throw new EJBException("Transaction failure:" + nse.getMessage());

}
catch (RollbackException re) {

Chapter 7. Developing data access resources 221

//Thrown to indicate that the transaction has been rolled back rather than committed.
System.out.println("User Transaction Rolled back!" + re.getMessage());
throw new EJBException("Transaction failure:" + re.getMessage());

}
catch (SystemException se) {
//Thrown if the transaction manager encounters an unexpected error condition

System.out.println("SystemException in User Transaction:" + se.getMessage());
throw new EJBException("Transaction failure:" + se.getMessage());

}
catch (Exception e) {

//Handle any generic or unexpected Exceptions
System.out.println("Exception in User Transaction:" + e.getMessage());
throw new EJBException("Transaction failure:" + e.getMessage());

}
}
while (error);
return employeeList;

}
/**
* getSessionContext method comment
* @return javax.ejb.SessionContext
*/
public javax.ejb.SessionContext getSessionContext() {

return mySessionCtx;
}

//**
//* The getDS method performs the JNDI lookup for the DataSource.
//* This method is called from ejbActivate, and from getEmployees if the DataSource
//* object is null.
//**
private void getDS() {

try {
Hashtable parms = new Hashtable();

parms.put(Context.INITIAL_CONTEXT_FACTORY,
com.ibm.websphere.naming.WsnInitialContextFactory);

InitialContext ctx = new InitialContext(parms);

// Perform a naming service lookup to get the DataSource object.
ds = (DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");
//Create the UserTransaction object
userTran = mySessionCtx.getUserTransaction();

}
catch (Exception e) {

System.out.println("Naming service exception:" + e.getMessage());
e.printStackTrace();

}
}
/**
* setSessionContext method
* @param ctx javax.ejb.SessionContext
* @exception java.rmi.EJBException
*/
public void setSessionContext(javax.ejb.SessionContext ctx) throws java.rmi.EJBException {

mySessionCtx = ctx;
}
}

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

222 Developing WebSphere applications

// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is a Home interface for the Session Bean
*/
public interface ShowEmployeesBMTHome extends javax.ejb.EJBHome {

/**
* create method for a session bean
* @return WebSphereSamples.ConnPool.ShowEmployeesBMT
* @exception javax.ejb.CreateException
* @exception java.rmi.RemoteException
*/
WebSphereSamples.ConnPool.ShowEmployeesBMT create() throws javax.ejb.CreateException,

java.rmi.RemoteException;
}

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is an Enterprise Java Bean Remote Interface
*/
public interface ShowEmployeesBMT extends javax.ejb.EJBObject {

/**
*
* @return java.util.Vector
*/
java.util.Vector getEmployees() throws java.rmi.RemoteException, javax.ejb.EJBException;
}

Example: Handling connection exceptions for BMP beans in container-managed
database transactions

The following code sample demonstrates how to roll back transactions and issue exceptions to the bean
client in cases of stale connection exceptions.
//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2005,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

Chapter 7. Developing data access resources 223

// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

import java.util.*;
import javax.ejb.*;
import java.sql.*;
import javax.sql.*;
import javax.ejb.*;
import javax.naming.*;
import com.ibm.websphere.rsadapter.WSCallHelper;

/**
* This is an Entity Bean class with five BMP fields
* String firstName, String lastName, String middleInit
* String empNo, int edLevel
*/
public class EmployeeBMPBean implements EntityBean {

private javax.ejb.EntityContext entityContext = null;
final static long serialVersionUID = 3206093459760846163L;

private java.lang.String firstName;
private java.lang.String lastName;
private String middleInit;
private javax.sql.DataSource ds;
private java.lang.String empNo;
private int edLevel;

/**
* ejbActivate method
* ejbActivate calls getDS(), which performs the
* JNDI lookup for the datasource.
*/
public void ejbActivate() {

getDS();
}
/**
* ejbCreate method for a BMP entity bean
* @return WebSphereSamples.ConnPool.EmployeeBMPKey
* @param key WebSphereSamples.ConnPool.EmployeeBMPKey
* @exception javax.ejb.CreateException
*/
public WebSphereSamples.ConnPool.EmployeeBMPKey ejbCreate(String empNo,
String firstName, String lastName, String middleInit, int edLevel) throws
javax.ejb.CreateException {

Connection conn = null;
PreparedStatement ps = null;

if (ds == null) getDS();

this.empNo = empNo;
this.firstName = firstName;
this.lastName = lastName;
this.middleInit = middleInit;
this.edLevel = edLevel;

String sql = "insert into Employee (empNo, firstnme, midinit, lastname,
edlevel) values (?,?,?,?,?)";

try {
conn = ds.getConnection();
ps = conn.prepareStatement(sql);
ps.setString(1, empNo);
ps.setString(2, firstName);
ps.setString(3, middleInit);

224 Developing WebSphere applications

ps.setString(4, lastName);
ps.setInt(5, edLevel);

if (ps.executeUpdate() != 1){
System.out.println("ejbCreate Failed to add user.");
throw new CreateException("Failed to add user.");

}
}
catch (SQLException se)
{

if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(se))
{

// This exception indicates that the connection to the database is no longer valid.
// Rollback the transaction, and throw an exception to the client indicating they
// can retry the transaction if desired.

System.out.println("Connection is stale:" + se.getMessage());
throw new CreateException(se.getMessage());

}
else
{

System.out.println("SQL Exception during get connection or process SQL:" +
se.getMessage());

throw new CreateException(se.getMessage());
}

}
finally
{

// Always close the connection in a finally statement to ensure proper
// closure in all cases. Closing the connection does not close an
// actual connection, but releases it back to the pool for reuse.
if (ps != null)
{

try
{

ps.close();
}
catch (Exception e)
{

System.out.println("Close Statement Exception:" + e.getMessage());
}

}
if (conn != null)
{

try
{

conn.close();
}
catch (Exception e)
{

System.out.println("Close connection exception:" + e.getMessage());
}

}
}
return new EmployeeBMPKey(this.empNo);

}
/**
* ejbFindByPrimaryKey method
* @return WebSphereSamples.ConnPool.EmployeeBMPKey
* @param primaryKey WebSphereSamples.ConnPool.EmployeeBMPKey
* @exception javax.ejb.FinderException
*/
public WebSphereSamples.ConnPool.EmployeeBMPKey

ejbFindByPrimaryKey(WebSphereSamples.ConnPool.EmployeeBMPKey primaryKey)
javax.ejb.FinderException {

loadByEmpNo(primaryKey.empNo);
return primaryKey;

}
/**
* ejbLoad method
*/
public void ejbLoad() {

Chapter 7. Developing data access resources 225

try {
EmployeeBMPKey pk = (EmployeeBMPKey) entityContext.getPrimaryKey();
loadByEmpNo(pk.empNo);

} catch (FinderException fe) {
throw new EJBException("Cannot load Employee state from database.");

}
}
/**
* ejbPassivate method
*/
public void ejbPassivate() {}
/**
* ejbPostCreate method for a BMP entity bean
* @param key WebSphereSamples.ConnPool.EmployeeBMPKey
*/
public void ejbPostCreate(String empNo, String firstName, String lastName, String middleInit,

int edLevel) {}
/**
* ejbRemove method
* @exception javax.ejb.RemoveException
*/
public void ejbRemove() throws javax.ejb.RemoveException
{

if (ds == null)
GetDS();

String sql = "delete from Employee where empNo=?";
Connection con = null;
PreparedStatement ps = null;
try
{

con = ds.getConnection();
ps = con.prepareStatement(sql);
ps.setString(1, empNo);
if (ps.executeUpdate() != 1)
{

throw new EJBException("Cannot remove employee:" + empNo);
}

}
catch (SQLException se)
{

if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(se))
{

// This exception indicates that the connection to the database is no longer valid.
// Rollback the transaction, and throw an exception to the client indicating they
// can retry the transaction if desired.

System.out.println("Connection is stale:" + se.getMessage());
throw new EJBException(se.getMessage());

}
else
{

System.out.println("SQL Exception during get connection or process SQL:" +
se.getMessage());

throw new EJBException(se.getMessage());
}

}
finally
{

// Always close the connection in a finally statement to ensure proper
// closure in all cases. Closing the connection does not close an
// actual connection, but releases it back to the pool for reuse.
if (ps != null)
{

try
{

ps.close();
}
catch (Exception e)
{

System.out.println("Close Statement Exception:" + e.getMessage());

226 Developing WebSphere applications

}
}
if (con != null)
{

try
{

con.close();
}
catch (Exception e)
{

System.out.println("Close connection exception:" + e.getMessage());
}

}
}

}
/**
* Get the employee’s edLevel
* Creation date: (4/20/2001 3:46:22 PM)
* @return int
*/
public int getEdLevel() {

return edLevel;
}
/**
* getEntityContext method
* @return javax.ejb.EntityContext
*/
public javax.ejb.EntityContext getEntityContext() {

return entityContext;
}
/**
* Get the employee’s first name
* Creation date: (4/19/2001 1:34:47 PM)
* @return java.lang.String
*/
public java.lang.String getFirstName() {

return firstName;
}
/**
* Get the employee’s last name
* Creation date: (4/19/2001 1:35:41 PM)
* @return java.lang.String
*/
public java.lang.String getLastName() {

return lastName;
}
/**
* get the employee’s middle initial
* Creation date: (4/19/2001 1:36:15 PM)
* @return char
*/
public String getMiddleInit() {

return middleInit;
}
/**
* Lookup the DataSource from JNDI
* Creation date: (4/19/2001 3:28:15 PM)
*/
private void getDS() {

try {
Hashtable parms = new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY,

com.ibm.websphere.naming.WsnInitialContextFactory);
InitialContext ctx = new InitialContext(parms);
// Perform a naming service lookup to get the DataSource object.
ds = (DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

}
catch (Exception e) {

System.out.println("Naming service exception:" + e.getMessage());
e.printStackTrace();

}
}

Chapter 7. Developing data access resources 227

/**
* Load the employee from the database
* Creation date: (4/19/2001 3:44:07 PM)
* @param empNo java.lang.String
*/
private void loadByEmpNo(String empNoKey) throws javax.ejb.FinderException
{

String sql = "select empno, firstnme, midinit, lastname, edLevel from employee where empno = ?";
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

if (ds == null) getDS();

try
{

// Get a Connection object conn using the DataSource factory.
conn = ds.getConnection();
// Run DB query using standard JDBC coding.
ps = conn.prepareStatement(sql);
ps.setString(1, empNoKey);
rs = ps.executeQuery();
if (rs.next())
{

empNo= rs.getString(1);
firstName=rs.getString(2);
middleInit=rs.getString(3);
lastName=rs.getString(4);
edLevel=rs.getInt(5);

}
else
{
throw new ObjectNotFoundException("Cannot find employee number" +

empNoKey);
}

}
catch (SQLException se)
{
if (WSCallHelper.getDataStoreHelper(ds).isConnectionError(se))
{
// This exception indicates that the connection to the database is no longer valid.
// Roll back the transaction, and throw an exception to the client indicating they
// can retry the transaction if desired.

System.out.println("Connection is stale:" + se.getMessage());
throw new FinderException(se.getMessage());

}
else
{
System.out.println("SQL Exception during get connection or process SQL:" +

se.getMessage());
throw new FinderException(se.getMessage());

}
}
finally
{
// Always close the connection in a finally statement to ensure
// proper closure in all cases. Closing the connection does not
// close an actual connection, but releases it back to the pool
// for reuse.
if (rs != null)
{

try
{

rs.close();
}
catch (Exception e)
{

System.out.println("Close Resultset Exception:" + e.getMessage());
}

}
if (ps != null)

228 Developing WebSphere applications

{
try
{

ps.close();
}
catch (Exception e)
{

System.out.println("Close Statement Exception:" + e.getMessage());
}

}
if (conn != null)
{

try
{

conn.close();
}
catch (Exception e)
{

System.out.println("Close connection exception:" + e.getMessage());
}

}
}

}
/**
* set the employee’s education level
* Creation date: (4/20/2001 3:46:22 PM)
* @param newEdLevel int
*/
public void setEdLevel(int newEdLevel) {

edLevel = newEdLevel;
}
/**
* setEntityContext method
* @param ctx javax.ejb.EntityContext
*/
public void setEntityContext(javax.ejb.EntityContext ctx) {

entityContext = ctx;
}
/**
* set the employee’s first name
* Creation date: (4/19/2001 1:34:47 PM)
* @param newFirstName java.lang.String
*/
public void setFirstName(java.lang.String newFirstName) {

firstName = newFirstName;
}
/**
* set the employee’s last name
* Creation date: (4/19/2001 1:35:41 PM)
* @param newLastName java.lang.String
*/
public void setLastName(java.lang.String newLastName) {

lastName = newLastName;
}
/**
* set the employee’s middle initial
* Creation date: (4/19/2001 1:36:15 PM)
* @param newMiddleInit char
*/
public void setMiddleInit(String newMiddleInit) {

middleInit = newMiddleInit;
}
/**
* unsetEntityContext method
*/
public void unsetEntityContext() {

entityContext = null;
}
}

Chapter 7. Developing data access resources 229

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is an Enterprise Java Bean Remote Interface
*/
public interface EmployeeBMP extends javax.ejb.EJBObject {

/**
*
* @return int
*/

int getEdLevel() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getFirstName() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getLastName() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getMiddleInit() throws java.rmi.RemoteException;
/**
*
* @return void
* @param newEdLevel int
*/
void setEdLevel(int newEdLevel) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newFirstName java.lang.String
*/
void setFirstName(java.lang.String newFirstName) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newLastName java.lang.String
*/
void setLastName(java.lang.String newLastName) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newMiddleInit java.lang.String
*/
void setMiddleInit(java.lang.String newMiddleInit) throws java.rmi.RemoteException;
}

230 Developing WebSphere applications

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is an Enterprise Java Bean Remote Interface
*/
public interface EmployeeBMP extends javax.ejb.EJBObject {

/**
*
* @return int
*/

int getEdLevel() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getFirstName() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getLastName() throws java.rmi.RemoteException;
/**
*
* @return java.lang.String
*/
java.lang.String getMiddleInit() throws java.rmi.RemoteException;
/**
*
* @return void
* @param newEdLevel int
*/
void setEdLevel(int newEdLevel) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newFirstName java.lang.String
*/
void setFirstName(java.lang.String newFirstName) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newLastName java.lang.String
*/
void setLastName(java.lang.String newLastName) throws java.rmi.RemoteException;
/**
*
* @return void
* @param newMiddleInit java.lang.String
*/
void setMiddleInit(java.lang.String newMiddleInit) throws java.rmi.RemoteException;
}

Chapter 7. Developing data access resources 231

//===================START_PROLOG======================================
//
// 5630-A23, 5630-A22,
// (C) COPYRIGHT International Business Machines Corp. 2002,2008
// All Rights Reserved
// Licensed Materials - Property of IBM
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
// ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
// USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
//
//===================END_PROLOG==

package WebSphereSamples.ConnPool;

/**
* This is a Primary Key Class for the Entity Bean
**/
public class EmployeeBMPKey implements java.io.Serializable {

public String empNo;
final static long serialVersionUID = 3206093459760846163L;

/**
* EmployeeBMPKey() constructor
*/
public EmployeeBMPKey() {
}
/**
* EmployeeBMPKey(String key) constructor
*/
public EmployeeBMPKey(String key) {

empNo = key;
}
/**
* equals method
* - user must provide a proper implementation for the equal method. The generated
* method assumes the key is a String object.
*/
public boolean equals (Object o) {

if (o instanceof EmployeeBMPKey)
return empNo.equals(((EmployeeBMPKey)o).empNo);

else
return false;

}
/**
* hashCode method
* - user must provide a proper implementation for the hashCode method. The generated
* method assumes the key is a String object.
*/
public int hashCode () {

return empNo.hashCode();

Example: Handling data access exception - ConnectionWaitTimeoutException (for
the JDBC API)

This code sample demonstrates how you specify the conditions under which the application server issues
the ConnectionWaitTimeoutException for a JDBC application.

In all cases in which the ConnectionWaitTimeoutException is caught, there is little that can be done to
recover.
public void test1() {

java.sql.Connection conn = null;
java.sql.Statement stmt = null;

232 Developing WebSphere applications

java.sql.ResultSet rs = null;

try {
// Look for datasource
java.util.Properties props = new java.util.Properties();
props.put(

javax.naming.Context.INITIAL_CONTEXT_FACTORY,
com.ibm.websphere.naming.WsnInitialContextFactory);

ic = new javax.naming.InitialContext(props);
javax.sql.DataSource ds1 = (javax.sql.DataSource) ic.lookup(jndiString);

// Get Connection.
conn = ds1.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("select * from mytable where this = 54");

}
catch (java.sql.SQLException sqlX) {
if (sqlX instanceof com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException
|| sqlX instanceof java.sql.SQLTransientConnectionException

&& sqlX.getCause() instanceof com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException)
{

//notify the user that the system could not provide a
//connection to the database. This usually happens when the
//connection pool is full and there is no connection
//available for to share.

}
else
{

// handle other database problems.
}
}
finally {

if (rs != null)
try {

rs.close();
}
catch (java.sql.SQLException sqle1) {
}

if (stmt != null)
try {

stmt.close();
}
catch (java.sql.SQLException sqle1) {
}

if (conn != null)
try {

conn.close();
}
catch (java.sql.SQLException sqle1) {
}

}
}

Example: Handling data access exception - ConnectionWaitTimeoutException for
Java EE Connector Architecture

This code sample demonstrates how you specify the conditions under which WebSphere Application
Server issues the ConnectionWaitTimeout exception for a JCA application.

In all cases in which the ConnectionWaitTimeout exception is caught, there is little to do for recovery.

The following code fragment shows how to use this exception in Java Platform, Enterprise Edition (Java
EE) Connector Architecture (JCA):
/**
* This method does a simple Connection test.
*/
public void testConnection()

throws javax.naming.NamingException, javax.resource.ResourceException,

Chapter 7. Developing data access resources 233

com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException {
javax.resource.cci.ConnectionFactory factory = null;
javax.resource.cci.Connection conn = null;
javax.resource.cci.ConnectionMetaData metaData = null;
try {

// lookup the connection factory
if (verbose) System.out.println("Look up the connection factory...");

try {
factory =
(javax.resource.cci.ConnectionFactory) (new InitialContext()).lookup("java:comp/env/eis/Sample");
}
catch (javax.naming.NamingException ne) {

// Connection factory cannot be looked up.
throw ne;

}
// Get connection
if (verbose) System.out.println("Get the connection...");
conn = factory.getConnection();
// Get ConnectionMetaData
metaData = conn.getMetaData();
// Print out the metadata Information.
System.out.println("EISProductName" is + metaData.getEISProductName());

}
catch (com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException cwtoe) {

// Connection Wait Timeout
throw cwtoe;

}
catch (javax.resource.ResourceException re) {

// Something wrong with connections.
throw re;

}
finally {

if (conn != null) {
try {

conn.close();
}
catch (javax.resource.ResourceException re) {
}

}
}

}

Example: Handling data access exception - error mapping in DataStoreHelper

The application server provides a DataStoreHelper interface for mapping different database SQL error
codes to the appropriate exceptions in the application server.

Error mapping is necessary because various database vendors can provide different SQL errors and
codes that represent that same issue. For example, the stale connection exception has different codes in
different databases. The DB2 SQLCODEs of 1015, 1034, 1036 , and so on indicate that the connection is
no longer available because of a temporary database problem. The Oracle SQLCODEs of 28, 3113,
3114, and so on, indicate the same situation.

Mapping these error codes to standard exceptions provides the consistency that makes
applications portable across different installations of the application server. The following
code segment illustrates how to add two error codes into the error map:

public class NewDSHelper extends GenericDataStoreHelper
{
public NewDSHelper(java.util.Properties dataStoreHelperProperties)
{
super(dataStoreHelperProperties);
java.util.Hashtable myErrorMap = null;
myErrorMap = new java.util.Hashtable();
myErrorMap.put(new Integer(-803), myDuplicateKeyException.class);
myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);
myErrorMap.put("S1000", MyTableNotFoundException.class);

234 Developing WebSphere applications

setUserDefinedMap(myErrorMap);
...

}
}

A configuration option known as the Error Detection Model controls how the error map is used. At V6 and
earlier, Exception Mapping was the only option available for the Error Detection Model. At V7 and later,
another option called Exception Checking is also available. Under the Exception Mapping model, the
application server consults the error map and replaces exceptions with the corresponding exception type
listed in the error map. Under the Exception Checking model, the application server still consults the error
map for its own purposes but does not replace exceptions. If you want to continue to use Exception
Mapping, you do not need to change anything. Exception Mapping is the default Error Detection Model. If
you want to use the Exception Checking Model, see the topic “Changing the Error Detection Model to use
the Exception Checking Model” in the related links.

Database deadlock and foreign key conflicts

Repetition of certain SQL error messages indicates problems, such as database referential integrity
violations, that you can prevent by using the container managed persistence (CMP) sequence grouping
feature.

Exceptions resulting from foreign key conflicts due to violations of database referential integrity

A database referential integrity (RI) policy prescribes rules for how data is written to and deleted from
the database tables to maintain relational consistency. Runtime requirements for managing bean
persistence, however, can cause an enterprise JavaBeans (EJB) application to violate RI rules, which can
cause database exceptions.

Your EJB application is violating database RI if you see an exception message in your WebSphere
Application Server trace or log file that is similar to one of the following messages (which were produced in
an environment running DB2):
The insert or update value of the FOREIGN KEY table1.name_of_foreign_key_constraint
is not equal to any value of the parent key of the parent table.

or
A parent row cannot be deleted because the relationship table1.name_of_foreign_key_constraint
is not equal to any value of the parent key of the parent table.

To prevent these exceptions, you must designate the order in which entity beans update relational
database tables by defining sequence groups for the beans.

Exceptions resulting from deadlock caused by optimistic concurrency control schemes

Additionally, sequence grouping can minimize transaction rollback exceptions for entity beans that are
configured for optimistic concurrency control. Optimistic concurrency control dictates that database locks
be held for minimal amounts of time, so that a maximum number of transactions consistently have access
to the data. In such a highly available database, concurrent transactions can attempt to lock the same
table row and create deadlock. The resulting exceptions can generate messages similar to the following
(which was produced in an environment running DB2):
Unsuccessful execution caused by deadlock or timeout.

Use the sequence grouping feature to order bean persistence so that database deadlock is less likely to
occur.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Chapter 7. Developing data access resources 235

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 12. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 13. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

236 Developing WebSphere applications

Table 14. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 15. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 16. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 17. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 7. Developing data access resources 237

Table 18. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Assembling data access applications
When you assemble enterprise bean code into files that can be deployed onto an application server, you
configure properties that define how the application accesses an enterprise information system (EIS), such
as a database.

Before you begin

This topic assumes that you have created an enterprise application containing an EJB module that must
transact with a database.

About this task

A data access application uses resources, such as data sources or connection factories, to connect with a
database.

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying enterprise information system (EIS). Examples of
connections include database connections, Java Message Service connections, and SAP R/3 connections.

During application assembly you perform activities that enable the application to use these resources. The
process typically requires an assembly tool.

Procedure
1. Identify the logical names that are used by the EJB module to reference application resources. These

logical names are called resource references.

For further explanation, read the topic, The benefits of using resource references.

2. Start an assembly tool.

3. If you have not done so already, configure the assembly tool for work on Java Platform, Enterprise
Edition (Java EE) modules. Ensure that Java EE capability is enabled.

4. Define mapping and security properties for the resource references. This process includes the
following activities:

a. Bind the resource references to the application resources that provide database connectivity.

See the topic, Data source lookups for enterprise beans and web modules, for more information on
the concept of binding. At deployment time you can alter your bindings if necessary.

b. For each resource define an authentication type, which is the security configuration through which
database connections are granted. There are two authentication types:

238 Developing WebSphere applications

Component-managed
The enterprise bean code performs EIS signon for data source or connection factory
connections.

Container-managed
The product performs EIS signon.

See the topic, J2EE connector security, for detailed reference on resource authentication.

5. Configure access intent policy settings for your enterprise beans.

a. Right-click your EJB module in a Project Explorer view and click Open With > Deployment
Descriptor Editor.

b. In an EJB Deployment Descriptor editor, select the Access tab.

c. Under Isolation Level, click Add.

d. Select the isolation level, enterprise beans, and method elements. For information on isolation
levels, press F1.

e. Click Finish.

6. Map enterprise beans to database tables.

Results

Files for the updated application are shown in the Project Explorer view.

What to do next

After testing your application, you are ready to deploy your application to an application server.

Creating or changing a resource reference
A resource reference supports application access to a resource (such as a data source, URL, or mail
provider) using a logical name rather than the actual name in the runtime environment. This capability
eliminates the necessity to alter application code when you change the resource runtime configurations.

Before you begin

This topic guides you through updating the resource references of an enterprise application that you
assembled previously. The topic, Assembling applications, details the assembly procedure.

About this task

Resource references are declared in the deployment descriptor by the application provider. At some point
in the application deployment process, you must bind the resource reference to the actual name of the
resource in the run time environment. When you create a connection factory or data source in the
application server, the application server provides a JNDI name that a component can use to access that
connection factory or data source. The application server uses an indirect name with the java:comp/env
prefix. For example:

v When you create a data source, the default JNDI name is set to jdbc/data_source_name.

v When you create a connection factory, its default name is eis/j2c_connection_factory_name.

If you override these values by specifying your own, retain the java:comp/env prefix. An indirect JNDI
name allows the connection management infrastructure to access to any data from the resource reference
that is associated with the application. This allows you to better manage resources based on the settings
for authentication, isolation level, sharing scope, and resolution control.

Chapter 7. Developing data access resources 239

This topic describes how to update the resource references of an enterprise application using an assembly
tool. After you define the resource reference, you can perform an indirect JNDI lookup using the
java:comp/env context.

Procedure
1. Start an assembly tool.

2. If you have not done so already, configure the assembly tool for work on Java Platform, Enterprise
Edition (Java EE) modules.

3. Import the enterprise application (EAR file) that you want to change into the EJB project.

4. Display the resource references for the type of module:

v If an enterprise bean uses the resource reference:
a. Expand the name of the EAR file.
b. Expand EJB Modules.
c. Expand the EJB module wanted.
d. Expand the section for the appropriate type of enterprise bean (Session Beans or Entity

Beans).
e. Expand the enterprise bean.

v If a servlet uses the resource reference:
a. Expand the name of the EAR file.
b. Expand Web Modules.
c. Expand the web module wanted.

v If an application client uses the resource reference:
a. Expand the name of the EAR file.
b. Expand Application Clients.
c. Expand the application client module wanted.

5. Right-click the module whose resource references you want to change and click Open With >
Deployment Descriptor Editor.

6. For servlets and application clients, click Add. For EJB modules, select the particular bean and click
Add.

7. Select the resource reference option and click Next.

8. Specify the settings for the resource reference, and click Finish.

9. Optional: Select the References tab and, under WebSphere Extensions, select an isolation level. If
you choose to forego this step, the isolation level defaults to TRANSACTION_NONE.

10. Optional: Under WebSphere Bindings, specify a JNDI name. If you choose to forego this step you
can set (or override) the binding when the application is deployed.

11. Close the deployment descriptor editor and save your changes.

Results

Files for the updated module are shown in the Project Explorer view.

What to do next

Verify the contents of the updated enterprise application in the Project Explorer view. Then, deploy your
enterprise application.

You can generate EJB deployment code and deploy an EJB module to a target server in one step. In the
Project Explorer view, right-click on the EJB project and click Deploy. See also the topic, Deploying EJB
modules.

240 Developing WebSphere applications

Assembling resource adapter (connector) modules
A resource adapter archive (RAR) file contains code that implements a library for connecting with a
backend Enterprise Information System (EIS).

Before you begin

This topic assumes that you have created and unit tested a resource adapter RAR file that you want to
assemble in an enterprise application and deploy onto an application server.

A Resource Adapter Archive (RAR) file is a Java archive (JAR) file used to package a resource adapter for
the Java 2 Connector (J2C) Architecture for the product.

A RAR file can contain the following:
v Enterprise information system (EIS) supplied resource adapter implementation code in the form of JAR

files or other runnable components, such as dynamic link lists.
v Utility classes.
v Static documents, such as HTML files, images, and sound files.

The standard file extension of a RAR file is .rar.

About this task

In an assembly tool, RAR files are called connectors and assembled resource adapters are called
connector modules.

A connector is a Java Platform, Enterprise Edition (Java EE) component that provides access to Enterprise
Information Systems (EIS), and must comply with the Java EE Connector Architecture (JCA). An example
of an EIS is a transaction manager such as the Customer Information Control System (CICS®).

You might see the terms resource adapter modules, resource adapter connectors and resource adapter
archive files used interchangeably.

Use an assembly tool to assemble a connector in either of the following ways:
v Import an existing RAR file.
v Create a new connector module.

For information on assembling connectors, refer to the online documentation or the information center for
your assembly tool.

Procedure
1. Start an assembly tool.

2. If you have not done so already, configure the assembly tool for work on J2EE modules. Ensure that
Java EE and EJB capabilities are enabled.

3. Migrate RAR files created with the Assembly Toolkit, Application Assembly Tool (AAT) or a different tool
to an assembly tool. To migrate files, import your RAR files to the assembly tool.

4. Create a new connector module.

Results

A connector project is migrated or created. Files for the connector project are shown in the Project
Explorer view under Enterprise Applications and Connector Projects.

Chapter 7. Developing data access resources 241

What to do next

After creating a connector project, you can edit the connector deployment descriptor if default properties
are not sufficient. In the Connector Deployment Descriptor editor, you can view and edit source code.

After assembling the connector project, deploy the module or its application onto a server. After
deployment, to ensure that the connector module finds the classes and resources that it needs, check the
Classpath setting for the RAR on the console Resource adapter settings page.

242 Developing WebSphere applications

Chapter 8. Developing Dynamic caching

This page provides a starting point for finding information about the dynamic cache service, which
improves performance by caching the output of servlets, commands, web services, and JavaServer Pages
(JSP) files.

Dynamic caching features include replication of cache entries, cache disk offload, Edge-Side Include
caching, web services, and external caching. Use external caching to control caches outside of the
application server.

Configuring cacheable objects with the cachespec.xml file
Use this task to define cacheable objects inside the cachespec.xml, found inside the web module WEB-INF
or enterprise bean META-INF directory.

Before you begin

Enable the dynamic cache. Refer to the Using the dynamic cache service article for more information.

About this task

You can save a global cachespec.xml in the application server properties directory, but the recommended
method is to place the cache configuration file with the deployment module. The root element of the
cachespec.xml file is <cache>, which contains <cache-entry> elements.

gotcha: In situations where there is a global cachespec.xml file in the application server properties
directory, and a cachespec.xml file in an application, the entries in the two cachespec.xml files
are merged. If there are conflicting entries in the two files, the entries in the in the cachespec.xml
file that is in the application override the entries in the global cachespec.xml file for that
application.

The <cache-entry> element can be nested within the <cache> element or a <cache-instance> element.
The <cache-entry> elements that are nested within the <cache> element are cached in the default cache
instance. Any <cache-entry> elements that are in the <cache-instance> element are cached in the
instance that is specified in the name attribute on the <cache-instance> element.

Within a <cache-entry> element are parameters that allow you to complete the following tasks to enable
the dynamic cache with the cachespec.xml file:

Procedure
1. Develop a cachespec.xml file.

a. Create a caching configuration file.

In the <app_server_root>/properties directory, locate the cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in web module WEB-INF or enterprise bean
META-INF directory.

2. Define the cache-entry elements necessary to identify the cacheable objects. See the cachespec.xml
file topic for a list of elements.

3. Develop cache ID rules.

To cache an object, WebSphere Application Server must know how to generate unique IDs for different
invocations of that object. The <cache-id> element performs that task. Each cache entry can have
multiple cache-ID rules that run in order until either a rule returns cache-ID that is not empty or no
more rules remain to run. If no cache-ID generation rules produce a valid cache ID, then the object is
not cached. Develop the cache IDs in one of two ways:

© IBM Corporation 2009 243

v Use the <component> element defined in the cache policy of a cache entry (recommended). Refer
to the cachespec_xml file topic for more information about the <component> element.

v Write custom Java code to build the ID from input variables and system state. To configure the
cache entry to use the ID generator, specify your IdGenerator in the XML file by using the
<idgenerator> tag, for example:

<cache-entry>
<class>servlet</class>
<name>/servlet/CommandProcessor</name>

<cache-id>
<idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>
<timeout>60</timeout>

</cache-id>
</cache-entry>

4. Specify dependency ID rules. Use dependency ID elements to specify additional cache group
identifiers that associate multiple cache entries to the same group identifier.

The dependency ID is generated by concatenating the dependency ID base string with the values
returned by its component elements. If a required component returns a null value, then the entire
dependency ID does not generate and is not used. You can validate the dependency IDs explicitly
through the dynamic cache API, or use another cache-entry <invalidation> element. Multiple
dependency ID rules can exist per cache entry. All dependency ID rules run separately. See
cachespec.xml file topic for a list of <component> elements.

5. Invalidate other cache entries as a side effect of this object start, if relevant. You can define
invalidation rules in exactly the same manner as dependency IDs. However, the IDs that are generated
by invalidation rules are used to invalidate cache entries that have those same dependency IDs.

The invalidation ID is generated by concatenating the invalidation ID base string with the values
returned by its component element. If a required component returns a null value, then the entire
invalidation ID is not generated and no invalidation occurs. Multiple invalidation rules can exist per
cache-entry. All invalidation rules run separately.

6. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file
while your application is running. The dynamic cache reloads the updated file automatically. If you are
caching static content and you are adding the cache policy to an application for the first time, you must
restart the application. You do not need to restart the application server to activate the new cache
policy. Refer to the Verifying the cacheable page topic for more information.

What to do next

Typically you declare several <cache-entry> elements inside a cachespec.xml file.

When new versions of the cachespec.xml are detected, the old policies are replaced. Objects that cached
through the old policy file are not automatically invalidated from the cache; they are either reused with the
new policy or eliminated from the cache through its replacement algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache entries, a <cache-entry>
can contain multiple elements. The dynamic cache runs the <cache-id> rules in order, and the first one
that successfully generates an ID is used to cache that output. If the object is to be cached, each one of
the <dependency-id> elements is run to build a set of dependency IDs for that cache entry. Finally, each of
the <invalidation> elements are run, building a list of IDs that the dynamic cache invalidates, whether or
not this object is cached.

Verifying the cacheable page
Use this task to verify that the dynamic cache service has its cache policies configured correctly and is
serving cached content.

244 Developing WebSphere applications

Before you begin

The dynamic cache service should be enabled. You should have a cache policy developed for your
application. Refer to the Configuring cacheable objects with the cachespec.xml file article for more
information. You must have servlet caching enabled in the web container. Refer to the Configuring servlet
caching article for more information.

About this task

You can verify the cacheable page by invoking the snoop servlet in the default application. If the dynamic
cache is working correctly, refreshing the servlet repeatedly results in viewing cached content.

Procedure
1. View the Snoop servlet in the default application by accessing the URI: /snoop The Snoop servlet is a

part of the default application. Refer to the Default application article for more information.

2. Invoke and reload the URI several times using a different web browser or using different parameters.
This action returns the same output for the snoop servlet. The snoop servlet is now operating
incorrectly, because it displays the request information from its first invocation rather than from the
current request.

3. Inspect the entry in the cache with the dynamic cache monitor. Refer to the Displaying cache
information article for more information.

cachespec.xml file
The cache parses the cachespec.xml file when the server starts, and extracts a set of configuration
parameters from each cache-entry element. Every time a new servlet or other cacheable object initializes,
the cache attempts to match each of the cache-entry elements to find the configuration information for that
object.

The cache-entry elements can be inside the root cache element or inside a cache-instance element.
Cache entries that are in the root element are cached with the default cache instance. Cache entries that
are in the <cache-instance> element are cached in that particular cache instance. Different cacheable
objects have different class elements. You can define the specific object that a cache policy refers to using
the name element.

Location

Place the cachespec.xml file with the deployment module. Use an assembly tool to define the cacheable
objects. See topics about assembling applications. You can also place a global cachespec.xml file in the
application server properties directory. In situations where there is a global cachespec.xml file in the
application server properties directory, and a cachespec.xml file in an application, the entries in the two
cachespec.xml files are merged. If there are conflicting entries in the two files, the entries in the in the
cachespec.xml file that is in the application override the entries in the global cachespec.xml file for that
application.

The cachespec.dtd file is available in the application server properties directory. The cachespec.dtd file
defines the legal structure and the elements that can be in your cachespec.xml file.

Usage notes

Cachespec.xml elements
The root element of the cachespec.xml file is cache and contains cache-instance and cache-entry
elements. The cache-entry elements can also be placed inside of cache-instance elements to
make that cache entry part of a cache instance that is different from the default.

Chapter 8. Developing Dynamic caching 245

cache-instance
<cache-instance name="cache_instance_name"></cache-instance>

The name attribute is the Java Naming and Directory Interface (JNDI) name of the cache instance
that is set in the administrative console.

Each cache-instance element must contain at least one cache-entry element. A cache entry that is
matched within a cache-instance element is cached in the servlet cache instance that is specified
by the name attribute. If identical cache-entry elements exist across cache-instance elements, the
first cache-entry element that is matched is used.

cache-entry
Each cache entry must specify certain basic information that the dynamic cache uses to process
that entry. This section explains the function of each cache entry element of the cachespec.xml file
including:
v class
v name
v sharing-policy
v skip-cache
v property
v cache-id

With the current version of WebSphere Application Server, you can define multiple cache policies
for a single servlet. For example, if you define multiple mappings for a servlet in the web.xml file,
you can create a cache entry for each one of the mappings.

class

<class>command | servlet | webservice | JAXRPCClient | static | portlet </class>

This element is required and specifies how the application server interprets the remaining cache
policy definition. The value servlet refers to servlets and JavaServer Pages (JSP) files that are
deployed in the WebSphere Application Server servlet engine. The webservice class extends the
servlet with special component types for web services requests. The JAXRPCClient is used to
define a cache entry for the web services client cache. The value, command, refers to classes using
the WebSphere Application Server command programming model. The value, static, refers to
files that contain static content. The following examples illustrate the class element:
<class>command</class>
<class>servlet</class>
<class>webservice</class>
<class>JAXRPCClient</class>
<class>static</class>
<class>portlet</class>

name

<name>name</name>

Use the following guidelines for the name element to specify a cacheable object:
v For commands, this required element must include the package name, if any, and class name,

including a trailing .\class, of the configured object.

Important: If you specify command caching in the cachespec.xml file, and servlet caching is
not enabled for the application server on which the application runs, you will get an
error. The application server still attempts to obtain a cache instance; therefore,
enabling servlet caching will eliminate the error.

v For servlets and JSP files, if the cachespec.xml file is in the WebSphere Application Server
properties directory, this required element must include the full URI of the JSP file or servlet to
cache. For servlets and JSP files, if the cachespec.xml file is in the web application, this
required element can be relative to the specific web application context root.

v For web services, include the Universal Resource Identifier (URI) of the Simple Object Access
Protocol (SOAP) router that is associated with the web service that you want to cache.

246 Developing WebSphere applications

v For web services client cache, the name is the target end point of the cacheable web service or
the URI of the SOAP router that is associated with the cacheable web service. You can use the
SOAP address location in the Web Services Description Language (WSDL) file to define the
name for the web services client cache.

v For static files, if the cachespec.xml file is in the WebSphere Application Server properties
directory, this required element must include the full URI of the file to cache. If the
cachespecm.xml file is in the web application, this required element can be relative to the
specific web application context root. For a web application with a context root, the cache policy
for files using the static class must be specified in the web application, and not in the properties
directory.

v For portlets, if the cachespec.xml file is in the WebSphere Application Server properties
directory, this required element must include the full context path and name of the portlet to
cache. If the cachespec.xml file is in the web application, this required element is the portlet
name that is relative to the specific web application context root.

Tip: The preferred location of the cachespec.xml file is in the web application, not the properties
directory.

You can specify multiple name elements within a cache-entry if you have different mappings that
refer to the same servlet.

The following examples illustrate the name element:
<name>com.mycompany.MyCommand.class</name>
<name>default_host:/servlet/snoop</name>
<name>com.mycompany.beans.MyJavaBean</name>
<name>mywebapp/myjsp.jsp</name>
<name>/soap/servlet/soaprouter</name>
<name>http://remotecompany.com:9080/service/getquote</name>
<name>mywebapp/myLogo.gif</name>

sharing-policy

<sharing-policy> not-shared | shared-push | shared-pull | shared-push-pull</sharing-
policy>

When working within a cluster with a distributed cache, these values determine the sharing
characteristics of entries that are created from this object. If this element is not present, a
not-shared value is assumed. In single server environments, not-shared is the only valid value.
When enabling a replication, the default value is not-shared . This property does not affect
distribution to Edge Side Include processors through the Edge fragment caching property.

Table 19. Sharing-policy values. Values and description for the sharing-policy.
Value Description

not-shared Cache entries for this object are not shared among different application servers. These entries can contain
non-serializable data. For example, a cached servlet can place non-serializable objects into the request attributes, if the
<class> type supports it.
Note: The application server will always replicate invalidation entries. They are not affected by the sharing policy.

shared-push Cache entries for this object are automatically distributed to the dynamic caches in other application servers or
cooperating Java virtual machines (JVMs). Each cache has a copy of the entry at the time it is created. These entries
cannot store non-serializable data.

shared-pull Cache entries for this object are shared between application servers on demand. If an application server gets a cache
miss for this object, it queries the cooperating application servers to see if they have the object. If no application server
has a cached copy of the object, the original application server runs the request and generates the object. These entries
cannot store non-serializable data. This mode of sharing is not recommended.

shared-push-pull Cache entries for this object are shared between application servers on demand. When an application server generates
a cache entry, it broadcasts the cache ID of the created entry to all cooperating application servers. Each server then
knows whether an entry exists for any given cache ID. On a given request for that entry, the application server knows
whether to generate the entry or pull it from somewhere else. These entries cannot store non-serializable data.

The following example shows a sharing policy:
<sharing-policy>not-shared</sharing-policy>

skip-cache
Takes the name of a request attribute, which if present in the request context, dictates that the

Chapter 8. Developing Dynamic caching 247

response cannot be retrieved from the cache instance that is specified. This property is useful for
previewing content in production systems and verifying that the application is working and
performing as expected.

<cache>
<skip-cache-attribute>att1</skip-cache-attribute> <!–Applies only to the base cache- ->
...
<cache-instance name="instance1">
<skip-cache-attribute>att2</skip-cache-attribute> <!-Applies only to this instance- ->
...
</cache-instance>
</cache>

property

<property name="key">value</property>

where key is the name of the property for this cache entry element, and value is the corresponding
value.

You can set optional properties on a cacheable object, such as a description of the configured
servlet. The class determines valid properties of the cache entry. At this time, the following
properties are defined:

Table 20. Property values. Property values and valid classes.
Property Valid classes Value

ApplicationName All Overrides the JavaEEName application ID so that multiple applications can share a
common cache ID namespace.

EdgeCacheable Servlet True or false. The default is false. If the property is true, then the given servlet or
JSP file is externally requested from an Edge Side Include processor. Whether or
not the servlet or JSP file is cacheable depends on the rest of the cache
specification.

The permissible components for general edgecacheable cache entries are
PARAMETER, HEADER, COOKIE, and PATH_INFOSERVLET_PATH

ExternalCache Servlet and portlet Specifies the external cache name. The external cache name needs to match the
external cache group name.

consume-subfragments Servlet, web service, or portlet True or false. The default is false. When a servlet is cached, only the content of
that servlet is stored, and includes placeholders for any other fragments to which it
includes or forwards. Consume-subfragments (CSF) tells the cache not to stop
saving content when it includes a child servlet. The parent entry, the one marked
CSF, includes all the content from all fragments in its cache entry, resulting in one
big cache entry that has no includes or forwards, but the content from the whole
tree of entries. Consume-subfragments can save a significant amount of application
server processing, but is typically only useful when the external HTTP request
contains all the information needed to determine the entire tree of included
fragments.

Use the <exclude> element to tell the cache to stop consuming for the excluded
fragment and instead, create a placeholder for the include or forward. For example,
exclude A.jsp from the consume-subfragment, as follows:

<property name=
"consume-sbufragments">true

<exclude>/A.jsp<exclude>
</property>

do-not-consume Servlet, web service, or portlet True or false. The default is false. When a fragment parent has the
consume-subfragment property set to true the child fragment content is saved in
the cache entry of the parent. Do-not-consume (DNC) tells the cache to stop saving
the content for this fragment in the parent cache-entry and create a placeholder
instead for the include or forward.

alternate_url Servlet Specifies the alternate URL that is used to invoke the servlet or JSP file. The
property is valid only if the EdgeCacheable property also is set for the cache entry.

persist-to-disk All True or false. The default is true. When this property is set to false, the cache
entry is not written to the disk when overflow or server stopping occurs.

248 Developing WebSphere applications

Table 20. Property values (continued). Property values and valid classes.
Property Valid classes Value

save-attributes Servlet and portlet True or false. The default is true. When this property is set to false, the request
attributes are not saved with the cache entry.

Use the <exclude> element to specify the request attributes that do not apply to the
save-attributes property. For example, to save only the attr1 attribute with the cache
entry:

<property name=
"save-attributes">false
<exclude>attr1</exclude>
</property>

To save all attributes except the attr1 attribute in the cache entry, set the property
to true in the preceding sample. If you do not use the <exclude> element, either all
or no request attributes are saved with the cache entry.

delay-invalidations Command True or false. When this property is set to true, the commands that are invalidating
cached objects based on the invalidation rules in this cache entry invalidate the
cache entries after running. By default, the invalidation occurs before the command
runs.

store-cookies Servlet and portlet On or off. The default is On. This property takes one or more cookie name as its
argument which is saved along with the cache object and restored by the servlet
cache in the response with a set-cookie header.

Save all cookies except cookie1 as part of the cache-entry as follows:

<property name=
"store-cookies">true

<exclude>cookie</exclude>
</property>

Save only cookie1 as part of the cache-entry, as follows:

<property name=
"store-cookies">false

<exclude><cookie1</exclude>
</property>

ignore-get-post Servlet and portlet True or false. The default is false. When the property is set to true the request
type is not appended to the cache-id for GET and POST requests unless the
requestType component requestType component subelement is defined. By default
the request type is automatically appended to the cache-id for GET and POST
requests.

ignore-char-encoding Servlet and portlet True or false. The default value is false. When the property is set to true, UTF-8
character encoding is not appended to the cache ID. Appending UTF-8 character
encoding to the cache ID might lead to multiple copies of fragments, which
unnecessarily increases the size of the cache.

do-not-cache Servlet and portlet Defines a fragment that is neither cached nor consumed by its parent.

<cache-entry>
...
<property name="do-not-cache">
true</property>

or

<cache-id>
<property name="do-not-cache">
true</property>

</cache-id>
</cache-entry>

cache-id
To cache an object, the application server must know how to generate a unique ID for different
invocations of that object. These IDs are built either from user-written custom Java code or from
rules that are defined in the cache policy of each cache entry. Each cache entry can have multiple
cache ID rules that run in order until either:
v A rule returns a non-empty cache ID, or
v No more rules are left to run.

If none of the cache ID generation rules produce a valid cache ID, the object is not cached.

Chapter 8. Developing Dynamic caching 249

Each cache-id element defines a rule for caching an object and is composed of the sub-elements
component, timeout, inactivity, priority, property, idgenerator, and metadatagenerator. The following
example illustrates a cache-id element:
<cache-id>

component*| timeout? | inactivity? | priority? | property* | idgenerator? | metadatagenerator?
</cache-id>

component subelement

Use the component subelement to generate a portion of the cache ID. The component subelement
consists of the attributes id, type, and ignore-value, and the elements index, method, field,
required, value, and not-value.
v Use the id attribute to identify the component.
v Use the type attribute to identify the type of component. The following table lists the values for

the type.

gotcha: When the parameter component subelement is specified in the cachespec.xml file, the
web container sets character encoding based on the encoding setting obtained from
the request object. If a servlet subsequently invokes the setCharacterEncoding
method, the method has not effect because character encoding cannot be changed
after it has already been set.

Type Valid classes Meaning

method Command Calls the indicated method on the command or object

field Command Retrieves the named field in the command or object

parameter Servlet and portlet Retrieves the named parameter value from the request
object

parameter-list Servlet and portlet Retrieves a list of values for the named parameter
gotcha: The cache grabs the values for all of the
parameters with this name and uses all of these values,
in the order they are grabbed, to create the cache ID

session Servlet and portlet Retrieves the named value from the HTTP session

cookie Servlet Retrieves the named cookie value

attribute Servlet and portlet Retrieves the named request attribute

header Servlet, web service, and
portlet

Retrieves the named request header

pathInfo Servlet Retrieves the pathInfo element from the request

servletpath Servlet Retrieves the servlet path

locale Servlet and portlet Retrieves the request locale

Attention: The locale component is permissible for
edgecacheable entries only, when using RRD. The locale
component is not valid for all other ESI versions.

requestType Servlet and portlet Retrieves the HTTP request method from the request.

Attention: The requestType component is permissible
for edgecacheable entries only, when using RRD. The
requestType component is not valid for all other ESI
versions.

tiles_attribute Servlet and portlet Retrieves the value of an attribute from a tile.

SOAPEnvelope Web service and web
services client cache

Retrieves the SOAPEnvelope element from a web
services request. An ID attribute of Hash uses a Hash of
the SOAPEnvelope element, while Literal uses the
SOAPEnvelope element as received.

250 Developing WebSphere applications

Type Valid classes Meaning

SOAPAction Web service Retrieves the SOAPAction header, if available, for a web
services request.

serviceOperation Web service Retrieves the service operation for a web services
request

serviceOperationParameter Web service Retrieves the specified parameter from a web services
request

operation Web services client cache Indicates an operation type in the Web Services
Description Language (WSDL) file. The id attribute is
ignored and the value is the operation or method name.
If the namespace of the operation is specified, format the
value as

namespaceOfOperation:nameOfOperation

part Web services client cache Indicates an input message part in the WSDL file or a
request parameter. Its id attribute is the part or
parameter name, and the value is the part or parameter
value.

SOAPHeaderEntry Web services client cache Retrieves special information in the Simple Object
Access Protocol (SOAP) header of the web services
request. The id attribute specifies the name of the entry.
In addition, the entry of the SOAP header in the SOAP
request must have the actor attribute, which contains
com.ibm.websphere.cache. For example:

<soapenv:Header>
<getQuote soapenv:actor=

"com.ibm.websphere.cache">IBM
</getQuote>

</soapenv:Header>

portletSession Portlet Retrieves the named value from the portlet session

portletWindowId Portlet Retrieves the portlet window ID from the portlet request
object

portletMode Portlet Retrieves the portlet mode from the portlet request object

portletWindowsState Portlet Retrieves the portlet window state from the portlet
request object

sessionID Servlet and portlet Retrieves the HTTP session ID

v Use the ignore-value attribute to specify whether or not to use the value that is returned by this
component in cache ID formation. This attribute is optional with a default value of false. If the
value is true, only the ID of the component is used when creating a cache ID, or no output is
used when creating a dependency or invalidation ID.

v Use the method element to call a void method on a returned object. You can infinitely nest
method and field objects in any combination. The method must be public and is not valid for
edge-cacheable components. For example:
<component id="getUser" type="method"><method>getUserInfo
<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName()

For component types attribute, method, or field that can return an object, when the object
returned is a collection or array, the ID is created with a comma separated list of the elements
in the collection or array. For example, if the request attribute users returns an array [a, b] and
the cache entry is defined like the following example:
<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>
.

Chapter 8. Developing Dynamic caching 251

.
<component id="users" type="attribute">
<required>true</required>
</component>
.
.
</cache-id>
<dependency-id>dep
<component id="users" type="attribute">
<required>true</required>
</component>
</dependency-id>
</cache-entry>

The cache id contains the string users: a,b. The dependency id is dep: a,b.

Use the multipleIDs attribute with the component types to specify and generate multiple
dependency IDs (or invalidation IDs), based on the items in the collection or array. For example:
<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>
.
.
<component id="users" type="attribute">
<required>true</required>
</component>
.
.
</cache-id>
<dependency-id>dep
<component id="users" type="attribute" multipleIDs="true">
<required>true</required>
</component>
</dependency-id>
</cache-entry>

The cache policy will generates the following dependency IDs:
– dep:a,b
– dep:a
– dep:b

Use the index element with the previous component type to add only the value of the element
at the specified index position in the collection or array, to the ID that is being created.
<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>
.
.
<component id="users" type="attribute">
<required>true</required>
<index>1</index>
</component>
.
.
</cache-id>
<dependency-id>dep
<component id="users" type="attribute" multipleIDs="true">
<required>true</required>
</component>
</dependency-id>
</cache-entry>

The previous cache policy generates the following component to use in the cache ID: users: b.
Use the <method> element to call a void method on a returned object.

v Use the field element to access a field in a returned object. You can infinitely nest method and
field objects in any combination. The field must be public. This field is not valid for
edge-cacheable components. For example:
<component id="getUser" type="method"><method>getUserInfo
<field>name</field></method></component>

This method is equivalent to the getUser().getUserInfo().name method.

252 Developing WebSphere applications

v Use the required element to specify whether or not this component must return a non-null value
for this cache ID to represent a valid cache. If set to true, this component must return a
non-null value for this cache ID to represent a valid cache ID. If set to false, the default, a
non-null value is used in the formation of the cache ID and a null value means that this
component is not used at all in the ID formation. For example:
<required>true</required>

v Use the value element to specify values that must match to use this component in cache ID
formation. For example:
<component id="getUser" type="method"><value>blue</value>
<value>red</value> </component>

v Use the not-value element to specify values that must not match to use this component in
cache ID formation. This method is similar to value element, but instead prescribes the defined
values from caching. You can use multiple not-value elements when more than one value that is
not valid exists. For example:
<component id="getUser" type="method">
<required>true</required>
<not-value>blue</not-value>
<not-value>red</not-value></component>

The component subelement can have either a method and a field element, a value element, or a
not-value element. The method and field elements apply to commands only. The following example
illustrates the attributes of a component sub-element:
<component id="isValid" type="method" ignore-value="true"><component>

timeout subelement
The timeout subelement is used to specify an absolute time-to-live (TTL) value for the cache entry.
For example,
<timeout>value</timeout>

where value is the amount of time, in seconds, to keep the cache entry. Cache entries that are in
memory are kept indefinitely, as long as the entries remain in memory. Cache entries that are
stored on disk are evicted if they are not accessed for 24 hours.

inactivity subelement
The inactivity subelement is used to specify a time-to-live (TTL) value for the cache entry based
on the last time that the cache entry was accessed. It is a subelement of the cache-id element.
<inactivity>value</inactivity>

where value is the amount of time, in seconds, to keep the cache entry in the cache after the last
cache hit.

priority subelement
Use the priority subelement to specify the priority of a cache entry in a cache. The priority
weighting is used by the least recently used (LRU) algorithm of the cache to decide which entries
to remove from the cache if the cache runs out of storage space. For example,
<priority>value</priority>

where value is a positive integer between 1 and 16 inclusive.

Samples
The following sample keeps the cache entry in the cache for a minimum of 35 seconds and a
maximum of 180 seconds. If the cache entry is accessed within each 35 second inactivity period,
the inactivity period is extended for another 35 seconds. However, because the timeout element is
also configured, the cache entry is always invalidated after 180 seconds. If the cache entry is not
accessed within the 35 second period, the entry is removed from the cache.
<cache-id>
<component id="timeout" type="parameter">
<required>true</required>
</component>

Chapter 8. Developing Dynamic caching 253

<timeout>180</timeout>
<inactivity>35</inactivity>
<priority>1</priority>
</cache-id>

The following sample keeps the cache entry in the cache for a minimum of 600 seconds. If the
cache entry is accessed within each 600 second period, the inactivity period is extended for
another 600 seconds. If the cache entry is not accessed within the 600 second period, the cache
entry is removed from the cache.
<cache-id>
<component id="timeout" type="parameter">
<required>true</required>
</component>
<inactivity>600</inactivity>
<priority>1</priority>
</cache-id>

In the following sample, the value for inactivity has no meaning because the timeout period is less
than the inactivity period. The cache entry is always invalidated after 180 seconds, no matter how
often the cache entry is accessed.
<cache-id>
<component id="timeout" type="parameter">
<required>true</required>
</component>
<timeout>180</timeout>
<inactivity>600</inactivity>
<priority>1</priority>
</cache-id>

property subelement
Use the property subelement to specify generic properties for the cache entry. For example,
<property name="key">value</property>

where key is the name of the property to define, and value is the corresponding value.

For example:
<property name="description">The Snoop Servlet</property>

Table 21. Property subelement values.. Property valid classes and meaning.

Property Valid classes Meaning

sharing-policy/timeout/priority All Overrides the settings for the
containing cache entry when the
request matches this cache ID.

EdgeCacheable Servlet Overrides the settings for the
containing cache entry when the
request matches this cache ID.

idgenerator and metadatagenerator sub-elements

Use the idgenerator element to specify the class name that is loaded for the generation of the cache ID.
The IdGenerator element must implement the com.ibm.websphere.servlet.cache.IdGenerator interface for
a servlet or the com.ibm.websphere.webservices.IdGenerator interface for the web services client cache.
An example of the idgenerator element follows:
<idgenerator> class name </idgenerator>

Where class name is the fully-qualified name of the class to use. Define this generator class in a shared
library.

Use the metadatagenerator element inside the cache-id element to specify the class name loaded for the
metadata generation. The MetadataGenerator class must implement the
com.ibm.websphere.servlet.cache.MetaDataGenerator interface for a servlet or the

254 Developing WebSphere applications

com.ibm.websphere.cache.webservices.MetaDataGenerator interface for a web services client cache. The
MetadataGenerator class defines properties like timeout, inactivity, external caching properties or
dependencies. An example of the metadatagenerator element follows:
<metadatagenerator> classname </metadatagenerator>

In this example, class name is the fully-qualified name of the class to use. Define this generator class in a
shared library.

dependency-id element

Use the dependency-id element to specify additional cache identifiers that associate multiple cache entries
to the same group identifier.

The value of the dependency-id element is generated by concatenating the dependency ID base string
with the values that are returned by its component elements. If a required component returns a null value,
the entire dependency does not generate and is not used. Validate the dependency IDs explicitly through
the dynamic cache API, or use the invalidation element. Multiple dependency ID rules can exist in one
cache-entry element. All dependency rules run separately.

invalidation element

To invalidate cached objects, the application server must generate unique invalidation IDs. Build
invalidation IDs by writing custom Java code or through rules that are defined in the cache policy of each
cache entry. The following example illustrates an invalidation in the cache policy:
<invalidation>component* | invalidationgenerator? </invalidation>

invalidationgenerator subelement

The invalidationgenerator element is used with the web services client cache only. Use the
invalidationgenerator element to specify the class name to load for generating invalidation IDs. The
InvalidationGenerator class must implement the
com.ibm.websphere.cache.webservices.InvalidationGenerator interface. An example of the
invalidationgenerator element follows:
<invalidationgenerator>class name</invalidationgenerator>

In this example, classname is the fully qualified name of the class that implements the
com.ibm.websphere.cache.webservices.InvalidationGenerator interface. Define this generator class in a
shared library.

Example: Configuring the dynamic cache service
This example puts all of the steps together for configuring the dynamic cache service with the
cachespec.xml file, showing the use of the cache ID generation rules, dependency IDs, and invalidation
rules.

Suppose that a servlet manages a simple news site. This servlet uses the query parameter "action" to
determine if the request views (query parameter "view") news or updates (query parameter "update") news
(used by the administrator). Another query parameter "category" selects the news category. Suppose that
this site supports an optional customized layout that is stored in the user's session using the attribute
name "layout". Here are example URL requests to this servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns a news page for the
sports category)

Chapter 8. Developing Dynamic caching 255

http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns a news page for the
money category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion (Allows the administrator
to update news in the fashion category)

Here are the steps for configuring the dynamic cache service for this example with the cachespec.xml file:
1. Define the <cache-entry> elements that are necessary to identify the servlet. In this case, the URI for

the servlet is "newscontroller", so this is the cache-entry <name> element. Because this example
caches a servlet or JavaServer Pages (JSP) file, the cache entry class is "servlet".
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
</cache-entry>

2. Define cache ID generation rules. This servlet caches only when action=view, so one component of the
cache ID is the parameter "action" when the value equals "view". The news category is also an
essential part of the cache ID. The optional session attribute for the user's layout is included in the
cache ID. The cache entry is now:
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID is added for the category. Later, when
the category is invalidated due to an update event, all views of that news category are invalidated.
Following is an example of the cache entry after adding the dependency ID:
<cache-entry>
<name>newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>
</cache-entry>

4. Define invalidation rules. Because a category dependency ID is already defined, define an invalidation
rule to invalidate the category when action=update. To incorporate the conditional logic, add

256 Developing WebSphere applications

"ignore-value" components into the invalidation rule. These components do not add to the output of the
invalidation ID, but only determine whether or not the invalidation ID creates and runs. The final
cache-entry now looks like the following:
<cache-entry>
<name>newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>
<invalidation>category
<component id="action" type="parameter" ignore-value="true">
<value>update</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>

</component>
</invalidation>
</cache-entry>

cacheinstances.properties file
Use the information in this document as a reference of the names, values, and explanations that you can
use in the cacheinstances.properties file.

The following list provides the property names, associated values, and explanations for the
cacheinstance.properties file.

Property name - x is the
instance number, which
starts with 0 Version Scope Possible value Description

Cache core properties

cache.instance.x 5.1.x and later Per cache instance any string (no default set) Specifies cache instance
name or JNDI name.

cache.instance.x.
cacheSize

5.1.x and later Per cache instance > 0 (default=2000) Specifies the maximum
number of entries that are
held in memory cache.

cache.instance.x.
disableDependencyId

6.0.2.x and later Per cache instance True or false (default=false) Specifies that the dynamic
cache service supports
cache entry dependency
IDs. Disable this option if
you do not need to use
dependency IDs.
Dependency IDs specify
additional cache group
identifiers that associate
multiple cache entries to the
same group identifier in your
cache policy.

Chapter 8. Developing Dynamic caching 257

Property name - x is the
instance number, which
starts with 0 Version Scope Possible value Description

cache.instance.x.
disableTemplates
Support

6.0.2.x and later Per cache instance True or false (default=false) Specifies whether template
support feature is enabled.

cache.instance.x.
useListenerContext

5.1.x and later Per cache instance True or false (default=false) Set this value to true to
have invalidation events
sent to registered
invalidation listeners, using
the Java Platform,
Enterprise Edition (Java EE)
context of the listener. If you
want to use listener Java EE
context for callback, set this
value to true. If you want to
use the caller thread context
for callback, set this value to
false.

cache.instance.x.
enableNioSupport

6.0.2.x and later Per cache instance True or false (default=false) Specifies whether
DistributedMap or
DistributedNioMap is used.

cache.instance.x.
memoryCacheSizeInMB

7.0 Per cache instance > 0 (default: -1 limit does
not exist)

Specifies a value for the
maximum memory cache
size in megabytes (MB)

cache.instance.x.
memoryCacheHigh
Threshold

7.0 Per cache instance > 0 % (default=95) Specifies when the eviction
policy runs. The threshold is
expressed in terms of the
percentage of the memory
cache size in MB. The
higher value is used when
limit memory cache size in
MB is specified.

cache.instance.x.
memoryCacheLow
Threshold

7.0 Per cache instance > 0 % (default=80) Specifies when the eviction
policy runs. The threshold is
expressed in terms of the
percentage of the memory
cache size in MB. The
lesser value is used when
limit memory cache size in
MB is specified.

cache.instance.x.
createCacheAt
ServerStartup

7.0 Per cache instance True or false (default=false) Specifies whether the
configured cache instance is
created during the server
startup. This is useful when
cache replication feature is
used. However, the time for
server startup will take long.

Cache servlet/JavaServer
Pages (JSP) caching
properties

cache.instance.x.
cascadeCachespec
Properties

6.0.2.19, 6.1.0.9 and later Per cache instance True or false (default=false) A configurable change in the
behavior of the cache so
that the child pages and
fragments inherit the cache
specification properties of
their parent pages and
fragments. If the request for
a fragment does not match
a defined cache policy, the
fragment will inherit the
save-attributes and the
store-cookies properties
from its parent fragment.
Enable this cascade of
save-attributes and
store-cookies properties by
setting the value to true.

258 Developing WebSphere applications

Property name - x is the
instance number, which
starts with 0 Version Scope Possible value Description

cache.instance.x.
disableStoreCookies

6.0.2.9, 6.1.x and later Per cache instance "none", "ALL","All", cache
instance name, comma
delineated list of cookie
names, (default="none")

Specifies whether disable
store cookies is NONE or
ALL. Stores cookies as part
of the response by default
unless configured otherwise
on a per request basis in
cachespec.xml file. There is
a risk of sharing cookies
between users, which
violates security.

cache.instance.x.
enableServlet
Support

6.0.2.x and later Per cache instance True or false (default=false) Specifies whether the cache
instance is servlet cache or
object cache.

Cache disk offload
properties

cache.instance.x.
enableDiskOffload

5.1.x and later Per cache instance True or false (default=false) Specifies whether disk
offload is enabled.

cache.instance.x.
diskOffload
Location

5.1.x and later Per cache instance String – For example:

. $(app_server_root)
/diskOffload

Specifies the location on the
disk to save cache entries
when disk offload is
enabled.

cache.instance.x.
diskCacheSize

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance >= 0 (0=limit does not exist) Specifies a value for the
maximum disk cache size in
number of entries.

cache.instance.x.
diskCacheSizeInGB

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance 0 or > 2 in GB (0=limit does
not exist)

Specifies a value for the
maximum disk cache size in
gigabytes (GB).

cache.instance.x.
diskCacheEntrySize
InMB

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance >= 0 in MB (0=limit does not
exist)

Specifies a value for the
maximum size of an
individual cache entry in
megabytes (MB). Any cache
entry that is larger than this,
when evicted from memory,
will not be offloaded to disk.

cache.instance.x.
flushToDiskOnStop

5.1.x and later Per cache instance True or false (default =
false)

Specifies if in-memory
cached objects are saved to
disk when the server stops.

cache.instance.x.
diskCache
PerformanceLevel

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance 0=low 1=balance 2=custom
3=high (default=1)

Specifies the performance
level to tune the
performance of the disk
cache.

cache.instance.x.
htodCleanup
Frequency

5.1.1.2 and later Per cache instance 0 <= x <= 1440 in minutes
(0=cleanup at midnight)

Specifies a value for the
disk cache cleanup
frequency, in minutes. If this
value is set to 0, the
cleanup runs only at
midnight. This setting
applies only when the Disk
Offload Performance Level
is low, balanced, or custom.
The high performance level
does not require disk
cleanup, and this value is
ignored.

cache.instance.x.
htodDelayOffload
DepIdBuckets

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance > 0 (default=1000) Specifies a value for the
maximum number of
dependency identifier
buckets in the disk cache
metadata in memory. If this
limit is exceeded, the
information is offloaded to
the disk. This setting applies
only when the disk cache
performance level is custom.

Chapter 8. Developing Dynamic caching 259

Property name - x is the
instance number, which
starts with 0 Version Scope Possible value Description

cache.instance.x.
htodDelayOffload
TemplateBuckets

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance > 0 (default=100) Specifies a value for the
maximum number of
template buckets that are in
the disk cache metadata in
memory. If this limit is
exceeded, the information is
offloaded to the disk. This
setting applies only when
the disk cache performance
level is custom.

cache.instance.x
htodDelayOffload
EntriesLimit

5.1.1.2 and later Per cache instance > 0 (default=1000) Specifies a value for the
maximum number of cache
identifiers that are stored for
an individual dependency ID
or template in the disk
cache metadata in memory.
If this limit is exceeded, the
information is offloaded to
the disk. This setting applies
only when the disk offload
performance level is custom.

cache.instance.x.
diskCacheEviction
Policy

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance 0=disable 1=random 2:size
(default=0)

Specifies the eviction
algorithm that the disk
cache will use to evict
entries once the high
threshold is reached.

cache.instance.x.
diskCacheHigh
Threshold

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance > 0 % (default=80) Specifies when the eviction
policy runs. The threshold is
expressed in terms of the
percentage of the disk
cache size in GB or entries.
The high value is used
when limit disk cache size in
GB and limit disk cache size
in entries are specified.

cache.instance.x.
diskCacheLow
Threshold

5.1.1.13, 6.0.2.17, 6.1.x and
later

Per cache instance > 0 % (default=70) Specifies when the eviction
policy runs. The threshold is
expressed in terms of the
percentage of the disk
cache size in GB or entries.
The lesser value is used
when limit disk cache size in
GB and limit disk cache size
in entries are specified.

Cache replication properties

cache.instance.x.
enableCache
Replication

6.0.2.x and later Per cache instance True or false (default=false) Specifies whether cache
replication is enabled. Use
cache replication to have
cache entries copied to
multiple application servers
configured in the same
replication domain.

cache.instance.x.
replicationType

5.1.x and later Per cache instance 1 (Not shared, 2 (Push), 4
(Push and pull)

Specifies the global sharing
policy for this application
server.

cache.instance.x.
replicationDomain

6.0.2.x and later Per cache instance String – For example:
DynamicCacheDomain

Specifies a replication
domain from which your
data is replicated.

cache.instance.x.
useServer
ClassLoader

5.1.1.9, 6.0.2.9, 6.1.x and
later

Per cache instance True or false (default=false) Specifies whether using
server class loader is
enabled. Setting this value
to true, deserializes the
InvalidationEvent using
system classloader first and
then using application
classloader, if that fails. This
improves performance.

260 Developing WebSphere applications

Property name - x is the
instance number, which
starts with 0 Version Scope Possible value Description

cache.instance.x.
cacheEntryWindow

5.1.1.13, 6.0.2.17, 6.1.0.7
and later

Per cache instance > 0 (default=50) Specifies a limit on the total
number of cache entries
that are sent by the data
replication service (DRS) in
terms of number of entries.

cache.instance.x.
cachePercentage
Window

5.1.1.13, 6.0.2.17, 6.1.0.7
and later

Per cache instance > 0 % (default=2) Specifies a limit on the
number of cache entries
that are sent by DRS in
terms of the percentage of
total cache in memory.

cache.instance.x.
cacheInvalidate
EntryWindow

5.1.1.14, 6.0.2.19, 6.1.0.7
and later

Per cache instance > 0 (default=50) Specifies a limit on the total
number of invalidation
events that are sent by DRS
in terms of number of
entries.

cache.instance.x.
cacheInvalidate
PercentWindow

5.1.1.14, 6.0.2.19, 6.1.0.7
and later

Per cache instance > 0 % (default=2) Specifies a limit on the
number of invalidation
events that are sent by DRS
in terms of the percentage
of total cache in memory.

cache.instance.x.
filterTimeOut
Invalidation

6.0.2.13, 6.1.x and later Per cache instance True or false (default=false) Specifies whether sending
invalidations that are based
on timeout eviction is
enabled.

cache.instance.x.
filterLRU
Invalidation

6.0.2.13, 6.1.x and later Per cache instance True or false (default=false) Specifies whether sending
invalidations that are based
on LRU eviction is enabled.

cache.instance.x.
ignoreValueIn
InvalidationEvent

5.1.1.13, 6.0.2.17, 6.1.x or
later

Per cache instance True or false (default=false) Specifies whether the cache
value of Invalidation event is
ignored. If it is true, the
cache value of Invalidation
event is set to NULL when
the code is returned to the
caller.

Chapter 8. Developing Dynamic caching 261

262 Developing WebSphere applications

Chapter 9. Developing Dynamic and EJB query

This page provides a starting point for finding information about dynamic query, a WebSphere
programming extension for unprecedented application flexibility. This information also includes Enterprise
JavaBeans (EJB) query, the Java feature upon which the WebSphere extension is built.

Dynamic query lets you dynamically build and submit queries that select, sort, join, and perform
calculations on application data at run time.

Dynamic query service provides the ability to pass in and process EJB query language queries at run time,
eliminating the need to hard-code required queries into deployment descriptors during application
development.

Developing applications that use EJB query

EJB query language
EJB query language enables you to write queries based on entity beans without knowing the underlying
relational schema.

An EJB query is a string that contains the following elements:
v a SELECT clause that specifies the enterprise beans or values to return;
v a FROM clause that names the bean collections;
v an optional WHERE clause that contains search predicates over the collections;
v an optional GROUP BY and HAVING clause; see the topic Aggregation functions.
v an optional ORDER BY clause that specifies the ordering of the result collection.

Collections of entity beans are identified in EJB queries through the use of their abstract schema name in
the query FROM clause.

The elements of EJB query language are discussed in more detail in the following related topics.

FROM clause
The FROM clause specifies the collections of objects to which the query is to be applied. Each collection
is specified either by an abstract schema name (ASN) or by a path expression identifying a relationship.
An identification variable is defined for each collection.

Conceptually, the semantics of the query is to form a temporary collection of tuples, R, with elements
consisting of all possible combinations of objects from the collections. This collection is subject to the
constraints imposed by any path relationships and by the JOIN operation. The JOIN can be either an inner
or outer join.

The identification variables are bound to elements of the tuple. After forming the temporary collection, the
search conditions of the WHERE clause are applied to R, and yield a new temporary collection, R1. The
ORDER BY, GROUP BY, HAVING, and SELECT clauses are applied to R1 to yield the final result.
from_clause::=FROM identification_variable_declaration [, {identification_variable_declaration |
collection_member_declaration }]*

identification_variable_declaration::= range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}
[AS] identifier

Examples: Joining collections

DeptBean contains records 10, 20, and 30. EmpBean contains records 1, 2, and 3 that are related to
department 10, and records 4 and 5 that are related to department 20. Department 30 has no employees.

© Copyright IBM Corp. 2012 263

SELECT d FROM DeptBean AS d, EmpBean AS e
WHERE d.name = e.name

The comma syntax performs an inner join resulting in all possible combinations. In this example, R would
consist of 15 tuples (3 departments x 5 employees). If any collection is empty, then R is also empty. The
keyword AS is optional.

This example shows that a collection can be joined with itself.
SELECT d FROM DeptBean AS d, DeptBean AS d1

R would consist of 9 tuples (3 departments x 3 departments).

Examples: Relationship joins

A collection can be a relationship based on a previously declared identifier as in
SELECT e FROM DeptBean AS d , IN (d.emps) AS e

R would contain 5 tuples. Department 30 would not appear in R because it contains no employees.
Department 10 would appear in 3 tuples and department 20 would appear in 2 tuples. IN can only refer to
multi-valued relationships. The following is not valid
SELECT m FROM EmpBean e, IN(e.dept.mgr) as m INVALID

When joining with a relationship the alternate syntax INNER JOIN (keyword INNER is optional) can also
be used, as shown here.
SELECT e FROM DeptBean AS d INNER JOIN d.emps AS e

An ASN declaration (d in the previous query) can be followed by one or more join clauses. The
relationship following the JOIN keyword must be related (directly or indirectly) to the ASN declaration.
Unlike the case with the IN clause, relationships used in a join clause can be single- or multi-valued. This
query has the same semantics as the query
SELECT e FROM DeptBean AS d , IN (d.emps) AS e

You can use multiple joins together.
SELECT m FROM EmpBean e JOIN e.dept d JOIN d.mgr m

This is equivalent to
SELECT m FROM EmpBean e JOIN e.dept.mgr m

Examples: OUTER JOIN

An OUTER JOIN results in a temporary collection that contains combinations of the left and right
operands, subject to the relationship constraints and such that the left operand always appears in R. In the
example an outer join results in a temporary collection R that contains department 30, even though the
collection d.emps is empty. The tuple contains Department 30 along with a NULL value. References to e in
the query yields a null value.
SELECT e FROM DeptBean AS d LEFT OUTER JOIN d.emps AS e

The keyword OUTER is optional, as shown here.
SELECT e FROM DeptBean AS d LEFT JOIN d.emps AS e

You can also use combinations of INNER and OUTER JOIN.
SELECT m FROM EmpBean e JOIN e.dept d LEFT JOIN d.mgr m

264 Developing WebSphere applications

Inheritance in EJB query
If an Enterprise JavaBeans (EJB) inheritance hierarchy has been defined for an abstract schema, using
the abstract schema name in a query statement implies the collection of objects for that abstract schema
as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of
ManagerBean in an EJB inheritance hierarchy. The following query returns employees as well as managers
and executives:
SELECT OBJECT(e) FROM EmpBean e

Path expressions
A path expression is an identification variable followed by the navigation operator (.) and a container
managed persistence (CMP) or relationship name.

A path expression that leads to a cmr field can be further navigated if the cmr field is single-valued. If the
path expression leads to a multi-valued relationship, then the path expression is terminal and cannot be
further navigated. If the path expression leads to a CMP field whose type is a value object, it is possible to
navigate to attributes of the value object.

Example: Value object

Assume that address is a CMP field for EmpBean, which is a value object.
SELECT object(e) FROM EmpBean e
WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational columns if you intend to
search on value attributes. If you store value objects in serialized format, then each value object must be
retrieved from the database and deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be defined on either the remote
or local bean interface. Methods can only be used in dynamic queries. You cannot mix both remote and
local methods in a single query statement.

If the query contains remote methods, the dynamic query must be executed using the query remote
interface. Using the query remote interface causes the query service to activate beans and create
instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the query local interface. This
causes the query service to activate beans and local interface instances.

Do not use get methods to access CMP and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have different number of
parameters.

Methods must have non-void return types and method arguments and return types must be either primitive
types byte, short, int, long, float, double, boolean, char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character, java.util.Calendar,
java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a NULL value and the
method is not invoked.

Chapter 9. Developing Dynamic and EJB query 265

A collection valued path expression can be used in the FROM clause as a collection member declaration,
and with the IS EMPTY, MEMBER OF, and EXISTS predicates in the WHERE clause.

Table 22. FROM clause usage. The following table lists three valid From clause usage and one invalid usage.

FROM clause usage statement Validity statement

FROM EmpBean e WHERE e.dept.mgr.name=’Bob’ OK

FROM EmpBean e WHERE e.dept.emps.name=’BOB’ INVALID -- cannot navigate through emps because it is
multivalued

FROM EmpBean e, IN (e.dept.emps) e1
WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause
The WHERE clause lists search conditions for items to add to a result set.

The WHERE clause contains search conditions composed of the following:
v literal values
v input parameters
v expressions
v basic predicates
v quantified predicates
v BETWEEN predicate
v IN predicate
v LIKE predicate
v NULL predicate
v EMPTY collection predicate
v MEMBER OF predicate
v EXISTS predicate
v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals:

Literals can be considered constants that do not change in value.

A string literal is enclosed in single quotes. A single quote that occurs within a string literal is represented
by two single quotes. For example: 'Tom''s'. A string literal cannot exceed the maximum length that is
supported by the underlying persistent datastore.

A numeric literal can be any of the following:
v an exact value such as 57, -957, +66
v any value supported by Java long
v a decimal literal such as 57.5, -47.02
v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by the underlying persistent
datastore.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters:

266 Developing WebSphere applications

Input parameters are designated by the question mark followed by a number; for example: ?2. Input
parameters are numbered starting at 1 and correspond to the arguments of the finder or select method;
therefore, a query must not contain an input parameter that exceeds the number of input arguments.

An input parameter can be a primitive type of byte, short, int, long, float, double, boolean, char or wrapper
types of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Char, java.util.Calendar,
java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp, an EJBObject, or a binary data string in the
form of Java byte[].

An input parameter must not have a NULL value. To search for the occurrence of a NULL value the NULL
predicate should be used.

WebSphere Application Server, Expressions:

An expression specifies a value.

Conditional expressions can consist of comparison operators and logical operators (AND, OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be composed of arithmetic
operations and functions, path expressions that evaluate to a numeric value and numeric literals and
numeric input parameters.

String expressions can be used in comparison expressions and can be composed of string functions, path
expressions that evaluate to a string value and string literals and string input parameters. A CMP field of
type char is handled as if it were a string of length 1.

Binary expressions can be used in comparison expressions and can be composed of path expressions
that evaluate to the Java byte[] type as well as input parameters of type byte[].

Boolean expressions can be used with = and <> comparison and can be composed of path expressions
that evaluate to a boolean value and TRUE and FALSE keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be composed of path expressions
that evaluate to a cmr field, an identification variable and an input parameter whose type is an EJB
reference

Four different expression types are supported for working with date-time types. For portability the
java.util.Calendar type should be used. DB2 style date, time and timestamp expressions are supported if
the datastore is DB2 and the CMP field is of type java.util.Date, java.sql.Date, java.sql.Time or
java.sql.Timestamp. If you use DB2 UDB, you might obtain a syntax error when using the
java.sql.Timestamp.ojbect. You must use the syntax TIMESTAMP 'yyyy-mm-dd hh:mm:ss.nnnn'.

A Calendar type can be compared to another Calendar type, an exact numeric literal or input parameter of
type long whose value is the standard Java long millisecond value.

The following query finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of operators + - , date
duration expressions and date functions, path expressions that evaluate to a date value, string
representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of operators + - , time
duration expressions and time functions, path expressions that evaluate to a time value, string
representation of time and time input parameters.

Chapter 9. Developing Dynamic and EJB query 267

Timestamp expressions can be used in comparison expressions and can be composed of operators + - ,
timestamp duration expressions and timestamp functions, path expressions that evaluate to a timestamp
value, string representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

The operators and their precedence order from highest to lowest are:
v Navigation operator (.)
v Arithmetic operators in precedence order:

– + - unary
– * / multiply, divide
– + - add, subtract

v Comparison operators: =, >, <, >=, <=, <>(not equal)
v Logical operator NOT
v Logical operator AND
v Logical operator OR

Null value semantics:

The following describe the semantics of NULL values.
v Comparison or arithmetic operations with an unknown (NULL) value yield an unknown value
v In a Java 2 platform, Enterprise Edition (J2EE) version 1.3 application, a path expression uses an

outer-join semantic where a NULL field or cmr value evaluates to NULL. In J2EE version 1.4, the path
expression uses an inner-join semantic.

v The IS NULL and IS NOT NULL operators can be applied to path expressions and return TRUE or
FALSE. Boolean operators AND, OR and NOT use three valued logic.

Table 23. Null value semantics. The following table describes the semantics of NULL values.

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table 24. Null value semantics. The following table describes the semantics of NULL values.

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

Table 25. Null value semantics. The following table describes the semantics of NULL values.

NOT

True False

False True

Unknown Unknown

Example: Null value semantics
select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

268 Developing WebSphere applications

If salary is NULL the evaluation of e.salary > 10 returns unknown and the employee object is not
returned. If the cmr field dept or budget is NULL evaluation of e.dept.budget > 100 returns unknown and
the employee object is not returned.
select object(e) from EmpBean where e.dept.budget is null

In J2EE 1.3 if dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and the employee
object is returned. In J2EE 1.4 the employee object is returned only if budget is NULL.
select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

If dept is NULL, then the multivalued path expression e.dept.emps results in an empty collection (not a
collection that contains a NULL value). An employee with a null dept value will not be returned.
select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee object is not returned.
select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the employee is not returned.

Date time arithmetic and comparisons:

DATE, TIME and TIMESTAMP values can be compared with another value of the same type. Comparisons
are chronological. Date time values can also be incremented, decremented, and subtracted.

If the datastore is DB2, then DB2 string representation of DATE, TIME and TIMESTAMP types can also be
used.

Table 26. Date, time and timestap formats. A string representation of a date or time can use ISO, USA, EUR or JIS
format. A string representation of a timestamp uses ISO format.

Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or PM 1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons
e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:
’1990-02-24-13.50.00.000000’ or
’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and comparisons. A date
duration is a decimal(8,0) number that represents the difference between two dates in the format
YYYYMMDD. A time duration is a decimal(6,0) number that represents the difference between two time
values as HHMMSS. A timestamp duration is a decimal(20,6) number representing the differences
between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ (ZZZZZZ is the number of
microseconds following the decimal point).

Two date values (or time values or timestamp values) can be subtracted to yield a duration. If the second
operand is greater than the first the duration is a negative decimal number. A duration can be added or
subtracted from a datetime value to yield a new datetime value.

Chapter 9. Developing Dynamic and EJB query 269

Example 2: Date time arithmetic comparisons

DATE('3/15/2000') - '12/31/1999' results in a decimal number 215 which is a duration of 0 years, 2
months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions and comparisons.

(DATE('3/15/2000') - '12/31/1999') + 14 > 215 evaluates to TRUE.

DATE('12/31/1999') + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME('11:02:26') - '00:32:56' results in a decimal number 102930 which is a time duration of 10 hours,
29 minutes and 30 seconds.

TIME('00:32:56') + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME('00:00:59') + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > '2000-10-01' means compare the hiredate plus 5 months to the date
10/01/2000.

Basic predicates:

A basic predicate compares two values.

Basic predicates can be of two forms, for example:
expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect cannot return a type of an
Enterprise JavaBeans (EJB) reference. Boolean types and reference types only support = and <>
comparisons.

Example: Basic predicates
d.name=’Java Development’
e.salary > 20000
e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates:

A quantified predicate compares a value with a set of values produced by a subselect.

Use the syntax:
expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:
v TRUE if the comparison is true for at least one value returned by the subselect.
v FALSE if the subselect is empty or if the comparison is false for every value returned by the subselect.
v UNKNOWN if the comparison is not true for all of the values returned by the subselect and at least one

of the comparisons is unknown because of a null value.

When ALL is specified the result of the predicate is as follows:
v TRUE if the subselect returns empty or if the comparison is true to every value returned by the

subselect.

270 Developing WebSphere applications

v FALSE if the comparison is false for at least one value returned by the subselect.
v UNKNOWN if the comparison is not false for all values returned by the subselect and at least one

comparison is unknown because of a null value.

BETWEEN predicate:

The BETWEEN predicate determines whether a given value lies between two other given values.

The syntax for the predicate is:
expression [NOT] BETWEEN expression-2 AND expression-3

The expression must not evaluate to a boolean or reference type.

Example: BETWEEN predicate
e.salary BETWEEN 50000 AND 60000

is equivalent to:
e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:
e.name < ’A’ OR e.name > ’B’

IN predicate:

The IN predicate compares a value to a set of values.

It can have one of two forms:
expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2,)

ValueN can either be a literal value or an input parameter. The expression cannot evaluate to a reference
type.

Example: IN predicate
e.salary IN (10000, 15000)

is equivalent to
(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate:

The LIKE predicate searches a string value for a certain pattern.

The syntax for this predicate is:
string-expression [NOT] LIKE pattern [ESCAPE escape-character]

Chapter 9. Developing Dynamic and EJB query 271

The pattern value is a string literal or parameter marker of type string in which the underscore (_) stands
for any single character and percent (%) stands for any sequence of characters (including empty
sequence). Any other character stands for itself. The escape character can be used to search for
character _ and %. The escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate
v “LIKE” is true
v “LIKE %” is true
v e.name LIKE 12%3 is true for “123” “12993” and false for “1234”
v e.name LIKE 's_me' is true for “some” and “same”, false for “soome”
v e.name LIKE '/_foo' escape '/' is true for “_foo”, false for “afoo”
v e.name LIKE '//_foo' escape '/' is true for “/afoo” and for “/bfoo”
v e.name LIKE '///_foo' escape '/' is true for “/_foo” but false for “/afoo”

NULL predicate:

The NULL predicate tests for null values.

Use the syntax:
single-valued-path-expression IS [NOT] NULL

Example: NULL predicate
e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate:

You can use the EMPTY collection predicate to test if a multivalued relationship has no members.

Use the following syntax:
collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:
SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate:

This expression tests whether the object reference specified by the single valued path expression or input
parameter is a member of the designated collection.

If the collection valued path expression designates an empty collection the value of the MEMBER OF
expression is FALSE.
{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF] collection-valued-path-expression

Example: MEMBER OF predicate

Find employees that are not members of a given department number:

272 Developing WebSphere applications

SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate:

The exists predicate tests for the presence or absence of a condition specified by a subselect.

Use the following syntax:
EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path expression evaluates to
a nonempty collection, otherwise the result is false.

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The previous query can also be written as follows:
SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate:

The IS OF TYPE predicate is used to test the type of an Enterprise JavaBeans (EJB) reference. It is
similar in function to the Java instance of operator.

IS OF TYPE is used when several abstract beans have been grouped into an EJB inheritance hierarchy.
The type names specified in the predicate are the bean abstract names. The ONLY option can be used to
specify that the reference must be exactly this type and not a subtype.
identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2,)

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of
ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:

Chapter 9. Developing Dynamic and EJB query 273

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The previous query is equivalent to the following query:
SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:
SELECT OBJECT(e) FROM ManagerBean e
WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions
An Enterprise JavaBeans (EJB) query contains scalar functions for doing type conversions, string
manipulation, and for manipulating date-time values.

The list of scalar functions is documented in the topic EJB query: Scalar functions.

Example: Scalar functions

Find employees hired in 1999:
SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend datastore vendors are the
following:
v ABS
v MOD
v SQRT
v CONCAT
v LENGTH
v LOCATE
v SUBSTRING
v UCASE
v LCASE

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions:

Enterprise JavaBeans (EJB) query contains scalar built-in functions for doing type conversions, string
manipulation, and for manipulating date-time values.

Details of EJB query scalar built-in functions follow:

Numeric functions
ABS (< any numeric datatype >) -> < any numeric datatype >

MOD (<int>, <int>) -> int

SQRT (< any numeric datatype >) -> Double

Type conversion functions
CHAR (< any numeric datatype >) -> string
CHAR (< string >) -> string
CHAR (< any datetime datatype > [, Keyword k]) -> string

274 Developing WebSphere applications

Datetime datatype is converted to its string representation in a format specified by the keyword k. The
valid keywords values are ISO, USA, EUR or JIS. If k is not specified the default is ISO.
BIGINT (< any numeric datatype >) -> Long
BIGINT (< string >) -> Long

The function in the second line of the following code converts the argument to an integer n by truncation,
and returns the date that is n-1 days after January 1, 0001:
DATE (< date string >) -> Date
DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:
DATE(timestamp) -> Date
DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and scale s.
DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and scale s.
DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double
DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double
FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.
INTEGER (< any numeric datatype >) -> Integer
INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short
SMALLINT (< string >) -> Short

TIME (< time >) -> Time
TIME (< time-string >) -> Time
TIME (< timestamp >) -> Time
TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp
TIMESTAMP (< timestamp-string >) -> Timestamp

String functions
CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the argument not including
its sign or decimal point. For example, digits(-42.35) is “4235”.
DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument is a numeric or datetime
type, it returns the length of internal representation.
LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case characters have been
converted to lower case.
LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of argument 1 inside argument 2
with optional start position. If not found, it returns 0.
LOCATE (String s1 , String s2 [, Integer start]) -> Integer

Chapter 9. Developing Dynamic and EJB query 275

The following function returns a substring of s beginning at character m and containing n characters. If n is
omitted, the substring contains the remainder of string s. The result string is padded with blanks if needed
to make a string of length n.
SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case characters have been
converted to upper case.
UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the return value can be -99
to 99.
DAY (Date) -> Integer
DAY (< date-string >) -> Integer
DAY (< date-duration >) -> Integer
DAY (Timestamp) -> Integer
DAY (< timestamp-string >) -> Integer
DAY (< timestamp-duration >) -> Integer

The following function returns one more than number of days from January 1, 0001 to its argument.
DAYS (Date) -> Integer
DAYS (< Date-string >) -> Integer
DAYS (Timestamp) -> Integer
DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the return value can be -99 to
99.
HOUR (Time) -> Integer
HOUR (< time-string >) -> Integer
HOUR (< time-duration >) -> Integer
HOUR (Timestamp) -> Integer
HOUR (< timestamp-string >) -> Integer
HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.
MICROSECOND (Timestamp) -> Integer
MICROSECOND (< timestamp-string >) -> Integer
MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the return value can be -99
to 99.
MINUTE (Time) -> Integer
MINUTE (< time-string >) -> Integer
MINUTE (< time-duration >) -> Integer
MINUTE (Timestamp) -> Integer
MINUTE (< timestamp-string >) -> Integer
MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration, the return value can be
-99 to 99.
MONTH (Date) -> Integer
MONTH (< date-string >) -> Integer
MONTH (< date-duration >) -> Integer
MONTH (Timestamp) -> Integer
MONTH (< timestamp-string >) -> Integer
MONTH (< timestamp-duration >) -> Integer

276 Developing WebSphere applications

The following function returns the second part of its argument. For a duration, the return value can be -99
to 99.
SECOND (Time) -> Integer
SECOND (< time-string >) -> Integer
SECOND (< time-duration >) -> Integer
SECOND (Timestamp) -> Integer
SECOND (< timestamp-string >) -> Integer
SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the return value can be
-9999 to 9999.
YEAR (Date) -> Integer
YEAR (< date-string >) -> Integer
YEAR (< date-duration >) -> Integer
YEAR (Timestamp) -> Integer
YEAR (< timestamp-string >) -> Integer
YEAR (< timestamp-duration >) -> Integer

Aggregation functions
Aggregation functions operate on a set of values to return a single scalar value. You can use these
functions in the select and subselect methods.

The following example illustrates an aggregation:
SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are AVG, COUNT, MAX, MIN, and SUM. The syntax of an aggregation function
is illustrated in the following example:
aggregation-function ([ALL | DISTINCT] expression)

or:
COUNT([ALL | DISTINCT] identification-variable)

or:
COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function. ALL is the default option
and does not eliminate duplicates. Null values are ignored in computing the aggregate function except in
the cases of COUNT(*) and COUNT(identification-variable), which return a count of all the elements in the
set.

If your datastore is Informix, you must limit the expression argument to a single valued path expression
when using the COUNT function or the DISTINCT forms of the functions SUM, AVG, MIN, and MAX.

Defining return type

For a select method using an aggregation function, you can define the return type as a primitive type or a
wrapper type. The return type must be compatible with the return type from the datastore. The MAX and
MIN functions can apply to any numeric, string or datetime datatype and return the corresponding
datatype. The SUM and AVG functions take a numeric type as input, and return the same numeric type
that is used in the datastore. The COUNT function can take any datatype, and returns an integer.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can return a null value. The
COUNT function returns zero (0) when it is applied to an empty set. Use wrapper types if the return value
might be NULL; otherwise, the container displays an ObjectNotFound exception.

Chapter 9. Developing Dynamic and EJB query 277

Using GROUP BY and HAVING

The set of values that is used for the aggregate function is determined by the collection that results from
the FROM and WHERE clause of the query. You can divide the set into groups and apply the aggregation
function to each group. To perform this action, use a GROUP BY clause in the query. The GROUP BY
clause defines grouping members, which comprise a list of path expressions. Each path expression
specifies a field that is a primitive type of byte, short, int, long, float, double, boolean, char, or a wrapper
type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,
java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

The following example illustrates the use of the GROUP BY clause in a query that computes the average
salary for each department:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another NULL value.

Just as the WHERE clause filters tuples (that is, records of the return collection values) from the FROM
clause, the groups can be filtered using a HAVING clause that tests group properties involving aggregate
functions or grouping members:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three employees and the
department number is greater than five.

It is possible to use a HAVING clause without a GROUP BY clause, in which case the entire set is treated
as a single group, to which the HAVING clause is applied.

SELECT clause
The SELECT clause consists of either a single identification variable that is defined in the FROM clause,
or a single valued path expression that evaluates to an object reference or container managed persistence
(CMP) value. You can use the DISTINCT keyword to eliminate duplicate references.

For finder and select queries, the syntax of the SELECT clause is illustrated in the following example:
SELECT [ALL | DISTINCT]
{ single-valued-path-expression | aggregation expression | OBJECT (identification-variable) }

For a query that defines a finder method, the query must return an object type consistent with the home
that is associated with the finder method. For example, a finder method for a department home can not
return employee objects.

Example: SELECT clause

Find all employees that earn more than John:
SELECT OBJECT(e) FROM EmpBean ej, EmpBean e
WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:
SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary value:
SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The previous query returns a collection of name values for those departments having employees earning
less than 20000.

278 Developing WebSphere applications

A select method query can return an aggregate value:
SELECT avg(e.salary) FROM EmpBean e

Example: Valid dynamic queries

For dynamic queries the syntax is as follows:
SELECT { ALL | DISTINCT } [selection ,]* selection
selection ::= { expression | scalar-subselect [[AS] id] }

A scalar-subselect is a subselect that returns a single value.

The following are examples of dynamic queries:
SELECT e.name, e.salary+e.bonus as total_pay from EmpBean e

SELECT SUM(e.salary+e.bonus) from EmpBean e where e.dept.deptno = ?1

ORDER BY clause
The ORDER BY clause specifies an ordering of the objects in the result collection

Use the syntax:
ORDER BY [order_element ,]* order_element
order_element ::= { path-expression | integer } [ASC | DESC]

The path expression must specify a single valued field that is a primitive type of byte, short, int, long, float,
double, char or a wrapper type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Character,
java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:
SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

UNION clause operation
The UNION clause specifies a combination of the output of two subqueries. The two queries must return
the same number of elements and compatible types.

For the purposes of UNION, all Enterprise JavaBeans (EJB) types in the same inheritance hierarchy are
considered compatible. UNION requires that equality be defined for the element types.
query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]
[group_by_clause] [having_clause] } | (query_expression) }

You cannot use dependent value objects with UNION.

UNION ALL combines all results together in a single collection.

UNION combines results but eliminates duplicates.

Chapter 9. Developing Dynamic and EJB query 279

If ORDER BY is used together with UNION, the ORDER BY must refer to selection expression using
integer numbers.

Examples: UNION operation

This example returns a collection of all employee objects of type EmpBean and all manager objects of
type ManagerBean where ManagerBean is a subtype of EmpBean.
select e from EmpBean e union all select m from DeptBean d, in(d.mgr) m

This example shows a query that is not valid, because EmpBean and DeptBean are not compatible.
select e from EmpBean e union all select d from DeptBean d

Subqueries
A subquery can be used in quantified predicates, the EXISTS predicate, or the IN predicate. A subquery
should only specify a single element in the SELECT clause.

When a path expression appears in a subquery, the identification variable of the path expression must be
defined either in the subquery, in one of the containing subqueries, or in the outer query. A scalar
subquery is a subquery that returns one value. A scalar subquery can be used in a basic predicate and in
the SELECT clause of a dynamic query.

Example: Subqueries
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The previous query returns employees who earn more than average salary of all employees.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >
(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The previous query returns employees who earn more than average salary of their department.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =
(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The previous query returns employees who earn the most in their department.
SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1
WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The previous query returns employees who earn more than the average of employees hired in same year.

EJB query language limitations and restrictions
When using the Enterprise JavaBeans (EJB) query language on the product, deviations can be seen in
comparison to standard EJB query language. The limitations and restrictions you must be aware of are
listed in the following section.

This topic outlines current known limitations and restrictions.

v EJB query language (QL) queries involving enterprise beans with keys made up of relationships to other
enterprise beans appear as not valid and cause errors at deployment time. This is a known problem.

v The IBM EJB QL support extends the EJB 2.0 specification in various ways, including relaxing some
restrictions, adding support for more DB2 functions, and so on. If portability across various vendor
databases or EJB deployment tools is a concern, then care should be taken to write all EJB QL queries
strictly according to Chapter 11 in the EJB 2.0 specification.

v Pre-loading across m:n relationships results in the generation of inaccurate structured query language
(SQL). This is a known limitation that may be addressed in the future.

v Pre-loading across self referencing relationships causes inaccurate SQL to be generated.

280 Developing WebSphere applications

v Avoid relationships between parent and children enterprise beans within the same inheritance hierarchy
that are not well-defined.

v EJB Query Language validation for EJB 2.0 JAR files currently runs as a part of the EJB-RDB Mapping
validation. If a mapping document (Map.mapxmi file) does not exist in the project, the EJB queries are
not validated.

EJB query compatibility issues with SQL
Because an Enterprise JavaBeans (EJB) query is compiled into structured query language (SQL), you
must be aware of compatibility issues between the Java language and SQL.

The two languages differ along the following points that can be critical to correct EJB query formulation:

v The comparison semantics of SQL strings do not exactly match those of the Java language. For
example: “A” (the letter A) and“A” (the letter A plus a blank space) are considered equal in SQL, but not
in the Java language.

v Comparisons and collating order depend on the underlying database. For example, if you are using DB2
with an EBCDIC code page, the collating order is not the same as doing the sort in a Java program.
Some databases sort the NULL value low while others sort the NULL value high.

v An arithmetic overflow causes an exception in SQL, but not in the Java language.

v SQL databases have differing minimum and maximum ranges for floating point values, which can differ
from floating point value ranges in the Java language. Values near the range limits of Java Double may
fail to translate into SQL.

v Java methods do not translate into SQL; therefore standard EJB queries cannot include Java methods.

Note: Only with the dynamic EJB query service can you use functions that do not translate into SQL.
Such functions include Java methods and converters or composers that are used in mapping
enterprise beans to relational databases (RDBs). A standard finder or select query that uses any
of these functions fails at deployment time with the message “Cannot push down query”. (You
can resolve this problem by changing either the query or the mapping.) The dynamic query run
time, however, processes the query by performing the operation involving the function in the
application server.

Database restrictions for EJB query
The Enterprise JavaBeans (EJB) query functions must adhere to certain restrictions for databases.

General database restriction
v All of the enterprise beans involved in a given query must map to the same data source. The EJB query

does not support cross-data source join operations.
v It is possible that a structured query language (SQL) statement generated by the WebSphere

Application Server deployment code generation utility for an ejbSelect EJB query language query
returns rows in a result set that consist of null values in all columns.

During run time persistence manager saves the set received as a result from this query. When your
application retrieves the primary key of the result bean, persistence manager calls the extractor. The
extractor is a method that is an EJB deploy generated class. This method returns a value of 0 for any
null column entries. This value is passed back to the EJB container to forward to the application. The
EJB container invokes the bean instance with the PK value of 0. This could create a problem, as the
end user cannot determine if this bean instance has a null PK or a PK value of 0.

To avoid this, use the IS NOT NULL clause in the finder query to eliminate such null values from the
result set.

Specific database restrictions

Different database products place different restrictions on elements that can be included in EJB query
statements. Following is a list of those restrictions; check with your database administrator to see if any
apply in your environment:

Chapter 9. Developing Dynamic and EJB query 281

v Certain functions are used in queries that run against DB2 only, because these functions are not
supported by other databases. These functions include date and time arithmetic expressions, certain
scalar functions including those not listed as portable across vendors, and implied scalar functions when
used for mapping certain container managed persistence (CMP) fields. For example, consider mapping
an int numeric type to a decimal (5,2) type field. When deployed against a database other than DB2, a
finder or select query that contains a CMP field with this particular mapping fails, producing a Cannot
push down query error message.

v A CMP of type String, when mapped to a character large object (CLOB) in the database, cannot be
used in comparison operations because the database does not support CLOB comparisons.

v Databases can impose limits on the length of string values that are used either as literals or input
parameters with comparison operators. These limits can hinder query performance. For example: For
DB2 on the z/OS platform, the search “name = ?1” can fail if the value of ?1 at run time is greater than
255 in length.

v Mapping a numeric CMP type to a column that contains a dissimilar type can cause unexpected results.
For example, consider the case of mapping the int numeric type to a column of type decimal (5,2). This
scenario does not preserve an exact decimal value (for example, the value 12.25) over the course of
transfer from the database to the enterprise bean CMP field, and back again to the database. This
mapping causes replacement of the initial value with a whole number (in this case, 12). Consequently,
you want to avoid using the CMP field in comparison operations when the CMP field uses a mapping of
this nature.

v Some databases do not support a data type that corresponds to the semantics of java.sql.Time. For
example: If a CMP field of type java.sql.Time is mapped to an Oracle DATE column, comparisons on
time might not produce the expected result because the year-month-day portion of the column value is
truncated in the mapping.

v Some databases treat a zero length string value ('') as a null value; this approach can affect the query
results. For the sake of portability, avoid the use of zero length string values.

v Some databases perform division between two integer values using integer arithmetic rules, while
others use non-integer rules. This discrepancy might not be desirable in environments that use both
kinds of databases. For the sake of portability, avoid the division of integer values in an EJB query.

Rules for data type manipulation in EJB query
When using an Enterprise JavaBeans (EJB) query to work with data types, certain rules must be followed.

You can use a CMP field of any type in a SELECT clause. You must, however, use fields of only the
following types in search conditions and in grouping or ordering operations:

v Primitive types: byte, short, int, long, float, double, boolean, char

v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,
java.util.Calendar, java.util.Date

v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

v Binary string: byte

If ALL of the following conditions occur:
v a CMP field of one of the basic types listed previously is mapped to an SQL column using a converter
v the CMP field appears prior to a basic predicate
v following the predicate is a literal or input parameter

then the toData() method of the converter is used to compute the SQL search value.

For example, given a converter that maps the integer value 10 to the string value “Ten” the following EJB
query:
e.cmp = 10

is translated into the following SQL query:
column = ’Ten’

282 Developing WebSphere applications

If you include a more complicated predicate, such as in the following example:
e.cmp * 10 > e.salary

in a finder or select query, you receive the Cannot push down query error message. Use the dynamic EJB
query service for such multi-function queries; the dynamic query run time processes the predicate in the
application server.

Overall, converters preserve equality, collating sequence, and NULL values. If a converter does not meet
these requirements, avoid using it for CMP field comparison operations.

A user type cannot be used in a comparison operation or expression. You can, however, use subfields of
the user type in a path expression. For example, consider the CMP addr field with the type
com.exam.Address, and street, city, and state subfields. The following syntax for a query on this CMP field
is not valid:
e.addr = ?1

However, a query that designates one of the subfields is valid:
e.addr.street = ?1

A CMP field can be mapped to an SQL column using Java serialization. Using the CMP field in predicates
or expressions for deployment queries usually results in the Cannot push down query error message. The
dynamic query run time processes the expression by reading and deserializing all instances of the user
type in the application server.

However, this expensive process sacrifices performance. You can maintain performance by using a
composer in a deployment EJB query. In the previous example, if you want to map the addr field to a
binary type, you use a composer to map each subfield to a binary column in the database.

EJB query: Reserved words
The following words are reserved in WebSphere Application Server Enterprise JavaBeans (EJB) queries.

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union, where

Avoid using identifiers that start with underscore (for example, _integer) as these are also reserved.

EJB query: BNF syntax
The Backus-Naur Form (BNF) is one of the most commonly used notations for specifying the syntax of
programming languages or command sets. This article lists the syntax for Enterprise JavaBeans (EJB)
query language.
EJB QL ::= [select_clause] from_clause [where_clause] [order_by_clause]

DYNAMIC EJB QL := query_expression [order_by_clause]

query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]
[group_by_clause] [having_clause] } | (query_expression) } [order_by_clause]

from_clause::=FROM identification_variable_declaration
[, {identification_variable_declaration | collection_member_declaration }]*

identification_variable_declaration::=collection_member_declaration |
range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}
[AS] identifier

collection_member_declaration::=
IN (collection_valued_path_expression) [AS] identifier

Chapter 9. Developing Dynamic and EJB query 283

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=
{single_valued_navigation | identification_variable}. (cmp_field |

method | cmp_field.value_object_attribute | cmp_field.value_object_method)
| single_valued_navigation

single_valued_navigation::=
identification_variable.[single_valued_cmr_field.]*

single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*

collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {single_valued_path_expression |
identification_variable | OBJECT (identification_variable) |

aggregate_functions }

select_clause_dynamic ::= SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression | subselect } [[AS] id]

order_by_clause::= ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*
{single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |
conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary
conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |
like_expression | in_expression | null_comparison_expression |
empty_collection_comparison_expression | quantified_expression |
exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN
{ (subselect) | ([atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE
{string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=
single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
{ single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]
collection_valued_path_expression

quantified_expression ::=
expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]
[group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*
single_valued_path_expression

284 Developing WebSphere applications

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE
([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::= expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |
(expression) | input_parameter | functions | aggregate_functions

aggregate_functions :=
AVG([ALL|DISTINCT] expression) |
COUNT({[ALL|DISTINCT] expression | * | identification_variable }) |
MAX([ALL|DISTINCT] expression) |
MIN([ALL|DISTINCT] expression) |
SUM([ALL|DISTINCT] expression) |

functions ::=
ABS(expression) |
BIGINT(expression) |
CHAR({expression [,{ISO|USA|EUR|JIS}]) |
CONCAT (expression , expression) |
DATE(expression) |
DAY({expression) |
DAYS(expression) |
DECIMAL(expression [,integer[,integer]])
DIGITS(expression) |
DOUBLE(expression) |
FLOAT(expression) |
HOUR (expression) |
INTEGER(expression) |
LCASE (expression) |
LENGTH(expression) |
LOCATE(expression, expression [, expression]) |
MICROSECOND(expression) |
MINUTE (expression) |
MOD (expression , expression) |
MONTH(expression) |
REAL(expression) |
SECOND(expression) |
SMALLINT(expression) |
SQRT (expression) |
SUBSTRING(expression, expression[, expression]) |
TIME(expression) |
TIMESTAMP(expression) |
UCASE (expression) |
YEAR(expression)

xrel := XREL identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }
[, identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }]*

EJB specification and WebSphere query language comparison
WebSphere Application Server extends the Enterprise JavaBeans (EJB) query language with elements of
its own.

WebSphere Application Server supports the following extensions to the EJB query language.

Chapter 9. Developing Dynamic and EJB query 285

Table 27. Extensions supported for the EJB query language. The product supports the following extensions.

Item

Delimited identifiers

Dependent Value object attributes used in path
expressions

EJB Inheritance

EXISTS predicate

Java methods: EJB bean methods or value object
methods

dynamic query only

Multiple element select clauses dynamic query only

SQL Date/time expressions

Subqueries, group by, and having clauses

Using the dynamic query service
There are times in the development process when you might prefer to use the dynamic query service
rather than the regular Enterprise JavaBeans (EJB) query service (which can be referred to as deployment
query). During testing, for instance, the dynamic query service can be used at application run time, so you
do not have to re-deploy your application.

About this task

Following are common reasons for using the dynamic query service rather than the regular EJB query
service:
v You need to programmatically define a query at application run time, rather than at deployment.
v You need to return multiple CMP or CMR fields from a query. (Deployment queries allow only a single

element to be specified in the SELECT clause.) For more information, see the topic, Example: EJB
queries.

v You want to return a computed expression in the query.
v You want to use value object methods or bean methods in the query statement. For more information,

see the topic, Path expressions.
v You want to interactively test an EJB query during development, but do not want to repeatedly deploy

your application each time you update a finder or select query.

The dynamic query API is a stateless session bean; using it is similar to using any other J2EE EJB
application bean. It is included in the com.ibm.websphere.ejbquery in the API package.

The dynamic query bean has both a remote and a local interface. If you want to return remote EJB
references from the query, or if the query statement contains remote methods, you must use the query
remote interface:

remote interface = com.ibm.websphere.ejbquery.Query
remote home interface = com.ibm.websphere.ejbquery.QueryHome

If you want to return local EJB references from the query, or if the query statement contains local methods,
you must use the query local interface:

local interface = com.ibm.websphere.ejbquery.QueryLocal
local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

Because it uses less application server memory, the local interface ensures better overall EJB
performance than the remote.

286 Developing WebSphere applications

Procedure
1. Verify that the query.ear application file is installed on the application server on which your application

is to run, if that server is different from the default application server created during installation of the
product.

The query.ear file is located in the app_server_root directory, where <WAS_HOME> is the location of the
WebSphere Application Server. The product installation program installs the query.ear file on the
default application server using a JNDI name of
com/ibm/websphere/ejbquery/Query

(You or the system administrator can change this name.)

2. Set up authorization for the methods executeQuery(), prepareQuery(), and executePlan() in the remote
and local dynamic query interfaces to control access to sensitive data. (This step is necessary only if
your application requires security.)

Because you cannot control which ASN names, CMP fields, or CMR fields can be used in a dynamic
EJB query, you or your system administrator must place restrictions on use of the methods. If, for
example, a user is permitted to run the executeQuery method, he or she can run any valid dynamic
query. In a production environment, you certainly want to restrict access to the remote query interface
methods.

3. Write the dynamic query as part of your application client code. You can refer to the example topics,
Remote interface dynamic query example, and Local interface dynamic query example, as query
models; they illustrate which import statements to use.

4. If the CMP you want to query is on a different module, you should:

a. do a remote lookup on query.ear

b. map the query.ear file to the server that the queried CMP bean is installed on.

5. Compile and run your client program with the file qryclient.jar in the classpath.

Example

Using the remote interface for Dynamic query.

When you run a dynamic Enterprise JavaBeans (EJB) query using the remote interface, you are
calling the executeQuery method on the Query interface. The executeQuery method has a
transaction attribute of REQUIRED for this interface; therefore you do not need to explicitly
establish a transaction context for the query to run.

When you run a dynamic Enterprise JavaBeans (EJB) query using the remote interface, you are
calling the executeQuery method on the Query interface. The executeQuery method has a
transaction attribute of REQUIRED for this interface; therefore you do not need to explicitly
establish a transaction context for the query to run.

Begin with the following import statements:
import com.ibm.websphere.ejbquery.QueryHome;
import com.ibm.websphere.ejbquery.Query;
import com.ibm.websphere.ejbquery.QueryIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves
the names and ejb-references for underpaid employees:
String query =
"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the
executeQuery method.) Note that for the sake of simplicity, the following example uses the
dynamic query JNDI name for the Query object:

Chapter 9. Developing Dynamic and EJB query 287

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =
(QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);
Query qb = qh.create();

You then must specify a maximum size for the query result set, which is defined in the
QueryIterator object, which is included in the Class QueryIterator. This class is included in the You
then must specify a maximum size for the query result set, which is defined in the QueryIterator
object, which is included in the QueryIterator API package. This example sets the maximum size
of the result set to 99:
QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects, which are records of the return collection
values. Corresponding to the criteria of our example query statement, each tuple in this scenario
contains one value of name and one value of object(e). To display the contents of this query
result, use the following code:
while (it.hasNext()) {
IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);
System.out.println(it.getFieldName(2));
Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);
System.out.println(e.getPrimaryKey().toString());
}

The output from the program might look something like the following:
name Bob
emp 1001
name Dave
emp 298003
...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in
the query statement or a run-time processing error. The following example catches and processes
these exceptions:
} catch (QueryException qe) {

System.out.println("Query Exception "+ qe.getMessage());
}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to
return results in multiple smaller, more manageable quantities. Use the skipRow and maxRow
parameters on the remote executeQuery method to retrieve the answer in chunks. For example:
int skipRow=0;
int maxRow=100;
QueryIterator it = null;
do {
it = qb.executeQuery(query, null, null ,skipRow, maxRow);
while (it.hasNext()) {
// display result
skipRow = skipRow + maxRow;
}
} while (! it.isComplete()) ;

Using the local interface for Dynamic query.

288 Developing WebSphere applications

When you run a dynamic Enterprise JavaBeans (EJB) query using the local interface, you are
calling the executeQuery method on the QueryLocal interface. This interface does not initiate a
transaction for the method; therefore you must explicitly establish a transaction context for the
query to run.

Note: To establish a transaction context, the following example calls the begin() and commit()
methods. An alternative to using these methods is simply embedding your query code
within an EJB method that runs within a transaction context.

Begin your query code with the following import statements:
import com.ibm.websphere.ejbquery.QueryLocalHome;
import com.ibm.websphere.ejbquery.QueryLocal;
import com.ibm.websphere.ejbquery.QueryLocalIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves
the names and ejb-references for underpaid employees:
String query =
"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class
defines the executeQuery method.) Note that in the following example, ejb/query is used as a
local EJB reference pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/
Query):
InitialContext ic = new InitialContext();

QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");
QueryLocal qb = qh.create();

The last portion of code initiates a transaction, calls the executeQuery method, and displays the
query results. The QueryLocalIterator class is instantiated because it defines the query result set.
This class is included in the Class QueryIterator API package. Keep in mind that the iterator loses
validity at the end of the transaction; you must use the iterator in the same transaction scope as
the executeQuery call.
userTransaction.begin();
QueryLocalIterator it = qb.executeQuery(query, null, null);
while (it.hasNext()) {
IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);
System.out.println(it.getFieldName(2));
EmpLocal e = (EmpLocal) tuple.getObject(2);
System.out.println(e.getPrimaryKey().toString());
}
userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be
returned incrementally: for each record retrieval from the database, the next() method must be
called on the iterator. (Situations can exist in which the iterator is not demand-driven. For more
information, consult the "Local query interfaces" subsection of the Dynamic query performance
considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you
can easily control its size. During a test run, for example, you may decide that return of only a few
tuples of the query result is necessary. In that case you should use a call of the close() method on
the QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the
iterator uses. Otherwise, these resources are not freed until the full result set accumulates in
memory, or the transaction ends.

Chapter 9. Developing Dynamic and EJB query 289

Example: Using the remote interface for Dynamic query
When you run a dynamic Enterprise JavaBeans (EJB) query using the remote interface, you are calling
the executeQuery method on the Query interface. The executeQuery method has a transaction attribute of
REQUIRED for this interface; therefore you do not need to explicitly establish a transaction context for the
query to run.

Begin with the following import statements:
import com.ibm.websphere.ejbquery.QueryHome;
import com.ibm.websphere.ejbquery.Query;
import com.ibm.websphere.ejbquery.QueryIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the
names and ejb-references for underpaid employees:
String query =
"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the
executeQuery method.) Note that for the sake of simplicity, the following example uses the dynamic query
JNDI name for the Query object:
InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =
(QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

You then must specify a maximum size for the query result set, which is defined in the QueryIterator
object, which is included in the Class QueryIterator. This class is included in the You then must specify a
maximum size for the query result set, which is defined in the QueryIterator object, which is included in the
QueryIterator API package. This example sets the maximum size of the result set to 99:
QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects, which are records of the return collection values.
Corresponding to the criteria of our example query statement, each tuple in this scenario contains one
value of name and one value of object(e). To display the contents of this query result, use the following
code:
while (it.hasNext()) {
IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);
System.out.println(it.getFieldName(2));
Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);
System.out.println(e.getPrimaryKey().toString());

}

The output from the program might look something like the following:
name Bob
emp 1001
name Dave
emp 298003
...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in the
query statement or a run-time processing error. The following example catches and processes these
exceptions:

290 Developing WebSphere applications

} catch (QueryException qe) {
System.out.println("Query Exception "+ qe.getMessage());

}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to return results
in multiple smaller, more manageable quantities. Use the skipRow and maxRow parameters on the remote
executeQuery method to retrieve the answer in chunks. For example:
int skipRow=0;
int maxRow=100;
QueryIterator it = null;
do {
it = qb.executeQuery(query, null, null ,skipRow, maxRow);
while (it.hasNext()) {
// display result
skipRow = skipRow + maxRow;
}
} while (! it.isComplete()) ;

Example: Using the local interface for Dynamic query
When you run a dynamic Enterprise JavaBeans (EJB) query using the local interface, you are calling the
executeQuery method on the QueryLocal interface. This interface does not initiate a transaction for the
method; therefore you must explicitly establish a transaction context for the query to run.

Note: To establish a transaction context, the following example calls the begin() and commit() methods.
An alternative to using these methods is simply embedding your query code within an EJB method
that runs within a transaction context.

Begin your query code with the following import statements:
import com.ibm.websphere.ejbquery.QueryLocalHome;
import com.ibm.websphere.ejbquery.QueryLocal;
import com.ibm.websphere.ejbquery.QueryLocalIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the
names and ejb-references for underpaid employees:
String query =
"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class defines
the executeQuery method.) Note that in the following example, ejb/query is used as a local EJB reference
pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/Query):
InitialContext ic = new InitialContext();

QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");
QueryLocal qb = qh.create();

The last portion of code initiates a transaction, calls the executeQuery method, and displays the query
results. The QueryLocalIterator class is instantiated because it defines the query result set. This class is
included in the Class QueryIterator API package. Keep in mind that the iterator loses validity at the end of
the transaction; you must use the iterator in the same transaction scope as the executeQuery call.
userTransaction.begin();
QueryLocalIterator it = qb.executeQuery(query, null, null);
while (it.hasNext()) {
IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);

Chapter 9. Developing Dynamic and EJB query 291

System.out.println(it.getFieldName(2));
EmpLocal e = (EmpLocal) tuple.getObject(2);
System.out.println(e.getPrimaryKey().toString());

}
userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be returned
incrementally: for each record retrieval from the database, the next() method must be called on the iterator.
(Situations can exist in which the iterator is not demand-driven. For more information, consult the "Local
query interfaces" subsection of the Dynamic query performance considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you can
easily control its size. During a test run, for example, you may decide that return of only a few tuples of
the query result is necessary. In that case you should use a call of the close() method on the
QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the iterator uses.
Otherwise, these resources are not freed until the full result set accumulates in memory, or the transaction
ends.

Dynamic query performance considerations
While using a dynamic query can be convenient, there are times when it can have an impact on your
application performance.

General performance considerations

Use of the following elements in your dynamic query can diminish application performance somewhat:

v Datatype converters and Java methods

Why: In general, query operations and predicates are translated into SQL so that the database server
can perform them. If your query includes datatype converters (for EJB to RDB mapping, for example) or
Java methods, however, the associated predicates and operations of your query must be performed in
the memory of the application server.

v EJB methods and criteria that call for the return of EJB references

Why: Queries that incorporate these elements trigger full activation of EJBs in the memory of the
application server. (Returning a list of CMP fields from a query does not cause an EJB to be activated.)

When assessing application performance, you should also be aware that dynamic queries share
connections with the persistence manager. Consequently, an application that includes a mixture of finder
methods, CMR navigation, and dynamic queries relies on a single shared connection between the
persistence manager and the dynamic query service to perform these tasks.

Limiting the return collection size

v Remote interface queries: The QueryIterator class of the remote interface mandates that all of your
query results materialize in application server memory over the course of one method call. The SQL
cursor(s) used to run the EJB query are closed upon completion of that call. Because this requirement
poses a high risk for creating bottlenecks within the database server, you need to limit the size of any
potentially large result collections.

v Local interface queries: In most situations, the QueryLocalIterator object behaves as a wrapper
around an SQL cursor. It is demand-driven; it causes data to be returned incrementally. For each record
retrieval from the database, the next() method must be called on the iterator.

Use of certain operations in local interface queries, however, overrides the demand-driven behavior. In
these cases, the query results fully materialize in memory just as do the result collections of remote
interface queries. An example of such a case is:
select e.myBusinessMethod() from EmpBean e
where e.salary < 50000 order by 1 desc

This query requires performance of an EJB method to produce the final result collection. Consequently,
the full dataset from the database must be returned in one collection to application server memory,

292 Developing WebSphere applications

where the EJB method can be run on the dataset in its entirety. For that reason, local interface query
operations that invoke EJB methods are generally not demand-driven. You cannot control the return
collection size for such queries.

Because they are demand-driven, all other local interface queries allow you to control the size of return
collections. You can use a call of the close() method on the QueryLocalIterator object to close the query
loop after the desired number of return values has been fetched from the datastore. Otherwise, the SQL
cursor(s) used to run the EJB query are not closed until the full result set accumulates in memory, or
the transaction ends.

Access intent implications for dynamic query
WebSphere Application Server gives you the option to set access intent policies for your entity enterprise
beans as a way of managing their transfer of data with the underlying data store. An access intent policy
controls the isolation level used on the data source connection, as well as the database locks used during
data retrieval. By manipulating these elements, you can maximize the efficiency of your application's data
flow.

To learn more, begin with the topic, Access intent policies and the topic, Concurrency control.

When formulating dynamic queries, keep in mind the following considerations concerning their interaction
with access intent policies:

v A dynamic query uses the first ASN name in the FROM clause to determine access intent.

v The collection increment attribute of an access intent policy is not used in processing a dynamic query.

v When performed on entity beans that have a pessimistic-Update access intent policy, your dynamic
queries must return updateable collections. Therefore you need to formulate your query statements to
return only collections of entity beans, not collections of CMP fields. For example, the statement select
object(c) from Customer is valid for a dynamic query performed under the constraint of a
pessimistic-Update policy. The statement select c.name from Customer c, however, is not a valid
dynamic query under this constraint.

v Using pessimistic-Update policy places restrictions on the types of query expressions. The restrictions
depend on the back end database type and release. Refer to the topic Access intent – isolation levels
and update locks, for details.

Dynamic query API: prepareQuery() and executePlan() methods
Use these methods to more efficiently allocate the overhead associated with dynamic query. They are
equivalent in function to the prepareStatement() and executeQuery() methods of the JDBC API.

To perform a dynamic Enterprise JavaBeans (EJB) query, the application server must parse the query
string into structured query language (SQL) at run time. You can, of course, eliminate run-time overhead
by choosing to perform a standard EJB query instead of a dynamic query. Sometimes referred to as
deployment queries, standard queries are parsed and built at deployment, then performed by a finder or
select method.

Another option is to write code that redistributes dynamic query overhead for better application
performance. Begin by calling the prepareQuery() method in place of the executeQuery() method. The
prepareQuery() method parses and translates your query, and returns a string called a query plan. The
plan contains the SQL statement produced by parsing and translation, as well as other information needed
by the dynamic query API. Save this string in your application and call the executePlan() method with the
string to run your query. (You also might want to use the prepareQuery() method simply to see the SQL
translation product; just call the method and display the return value.)

Pass the parameters of your query as an array of type Object on the prepareQuery() and the
executePlan() method calls. Ensure that you pass appropriate data types, because the application server
validates your query according to parameter type (rather than actual values) when it processes the
prepareQuery() method call.

Chapter 9. Developing Dynamic and EJB query 293

Example code

Note: In the example code that follows, the first executePlan() method call substitutes parms[0] for ?1.
Hence the first query performed is functionally equivalent to the following query statement:
select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000

The second call runs a query that is functionally equivalent to this statement:
select e.name as name, object(e) as emp from EmpBean e where e.salary < 60000

The example:
String query =
"select e.name as name , object(e) as emp from EmpBean e where e.salary < ?1";
QueryIterator it = null;
Integer[] parms = new Integer[1];
parms[0] = new Integer(0);

In the call to prepareQuery(), pass any Integer value. Doing so defines ?1 as an Integer type, as in the
following:
String queryPlan= qb.prepareQuery(query, parms, null);

parms[0] = new Integer(50000);

Next you run the query with a real value of Integer(50000) for ?1:
select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000it =
qb.executePlan(queryPlan, parms, 0, 99);

parms[0] = new Integer(60000);

Run the query again with a different value of Integer(60000) for ?1:
it = qb.executePlan(queryPlan, parms, 0, 99);

Dynamic and deployment EJB query services comparison
You can use the dynamic query service to build and execute queries against entity beans constructed
dynamically at run time, rather than defining them at deployment time. By using dynamic query you gain
the flexibility of queries defined at run time and utilize the power of Enterprise JavaBeans (EJB)-Query
Language (QL). Apart from supporting all of the capabilities of an EJB-QL query, dynamic query adds
functionality not available to standard static query. Two examples are the ability to select multiple data
fields directly from the bean itself (static queries currently only allow one) and executing business methods
directly in the query.

You can effectively create more efficient and less resource intensive applications with dynamic query. For
example, two data fields are required from the results of a query. Because a standard EJB-QL query can
only select one data field, it is necessary to select the entire EJB object and extract the needed data from
the returned results through data access methods, possibly traversing Container Managed Relationships
(CMR) boundaries in the process. However, when using dynamic query, you can get both pieces of data
directly from the query without additional CMR traversal or accessor methods. This principle is the key to
evaluating whether or not dynamic query can be used for performance gain. You should review the amount
of data that must be retrieved, in addition to the amount of business logic needed to retrieve it, for
example, CMR traversal or accessor methods.

Using parameters in the query rather than literal values is another performance consideration. Under most
circumstances, it is better to define conditional values as parameters in the query and then pass those
parameters through the appropriate mechanisms. By using this method, you have a greater chance of
matching a cached query plan, and you eliminate the need to parse and build the plan from scratch. For
example, “SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE foo”, is more
appropriately expressed as “SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE ?1”
with the value foo passed as a parameter to the executeQuery method. The result is that any subsequent

294 Developing WebSphere applications

execution of a dynamic query structure that is the same, except for different string literal conditions, is
registered as a plan cache hit (which delivers better “observed” performance).

When used as a direct replacement for an equivalent static query, dynamic query is approximately 25%
slower than the static variation. This slowdown is due to the need for parsing and building a plan for the
query, in addition to executing it. In the static variation, these costs are paid at deploy time. Despite this,
the added functionality gained through the use of dynamic query, specifically the ability to select multiple
data fields in a single query even across CMRs, creates opportunities to utilize dynamic query for the sake
of performance improvement.

Chapter 9. Developing Dynamic and EJB query 295

296 Developing WebSphere applications

Chapter 10. Developing EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Developing EJB 2.x enterprise beans

Partial column update feature for container managed persistence
The Container Managed Persistence (CMP) bean method ejbStore stored all of the persistent attributes of
the CMP bean to the database, even if only a subset of persistent attribute fields were changed. This
needless performance degradation is eliminated in this release of the product.

Note: Entity beans are not supported in EJB 3.0 modules.

For Enterprise JavaBeans (EJB) 2.x CMP entity beans, you can use the partial update feature to specify
how you want to update the persistent attributes of the CMP bean to the database. This feature is
provided as a bean level persistence option, called PartialOperation, in the access intent policy
configured for the bean. PartialOperation has two possible values:
NONE Partial update is turned off. All of the persistent attributes of the CMP bean are stored to the

database. This is the default value.
UPDATE_ONLY

Specifies that updates to the database occur only for the persistent attributes of the CMP bean
that are changed.

For information on how to set partial update, see “Setting partial update for container-managed persistent
beans” on page 299.

Performance

Performing partial updates increases performance in several ways:

v by reducing query execution time, since only a subset of the columns are in the query. Improvement is
increased for tables with many columns and indexes. When the table has many indexes only the
indexes affected by the updated columns need to be updated by the backend database.

v by reducing network input and output since there is less data to be transmitted.

v by saving any processing time for non-trivially mapped columns. For example, if a column uses
converters, composers, and transformations to partially inject the input record.

v by eliminating unnecessary firing of update triggers. If a CMP bean field is not changed, any trigger
depending only on the corresponding column is not fired.

Although partial update improves performance, it can adversely affect performance as follows:

v If you enable partial update for a bean that your application modifies several different combinations of
columns during the same time span, the prepared statement cache maximum for the connection is
reached very quickly. As a result, statement handles are evicted from the cache based on least recent
usage. This results in statements being prepared repeatedly, decreasing performance for all CMP
functions, not just limited to the ejbStore method.

v Partial update query templates cached in the function set increase memory use. The increase is linear
relative to the number of fields in the CMP bean for which the partial update access intent option is
turned on.

© IBM Corporation 2009 297

v The PartialOperation persistent option, when used in combination with the Batch Update persistent
option, affects the performance of the batch update because each partial query is different. There is an
execution time cost incurred for generating a partial update query string dynamically. Since query
fragments are stored for each column, the execution cost to assemble the query fragments is linear,
based on the number of CMP bean fields dirtied.

v There are condition checks for each CMP field, for example, to inspect the dirty flags and to execute the
preparedStatement setXXX method calls.

Considerations for using partial update

The performance gains you hope to achieve should be weighed against the possible instances where
degradation can occur. You can use the following guidelines to help you make the decision.

v Partial update might not benefit an application that only involves a small table with a few columns and
simple data types and no update triggers. The cost to assemble the partial query dynamically outweighs
the performance gain.

v Partial update is a benefit if there is a complex data type that is not updated often. An example of a
complex data type is an employee bean with a “photo” CMP attribute mapped to a BLOB OR
VARGRAPHIC, or similar complex backend type, that is typically stored in a different location in the
database manager implementation.

v Partial Update might benefit if there are several VARCHAR type columns and only a very few of them
are updated.

v It is better not to use the partial operation if the application can randomly be updating different
combinations of columns and the number of assignable columns (non-key) is greater than five. This
generates different partial queries and fills up the prepared statement cache quickly. But, if the bean
does not have too many columns, for example, four or less, and it has complex data types, you might
consider turning partial update on, with the option of increasing the statement cache size to ensure an
increased number of queries. For information on increasing the statement cache size, refer to the data
source settings help.

v Partial Update is beneficial when there are update triggers needed on a subset of columns.

v Partial Update is beneficial when the table has many columns and indexes, and only a few indexes are
touched by a typical update.

Restrictions

By default, batch update of update queries is disabled for all CMP beans for which partial update is
enabled. In other words, partial update takes precedence over batch update. Batch update of delete and
insert queries is not affected.

Batch update performance is affected when both batch update and partial update persistence options are
used on the same bean, because each partial query is different. You can use the JVM property,
-Dcom.ibm.ws.pm.grouppartialupdate=true, to group the similar partial update queries into a batch
update. Grouping partial updates only helps when there are several partial queries with the same shape in
a transaction. Otherwise, grouping partial updates has the opposite affect on performance. Because this
setting is not on a bean level basis, you should be careful when turning it on. Because this affects all
beans that have both partial update and batch update on, you must make sure that batch update of partial
queries does increase performance when viewed across all the beans for which both updates are on.

To set the JVM property:

1. Open the server.xml file.

2. Change the value of -Dcom.ibm.ws.pm.grouppartialupdate=true to
-Dcom.ibm.ws.pm.grouppartialupdate=false.

298 Developing WebSphere applications

Setting partial update for container-managed persistent beans
For Enterprise JavaBeans (EJB) 2.x CMP entity beans, you can use the partial update feature to specify
how you want to update the persistent attributes of the CMP bean to the database. This feature is
provided as a bean-level persistence option, called PartialOperation, in the access intent policy configured
for the bean.

About this task

See the topic Partial operation for container managed persistence in the assembly tool information center
to learn how to complete this task with the assembly tool.

Developing EJB 3.x enterprise beans

Enterprise JavaBeans (EJB) 3.1 specification
This topic describes the Enterprise JavaBeans (EJB) 3.1 specification that is the foundation of the
development and application programming model for EJB 3.1 applications. Read this topic for a brief
overview of the EJB 3.1 specification.

The EJB 3.1 specification focuses on simplification and ease of use. In addition, it adds many new
features to the programming model.

v Singleton session beans are a new type of session bean. As the name implies, only one instance of the
bean exists. A Singleton is useful for storing data that is shared by different parts of an application. Data
concurrency might be controlled by either the container or the application itself.

v Non-persistent EJB Timers are similar to the persistent EJB Timers that existed before EJB 3.1, except
that they exist only in memory and are not stored in a database. Non-persistent timers are useful for
scenarios where it is not desirable to retry missed events.

v Automatically created EJB Timers are created automatically when the application starts, and they are
removed automatically when the application is uninstalled. Automatically created timers might be either
persistent or non-persistent. Automatically created timers are useful because they remove the need for
the application or an administrator to explicitly create and remove the timers.

v Calendar based timer expressions allow developers to specify a timeout schedule using a
calendar-based syntax that closely resembles the UNIX Cron functionality. Calendar-based expressions
are useful because they make it much easier to specify and understand the timeout schedule for a
timer.

v Asynchronous method invocation allows applications to run multiple chunks of work in parallel.
Asynchronous methods are useful from a performance perspective because work loads are not single
threaded, and they are also useful from a simplification perspective because the application programmer
is shielded from the complexities associated with multithreaded programming.

v The No-Interface Local View further simplifies the plain old Java objects (POJO) programming model.
With the No-Interface Local View, EJBs are no longer required to have a bean interface.

v The embeddable EJB container allows developers to unit test their EJB function in a Java SE
environment. The embeddable EJB container is useful because it allows developers to test EJB function
quickly and easily in their personal sandbox environment, and it removes the need to install the EJBs
into an application server.

v Packaging EJB content in WAR modules allows both web and EJB content to be physically combined
into the same module. This packaging option is useful because it might simplify the assembly and
installation of the application, and simplifying the interaction between the web and EJB components that
are collocated in the same module.

Chapter 10. Developing EJB applications 299

Enterprise JavaBeans (EJB) 3.0 specification
This topic describes the Enterprise JavaBeans (EJB) 3.0 specification that is the foundation of the
development and application programming model for the EJB 3.0 applications. Read this topic for a brief
overview of the EJB 3.0 specification.

The EJB 3.0 specification has justifiably been called the most important upgrade to the Java Platform,
Enterprise Edition 5 (Java EE 5) programming model. The EJB 3.0 specification represents simplification
and streamlining of the business logic and persistence programming models used in Java EE. The
ultimate source of information is the specification, which is available on the Oracle website.

While the Java Persistence API (JPA) replacement is called an entity class, it should not be confused with
entity enterprise beans. A JPA entity is not an enterprise bean and is not required to run in an EJB
container.

The EJB 3.0 specification is organized into three areas:

v EJB core contracts and requirements

v EJB 3.0 simplified application programming interface (API)

v JPA

The EJB core contracts and requirements define the service provider interfaces (SPIs) between the
enterprise bean instance and the enterprise bean container. This part of the specification also includes the
APIs between the enterprise bean provider and the enterprise bean container, protocols, component and
container contracts, system level issues, infrastructure services that are provided by the container to the
bean and other information about development packaging and deployment for session, message-driven,
and entity beans.

The EJB 3.0 simplified API provides information about simplifying EJB APIs and SPIs that exist from
previous EJB specification versions.

The JPA document introduces the Plain Old Java Object (POJO)-style persistent entity development
guidelines.

Another good source for EJB 3.0 information is Mastering Enterprise JavaBeans 3.0, Fourth Edition. This
edition features chapters on session beans and message-driven beans, EJB, and Java EE integration and
advanced persistence concepts. Also included is coverage of the JPA and POJO using entities with the
EJB programming model.

Application exceptions
Application exceptions alert the client of application specific or business logic issues; they do not report
system level exceptions. This topic includes a brief overview of how application exceptions are defined and
examples of the @ApplicationException annotation and corresponding application-exception deployment
descriptor element.

Definition of Application Exception

Bean providers define application exceptions along with the business logic of an application. Unlike system
exceptions, application exceptions are not used to report system-level errors. Instead, business methods
use application exceptions to notify the client of application-level activity that might cause errors; for
example, invalid input argument values to a business method. In most cases, clients can return to normal
processing after experiencing application exceptions

You can define application exceptions in the throws clause of a method. The method that you use to
define the application exception can be that of a business interface, no-interface view, home interface,
component interface, message listener interface, or web service endpoint of the enterprise bean. When
you define the exception, remember that application exceptions can be:

300 Developing WebSphere applications

v A subclass, either direct or indirect, of the java.lang.Exception exception, which renders a checked
exception

v A subclass of the java.lang.RuntimeException exception, which renders an unchecked exception

Attention: You cannot define an application exception as a subclass of java.rmi.RemoteException
because this exception and its subclasses are for system-level problems.

The following standard application exceptions and their subclasses are used to report errors to the client:

v javax.ejb.CreateException

v javax.ejb.RemoveException

v javax.ejb.FinderException

The previous application exceptions are defined in the create, remove, and finder methods of the
EJBHome interface, the EJBLocalHome interface, or both. These interfaces come from components that
are written to the EJB 2.1 client view.

In the Enterprise Java beans 3.0 specification, the @ApplicationException annotation had only one
optional parameter of rollback. The corresponding application-exception element had only one optional
subelement, rollback, that you set to true or false. The rollback parameter/subelement is used to specify
whether the transaction is marked for rollback. By default this value is false. Inheritance of an application
exception could not be specified and was not given an explicit default value in the EJB 3.0 specification.
The product implementation of the EJB 3.0 specification did not provide application exception inheritance,
unless an application exception was defined on the throws clause of a business method of a bean. In
contrast, the EJB 3.1 specification has introduced the optional inherited parameter to the
@ApplicationException annotation and the optional inherited subelement to the corresponding
application-exception deployment descriptor element. By default, marking an exception as an application
exception causes all subclasses of that exception to also be application exceptions (that is,
inherited=true). You can disable the inheriting behavior by setting the inherited parameter of the
@ApplicationException to false. Likewise, you can disable the inheriting behavior by setting the inherited
subelement of the application-exception element in the deployment descriptor to false. For more
information about application exceptions, refer to section 14.1.1 of the EJB 3.1 specification.

Inherited application exceptions using annotations:
import javax.ejb.ApplicationException;

@ApplicationException(inherited=true, rollback=true)
public class RTExceptionA extends RuntimeException{

//RTExceptionA

}

public class RTExceptionB extends RTExceptionA{

//RTExceptionB

}

import javax.ejb.ApplicationException;

@ApplicationException(inherited=false, rollback=false)
public class RTExceptionC extends RTExceptionB{

//RTExceptionC

}

public class RTExceptionD extends RTExceptionC{

//RTExceptionD

}

Chapter 10. Developing EJB applications 301

The previous example yields the following results:

RTExceptionA is an application exception with transaction rollback.

RTExceptionB is an application exception with transaction rollback.

RTExceptionC is an application exception without transaction rollback.

RTExceptionD is not an application exception.

Inherited application exceptions using XML:
public class RTExceptionA extends RuntimeException{

//RTExceptionA

}

public class RTExceptionB extends RTExceptionA{

//RTExceptionB

}

public class RTExceptionC extends RTExceptionB{

//RTExceptionC

}

public class RTExceptionD extends RTExceptionC{

//RTExceptionD

}

<!-- Example ejb-jar.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar id="ejb-jar_ID" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
metadata-complete="true" version="3.1">
<assembly-descriptor>

<application-exception>
<exception-class>myXML.example.package.RTExceptionA</exception-class>
<rollback>true</rollback>
<inherited>true</inherited>

</application-exception>
<application-exception>

<exception-class>myXML.example.package.RTExceptionC</exception-class>
<rollback>false</rollback>
<inherited>false</inherited>

</application-exception>
</assembly-descriptor>

</ejb-jar>

As in the annotation version, the previous example yields the following results:

RTExceptionA is an application exception with transaction rollback.

RTExceptionB is an application exception with transaction rollback.

RTExceptionC is an application exception without transaction rollback.

RTExceptionD is not an application exception.

Remember: You can use the rollback and inherited subelements of the application-exception to
explicitly override the rollback and inherited attribute values that were specified or implicitly
set by the @ApplicationException annotation.

When you specify an exception on the throws clause of a business method of a bean, the resulting
checked exception is an application exception. All subclasses of this application exception are also
application exceptions. No option is available to disable this inheriting behavior of checked application
exceptions. You can use the inherited element to determine the rollback value of the checked application

302 Developing WebSphere applications

exception subclasses. If the inherited element of the checked application exception is set to true and its
rollback element is set to true, then the subclasses of that checked application exception inherit the
rollback = true value.

Getting EJB 3.0 application exception inheritance behavior:

You have the following options if you have an existing EJB 3.0 application and you want to continue
having the application exception inheritance behavior be false, which means that the subclasses of an
application exception are not application exceptions themselves.

v You can modify the exception's @ApplicationException annotation of the exception by adding the
inherited attribute and setting it to false.

v You can add a version 3.1 deployment descriptor and explicitly set the inherited subelement of the
application-exception element to false. If you have an existing version 3.0 deployment descriptor you
must migrate to a version 3.1 deployment descriptor and XSD schema and set the inherited
subelement of the application-exception element to false.

How to get EJB 3.0 application exception inheritance behavior with annotations:

Suppose that you previously had the following code:
import javax.ejb.ApplicationException;

@ApplicationException()
public class EJB30_RTException extends RuntimeException{

//EJB30_RTException, in EJB 3.0 subclasses were not application exceptions

}

You must modify the @ApplicationException annotation to include the inherited=false attribute:
import javax.ejb.ApplicationException;

@ApplicationException(inherited=false)
public class EJB30_RTException extends RuntimeException{

//EJB30_RTException, now you must explicitly set inherited to false to disable inheritance

}

How to get EJB 3.0 application exception inheritance behavior using XML:

Suppose that you previously had the following code:
<!-- Example ejb-jar.xml -->

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar id="ejb-jar_ID" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
metadata-complete="true" version="3.0">

<assembly-descriptor>
<application-exception>

<exception-class>myXML.example.package.EJB30_RTException</exception-class>
</application-exception>

</assembly-descriptor>
</ejb-jar>

You must modify your code to include the inherited element set to false as well as migrate to a version
3.1 deployment descriptor and XSD schema:
<!-- Example ejb-jar.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar id="ejb-jar_ID" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

Chapter 10. Developing EJB applications 303

metadata-complete="true" version="3.1">
<assembly-descriptor>

<application-exception>
<exception-class>myXML.example.package.EJB30_RTException</exception-class>
<rollback>false</rollback>
<inherited>false</inherited>

</application-exception>
</assembly-descriptor>

</ejb-jar>

EJB 3.x module considerations
When using Enterprise JavaBeans (EJB) 3.x modules, keep in mind the following considerations.

Version 8.0 does not support 1.x and 2.x entity beans in EJB 3.x-level modules

IBMWebSphere Application Server Version 8.0 does not support the use of 1.x and 2.x bean managed
persistence (BMP) and container managed persistence (CMP) entity beans in EJB 3.x-level modules. EJB
entity beans can be used on V8.0, but they must be packaged in an EJB 2.1 or earlier-level module.

Java Platform, Enterprise Edition (Java EE) applications that are packaged with EJB entity beans in EJB
3.x-level modules fail to install on Version 8.0.

An EJB Java archive (JAR) file is considered to be an EJB 3.x module when either of the following are
true:

v The EJB JAR file contains configuration data in an ejb-jar.xml file with an EJB 3.0 or EJB 3.1 header
specification. For example:
<ejb-jar id="ejb-jar_ID" version="3.0"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">

v The EJB JAR file contains beans with EJB 3.x-style source annotations that provide configuration data
and does not contain an ejb-jar.xml deployment descriptor file.

You need to repackage your EJB 3.x modules using EJB 2.x and earlier modules. Otherwise, the
installation of any applications that contain entity beans fail.

Annotations

Consider using annotations versus deployment descriptors, or both. See the topic EJB 3.x metadata
annotations for more information about annotations.

EJB module

WebSphere Application Server Version 8.0 supports EJB module Java archive (JAR) files with an
ejb-jar.xml deployment descriptor declared at the 1.1, 2.0, 2.1, 3.0, or 3.1 level, or with no ejb-jar.xml
deployment descriptor present. If no deployment descriptor is present, the EJB module is assumed to be
at the 3.0 level or greater.

EJB modules that contain EJB 3.x beans must be declared to be at the EJB 3.0 or EJB 3.1 level. This can
be accomplished either by setting the ejb-jar.xml deployment descriptor level to 3.0 or 3.1, or ensuring
that the module does not contain an ejb-jar.xml deployment descriptor. If the module level is 2.1 or
earlier, no EJB 3.x-specific functions such as annotation scanning or resource injection is performed.

Entity beans are not supported in EJB 3.x level modules. You must place any entity beans in EJB modules
at the 2.1 or earlier level.

304 Developing WebSphere applications

If you want to package an EJB 3.x module with a deployment descriptor, there are several ways to do it.
Package an EJB 3.x module with an EJB 3.x style session and message-driven beans exclusively; with an
EJB 2.1 style session and message-driven beans exclusively, or a combination of 2.1 and 3.x style beans.
The XML deployment descriptor must be a Version 3.0 or 3.1 deployment descriptor. It is required that 2.1
entity beans are packaged in modules with 2.1 deployment descriptors. EJB modules that contain EJB 3.x
beans must be at the EJB 3.0 or EJB 3.1 specification level when running on the product. Prepare the
EJB module to support EJB 3.x beans, by setting the ejb-jar.xml deployment descriptor level to 3.0 or
3.1, or you can make sure that the module does not contain an ejb-jar.xml deployment descriptor. If the
module level is EJB 2.1 or earlier, no EJB 3.x functions, including annotation scanning or resource
injection is performed at run time.

Java EE application client module

The product provides support for Java EE application client modules. Additionally, it supports injection of
EJB references into client components if the injection is defined through the @EJB annotation.

Attention: EJB 3.x does not support the injection of an enterprise bean that creates an enterprise bean
of itself. Do not inject an enterprise bean that creates an enterprise bean of itself.

Defining an ejb-ref reference to an EJB 3.x business interface from a Java EE client component descriptor

It is possible to define an ejb-ref from an application-client.xml descriptor that points to an EJB 3.x
business interface. EJB 3.x business interfaces are accessed directly without the use of a home, yet the
ejb-ref element in Java EE requires that a home interface type is specified. Therefore, you must include
the <home></home> stanza in the ejb-ref definition, but specify a null value as shown in the example. For
the value of the <remote> stanza, specify the EJB 3.x business interface class name. Finally, when you
set the binding value, either during application installation or through tooling, specify the location where the
EJB 3.x business interface was bound.

For example, the ejb-ref in your client component application-client.xml file looks like the following code
sample:
<ejb-ref id="EJBRef_1">
<ejb-ref-name>java_comp-env_name_of_ref</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home></home>
<remote>com.ejbs.business.interface.class.name</remote>
</ejb-ref>

The corresponding section of the ibm-application-client-bnd.xmi file looks like the following code
sample. A default EJB binding pattern is used here; the default EJB binding conventions are described in
the topic, EJB 3.x applications binding support.
<ejbRefBindings xmi:id="EjbRefBinding_1"

jndiName=EJB3App/EJB3Mod.jar/MyBean##com.ejbs.business.interface.class.name">
<bindingEjbRef href="application-client.xml#EjbRef_1"/>
</ejbRefBindings>

EJB metadata annotations
Annotations enable you to write metadata for Enterprise JavaBeans (EJB) inside your source code. You
can use them instead of extensible markup language (XML) deployment descriptor files. Annotations can
also be used with descriptor files.

If you installed the Feature Pack for EJB 3.0, the default was to scan annotations during the installation of
an EJB 3.0 module. For WebSphere Application Server, Version 7.0 and later, the default is not to scan
pre-Java EE 5 modules during the application installation or at server startup

To preserve backward compatibility with both the Feature Pack for EJB 3.0 and the Feature Pack for Web
Services, you have a choice whether to scan legacy web modules for additional metadata. A server level

Chapter 10. Developing EJB applications 305

switch is defined for each feature pack scan behavior. If the default is not appropriate, the switch must be
set on each server and administrative server that requires a change in the default. The switches are server
custom properties com.ibm.websphere.webservices.UseWSFEP61ScanPolicy={true|false} and
com.ibm.websphere.ejb.UseEJB61FEPScanPolicy={true|false}. To define these properties in the
administrative console click Application servers > server name > Process definition > Java Virtual
Machine > Custom properties.

The product also provides default values for most of the EJB annotations it uses. In many cases, omitting
an annotation implies that you want to use the default value.

Usually, annotations are found in the javax.ejb and javax.persistence packages.

Table 28. Annotation types. Annotation types

Annotation type

AccessTimeout

ExcludeDefaultInterceptors

AfterBegin

AfterCompletion

ApplicationException

AroundInvoke

Asynchronous

BeforeCompletion

ConcurrencyManagement

DependsOn

EJB

EJBs

ExcludeDefaultInterceptors

ExcludeDefaultInterceptors

Init

Interceptors

Local

Lock

LocalBean

LocalHome

MessageDriven

PersistenceUnit

PostActivate

PostConstruct

PreDestroy

PrePassivate

Remote

RemoteHome

Remove

Resource

Schedule

306 Developing WebSphere applications

http://java.sun.com/javaee/6/docs/api/javax/ejb/AccessTimeout.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/ActivationConfigProperty.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/AfterBegin.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/AfterCompletion.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/ApplicationException.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/interceptor/AroundInvoke.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Asynchronous.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/BeforeCompletion.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/ConcurrencyManagement.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/DependsOn.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/EJB.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/EJBs.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/interceptor/ExcludeDefaultInterceptors.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/interceptor/ExcludeClassInterceptors.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/Init.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/interceptor/Interceptors.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Local.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Lock.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/LocalBean.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/LocalHome.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/MessageDriven.html
http://download.oracle.com/javaee/6/api/javax/persistence/PersistenceUnits.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/PostActivate.html
http://download.oracle.com/javaee/6/api/javax/annotation/PostConstruct.html
http://download.oracle.com/javaee/6/api/javax/annotation/PreDestroy.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/PrePassivate.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/Remote.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/RemoteHome.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/Remove.html
http://download.oracle.com/javaee/6/api/javax/annotation/Resource.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Schedule.html

Table 28. Annotation types (continued). Annotation types

Annotation type

Schedules

Singleton

Startup

StatefulTimeout

Stateless

Timeout

TransactionAttribute

TransactionManagement

TransactionManagement

EJB 3.x interceptors
An interceptor is a method that is automatically called when the business methods of an Enterprise
JavaBeans (EJB) are invoked or lifecycle events of an EJB occur.

There are three kinds of interceptor methods: business method interceptors, timeout method interceptors
(which are new in EJB3.1), and lifecycle callback interceptors. Business method interceptors are invoked
around the call to a business method. Timeout method interceptors are invoked around the call to an EJB
timeout method. Lifecycle callback interceptors are called around one of the PostConstruct, PreDestroy,
PrePassivate, or PostActivate lifecycle events. For each interceptor type, an individual class can only
declare one interceptor method. However, each class in a class hierarchy can declare an interceptor
method for each interceptor type. If an interceptor method in a subclass overrides the same method in a
super-class, only the method in the subclass might be invoked.

Interceptor methods are permitted to access and call all resources and components that the associated
method is allowed to call. Additionally, interceptor methods execute with the same transaction and security
context as the associated method. Except for singleton session beans, lifecycle interceptor methods are
executed with local transaction containment (LTC).

You can declare interceptor methods directly in the EJB class or in a separate interceptor class. To declare
interceptor methods in a separate class, you must bind the interceptor class to the EJB using either an
annotation or XML. Use the following example to declare interceptors using the annotation:
@Interceptors({ClassInterceptor1.class, ClassInterceptor2.class})
public class TestBean { /* ... */ }

@Interceptors({ClassInterceptor1.class})
public class TestBean2 {
@Interceptors({MethodInterceptor1.class, MethodInterceptor2.class})
public void businessMethod() { /* ... */ }
}

Use the following example to declare interceptors using the deployment descriptor:
<assembly-descriptor>

<interceptor-binding>
<ejb-name>TestBean</ejb-name>
<interceptor-class>ClassInterceptor1</interceptor-class>
<interceptor-class>ClassInterceptor2</interceptor-class>

</interceptor-binding>

<interceptor-binding>
<ejb-name>TestBean2</ejb-name>
<interceptor-class>ClassInterceptor1</interceptor-class>

</interceptor-binding>

Chapter 10. Developing EJB applications 307

http://java.sun.com/javaee/6/docs/api/javax/ejb/Schedules.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Singleton.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/Startup.html
http://java.sun.com/javaee/6/docs/api/javax/ejb/StatefulTimeout.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/Stateless.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/Timeout.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/TransactionAttribute.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/TransactionManagement.html
http://java.sun.com/products/ejb/javadoc-3_0-fr/javax/ejb/TransactionManagement.html

<interceptor-binding>
<ejb-name>TestBean2</ejb-name>
<interceptor-class>MethodInterceptor1</interceptor-class>
<interceptor-class>MethodInterceptor2</interceptor-class>
<method>

<method-name>businessMethod</method-name>
</method>

</interceptor-binding>
</assembly-descriptor>

You can exclude class-level interceptors from a method by using either the ExcludeClassInterceptors
annotation or the exclude-class-interceptors element in the deployment descriptor. Use the following
example to exclude the interceptor, ClassInterceptor, from the method, businessMethod.
@Interceptors({ClassInterceptor1.class})
public class TestBean2 {
@ExcludeClassInterceptors
public void businessMethod() { /* ... */ }

public void businessMethodWithClassInterceptor1() { /* ... */
}

Use the following example to exclude the interceptor from the method using the deployment descriptor:
<assembly-descriptor>

<interceptor-binding>
<ejb-name>TestBean2</ejb-name>
<exclude-class-interceptors>true</exclude-class-interceptors>
<method>

<method-name>businessMethod</method-name>
</method>

</interceptor-binding>
</assembly-descriptor>

Interceptor methods can have public, protected, package private, or private visibility. Interceptor methods
must not be final or static. Business method interceptors and timeout method interceptors must have a
return type of java.lang.Object, a single parameter of javax.interceptor.InvocationContext, and a single
throws clause type of java.lang.Exception. All lifecycle interceptors must have a return type of void and
must not have a throws clause. Lifecycle interceptors declared directly on the EJB class must not have
parameters; lifecycle interceptors declared on an EJB superclass or on an interceptor class must have a
single parameter of javax.interceptor.InvocationContext. Timeout interceptor methods and lifecycle
interceptor methods must not throw application exceptions.

You can use the InvocationContext parameter of an interceptor method to get information about the
method being invoked. The getTarget method returns the bean instance being invoked. The getTimer
method is applicable to timeout method interceptors only, and it returns the timer being executed. The
getMethod method returns the business interface method that is being invoked. The getParameters
method returns the parameters being passed to the business method, and the setParameters method
allows the parameters to be modified. The getContextData method returns the data association with the
method being invoked. Finally, the proceed method invokes either the next interceptor or the target
method.

You can declare interceptor methods using either annotations or XML. To declare an interceptor method
using an annotation, place the appropriate AroundInvoke, AroundTimeout, PostConstruct, PreDestroy,
PrePassivate, or PostActivate annotation on the interceptor method. Use the following example to declare
a business method interceptor, a timeout method interceptor, and a PostConstruct lifecycle interceptor
method on an EJB class using annotations.
@Interceptors({ClassInterceptor.class})
public class TestBean {
@PostConstruct
private void beanPostConstruct() { /* ... */ }

308 Developing WebSphere applications

@AroundInvoke
protected Object beanAroundInvoke(InvocationContext ic) throws Exception {
return ic.proceed();
}

@AroundTimeout
protected Object beanAroundTimeout(InvocationContext ic) throws Exception {

return ic.proceed();
}

}

Use the following example to declare the same interceptor methods on an interceptor class.
public class ClassInterceptor {
@PostConstruct
private void interceptorPostConstruct(InvocationContext ic) {
try {
ic.proceed();
} catch (Exception ex) { /* ... */ }
}

@AroundInvoke
protected Object interceptorAroundInvoke(InvocationContext ic) throws Exception {
return ic.proceed();
}

@AroundTimeout
protected Object interceptorAroundTimeout(InvocationContext ic) throws Exception {
return ic.proceed();
}
}

Alternatively, you can declare an interceptor method in the deployment descriptor with the around-invoke,
around-timeout, post-construct, pre-destroy, pre-passivate, and post-activate elements. Use the following
example to declare a business method interceptor, a timeout method interceptor, and a PostConstruct
lifecycle interceptor method on an EJB class and an interceptor class using the deployment descriptor.

<enterprise-beans>
<session>

<ejb-name>TestBean</ejb-name>
<around-invoke>

<method-name>beanAroundInvoke</method-name>
</around-invoke>
<around-timeout>

<method-name>beanAroundTimeout</method-name>
</around-timeout>
<post-construct>

<lifecycle-callback-method>beanPostConstruct</lifecycle-callback-method>
</post-construct>

</session>
</enterprise-beans>

<interceptors>
<interceptor>

<interceptor-class>ClassInterceptor</interceptor-class>
<around-invoke>

<method-name>interceptorAroundInvoke</method-name>
</around-invoke>
<around-timeout>

<method-name>interceptorAroundTimeout</method-name>
</around-timeout>
<post-construct>

<lifecycle-callback-method>interceptorPostConstruct</lifecycle-callback-method>
</post-construct>

</interceptor>
</interceptors>

Chapter 10. Developing EJB applications 309

<assembly-descriptor>
<interceptor-binding>

<ejb-name>TestBean</ejb-name>
<interceptor-class>ClassInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

You can also declare interceptor methods on super-classes. Use the following example to declare a
PostActivate interceptor on a bean super-class using annotations:
public class TestBean extends BeanSuperClass { /* ... */ }

public class BeanSuperClass {
@PostActivate
private void beanSuperClassPostActivate(InterceptorContext ic) {
try {
ic.proceed();
} catch (Exception ex) { /* ... */ }
}

}

Use the following example to declare the same interceptor method on a superclass of an interceptor class
using annotations:
public class ClassInterceptor extends InterceptorSuperClass { /* ... */ }

public class InterceptorSuperClass {
@PostActivate
private void interceptorSuperClassPostActivate(InterceptorContext ic) {
try {
ic.proceed();
} catch (Exception ex) { /* ... */ }
}

}

You can also declare the same interceptor methods using the deployment descriptor. Use the following
example to declare an interceptor method on the superclasses of a bean and interceptor class:
<enterprise-beans>

<session>
<ejb-name>TestBean</ejb-name>
<post-activate>

<class>BeanSuperClass</class>
<lifecycle-callback-method>beanSuperClassPostActivate</lifecycle-callback-method>

</post-activate>
</session>
</enterprise-beans>

<interceptors>
<interceptor>
<interceptor-class>ClassInterceptor</interceptor-class>
<post-activate>

<class>InterceptorSuperClass</class>
<lifecycle-callback-method>interceptorSuperClassPostActivate</lifecycle-callback-method>

</post-activate>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>

<ejb-name>TestBean</ejb-name>
<interceptor-class>ClassInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

310 Developing WebSphere applications

You can declare default interceptors that apply to all session and message-driven beans in a module.
Default interceptors can only be declared in the deployment descriptor, and they are specified using an
ejb-name of "*". Use the following example to declare a default interceptor.

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>DefaultInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

You can exclude default interceptors from a specific class or method by using either the
ExcludeDefaultInterceptors annotation or the exclude-default-interceptors element in XML. Use the
following examples to exclude default interceptors using the annotation:
@ExcludeDefaultInterceptors
public class TestBean { /* ... */ }

public class TestBean2 {
@ExcludeDefaultInterceptors
public void businessMethod() { /* ... */ }
}

Use the following example to excludes default interceptors using the deployment descriptor:
<assembly-descriptor>

<interceptor-binding>
<ejb-name>TestBean</ejb-name>
<exclude-default-interceptors>true</exclude-default-interceptors>

</interceptor-binding>

<interceptor-binding>
<ejb-name>TestBean2</ejb-name>
<exclude-default-interceptors>true</exclude-default-interceptors>
<method>

<method-name>businessMethod</method-name>
</method>

</interceptor-binding>
</assembly-descriptor>

When interceptors are invoked for a method, default interceptor classes are invoked first, class-level
interceptors are invoked next, and interceptors methods from the EJB class are invoked last. For a single
interceptor class hierarchy, interceptor methods are always invoked on the most general super-class first.
The default and class-level interceptor classes are invoked in the order specified in the deployment
descriptor or the Interceptors annotation. You can override this ordering by specifying the complete list of
default and class-level interceptors in the interceptor-order element in the deployment descriptor.

<assembly-descriptor>
<interceptor-binding>

<ejb-name>TestBean</ejb-name>
<!--

The default ordering would be:
1. DefaultInterceptor
2. ClassInterceptor1
3. ClassInterceptor2

The following stanza overrides the default ordering.
-->
<interceptor-order>

<interceptor-class>ClassInterceptor2</interceptor-class>
<interceptor-class>DefaultInterceptor</interceptor-class>
<interceptor-class>ClassInterceptor1</interceptor-class>

</interceptor-order>
</interceptor-binding>

</assembly-descriptor>

Chapter 10. Developing EJB applications 311

Create stubs command
The createEJBStubs command creates stub classes for remote interfaces of Enterprise JavaBeans (EJB)
Version 3.0 beans packaged in Java archive (JAR) or Enterprise archive (EAR) files. It also provides an
option to create a single stub class from an interface class located in a directory or a JAR file. Several
command options are provided to package the generated stub classes in different ways. See the Syntax
and Examples sections later in this topic for more details.

This command is found in the <WAS_HOME>/bin directory as:
v createEJBStubs.bat - Windows platforms
v createEJBStubs.sh - Unix based platforms
v createEjbStubs - iSeries platform

The command searches the input JAR or EAR file, looking for EJB version 3.0 modules that contain beans
with remote interfaces. When remote interfaces are found, the corresponding stub classes are generated
and packaged according to the command options specified. In the case where the input specified is a
single interface class, the tool assumes this class is an EJB version 3.0 remote interface class and
generates a remote stub class.

For many client-side scenarios, the WebSphere Application Server Just-In-Time (JIT) deployment feature
dynamically generates the RMI-IIOP stub classes that are required for invocation of remote EJB 3.0
business interfaces. However, there are some scenarios where the JIT deploy environment is not available
to dynamically generate these classes. In these scenarios, the createEJBStubs command must be used
instead to generate and embed the client-side stub class files in your client application. If your client
environment is one of the following, use the createEJBStubs command:

v “Bare”Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client
environment.

v A WebSphere Application Server container (web container, EJB container, or application client
container) from a version earlier than version 7, or without the Feature Pack for EJB 3.0 applied.

v Non-WebSphere Application Server environments.

Syntax

createEJBStubs input_ class_ name | input_JAR_name | input_EAR_name [-help] [-newfile [new_file]]
[-updatefile [update_file]] [-quiet] [-verbose] [-logfile log_file] [-appendlog] [-cp class_path]
[-trace]

createEJBStubs
This is the command to create EJB stub classes for a single interface class file, a JAR file, or an
EAR file. When invoked without any arguments, or only –help, the createEJBStubs command
displays a list of options that can be specified, and a list of example invocations with detailed
explanations.

input_class_name or input_EAR_name or input_JAR_name

The first parameter is a required element for the command. It must contain the source class, JAR,
or EAR file to process.

This parameter may be the fully qualified name of a single interface class (e.g.
com.ibm.myRemoteInterface). Note that the package name segments are separated by “.”
characters, no path name proceeds the class name, and the “.class”extension is not included. For
this interface class input, you must use the class path option (e.g. –cp my_path, or –cp
my_path/my_interfaces.jar) to specify where the interface class will be found. The generated stub
class will be placed in the package-defined directory structure, starting with the current directory
where the command is invoked.

This parameter may also be a JAR or EAR file. In this case the path must be specified (e.g.
my_path/my_Server_App.ear). The generated stub classes will be placed in the same module or

312 Developing WebSphere applications

modules with the beans, or in the same module or modules with the remote interface classes,
depending on whether the –updatefile option is specified. Details follow later in this section.

-help Provides the command syntax, including a list of options that can be specified, and example
invocations with detailed explanations.

-newfile [new_file]
Requests that a new file is generated containing the original files in the input JAR or EAR plus the
stub classes. When this option is not specified, the stubs are written back into the original JAR or
EAR file. If this option is specified, but the new_file name is not provided, a new file name is
constructed by appending the input JAR or EAR file name with “_withStubs”. This option is not
allowed when the first input parameter is an interface class.

-updatefile [update_file]
Requests that a second file (e.g. in addition to the input file) is updated with stub classes. This
option also provides a different packaging behavior. The stub classes are packaged in the same
module or modules as the remote interface classes. By contrast, when this option is not specified,
the stub classes are packaged in the same module or modules with the bean classes. If this
option is specified, but the update_file name is not provided only the original JAR or EAR file is
updated with stub classes. This option is not allowed when the first input parameter is an interface
class.

-quiet Requests the suppression of messages. The -quiet option cannot be specified with either the
–verbose or the –trace options. Error messages are still displayed.

-verbose
Requests that additional informational messages be output. The -verbose option cannot be
specified with either the -quiet or the –trace options.

-logfile log_file
Requests that messages be printed to a log file in addition to the console. If this option is
specified, the log_file name must also be provided.

-appendlog
Requests that messages be appended to an existing log file. If this option is specified, the -logfile
option must also be specified.

-cp class_path
Requests that the classloader includes the specified the class path where additional class or jar
files are located, which are necessary for the remote interface classes to be loaded. The class
path may include multiple segments where each path is separated from a previous path by the
default path separator character of the operating system. Each path can specify either a JAR file,
or a directory. If this option is specified, the class_path name must also be provided.

-trace Request that detailed trace output be generated. This is intended to collect information for use by
IBM service to resolve problems. The trace output is English-only. This option cannot be specified
with either the –quiet or the –verbose options.

Examples

createEJBStubs com.ibm.myRemoteInterface -cp my_path

Generate the stub class for one remote interface class and place it in the package-defined directory
structure, starting at the current directory. The my_path directory will be used as the class path. If the
remote interface class to process is in a JAR file, the –cp my_path/my_interfaces.jar syntax must be used
for the class path specification.

createEJBStubs my_path/my_beans.jar -newfile –quiet

Chapter 10. Developing EJB applications 313

Generate the stub classes for all level 3.0 enterprise beans in the my_beans.jar file that have remote
interfaces. Both the generated stub classes and the original JAR file contents are packaged into a new
JAR file named “my_beans_withStubs.jar” because the optional new_file name parameter is not specified
along with the –newfile option. Output messages are suppressed except for error notifications.

createEJBStubs my_path/my_Server_App.ear -logfile myLog.out

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are placed into the original EAR file because the –newfile
option is not specified. The stub classes are packaged into the same module or modules as the bean
classes because the –updatefile option is not specified. Messages are written to both the myLog.out log
file and the command window.

createEJBStubs my_path/my_Server_App.ear -updatefile my_path/my_Client_interfaces.jar

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are placed into both the original EAR file and the
my_Client_interfaces.jar file. The stub classes are packaged into the same module or modules as the
remote interface classes because the –updatefile option is specified.

createEJBStubs my_path/my_Server_App.ear –updatefile

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are only placed into the original EAR file because the
optional update_file name parameter is not provided with the –updatefile option. The stub classes are
packaged into the same module or modules as the remote interface classes because the -updatefile option
is specified.

Create stubs command
The createEJBStubs command creates stub classes for remote interfaces of Enterprise JavaBeans (EJB)
Version 3.x beans packaged in Java archive (JAR), web application archive (WAR), or enterprise archive
(EAR) files. It also provides an option to create a single stub class from an interface class located in a
directory or a JAR file. Several command options are provided to package the generated stub classes in
different ways. See the following syntax and example sections for more details.

This command is found in the <WAS_HOME>/bin directory as:
v createEJBStubs.bat - Windows platforms
v createEJBStubs.sh - UNIX based platforms
v createEjbStubs - iSeries platform

The command searches the input JAR, WAR, or EAR file, looking for EJB version 3.x modules that
contain beans with remote interfaces. When remote interfaces are found, the corresponding stub classes
are generated and packaged according to the command options specified. In the case where the input
specified is a single interface class, the tool assumes that this class is an EJB version 3.x remote interface
class and generates a remote stub class.

For many client-side scenarios, the WebSphere Application Server Just-In-Time (JIT) deployment feature
dynamically generates the RMI-IIOP stub classes that are required for invocation of remote EJB 3.x
business interfaces. However, there are some scenarios where the JIT deploy environment is not available
to dynamically generate these classes. In these scenarios, the createEJBStubs command must be used
instead to generate and embed the client-side stub class files in your client application. If your client
environment is one of the following, use the createEJBStubs command:

v "Bare" Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client
environment.

314 Developing WebSphere applications

v A WebSphere Application Server container (web container, EJB container, or application client
container) from a version earlier than version 7, or without the Feature Pack for EJB 3.0 applied.

v Non-WebSphere Application Server environments.

The JVM running the createEJBStubs command must have the java.io.tmpdir system property defined.
The property must point to a readable and writable directory that exists.

In addition to creating stubs for bean content packaged in EAR and JAR files, the command also creates
stubs for bean content that is packaged in a WAR file. If an EAR file is specified as the input file, and that
EAR file contains a WAR file with remote interfaces, then stubs are generated for those interfaces.

Stubs are placed into the WAR file in the same location as the remote interface or bean class that they
correspond to. If the remote interface or bean class that they correspond to is placed loosely in the
WEB-INF/classes directory structure, then the stub is placed there as well. If the remote interface or bean
class is packaged inside of a JAR file in the WEB-INF/lib directory, then the stub is inserted into that same
JAR file. If a stub is generated for a remote interface that is not packaged inside the WAR file, then it is
placed loosely in the WEB-INF/classes directory structure.

The createEJBStubs command is not supported for use with a 2.x or 1.x EJB module packaged inside a
stand-alone JAR file. The stubs for a 2.x or 1.x EJB module packaged inside a stand-alone JAR file must
be generated using the EJBDeploy tool instead. If the createEJBStubs command is run against a 2.x or
1.x EJB module packaged inside a stand-alone JAR file, then the command issues a CNTR9241I
message, and does not generate any stubs.

However, the createEJBStubs command is supported for use with 2.x or 1.x EJB modules packaged inside
a WAR file. In this case, the createEJBStubs command must be used instead of the EJBDeploy tool.

A client component uses these stubs to communicate with the EJB components running inside the server.
The client component must use stub instances that were created by the correct tool. If the client
component is communicating with a 2.x or 1.x EJB module packaged inside a stand-alone JAR, then the
stubs must come from the EJBDeploy tool. However, if the client component is communicating with a 2.x
or 1.x EJB module packaged inside a WAR, then the stubs must come from the createEJBStubs
command. A single stub instance cannot be used to communicate with both a 2.x/1.x EJB module
packaged inside a stand-alone JAR, and that same 2.x/1.x EJB module packaged inside a WAR.

Syntax

createEJBStubsinput_ class_ name | input_JAR_name | input_WAR_name | input_EAR_name [-help]
[-newfile[new_file]] [-updatefile[update_file]] [-quiet] [-verbose] [-logfile log_file] [-appendlog] [-cp
class_path] [-trace]

createEJBStubs
This is the command to create EJB stub classes for a single interface class file, a JAR file, a WAR
file, or an EAR file. When invoked without any arguments, or only –help, the createEJBStubs
command displays a list of options that can be specified, and a list of example invocations with
detailed explanations.

input_class_name or input_EAR_name or input_JAR_name or input_WAR_name

The first parameter is a required element for the command. It must contain the source class, JAR,
WAR, or EAR file to process.

This parameter may be the fully qualified name of a single interface class (e.g.
com.ibm.myRemoteInterface). Note that the package name segments are separated by “.”
characters, no path name proceeds the class name, and the “.class” extension is not included. For
this interface class input, you must use the class path option (e.g. –cp my_path, or –cp

Chapter 10. Developing EJB applications 315

my_path/my_interfaces.jar) to specify where the interface class is found. The generated stub class
is placed in the package-defined directory structure, starting with the current directory where the
command is invoked.

This parameter may also be a JAR, WAR, or EAR file. In this case the path must be specified
(e.g. my_path/my_Server_App.ear). The generated stub classes are placed in the same module or
modules with the beans, or in the same module or modules with the remote interface classes,
depending on whether the –updatefile option is specified. See the following sections for more
details.

-help Provides the command syntax, including a list of options that can be specified, and example
invocations with detailed explanations.

-newfile [new_file]
Requests that a new file is generated containing the original files in the input JAR, WAR, or EAR
plus the stub classes. When this option is not specified, the stubs are written back into the original
JAR, WAR, or EAR file. If this option is specified, but the new_file name is not provided, a new file
name is constructed by appending the input JAR, WAR, or EAR file name with "_withStubs". This
option is not allowed when the first input parameter is an interface class.

-updatefile [update_file]
Requests that a second file (e.g. in addition to the input file) is updated with stub classes. This
option also provides a different packaging behavior. The stub classes are packaged in the same
module or modules as the remote interface classes. By contrast, when this option is not specified,
the stub classes are packaged in the same module or modules with the bean classes. If this
option is specified, but the update_file name is not provided only the original JAR, WAR, or EAR
file is updated with stub classes. This option is not allowed when the first input parameter is an
interface class.

-quiet Requests the suppression of messages. The -quiet option cannot be specified with either the
–verbose or the –trace options. Error messages are still displayed.

-verbose
Requests that additional informational messages be output. The -verbose option cannot be
specified with either the -quiet or the –trace options.

-logfile log_file
Requests that messages be printed to a log file in addition to the console. If this option is
specified, the log_file name must also be provided.

-appendlog
Requests that messages be appended to an existing log file. If this option is specified, the -logfile
option must also be specified.

-cp class_path
Requests that the class loader includes the specified the class path where additional class or jar
files are located, which are necessary for the remote interface classes to be loaded. The class
path might include multiple segments where each path is separated from a previous path by the
default path separator character of the operating system. Each path can specify either a JAR file,
or a directory. If this option is specified, the class_path name must also be provided.

-trace Request that detailed trace output be generated. This is intended to collect information for use by
IBM service to resolve problems. The trace output is English-only. This option cannot be specified
with either the –quiet or the –verbose options.

Examples

createEJBStubs com.ibm.myRemoteInterface -cp my_path

316 Developing WebSphere applications

Generate the stub class for one remote interface class and place it in the package-defined directory
structure, starting at the current directory. The my_path directory is used as the class path. If the remote
interface class to process is in a JAR file, the –cp my_path/my_interfaces.jar syntax must be used for the
class path specification.

createEJBStubs my_path/my_beans.jar -newfile –quiet

Generate the stub classes for all level 3.0 enterprise beans in the my_beans.jar file that have remote
interfaces. Both the generated stub classes and the original JAR file contents are packaged into a new
JAR file named “my_beans_withStubs.jar” because the optional new_file name parameter is not specified
along with the –newfile option. Output messages are suppressed except for error notifications.

createEJBStubs my_path/my_Server_App.ear -logfile myLog.out

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are placed into the original EAR file because the –newfile
option is not specified. The stub classes are packaged into the same module or modules as the bean
classes because the –updatefile option is not specified. Messages are written to both the myLog.out log
file and the command window.

createEJBStubs my_path/my_Server_App.ear -updatefile my_path/my_Client_interfaces.jar

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are placed into both the original EAR file and the
my_Client_interfaces.jar file. The stub classes are packaged into the same module or modules as the
remote interface classes because the –updatefile option is specified.

createEJBStubs my_path/my_Server_App.ear –updatefile

Generate the stub classes for all level 3.0 enterprise beans in the my_Server_App.ear file that have
remote interfaces. The generated stub classes are only placed into the original EAR file because the
optional update_file name parameter is not provided with the –updatefile option. The stub classes are
packaged into the same module or modules as the remote interface classes because the -updatefile option
is specified.

createEJBStubs my_path/my_beans.war

Generate the stub classes for all 3.x beans that are packaged in the WAR file and have remote interfaces.
The Bean1 class is packaged loosely inside the WEB-INF/classes directory structure, and therefore, the
corresponding stub is placed there as well. Likewise, the Bean2 class is packaged inside of the myEJB.jar
file in the WEB-INF/lib directory, and therefore, the corresponding stub is inserted into that JAR file.

Developing entity beans

Defining data sources for entity beans
An application that is installed on an application server must have bindings defined before you can start
the application. The Enterprise JavaBeans (EJB) references and resource references that are defined in
the application must be bound to the actual enterprise beans or resources that are defined in the
application server.

Before you begin

Create a data source or JDBC resource and give it a Java Naming and Directory Interface (JNDI) name.

Chapter 10. Developing EJB applications 317

About this task

For more information, see the topic Application bindings.

Before you do this task, it is assumed that the entity beans in your application are container-managed
persistence (CMP) enterprise beans.

Note:
The EJB container handles the persistence of the bean attributes in the underlying persistent store.
Specify which data store is used by binding an EJB module or individual EJB to a data source.

If you bind an EJB module to a data source, all beans in that module use the same data source for
persistence. If you specify the data source at the bean level, then that data source is used instead.

See the assembly tool information center for the steps on how to complete this task.

Lightweight local operational mode for entity beans
WebSphere Application Server provides a special operational mode called lightweight local mode, which
can improve the performance of entity bean methods. You can decide which entity beans in your
application to run in this mode.

In lightweight local mode, the container streamlines the processing that it performs before and after every
method on the local home interface and local business interface of the bean. This streamlining can result
in improved performance when entity bean operations are called locally from within an application.
Because some processing is skipped when running in lightweight local mode, this mode can be used in
certain scenarios only.

Lightweight local mode is patterned somewhat after the Plain Old Java Object (POJO) entity model
introduced in the Enterprise JavaBeans (EJB) 3.0 specification. Using lightweight local mode, you can
obtain some of the performance advantages of the POJO entity model without having to convert your
existing EJB 2.x application code to the new POJO model. You can apply lightweight local mode to both
container-managed persistence (CMP) and bean-managed persistence (BMP) entity types that meet the
specific criteria.

Attention: Entity beans are not supported in EJB 3.x modules.

When to use the lightweight local mode

Lightweight local mode is designed for entity beans that are created, found, and called using the Session
Facade pattern. Under this pattern, entity bean local home and local business methods are called from
within methods of a stateless session bean or stateful session bean. The session bean methods, which
can be called remotely or locally, provide security control and transaction demarcation for the entity beans
that are accessed by the session bean.

You can apply lightweight local mode only to an entity bean that meets the following criteria:
v The bean implements an EJB local interface.
v No security authorization is defined on the entity bean local home or local business interface methods.
v No run-as security attribute is defined on the local home or local business methods.
v The classes for the calling bean and the called entity bean are loaded by the same Java class loader.
v The entity bean methods do not call the WebSphere Application Server-specific Internationalization

Service or Work Area Service.

The first criterion prevents CMP 1.x beans from supporting lightweight local mode, because the 1.x beans
cannot have local interfaces.

318 Developing WebSphere applications

http://java.sun.com/products/ejb/docs.html

In addition, lightweight local mode provides its fullest performance benefits only to entity bean methods
that do not need to start a global transaction. This condition is true if you ensure that your entity bean also
meets the following criteria:
v A global transaction is already in effect when the entity bean home or business method is called.

Typically, this transaction is started by the calling session bean.
v The local business interface methods and the local home methods of the entity bean use the following

transaction attributes only: REQUIRED, SUPPORTS, or MANDATORY.

If an entity bean method that is running in lightweight local mode must start a global transaction, the bean
still functions normally but only a partial performance benefit is realized.

You can mark an entity bean that defines a remote interface or a TimedObject interface, in addition to the
local interface, for lightweight local mode. However, the performance benefit is apparent only when the
bean is called through its local interface.

Applying lightweight local mode to an entity bean
WebSphere Application Server provides a special operation mode called lightweight local mode, which can
improve the performance of entity bean methods. You can decide which entity beans in your application to
run in this mode.

About this task

You can apply lightweight local mode to specific EntityBean types within your application with the Marker
interface technique.

Marker interface technique
About this task

Use the marker interface technique when a group of beans within the application is related through a
common inheritance hierarchy, and all the beans in the hierarchy are to be marked. For an application with
a large number of beans in a hierarchy, this technique is the most efficient.

To use a marker interface, code your bean implementation class to implement the
com.ibm.websphere.ejbcontainer.LightweightLocal interface. The bean implementation class does not
need to directly implement the interface; any parent class or interface can also implement it. For details,
see the com.ibm.websphere.ejbcontainer package in the API section of the information center.

Developing read-only entity beans
In addition to the existing Enterprise JavaBeans (EJB) caching options, you can develop read-only entity
beans.

About this task

You are most likely to want to use it under the following conditions:
v Your application uses data that change relatively infrequently. An example might be a retailing

application that uses pricing data that only changes once a week or month.
v Your application can tolerate data that might be stale. The degree of staleness allowed by the EJB

container is configurable by the user.
v The bean is coded in a thread-safe manner, so it can safely be invoked by multiple threads at once.

To use this function, declare the bean type as read-only. Declaring a bean type is done the same way that
bean caching options are selected - through a selection list within an assembly tool.

To complete this task see the topic, Defining bean cache settings for a bean in the assembly tool
information center.

Chapter 10. Developing EJB applications 319

Example: Using a read-only entity bean
A usage scenario and example for writing an Enterprise JavaBeans (EJB) application that uses a read-only
entity bean.

Usage scenario

A customer has a database of catalog pricing and shipping rate information that is updated daily no later
than 10:00 PM local time (22:00 in 24-hour format). They want to write an EJB application that has
read-only access to this data. That is, this application never updates the pricing database. Updating is
done through some other application.

Example

The customer's entity bean local interface might be:
public interface ItemCatalogData extends EJBLocalObject {

public int getItemPrice();

public int getShippingCost(int destinationCode);

}

The code in the stateless SessionBean method (assume it is a TxRequired) that invokes this EntityBean to
figure out the total cost including shipping, would look like:
.....
// Some transactional steps occur prior to this point, such as removing the item from
// inventory, etc.
// Now obtain the price of this item and start to calculate the total cost to the purchaser

ItemCatalogData theItemData =
(ItemCatalogData) ItemCatalogDataHome.findByPrimaryKey(theCatalogNumber);

int totalcost = theItemData.getItemPrice();

// ... some other processing, etc. in the interim
// ...
// ...

// Add the shipping costs
totalcost = totalcost + theItemData.getShippingCost(theDestinationPostalCode);

At application assembly time, the customer sets the EJB caching parameters for this bean as follows:
v ActivateAt = ONCE
v LoadAt = DAILY
v ReloadInterval = 2200

Note: The reloadInterval and reloadingEnabled attributes of the IBM deployment descriptor extensions,
including both the WAR file extension (WEB-INF/ibm-web-ext.xmi) and the application extension
(META-INF/ibm-application-ext.xmi) were deprecated.

On the first call to the getItemPrice() method after 22:00 each night, the EJB container reloads the pricing
information from the database. If the clock strikes 22:00 between the call to getItemPrice() and
getShippingCost(), the getShippingCost() method still returns the value it had prior to any changes to the
database that might have occurred at 22:00, since the first method invocation in this transaction occurred
prior to 22:00. Thus, the item price and shipping cost used remain in sync with each other.

Creating timers using the EJB timer service for enterprise beans
You can use enterprise beans to take advantage of the EJB timer service to schedule time-based events.

320 Developing WebSphere applications

About this task

In support of the EJB 3.1 specification, you can create non-persistent EJB timers. This product also
supports the expanded TimerService API for programmatic timer creation. In addition, you can configure
the EJB container to automatically create a timer when the application starts.

WebSphere Application Server implements the Enterprise JavaBeans(EJB) timer service. Based on your
business needs, you can use persistent timers or non-persistent timers. Persistent timers are helpful if you
are creating a timer for a time-based event that requires assurance of timer existence beyond the life cycle
of the server. Previously started persistent timers automatically start when your server starts and persist
through server shutdowns and restarts. For example, you can use persistent timers to start a system
application or send a status notification on the expiration of a timer. Non-persistent timers are helpful in
non-critical situations where the timer actions are skipped or redone without negative business impacts,
such as polling a temperature.

You can create timers programmatically. You can also create timers automatically by using the @Schedule
annotation in the bean class, or by using the timer element in the ejb-jar.xml deployment descriptor. By
automatically creating timers, you can schedule a timer without relying on your enterprise bean invocation
to programmatically start an EJB timer service creation method.

Persistent timers

Persistent timers are implemented as a scheduler service task. By default, an internal or
pre-configured scheduler instance is used to manage those tasks, and they persist in an Apache
Derby database associated with the server process.

You can perform basic customizations to the internal scheduler instance. For information about
customizing the scheduler instance, see the configuring a timer service information.

The creation and cancellation of Timers is transactional and persistent. If a Timer is created within
a transaction and that transaction is later rolled back, the creation of the Timer is rolled back as
well. Similar rules apply to the cancellation of a Timer. Previously started Timers are maintained
across application server shutdowns and restarts.

Non-persistent timers

EJB 3.1 augments the EJB timer service to enable non-persistent EJB timers in addition to the
persistent timers. Non-persistent timers have many of the same semantics and behavior as
persistent timers, but without the overhead of a data store. Non-persistent timers have a different
life cycle than persistent timers. Where persistent timers are maintained across application server
shutdowns and restarts, non-persistent timers are active only while the application server is active.
Unlike persistent timers, there are no commands to find or cancel non-persistent timers.
Non-persistent timers are canceled when the application server is stopped or fails to remain in an
active state.

As with persistent timers, the creation and cancellation of non-persistent timers is transactional. If
a timer is created within a transaction and that transaction is later rolled back, the creation of the
timer is rolled back as well. Similar rules apply to the cancellation of a timer.

You can configure non-persistent timers to share a thread pool with persistent timers, or to have a
unique thread pool that is not shared with persistent timers.

Programmatically created timers

A programmatically created persistent timer is maintained across application server shutdowns and
restarts, unless it is canceled. It is the responsibility of application code or system administrator to
delete a programmatically created timer which is no longer wanted.

To programmatically create a timer that is associated with your enterprise bean, the bean calls the
getTimerService() method on the applicable context instance to get a reference to the
TimerService object. The bean also calls one of the TimerService methods, such as createTimer,

Chapter 10. Developing EJB applications 321

to specify the timer for the bean. This Timer instance is now associated with your bean. The
TimerService methods are described in the EJB 3.1 specification. You can now pass the Timer
instance to other Java code as a local object. After the Java code obtains the Timer instance, the
code can use any of the methods defined by the javax.ejb.Timer interface, such as the cancel() or
getTimeRemaining() methods.

In a clustered environment, a programmatically created persistent timer can run in any cluster
member, but a programmatically created non-persistent timer runs only in the same JVM in which
it was created.

Automatically created timers

The EJB 3.1 specification augments the EJB timer service to enable the automatic creation of a
timer when your application starts without relying on a bean invocation to programmatically start
one of the timer service timer creation methods. Use the @Schedule annotation or the
timeout-method deployment descriptor element to automatically create timers. Automatically
created timers are created by the container as a result of application deployment.

Note: The CancelEJBTimers command also cancels automatically created timers. When
automatically created timers are canceled, the only way to recreate them is to uninstall the
application and reinstall it again.

Timers in a clustered environment

In a clustered environment, a persistent timer runs only in one cluster member which might not
necessarily be the same cluster member it was created in. A non-persistent timer runs in each
cluster member that it was created in - automatic non-persistent timers run in each cluster member
that contains the EJB.

Automatic persistent timers are removed from their persistent store when their containing module
or application is uninstalled. Therefore, do not update applications that use automatic persistent
timers with the Rollout Update feature. Doing so uninstalls and reinstalls the application while the
cluster is still operational, which might cause failure in the following cases:

v If a timer running in another cluster member activates after the database entry is removed and
before the database entry is recreated, then the timer fails. In this case, a
com.ibm.websphere.scheduler.TaskPending exception is written to the First Failure Data
Capture (FFDC), along with the SCHD0057W message, indicating that the task information in
the database has been changed or canceled.

v If the timer activates on a cluster member that has not been updated after the timer data in the
database has been updated, then the timer might fail or cause other failures if the new timer
information is not compatible with the old application code still running in the cluster member.

When you use the proxy server in the product, do not define a scheduler at the cell level if that
scheduler is configured as the one to use for the EJB timer service. Doing so prevents persistent
timers from running. This can happen if the proxy server gets the scheduler lease. Since no
applications run in the proxy server, there is no application code to handle the timer events that
are sent by the scheduler.

Retries and missed timeouts

If you use EJB timers, you must understand the concepts of failure, retry, and missed timeouts.

v A failure is a timeout execution that is attempted, but does not succeed.

v A retry is an additional attempt to successfully execute a timeout that was previously attempted,
but failed.

v A missed execution is a timeout that must have been attempted, but was not, because the
server was unavailable or busy retrying a previously failed timeout.

The retry behavior reflects:

v Number of additional times that the server retries the failed timeout

322 Developing WebSphere applications

v Interval between these server retries

The missed timeout behavior reflects:

v Whether the server eventually attempts missed timeouts, or not

v If missed timeouts are eventually attempted, when those attempts occur

v Interval between the missed timeout attempts

Table 29. Retry and missed timeout behavior. Retry and missed timeout behavior for both persistent and
non-persistent timers.

Characteristic Default behavior Configurable

Number of retry attempts As many as it takes to succeed.

Persistent timers are temporarily deactivated if
their scheduler failure threshold is reached in a
server. For more information, see the topic
about stopping tasks that are failing.

Yes, for non-persistent
timers

Interval between retry attempts First retry attempt is immediate.

Subsequent retry attempts occur on the
configured scheduler poll interval for persistent
timers, and on the configured retry interval for
non-persistent timers.

Yes

Missed timeout recovery All missed timeouts are recovered. No

When missed timeouts are recovered Both persistent and non-persistent timers
recover missed timeouts when the blocking retry
attempts stop. Additionally, persistent timers
recover timeouts when an unavailable server
restarts.

No

Next timeout, after retry attempts are
successful and missed timeouts are
recovered

At the next originally scheduled time. No

The configurable characteristics are configured on the scheduler instance for persistent timers and
on the non-persistent timer configuration for non-persistent timers.

The following scenarios illustrate how the retry and missed timeout behavior influences the
timeouts for both persistent and non-persistent timers.

Persistent timer scenario:

A persistent timer is created and configured to run for the first time at 10:00 am, and then run
every hour after that. The scheduler supporting the timer is configured with a 30 second poll
interval.

The timer runs at 10:00 am and fails because a database is unavailable. The timer is immediately
retried, and retried again every 30 seconds when the scheduler is polled, and keeps failing, until
12:30 pm. At that moment, a retry attempt succeeds because the database is now back online,
and therefore the server stops retrying the previously failed attempt.

Now, the server begins to work through the missed timeouts. First, it attempts the timeout that
must have run at 11:00 am, which succeeds at 12:31 pm. When the scheduler is polled again 30
seconds later, it attempts the timeout that must have run at 12:00 pm, which succeeds at 12:32
pm. The server is now current, and the next timeout occurs at its originally scheduled time of 1:00
pm, as opposed to an hour after the last success, which would have been 1:32 pm. Going
forward, the original schedule is maintained. The schedule is not updated based on the time of the
last successful timeout.

Non-persistent timer scenario:

Chapter 10. Developing EJB applications 323

A non-persistent timer is created and configured to run for the first time at 10:00 am, and then run
every hour after that. This non-persistent timer is configured to have a retry count of 5, and a retry
interval of 30 minutes.

The timer runs at 10:00 am and fails because a database is not available. The timer is
immediately retried, and fails again. Now, having executed the initial immediate retry, the server
waits for the configured retry interval of 30 minutes between the next retry attempt. Retry attempts
occur at 10:30 am and 11:00 am, and both fail. Finally, the fourth retry occurs at 11:30 am, and
succeeds because the database is now back online.

Now, the server begins to work through the missed timeouts. The timeout that was originally
scheduled for 11:00 am is immediately run, and succeeds at 11:31 am. The server is now current,
and the next timeout occurs at its originally scheduled time of 12:00 pm (as opposed to an hour
after the last success, which would be 12:32 pm).

Behavior of the getNextTimeout and getTimeRemaining methods

For both persistent and non-persistent timers, the Timer.getNextTimeout method returns a
java.util.Date object that indicates the next time the timer is scheduled to execute. When you call
the getNextTimeout method from a timeout callback method for an interval or calendar-based
timer, the method returns the next scheduled time; for calendar-based timers with no future
timeouts, the method throws the NoMoreTimeoutsException exception as required by the EJB 3.1
specification. When you call the getNextTimeout method from a timeout callback method for a
single-action timer, the method returns the originally scheduled time. If a timeout callback method
fails and retries are being attempted, the getNextTimeout method continues to return the originally
scheduled time as if the failed execution had not occurred. In all cases, the
Timer.getTimeRemaining method returns the difference in milliseconds between the
getNextTimeout returned value and the current system time, which could result in a negative
number, if the scheduled execution time was in the past.

Inheritance behavior of automatically created timers

Automatic timer methods in a hierarchy of bean classes cause multiple timers to be created. The
number of timers associated with a timer method is not determined by the number of occurrences
of the method in the source code. Instead, the number of timers associated with a timer method is
determined by the number of beans with visibility to that method. For example:
@Stateless
public class Abean {

@Schedule(hour=”1”)
public void timerMethod1()

@Stateless
public class Bbean extends Abean {

@Schedule(hour=”2”)
public void timerMethod2()

@Stateless
public class Cbean extends Bbean {

@Schedule(hour=”2”)
public void timerMethod2()

In the previous bean class hierarchy, three automatic timers with callback method
Abean.timerMethod1 are created, one for each bean instance with visibility to that method. One
timer with callback method Bbean.timerMethod2 is created, and since that method is overridden by
bean Cbean, only one timer with callback method Cbean.timerMethod2 is created.

324 Developing WebSphere applications

In the previous example, when bean Abean is processed by the container, a single automatic timer
is created, with callback method Abean.timerMethod1.

When the bean Bbean is processed by the container, an automatic timer is created with callback
method Bbean.timerMethod2, and another automatic timer is created with callback method
Abean.timerMethod1.

When the bean Cbean is processed by the container, an automatic timer is created with callback
method CBean.timerMethod2. Another automatic timer is created with callback method
Abean.timerMethod1. A timer for Bbean.timerMethod2 is not created when processing the bean
Cbean. Bbean.timerMethod2 is not visible in the class hierarchy of Cbean because it is overridden
by method Cbean.timerMethod2.

Consider another example like the previous one, if the @Stateless annotation were removed from
classes Abean and Bbean, so that class Cbean is the only EJB. In that case, the only automatic
timers created would be those visible to Cbean - one with callback method Abean.timerMethod1,
one with callback method Cbean.timerMethod2.

Although beans can share identical code in an inherited bean callback method, the runtime
behavior might be polymorphic. For example:
public class Employee {

@Schedule(hour=”1”, dayOfMonth=”-1”, info = "payroll timer")
public void getSalaryIncrease() {

printChecks(salary * rate());
}

protected float rate() {
return (float)1.01;

}

}

public class Manager extends Employee {

protected float rate() {
return (float)1.15;

}

}

public class Executive extends Manager {

protected float rate() {
return (float)1.30;

}

}

In the previous example, each bean instance has an automatic timer with callback method
getSalaryIncrease(). Although the same callback code is shared by each timer, note that the rate
used in calculating the salary increase by each bean is different, due to polymorphism. That is,
timer callback methods might be polymorphic in the same way that any Java methods might be.

Procedure
v To create timers programmatically, define the timeout method using the @Timeout annotation, the

timeout-method deployment descriptor element, or by implementing the javax.ejb.TimedObject interface.

A bean can have at most one timeout method for timers that are created programmatically. The timeout
method is identified by the @Timeout annotation in the source code, or by the timeout-method
deployment descriptor element contained in the ejb-jar.xml file. The timeout method must accept no
parameters or a single parameter of type javax.ejb.Timer.

Chapter 10. Developing EJB applications 325

– Define the timeout method by using the @Timeout annotation to create timers programmatically. The
following code is an example of using the @Timeout annotation within the MyBeanImpl class:
class MyBeanImpl implements MyBean{
@Timeout
void myTimeOutMethod()

– Define the timeout method by using the timeout method deployment descriptor element.

You can write your enterprise bean to implement the javax.ejb.TimedObject interface, including the
ejbTimeout() method. If the bean implements the TimedObject interface, there is no need to annotate
a timeout method, and it is not valid unless that method is the ejbTimeout() method.

The following code snippet illustrates using the timeout method deployment descriptor element within
the ejb-jar.xml file:
<timeout-method>
<method-name>myTimeoutMethod</method-name>
<method-params>
<method-param>javax.ejb.Timer</method-param>
</method-params>
</timeout-method>

In this case, the container starts the myTimeoutMethod method on a bean instance when a timer for
that instance has expired. The instance is notified by the myTimeoutMethod method of the defined
time-based event so the instance can run the associated business logic, based on the timer
expiration notification.

Now, you can pass the timer instance to other Java code as a local object. After the Java code
obtains the timer instance, the code can use any of the methods defined by the javax.ejb.Timer
interface, such as the cancel() or getTimeRemaining() methods.

Note: ForWebSphereApplication Server Version 6, no assembly tool supports the EJB timedObject
object. To set the ejbTimeout method transaction attribute, you must manually enter the
attributes in the deployment descriptor.

– Define the timeout method by using the javax.ejb.TimedObject interface.

- Write your enterprise bean to implement the javax.ejb.TimedObject interface, including the
ejbTimeout() method. The bean calls the EJBContext.getTimerService() method to get an instance
of the TimerService object. The bean calls the TimerService method to create a timer. This Timer
is now associated with that bean.

- After you create the timer, you can pass the timer instance to other Java code as a local object.

The ejbTimeout method can contain any code that is typically placed in a business method of the
bean. Method-level attributes such as transaction or runAs can be associated with this method by
the application assembler. An instance of the timer that causes the method to run is passed in as an
argument to ejbTimeout method. The following code snippet illustrates using the
javax.ejb.TimedObject interface:
import javax.ejb.Timer;
import javax.ejb.TimedObject;
import javax.ejb.TimerService;

public class MyBean implements EntityBean, TimedObject {

// This method is called by the container when the timer expires.
public void ejbTimeout(Timer theTimer) {

//You can place code that is typically placed in an EJB method.

String whyWasICalled = (String) theTimer.getInfo():
System.out.println("I was called because of"+ whyWasICalled);

} // end of method ejbTimeout

A timer is created that starts the ejbTimeout method in 30 seconds. A simple string object is passed
in at timer creation to identify the timer; for example:

326 Developing WebSphere applications

// Instance variable to hold the EJB context.
private EntityContext theEJBContext;

// This method is called by the EJB container upon bean creation.
public void setEntityContext(EntityContext theContext) {

// Save the entity context passed in upon bean creation.
theEJBContext = theContext;

}

// This business method causes the ejbTimeout method to begin in 30 seconds.
public void fireInThirtySeconds() throws EJBException {

TimerService theTimerService = theEJBContext.getTimerService();
String aLabel = "30SecondTimeout";
Timer theTimer = theTimerService.createTimer(30000, aLabel);

} // end of method fireInThirtySeconds

} // end of class MyBean

Note: The EJB 3.x programming model provides additional strategic ways to define persistent and
non-persistent timers within your business environments. Although defining persistent timers
using the ejbTimeout method with the TimedObject interface is still supported, take advantage
of the easy-to-implement EJB annotations to create persistent and non-persistent timers to
meet your business needs.

v Determine whether your timer must be single-action, interval, or calendar-based.

–

A single-action timer is scheduled to run once on a specific date or after a specified duration. To
specify a single-action timer, use the TimerService.createSingleActionTime or
TimerService.createTimer(Date, Serializable) APIs.

–

An interval timer is scheduled to begin on a specific date or after a specified duration and continues
to run at a fixed rate until it is canceled. To specify an interval timer, use the
TimerService.createIntervalTimer, TimerService.createTimer(long, long, Serializable), or
TimerService.createTimer(Date, long, Serializable) APIs.

–

A calendar-based timer is scheduled to run at specific dates and times. To specify a calendar-based
timer, either use an automatically created timer or use the TimerService.createCalendarTimer APIs,
which accept a javax.ejb.ScheduleExpression argument.

Note: When the EJB container stores a serialized calendar-based timer in the database, the
serialized format is incompatible with the format used in WebSphere Application Server
Version 7 and lower. If you use calendar-based timers, you must not configure the scheduler
for the EJB container to use database tables that are shared with an older version of
WebSphere Application Server.

When using the TimerService.createCalendarTimer API, several attributes are specified to form an
expression like the cron job scheduling daemon. The first set of attributes is used to control how date
calculations are performed:

Table 30. Attributes that control how dates are calculated.. Attributes that control how dates are calculated

Attribute Description

start Specifies a date value that is the inclusive starting point for calculating timeouts. The default
value is null, which means the timer can start at any time.

end Specifies a date value that is the inclusive ending point for calculating timeouts. The default
value is null, which means the timer continues to run indefinitely.

Chapter 10. Developing EJB applications 327

Table 30. Attributes that control how dates are calculated. (continued). Attributes that control how dates are
calculated

Attribute Description

timezone Specifies a valid time zone according to the java.util.TimeZone API. The default value is null,
which corresponds to the default time zone of the host server.

The second set of attributes determines when the timer runs. All attributes have a set of allowable
values in addition to a special wild-card value *, which represents all possible values for that
attribute.

Table 31. Attributes that determine when the timer runs.. Attributes that determine when the timer runs

Attribute Description

second Specifies an integer in the range 0 to 59; default 0.

minute Specifies an integer in the range 0 to 59; default 0.

hour Specifies an integer in the range 0 to 23; default 0.

dayOfMonth Specifies an integer in the range 1 to 31; default *. Alternatively, the value can be:

v The keyword Last, which corresponds to the last day of the month.

v An integer in the range -1 to -7, which corresponds to a day before the last day of the
month. For example, in a month with 31 days, the value -3 would correspond to the 28 day
of the month.

v The keyword 1st, 2nd, 3rd, 4th, 5th, or Last followed by a day of the week keyword Sun,
Mon, Tue, Wed, Thu, Fri, or Sat. For example, you might use 3rd Sun and Last Wed. You must
use the abbreviated English ordinals and keywords.

dayOfWeek Specifies an integer in the range 0 to 7; default *. These values correspond to the keywords
Sun, Mon, Tue, Wed, Thu, Fri, and Sat, which can be used instead. The values 0 and 7 both
correspond to the keyword Sun. When both dayOfMonth and dayOfWeek are a value other
than *, only one of the attributes needs to match a given day.

month Specifies an integer in the range 1 to 12; default *. These values correspond to the keywords
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec, which can be used instead.

year Specifies any four-digit calendar year; default *.

You can specify each of these attributes using an x-y range notation. For example, 0-3 is a valid
range for the hour attribute and Jun-Aug is a valid range for the month attribute. Additionally, the
second, minute, and hour attributes can be specified using an x/y increment notation. For example,
30/10 is a valid increment for the minute attribute, which includes the values 30, 40, and 50.

All attributes can also be specified as comma-delimited lists of single values or ranges of values. For
example, the value 4,10-12 is valid for the hour attribute, and it corresponds to the times 4 AM, 10
AM, 11 AM, and 12 PM.

The following example uses the America/New_York time zone value for its calendar operations. The
timer runs on the last Friday of the months January, February, March, and June. On those days, it
runs every two hours starting at 1:30 AM:
TimerService theTimerService = theEJBContext.getTimerService();
Timer theTimer = theTimerService.createCalendarTimer(new ScheduleExpression()
.timezone("America/New_York")
.month("Jan-Mar, Jun")
.dayOfMonth("Last Fri")
.hour("1/2")
.minute(30))

v To create timers automatically, define the timeout callback method using the @Schedule or @Schedules
annotation or using the timer deployment descriptor element. Use annotations to write metadata for
EJBs inside your source code. For more details, see the information about EJB 3.x metadata
annotations.

328 Developing WebSphere applications

A bean can have multiple timeout callback methods for timers that are created automatically. The
timeout callback method and automatic timers are identified by the @Schedule or @Schedules
annotation in the source code or by using the timer deployment descriptor element in the ejb-jar.xml file.
If you specify both annotations for the same method or if you specify an annotation and the timer
deployment descriptor element for the same method, the metadata is combined and multiple automatic
timers are created. The timeout callback methods must have a void return type and must accept either
no parameters or a single parameter of type javax.ejb.Timer. All automatic timers are calendar-based.
See information about scheduling calendar-based timers for additional information.

The server creates automatic timers when the application starts for the first time. Subsequent
application start operations detect that timers have already been created for this application, and the
timers are not recreated even if they were subsequently canceled. For persistent automatic timers, the
server stores this data in the scheduler tables. If your application is installed on a server cluster, then
you must configure the EJB container on each server to use a shared cluster-scoped scheduler. If your
application is installed on independent servers, then you must ensure that each server is configured
with a unique database or unique database table prefix. See information about clustered environment
considerations for timer service.

The application server automatically removes persistent automatic timers from the database when you
uninstall the application while the server is running. If the application server is not running, you must
manually delete the automatic timers from the database. Additionally, if you add, remove, or change the
metadata for automatic timers while the server is not running, you must manually delete the automatic
timers.

– Define the automatic timer by using the @Schedule annotation. The following example uses
@Schedule annotation:
class MyBeanImpl implements MyBean {

@Schedule(hour="20", info="single timer", persistent=false)
public void automatic(Timer t) {

// ...
}

}

The @Schedule annotation has second, minute, hour, dayOfMonth, dayOfWeek, month, year, and
timezone elements that correspond to the same attributes of javax.ejb.ScheduleExpression. The
annotation also has a persistent element that you can use to specify whether the server uses the
EJB timer service scheduler to persist the timer. By default, automatic timers are persistent. Finally,
the annotation also has an info element that you can use to specify application information that is
delivered as a java.lang.String object with the javax.ejb.Timer object when the timeout callback
method runs.

– Define multiple automatic timers for the same method by using the @Schedules annotation. The
following example uses the @Schedules annotation:
class MyBeanImpl implements MyBean {

@Schedules(
@Schedule(hour="1" info="1AM timer", persistent=false),
@Schedule(minute="0/30" info="30 minute timer")

)
public void automaticMultiple(Timer t) {

// ...
}

}

– Define timers using the deployment descriptor element. You can use the following subelements of
the timer element:

Table 32. Subelements of the timer element. Subelements of the timer element

Element Required or Optional Description

schedule Required Includes optional second, minute, hour, day-of-month, day-of-week, month,
and year subelements that correspond to the same attributes of
javax.ejb.ScheduleExpression.

Chapter 10. Developing EJB applications 329

Table 32. Subelements of the timer element (continued). Subelements of the timer element

Element Required or Optional Description

start and end Optional Specify the inclusive starting and ending points for calculating timeouts.

timeout-method Required Specifies the timeout callback method.

persistent Optional Specifies whether the server uses the EJB timer service scheduler to
persist the timer. By default, automatic timers are persistent.

timezone Optional Corresponds to the same attribute of javax.ejb.ScheduleExpression.

info Optional Specifies application information that is delivered as a java.lang.String
object with the javax.ejb.Timer object when the timeout callback method
runs.

The following example uses the timer deployment descriptor element:
<session>

<ejb-name>MyBeanImpl</ejb-name>
<timer>

<schedule>
<hour>20</hour>

</schedule>
<start>2000-01-01T13:00:00</start>
<timeout-method>

<method-name>automatic</method-name>
</timeout-method>
<persistent>false</persistent>
<timezone>America/New_York</timezone>
<info>single timer</info>

</timer>
</session>

v Determine whether your timer is persistent or non-persistent.

– Create a persistent timer.

– Create a non-persistent timer.

v Deploy your EJB application. After you deploy your EJB application, the enterprise bean must run so
that the createTimer methods are called before the timer is created programmatically. If the timer is
automatically created, the timer starts when the EJB application is started.

Results

You have programmatically or automatically configured an EJB timer that is either persistent or
non-persistent.

Clustered environment considerations for timer service
In a single server environment, it is clear which server instance should invoke the timeout method of the
bean on a given bean. In a multi-server clustered environment there are other considerations governing
the behavior.

WebSphere Application Server implements the Enterprise JavaBeans (EJB) Timer Service. Based on your
business needs, you can use persistent timers or non-persistent timers. Persistent timers are helpful if you
are creating a timer for a time-based event that requires assurance of timer existence beyond the life cycle
of the server to survive server shutdowns and restarts. Previously started persistent timers automatically
start when your server starts and they require a database instance. Non-persistent timers do not use a
data store and are canceled when the application server is stopped or fails to remain in an active state.
Non-persistent timers exist only on the server where they are created. In a clustered environment, if your
EJB application automatically creates a non-persistent timer and this application is mirrored on multiple
servers, each server has its own non-persistent timer that runs within that server environment. A
programmatically created non-persistent timer only runs in the cluster member that it was created in.

330 Developing WebSphere applications

When configuring a persistent timer in a multi-server clustered server environment, consider the following
possibilities for the server instance to invoke the timeout method on a given bean:

v Separate timer service database per server process or cluster member. This is the default configuration.
Only the server instance or cluster member that created the Timer can access the Timer and run the
timeout method of the bean. If the server instance is unavailable, the Timer does not run at the
specified time, and does not run until the server is restarted. Also, if an enterprise bean calls the
getTimers() method, only those timers created on the server instance are found. This can cause
unexpected behavior if the enterprise bean attempts to cancel all timers associated with it; for example,
when the enterprise bean is removed. This configuration is NOT recommended for production level
systems.

v Shared or common timer service database for the cluster. Timers can be created and accessed on any
server process or cluster member. Timers created in one server process are found by the getTimers()
method on other server processes in the cluster. When an entity bean is removed, all timers, no matter
where created, are cancelled. However, all timers are executed on a single server in the cluster, that is,
the timeout method of the bean is run for all timers on a single server. Which server executes the timers
varies depending on which server process obtains a lock on the common database tables. If the server
executing timers becomes unavailable, then another server or cluster member takes over and begins
executing all timers at their scheduled time. This is the recommended configuration for all production
level systems.

v

Note: When using the EJB Timer service in an application using multi-threaded database access,
application flow can introduce deadlock problems.

To avoid this, use the wsPessimisticUpdate access intent. This access intent causes the finder method
in your application to run a select for update statement instead of a generic select. This in turn prevents
the lock escalation deadlock when multiple threads try to escalate their locks to perform an update.

See the information on using the EJB timer service for enterprise beans to learn how to configure the data
source (database) to be used for each server process timer service.

Note: Once the data source for the timer service is changed to point to a different database, the server
process automatically attempts to create the required tables in that database on the next server
start.

If the user ID associated with the start of the server process is not authorized to create database tables in
the configured timer service database, then the tables must be created manually.

Note: When you use the proxy server in the product, do not define a scheduler at the cell level if that
scheduler is configured as the one to use for the EJB timer service. Doing so prevents persistent
timers from running. This can happen if the proxy server gets the scheduler lease. Since no
applications run in the proxy server, there is no application code to handle the timer events that are
sent by the scheduler.

Timer service commands
Information about Enterprise JavaBeans (EJB) timers is specific to the application that the timers are
created for, and the timers are not visible outside of that application. Therefore, when you manage EJB
timers, use the application that contains the enterprise bean and creates the EJB timer.

You can use the following commands during application development to provide basic EJB timer
management functions. These commands are not available on client only installations.

findEJBTimers

This command displays information about existing persistent EJB timers, based on specified filter criteria.

Chapter 10. Developing EJB applications 331

This command displays information about existing persistent EJB timers, based on specified filter criteria.
The syntax for this command is:
findEJBTimers server filter [options]

filter: -all | -timer | -app [-mod [-bean]]
-all
-timer timer id
-app application name
-mod module name
-bean bean name

options: -host host name
-port portnumber
-conntype connector type
-user userid
-password password
-quiet
-logfile filename
-replacelog
-trace
-help

The following options exist:

server Specifies the name of the server process where the EJB timers are located

-all Specifies to find all EJB timers associated with the server process

timer id
Specifies the EJB Timer ID that uniquely identifies the timer

application name
Specifies to find all EJB timers associated with the application

module name
Specifies to find all EJB timers associated with the module

bean name
Specifies to find all EJB timers associated with the enterprise bean

host name
Specifies the host name of the server process

portnumber
Specifies the port of the server process

connector type
Specifies the type of connection. For example, SOAP, RMI, or NONE.

userid Specifies the user to use when connecting to the server process

password
Specifies the password to use when connecting to the server process

quiet Specifies to disable output

logfile Specifies to direct output to a file

replacelog
Specifies to clear the existing log before executing the command

trace Specifies to enable trace

help Specifies to provide command-specific help

Note: If the server you specify is configured to use a scheduler instance that is shared by multiple
servers, then EJB timers that are created in any of the server processes might be found.

332 Developing WebSphere applications

See the information about locating EJB timers using the findEJBTimers command.

cancelEJBTimers

This command cancels and removes from persistent storage EJB persistent timers based on the specified
filter criteria.

The syntax for this command is:
cancelEJBTimers server filter [options]

filter: -all | -timer | -app [-mod [-bean]]
-all
-timer timer id
-app application name
-mod module name
-bean bean name

options: -host host name
-port portnumber
-conntype connector type
-user userid
-password password
-quiet
-logfile filename
-replacelog
-trace
-help

the following options exist:

server Specifies the name of the server process where the EJB timers are located

-all Specifies to find all EJB timers associated with the server process

timer id
Specifies the EJB Timer ID that uniquely identifies the timer

application name
Specifies to find all EJB timers associated with the application

module name
Specifies to find all EJB timers associated with the module

bean name
Specifies to find all EJB timers associated with the enterprise bean

host name
Specifies the host name of the server process

portnumber
Specifies the port of the server process

connector type
Specifies the type of connection. For example, SOAP, RMI, or NONE.

userid Specifies the user to use when connecting to the server process

password
Specifies the password to use when connecting to the server process

quiet Specifies to disable output

logfile Specifies to direct output to a file

replacelog
Specifies to clear the existing log before executing the command

Chapter 10. Developing EJB applications 333

trace Specifies to enable trace

help Specifies to provide command-specific help

Note: If the server you specify is configured to use a scheduler instance that is shared by multiple
servers, then EJB timers that are created in any of the server processes might be canceled.

For an example of the cancelEJBTimers command, see the topic CancelEJBTimers command example.

findEJBTimers command:

The following examples illustrate how to use the findEJBTimers command to find Enterprise JavaBeans
(EJB) timers and explain the output statement. For relevant parameters and syntax information, read about
the timer service commands.

To find all EJB timers on a server called server1, enter the following command in the
<install-root>\profiles\<profile>\bin directory:
findEJBTimers server1 -all

To find all EJB timers on server1, associated with the Increment bean in the DefaultApplication, enter
the following command in the <install-root>\profiles\<profile>\bin directory:
findEJBTimers server1 -app DefaultApplication.ear

-mod Increment.jar -bean Increment

When EJB timers matching the filter criteria are found, the output appears similar to the following:
EJB Timer : 252 Expiration: 5/25/10 10:53 AM Single

EJB : TimerPtestApp, TimerPtestEJB.jar, NoMoreTimeoutsBean
Info : Single
Programmatic timer

EJB Timer : 253 Expiration: 5/25/10 11:47 AM Calendar
EJB : TimerPtestApp, TimerPtestEJB.jar, NoMoreTimeoutsBean
Automatic timer

Calendar expression: [start=null, end=null, timezone=null, seconds="52",
minutes="47", hours="11", dayOfMonth="25", month="5", dayOfWeek="*",
year="2010"]

2 EJB Timer tasks found

In this output, the following elements exist:

v EJB Timer is the unique identifier of the timer.

v Expiration is the next time the timer is expected to execute.

v Calendar expression is the calendar expression that defines the timer expiration intervals and
frequencies, if the timer expirations were defined by a ScheduleExpression. All automatic timers have
expirations defined by a ScheduleExpression.

v EJB Key is the toString() method output of the primary key for and entity bean. For other EJB types,
Not Available will be output.

v Info is the toString() method output of the object passed by the application when the EJB timer was
created.

Only the first forty bytes of toString() output are displayed for the primary key and timer information. This
information is only useful if the application overrides the toString() method for these objects.

CancelEJBTimers command example:

The following examples illustrate how to use the command to cancel Enterprise JavaBeans (EJB) timers.

To use the cancelEJBTimer command to cancel all EJB timers on a server called server1:
cancelEJBTimers server1 -all

334 Developing WebSphere applications

To cancel all EJB timers on server1, associated with the Increment bean in the DefaultApplication:
cancelEJBTimers server1 -app DefaultApplication.ear -mod Increment.jar -bean Increment

To cancel a specific EJB timer identified through the FindEJBTimers command or from a system log entry
indicating a problem or failure:
cancelEJBTimers server1 -id 25

Increment in the DefaultApplication does not implement the TimedObject interface, and so could not
actually have associated EJB Timers. Increment is used merely for illustrative purposes in this example.

Note: The CancelEJBTimers command also cancels automatically created persistent timers. When
automatically created persistent timers are cancelled, the only way to recreate them is to uninstall
the application and reinstall it again.

EJB command group:

The EJB command group for the AdminTask object provides commands that you can use to manipulate
enterprise beans.

removeAutomaticEJBTimers

Applications or modules use annotations or XML to instruct the application server to automatically create
EJB timers.

Automatically created timers are persisted in the scheduler instance associated with the server that the
application or module is running on at the moment the automatic EJB timer is created. Schedules are
configured on a per server basis, and thus it is possible for each server in your topology to use a unique
scheduler instance. In this case, the scheduler instance specific to each server supports the EJB timers
running in that server.

Each scheduler instance is associated with a set of database tables. If you have multiple scheduler
instances, configure each scheduler instance with a unique prefix to ensure the instance maps to a unique
set of database tables.

When the application or module that requested the automatic EJB timers are removed from a server, the
automatic EJB timers must be removed from the corresponding scheduler instance. If the application or
module was installed on multiple servers, and each of those servers used a unique scheduler instance,
then the timers must be removed from each of those scheduler instances. In other words, automatically
created EJB timers are removed on a per server basis.

In some cases, the removal or update of the application or module results in the removal of the
automatically created EJB timers from the scheduler instance. In this scenario, no user action is required.

However, in other cases, the removal, or update of the application or module does not result in the
removal of the automatically created EJB timers from the scheduler instance. In this case, you must
manually remove the EJB timers using the removeAutomaticEJBTimers command.

The command is only supported in a connected mode. In a network deployment topology, the deployment
manager, NodeAgent, and the managed server that contains the scheduler instance must all be running. In
a base topology, the stand-alone server must be running.

In a Rational Application Developer loose configuration scenario, you must manually remove your
automatically created EJB timers. Also, programmatically created EJB timers, which are not the same as
automatically created EJB timers, are not automatically removed or removed by this command.

Chapter 10. Developing EJB applications 335

In a network deployment topology, when a single module is only installed on a subset of the servers in the
topology, the automatically created timers associated with that module must be removed from the
scheduler instance(s) associated with that subset of servers only. A scheduler instance corresponding to a
server that does not have the module installed on it does not need to be cleaned up.

Target Object: None

Required parameters:

-appName
The name of the application that requested the automatically created EJB timers you want to remove.
(String, required)

-serverName
The name of the server that runs the application or module that contains the automatically created
EJB timers you want to remove. This parameter represents the logical name of an application server,
not a host name. (String, required)

Optional parameters:

-schedulerJNDIName
This parameter represents the JNDI name of the scheduler instance that persists the automatically
created EJB timers you want to remove.

A server instance is always configured to use a particular scheduler instance to support automatically
created EJB timers. You can explicitly configure which scheduler instance is used, or you can choose
to not explicitly configure a scheduler instance. In the latter case a default scheduler instance is used.

If the scheduler instance that contains the automatically created EJB timers you want to remove is the
same scheduler instance that is currently configured for the server, then you can omit this parameter.
In this case, the command examines the configuration, discovers the scheduler instance that is
currently configured, and uses that.

However, if the scheduler instance that is currently configured is not the one that contains the EJB
timers you want to remove, then specify the JNDI name of the scheduler instance that does contain
these timers. (String, optional)

-nodeName
The name of the node that contains the server. (String, required)

-moduleName
The name of the module that requested the automatically created EJB timers you want to remove. If
you want to remove all automatically created timers in the application, regardless of which module
they are defined in, then this parameter is omitted. This parameter is only specified when you want to
remove the automatically created timers requested by one module in the application, but not the timers
requested by another module in the same application. (String, optional)

Return value: None

The following information helps to determine when this command is needed:

v WebSphere Application Server attempts to remove automatically created EJB timers when all the
following conditions are met:

– One of the following actions is performed:

- Application uninstallation

- Application update

- Module uninstallation

- Module update

– The action was performed in a connected mode (not wsadmin -conntype none).

336 Developing WebSphere applications

– The needed servers were running at the time of the action.

- For a network deployment topology, the deployment manager, node agent, and managed server
containing the automatically created EJB timers were all running.

- For a base topology, the stand-alone server was running.

– The correct follow-up action was performed.

- For a network deployment topology, you save your changes and synchronize them to the node
agent. If you save your changes but do not synchronize them, then the automatically created EJB
timers are not removed. The automatically created EJB timers are only removed during the sync
processing.

- For a base topology, you save your changes.

– The database supporting the scheduler instance was running.

v WebSphere Application Server does not remove automatically created EJB timers when any of the
following conditions occur:

– Any action is performed other than an update or uninstallation of an application or module.

– The action (even if it is an application/module uninstallation/update) was performed in disconnected
mode.

– The needed servers were not running.

- For a network deployment topology, the deployment manager, node agent, or managed server
was not running.

- For a base topology, the stand-alone server was not running

– The correct follow-up action was not performed.

- For a network deployment topology, either the save or synchronize was not performed.

- For a base topology, the save was not performed.

– The database supporting the scheduler instance was not running.

If WebSphere Application Server encounters an error when attempting to remove automatically created
EJB timers from a server, then a warning is written to log file.

If an error occurs, or if the application server did not attempt to remove automatically created EJB timers,
or if you are not sure if the automatically created EJB timers were removed, manually issue the
removeAutomaticEJBTimers command to ensure that the automatically created EJB timers are removed. If
the automatically created timers were actually removed from the scheduler instance, running the command
is unnecessary, but does no harm.

If you are running in a clustered environment, and your cluster contains multiple nodes, and each of those
nodes contains a server that maps to the same cluster level scheduler instance, then the automatically
created timers only must be removed from one of the servers. This is because the shared scheduler
instance is updated, and all servers using that shared scheduler instance see the change.

As a result, if a server in one node is not running and you receive a log warning that the automatic timers
could not be removed from it, but you know that server shares a cluster-level scheduler instance with a
server in a different node that was successfully cleared, then no user action is required because the
shared scheduler instance has already been updated.

The same is true when there are multiple servers in a cluster, and they are all part of the same node, and
share a single cluster-level scheduler instance, and one or more of those cluster members are not running.
In this case, the application server issues a log warning that the automatic timers could not be removed
from those servers. However if you know that they share a common scheduler instance, and one of the
cluster members was successfully cleared, then no user action is required because the shared scheduler
instance has already been updated.

Chapter 10. Developing EJB applications 337

If you are running in a network deployment topology and have multiple servers, the type of scheduler used
(default versus custom configured) has an impact on performance in regards to scheduler cleanup. The
default EJBContainer scheduler is unique per server. If you are using the default EJBContainer scheduler
instance, and you have five servers, this means you have five unique scheduler instances, and the
automatic timers must be removed from all five of them when the application is updated or removed.
However, if you are using a single shared, custom configured scheduler instance, then the automatic
timers must only be removed once, from that one scheduler instance.

Example 1

Topology:

v Deployment manager running on workstation A.

v NodeAgent running on workstation B. The node is called Node01.

v Managed server server1 running on workstation C.

v Managed server server2 running on workstation D.

v Security is enabled.

v server2 is currently configured to use the same scheduler instance that contains the timers.

Background:

The testApp application was uninstalled in a connected mode from the administrative console. You want to
remove all the automatically created timers in the application, regardless of which module requested them.

The deployment manager, node agent, and server1 servers were running, and the automatic EJB timers
were removed from server1. However, server2 was not running, and so the automatic EJB timers were not
removed from server2.

Now, you must manually remove the automatic EJB timers from server2.

Action:

v Using Jacl, from a connected wsadmin session in the deployment manager enter the following line of
code:
$AdminTask removeAutomaticEJBTimers "-appName testApp -serverName server2 -nodeName Node01"

v Using Jython, from a connected wsadmin session in the deployment manager enter the following line of
code:
AdminTask.removeAutomaticEJBTimers(’-appName testApp -serverName server2 -nodeName Node01’)

Example 2

Topology:

v Stand-alone server1 running on workstation A. The node is called Node01.

v Administrative security is disabled.

v server1 was configured to use scheduler instance jndi/sched_1 when the automatic EJB timers were
created. However, server1 is currently configured to use scheduler instance jndi/sched_2.

Background:

The module, mod1, from application, testApp, was uninstalled, but because server1 was configured to use
the jndi/sched_2 instance at the moment of uninstallation, the automatic EJB timers were not removed
from scheduler instance jndi/sched_1.

Now, you must manually remove the automatic EJB timers from the jndi/sched_1 scheduler instance on
server1.

338 Developing WebSphere applications

The application contains modules, mod1 and mod2. Both of these modules requested automatically
created EJB timers. The mod2 module is still installed, and you still need the automatically created EJB
timers it requested. You only want to remove the automatically created EJB timers requested by mod1.

Action:

v Using Jacl, from a connected wsadmin session in the stand-alone server enter the following line of
code:

$AdminTask removeAutomaticEJBTimers "-appName testApp -moduleName mod1 -serverName server1 -nodeName Node01 -schedulerJNDIName jndi/sched_1"

v Using Jython, from a connected wsadmin session in the stand-alone server enter the following line of
code:

AdminTask.removeAutomaticEJBTimers(’-appName testApp -moduleName mod1 -serverName server1 -nodeName Node01 -schedulerJNDIName jndi/sched_1’)

Example: Using the Timer Service with the TimedObject interface:

This example shows the implementation of the ejbTimeout() method that is called when the scheduled
event occurs.

Note: The EJB 3.x programming model provides additional strategic ways to define persistent and
non-persistent timers within your business environments. Although defining persistent timers using
the ejbTimeout method with the TimedObject interface is still supported, take advantage of the
easy-to-implement EJB annotations to create persistent and non-persistent timers to meet your
business needs. See the using the EJB timer service for enterprise beans information to learn more
about creating persistent and non-persistent timers using annotations or defining your own timeout
methods within a deployment descriptor.

The ejbTimeout method can contain any code that is typically placed in a business method of the bean.
Method-level attributes such as transaction or runAs can be associated with this method by the application
assembler. An instance of the Timer object that causes the method to fire is passed in as an argument to
the ejbTimeout method.
import javax.ejb.Timer;
import javax.ejb.TimedObject;
import javax.ejb.TimerService;

public class MyBean implements EntityBean, TimedObject {

// This method is called by the EJB container upon Timer expiration.
public void ejbTimeout(Timer theTimer) {

// Any code typically placed in an EJB method can be placed here.

String whyWasICalled = (String) theTimer.getInfo():
System.out.println("I was called because of"+ whyWasICalled);

} // end of method ejbTimeout

A Timer is created that starts the ejbTimeout method in 30 seconds. A simple string object is passed in at
Timer creation to identify the Timer.
// Instance variable to hold the EJB context.
private EntityContext theEJBContext;

// This method is called by the EJB container upon bean creation.
public void setEntityContext(EntityContext theContext) {

// Save the entity context passed in upon bean creation.
theEJBContext = theContext;

}

// This business method causes the ejbTimeout method to begin in 30 seconds.
public void fireInThirtySeconds() throws EJBException {

Chapter 10. Developing EJB applications 339

TimerService theTimerService = theEJBContext.getTimerService();
String aLabel = "30SecondTimeout";
Timer theTimer = theTimerService.createTimer(30000, aLabel);

} // end of method fireInThirtySeconds

} // end of class MyBean

Developing enterprise beans
One of two enterprise bean development scenarios is typically used with the product. The first is
command-line using Ant, Make, Maven or similar tools. The second is an IDE-based development and
build environment. The steps in this article focus on development without an IDE.

Before you begin

Enterprise JavaBeans (EJB) 2.x beans only: Design a J2EE application and the enterprise beans that it
needs.
v Before developing entity beans with container-managed persistence (CMP), read the topic Concurrency

control.

EJB 3.x beans only: Design a Java EE application and the enterprise beans that it needs.

v Before developing entity beans with CMP, read the topic, Concurrency control. Keep in mind that EJB
3.x modules do not support entity beans. You must continue to place entity beans in your EJB 2.x-level
modules.

About this task

The two basic approaches to select tools for developing enterprise beans are as follows:
v You can use one of the available IDE tools that automatically generate significant parts of the enterprise

bean code and contain integrated tools for packaging and testing enterprise beans. The Rational
Application Developer product is the recommended IDE.

Add install_root/dev/JavaEE/j2ee.jar to the IDE project build path to resolve compilation dependencies
on the new EJB 3.x API classes. Code assist works when this JAR file is added to the project build
path. If you define a server (see J2EE Perspective), point the server to the product installation directory.
When you create a Java EE related project in Rational Application Developer, the project automatically
adds install_root/dev/JavaEE/j2ee.jar. to the project build path.

v If you have decided to develop enterprise beans without an IDE, you need at least an ASCII text editor.
You can also use a Java development tool that does not support enterprise bean development. You can
then use tools available in the Java Software Development Kit (SDK) and in this product to assemble,
test, and deploy the beans.

Like the assembly tool, a standard Java EE command-line build environment requires some change to
use the EJB 3.x modules. As with previous Java EE application development patterns, you must include
the j2ee.jar file located in the install_root/dev/JavaEE directory on the compiler class path. An example
of a command-line build environment using Ant is located in the install_root/samples/src/TechSamp
directory.

The following steps primarily support the second approach, development without an IDE.

Procedure
1. If necessary, migrate any pre-existing code to the required version of the EJB specification.

Applications written to the EJB specification versions 1.1, 2.0, and 2.1 can run unchanged in the EJB
3.x container. See the topic Migrating enterprise bean code to the supported specification.

2. Write and compile the components of the enterprise bean.
v At a minimum, a session bean developed with the EJB 3.x specifications requires a bean class.

340 Developing WebSphere applications

v At a minimum, an EJB 1.1 session bean requires a bean class, a home interface, and a remote
interface. An EJB 1.1 entity bean requires a bean class, a primary-key class, a home interface, and
a remote interface.

v At a minimum, an EJB 2.x session bean requires a bean class, a home or local home interface, and
a remote or local interface. An EJB 2.x entity bean requires a bean class, a primary-key class, a
remote home or local home interface, and a remote or local interface. The types of interfaces go
together: If you implement a local interface, you must also define a local home interface.

Attention: The primary-key class can be unknown. See the topic Unknown primary-key class for
more information.

v A message-driven bean requires only a bean class.

3. For each entity bean, complete work to handle persistence operations.

For EJB 3.x modules, consider using the Java Persistence API (JPA) specification to develop plain old
Java Object (POJO) persistent entities. Review the topic Java Persistence API for more information. If
you choose to develop entity beans to earlier EJB specifications, follow these steps:
v Create a database schema for the entity bean persistent data.

– For entity beans with CMP, you must store the bean persistent data in one of the supported
databases. The assembly tool automatically generates SQL code for creating database tables for
CMP entity beans. If your CMP beans require complex database mappings, it is recommended
that you use Rational Application Developer to generate code for the database tables. For more
information about using the assembly tools, see the assembly tool information center.

– For entity beans with bean-managed persistence (BMP), you can create the database and
database table by using the database tools or use an existing database and database table.

For more information about creating databases and database tables, review your database
documentation.

v (CMP entity beans for EJB 2.x only)

Define finder queries with EJB Query Language (EJB QL).

With EJB QL, you define finders in terms of CMP fields and container-managed relationships, as
follows:
– Public finders are visible in the bean home interface. Implemented in the bean class, they return

only remote interfaces and collection types.
– Private finders, expressed as SELECT statements, are used only within the bean class. They can

return both local and remote interfaces, dependent values, other CMP field types, and collection
types.

v (CMP entity beans for EJB 1.1 only: an IBM extension) Create a finder helper interface for each
CMP entity bean that contains specialized finder methods (other than the findByPrimaryKey
method).

Logic other than the findByPrimaryKey method is required for each finder method that is contained
in the home interface of an entity bean with CMP:
– The logic must be defined in a public interface named NameBeanFinderHelper, where Name is the

name of the enterprise bean, for example, AccountBeanFinderHelper.
– The logic must be contained in a String constant named findMethodName WhereClause, where

findMethodName is the name of the finder method. The String constant can contain zero or more
question marks (?) that are replaced from left to right with the value of the finder method
arguments when that method is called.

Example: Using a read-only entity bean

This usage scenario and example shows how to write an Enterprise JavaBeans (EJB) application that
uses a read-only entity bean.

Usage scenario

Chapter 10. Developing EJB applications 341

A customer has a database of catalog pricing and shipping rate information that is updated daily
no later than 10:00 PM local time (22:00 in 24-hour format). They want to write an EJB application
that has read-only access to this data. That is, this application never updates the pricing database.
Updating is done through some other application.

Example

The customer's entity bean local interface might be:
public interface ItemCatalogData extends EJBLocalObject {

public int getItemPrice();

public int getShippingCost(int destinationCode);

}

The code in the stateless SessionBean method (assume it is a TxRequired) that invokes this
EntityBean to figure out the total cost including shipping, would look like:
.....
// Some transactional steps occur prior to this point, such as removing the item from
// inventory, etc.
// Now obtain the price of this item and start to calculate the total cost to the purchaser

ItemCatalogData theItemData =
(ItemCatalogData) ItemCatalogDataHome.findByPrimaryKey(theCatalogNumber);

int totalcost = theItemData.getItemPrice();

// ... some other processing, etc. in the interim
// ...
// ...

// Add the shipping costs
totalcost = totalcost + theItemData.getShippingCost(theDestinationPostalCode);

At application assembly time, the customer sets the EJB caching parameters for this bean as
follows:
v ActivateAt = ONCE
v LoadAt = DAILY
v ReloadInterval = 2200

Note: The reloadInterval and reloadingEnabled attributes of the IBM deployment descriptor
extensions, including both the WAR file extension (WEB-INF/ibm-web-ext.xmi) and the
application extension (META-INF/ibm-application-ext.xmi) were deprecated.

On the first call to the getItemPrice() method after 22:00 each night, the EJB container reloads the
pricing information from the database. If the clock strikes 22:00 between the call to getItemPrice()
and getShippingCost(), the getShippingCost() method still returns the value it had before any
changes to the database that might have occurred at 22:00, since the first method invocation in
this transaction occurred before 22:00. Thus, the item price and shipping cost used remain in sync
with each other.

What to do next

Assemble the beans in one or more EJB modules. See the topic Assembling EJB modules, or Assembling
EJB 3.x modules if you are using EJB 3.x beans.

342 Developing WebSphere applications

Developing message-driven beans
You can develop a bean implementation class for a message-driven bean as introduced by the Enterprise
JavaBeans specification. A message-driven bean (MDB) is a message consumer that implements business
logic and runs on the server.

Before you begin

Determine the messaging model you want for your application regarding use of topics, queues, producers
and consumers, publish or subscribe, and so on. You can refer to the message-driven bean component
contract that is described in the Enterprise JavaBeans™ specification.

About this task

A message-driven bean (MDB) is a consumer of messages from a Java Message Service (JMS) provider.
An MDB is invoked on arrival of a message at the destination or endpoint that the MDB services. MDB
instances are anonymous, and therefore, all instances are equivalent when not actively servicing a client
message. The container controls the life cycle of bean instances, which hold no state that is visible to a
client.

The following example is a basic message-driven bean:
@MessageDriven(activationConfig={

@ActivationConfigProperty(propertyName="destination", propertyValue="myDestination"),
@ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue")

})
public class MsgBean implements javax.jms.MessageListener {

public void onMessage(javax.jms.Message msg) {

String receivedMsg = ((TextMessage) msg).getText();
System.out.println("Received message: " + receivedMsg);

}

}

As with other enterprise bean types, you can also declare metadata for message-driven beans in the
deployment descriptor rather than using annotations, for example:
<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar id="EJBJar_1060639024453" version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
metadata-complete="false">

<enterprise-beans>

<message-driven>

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.ejb.MsgBean</ejb-class>
<activation-config>

<activation-config-property>
<activation-config-property-name>destination</activation-config-property-name>
<activation-config-property-value>myDestination</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property-name>destinationType</activation-config-property-name>
<activation-config-property-value>javax.jms.Queue</activation-config-property-value>

</activation-config-property>
</activation-config>

Chapter 10. Developing EJB applications 343

</message-driven>

</enterprise-beans>
</ejb-jar>

Procedure
v Code the business logic of the message-driven bean, which must implement the appropriate message

listener interface defined by the messaging type; for example, javax.jms.MessageListener. The business
logic is invoked when the message listener method of the MDB is called to service a message; for
example, MessageListener.onMessage(). If the MDB implements more than one interface, denote the
message listener interface by coding the messageListenerInterface attribute of the MessageDriven
annotation, or by coding the <messaging-type> element of the message-driven deployment descriptor
element. You do not have to specify which is the message listener interface, as long as there is only
one interface other than java.io.Serializable, java.io.Externalizable, or any of the javax.ejb
package interfaces.

v You can optionally define message destination references on any type of enterprise bean. A message
destination reference is a logical name by which an enterprise bean can refer to a message destination.
The Resource annotation is used to inject a message destination reference, for example:
@Resource (name="jms/Outlet", type=javax.jms.Queue) Queue salesOutlet;

Alternatively, you can use the <message-destination-ref> element in the deployment descriptor to
specify the message destination reference; for example:
<message-destination-ref>

<message-destination-ref-name>jms/Outlet</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<injection-target>
<injection-target-class>com.acme.ejb.MsgBean</injection-target-class>
<injection-target-name>salesOutlet</injection-target-name>

</injection-target>
</message-destination-ref>

The message-destination-ref element is similar to the resource-env-ref element, but also has
subelements, message-destination-usage with possible values Produces, Consumes or
ProducesConsumes, and message-destination-link. You can use the message-destination-link element
to tie two or more message-destination-ref references in the deployment descriptor together, which
allows the deployer to bind the destination for several enterprise beans all at once, to the same
destination. The message-destination-link value must match the message-destination-name value in the
message-destination element; for example:
<ejb-jar>

<enterprise-beans>

<session>
<ejb-name>OutletBean</display-name>
...
<message-destination-ref>
<message-destination-ref-name>jms/target</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Produces</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

<session>
<ejb-name>InletBean</display-name>
...
<message-destination-ref>
<message-destination-ref-name>jms/source</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Consumes</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

344 Developing WebSphere applications

<message-driven>
<ejb-name>InletBean</display-name>
...

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.MsgBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>destination</message-destination-link>

...
</message-driven>

</enterprise-beans>
...

<assembly-descriptor>
...
<message-destination>
<message-destination-name>destination</message-destination-name>

</message-destination>
...

</assembly-descriptor>

</ejb-jar>

The message-destination-link element can refer to a destination that is defined in a different Java
archive (JAR) file within the same application, as with an ejb-link element. For example, to link to the
destination, ProduceQueue, defined in the grocery.jar file, enter the following line in the deployment
descriptor:
<message-destination-link>grocery.jar#ProduceQueue</message-destination-link>

v As with any enterprise bean, you can package a message-driven bean in a JAR file, or in a web
application archive (WAR) file.

Results

You developed a simple message-driven bean, along with some deployment and packaging options.

What to do next

Read related information about designing an enterprise application that uses message-driven beans.

Enterprise bean development best practices
Use the following guidelines when designing and developing enterprise beans.
v Use a stateless session bean to act as the entry point for business logic.
v Entity beans should use container-managed persistence.
v In an Enterprise JavaBeans (EJB) Version 2.x and later version environments, use local interfaces to

improve communication between enterprise beans in the same Java virtual machine.

Local calls avoid the overhead of RMI/IIOP and use pass-by-reference semantics instead of
pass-by-value. For each call, the caller and callee beans share the state of arguments. EJB 2.x and
later beans can have both a local and remote interface, but more typically, have one or the other.

v For communicating with remote clients, provide remote and remote home interfaces. For communicating
with local clients like servlets, entity beans, and message-driven beans, provide local and local home
interfaces.

Batched commands for container managed persistence

From JDBC 2.0 on, PreparedStatement objects can maintain a list of commands that can be submitted
together as a batch. Instead of multiple database round trips, there is only one database round trip for all
the batched persistence requests.

Chapter 10. Developing EJB applications 345

You can enable the use of this feature for EJB container managed persistence (CMP). When you do, the
run time defers ejbStore/ejbCreate/ejbRemove or the equivalent database persistence requests
(insert/update/delete) until they are needed. This can be at the end of the transaction, or when a flush is
needed for finders related to this EJB type. When the persistence operation finally happens, run time
accumulates the database requests and uses JDBC PreparedStatement batch operation to make a single
JDBC call for multiple rows of the same operation.

The product enables you to make the same settings using assembly tools.

Deferred Create for container managed persistence

For CMP during the ejbCreate, the container can create the representation of the entity in the database
immediately, or defer it to a later time.

You can turn this option on from the EJB CMP side. When you choose this option, the runtime defers
ejbCreate, or the equivalent database persistence request, until it is needed. This can be at the end of the
transaction, or when a flush is needed for finders related to this EJB type. By doing this you can reduce
two round trips for the newly created entity (insert and update) to one (insert).

The product enables you to make the same settings using assembly tools. Review the assembly tools
information center at http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/
topics/cejb3.html

WebSphere extensions to the Enterprise JavaBeans specification
This topic outlines extensions to the Enterprise JavaBeans (EJB) specification provided with the product.

Inheritance in enterprise beans

In the Java language, inheritance is the creation of a new class from an existing class or a new interface
from an existing interface. This product supports two forms of inheritance: standard class inheritance and
EJB inheritance.

In standard class inheritance, the home interface, remote interface, or enterprise bean class inherits
properties and methods from base classes that are not themselves enterprise bean classes or interfaces.

By contrast in enterprise bean inheritance, an enterprise bean inherits properties, such as
container-managed persistence (CMP) fields and container-managed relationship (CMR) fields, methods,
and method-level control descriptor attributes from another enterprise bean.

For more information, see the documentation for the assembly tools.

Optimistic concurrency control for container-managed persistence

This product supports optimistic concurrency control of data access. For more information, see the topic
about concurrency control.

Access intents for EJB persistence

This product supports the application of named data-access policies.

Sequence grouping for container-managed persistence

By designating CMP sequence groups for entity beans, you can prevent certain types of database-related
exceptions from occurring during the run time of your EJB application. Within each group you specify the

346 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html

order in which the beans update your relational database tables. For instructions, see the topic about
setting the run time for CMP sequence groups.

Performance enhancements

Through the lifetime-in-cache settings, this product provides a way for you to improve performance for
beans that are only occasionally updated. For more information, see the topic about entity bean assembly
settings in the assembly tool documentation.

Some enterprise beans created with the assembly tools can utilize read-ahead for loading a bean and its
related beans in a single database operation. An entire object graph or any part of the graph can be
preloaded by configuring a finder method to use read-ahead.

Assembly and deployment extensions

This product supports IBM extensions of assembly and deployment options.

Setting the run time for batched commands with JVM arguments
This article explains how to set the run time for batched commands with JVM arguments.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. In the Additional Properties area, select Process Definition.

6. In the Additional Properties area, select Java Virtual Machine.

7. Update the Generic JVM arguments with -Dcom.ibm.ws.pm.batch=true.

Setting the run time for deferred create with JVM arguments
For Container Managed Persistence (CMP) to happen during the ejbCreate, the Enterprise JavaBeans
(EJB) container can create the representation of the entity in the database immediately, or defer it to a
later time.

About this task

When you choose the defer option, the run time defers ejbCreate, or the equivalent database persistence
request, until it is needed. This can be at the end of the transaction, or when a flush is needed for finders
related to this EJB type. By doing this you can reduce two round trips for the newly created entity (insert
and update) to one (insert).

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. In the Additional Properties area, select Process Definition.

6. In the Additional Properties area, select Java Virtual Machine.

7. Update the Generic JVM arguments with -Dcom.ibm.ws.pm.deferredcreate=true.

Chapter 10. Developing EJB applications 347

Setting persistence manager cache invalidation
To set persistence manager cache invalidation, follow these steps.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. In the Server Infrastructure area, select Java and Process Management.

6. Select Process Definition.

7. In the Additional Properties area, select Java Virtual Machine.

8. Update the Generic JVM arguments with -Dcom.ibm.ws.ejbpersistence.cacheinvalidation=true.

Setting the system property to enable remote EJB clients to receive
nested or root-cause exceptions
You might want to code your application to perform a given action if a certain kind of exception is the
root-cause of a failure and is nested within the exception that you receive. The default behavior in the
product might mask a nested or root-cause exception in your application.

About this task

The Enterprise JavaBeans (EJB) container creates a TransactionRolledbackException exception for a
remote client when it can create a RemoteException exception instead. With the RemoteException
exception, the container does not lose the ability to have root-cause information nested inside the
exception.

You can set the following Java virtual machine (JVM) system property to true through the administrative
console for the product: com.ibm.websphere.ejbcontainer.includeRootExceptionOnRollback This change
enables the remote client to receive nested exceptions when a rollback occurs.

Note: This property is applicable only for scenarios where the transaction in which the bean method is
running was started by the container for this specific method invocation. All of the other scenarios
must result in a TransactionRollBackException exception according to the EJB specification.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Servers > Application servers > server_name.

4. Under Server infrastructure, select Java and Process Management > Process Definition.

5. Under Additional properties, select Java virtual machine > Custom properties > New.

6. In the Name entry field, type com.ibm.websphere.ejbcontainer.includeRootExceptionOnRollback.

7. In the Value entry field, type true.

8. Select OK.

Unknown primary-key class
When writing an entity bean, the minimum requirements usually include a primary-key class. However, in
some cases you might choose not to specify the primary-key class for an entity bean with
container-managed persistence (CMP).

348 Developing WebSphere applications

Perhaps there is no obvious primary key, or you want to allow the deployer to select the primary key fields
at deployment time. The primary key type is usually derived from the type used by the database system
that stores the entity objects, and you might not know what this key is.

So, the unknown key type is actually a type chosen at deployment time, making it changeable each time
the bean is deployed. Your client code must deal with this key as type Object.

Currently, WebSphere Application Server supports top-down mapping and enables the deployer to choose
String keys generated at the application server.

Developing applications using the embeddable EJB container
Use this task to develop applications using the embeddable Enterprise JavaBeans (EJB) container.
Applications running in the embeddable container start faster and require a smaller footprint than when
running in the full application server. It is an optimal environment for quickly developing and testing
applications that might eventually run on the application server.

Before you begin

To create an embeddable EJB container application, you must set your development environment to use
Version 6.0 of Java Development Kit (JDK) Version 1.6. Your development environment must also include
the WebSphere embeddable container Java archive (JAR) file in the class path. The
com.ibm.ws.ejb.embeddableContainer_8.0.0.jar file is located in the \runtimes directory under the
installation directory of WebSphere Application Server.

Restriction: The EJB thin client, com.ibm.ws.ejb.thinclient_8.0.0.jar, and the EJB embeddable JAR
file, com.ibm.ws.ejb.embeddableContainer_8.0.0.jar, cannot coexist in the same class path.

If your beans use the javax.annotation.Resource annotation with the lookup attribute, which is new in EJB
3.1, you must also use the Java Endorsed Standards Override Mechanism to override the
javax.annotation.Resource API that is available in the JDK on your system. Copy the app_server_root\
runtimes\endorsed\endorsed_apis_8.0.0.jar file into a target directory of your choice. Use the
java.endorsed.dirs property on the Java command to specify your directory that contains the copied JAR
file.

Procedure
1. Create an EJB 3.X module. When creating this module, you must ensure that it only contains features

that are supported by WebSphere embeddable container. For a full list of supported functions, see the
“Embeddable EJB container functions” on page 356 topic. Ensure that the EJB modules are on the
class path of the embeddable container. You can package the EJB module as directories of classes or
as EJB JAR files.

2. Create the main class that launches the embeddable container and starts methods on the enterprise
beans. Use the javax.ejb.EJBContainer class to create an instance of the embeddable container
(optionally passing container configuration parameters), get the container naming context, and close
the embeddable container.

The following sample code illustrates usage of the embeddable container:
//EmbeddableContainerSample.java
import java.util.HashMap;
import java.util.Map;
import javax.ejb.embeddable.EJBContainer;
import my.pkg.MyBeanIface; // this is the local business interface of the

// enterprise bean

public class EmbeddableContainerSample {

public static void main(String[] args) throws Throwable {

Chapter 10. Developing EJB applications 349

// Create a properties map to pass to the embeddable container:
Map<String,Object> properties = new HashMap<String,Object>();

// Specify that you want to use the WebSphere embeddable container:
properties.put(EJBContainer.PROVIDER,

"com.ibm.websphere.ejbcontainer.EmbeddableContainerProvider");

// Create the container instance, passing it the properties map:
EJBContainer ec = EJBContainer.createEJBContainer(properties);

// Use the container context to look up a bean:
MyBeanIface bean = ec.getContext().lookup(

"java:global/MyEJBModule/MyBean!my.pkg.MyBeanIface");

// Invoke a method on the bean instance:
bean.doStuff();

...

// Close the embeddable container:
ec.close();

}
}

In this sample code, you created an instance of an embeddable container by specifying the
EJBContainer.PROVIDER property to the
com.ibm.websphere.ejbcontainer.EmbeddableContainerProvider class, and passing that property to the
EJBContainer.createEJBContainer method. You used the container naming context to look up a local
enterprise bean, for example, MyBean. The lookup uses the portable global naming syntax.

This sample code relies on the embeddable container to automatically scan the class path to find the
EJB module, MyEJBModule. Alternatively, you could have specified the modules you wanted to start
using the EJBContainer.MODULES property. Use this property to specify a string or string array of
module names that must exist in the JVM class path.

You can also specify a file or file array of modules that do not exist in the class path. This file or file
array approach might require you to modify the context class loader on the current thread, if these
modules require additional libraries that are also not on the JVM class path.

The following code sample illustrates how to start the embeddable container using a file array.
...
// Create the properties object to pass to the embeddable container:
Map<String,Object> props = new HashMap<String,Object>();

// Specify the EJB modules to start when creating the container:
File[] ejbModules = new File[2];
ejbModules[0] = new File("/home/myusername/ejbs/ShoppingCartEJB.jar");
ejbModules[1] = new File("/home/myusername/ejbs/OnlineCatalogEJB.jar");
props.put(EJBContainer.MODULES, ejbModules);

// In this example, both of these modules rely on code in a shared library.
// In order for the embeddable container to load the shared library, the
// context classloader must be able to load that shared library.

// Set up the context classloader so that it can load the shared library:
File sharedLibUtilityFile = new File("/home/myusername/ejbs/SharedLib.jar");
ClassLoader oldCL = Thread.currentThread().getContextClassLoader();
ClassLoader newCL = new URLClassLoader(new URL[]{

sharedLibUtilityFile.toURI().toURL()}, oldCL);
Thread.currentThread().setContextClassLoader(newCL);

// Now, create the embeddable container, passing it the properties map:

350 Developing WebSphere applications

EJBContainer ec = EJBContainer.createEJBContainer(props);

// Invoke an EJB loaded by the embeddable container:
...

After looking up the bean instance, start methods on it. When you finish the container-related tasks,
close the container, which starts the bean methods marked as PreDestroy and closes the embeddable
container. Close the embeddable container instance before creating a new one.

3. Customize the embeddable container. You can use properties to customize the embeddable EJB
container run time. For a full list of supported properties, see the topic Embeddable EJB container
custom properties.

4. If you want your application to use resources like data sources, then you can create and configure
those resources in the properties map passed to the embeddable container or in a properties file.

One common usage of the embeddable EJB container is to test applications that eventually run in the
application server. Many of these applications rely on JDBC data sources that are configured in the
server using the administrative console or wsadmin scripting tool. Since these tools do not exist in the
embeddable container, you can configure the WebSphere embeddable container to provide these
resources by passing properties to it.

The data source configuration properties can also be stored in a properties file. The embeddable
container automatically loads properties stored in a file called embeddable.properties in the current
working directory. You can override this file location by specifying the new file location as the value of
the com.ibm.websphere.embeddable.configFileName system property.

The data source configuration properties all start with DataSource, and are followed by a term that
identifies which data source is being configured. For example, DataSource.myDataSource.someProperty
applies to a different data source than one named DataSource.anotherDS.someOtherProperty. The list
of data source properties are located in the embeddable EJB container custom properties information.

Here is an example of how your application can use data sources:
...
InitialContext context = new InitialContext();
DataSource ds = (DataSource) context.lookup("env/jdbc/AcctsPayableDS");
Connection conn = ds.getConnection();
// Use the connection to access the AcctsPayableDS database
...

In the server, a systems administrator has created a data source and bound it in the JNDI name space
to env/jdbc/AcctsPayableDS. Alternatively the code might have looked up the data source in a
java:comp namespace, which is mapped to env/jdbc/AcctsPayableDS or specified an EJB field to be
injected with the data source. In all cases, a data source must be bound in the namespace. Use the
following code to complete this action programmatically when creating the embeddable container
instance:
...
// Create a properties map to store embeddable container config properties
Map<String,Object> props = new HashMap<String,Object>();

// Set the JNDI name to bind this data source:
props.put("DataSource.ds1.name", "env/jdbc/AcctsPayableDS");

// Set the data source class name ; this is a required property
// This example uses a Derby JDBC driver
props.put("DataSource.ds1.dataSourceClass",

"org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource");

// Set the database name
props.put("DataSource.ds1.databaseName", "AcctsPayableTestDB");

// Create the embeddable container instance with our custom properties
EJBContainer ec = EJBContainer.createEJBContainer(props);

// Now invoke an EJB in the embeddable container...
...

Chapter 10. Developing EJB applications 351

The preceding code creates a simple data source to an Apache Derby database called
AcctsPayableTestDB and binds it at env/jdbc/AcctsPayableDS. You can complete this same task
declaratively by putting the following text into a file called embeddable.properties in the current
working directory of the JVM. You can also put this text in any text file, and specify that text file in the
com.ibm.websphere.embeddable.configFileName system property.
DataSource.ds1.name=env/jdbc/AcctsPayableDS
DataSource.ds1.dataSourceClass=org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
DataSource.ds1.databaseName=AcctsPayableTestDB

Use resource references when developing the EJB rather than looking up data sources directly.

5. Your application can use Java EE role-based security, both declarative and programmatic, to verify
your EJB role-based security. You can complete the following actions to verify EJB role-based security:

v Define a user to be used for authorization purposes.

v Assign users to roles that are declared in your EJB.

v Test the use of the EJBContext methods, isCallerInRole() and getCallerPrincipal(), in your EJB.

Here is an example of how your application can use declarative and programmatic security:
import java.util.HashMap;
import java.util.Map;
import javax.ejb.EJBContainer;
import my.pkg.MyBeanIface; // this is the local business interface of the

// enterprise bean
public class EmbeddableContainerSample {

public static void main(String[] args) throws Throwable {
// Create a properties map to pass to the embeddable container:
Map<String,Object> properties = new HashMap<String,Object>();
// Specify that you want to use the WebSphere embeddable container:
properties.put(EJBContainer.PROVIDER,

"com.ibm.websphere.ejbcontainer.EmbeddableContainerProvider");

// Specify that you want security checking enabled:
properties.put("com.ibm.websphere.securityEnabled", "true");

// Assign the users bob, fred, and mary to the role employee:
props.put("role.employee", "bob, fred, mary");
// Assign the user fred to the role manager:
props.put("role.manager", "fred");
// The user fred will be used for the runAs role manager:
props.put("role.runAs.manager", "fred");
// The user fred will be used for role authorization when invoking
// methods on the EJB:
props.put("user.invocation", "fred");
// Create the container instance, passing it the properties map:
EJBContainer ec = EJBContainer.createEJBContainer(properties);
// Use the container context to look up a bean:
MyBeanIface bean = ec.getContext().lookup(

"java:global/MyEJBModule/MyBean!my.pkg.MyBeanIface");
// Invoke a method on the bean instance:
bean.doStuff();
...
// Close the embeddable container:
ec.close();

}
}

The preceding code enables security and then creates two roles, employee and manager, and three
users, bob, mary, and fred. It then specifies that the fred user is used when running as the manager
role. Before creating the embeddable container, it sets the invocation user as fred. This means that
when EJB methods are started, they are started by fred, which means that if those methods require
the role of employee or manager, fred is able to access those methods.

6. Your application can specify Local Transaction Containment (LTC) behavior per bean. For an
explanation of LTC, read about local transaction containment.

352 Developing WebSphere applications

Here is an example of how your application can specify the LTC resolver and unresolved action:
import java.util.HashMap;
import java.util.Map;
import javax.ejb.EJBContainer;
import my.pkg.MyBeanIface; // this is the local business interface

// of the enterprise bean

public class EmbeddableContainerSample {

public static void main(String[] args) throws Throwable {

// Create a properties map to pass to the embeddable container:
Map<String,Object> properties = new HashMap<String,Object>();
// Specify that you want to use the WebSphere embeddable container:
properties.put(EJBContainer.PROVIDER,

"com.ibm.websphere.ejbcontainer.EmbeddableContainerProvider");

// Specify that you want the LTC resolver container-at-boundary:
properties.put("Bean.myApp1#moduleA#bean101.LocalTransaction.Resolver",

"ContainerAtBoundary");

// Specify that you want the LTC unresolved action commit:
properties.put("Bean.myApp1#moduleA#bean101.LocalTransaction.UnresolvedAction",

"Commit");

// Create the container instance, passing it the properties map:
EJBContainer ec = EJBContainer.createEJBContainer(properties);
// Use the container context to look up a bean:
MyBeanIface bean = ec.getContext().lookup(

"java:global/MyEJBModule/MyBean!my.pkg.MyBeanIface");
// Invoke a method on the bean instance:
bean.doStuff();
...
// Close the embeddable container:
ec.close();

}
}

The preceding code sets the resolver action for the specified bean to its non-default value of
container-at-boundary, and causes the unresolved action to be the non-default action that commits the
transaction.

If an application name is not specified when launching the embeddable container, the
<application_name> must be omitted. However, you must use the # delimiter. For example:
properties.put("Bean.#moduleA#bean101.LocalTransaction.UnresolvedAction", "Commit");

Embeddable EJB container
The embeddable Enterprise JavaBeans (EJB) container is a container for enterprise beans that do not
require a Java Platform, Enterprise Edition (Java EE).

TheWebSphere Application Server embeddable EJB container is a container for enterprise beans that
does not require a Java EE server to run. The EJB programming model and the EJB container services
are now available for Java Platform, Standard Edition (Java SE) server.

The following are embeddable container usage scenarios:

v EJB unit testing: developers can test their enterprise beans without needing a full server installation of
WebSphere Application Server in their development environment.

v Embedding enterprise beans in Java SE applications: developers can use enterprise beans and the
functionality that is provided with an EJB container, for example, dependency injection, transactions, and
security in stand-alone desktop applications.

The following advantages exist when using the WebSphere embeddable EJB container:

Chapter 10. Developing EJB applications 353

v No server installation is necessary for EJB development, unit testing, and Java SE-based application
deployment.

v The embeddable container is a much smaller footprint, in terms of disk space and main memory, than
the server-based container.

v The embeddable container starts faster than the server-based container because it initializes only
EJB-related components.

Be aware of the following limitations when using the embeddable container:

v Inbound RMI/IIOP calls are not supported, which means that all EJB clients must exist within the same
Java virtual machine (JVM) as the embeddable container.

v Message driven beans (MDB) are not supported.

v The embeddable container cannot be clustered for high availability per workload management. For a
complete list of supported functions in the WebSphere embeddable container, see the topic,
Embeddable EJB container functions.

Running an embeddable container
Use this task to run an embeddable container. Applications running in the embeddable container start
faster and require a smaller footprint than when running in the full application server. It is an ideal
environment for quickly developing and testing applications that might eventually run in the application
server.

Before you begin

Before running an embeddable container, you must have the following items ready:

v A copy of the <app_server_root>\runtimes\com.ibm.ws.ejb.embeddableContainer_8.5.0.jar

Restriction: The Enterprise JavaBeans (EJB) thin client, com.ibm.ws.ejb.thinclient_8.5.0.jar, and
the EJB embeddable Java archive (JAR) file,
com.ibm.ws.ejb.embeddableContainer_8.5.0.jar, cannot coexist in the same class path.

v A copy of the <app_server_root>\runtimes\endorsed\endorsed_apis_8.5.0.jar file, if you are using the
@Resource annotation with the lookup attribute

v One or more EJB modules in JAR files or class directories

v A main class that creates the embeddable container

v A Java SE Development Kit (JDK) or a Java Runtime Environment (JRE) Version 6.0 or later

About this task

The key to running the embeddable container is the class path. The class path must include all the
artifacts previously listed. For example, if the main class is my.pkg.MyMainClass, and it uses enterprise
beans that are stored in the MyEJBModule.jar file, the following line might run the main class that launches
the embeddable container. This example assumes that all JAR files and class directories are in the current
working directory.

v Windows:
C:\test> java -cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar my.pkg.MyMainClass

v UNIX:
[test]$ java -cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

It is possible to run the embeddable container without specifying all the modules on the class path. This
requires the code to specify a File or File array for the MODULES property, and the context class loader
for the thread creating the container instance must be able to load the specified files.

354 Developing WebSphere applications

If you want to specify embeddable container properties in a text file other than embeddable.properties in
the current working directory, then you must specify the com.ibm.websphere.embeddable.configFileName
system property; for example:

v Windows:
C:\test> java -Dcom.ibm.websphere.embeddable.configFileName="C:\test\my-config.properties"
-cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar;MyEJBModule.jar my.pkg.MyMainClass

v UNIX:
[test]$ java -Dcom.ibm.websphere.embeddable.configFileName="/home/myusername/test/my-config.properties"
-cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

When developing an application using JPA in the embeddable EJB container, the class path must include
the JPA thin client, com.ibm.ws.jpa.thinclient_n.0.jar, where n is the WebSphere Application Server
release; for example, 8.5 for Version 8.5. The JPA thin client is located in \runtimes where the root
directory of the installation image is located.

v Windows:
C:\test> java -cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar;%WAS_HOME%\runtimes
\com.ibm.ws.jpa.thinclient_8.5.0.jar;MyEJBModule.jar my.pkg.MyMainClass

v UNIX:
[test]$ java -cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:${WAS_HOME}/runtimes
/com.ibm.ws.jpa.thinclient_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

Note: You can specify the Java agent mechanism to complete the dynamic enhancement at run time. For
example, type the following line of code at the command prompt:

v Windows:
C:\test> java -javaagent:%WAS_HOME%\runtimes\com.ibm.ws.jpa.thinclient_8.5.0.jar
-cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar;MyEJBModule.jar my.pkg.MyMainClass

v UNIX:
[test]$ java -javaagent:${WAS_HOME}/runtimes/com.ibm.ws.jpa.thinclient_8.5.0.jar
-cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

To enable tracing in the embeddable container, you can specify the com.ibm.ejs.ras.lite.traceSpecification
system property to a trace specification value as you would specify for the server. By default, the trace is
printed to standard output, but you can redirect the output by specifying the
com.ibm.ejs.ras.lite.traceFileName system property. The following example shows how you can use both
system properties:

v Windows:
C:\test> java -Dcom.ibm.ejs.ras.lite.traceSpecification=EJBContainer=all:MetaData=all
-Dcom.ibm.ejs.ras.lite.traceFileName=trace.log
-cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar;MyEJBModule.jar my.pkg.MyMainClass

v UNIX:
[test]$ java -Dcom.ibm.ejs.ras.lite.traceSpecification=EJBContainer=all:MetaData=all
-Dcom.ibm.ejs.ras.lite.traceFileName=trace.log
-cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

If your beans use the javax.annotation.Resource annotation with the lookup attribute, you must also use
the Java Endorsed Standards Override Mechanism to override the javax.annotation.Resource API that is
available in the JDK on your system. Copy the app_server_root\runtimes\endorsed\
endorsed_apis_8.5.0.jar file into a target directory of your choice. Use the java.endorsed.dirs property
on the Java command to specify your directory that contains the copied JAR file. The following example
shows how you can specify the java.endorsed.dirs property:

v Windows:
C:\test> java -Djava.endorsed.dirs="myTargetDirectory"
-cp .;com.ibm.ws.ejb.embeddableContainer_8.5.0.jar;MyEJBModule.jar my.pkg.MyMainClass

v UNIX:

Chapter 10. Developing EJB applications 355

[test]$ java -Djava.endorsed.dirs="myTargetDirectory"
-cp .:com.ibm.ws.ejb.embeddableContainer_8.5.0.jar:MyEJBModule.jar my.pkg.MyMainClass

Embeddable EJB container functions
According to the Enterprise JavaBeans (EJB) 3.1 specification, all embeddable EJB containers that
vendors use must at least implement the EJB Lite subset of EJB functionality. The application server also
contains additional features that support the EJB Lite subset. Refer to the EJB 3.1 specification for more
information.

Attention: Container-managed authentication is only supported with the default container-managed
authentication alias. For data sources, the user ID and password fields of the Java EE data source
resource, or the embeddable properties data source, are used as the default container-managed
authentication alias.

EJB Lite includes:
v Local (and no-interface) session beans with synchronous methods only, which include stateless,

stateful, and singleton bean types.

v Declarative and programmatic security.

v Interceptors.

v Support for annotations or XML deployment descriptors, the ejb-jar.xml file.

v Java Persistence Architecture (JPA) 2.0.

The WebSphere embeddable container provides the following additional functions:
v Java Database Connectivity (JDBC) data source configuration, usage, and dependency injection.

v Bean validation

To use bean validation with the embeddable EJB container, the javax.validation classes must exist in
the class path. That can be done in one of two ways:

– Include the JPA thin client that is located in the directory ${WAS_INSTALL_ROOT}\runtimes\
com.ibm.ws.jpa.thinclient_8.0.0.jar in the class path. See the topic, Running an embeddable
container, and the information about JPA, for more information.

– Include a third party bean validation provider Java archive (JAR) file in the class path of the
embeddable EJB container run time.

Embeddable EJB container configuration properties
Use the following configuration properties for the embeddable Enterprise JavaBeans (EJB) container.

Table 33. Embeddable EJB container configuration properties. Use the properties for embeddable EJB container
configurations.
Property Type Default value Description

com.ibm.websphere.ejbcontainer.cacheSize java.lang.Long 2 053 Number of buckets for the EJB cache.

com.ibm.websphere.ejbcontainer.cacheSweepInterval java.lang.Long 3 000 Time between sweeps of the EJB cache
to determine whether to remove entries.

com.ibm.websphere.ejbcontainer.inactivePoolCleanupInterval java.lang.Long 30 000 Time in milliseconds for the clean up
thread to wait before cleaning the
inactive pool.

com.ibm.websphere.ejbcontainer.passivationDir java.lang.String <TempDir> Directory to passivate stateful beans in.
The user must have read and write
access to the specified directory.

356 Developing WebSphere applications

Table 33. Embeddable EJB container configuration properties (continued). Use the properties for embeddable EJB
container configurations.
Property Type Default value Description

com.ibm.websphere.embeddable.configFileName java.lang.String <CurrentWorkingDirectory>
/embeddable.properties

File name of a properties file containing
embeddable EJB container properties.
When this file is processed, each
property is passed to the newly created
EJB container as if they were passed in
programmatically. Any properties in the
configuration file are overridden by
properties passed in programmatically.

Attention: It is also possible to specify
this property as a system property on
the command line.

The following table contains configuration properties for data sources. Each property is specific to an
individual data source which allows you to configure multiple data sources with different settings. Replace
<data_source_id> with a unique term that identifies the data source to be configured. Some properties are
listed as required for each data source.

Table 34. Embeddable EJB container configuration properties for Java Database Connectivity (JDBC) data sources.
Use the embeddable EJB container configuration properties for JDBC data sources.
Property Type Description

DataSource.<data_source_id>.name java.lang.String Required. The Java Naming and Directory Interface (JNDI) string that the container uses
to bind this data source in the global namespace of the embeddable container. This string
must match the JNDI lookup string used in the application.

DataSource<data_source_id>.className java.lang.String Required. The Java class name of the data source class. For testing, Apache Derby can
be used if app_server_root/derby/lib/derby.jar is on the Java Virtual Machine
classpath. The supported data source classes for Apache Derby are
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedXADataSource.

DataSource.<data_source_id>.connectionSharing java.lang.String The policy for sharing connections. Valid values are MatchOriginalRequest (default),
MatchCurrentState or None. MatchOriginalRequest means that a connection request might
share if it matches the originally requested settings of an existing connection.
MatchCurrentState means that a connection request might share if it matches the current
settings of an existing connection. None means that multiple connection requests do not
share the same connection.

DataSource.<data_source_id>.databaseName java.lang.String The name of the database that this data source connects to.

DataSource.<data_source_id>.isolationLevel java.lang.Integer The transaction isolation level for connections from this data source. If unspecified, the
default is provided by the JDBC driver or database.

Valid values are 1 for Read Uncommitted, 2 for Read Committed, 4 for Repeatable Read,
or 8 for Serializable. These values come from constants in java.sql.Connection and are
subject to change.

DataSource.<data_source_id>.maxIdleTime java.lang.Integer The number of seconds after which the connection pool can close an unused connection.

DataSource.<data_source_id>.maxPoolSize java.lang.Integer The maximum number of connections that are created for this data source. After this
number of simultaneous connections are in use, future requests to get a connection from
this data source are blocked until one or more of the in-use connections have been
returned to the pool.

DataSource.<data_source_id>.maxStatements java.lang.Integer The maximum number of statements cached by the connection pool. This value is divided
by the maxPoolSize value to determine the number of statements that can be cached for
each connection in the pool. A value of 0 disables statement caching.

DataSource.<data_source_id>.minPoolSize java.lang.Integer The minimum number of connections to keep in the connection pool for this data source. If
no connections are in use, the connection pool might discard connections until the pool
size reaches this setting. This setting must be non-negative.

DataSource.<data_source_id>.password java.lang.String Password for the given user when accessing the database. Like the preceding property,
this property can be omitted if the database does not have security enabled or if the user
name and password are provided programmatically when creating the connection.

DataSource.<data_source_id>.transactional java.lang.Boolean Whether this data source must be enlisted in Java Transaction API (JTA) transactions.
Valid values are true (default) or false.

DataSource.<data_source_id>.user java.lang.String User name for accessing the database. This property can be omitted if the database does
not have security enabled or if the user name and password are provided
programmatically when creating the connection.

DataSource.<data_source_id>.<vendor_property_name
_or_connection_pool_property_name>

java.lang.String You can also configure other properties:

v Vendor-specific data source properties, such as serverName and portNumber

v WebSphere Application Server data source properties, such as userDefinedErrorMap
and validateNewConnection

v WebSphere Application Server connection pooling properties, such as
connectionTimeout and purgePolicy

DataSource.<data_source_id>.xaRecoveryPassword java.lang.String Applies to XA data sources only. Password for XA recovery.

Chapter 10. Developing EJB applications 357

Table 34. Embeddable EJB container configuration properties for Java Database Connectivity (JDBC) data
sources (continued). Use the embeddable EJB container configuration properties for JDBC data sources.
Property Type Description

DataSource.<data_source_id>.xaRecoveryUser java.lang.String Applies to XA data sources only. Some databases require a user with special privileges for
XA recovery. Use this property to specify a user name for XA recovery instead of the
default user.

Use the following properties to configure two data sources.
DataSource.ds1.name=env/jdbc/ds1
DataSource.ds1.className=org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
DataSource.ds1.transactional=true
DataSource.ds1.createDatabase=create
DataSource.ds1.databaseName=jtest1
DataSource.ds1.user=dbuser1
DataSource.ds1.password=dbpwd1
DataSource.ds1.maxPoolSize=5

DataSource.ds2.name=env/jdbc/ds2
DataSource.ds2.className=org.apache.derby.jdbc.EmbeddedXADataSource
DataSource.ds2.connectionSharing=MatchOriginalRequest
DataSource.ds2.createDatabase=create
DataSource.ds2.databaseName=jtest2
DataSource.ds2.user=dbuser2
DataSource.ds2.password=dbpwd2
DataSource.ds2.maxPoolSize=10
DataSource.ds2.minPoolSize=1

DataSource.ds3.name=env/jdbc/ds3
DataSource.ds3.className=com.ibm.db2.jcc.DB2XADataSource
DataSource.ds3.driverType=4
DataSource.ds3.databaseName=DB2COPY1
DataSource.ds3.serverName=mydb2.test.ibm.com
DataSource.ds3.portName=50000
DataSource.ds3.user=dbuser1
DataSource.ds3.password=dbpwd1

The first data source, ds1, is bound in the namespace under the name, env/jdbc/ds1, and provides
connection pooling for up to five connections to an Apache Derby database. The second data source, ds2,
is bound in the namespace at env/jdbc/ds2 and provides XA-compliant connection pooling to an Apache
Derby database.

The following table contains configuration properties for EJB bindings. For each property, replace:

v <app> with the application name.

The application name is, by default, the empty string. However the application name can be specified
using the EJBContainer.APP_NAME property when calling createEJBContainer.

v <module> with the module name.

The module name is either specified in ejb-jar.xml as <module-name>, is the name of the JAR file
without the ".jar" suffix, or is the name of the directory containing the module.

v <ejb> with the name of the EJB.

The name of the EJB is specified in ejb-jar.xml as <ejb-name>, or using the name element when using
annotations; for example, @Stateless(name="TestBean"). If no name is specified in the EJB annotation,
the simple class name is used; for example, TestBean for the class com.ibm.test.TestBean.

v <interceptor> with the name of an interceptor class.

v <ref> with the name of the resource reference, EJB reference, or environment entry.

The reference can be specified in ejb-jar.xml; for example, <res-ref-name>jdbc/mydsref</res-ref-name>,
or <ejb-ref-name>java:module/env/myejbref</ejb-ref-name>. Alternatively, the reference can be specified
using an annotation; for example @Resource(name="jdbc/mydsref") or @EJB(name="java:module/env/
myenvref").

358 Developing WebSphere applications

If an application name is not specified when launching the embeddable container, the <app> must be
omitted. However, you must use the # delimiter. For example,
Bean.#<module>#<bean>.ResourceRef.BindingName.

Table 35. Embeddable EJB container configuration properties for reference bindings. Use the embeddable EJB
container configuration properties for reference bindings.
Property Type Description

Bean.<app>#<module>#<ejb>.ResourceRef.BindingName.<ref> or
Interceptor.<app>#<module>#<interceptor>.ResourceRef.BindingName.<ref>

java.lang.String The JNDI string to use when the resource reference is
looked up or injected. This must be the JNDI name of
a configured data source.

Bean.<app>#<module>#<ejb>.EJBRef.BindingName.<ref-name> or
Interceptor.<app>#<module>#<interceptor>.EJBRef.BindingName.<ref>

java.lang.String The JNDI string to use when the EJB reference is
looked up or injected. This must be the java:global,
java:app, or java:module JNDI string of an EJB in the
embeddable EJB container.

Bean.<app>#<module>#<ejb>.EnvEntry.Value.<ref-name> or
Interceptor.<app>#<module>#<interceptor>.EnvEntry.Value.<ref>

java.lang.String The value to use when the environment entry is looked
up or injected. This property overrides the value
specified by env-entry-value. The value must be valid
for the type of the environment entry.

Bean.<app>#<module>#<ejb>.EnvEntry.BindingName.<ref> or
Interceptor.<app>#<module>#<interceptor>.EnvEntry.BindingName.<ref>

java.lang.String The JNDI string to use when the environment entry is
looked up or injected. This must be the java:global,
java:app, or java:module JNDI string of another
environment entry in the same embeddable EJB
container.

Bean.<app>#<module>#<ejb>.DataSource.BindingName.<ref> or
Interceptor.<app>#<module>#<interceptor>.DataSource.BindingName.<ref>

java.lang.String The JNDI string to use when the data source is looked
up or injected. This must either be the JNDI name of a
configured data source or the java:global, java:app, or
java:module JNDI string of another data source in the
same embeddable EJB container. Application
developers should use resource references rather than
looking up a data source directly. If an application is
coded to look up data sources directly, you can use
this property to override data source definitions
included in the application. See the information center
for more information about data source definitions.

Use the following properties to configure the bindings for an EJB with two references and an interceptor
with an environment entry:
Bean.#TestModule#TestBean.ResourceRef.BindingName.jdbc/dsref=env/jdbc/ds1
Bean.#TestModule#TestBean.EJBRef.BindingName.ejb/Cart=java:global/CartModule/CartBean
Interceptor.#TestModule#com.ibm.example.LoggerInterceptor.EnvEntry.Value.logFile=/tmp/output.log

Note: Use the following properties to override java:module/env/TestDataSource that is defined in an EJB
named TestBean in an EJB module named TestModule, with jdbc/MyDataSource that is defined in
embeddable properties:
Bean.#TestModule#TestBean.DataSource.BindingName.java\:module/env/TestDataSource=jdbc/MyDataSource

Table 36. Embeddable EJB container configuration properties for security. Use the embeddable EJB container
configuration properties for security.
Property Type Default value Description

com.ibm.websphere.securityEnabled java.lang.String false Determines whether security roles are checked. Valid values are false
(default) or true. If true, then security roles are checked; if false, then
security roles are not checked.

role.<role_name> java.lang.String Maps an EJB role to one or more users. The <role_name> is a role
assigned to a method, either through the annotation @RolesAllowed or
through the deployment descriptor <method-permission>. The value is a
string of comma-delimited user names, for example “bob, mary, john”.
The users in the list are allowed to run methods that require the
<role_name>.

role.runAs.<role_name> java.lang.String Maps one EJB role to one user. The <role_name> is a role assigned to
a bean or method, either through the annotation @RunAs or through
the deployment descriptor <run-as>. The value is a single user name.
The user name is used for any authorization that is required by the
bean while it is running.

Chapter 10. Developing EJB applications 359

Table 36. Embeddable EJB container configuration properties for security (continued). Use the embeddable EJB
container configuration properties for security.
Property Type Default value Description

user.invocation java.lang.String Defines the user that might be used for authorization when the bean is
invoked. The value is a single user name. The container checks that
this user is mapped to a role that is allowed to run any executed
method.

The following table contains configuration properties for the Local Transaction Containment (LTC) behavior.
For an explanation of LTC, read about local transaction containment. Each property is specific to a bean.

If an application name is not specified when launching the embeddable container, the <application_name>
must be omitted. However, you must use the # delimiter. For example,
Bean.#<module_name>#<bean_name>LocalTransaction.Resolver.

Table 37. Embeddable EJB container configuration properties for Local Transaction Containment. Use the
embeddable EJB container configuration properties for Local Transaction Containment.

Property Type
Default
value Description

Bean.<application_name>#<module_name>#<bean_name>.LocalTransaction.Resolver java.lang.String Application Determines the entity that is
responsible for local transaction
resolution. Valid values are
Application (default) or
ContainerAtBoundary.

Bean.<application_name>#<module_name>#<bean_name>.LocalTransaction.UnresolvedAction java.lang.String Rollback Determines the action taken for
unresolved local transactions.
Valid values are Rollback
(default) or Commit.

The following table contains configuration properties for XA behavior.

Table 38. Embeddable EJB configuration properties for XA. Use the embeddable EJB configuration properties for
XA.
Property Type Default value Description

com.ibm.websphere.tx.acceptHeuristicHazard java.lang.String false Specifies whether last participant support is enabled for all
modules. The default value is false.

com.ibm.websphere.tx.auditRecovery java.lang.String true Specifies whether recovery processing outputs audit
messages, which indicate XA resource and XID processing
during recovery. When no audit recovery is specified, only a
single recovery message is output along with the number of
transactions that are recovered, unless an error occurs.

com.ibm.websphere.tx.clientInactivityTimeout java.lang.String 0 Specifies the maximum duration, in seconds, between
transactional requests. Any period of client inactivity that
exceeds this timeout value results in the transaction being
rolled back. The default setting, 0, means that no limit exists.

com.ibm.websphere.tx.enableLoggingForHeuristicReporting java.lang.String false This property enables logging for heuristic reporting. If last
participant support is enabled, reporting of heuristic
outcomes that might occur when the server becomes
unavailable requires additional information to be written to
the transaction log. If enabled, one additional log write is
completed for any transaction that involves both one-phase
and two-phase commit resources. No additional records are
written for transactions that do not involve a one-phase
commit resource.

com.ibm.websphere.tx.heuristicRetryLimit java.lang.String 0 Specifies the number of times that the transaction service
retries a completion signal such as commit or rollback.
Retries occur after a transient exception from a resource
manager. The default value, 0, indicates no limit to the
number of retries.

com.ibm.websphere.tx.heuristicRetryWait java.lang.String 0 Specifies the number of seconds that the transaction service
waits before retrying a completion signal, such as commit or
rollback, after a transient exception from a resource
manager.

com.ibm.websphere.tx.LPSHeuristicCompletion java.lang.String ROLLBACK

(case insensitive)

The heuristic completion action to be taken by the
transaction service in a transaction with last participant
support when the outcome of the one-phase commit
resource is unknown. The values ROLLBACK or COMMIT
cause the two-phase commit resources to be completed
accordingly. The setting, MANUAL, means that the
transaction service takes no action and leave the two-phase
commit resources in-doubt. The default value is ROLLBACK.

360 Developing WebSphere applications

Table 38. Embeddable EJB configuration properties for XA (continued). Use the embeddable EJB configuration
properties for XA.
Property Type Default value Description

com.ibm.websphere.tx.maximumTransactionTimeout java.lang.String 300 Specifies, in seconds, the upper limit of the transaction
timeout value. This timeout value constrains the upper limit
of all other transaction timeout values.

com.ibm.websphere.tx.totalTranLifetimeTimeout java.lang.String 120 Specifies the default maximum time, in seconds, allowed for
a transaction before the transaction service initiates timeout.
Any transaction that does not begin completion processing
before this timeout occurs is rolled back.

com.ibm.websphere.tx.tranLogDirectory java.lang.String profiles\server
name\tranlog

Specifies the name of a directory for this server where the
transaction service stores log files for recovery.

com.ibm.websphere.tx.tranLogSize java.lang.String 1024 Specifies the size, in kilobytes, of transaction log files. The
minimum file size is 64KB. The default value sets the file
size to 1MB.

Configuring EJB 3.1 session bean methods to be asynchronous
Use this task to configure Enterprise JavaBeans (EJB) 3.1 session bean methods to run asynchronously.
You can make some or all of your bean methods asynchronous.

Before you begin

Attention: In EJB 3.1 modules, you can set one or more session bean methods to be asynchronous,
broadening parallel processing in your application.

v If you are not already familiar with EJB 3.1 asynchronous methods, read about EJB 3.1 asynchronous
methods, client programming model for EJB asynchronous methods, bean implementation programming
model for EJB asynchronous methods, and EJB container work manager for asynchronous methods.
The topics provide an overview of EJB 3.1 asynchronous methods, describe the client and bean
implementation programming models, and discuss the work manager that the EJB container uses to
dispatch asynchronous methods.

v Develop a new EJB 3.1 session bean for your application, or change an existing session bean so that it
conforms to the EJB 3.1 programming model requirements for asynchronous methods. For general
information, see information about developing enterprise beans.

About this task

After you have developed a session bean, complete the following steps to make one or more of the bean
methods asynchronous.

Procedure
1. Specify one or more methods of the bean implementation class as asynchronous. This can be

accomplished by adding @Asynchronous annotations in your bean source code, by adding
<async-method> stanzas in your module deployment descriptor, or by adding a combination of both
annotations and deployment descriptor stanzas. You can apply the @Asynchronous annotation or its
superclasses only, to your bean implementation class. It cannot be applied to interface classes. Also,
when the annotation is applied at the class level, all methods of that class are asynchronous. Likewise,
all methods of a bean can be configured as asynchronous by applying "*" as the <method-name> in
your deployment descriptor.

See the following examples of applying the @Asynchronous annotation:

v Apply the @Asynchronous annotation to one method of a bean with a no-interface view. In this
example, the m1 method is synchronous and the m2 method is asynchronous.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code

Chapter 10. Developing EJB applications 361

}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

Important: The javax.ejb.AsyncResult<V> object is a convenience implementation of the Future<V>
interface. See the API documentation for more details.

v Apply the @Asynchronous annotation to the class level of a bean class. In this example, both the
m1 method and the m2 method are asynchronous on this no-interface view bean.
@Stateless @LocalBean @Asynchronouspublic class MyLocalBean {

public void m1() {

// method code
}

public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

v Apply the @Asynchronous annotation to one method of a bean implementation class. In this
example, the m1 method is synchronous and the m2 method is asynchronous. This example also
demonstrates how the return types might differ between the business interface and the
implementation class.
public interface MyIntf {

public void m1();

public Future<Integer> m2();

}

@Stateless @Local(MyIntf.class)
public class MyBean {

public void m1() {

// method code
}

@Asynchronous
public Integer m2() {

// method code

return new Integer(3);
}

}

v Apply the @Asynchronous annotation to the class level of a bean implementation class. In this
example, both the m1 method and the m2 method are asynchronous.
@Stateless @Local(MyIntf.class) @Asynchronous
public class MyBean {

362 Developing WebSphere applications

public void m1() {

// method code
}

public Integer m2() {

// method code

return new Integer(8);
}

}

See the following examples of modifying the EJB module deployment descriptor, ejb-jar.xml:

v In this example all business methods of the FullAyncBean bean implementation class and its
superclasses are configured as asynchronous with the wildcard (*) method-name element.
<session>

<display-name>FullAsyncEJB</display-name>
<ejb-name>FullAsyncBean</ejb-name>
<business-local>com.ibm.sample.async.ejb.FullAsyncIntf</business-local>
<ejb-class>com.ibm.sample.async.ejb.FullAsyncBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>*</method-name>
</async-method>

</session>

v In this example only the specified methods and signatures -- all methods named m1 and the method
m2 with a single String parameter -- are configured as asynchronous on the PartiallyAsyncBean
bean implementation class.
<session>

<display-name>PartiallyAsyncEJB</display-name>
<ejb-name>PartiallyAsyncEJB</ejb-name>
<business-local>com.ibm.sample.async.ejb.PartiallyAsyncIntf</business-local>
<ejb-class>com.ibm.sample.async.ejb.PartiallyAsyncBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>
<async-method>

<method-name>m2</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</async-method>
</session>

See the following examples of applying a combination of the @Asynchronous annotation in the bean
source code and modifying the EJB module deployment descriptor, ejb-jar.xml:

v In this example the @Asynchronous annotation configures method m2 to be asynchronous, and the
deployment descriptor configures method m1 to also be an asynchronous method.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code
}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

Chapter 10. Developing EJB applications 363

<session>
<display-name>MyLocalEJB</display-name>
<ejb-name>MyLocalEJB</ejb-name>
<local-bean/>
<ejb-class>com.ibm.sample.async.ejb.MyLocalBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>

</session>

v In this example the @Asynchronous annotation for method m2 is ignored because the deployment
descriptor header contains the metadata-complete="true" flag. This flag causes configuration
information to only be taken from the deployment descriptor elements. The result is that only method
m1 of the MyLocalBean implementation is configured to be asynchronous.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code
}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

<ejb-jar id="ejb-jar_ID" ...
metadata-complete="true" version="3.1">
...
<session>

<display-name>MyLocalEJB</display-name>
<ejb-name>MyLocalEJB</ejb-name>
<local-bean/>
<ejb-class>com.ibm.sample.async.ejb.MyLocalBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>

</session>
...
</ejb-jar>

2. Verify that the transaction attribute applied to any asynchronous method is either REQUIRED,
REQUIRES_NEW, or NOT_SUPPORTED. These transaction attribute types are the only transaction
attribute types supported on asynchronous methods. You can complete this action by either applying
@TransactionAttribute annotations in the bean source code, by adding <container-transaction> stanzas
in the ejb-jar.xml file, or by adding a combination of both annotations and <container-transaction>
stanzas in the deployment descriptor.

See the following example of setting the transaction attribute of an asynchronous method using
annotations:
@Singleton @LocalBean
public class FullAsyncBean {
@Asynchronous
@TransactionAttribute(REQUIRED) // the default; specified for illustration
public void m1() {
// ...
}

@Asynchronous

364 Developing WebSphere applications

@TransactionAttribute(NOT_SUPPORTED)
public void m2() {
// ...
}

@Asynchronous
@TransactionAttribute(REQUIRES_NEW)
public void m3() {
// ...
}

// ...
}

See the following example of setting the transaction attribute of an asynchronous method using the
XML deployment descriptor:

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>FullAsyncBean</ejb-name>
<method-name>m1</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m2</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m3</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
</assembly-descriptor>

See the following example of using a combination of both annotations and the XML deployment
descriptor to configure the transaction attributes of a bean. In this example the deployment descriptor
stanzas for method m3 override the class level annotation. The result is that method m3 is configured
as REQUIRES_NEW, while methods m1 and m2 are configured as REQUIRED:
@Singleton @LocalBean
@Asynchronous
@TransactionAttribute(REQUIRED) // the default; specified for illustration
public class FullAsyncBean {

public void m1() {
// ...
}

public void m2() {
// ...
}

public void m3() {
// ...
}

// ...
}

Chapter 10. Developing EJB applications 365

<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m3</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

</assembly-descriptor>

What to do next

Continue to develop additional components for your application, or if you have finished all components
required by your application, assemble and deploy your application. See information about assembling
EJB modules and deploying EJB modules.

When you run your application, if it fails when it first attempts to use a session bean that has an
asynchronous method, a configuration error might exist. Check the system log file for configuration error
messages.

Analyze the trace data or forward it to the appropriate organization for analysis. EJB asynchronous method
scheduling and invocation are traced in the EJB container trace. For instructions on enabling this trace see
the information about enabling trace on a running server. To analyze trace data, see information about
trace output.

Configuring remote asynchronous EJB method results
Use this task to set the maximum number of unclaimed results for a remote asynchronous Enterprise
JavaBeans (EJB) method call.

About this task

When a remote asynchronous EJB method is called, the server must save the results of the remote
method invocation until the client claims the results using the Future.get method. If the client never claims
the result, unclaimed results can accumulate in the server and use memory. To avoid using too much
memory, the server limits the number of unclaimed results to 1000 by default. If the number of unclaimed
results approaches or exceeds the limit, the server issues the CNTR0328W warning.

Procedure
1. Optional: Open the administrative console.

2. Select Servers.

3. Select Server Types.

4. Select WebSphere application servers.

5. Select the server that you want to configure.

6. From Server Infrastructure, select Java and Process Management Process definition.

7. From Additional Properties, select Java Virtual Machine .

8. In the Additional Properties area, select Custom Properties .

9. On the Application servers page, click New to specify an arbitrary name and value pair for your
server.

10. In the Name entry field, type: com.ibm.websphere.ejbcontainer.maxUnclaimedAsyncResults

11. In the Value entry field, enter the wanted maximum number of unclaimed results. The special value 0
is interpreted as unlimited. The default value is 1000.

12. Click OK.

366 Developing WebSphere applications

13. Save the configuration.

14. Restart the server.

Results

The maximum number of unclaimed asynchronous EJB method results for all EJBs is set.

Configuring EJB asynchronous methods using scripting
Use wsadmin scripting to configure Enterprise JavaBeans (EJB) asynchronous methods.

Before you begin

You have working knowledge of Jacl or Jython and wsadmin scripting.

About this task

The behavior for EJB asynchronous methods is configured using the EJBAsync configuration object in the
server.xml file. If you are using EJB asynchronous methods, then you might must update the EJBAsync
configuration object to obtain the best settings for your environment. The EJBAsync configuration object
exists at the server level. This means that each server in a multiple-server environment has its own
EJBAsync configuration object and must be configured individually.

Procedure
1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the attributes on the EJBAsync configuration object that must be updated. You can update
the following attributes on the EJBAsync configuration object:

Table 39. Attributes on EJBAsync configuration object. This table describes the attributes on the EJBAsync
configuration object.
Attribute Description

maxThreads Specifies the maximum number of threads that are used in the execution of asynchronous EJB methods.

The default value is 5.

workReqQSize Specifies the size of the work request queue. The work request queue is a buffer that holds requested
asynchronous methods until a thread is available to run them on.

The sum of the maxThreads and the workReqQSize attributes is the total number of allowable in progress
method requests.

For example, if the maxThreads is set to 5 threads, and the workReqQSize is set to 50, then the total number of
allowable in-progress method requests is 55.

The default value is 0, indicating that the queue size is managed by the runtime environment. The run time
currently uses the larger of 20 and maxThreads.

workReqQFullAction Specifies the action taken when the thread pool is exhausted, and work request queue is full.

If set to 1, an exception occurs instead of waiting for a thread, or a place in the queue, to become available.

If set to 0, the thread that is requesting the asynchronous method execution waits until a thread, or place in the
queue, becomes available.

The default value is 0.

customWorkManagerJNDIName Specifies the Java Naming and Directory Interface (JNDI) name used to look up the custom defined work
manager in the namespace.

The default value is null.

Chapter 10. Developing EJB applications 367

Table 39. Attributes on EJBAsync configuration object (continued). This table describes the attributes on the
EJBAsync configuration object.
Attribute Description

useCustomDefinedWM Specifies whether a custom-defined work manager instance is used, or the default internal work manager
instance.

When the useCustomDefinedWM attribute is set to true, this means that a custom work manager instance is
used. In this case, the customWorkManagerJNDIName attribute must be set, and all other attributes are ignored.

When the useCustomDefinedWM attribute is set to false, the default, internal work manager instance is used. In
this case, the customWorkManagerJNDIName attribute is ignored, and all other attributes are used to help
configure the default work manager instance.

The default value is false.

futureTimeout Specifies the amount of time, in seconds, that the server-side future object, which is created as a result of
running a fire-and-return asynchronous method, is available. The server-side future object is not valid after you
call the get() method, and a value is returned to the remote client. To avoid memory leaks, you must call the
get() method on the future object, or specify a positive and non-zero future duration value.

A future duration value of zero indicates that the future object never times out.

The default value is 86400, which means that the future object expires and gets cleaned up by the application
server after 24 hours and is no longer available.

A org.omg.CORBA.OBJECT_NOT_EXIST exception is thrown when a call to the get() method is made after the
future object expires.
Note: This value is only applicable for clients that call the enterprise bean using a remote business interface;
the value is not used for local business interface or no-interface views. When the asynchronous work has
completed, the server sets an alarm for the duration specified to the server-side future object. When the alarm is
activated, the server releases all the resources associated with the future object, making it unavailable to the
client. If the client calls the get() method on the future object before the duration amount of time, the alarm is
canceled and all the resources associated with the future object are released.
Note: This attribute might affect the number of future objects on the server. Use the AsynchFutureObjectCount
PMI statistic to determine the count of open FutureObjects on the server, which can help you determine whether
applications are accumulating future objects without calling the get() method on those objects. See the topic,
Enterprise bean counters, for more information.

3. Obtain a reference to the correct EJBAsync configuration object and store it in a variable.

Using Jacl:
set async [$AdminConfig list EJBAsync]

Using Jython:
async = AdminConfig.list(’EJBAsync’)

If you have a multiple-server environment, then multiple EJBAsync configuration objects are returned.
Programmatically loop over the list and select the EJBAsync configuration object that corresponds to
the server you must update.

In a multiple-server environment, as an alternative to programmatically looping over the list of
EJBAsync objects, you can manually select the correct EJBAsync object and copy and paste it into
your variable.

For example, the output of the AdminConfig list command is:

(cells/myNode04Cell/nodes/myCellManager01/servers/dmgr|server.xml#EJBAsync_1)(cells/
myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)

You can copy and paste the reference for the needed EJBAsync object into your variable.

Using Jacl:
set async "(cells/myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)"

Using Jython:
async = "(cells/myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)"

4. Update attributes on the EJBAsync configuration object.

Update attributes on the EJBAsync configuration object using the AdminConfig modify command. As
input to the command, specify the EJBAsync reference that you obtained in the previous step, and a
list of attributeName and attributeValue combinations.

To set a max thread count of 10 threads, a queue size of 15, and a futureTimeout of 3600 seconds:

368 Developing WebSphere applications

Using Jacl:
set update "{maxThreads 10} {workReqQSize 15} {futureTimeout 3600}"
$AdminConfig modify $async $update

Using Jython:
AdminConfig.modify(async, ’[[maxThreads "10"] [workReqQSize "15"] [futureTimeout "3600"]]’)

5. Save the configuration changes.

Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

Results

As a result of your updates, the EJBAsync configuration object now reflects the attribute values that you
specified. Restart your server so that the changes are updated on the server.

EJB 3.1 asynchronous methods
The Enterprise JavaBeans™ (EJB) 3.1 specification includes functionality that application developers can
use to configure EJB asynchronous methods, which are run on a separate thread from the caller thread.

This mechanism decouples the client invocation request from the actual method execution. The client
thread can continue doing other work while the EJB method is run on a separate thread, as directed by
the EJB container.

Later, the client might want to examine the result of the asynchronous method execution, which is
sometimes referred to as fire and return. In this case, the EJB container returns to the client an object that
implements the java.util.concurrent.Future<V> interface. The client can use this object to check status,
results, or exceptions from the asynchronous method invocation. Alternatively, asynchronous methods
might not return any results, which is sometimes referred to as fire and forget.

For more details, see information about how to use EJB asynchronous methods in your application.

Here are some example usage scenarios for EJB asynchronous methods:

v An application has multiple, independent, pieces of work that all must be executed to produce a final
result. For example, suppose that a travel reservation consists of three parts:

1. Making a plane reservation.

2. Making a rental car reservation.

3. Making a hotel reservation.

In this example, a client can use EJB asynchronous methods to process the reservation requests in
parallel. After all three reservation methods run, the client aggregates the results into a complete travel
reservation.

v An application has multiple, independent, pieces of work that it must run, and the application is not
concerned about the results of this work. For example, suppose that a retailer has four branch stores,
and the home office wants to print a sales report from each store when the business day ends. The
application developer can use EJB asynchronous methods as a batch processing mechanism. Multiple
EJB method calls can be used to send a batch of get sales report requests, one to each branch store.

In this example, presumably the application does not need to check for results from these method calls.
Perhaps this is handled by the home office employee who picks up the sales reports from a printer the
next morning. Suppose that one of the branch stores failed to provide the requested report. The person
collecting the reports can decide if that was expected, for example, the branch store was closed for
renovations, or if the get sales report request must be reissued to that branch store.

Chapter 10. Developing EJB applications 369

Developing client code that calls EJB asynchronous methods
You can use the sample code within this topic to develop client code that calls EJB asynchronous
methods.

Before you begin

This task assumes that the following interface and bean implementation classes exist:
public interface AcmeRemoteInterface {

void fireAndForgetMethod ();
Future<Integer> methodWithResults() throws AcmeException1, AcmeException2;

}

@Stateless
@Remote(AcmeRemoteInterface.class)
@Asynchronous
public class AcmeAsyncBean {

public void fireAndForgetMethod () {
// do non-critical work

}

public Integer methodWithResults() {
Integer result;
// do work, and then return results
return result;

}
}

About this task

Procedure
v Create client code that calls an asynchronous method where no results are returned, sometimes called

a fire and forget method. This type of asynchronous method cannot result in application exceptions.
However, system exceptions can occur that must be resolved.
@EJB AcmeRemoteInterface myAsyncBean;

try {
myAsyncBean.fireAndForgetMethod();

} catch (EJBException ejbex) {
// Asynchronous method never dispatched, handle system error

}

v Create client code that calls an asynchronous method where results are returned.

– Create client code that calls an asynchronous method where the client waits for up to 5 seconds (the
client thread is blocked during this time window) to receive results. Exception handling requirements
are the same as in the previous step. For example:
myResult = myFutureResult.get(5, TimeUnit.SECONDS);

– Create client code that calls an asynchronous method where results are not immediately obtained.
After the method has executed, the client retrieves the results. This scheme prevents the client
thread from blocking, and the client is free to execute other work while polling for results. Exception
handling requirements are the same as in the previous steps. In this example, the client periodically
polls the Future<V> object to determine when the asynchronous method has finished executing. For
example:
while (!myFutureResult.isDone()) {
// Execute other work while waiting for the asynchronous method to complete.
}

// This call is guaranteed not to block because isDone returned true.
myResult = myFutureResult.get();

370 Developing WebSphere applications

v Create client code to handle application exceptions. The client code calls an asynchronous method
which returns an application exception in the Future<V> object. The following example demonstrates the
exception handling code required to determine which application exception occurred.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer>>myFutureResult = null;
Integer myResult = null;

try {
myFutureResult = myAsyncBean.methodWithResults();

} catch (EJBException ejbx) {
// Asynchronous method never dispatched, handle exception

}

// Method is eventually dispatched. Wait for results.

try {
myResult = myFutureResult.get();

} catch (ExecutionException ex) {
// Determine which application exception that occurred during the
// asynchronous method call.
Throwable theCause = ex.getCause();
if (theCause instanceof AcmeException1) {

// Handle AcmeException1
} else if (theCause instanceof AcmeException2) {

// Handle AcmeException2
} else {

// Handle other causes.
}

} catch (...) {
// Handle other exception.

}

v Create client code to identify system exceptions thrown by asynchronous method call during execution.
The following example demonstrates the exception handling code required to determine if a system
exception occurred.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer>>myFutureResult = null;
Integer myResult = null;

try {
myFutureResult = myAsyncBean.methodWithResults();

} catch (EJBException ejbx) {
// Asynchronous method was not dispatched; handle exception.

}

// Method will eventually be dispatched so block now and wait for results

try {
myResult = myFutureResult.get();

} catch (ExecutionException ex) {
// Find the exception class that occurred during the asynchronous method
Throwable theCause = ex.getCause();
if (theCause instanceof EJBException) {

// Handle the EJBException that might be wrapping a system exception
// which occurred during the asynchronous method execution.
Throwable theRootCause = theCause.getCause();
if (theRootCause != null) {

// Handle the system exception
}

} else ... // handle other causes
} catch (...) {

// handle other exceptions
}

Chapter 10. Developing EJB applications 371

v Optionally create client code to cancel an asynchronous method call. If this attempt is successful, then
the Future.isCancelled method returns true and the Future.get methods result in the
CancellationException. The following example demonstrates the code required to cancel an
asynchronous method call.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer> myFutureResult = myFutureResult.methodWithResults();
Integer myResult;

if (myFutureResult.cancel(true)) {
// Asynchronous method was not dispatched.

} else {
// Asynchronous method already started executing. The bean can still check
// whether an attempt was made to cancel the call.

}

if (myFutureResult.isCancelled()) {
// Asynchronous method call did not start executing because the cancel
// method returned true in a previous line of the example.

}

try {
myResult = myFutureResult.get();

} catch (CancellationException ex) {
// Handle the exception that occurs because the cancel method returned true
// in a previous line of the example.

}

v Optionally create bean code to check whether a client attempted to cancel the asynchronous method
call. The following example demonstrates the bean code required to check whether the client attempted
to cancel the asynchronous method call. If the client attempted to cancel the work, then the
SessionContext.wasCancelCalled method returns true, and the bean code can avoid unnecessary work.
@Resource SessionContext myContext;

public Future<Integer> methodWithResults() {
for (int i = 0; i < 3; i++) {

// Do one piece of long-running work.

// Before continuing, check whether the client attempted to cancel this work.
if (myContext.wasCancelCalled()) {

throw new AcmeCancelCalledException();
}

}

// ...
}

v Pass back multiple output values from the asynchronous method invocation.

In some cases, a method must pass back multiple pieces of data.

One way to accomplish this task is by using pass-by-reference semantics. In this approach, an object is
passed into the method as a parameter, updated by the method, and then the updated value is
available to the client. This approach does work for asynchronous methods, but it is not the optimal
pattern.

To return multiple pieces of data, create a wrapper inside the Future object that is returned by the
method. In this approach, a wrapper object is defined that contains instance variables which hold the
different pieces of data that must be returned. The asynchronous method sets these pieces of data into
the wrapper object and returns it, and the client code then retrieves this data from the Future object.

Embedding multiple pieces of data inside the wrapper object is a local or remote, transparent pattern,
that identifies exactly when the results are available. In contrast, the traditional pass-by-reference
technique does not give the client an easy way to determine when the results are available. The passed

372 Developing WebSphere applications

in object is not updated until the asynchronous method runs, and the client cannot determine when that
has occurred, other than by interrogating the Future object using the Future.isDone() or Future.get()
methods.
// This is the result object that is returned from the asynchronous method.
// This object is wrappered in a Future object, and it contains the two pieces of data
// that must be returned from the method.
class ResultObject {

public Boolean myResult;
pubilc String myInfo;

}

// This is the asynchronous method code that gets the results and returns them.
@Asynchronous
public Future<ResultObject> asyncMethod1(Object someInputData) {

boolean result = doSomeStuff();
String info = doSomeMoreStuff();
ResultObject theResult = new ResultObject();
theResult.myResult = result;
theResult.myInfo = info;
return new javax.ejb.AsyncResult<ResultObject>(theResult);

}

// This is the client code that obtains the ResultObject, and then extracts the needed data from it.
Future<ResultObject> myFutureResult = myBeanRef.asyncMethod1(someInputData);
ResultObject theResult = myFutureResult.get();
boolean didItWork = theResult.myResult;
String explanation = theResult.myInfo;

Client programming model for EJB asynchronous methods
As documented in the Enterprise JavaBeans (EJB) 3.1 specification, you can invoke EJB asynchronous
methods through the following interface types: local business, remote business, or no-interface view.
Invocations through an EJB 2.1 client view, or a web services view, are not allowed.

The interface specification for an EJB asynchronous method must have a return type of void, or of type
java.util.concurrent.Future <V>. No other return types are supported on the interface. As documented in
the EJB 3.1 specification, the bean implementation method must have the same return type.

When your application does not need to examine the result of an EJB asynchronous method call, use an
interface signature with a return type of void. Conversely, when your application needs to examine the
result of an EJB asynchronous method call, use an interface with a return type of Future<V>.

In addition to considering whether results are examined, clients must be prepared to handle exceptions. As
documented in the EJB 3.1 specification, the client receives an exception if the container is unable to
allocate the internal resources required to schedule the asynchronous method for execution. In this case,
the client can assume that the asynchronous method does not run. Also, exceptions can occur while the
asynchronous method is running on the non-client thread.

Important: When an asynchronous method has a return type of void, the client has no mechanism to
retrieve exception information. The EJB container logs an informational message in this case. However, for
asynchronous methods that have a return type of Future<V>, the EJB container saves exception
information in the Future<V> object. In this case, the get methods associated with the Future<V> object
produce the exception, ExecutionException. The client must invoke the getCause method on the
ExecutionException to retrieve details about the exception.

Clients must know that the get methods on the Future<V> object block the client thread if the
asynchronous method has not finished running when the get method is called. If clients do not want this
behavior, they can poll the Future<V> object to determine when the asynchronous method is finished by
periodically calling the isDone method.

Finally, clients can use the Future<V> object to cancel an asynchronous method call. If you attempt to
cancel an asynchronous method call while it is waiting to run, then it does not run, and other interactions

Chapter 10. Developing EJB applications 373

with the Future<V> object reflect the cancellation. Otherwise, if you attempt to cancel an asynchronous
method after it has started running, then it continues to run, but the bean method can still determine that
the client attempted to cancel the call and respond with an application-specific return value or exception.

Another alternative is for the client to use the get method, which includes a timeout parameter. This get
method only waits for results during the specified timeout period. The get method returns to the client as
soon as the method has finished running, or when the timeout expires, even if the method has not finished
running.

Nested asynchronous calls are supported; an asynchronous method call can be made from within an
asynchronous method.

Note: When nesting asynchronous method calls, take into consideration the work manager settings to
allow enough resources (maximum number of threads and work request queue size). For more
information, read about the EJB container work manager for asynchronous methods.

Read about Developing client code that calls EJB asynchronous methods.

Bean implementation programming model for EJB asynchronous
methods
You can configure asynchronous methods on session beans. However, as documented in the Enterprise
JavaBeans (EJB) 3.1 specification, asynchronous methods must not be configured on entity beans, or
message-driven beans.

Implementations of asynchronous methods must have a return type of void or of type,
java.util.concurrent.Future <V>. No other return types are supported on the implementation. As
documented in the EJB 3.1 specification, the bean implementation method must have the same return
type as the interface specification. For more information, read about the client programming model for EJB
asynchronous methods.

Nested asynchronous calls are supported; an asynchronous method call can be made from within an
asynchronous method.

Note: When nesting asynchronous method calls, take into consideration the work manager settings to
allow enough resources (maximum number of threads and work request queue size). For more
information, read about the work manager for asynchronous methods.

Bean implementers must consider how long their asynchronous methods take to run because each
request is invoked on a different thread. Another important consideration is the number of asynchronous
method requests that an application is likely to start in parallel. These issues are important because the
number of threads that are allocated to run asynchronous methods in the server process is a limited
resource. Also, the buffer space that is allocated in the server process to queue asynchronous method
requests, during times that all the allocated threads are busy, is a limited resource. For more information,
read about the client programming model for EJB asynchronous methods.

Finally, bean implementers must follow the EJB 3.1 specification restrictions regarding the transaction
attribute settings that are allowed on EJB asynchronous methods. For more information, read about the
EJB container work manager for asynchronous methods.

EJB container work manager for asynchronous methods
The default work manager used by the Enterprise JavaBeans (EJB) container to dispatch asynchronous
methods is not configurable. The following configuration information is provided to help you understand the
limits imposed by this work manager. Remember, one EJB container work manager exists for all
asynchronous methods running in the application server process.

374 Developing WebSphere applications

The EJB container work manager has the following thread pool settings:

v Minimum number of threads = 1

v Maximum number of threads = 5

v Work request queue size = 0 work objects

v Action taken when buffer overflows = Block

v Remote Future object duration = 86400 seconds

Note: Work request queue size is the maximum number of asynchronous method requests that can be
queued while waiting for a thread to become available. If you specify a value of 0 (the default) or
blank is specified, the queue size is managed by the run time.

Additionally, the EJB container work manager has configuration settings that specify which service
contexts are propagated from the client thread to the work manager thread that runs the asynchronous
method. The global transaction service context and the activity session service context are not propagated.
The security context, and all of the WebSphere extension contexts, such as work area, internationalization,
and so on, are propagated for use on the execution thread.

EJB asynchronous methods settings
Use this page to modify settings on the work manager used in support of Enterprise JavaBeans
asynchronous methods.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > EJB Container Settings > EJB asynchronous method invocation settings

The Use internal work manager instance and Use custom work manager instance options are mutually
exclusive.

Use this work manager for asynchronous methods
Specifies a default work manager instance.

The product provides an internal work manager instance for support of EJB asynchronous methods. The
internal work manager instance is pre-configured for basic EJB asynchronous method functionality, and
provides limited configuration settings.

Clicking this button specifies that you want to use the internal work manager instance to manage your
asynchronous method invocations. Selecting this choice precludes the Use custom work manager instance
option.

The Use internal work manager instance option is the default. Alternatively, you can use a custom-defined
work manager instance.

Use custom work manager instance
Specifies a custom-defined work manager instance.

You can provide a more advanced configuration for EJB asynchronous methods by defining a custom work
manager instance.

Selecting this choice allows you to use a work manager instance that you have already defined and
configured in a way that is optimal for your environment.

Selecting this choice precludes the Use internal work manager instance option.

Chapter 10. Developing EJB applications 375

Maximum number of threads
Specifies the maximum number of threads that are used in the execution of asynchronous EJB methods.
The default is 5.

Work request queue size
Specifies the size of the work request queue. The work request queue is a buffer that holds requested that
asynchronous methods until a thread is available to run them on. The default is 0, indicating that the initial
size is half way between the minimum and maximum number of threads.

The sum of the maximum number of threads and the work request queue size attributes is the total
number of allowable in-progress method requests.

For example, if the maximum number of threads is set to five threads, and the work request queue size is
set to 50, then the total number of allowable in-progress method requests is 55.

The default value is 0, indicating that the queue size is managed by the runtime environment. The runtime
currently uses the larger of 20 and maxThreads.

Work request queue full action
Specifies the action taken when the thread pool is exhausted, and the work request queue is full. The
default is BLOCK.

If set to FAIL, an exception occurs instead of waiting for a thread, or a place in the queue, to become
available.

You might want to use this option during development to help identify errors caused by long-running
asynchronous methods. You might also use it to help determine the number of threads and queue size
that should be configured.

If set to BLOCK, the thread that is requesting that the asynchronous method execution waits until a thread,
or a place in the queue, becomes available.

Work Manager JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name used to look up the custom-defined work
manager in the namespace.

Remote future object duration
Specifies the amount of time that the server retains the future object of each fire-and-return-results
asynchronous method call. If an application does not retrieve the results within the specified period of time,
the server purges the results of that method call to prevent memory leakage and a potential OutOfMemory
exception. You can specify 0 to never purge the objects; however, specifying a zero value means that the
future object never times out and you disable protection from incorrectly written programs that might cause
the referenced OutOfMemory exception. The default value is 86400 seconds (24 hours).

Note: If you call the get() or the get(time) method on the future object, then you might decrease
performance because blocking can occur until either the work is done or until the specified time has
passed. Therefore, to avoid blocking on the get(..) methods, call the isDone() method, which returns
immediately. Then, call the get() method after the isDone() method returns true.

Note: This value is only applicable for clients that call the enterprise bean using a remote business
interface, the value is not used for local business interface or no-interface views. When the
asynchronous work has completed, the server sets an alarm for the duration specified to the
server-side future object. When the alarm is activated, the server releases all the resources
associated with the future object, making it unavailable to the client. If the client calls the get()
method on the future object before the duration amount of time, the alarm is canceled and all the
resources associated with the future object are released.

376 Developing WebSphere applications

Developing session beans

Configuring EJB 3.1 session bean methods to be asynchronous
Use this task to configure Enterprise JavaBeans (EJB) 3.1 session bean methods to run asynchronously.
You can make some or all of your bean methods asynchronous.

Before you begin

Attention: In EJB 3.1 modules, you can set one or more session bean methods to be asynchronous,
broadening parallel processing in your application.

v If you are not already familiar with EJB 3.1 asynchronous methods, read about EJB 3.1 asynchronous
methods, client programming model for EJB asynchronous methods, bean implementation programming
model for EJB asynchronous methods, and EJB container work manager for asynchronous methods.
The topics provide an overview of EJB 3.1 asynchronous methods, describe the client and bean
implementation programming models, and discuss the work manager that the EJB container uses to
dispatch asynchronous methods.

v Develop a new EJB 3.1 session bean for your application, or change an existing session bean so that it
conforms to the EJB 3.1 programming model requirements for asynchronous methods. For general
information, see information about developing enterprise beans.

About this task

After you have developed a session bean, complete the following steps to make one or more of the bean
methods asynchronous.

Procedure
1. Specify one or more methods of the bean implementation class as asynchronous. This can be

accomplished by adding @Asynchronous annotations in your bean source code, by adding
<async-method> stanzas in your module deployment descriptor, or by adding a combination of both
annotations and deployment descriptor stanzas. You can apply the @Asynchronous annotation or its
superclasses only, to your bean implementation class. It cannot be applied to interface classes. Also,
when the annotation is applied at the class level, all methods of that class are asynchronous. Likewise,
all methods of a bean can be configured as asynchronous by applying "*" as the <method-name> in
your deployment descriptor.

See the following examples of applying the @Asynchronous annotation:

v Apply the @Asynchronous annotation to one method of a bean with a no-interface view. In this
example, the m1 method is synchronous and the m2 method is asynchronous.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code
}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

Important: The javax.ejb.AsyncResult<V> object is a convenience implementation of the Future<V>
interface. See the API documentation for more details.

Chapter 10. Developing EJB applications 377

v Apply the @Asynchronous annotation to the class level of a bean class. In this example, both the
m1 method and the m2 method are asynchronous on this no-interface view bean.
@Stateless @LocalBean @Asynchronouspublic class MyLocalBean {

public void m1() {

// method code
}

public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

v Apply the @Asynchronous annotation to one method of a bean implementation class. In this
example, the m1 method is synchronous and the m2 method is asynchronous. This example also
demonstrates how the return types might differ between the business interface and the
implementation class.
public interface MyIntf {

public void m1();

public Future<Integer> m2();

}

@Stateless @Local(MyIntf.class)
public class MyBean {

public void m1() {

// method code
}

@Asynchronous
public Integer m2() {

// method code

return new Integer(3);
}

}

v Apply the @Asynchronous annotation to the class level of a bean implementation class. In this
example, both the m1 method and the m2 method are asynchronous.
@Stateless @Local(MyIntf.class) @Asynchronous
public class MyBean {

public void m1() {

// method code
}

public Integer m2() {

// method code

return new Integer(8);
}

}

See the following examples of modifying the EJB module deployment descriptor, ejb-jar.xml:

378 Developing WebSphere applications

v In this example all business methods of the FullAyncBean bean implementation class and its
superclasses are configured as asynchronous with the wildcard (*) method-name element.
<session>

<display-name>FullAsyncEJB</display-name>
<ejb-name>FullAsyncBean</ejb-name>
<business-local>com.ibm.sample.async.ejb.FullAsyncIntf</business-local>
<ejb-class>com.ibm.sample.async.ejb.FullAsyncBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>*</method-name>
</async-method>

</session>

v In this example only the specified methods and signatures -- all methods named m1 and the method
m2 with a single String parameter -- are configured as asynchronous on the PartiallyAsyncBean
bean implementation class.
<session>

<display-name>PartiallyAsyncEJB</display-name>
<ejb-name>PartiallyAsyncEJB</ejb-name>
<business-local>com.ibm.sample.async.ejb.PartiallyAsyncIntf</business-local>
<ejb-class>com.ibm.sample.async.ejb.PartiallyAsyncBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>
<async-method>

<method-name>m2</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</async-method>
</session>

See the following examples of applying a combination of the @Asynchronous annotation in the bean
source code and modifying the EJB module deployment descriptor, ejb-jar.xml:

v In this example the @Asynchronous annotation configures method m2 to be asynchronous, and the
deployment descriptor configures method m1 to also be an asynchronous method.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code
}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

<session>
<display-name>MyLocalEJB</display-name>
<ejb-name>MyLocalEJB</ejb-name>
<local-bean/>
<ejb-class>com.ibm.sample.async.ejb.MyLocalBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>

</session>

v In this example the @Asynchronous annotation for method m2 is ignored because the deployment
descriptor header contains the metadata-complete="true" flag. This flag causes configuration

Chapter 10. Developing EJB applications 379

information to only be taken from the deployment descriptor elements. The result is that only method
m1 of the MyLocalBean implementation is configured to be asynchronous.
@Stateless @LocalBean
public class MyLocalBean {

public void m1() {

// method code
}

@Asynchronous
public Future<String> m2() {

// method code

return new javax.ejb.AsyncResult("Hello, Async World!");
}

}

<ejb-jar id="ejb-jar_ID" ...
metadata-complete="true" version="3.1">
...
<session>

<display-name>MyLocalEJB</display-name>
<ejb-name>MyLocalEJB</ejb-name>
<local-bean/>
<ejb-class>com.ibm.sample.async.ejb.MyLocalBean</ejb-class>
<session-type>Stateless</session-type> <async-method>

<method-name>m1</method-name>
</async-method>

</session>
...
</ejb-jar>

2. Verify that the transaction attribute applied to any asynchronous method is either REQUIRED,
REQUIRES_NEW, or NOT_SUPPORTED. These transaction attribute types are the only transaction
attribute types supported on asynchronous methods. You can complete this action by either applying
@TransactionAttribute annotations in the bean source code, by adding <container-transaction> stanzas
in the ejb-jar.xml file, or by adding a combination of both annotations and <container-transaction>
stanzas in the deployment descriptor.

See the following example of setting the transaction attribute of an asynchronous method using
annotations:
@Singleton @LocalBean
public class FullAsyncBean {
@Asynchronous
@TransactionAttribute(REQUIRED) // the default; specified for illustration
public void m1() {
// ...
}

@Asynchronous
@TransactionAttribute(NOT_SUPPORTED)
public void m2() {
// ...
}

@Asynchronous
@TransactionAttribute(REQUIRES_NEW)
public void m3() {
// ...
}

// ...
}

380 Developing WebSphere applications

See the following example of setting the transaction attribute of an asynchronous method using the
XML deployment descriptor:

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>FullAsyncBean</ejb-name>
<method-name>m1</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m2</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m3</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
</assembly-descriptor>

See the following example of using a combination of both annotations and the XML deployment
descriptor to configure the transaction attributes of a bean. In this example the deployment descriptor
stanzas for method m3 override the class level annotation. The result is that method m3 is configured
as REQUIRES_NEW, while methods m1 and m2 are configured as REQUIRED:
@Singleton @LocalBean
@Asynchronous
@TransactionAttribute(REQUIRED) // the default; specified for illustration
public class FullAsyncBean {

public void m1() {
// ...
}

public void m2() {
// ...
}

public void m3() {
// ...
}

// ...
}

<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>FullAsyncBean</ejb-name>
<method-name>m3</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

</assembly-descriptor>

Chapter 10. Developing EJB applications 381

What to do next

Continue to develop additional components for your application, or if you have finished all components
required by your application, assemble and deploy your application. See information about assembling
EJB modules and deploying EJB modules.

When you run your application, if it fails when it first attempts to use a session bean that has an
asynchronous method, a configuration error might exist. Check the system log file for configuration error
messages.

Analyze the trace data or forward it to the appropriate organization for analysis. EJB asynchronous method
scheduling and invocation are traced in the EJB container trace. For instructions on enabling this trace see
the information about enabling trace on a running server. To analyze trace data, see information about
trace output.

Configuring remote asynchronous EJB method results
Use this task to set the maximum number of unclaimed results for a remote asynchronous Enterprise
JavaBeans (EJB) method call.

About this task

When a remote asynchronous EJB method is called, the server must save the results of the remote
method invocation until the client claims the results using the Future.get method. If the client never claims
the result, unclaimed results can accumulate in the server and use memory. To avoid using too much
memory, the server limits the number of unclaimed results to 1000 by default. If the number of unclaimed
results approaches or exceeds the limit, the server issues the CNTR0328W warning.

Procedure
1. Optional: Open the administrative console.

2. Select Servers.

3. Select Server Types.

4. Select WebSphere application servers.

5. Select the server that you want to configure.

6. From Server Infrastructure, select Java and Process Management Process definition.

7. From Additional Properties, select Java Virtual Machine .

8. In the Additional Properties area, select Custom Properties .

9. On the Application servers page, click New to specify an arbitrary name and value pair for your
server.

10. In the Name entry field, type: com.ibm.websphere.ejbcontainer.maxUnclaimedAsyncResults

11. In the Value entry field, enter the wanted maximum number of unclaimed results. The special value 0
is interpreted as unlimited. The default value is 1000.

12. Click OK.

13. Save the configuration.

14. Restart the server.

Results

The maximum number of unclaimed asynchronous EJB method results for all EJBs is set.

Configuring EJB asynchronous methods using scripting
Use wsadmin scripting to configure Enterprise JavaBeans (EJB) asynchronous methods.

382 Developing WebSphere applications

Before you begin

You have working knowledge of Jacl or Jython and wsadmin scripting.

About this task

The behavior for EJB asynchronous methods is configured using the EJBAsync configuration object in the
server.xml file. If you are using EJB asynchronous methods, then you might must update the EJBAsync
configuration object to obtain the best settings for your environment. The EJBAsync configuration object
exists at the server level. This means that each server in a multiple-server environment has its own
EJBAsync configuration object and must be configured individually.

Procedure
1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the attributes on the EJBAsync configuration object that must be updated. You can update
the following attributes on the EJBAsync configuration object:

Table 40. Attributes on EJBAsync configuration object. This table describes the attributes on the EJBAsync
configuration object.
Attribute Description

maxThreads Specifies the maximum number of threads that are used in the execution of asynchronous EJB methods.

The default value is 5.

workReqQSize Specifies the size of the work request queue. The work request queue is a buffer that holds requested
asynchronous methods until a thread is available to run them on.

The sum of the maxThreads and the workReqQSize attributes is the total number of allowable in progress
method requests.

For example, if the maxThreads is set to 5 threads, and the workReqQSize is set to 50, then the total number of
allowable in-progress method requests is 55.

The default value is 0, indicating that the queue size is managed by the runtime environment. The run time
currently uses the larger of 20 and maxThreads.

workReqQFullAction Specifies the action taken when the thread pool is exhausted, and work request queue is full.

If set to 1, an exception occurs instead of waiting for a thread, or a place in the queue, to become available.

If set to 0, the thread that is requesting the asynchronous method execution waits until a thread, or place in the
queue, becomes available.

The default value is 0.

customWorkManagerJNDIName Specifies the Java Naming and Directory Interface (JNDI) name used to look up the custom defined work
manager in the namespace.

The default value is null.

useCustomDefinedWM Specifies whether a custom-defined work manager instance is used, or the default internal work manager
instance.

When the useCustomDefinedWM attribute is set to true, this means that a custom work manager instance is
used. In this case, the customWorkManagerJNDIName attribute must be set, and all other attributes are ignored.

When the useCustomDefinedWM attribute is set to false, the default, internal work manager instance is used. In
this case, the customWorkManagerJNDIName attribute is ignored, and all other attributes are used to help
configure the default work manager instance.

The default value is false.

Chapter 10. Developing EJB applications 383

Table 40. Attributes on EJBAsync configuration object (continued). This table describes the attributes on the
EJBAsync configuration object.
Attribute Description

futureTimeout Specifies the amount of time, in seconds, that the server-side future object, which is created as a result of
running a fire-and-return asynchronous method, is available. The server-side future object is not valid after you
call the get() method, and a value is returned to the remote client. To avoid memory leaks, you must call the
get() method on the future object, or specify a positive and non-zero future duration value.

A future duration value of zero indicates that the future object never times out.

The default value is 86400, which means that the future object expires and gets cleaned up by the application
server after 24 hours and is no longer available.

A org.omg.CORBA.OBJECT_NOT_EXIST exception is thrown when a call to the get() method is made after the
future object expires.
Note: This value is only applicable for clients that call the enterprise bean using a remote business interface;
the value is not used for local business interface or no-interface views. When the asynchronous work has
completed, the server sets an alarm for the duration specified to the server-side future object. When the alarm is
activated, the server releases all the resources associated with the future object, making it unavailable to the
client. If the client calls the get() method on the future object before the duration amount of time, the alarm is
canceled and all the resources associated with the future object are released.
Note: This attribute might affect the number of future objects on the server. Use the AsynchFutureObjectCount
PMI statistic to determine the count of open FutureObjects on the server, which can help you determine whether
applications are accumulating future objects without calling the get() method on those objects. See the topic,
Enterprise bean counters, for more information.

3. Obtain a reference to the correct EJBAsync configuration object and store it in a variable.

Using Jacl:
set async [$AdminConfig list EJBAsync]

Using Jython:
async = AdminConfig.list(’EJBAsync’)

If you have a multiple-server environment, then multiple EJBAsync configuration objects are returned.
Programmatically loop over the list and select the EJBAsync configuration object that corresponds to
the server you must update.

In a multiple-server environment, as an alternative to programmatically looping over the list of
EJBAsync objects, you can manually select the correct EJBAsync object and copy and paste it into
your variable.

For example, the output of the AdminConfig list command is:

(cells/myNode04Cell/nodes/myCellManager01/servers/dmgr|server.xml#EJBAsync_1)(cells/
myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)

You can copy and paste the reference for the needed EJBAsync object into your variable.

Using Jacl:
set async "(cells/myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)"

Using Jython:
async = "(cells/myNode04Cell/nodes/myNode04/servers/server1|server.xml#EJBAsync_1247498700906)"

4. Update attributes on the EJBAsync configuration object.

Update attributes on the EJBAsync configuration object using the AdminConfig modify command. As
input to the command, specify the EJBAsync reference that you obtained in the previous step, and a
list of attributeName and attributeValue combinations.

To set a max thread count of 10 threads, a queue size of 15, and a futureTimeout of 3600 seconds:

Using Jacl:
set update "{maxThreads 10} {workReqQSize 15} {futureTimeout 3600}"
$AdminConfig modify $async $update

Using Jython:
AdminConfig.modify(async, ’[[maxThreads "10"] [workReqQSize "15"] [futureTimeout "3600"]]’)

5. Save the configuration changes.

Using Jython:

384 Developing WebSphere applications

AdminConfig.save()

Using Jacl:
$AdminConfig save

Results

As a result of your updates, the EJBAsync configuration object now reflects the attribute values that you
specified. Restart your server so that the changes are updated on the server.

EJB 3.1 asynchronous methods
The Enterprise JavaBeans™ (EJB) 3.1 specification includes functionality that application developers can
use to configure EJB asynchronous methods, which are run on a separate thread from the caller thread.

This mechanism decouples the client invocation request from the actual method execution. The client
thread can continue doing other work while the EJB method is run on a separate thread, as directed by
the EJB container.

Later, the client might want to examine the result of the asynchronous method execution, which is
sometimes referred to as fire and return. In this case, the EJB container returns to the client an object that
implements the java.util.concurrent.Future<V> interface. The client can use this object to check status,
results, or exceptions from the asynchronous method invocation. Alternatively, asynchronous methods
might not return any results, which is sometimes referred to as fire and forget.

For more details, see information about how to use EJB asynchronous methods in your application.

Here are some example usage scenarios for EJB asynchronous methods:

v An application has multiple, independent, pieces of work that all must be executed to produce a final
result. For example, suppose that a travel reservation consists of three parts:

1. Making a plane reservation.

2. Making a rental car reservation.

3. Making a hotel reservation.

In this example, a client can use EJB asynchronous methods to process the reservation requests in
parallel. After all three reservation methods run, the client aggregates the results into a complete travel
reservation.

v An application has multiple, independent, pieces of work that it must run, and the application is not
concerned about the results of this work. For example, suppose that a retailer has four branch stores,
and the home office wants to print a sales report from each store when the business day ends. The
application developer can use EJB asynchronous methods as a batch processing mechanism. Multiple
EJB method calls can be used to send a batch of get sales report requests, one to each branch store.

In this example, presumably the application does not need to check for results from these method calls.
Perhaps this is handled by the home office employee who picks up the sales reports from a printer the
next morning. Suppose that one of the branch stores failed to provide the requested report. The person
collecting the reports can decide if that was expected, for example, the branch store was closed for
renovations, or if the get sales report request must be reissued to that branch store.

Developing client code that calls EJB asynchronous methods
You can use the sample code within this topic to develop client code that calls EJB asynchronous
methods.

Before you begin

This task assumes that the following interface and bean implementation classes exist:

Chapter 10. Developing EJB applications 385

public interface AcmeRemoteInterface {
void fireAndForgetMethod ();
Future<Integer> methodWithResults() throws AcmeException1, AcmeException2;

}

@Stateless
@Remote(AcmeRemoteInterface.class)
@Asynchronous
public class AcmeAsyncBean {

public void fireAndForgetMethod () {
// do non-critical work

}

public Integer methodWithResults() {
Integer result;
// do work, and then return results
return result;

}
}

About this task

Procedure
v Create client code that calls an asynchronous method where no results are returned, sometimes called

a fire and forget method. This type of asynchronous method cannot result in application exceptions.
However, system exceptions can occur that must be resolved.
@EJB AcmeRemoteInterface myAsyncBean;

try {
myAsyncBean.fireAndForgetMethod();

} catch (EJBException ejbex) {
// Asynchronous method never dispatched, handle system error

}

v Create client code that calls an asynchronous method where results are returned.

– Create client code that calls an asynchronous method where the client waits for up to 5 seconds (the
client thread is blocked during this time window) to receive results. Exception handling requirements
are the same as in the previous step. For example:
myResult = myFutureResult.get(5, TimeUnit.SECONDS);

– Create client code that calls an asynchronous method where results are not immediately obtained.
After the method has executed, the client retrieves the results. This scheme prevents the client
thread from blocking, and the client is free to execute other work while polling for results. Exception
handling requirements are the same as in the previous steps. In this example, the client periodically
polls the Future<V> object to determine when the asynchronous method has finished executing. For
example:
while (!myFutureResult.isDone()) {
// Execute other work while waiting for the asynchronous method to complete.
}

// This call is guaranteed not to block because isDone returned true.
myResult = myFutureResult.get();

v Create client code to handle application exceptions. The client code calls an asynchronous method
which returns an application exception in the Future<V> object. The following example demonstrates the
exception handling code required to determine which application exception occurred.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer>>myFutureResult = null;
Integer myResult = null;

try {
myFutureResult = myAsyncBean.methodWithResults();

} catch (EJBException ejbx) {

386 Developing WebSphere applications

// Asynchronous method never dispatched, handle exception
}

// Method is eventually dispatched. Wait for results.

try {
myResult = myFutureResult.get();

} catch (ExecutionException ex) {
// Determine which application exception that occurred during the
// asynchronous method call.
Throwable theCause = ex.getCause();
if (theCause instanceof AcmeException1) {

// Handle AcmeException1
} else if (theCause instanceof AcmeException2) {

// Handle AcmeException2
} else {

// Handle other causes.
}

} catch (...) {
// Handle other exception.

}

v Create client code to identify system exceptions thrown by asynchronous method call during execution.
The following example demonstrates the exception handling code required to determine if a system
exception occurred.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer>>myFutureResult = null;
Integer myResult = null;

try {
myFutureResult = myAsyncBean.methodWithResults();

} catch (EJBException ejbx) {
// Asynchronous method was not dispatched; handle exception.

}

// Method will eventually be dispatched so block now and wait for results

try {
myResult = myFutureResult.get();

} catch (ExecutionException ex) {
// Find the exception class that occurred during the asynchronous method
Throwable theCause = ex.getCause();
if (theCause instanceof EJBException) {

// Handle the EJBException that might be wrapping a system exception
// which occurred during the asynchronous method execution.
Throwable theRootCause = theCause.getCause();
if (theRootCause != null) {

// Handle the system exception
}

} else ... // handle other causes
} catch (...) {

// handle other exceptions
}

v Optionally create client code to cancel an asynchronous method call. If this attempt is successful, then
the Future.isCancelled method returns true and the Future.get methods result in the
CancellationException. The following example demonstrates the code required to cancel an
asynchronous method call.
@EJB AcmeRemoteInterface myAsyncBean;

Future<Integer> myFutureResult = myFutureResult.methodWithResults();
Integer myResult;

if (myFutureResult.cancel(true)) {
// Asynchronous method was not dispatched.

Chapter 10. Developing EJB applications 387

} else {
// Asynchronous method already started executing. The bean can still check
// whether an attempt was made to cancel the call.

}

if (myFutureResult.isCancelled()) {
// Asynchronous method call did not start executing because the cancel
// method returned true in a previous line of the example.

}

try {
myResult = myFutureResult.get();

} catch (CancellationException ex) {
// Handle the exception that occurs because the cancel method returned true
// in a previous line of the example.

}

v Optionally create bean code to check whether a client attempted to cancel the asynchronous method
call. The following example demonstrates the bean code required to check whether the client attempted
to cancel the asynchronous method call. If the client attempted to cancel the work, then the
SessionContext.wasCancelCalled method returns true, and the bean code can avoid unnecessary work.
@Resource SessionContext myContext;

public Future<Integer> methodWithResults() {
for (int i = 0; i < 3; i++) {

// Do one piece of long-running work.

// Before continuing, check whether the client attempted to cancel this work.
if (myContext.wasCancelCalled()) {

throw new AcmeCancelCalledException();
}

}

// ...
}

v Pass back multiple output values from the asynchronous method invocation.

In some cases, a method must pass back multiple pieces of data.

One way to accomplish this task is by using pass-by-reference semantics. In this approach, an object is
passed into the method as a parameter, updated by the method, and then the updated value is
available to the client. This approach does work for asynchronous methods, but it is not the optimal
pattern.

To return multiple pieces of data, create a wrapper inside the Future object that is returned by the
method. In this approach, a wrapper object is defined that contains instance variables which hold the
different pieces of data that must be returned. The asynchronous method sets these pieces of data into
the wrapper object and returns it, and the client code then retrieves this data from the Future object.

Embedding multiple pieces of data inside the wrapper object is a local or remote, transparent pattern,
that identifies exactly when the results are available. In contrast, the traditional pass-by-reference
technique does not give the client an easy way to determine when the results are available. The passed
in object is not updated until the asynchronous method runs, and the client cannot determine when that
has occurred, other than by interrogating the Future object using the Future.isDone() or Future.get()
methods.
// This is the result object that is returned from the asynchronous method.
// This object is wrappered in a Future object, and it contains the two pieces of data
// that must be returned from the method.
class ResultObject {

public Boolean myResult;
pubilc String myInfo;

}

// This is the asynchronous method code that gets the results and returns them.
@Asynchronous
public Future<ResultObject> asyncMethod1(Object someInputData) {

388 Developing WebSphere applications

boolean result = doSomeStuff();
String info = doSomeMoreStuff();
ResultObject theResult = new ResultObject();
theResult.myResult = result;
theResult.myInfo = info;
return new javax.ejb.AsyncResult<ResultObject>(theResult);

}

// This is the client code that obtains the ResultObject, and then extracts the needed data from it.
Future<ResultObject> myFutureResult = myBeanRef.asyncMethod1(someInputData);
ResultObject theResult = myFutureResult.get();
boolean didItWork = theResult.myResult;
String explanation = theResult.myInfo;

Client programming model for EJB asynchronous methods:

As documented in the Enterprise JavaBeans (EJB) 3.1 specification, you can invoke EJB asynchronous
methods through the following interface types: local business, remote business, or no-interface view.
Invocations through an EJB 2.1 client view, or a web services view, are not allowed.

The interface specification for an EJB asynchronous method must have a return type of void, or of type
java.util.concurrent.Future <V>. No other return types are supported on the interface. As documented in
the EJB 3.1 specification, the bean implementation method must have the same return type.

When your application does not need to examine the result of an EJB asynchronous method call, use an
interface signature with a return type of void. Conversely, when your application needs to examine the
result of an EJB asynchronous method call, use an interface with a return type of Future<V>.

In addition to considering whether results are examined, clients must be prepared to handle exceptions. As
documented in the EJB 3.1 specification, the client receives an exception if the container is unable to
allocate the internal resources required to schedule the asynchronous method for execution. In this case,
the client can assume that the asynchronous method does not run. Also, exceptions can occur while the
asynchronous method is running on the non-client thread.

Important: When an asynchronous method has a return type of void, the client has no mechanism to
retrieve exception information. The EJB container logs an informational message in this case. However, for
asynchronous methods that have a return type of Future<V>, the EJB container saves exception
information in the Future<V> object. In this case, the get methods associated with the Future<V> object
produce the exception, ExecutionException. The client must invoke the getCause method on the
ExecutionException to retrieve details about the exception.

Clients must know that the get methods on the Future<V> object block the client thread if the
asynchronous method has not finished running when the get method is called. If clients do not want this
behavior, they can poll the Future<V> object to determine when the asynchronous method is finished by
periodically calling the isDone method.

Finally, clients can use the Future<V> object to cancel an asynchronous method call. If you attempt to
cancel an asynchronous method call while it is waiting to run, then it does not run, and other interactions
with the Future<V> object reflect the cancellation. Otherwise, if you attempt to cancel an asynchronous
method after it has started running, then it continues to run, but the bean method can still determine that
the client attempted to cancel the call and respond with an application-specific return value or exception.

Another alternative is for the client to use the get method, which includes a timeout parameter. This get
method only waits for results during the specified timeout period. The get method returns to the client as
soon as the method has finished running, or when the timeout expires, even if the method has not finished
running.

Nested asynchronous calls are supported; an asynchronous method call can be made from within an
asynchronous method.

Chapter 10. Developing EJB applications 389

Note: When nesting asynchronous method calls, take into consideration the work manager settings to
allow enough resources (maximum number of threads and work request queue size). For more
information, read about the EJB container work manager for asynchronous methods.

Read about Developing client code that calls EJB asynchronous methods.

Bean implementation programming model for EJB asynchronous methods
You can configure asynchronous methods on session beans. However, as documented in the Enterprise
JavaBeans (EJB) 3.1 specification, asynchronous methods must not be configured on entity beans, or
message-driven beans.

Implementations of asynchronous methods must have a return type of void or of type,
java.util.concurrent.Future <V>. No other return types are supported on the implementation. As
documented in the EJB 3.1 specification, the bean implementation method must have the same return
type as the interface specification. For more information, read about the client programming model for EJB
asynchronous methods.

Nested asynchronous calls are supported; an asynchronous method call can be made from within an
asynchronous method.

Note: When nesting asynchronous method calls, take into consideration the work manager settings to
allow enough resources (maximum number of threads and work request queue size). For more
information, read about the work manager for asynchronous methods.

Bean implementers must consider how long their asynchronous methods take to run because each
request is invoked on a different thread. Another important consideration is the number of asynchronous
method requests that an application is likely to start in parallel. These issues are important because the
number of threads that are allocated to run asynchronous methods in the server process is a limited
resource. Also, the buffer space that is allocated in the server process to queue asynchronous method
requests, during times that all the allocated threads are busy, is a limited resource. For more information,
read about the client programming model for EJB asynchronous methods.

Finally, bean implementers must follow the EJB 3.1 specification restrictions regarding the transaction
attribute settings that are allowed on EJB asynchronous methods. For more information, read about the
EJB container work manager for asynchronous methods.

EJB container work manager for asynchronous methods
The default work manager used by the Enterprise JavaBeans (EJB) container to dispatch asynchronous
methods is not configurable. The following configuration information is provided to help you understand the
limits imposed by this work manager. Remember, one EJB container work manager exists for all
asynchronous methods running in the application server process.

The EJB container work manager has the following thread pool settings:

v Minimum number of threads = 1

v Maximum number of threads = 5

v Work request queue size = 0 work objects

v Action taken when buffer overflows = Block

v Remote Future object duration = 86400 seconds

Note: Work request queue size is the maximum number of asynchronous method requests that can be
queued while waiting for a thread to become available. If you specify a value of 0 (the default) or
blank is specified, the queue size is managed by the run time.

Additionally, the EJB container work manager has configuration settings that specify which service
contexts are propagated from the client thread to the work manager thread that runs the asynchronous

390 Developing WebSphere applications

method. The global transaction service context and the activity session service context are not propagated.
The security context, and all of the WebSphere extension contexts, such as work area, internationalization,
and so on, are propagated for use on the execution thread.

EJB asynchronous methods settings
Use this page to modify settings on the work manager used in support of Enterprise JavaBeans
asynchronous methods.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > EJB Container Settings > EJB asynchronous method invocation settings

The Use internal work manager instance and Use custom work manager instance options are mutually
exclusive.

Use this work manager for asynchronous methods:

Specifies a default work manager instance.

The product provides an internal work manager instance for support of EJB asynchronous methods. The
internal work manager instance is pre-configured for basic EJB asynchronous method functionality, and
provides limited configuration settings.

Clicking this button specifies that you want to use the internal work manager instance to manage your
asynchronous method invocations. Selecting this choice precludes the Use custom work manager instance
option.

The Use internal work manager instance option is the default. Alternatively, you can use a custom-defined
work manager instance.

Use custom work manager instance:

Specifies a custom-defined work manager instance.

You can provide a more advanced configuration for EJB asynchronous methods by defining a custom work
manager instance.

Selecting this choice allows you to use a work manager instance that you have already defined and
configured in a way that is optimal for your environment.

Selecting this choice precludes the Use internal work manager instance option.

Maximum number of threads:

Specifies the maximum number of threads that are used in the execution of asynchronous EJB methods.
The default is 5.

Work request queue size:

Specifies the size of the work request queue. The work request queue is a buffer that holds requested that
asynchronous methods until a thread is available to run them on. The default is 0, indicating that the initial
size is half way between the minimum and maximum number of threads.

The sum of the maximum number of threads and the work request queue size attributes is the total
number of allowable in-progress method requests.

Chapter 10. Developing EJB applications 391

For example, if the maximum number of threads is set to five threads, and the work request queue size is
set to 50, then the total number of allowable in-progress method requests is 55.

The default value is 0, indicating that the queue size is managed by the runtime environment. The runtime
currently uses the larger of 20 and maxThreads.

Work request queue full action:

Specifies the action taken when the thread pool is exhausted, and the work request queue is full. The
default is BLOCK.

If set to FAIL, an exception occurs instead of waiting for a thread, or a place in the queue, to become
available.

You might want to use this option during development to help identify errors caused by long-running
asynchronous methods. You might also use it to help determine the number of threads and queue size
that should be configured.

If set to BLOCK, the thread that is requesting that the asynchronous method execution waits until a thread,
or a place in the queue, becomes available.

Work Manager JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the custom-defined work
manager in the namespace.

Remote future object duration:

Specifies the amount of time that the server retains the future object of each fire-and-return-results
asynchronous method call. If an application does not retrieve the results within the specified period of time,
the server purges the results of that method call to prevent memory leakage and a potential OutOfMemory
exception. You can specify 0 to never purge the objects; however, specifying a zero value means that the
future object never times out and you disable protection from incorrectly written programs that might cause
the referenced OutOfMemory exception. The default value is 86400 seconds (24 hours).

Note: If you call the get() or the get(time) method on the future object, then you might decrease
performance because blocking can occur until either the work is done or until the specified time has
passed. Therefore, to avoid blocking on the get(..) methods, call the isDone() method, which returns
immediately. Then, call the get() method after the isDone() method returns true.

Note: This value is only applicable for clients that call the enterprise bean using a remote business
interface, the value is not used for local business interface or no-interface views. When the
asynchronous work has completed, the server sets an alarm for the duration specified to the
server-side future object. When the alarm is activated, the server releases all the resources
associated with the future object, making it unavailable to the client. If the client calls the get()
method on the future object before the duration amount of time, the alarm is canceled and all the
resources associated with the future object are released.

Developing stateful session beans
You can create a bean implementation class for a stateful session bean as introduced in the Enterprise
JavaBeans™ (EJB) 1.0 specification and significantly simplified by the EJB 3.0 specification. A stateful
bean is a type of session bean that is intended for use by a single client during its lifetime and maintains a
conversational state with the client that is calling it.

392 Developing WebSphere applications

Before you begin

Make sure that you understand the inheritance rules for each annotation you implement. For example, the
@TransactionManagement annotation is coded on the stateful session bean class only. You cannot use
the @TransactionManagement annotation in the class that it extends, or any class higher in the class
inheritance tree.

About this task

Stateful session beans can have the following views: no-interface local view (new in EJB 3.1), business
local, business remote, EJB 2.1 local, and EJB2.1 remote client views. One example is a shopping cart
where the client adds items to the cart over the course of an on-line shopping session.

The following example shows a basic stateful session bean:
package com.ibm.example;

public interface ShoppingCart {
void addToCart (Object o);
Collection getContents();

}

package com.ibm.example;

@Stateful
public class ShoppingCartBean implements ShoppingCart {

private ArrayList contents = new ArrayList();

public void addToCart (Object o) {
contents.add(o);

}
public Collection getContents() {

return contents;
}

}

As with other enterprise bean types, you can also declare metadata for stateful session beans in the
deployment descriptor rather than using annotations; for example:
<?xml version="1.0"?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
version="3.1">
<enterprise-beans>
<ejb-name>ShoppingCartBean</ejb-name>
<business-local>com.ibm.example.ShoppingCart</business-local>
<ejb-class>com.ibm.example.ShoppingCartBean</ejb-class>
<session-type>Stateful</session-type>

</enterprise-beans>
</ejb-jar>

Procedure
v Code the initialization and destruction methods, understanding that they run in an unspecified security

context and an unspecified transaction context. During initialization, the instance is created, dependency
injection occurs, and PostConstruct life cycle interceptor callbacks are invoked. The PreDestroy life
cycle interceptor callbacks are invoked for a stateful session bean when a remove method is called.
Also keep in mind that the PreDestroy life cycle interceptor callbacks are not called if the stateful
session bean times out while in the passive state, or if an unexpected exception occurs during a
method invocation on the bean and the bean is discarded.

v Use PrePassivate and PostActivate methods if the stateful session bean can contain state that is not
serializable. The container can passivate a stateful session bean instance anytime that it is not enlisted
in a transaction or currently running a method request. The stateful session bean instance is moved to

Chapter 10. Developing EJB applications 393

the passive state by serializing all the state data. If any of the state data does not serialize, the stateful
session bean instance is discarded by the container.

v Consider implementing the optional javax.ejb.SessionSynchronization interface if the state data of the
stateful session bean needs to be reset after a transaction rollback. The state data of a stateful session
bean is not transactional and is not automatically reset to the initial state as the result of a transaction
rollback. By implementing the afterCompletion method of the javax.ejb.SessionSynchronization interface,
the stateful session bean instance might reset itself to the initial or consistent state.

v Use the @AccessTimeout notation to prohibit concurrent client requests or limit how long a method
waits for the instance lock to be granted. By default, the container allows concurrent client requests, but
serializes all method calls and container-invoked callbacks to prevent multi-threaded access to the
stateful session bean instance. This behavior is like using container-managed concurrency with write
locks for singleton session beans. However, unlike singleton session beans, stateful session beans
cannot be configured to use bean-managed concurrency and the lock type cannot be changed. Only the
access-timeout value can be modified for stateful session beans. The following code example illustrates
a stateful session bean with a concurrent access-timeout value that prohibits concurrent client requests:
package com.ibm.example;
@Stateful
public class ShoppingCartBean implements ShoppingCart {

private ArrayList contents = new ArrayList();

@AccessTimeout(value=0)
public void addToCart (Object o) {

contents.add(o);
}
public Collection getContents() {

return contents;
}

}
package com.ibm.example;
@Stateful
public class ShoppingCartBean implements ShoppingCart {

private ArrayList contents = new ArrayList();

@AccessTimeout(value=0)
public void addToCart (Object o) {

contents.add(o);
}
public Collection getContents() {

return contents;
}

}

If no annotation is provided, the default behavior is to wait until a lock is granted. No time limit exists for
how long a client waits for the lock to be granted. Because nothing is coded at the class level, no wait
time limit exists for a lock to be granted for all methods of the class. If the @AccessTimeout annotation
is used and the container cannot grant the lock within the specified time limit, a
javax.ejb.ConcurrentAccessTimeoutException exception occurs on the client. The @AccessTimeout
annotation only applies to methods that are declared in the same class as the @AccessTimeout
annotation. For a given class, the metadata for the @AccessTimeout annotation is never inherited from
a class higher in the class inheritance tree.

An access-timeout value of -1 indicates that concurrent method calls block access to the bean instance
indefinitely (the default). An access-timeout value of 0 indicates that concurrent method calls are not
allowed. The exception, javax.ejb.ConcurrentAccessException, occurs when concurrency is detected.
And any positive value indicates the amount of time to wait until the method can proceed.

Prior to Java EE 6, the only concurrency behavior supported for stateful session beans was an
access-timeout of -1, no concurrency. Since the Java EE 6 specification changed the default behavior, a
system property is supported that provides the older default behavior. See EJB container system
properties for more information about the com.ibm.websphere.ejbcontainer.EE5Compatibility system
property.

394 Developing WebSphere applications

You can also specify the @AccessTimeout annotation using the XML deployment descriptor, and if you
use the XML deployment descriptor, the metadata from the @AccessTimeout annotation is ignored. The
following example uses the XML deployment descriptor to specify the same metadata as the previous
example.

<session>
<ejb-name>ShoppingCartBean</ejb-name>
<concurrent-method>
<method>
<method-name>addToCart</method-name>

</method>
<access-timeout>
<timeout>0</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

</session>

v It is important to know that the XML coding of the concurrent-methodType follows the three styles
outlined in the EJB specification for composing the XML for container-transaction method elements. The
three styles are: Style 1 uses the special method name * to apply the access-timeout value to all
business methods for the specified bean.
<!-- Example: Style 1 -->

<concurrent-method>
<method>

<method-name>*</method-name>
</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

Style 2 is used to refer to a business method with a specific name and assign it the specified
access-timeout value. If the method name is overloaded, meaning multiple methods have the same
name but different method signatures, all methods with this name have the specified access-timeout
value.
<!-- Example: Style 2 -->

<concurrent-method>
<method>

<method-name>businessMethod</method-name>
</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

Style 3 is used to refer to a distinct method that matches the given method name and has a method
signature that matches the method parameters listed. Style 3 takes precedence over both style 1 and
style 2.
<!-- Example: Style 3 -->

<concurrent-method>
<method>

<method-name>businessMethod</method-name>
<method-params>

<method-param>long</method-param>
<method-param>int</method-param>

</method-params>
</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

Chapter 10. Developing EJB applications 395

If style 1 XML is used to define an access-timeout value, then all @AccessTimeout annotations on the
bean are ignored because the method level one is used instead.

v Ensure that you understand the inheritance rules for the annotations that you have used.

v Stateful session beans are not reentrant, which means that the stateful session bean method calls itself
back. If a reentrant call is made to a stateful session bean, a
javax.ejb.ConcurrentAccessTimeoutException exception occurs on the client, regardless of the
access-timeout value. This exception does not result in the stateful session bean being discarded, nor
does it mark the transaction for rollback, unless the exception is not handled by the caller.

Developing a session bean to have a No-Interface Local view
You can specify that a session bean have a No-Interface view.

About this task

A session bean has a No-Interface Local view when:

v The bean does not expose any other client views (Local, Remote, 2.x Remote Home, 2.x Local Home,
Web Service) and its implements clause is empty.

v The bean exposes at least one other client view. The bean designates that it exposes a no-interface
view with the @LocalBean annotation on the bean class or in the deployment descriptor.

You can also declare metadata for a session bean with No-Interface Local view in the deployment
descriptor rather than using annotations.

The following steps contain code snippets that demonstrate the code to use for a No-Interface view.

Procedure
v Specify that a session bean have No-Interface view because there are no declared interfaces.

@Stateless
public class CartBean

v Specify that a session bean have No-Interface view using the @LocalBean annotation.
@Stateless
@LocalBean
@Remote(Cart.class)
public class CartBean implements Cart

v Specify metadata for a session bean with No-Interface Local view in the deployment descriptor.
<?xml version="1.0"?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
version="3.1">
<enterprise-beans>
<session>
<ejb-name>CartBean</ejb-name>
<local-bean/>
<business-remote>com.ibm.example.Cart</business-remote>
<ejb-class>com.ibm.example.CartBean</ejb-class>
<session-type>Stateless</session-type>

</session>
</enterprise-beans>

</ejb-jar>

No-Interface Local View
New in Enterprise JavaBeans (EJB) 3.1, session beans might now be exposed to clients through a
No-Interface view. In prior versions of the specification, bean developers were required to provide an
interface that would be used to expose the bean methods to a client.

396 Developing WebSphere applications

The new No-Interface Local View enables the customer to use the Enterprise JavaBeans (EJB) class as
the local interface. This is supported when:

v The bean does not expose any other client views (Local, Remote, 2.x Remote Home, 2.x Local Home,
Web Service) and its implements clause is empty.

v The bean exposes at least one other client view. The bean designates that it exposes a no-interface
view by means of the @LocalBean annotation on the bean class or in the deployment descriptor.

A session bean might now subclass another session bean
New in Enterprise JavaBeans (EJB) 3.1, a session bean might now subclass another session bean. Prior
versions of the EJB specification restricted a session bean from inheriting from another session bean.

Important: This new support only enables implementation inheritance but does not provide component
inheritance. Therefore, any meta data or annotations on the superclass that defined it to be an enterprise
bean, will not be inherited by the subclass.

Developing singleton session beans
Create a bean implementation class for a singleton session bean, introduced by the Enterprise JavaBeans
(EJB) 3.1 specification. The EJB container initializes only one instance of a singleton session bean, and
that instance is shared by all clients. Because a single instance is shared by all clients, singleton session
beans have special life cycle and concurrency semantics.

Before you begin

Make sure that you understand the inheritance rules for each annotation you implement. For example, the
@ConcurrencyManagement annotation is coded on the singleton session bean class only. You cannot use
the @ConcurrencyManagement annotation in the class that it extends, or any class higher in the class
inheritance tree.

About this task

Singleton session beans can have business local, business remote, and web service client views; they
cannot have EJB 2.1 local or remote client views. This singleton session bean support replaces the
proprietary startup bean functionality, which has been deprecated.

The following example shows a basic singleton session bean:
public interface Configuration {
Object get(String name);
void set(String name, Object value);
}

@Singleton
public class ConfigurationBean implements Configuration {
private Map<String, Object> settings = new HashMap<String, Object>();

public Object get(String name) {
return settings.get(name);
}

public void set(String name, Object value) {
settings.put(name,value);
}
}

As with other enterprise bean types, you can also declare metadata for singleton session beans in the
deployment descriptor rather than using annotations; for example:
<?xml version="1.0"?>
<ejb-jar

xmlns="http://java.sun.com/xml/ns/javaee"

Chapter 10. Developing EJB applications 397

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
version="3.1"

>
<enterprise-beans>

<ejb-name>ConfigurationBean</ejb-name>
<business-local>com.ibm.example.Configuration</business-local>
<ejb-class>com.ibm.example.ConfigurationBean</ejb-class>
<session-type>Singleton</session-type>

</enterprise-beans>
</ejb-jar>

Procedure
v Code the initialization and destruction methods, understanding how they relate to your options for

setting the transaction context. During initialization, the instance is created, dependency injection
occurs, and PostConstruct life cycle interceptor callbacks are started. The PreDestroy life cycle
interceptor callbacks are started for a singleton session bean when its containing application is stopped.

It can be useful to complete transactional activities during the PostConstruct and PreDestroy life cycle
interceptor callbacks. For this reason, singleton session bean life cycle interceptor callbacks have a
well-defined transaction context. The following transaction context values are similar to @Timeout
methods: only REQUIRED (default), REQUIRES_NEW, and NOT_SUPPORTED can be used, and
REQUIRED is translated to REQUIRES_NEW.

Transaction attributes are only recognized when they are specified on life cycle interceptor methods on
the bean class. The same transaction context is used for all life cycle interceptors. The following
example illustrates a singleton session bean with transaction attributes specified for the PostConstruct
and PreDestroy life cycle interceptor callbacks.
@Singleton
public class ConfigurationBean implements Configuration {
@PostConstruct
@TransactionAttribute(REQUIRED) // the default; specified for illustration
public void initialize() {
// ...
}

@PreDestroy
@TransactionAttribute(NOT_SUPPORTED)
public void destroy() {
// ...
}

// ...
}

Instead of using an annotation, you can specify the same metadata using the XML deployment
descriptor. If you specify transaction attributes in the XML deployment descriptor, then any metadata
obtained from the @TransactionAttribute annotation is ignored. The following example uses the XML
deployment descriptor to specify the same metadata as the previous example.

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>ConfigurationBean</ejb-name>
<method-name>initialize</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>ConfigurationBean</ejb-name>
<method-name>destroy</method-name>

398 Developing WebSphere applications

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor>

v Unless otherwise specified, the singleton session bean instance is typically initialized when the bean is
first used through one of its client views, which is the same as any other session bean. Use the
@Startup annotation or the corresponding XML deployment descriptor to mark a bean as a startup
bean. Marking a singleton bean as a startup bean means that the EJB container must run the
PostConstruct method before it supports any external client requests made to the application to run. A
PostConstruct method in a singleton bean can create an EJB timer, add a message to a JMS queue or
topic, call an asynchronous EJB method, or initiate other asynchronous mechanisms that call an EJB.
However, to avoid a deadlock, the PostConstruct method must not wait for an EJB timer to run, a
message-driven bean method to be called, or an asynchronous EJB method to finish.

Application developers can place business logic in the PostConstruct methods of these startup singleton
instances to complete tasks that must be performed before any client work being started by the
container, such as preloading caches or initiating asynchronous work within the application.

The following example illustrates a singleton session bean with startup initialization:
@Singleton
@Startup
public class ConfigurationBean implements Configuration {
@PostConstruct
public void initialize() {
// 1. Create the database table if it does not exist.
// 2. Initialize settings from the database table.
// 3. Load a cache.
// 4. Initiate asynchronous work (for example, work to a messaging queue or to
// calls to asynchronous session bean methods.
}

// ...
}

Instead of using an annotation, you can specify the same metadata using the XML deployment
descriptor. Specify true to mark this singleton bean as a startup singleton. Conversely, specify false,
and the @Startup annotation is overridden, if it exists on the class file.

<session>
<ejb-name>ConfigurationBean</ejb-name>
<init-on-startup>true</init-on-startup>

</session>

v Determine whether the initialization method of the singleton session bean has an implicit dependency
on another singleton session bean.

If an implicit dependency exists, use dependency metadata to make the dependency explicit. The
container ensures that dependency singleton beans are initialized before their dependent beans are
initialized and that they are destroyed after their dependent beans are destroyed. The following example
illustrates a singleton session bean with dependency metadata:
@Singleton
public class DatabaseBean {
@PostConstruct
public void initialize() {
// Create database tables.
}
}

@Singleton
@DependsOn({"DatabaseBean"})
public class ConfigurationBean implements Configuration {
@PostConstruct
public void initialize() {
// Initialize settings from a database table.

Chapter 10. Developing EJB applications 399

}

// ...
}

Additionally, you can make cross-module dependencies by using the ejb-link module.jar#bean syntax.
Circular dependencies are not supported, and cause an application to fail.

Instead of using an annotation, you can specify the same metadata using the XML deployment
descriptor. If you specify dependency metadata in the XML deployment descriptor, then any metadata
from the @DependsOn annotation is ignored.

<session>
<ejb-name>ConfigurationBean</ejb-name>
<depends-on>

<ejb-name>DatabaseBean</ejb-name>
</depends-on>

</session>

v Decide whether to use container-managed concurrency or bean-managed concurrency. The @Lock and
@AccessTimeout annotations are not applicable when bean-managed concurrency is used.

You can implement the @ConcurrencyManagement annotation on the singleton session bean class
only. It cannot be used on the class it extends or any class higher in the class inheritance tree. The
following code example illustrates a singleton with bean-managed concurrency:
@Singleton
@ConcurrencyManagement(BEAN)
public class ConfigurationBean implements Configuration {
private Map<String, Object> settings = new HashMap<String, Object>();

synchronized public Object get(String name) {
return settings.get(name);
}

synchronized public void set(String name, Object value) {
settings.put(name, value);
}
}

Instead of using an annotation, you can specify the same metadata using the XML deployment
descriptor. If the metadata is specified in both the XML deployment descriptor and using the
@ConcurrencyManagement annotation, then the value must match or the application fails. The following
example uses the XML deployment descriptor to specify the same metadata as the previous example.

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrency-management-type>Bean</concurrency-management-type>

</session>

The container does not do locking for each method called. Instead, the actual bean is responsible for
the locking that is required. In the example, the bean provider has chosen to implement the methods
using the synchronized keyword. This is supported for singleton session beans with bean-managed
concurrency, but it is not supported for other EJB component types. It is not required for the bean
provider to use the synchronized keyword to provide concurrency. For example, the bean provider can
use the java.util.concurrent.locks.ReentrantReadWriteLock class that is found in JDK 5 and later.

The locking semantics required by the EJB 3.1 specification for container-managed concurrency
matches the behavior of the java.util.concurrent.locks.ReentrantReadWriteLock class.

v If you are using container-managed concurrency, use the @Lock notation to manage concurrency of
methods.

The following code example illustrates singleton with container-managed concurrency.
@Singleton
public class ConfigurationBean implements Configuration {
private Map<String, Object> settings = new HashMap<String, Object>();

@Lock(READ)
public Object get(String name) {

400 Developing WebSphere applications

return settings.get(name);
}

public void set(String name, Object value) {
settings.put(name, value);
}
}

Instead of using an annotation, you can specify the same metadata using the XML deployment
descriptor. If the metadata is specified in both the XML deployment descriptor and the @Lock
annotation, then the metadata obtained from the @Lock annotation is ignored. The following example
uses the XML deployment descriptor to specify the same metadata as the previous example.

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>get</method-name>

</method>
<lock>Read</lock>

</concurrent-method>
</session>

The example also illustrates annotating a method with @Lock(READ) to indicate that the container must
get a read lock when that method is started. When a method is annotated with @Lock, it overrides the
@Lock annotation that is specified at the class level. When there is no @Lock annotation at class level,
the default is a write lock. In the example, the @Lock(READ) on the method is overriding the default
write lock at the class level. When a method is not annotated at the method level and there is no
annotation at the class level, the default of write lock is used by the container.

Because most methods require a read lock, use @Lock(READ) at the class level to indicate that all
business methods in this class require the container to obtain a read lock. For methods that require a
write lock, annotate those methods with @Lock(WRITE) to show that it overrides the read lock that was
specified at the class level.

The following example illustrates this technique:
@Singleton
@Lock(READ)
public class ConfigurationBean implements Configuration {
private Map<String, Object> settings = new HashMap<String, Object>();

public Object get(String name) {
return settings.get(name);
}

@Lock(WRITE)
public void set(String name, Object value) {
settings.put(name, value);
}
}

The @Lock annotation applies only to methods that are declared in the same class as the @Lock
annotation. For a given class, the metadata for @Lock is never inherited from a class higher in the
class inheritance tree. Instead of using an annotation at the class level, the same metadata can be
specified in the XML deployment descriptor by using the special method-name *, which matches all
methods.

v If you are using container-managed concurrency, use the @AccessTimeout notation to limit how long a
method waits for a lock to be granted. The following code example illustrates concurrent access
timeouts.
@Singleton
public class ConfigurationBean implements Configuration {
@Lock(READ)
@AccessTimeout(1000)
public Object get(String name) {
// query the database
}

Chapter 10. Developing EJB applications 401

public void set(String name, Object value) {
// update the database
}
}

If no annotation is provided, the method defaults to wait until a lock is granted. There is no time limit for
how long a client waits for the lock to be granted. Because nothing is coded at the class level, there is
no wait time limit for a lock to be granted for all methods of the class. If the @AccessTimeout
annotation is used and the container cannot grant the lock within the specified time limit, a
javax.ejb.ConcurrentAccessTimeoutException is thrown to the client. The @AccessTimeout annotation
applies only to methods that are declared in the same class as the @AccessTimeout annotation is in.
For a given class, the metadata for the @AccessTimeout annotation is never inherited from a class
higher in the class inheritance tree.

Like the @Lock annotation, you can also specify the @AccessTimeout annotation using the XML
deployment descriptor, and if you use the XML deployment descriptor, the metadata from the
@AccessTimeout annotation is ignored. The following example uses the XML deployment descriptor to
specify the same metadata as the previous example.

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>get</method-name>

</method>
<lock>Read</lock>
<access-timeout>

<timeout>1000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

</session>

v It is important to know that the XML coding of the concurrent-methodType follows the three styles
outlined in the EJB specification for composing the XML for container-transaction method elements.

Remember that both the lock and access-timeout elements are optional. The three styles are described
as follows:

Style 1 uses the special method name * to apply the lock type, access-timeout value, or both to all
business methods for the specified bean.
<!-- Example: Style 1 -->

<concurrent-method>
<method>

<method-name>*</method-name>
</method>
<lock>Read</lock>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

Style 2 is used to refer to a business method with a specific name and assign it the specified lock type,
access-timeout value, or both. If the method name is overloaded, meaning multiple methods have the
same name but different method signatures, all methods with this name have the specified lock type,
access-timeout value, or both. Style 2 takes precedence over style 1.
<!-- Example: Style 2 -->

<concurrent-method>
<method>

<method-name>businessMethod</method-name>
</method>
<lock>Read</lock>
<access-timeout>

402 Developing WebSphere applications

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

Style 3 is used to refer to a distinct method that matches the given method name and has a method
signature which matches the method parameters listed. Style 3 takes precedence over both style 1 and
style 2.
<!-- Example: Style 3 -->

<concurrent-method>
<method>

<method-name>businessMethod</method-name>
<method-params>

<method-param>long</method-param>
<method-param>int</method-param>

</method-params>
</method>
<lock>Read</lock>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

If style 1 XML is used to define a lock type, then all @Lock annotations on the bean are ignored. The
same is true for access timeout. If style 1 XML is used to define an access timeout value then all
@AccessTimeout annotations on the bean are ignored.

v It is important to understand that the @Lock and @AccessTimeout annotations are treated
independently of one another as is the corresponding XML deployment descriptor code for each.

The implementation of this concept has multiple benefits. This separation of lock type and access
timeout helps to prevent you from negatively affecting black box application code by not requiring you to
know the lock type. You can safely leave the lock type value and adjust the access timeout value only
to fit your environment needs, and avoid possible deadlock situations or other concurrency issues.
Consider a scenario where you have a vendor supplied EJB application running and due to system slow
down it keeps timing out. You do not want to change the locking logic for fear of causing a deadlock
situation but you do want to modify the timeout limit. You can edit the deployment descriptor and specify
the access timeout value you need for the methods you want to modify.

The following example shows how you can specify just a method level @Lock(READ) annotation in the
bean implementation and use style 2 for composing XML to specify the access-timeout element to be
2,000 milliseconds, not providing the optional lock element. The result is a method with a read lock that
has an access timeout of 2,000 milliseconds.
@Singleton
public class ConfigurationBean implements Configuration {

@Lock(READ)
public Object businessMethod(long value) {
// ...
}

// ...
}

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>businessMethod</method-name>

</method>
<access-timeout>

<timeout>2000</timeout>

Chapter 10. Developing EJB applications 403

<unit>Milliseconds</unit>
</access-timeout>

</concurrent-method>
</session>

Similarly, you can use a class level lock annotation and then specify the wanted access timeout value in
XML using either style 2, style 3, or both as shown in the following example.
@Singleton
@Lock(READ)
public class ConfigurationBean implements Configuration {

public Object businessMethod(long value) {
// ...
}

public Object businessMethod(long value, int i, Object value) {
// ...
}

public Object businessMethod(long value, int i) {
// ...
}

}

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>businessMethod</method-name>

</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>
<concurrent-method>

<method>
<method-name>businessMethod</method-name>
<method-params>

<method-param>long</method-param>
<method-param>int</method-param>

</method-params>
</method>
<access-timeout>

<timeout>8000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

</session>

The previous code example results in all methods named “businessMethod” having a lock type of read
and an access timeout of 2,000 milliseconds. The exception is the one instance of the method
“businessMethod” that has a method signature with the first parameter being of type long and the
second being of type int, This instance of method "businessMethod" has a lock type of read, but has an
access timeout of 8,000 milliseconds. The same principle applies when style 1 XML is used to define
only a lock type, but not an access timeout value. You can add an access timeout value to a specific
method or methods using style 2, style 3, or both to get a specific lock type and access timeout value
result. The following example illustrates this point:

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>*</method-name>

</method>

404 Developing WebSphere applications

<lock>Read</lock>
</concurrent-method>
<concurrent-method>

<method>
<method-name>businessMethod</method-name>

</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

</session>

The previous code example results in all business methods having a lock type of read and the method
named, businessMethod, having a lock type of read and an access timeout of 2,000 milliseconds. You
can also have a class level @Lock annotation to set the lock type for all methods and use style 1 for
composing XML to set just the access timeout value for all methods. See the following example:
@Singleton
@Lock(READ)
public class ConfigurationBean implements Configuration {

public Object businessMethod(long value) {
// ...
}

// ...

}

<session>
<ejb-name>ConfigurationBean</ejb-name>
<concurrent-method>

<method>
<method-name>*</method-name>

</method>
<access-timeout>

<timeout>2000</timeout>
<unit>Milliseconds</unit>

</access-timeout>
</concurrent-method>

</session>

The previous example results in all business methods of bean, ConfigurationBean, having a lock type of
read and an access timeout value of 2,000 milliseconds.

v Ensure that you understand the inheritance rules for the annotations that you have used.

v Avoid reentrant locking behavior that can occur if a read lock method calls a write lock method in the
same singleton session bean.

Suppose the business method of a singleton session bean either directly or indirectly causes another
business method of the singleton session bean to be started. If the first method is a write lock method,
then that method can call any other business method of the singleton session bean without any special
consideration. However, you might carefully implement a read lock method if it were to call another
business method of that same singleton session bean class that is a write lock method. Then a
javax.ejb.IllegalLoopbackException exception occurs.

Changing singleton session bean locking policy
Use this task to override the default non-fair locking policy for all singleton session bean write locks within
the server. This task is for WebSphere Application Server users who do not want lock requests for their
Singleton session bean method invocations to follow a non-fair policy.

Chapter 10. Developing EJB applications 405

About this task

Locks for singleton session bean methods are obtained using a non-fair locking policy by default. When
locks are constructed as fair, threads contend for entry using an approximate arrival-order policy. When
lock is released, the longest waiting lock is granted regardless if it is reader or writer.

When locks are constructed as non-fair, the order in which locks are obtained is not guaranteed. If readers
are active and a writer enters the queue, subsequent readers might get granted the read lock before the
writer is granted the lock.

Procedure
1. Optional: Open the administrative console.

2. Select Servers.

3. Select Server Types.

4. Select WebSphere application servers.

5. Select the server that you want to configure.

6. From Server Infrastructure, select Java and Process Management Process definition.

7. From Additional Properties, select Java Virtual Machine.

8. In the Additional Properties area, select Custom Properties.

9. On the Application servers page, click New to specify an arbitrary name and value pair for your
server.

10. In the Name entry field, type: com.ibm.websphere.ejbcontainer.useFairSingletonLockingPolicy

11. In the Value entry field, type true.

Attention: Entering true causes all locks obtained for singleton session bean methods to use a fair
policy. Entering false causes all locks obtained for singleton session bean methods to use a non-fair
policy. The default policy is non-fair.

12. Click OK.

13. Save the configuration.

14. Restart the server.

Results

The locking policy has now been set for all locks obtained for singleton session beans within the server.

Programming to use message-driven beans
Applications can use message-driven beans as asynchronous message consumers. You deploy a
message-driven bean as a message listener for a destination. When a message arrives at the destination,
the EJB container invokes the message-driven bean automatically without an application having to
explicitly poll the destination.

About this task

You can use a tool such as Rational Application Developer to develop applications that use
message-driven beans. You can use the WebSphere Application Server runtime tools, such as the
administrative console, to deploy and administer applications that use message-driven beans.

For more information about implementing enterprise applications that use message-drive beans, see the
following topics:

406 Developing WebSphere applications

Procedure
v Develop message-driven beans.

v Design an enterprise application to use message-driven beans.

v Develop an enterprise application to use message-driven beans.

v Deploy an enterprise application to use message-driven beans with JCA 1.5-compliant resources.

v Deploy an enterprise application to use message-driven beans with listener ports.

Developing message-driven beans
You can develop a bean implementation class for a message-driven bean as introduced by the Enterprise
JavaBeans specification. A message-driven bean (MDB) is a message consumer that implements business
logic and runs on the server.

Before you begin

Determine the messaging model you want for your application regarding use of topics, queues, producers
and consumers, publish or subscribe, and so on. You can refer to the message-driven bean component
contract that is described in the Enterprise JavaBeans™ specification.

About this task

A message-driven bean (MDB) is a consumer of messages from a Java Message Service (JMS) provider.
An MDB is invoked on arrival of a message at the destination or endpoint that the MDB services. MDB
instances are anonymous, and therefore, all instances are equivalent when not actively servicing a client
message. The container controls the life cycle of bean instances, which hold no state that is visible to a
client.

The following example is a basic message-driven bean:
@MessageDriven(activationConfig={

@ActivationConfigProperty(propertyName="destination", propertyValue="myDestination"),
@ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue")

})
public class MsgBean implements javax.jms.MessageListener {

public void onMessage(javax.jms.Message msg) {

String receivedMsg = ((TextMessage) msg).getText();
System.out.println("Received message: " + receivedMsg);

}

}

As with other enterprise bean types, you can also declare metadata for message-driven beans in the
deployment descriptor rather than using annotations, for example:
<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar id="EJBJar_1060639024453" version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
metadata-complete="false">

<enterprise-beans>

<message-driven>

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.ejb.MsgBean</ejb-class>
<activation-config>

<activation-config-property>
<activation-config-property-name>destination</activation-config-property-name>

Chapter 10. Developing EJB applications 407

<activation-config-property-value>myDestination</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>destinationType</activation-config-property-name>
<activation-config-property-value>javax.jms.Queue</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>

</enterprise-beans>
</ejb-jar>

Procedure
v Code the business logic of the message-driven bean, which must implement the appropriate message

listener interface defined by the messaging type; for example, javax.jms.MessageListener. The business
logic is invoked when the message listener method of the MDB is called to service a message; for
example, MessageListener.onMessage(). If the MDB implements more than one interface, denote the
message listener interface by coding the messageListenerInterface attribute of the MessageDriven
annotation, or by coding the <messaging-type> element of the message-driven deployment descriptor
element. You do not have to specify which is the message listener interface, as long as there is only
one interface other than java.io.Serializable, java.io.Externalizable, or any of the javax.ejb
package interfaces.

v You can optionally define message destination references on any type of enterprise bean. A message
destination reference is a logical name by which an enterprise bean can refer to a message destination.
The Resource annotation is used to inject a message destination reference, for example:
@Resource (name="jms/Outlet", type=javax.jms.Queue) Queue salesOutlet;

Alternatively, you can use the <message-destination-ref> element in the deployment descriptor to
specify the message destination reference; for example:
<message-destination-ref>

<message-destination-ref-name>jms/Outlet</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<injection-target>
<injection-target-class>com.acme.ejb.MsgBean</injection-target-class>
<injection-target-name>salesOutlet</injection-target-name>

</injection-target>
</message-destination-ref>

The message-destination-ref element is similar to the resource-env-ref element, but also has
subelements, message-destination-usage with possible values Produces, Consumes or
ProducesConsumes, and message-destination-link. You can use the message-destination-link element
to tie two or more message-destination-ref references in the deployment descriptor together, which
allows the deployer to bind the destination for several enterprise beans all at once, to the same
destination. The message-destination-link value must match the message-destination-name value in the
message-destination element; for example:
<ejb-jar>

<enterprise-beans>

<session>
<ejb-name>OutletBean</display-name>
...
<message-destination-ref>
<message-destination-ref-name>jms/target</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Produces</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

<session>
<ejb-name>InletBean</display-name>

408 Developing WebSphere applications

...
<message-destination-ref>
<message-destination-ref-name>jms/source</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Consumes</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

<message-driven>
<ejb-name>InletBean</display-name>
...

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.MsgBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>destination</message-destination-link>

...
</message-driven>

</enterprise-beans>
...

<assembly-descriptor>
...
<message-destination>
<message-destination-name>destination</message-destination-name>

</message-destination>
...

</assembly-descriptor>

</ejb-jar>

The message-destination-link element can refer to a destination that is defined in a different Java
archive (JAR) file within the same application, as with an ejb-link element. For example, to link to the
destination, ProduceQueue, defined in the grocery.jar file, enter the following line in the deployment
descriptor:
<message-destination-link>grocery.jar#ProduceQueue</message-destination-link>

v As with any enterprise bean, you can package a message-driven bean in a JAR file, or in a web
application archive (WAR) file.

Results

You developed a simple message-driven bean, along with some deployment and packaging options.

What to do next

Read related information about designing an enterprise application that uses message-driven beans.

Designing an enterprise application to use message-driven beans
To help you design your enterprise application, consider a generic enterprise application that uses one
message-driven bean to retrieve messages from a JMS queue destination, and passes the messages on
to another enterprise bean that implements the business logic.

About this task

To design an enterprise application to use message-driven beans, complete the following steps:

Chapter 10. Developing EJB applications 409

Procedure
1. Identify the message listener interface for the message type that the message-driven bean is to

handle. The message-driven bean class must implement this message listener interface. For example,
an EJB message-driven bean class used for JMS messaging must implement the
javax.jms.MessageListener interface.

2. Identify the resources that the application is to use. This helps to identify the properties of resources
that must be used within the application and configured as application deployment descriptors or within
WebSphere Application Server.

Table 41. JMS resource types and examples of their properties. The left hand column of this table lists the JMS
resource types, and the right hand column shows examples of the properties of each of the JMS resource types
shown in the left hand column.

JMS resource type Properties (for example)

JMS connection factory Name: SamplePtoPQueueConnectionFactory
JNDI Name: Sample/JMS/QCF

JMS destination Name: Q1
JNDI Name: Sample/JMS/Q1

J2C activation specification properties Name: MyMDBsActivationSpec
JNDI Name: eis/MyMDBsActivationSpec
Destination JNDI Name: MyQueue
Destination type: javax.jms.Queue

Message-driven bean (deployment properties) Name: JMSppSampleMDBBean
Transaction type: Container
Message selector: JMSType=’car’
Acknowledge mode: Dups OK Acknowledge
Destination type: javax.jms.Queue
ActivationSpec JNDI name: MyMDBsActivationSpec

Business logic bean Name: MyLogicBean

Ensure that you use consistent values where needed; for example, the JNDI name for the J2C
activation specification must be the same in both the activation specification and the Message-driven
bean deployment attributes.

3. Separate out the business logic. You should develop a message-driven bean to delegate the business
processing of incoming messages to another enterprise bean. This provides clear separation of
message handling and business processing. This also enables the business processing to be invoked
by either the arrival of incoming messages or, for example, from a WebSphere J2EE client.

4. Decide whether to configure security. Messages arriving at a destination being processed by a listener
have no client credentials associated with them; the messages are anonymous. Security depends on
the role specified by the RunAs Identity for the message-driven bean as an EJB component. For more
information about EJB security, see EJB component security.

5. Understand how best effort nonpersistent messages are handled by the default messaging provider.

If you have a non-transactional message-driven bean, the system either deletes the message when the
message-driven bean starts, or when the message-driven bean completes. If the message-driven bean
generates an exception, and therefore does not complete, the system takes one of the following
actions:

v If the system is configured to delete the message when the message-driven bean completes, then
the message is despatched to a new instance of the message-driven bean, so the message has
another opportunity to be processed.

v If the system is configured to delete the message when the message-driven bean starts, then the
message is lost.

The message is deleted when the message-driven bean starts if the quality of service is set to Best
effort nonpersistent. For all other qualities of service, the message is deleted when the
message-driven bean completes.

410 Developing WebSphere applications

Developing an enterprise application to use message-driven beans
Applications can use message-driven beans as asynchronous message consumers. You deploy a
message-driven bean as a message listener for a destination. The message-driven bean is invoked by an
activation specification or a JMS listener when a message arrives on the input destination that is being
monitored.

About this task

You develop an enterprise application to use a message-driven bean as with any other enterprise bean,
except that a message-driven bean does not have a home interface or a remote interface.

You should develop your message-driven bean to delegate the business processing of incoming messages
to another enterprise bean, which provides clear separation of message handling and business
processing. This separation also means that the business processing can be invoked either by the arrival
of incoming messages or, for example, by a WebSphere J2EE client. Responses can be handled by
another enterprise bean acting as a sender bean, or they can be handled in the message-driven bean.

EJB 2.0 message-driven beans support only Java Message Service (JMS) messaging. EJB 2.1 and EJB 3
message-driven beans can support other messaging types in addition to JMS. All message-driven beans
must implement the MessageDrivenBean interface. For JMS messaging, a message-driven bean must
also implement the message listener interface javax.jms.MessageListener. Other Java EE Connector
Architecture (JCA)-compliant resource adapters might provide their own message listener interfaces that
must be implemented.

You can use the New Enterprise Bean wizard of Rational Application Developer to create an enterprise
bean with a bean type of Message-driven bean. The wizard creates appropriate methods for the type of
bean.

By convention, the message-driven bean class is named nameBean, where name is the name you assign
to the message-driven bean; for example:

public class MyJMSppMDBBean implements MessageDrivenBean, javax.jms.MessageListener

A message-driven bean can be registered with the EJB timer service for time-based event notifications if it
also implements the javax.ejb.TimedObject interface, and invokes the timer callback method by the
following call: void ejbTimeout(Timer). At the scheduled time, the container then calls the message-driven
bean ejbTimeout method.

The message-driven bean class must define and implement the following methods:
v onMessage(message), which must meet the following requirements:

– The method must have a single argument of type javax.jms.Message.
– The throws clause must not define any application exceptions.
– If the message-driven bean is configured to use bean-managed transactions, it must call the

javax.transaction.UserTransaction interface to scope the transactions. Because these calls occur
inside the onMessage() method, the transaction scope does not include the initial message receipt.
For more information, see the topic about message-driven beans transaction support.

To handle the message within the onMessage() method (for example, to pass the message on to
another enterprise bean), you use standard JMS. This is known as bean-managed messaging.

If you are using a JCA-compliant resource adapter with a different message listener interface, another
method besides the onMessage() method might be needed. For information about the message listener
interface needed, see the documentation that was provided with your JCA-compliant resource adapter.

v ejbCreate()

You must define and implement an ejbCreate method for each way in which you want a new instance of
an enterprise bean to be created.

v ejbRemove()

Chapter 10. Developing EJB applications 411

This method is invoked by the container when a client invokes the remove method inherited by the
enterprise bean home interface from the javax.ejb.EJBHome interface. This method must contain any
code that you want to execute before an enterprise bean instance is removed from the container (and
the associated data is removed from the data source).

v ejbTimeout(Timer)

This method is needed only to support notifications from the timer service, and contains the business
logic that handles time events received.

Procedure
1. Create the Enterprise Application project.

2. Create the message-driven bean class. You can use the New Enterprise Bean wizard of Rational(r)
Application Developer to create the enterprise bean with a bean type of Message-driven bean.

For an example of how to create the message-driven bean class, see the Example section of this
topic. For more information, see Creating message-driven beans in the Rational Application Developer
information center. The result of this step is a message-driven bean that can be assembled into an
EAR file for deployment.

3. Optional: Use the EJB deployment descriptor editor to review and, if needed, change the deployment
attributes. You can use the EJB deployment descriptor editor to review deployment attributes that you
specified on the EJB creation wizard (such as Transaction type and Message selector) and other
default deployment attributes.

If needed, you can override the values of these attributes later, after the enterprise application has
been exported into an EAR file for deployment, as described in “Configuring deployment attributes for
a message-driven bean against JCA 1.5-compliant resources” on page 2087 and “Configuring
deployment attributes for a message-driven bean against a listener port” on page 2089.

a. In the property pane, select the Bean tab.

b. On the main panel, configure the Transaction type attribute.

Transaction type
This attribute determines whether the message-driven bean manages its own transactions, or
whether the container manages transactions on behalf of the bean.
Bean The message-driven bean manages its own transactions.
Container

The container manages transactions on behalf of the bean.

c. Under Activation Configuration, review the following attributes:

acknowledgeMode
This attribute determines how the session acknowledges any messages it receives.
Auto Acknowledge

The session automatically acknowledges delivery of each message.
Dups OK Acknowledge

The session lazily acknowledges the delivery of messages. This setting is likely to
result in the delivery of some duplicate messages if JMS fails, so it should be used
only by consumer applications that are tolerant of duplicate messages.

As defined in the EJB specification, clients cannot use the Message.acknowledge() method to
acknowledge messages. If a value of CLIENT_ACKNOWLEDGE is passed on the createxxxSession
call, then messages are automatically acknowledged by the application server and the
Message.acknowledge() method is not used.

Note:

The acknowledgement is sent when the message is deleted.

If you have a non-transactional message-driven bean, the system either deletes the
message when the message-driven bean starts, or when the message-driven bean

412 Developing WebSphere applications

completes. If the message-driven bean generates an exception, and therefore does not
complete, the system takes one of the following actions:

v If the system is configured to delete the message when the message-driven bean
completes, then the message is despatched to a new instance of the message-driven
bean, so the message has another opportunity to be processed.

v If the system is configured to delete the message when the message-driven bean
starts, then the message is lost.

The message is deleted when the message-driven bean starts if the quality of service is
set to Best effort nonpersistent. For all other qualities of service, the message is
deleted when the message-driven bean completes.

destinationType
This attribute determines whether the message-driven bean uses a queue or topic destination.
Queue The message-driven bean uses a queue destination.
Topic The message-driven bean uses a topic destination.

subscriptionDurability
This attribute determines whether a JMS topic subscription is durable or nondurable.
Durable

A subscriber registers a durable subscription with a unique identity that is retained by
JMS. Subsequent subscriber objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no active subscriber for a
durable subscription, JMS retains the subscription messages until they are received by
the subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their subscriber object. This means that
a client sees the messages published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages published on its topic.

A nondurable subscriber can only be used in the same transactional context (for
example, a global transaction or an unspecified transaction context) that existed when
the subscriber was created.

messageSelector
This attribute determines the JMS message selector that is used to select which messages the
message-driven bean receives. For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the message
properties. Message selectors cannot reference message body values.

d. Specify bindings deployment attributes.

Under WebSphere Bindings, select the JCA Adapter option then specify the bindings deployment
attributes:
ActivationSpec JNDI name

This attribute specifies the JNDI name of the activation specification that is used to deploy
this message-driven bean. This name must match the name of an activation specification
that you define to WebSphere Application Server.

ActivationSpec Authorization Alias
This attribute specifies the name of an authentication alias used for authentication of
connections to the JCA resource adapter. An authentication alias specifies the user ID and
password that is used to authenticate the creation of a new connection to the JCA resource
adapter.

Destination JNDI name
This attribute specifies the JNDI name that the message-driven bean uses to look up the
JMS destination in the JNDI namespace.

e. Optional: Specify Destination Link to enable message linking.

Chapter 10. Developing EJB applications 413

Message linking allows the routing of messages to a specific message-driven bean in a
deployment. Message linking allows message flow to be orchestrated between components in the
same application.

For a message to be consumed and processed by a message-driven bean, the<message-
destination-link> element must be defined in the deployment descriptor associated with the
message-driven bean. The destination identified by the <message-destination-link> element
corresponds to the logical destination.

When the <message-destination-ref> includes a <message-destination-link> element, messages
are consumed at that destination.

In order to get the message-driven bean to consume messages sent to a destination, you can
declare a <message-destination-link> element in the deployment descriptor, or alternatively set it
in the activation specification.

4. Assemble and package the application for deployment.

Results

The result of this task is an EAR file, containing the message-driven bean, for the enterprise application
that can be deployed in WebSphere Application Server.

Example

The following example shows how to create the message-driven bean class. The example code shows
how to access the text and the JMS MessageID, from a JMS message of type TextMessage. In this
example, first the onMessage() method of a message-driven bean is used to unpack the incoming text
message and to extract the text and message identifier; then a private putMessage method (defined within
the same message bean class) is used to put the message onto another queue:

public void onMessage(javax.jms.Message msg)
{

String text = null;
String messageID = null;

try
{

text = ((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(), msg text2: "+text);

//
// store the message id to use as the Correlator value
//
messageID = msg.getJMSMessageID();

// Call a private method to put the message onto another queue
putMessage(messageID, text);

}
catch (Exception err)
{

err.printStackTrace();
}
return;

}

What to do next

After you have developed an enterprise application to use message-driven beans, configure and deploy
the application. For example, define activation specifications for the message-driven beans and, optionally,
change the deployment descriptor attributes for the application. For more information, see “Deploying an

414 Developing WebSphere applications

enterprise application to use message-driven beans with JCA 1.5-compliant resources” on page 2086 and
“Deploying an enterprise application to use message-driven beans with listener ports” on page 2089.

Assembling EJB 2.1 enterprise beans

Assembling EJB 2.x modules
An enterprise bean is a Java component that can be combined with other resources to create Java EE
applications. This topic describes assembling Enterprise JavaBeans (EJB) modules based on the EJB 2.x
and earlier specifications.

Before you begin

Create and unit tested an enterprise bean that you want to assemble in an enterprise application and
deploy onto an application server.

About this task

Assemble an EJB module to contain enterprise beans and related code artifacts. Group web components,
client code, and resource adapter code in separate modules. After the EJB module is assembled, install it
as a stand-alone application or combine it with other modules into an enterprise application.

Use an assembly tool to assemble an EJB module in any of the following ways:
v Import an existing EJB module (EJB JAR file)
v Create a EJB module
v Copy code artifacts, such as entity beans, from one EJB module into a new EJB module

For information about assembling EJB modules with an assembly tool, see the Rational Application
Developer documentation.

Results

The EJB module is migrated or created, reflecting the Java EE structure that specifies the location of
enterprise bean content files, class files, class paths, the deployment descriptor, and supporting metadata.
For more information about the location of the content see the assembly tool information center.

What to do next

After you finish assembling your EJB module, you are ready to deploy your module.

Sequence grouping for container-managed persistence in assembled
EJB modules
After assembling an Enterprise JavaBeans (EJB) module that contains container-managed persistence
(CMP) beans, you can prevent certain types of database-related exceptions from occurring during
application run time. Using sequence grouping, you can specify the order in which entity beans update
relational database tables.

Note: Entity beans are not supported in EJB 3.x modules.

Eliminate exceptions resulting from referential integrity (RI) violations

Sequence grouping is particularly useful for preventing violations of database referential integrity (RI). A
database RI policy prescribes rules for how data is written to and deleted from the database tables to

Chapter 10. Developing EJB applications 415

maintain relational consistency. Run-time requirements for managing bean persistence, however, can
cause an EJB application to violate RI rules, which can cause database exceptions. These runtime
requirements mandate that:

v Entity bean creates and remove operations correlate to the database immediately upon method
invocation.

v Entity bean changes are cached by the EJB container until either a finder method is called, or the
transaction ends.

Consequently, the order in which entity beans update the database is unpredictable. That randomness
translates into high risk of the application violating database RI. Although caching the operations for batch
processing overrides these runtime requirements, it does not guarantee a bean persistence sequence that
follows any given RI policy.

The only way to guarantee a persistence sequence that honors database RI is to designate the sequence,
which you do in the EJB deployment descriptor editor of the assembly tool. Through the sequence
grouping feature, you assign beans to CMP groups. Within each group, you specify the order in which the
persistence manager inserts bean data into the database to accomplish updates without violating RI.

See the “Setting the run time for CMP sequence groups” topic for detailed instructions on designating
sequence groups. Consult your database administrator about the RI policy with which you need to
synchronize.

Minimize exception risk for optimistic concurrency control schemes

Sequence grouping can also reduce the risk of transaction rollback exceptions for entity beans that are
configured for optimistic concurrency control. In these concurrency control schemes, database locks are
held for minimal amounts of time so that a maximum number of transactions consistently have access to
the data. The relatively unrestricted state of the database can lead to transaction rollback exceptions for
two common reasons:

v When concurrent transactions attempt to lock the same table row, database deadlock occurs.

v Transactions can occur in an order that violates application logic.

Use the sequence grouping feature to order bean persistence so that these scenarios are less likely to
occur.

Setting the run time for CMP sequence groups
By designating container managed persistence (CMP) sequence groups for entity beans, you can prevent
certain types of database-related exceptions during the run time of your Enterprise JavaBeans (EJB)
application. Specify in each group the order in which the beans update your relational database tables.

Before you begin

When you define a sequence group, you designate it as one of two types:

v RI_INSERT, for setting a bean persistence sequence to prevent database referential integrity (RI)
violations. See the topic Sequence grouping for container-managed persistence in assembled EJB
modules for more information.

v UPDATE_LOCK, for setting a bean persistence sequence to minimize exceptions resulting from
optimistic concurrency control

About this task

Both types of sequence groups must be created after you have assembled the beans into an EJB module,
before installing your application on the product. If you need to edit sequence groups, uninstall the
application, make your changes with an assembly tool, and reinstall your application.

416 Developing WebSphere applications

Attention: If you already selected or plan to use top-down mapping for mapping your enterprise beans
to back-end data, you do not need to create a sequence group with an RI_INSERT type. The product does
not generate an RI policy for the database schema that it creates when you select top-down mapping.

To learn how to complete this task see the assembly tool information center.

What to do next

You are now ready to deploy your EJB module or combine it with other modules into a Java EE
application. For more information about these two tasks, see the topics Installing enterprise application
files and Assembling Java EE client applications.

Assembling EJB 3.x enterprise beans

EJB 3.0 and EJB 3.1 application bindings overview
Prior to starting an application that is installed on an application server, all Enterprise JavaBeans (EJB)
references and resource references defined in the application must be bound to the actual artifacts
(enterprise beans or resources) defined in the application server.

Starting in Version 8.0, bindings support in the EJB container is expanded. The EJB container assigns
default JNDI bindings for EJB 3.x business interfaces based on application name, module name, and
component name. You do not have to explicitly define JNDI binding names for each of the interfaces or
EJB homes within an EJB 3.x module or no-interface views within an EJB 3.1 module.

When defining bindings, you specify Java Naming and Directory Interface (JNDI) names for the
referenceable and referenced artifacts in an application. The jndiName values specified for artifacts must
be qualified lookup names.

You do not need to manually assign JNDI bindings names for each of the interfaces, EJB homes, or
no-interface views on your enterprise beans in EJB 3.x modules. If you do not explicitly assign bindings,
the EJB container assigns default bindings.

Namespaces for default EJB JNDI bindings

Default EJB bindings may be placed by the application server into both the classic and java:[scope] sets of
namespaces.

The set of classic namespaces consists of the ejblocal: and Global JNDI namespaces. The classic
namespaces include a WebSphere extension, and they existed in the application server prior to version
8.0.

The set of java:[scope] namespaces consists of the java:global, java:app, and java:module namespaces.
The java:[scope] namespaces are defined by the Java EE 6 specification, and are introduced into
theWebSphere Application Server in Version 8. They are not a replacement for the classic namespaces.
Rather, they are added in addition to the classic namespaces.

Classic namespace details

For the EJB 3.x level, the product provides two distinct classic namespaces for EJB interfaces, depending
on whether the interface is local or remote. The same provision applies to EJB homes and no-interface
views, which can be considered special types of interfaces. The following classic namespaces exist:

v Java virtual machine (JVM)-scoped, ejblocal: namespace

v Global JNDI namespace

Chapter 10. Developing EJB applications 417

Local EJB interfaces, homes, and no-interface views must be bound into a JVM-scoped classic ejblocal:
namespace; they are accessible only from within the same application server process.

In contrast, remote EJB interfaces and homes must always be bound into the classic globally scoped
WebSphere JNDI namespace; they can be accessed from anywhere, including other server processes and
other remote clients. Local interfaces and no-interface views cannot be bound into the classic globally
scoped JNDI namespace, nor can remote interfaces be bound into the JVM-scoped classic ejblocal:
namespace.

The classic ejblocal: and classic globally scoped JNDI namespaces are separate and distinct. For
example, an EJB local interface or no-interface view bound at “ejblocal:AccountHome” is a not the same
as a remote interface bound at “AccountHome” in the classic globally scoped namespace. This behavior
helps maintain the distinction between your local and remote interface references. Having a JVM-scoped
local namespace also makes it possible for your applications to directly look up or reference local EJB
interfaces and no-interface views from anywhere in the JVM server process, including across Java
Platform, Enterprise Edition (Java EE) application boundaries.

Default classic JNDI bindings for EJB business interfaces in the EJB 3.x container with the Application,
Module, and Component names

The EJB container assigns default classic JNDI bindings for EJB 3.x business interfaces based on
application name, module name, and component name, so it is important to understand how these names
are defined. Each of these names is a character string.

Java EE applications are packaged in a standardized format called an Enterprise Application Archive
(EAR) file. The EAR is a packed file format like a .zip or .tar file format, and can thus be visualized as a
collection of logical directories and files packed together into a single physical file. Within each EAR file
are one or more Java EE module files, which can include:

v Java Application Archive (JAR) files for EJB modules, Java EE application client modules and utility
class modules

v Web Application Archive (WAR) files for web modules

v Other technology-specific modules such as Resource Application Archive (RAR) files and other types of
modules

Within each module file are typically one or more Java EE components. Examples of Java EE components
are enterprise beans, servlets, and application client main classes.

Since Java EE modules are packaged within Java EE application archives, and Java EE components are
in turn packaged within Java EE modules, the “nesting path” of each component can be used to uniquely
identify every component within a Java EE application archive, according to its application name, module
name, and component name.

Application name used in classic bindings

The name of an application is defined by the following (in order of priority):

v The value of the application name specified to the product administrative console, or the appname
parameter supplied to the wsadmin command-line scripting tool, during installation of the application into
the product.

v The value of the <display-name> parameter within the META-INF/application.xml deployment
descriptor for the application.

v The EAR file name, excluding the .ear file suffix. For example, an application EAR file named
CustomerServiceApp.ear would have an application name of “CustomerServiceApp” in this case.

The Java EE 6 specification provides for EJB JNDI lookup names of the general form,
java:global[/appName]/moduleName/beanName. The appName component of the lookup name is shown

418 Developing WebSphere applications

as optional because it does not apply to beans deployed in stand-alone modules. Only beans packaged in
.ear files contain the appName component in the java:global lookup name. The rules that determine the
value for appName are different from the rules described previously for application names. The appName
value in the java:global lookup name template shown previously is defined by the following, in order of
priority:

v The value of the <application-name> parameter within the application.xml deployment descriptor for
the application.

v The EAR file name, excluding the .ear file suffix. For example, an application EAR file named
CustomerServiceApp.ear has an application name of “CustomerServiceApp”. If the application is a
stand-alone module, the java:global lookup name does not contain an application component.

The value for appName is also the string value bound under the name, java:app/AppName, in accordance
with the Java EE 6 specification.

Module name used in classic bindings

The name of a module is defined as the Uniform Resource Identifier (URI) of the module file, relative to
the root of the EAR file in which it resides. Stated another way, the module name is the file name of the
module relative to the root of the EAR file, including any subdirectories in which the module file is nested.
This naming convention is still true even when a logical module name is explicitly specified using the
module-name element in the deployment descriptor.

In the following example, the “CustomerServiceApp” application contains three modules whose names are
AccountProcessing.jar, Utility/FinanceUtils.jar, and AppPresentation.war:
CustomerServiceApp.ear:AccountProcessing.jar
com/mycompany/AccountProcessingServiceBean.class AccountProcessingService.class
Utility/FinanceUtils.jar META-INF/ejb-jar.xml
com/mycompany/InterestCalculatorServiceBean.class InterestCalculatorService.class
AppPresentation.war META-INF/web.xml

The Java EE 6 specification provides for EJB JNDI lookup names of the general form,
java:global[/appName]/moduleName/beanName. The appName component of the lookup name is shown
as optional because it does not apply to beans deployed in stand-alone modules. Only beans packaged in
.ear files contain the appName component in the java:global lookup name. Another JNDI lookup name
variant that includes the module name is java:app/moduleName/beanName. The value for moduleName is
not the module URI. The moduleName value in the java:global and java:app lookup name templates is
defined by the following, in order of priority:

v The value of the <module-name> parameter within the ejb-jar.xml or web.xml deployment descriptor for
the module.

v The module URI, excluding its .jar or .war suffix. For example, a module with a URI of
CustomerService.jar or CustomerService.war has a module name of “CustomerService”.

The value for moduleName is also the string value bound under the name, java:module/moduleName, in
accordance with the Java EE 6 specification. This also applies to client modules. For client modules, the
<module-name> parameter is located in the application-client.xml deployment descriptor file.

EJB component name used in classic bindings

The name of an EJB component is defined by the following value, in order of priority:

v The value of the ejb-name tag associated with the bean in the ejb-jar.xml deployment descriptor, if
present.

v The value of the “name” parameter, if present, in the @Stateless or @Stateful annotation associated
with the bean.

v The name of the bean implementation class, without any package-level qualifier.

Chapter 10. Developing EJB applications 419

Bindings

Review the following bindings that are supported by EJB 3.x modules:
v Default classic bindings for business interfaces, homes, and no-interface views
v Default classic binding pattern
v java:[scope] bindings
v User-defined bindings for EJB business interfaces, homes, and no-interface views
v User-defined bindings for resolving references and injection targets
v Default resolution of EJB references and EJB injections: The AutoLink feature
v Resolution of EJB and resource references and injections: The lookup feature
v “Overriding environment entries defined in applications ” on page 435
v “Overriding data source definitions ” on page 435
v Naming considerations in clustered environments
v User-defined EJB extension settings
v Legacy (XMI) bindings
v User-specified XML bindings

Default classic bindings for EJB business interfaces, homes, and no-interface
views

You do not have to explicitly define JNDI binding names for each of the interfaces or EJB homes within an
EJB 3.x module or no-interface views within an EJB 3.1 module. If you do not explicitly assign bindings,
the EJB container of the product assigns default classic bindings using the rules outlined here. This is
different from the EJB support in the product prior to the EJB 3.0 specification being supported.

The EJB container performs two default classic bindings for each interface (business, remote home, or
local home) or no-interface view on each enterprise bean. These two classic bindings are referred to here
as the views of the interface or no-interface short binding and long binding. The short binding uses just the
package-qualified Java class name of the interface or no-interface view, while the long binding uses the
component ID of the enterprise bean as an extra qualifier prior to the package-qualified interface or
no-interface view class name, with a hash or number sign (# symbol) between the component ID and the
interface or no-interface view class name. You can think of the difference between the two forms as being
analogous to a short TCP/IP host name (just the machine name) versus a long host name (machine name
with domain name prepended to it).

For example, the short and long default classic bindings for an interface or no-interface view might be
com.mycompany.AccountService and AccountApp/module1.jar/
ServiceBean#com.mycompany.AccountService, respectively.

By default, the component ID for EJB default classic bindings is formed using the application name,
module name, and component name of the enterprise bean, but you can assign any string you want
instead. By defining your own string as the component ID, you can set up a naming convention where the
long-form bindings of the enterprise bean share a common user-defined portion, yet also have a
system-defined portion based on the name of each interface or no-interface view class. It also allows you
to make the default EJB binding names independent of how you have packaged the enterprise beans
within the application module hierarchy. Overriding a default component ID of an enterprise bean is
described in the “User-defined bindings for EJB business interfaces, homes, and no-interface views”
section of this topic.

As mentioned earlier in the section on the classic JVM-scoped local namespace and the classic globally
scoped JNDI namespace, all local interfaces, homes, and no-interface views must be bound into the
classic ejblocal: namespace, which is accessible only within the same server process (JVM), while remote
interfaces and homes must be bound into the classic globally scoped namespace, which is accessible
from anywhere in the WebSphere product cell. As you would expect, the EJB container follows these rules
for the default bindings.

420 Developing WebSphere applications

In addition, the long default bindings for remote interfaces follow recommended Java EE best practices in
that they are grouped under an ejb context name. By default, EJB remote home and business interfaces
are bound into the root of the application server naming context. However, the application server root
context is used for binding more than just EJB interfaces, so to keep this context from getting too
cluttered, it is a good practice to group EJB-related bindings into a common “ejb” subcontext rather than
placing them directly in the server root context. It is like why you would use subdirectories on a disk
volume rather than putting all the files in the root directory.

The short default bindings for remote interfaces are not bound in the ejb context. The short default
bindings are located in the root of the server root context. Even though it is a best practice to group all the
EJB-related bindings under an ejb context, there are other considerations including the following situations:

v The short default bindings provide a simple, direct way to access an EJB interface. Placing them
directly in the server root context and referring to them by just the interface name or the interface name
prepended with ejblocal: was in keeping with that goal of simplicity.

v At the same time, placing the long default bindings in the ejb context, or the ejblocal: context in the
case of a local interface, kept those bindings out of the root context of the server and reduced the
clutter there enough to allow having the short bindings in the root context.

v It provides a degree of cross-compatibility with other Java EE application servers that use similar
naming conventions.

To summarize, all local default bindings, both short and long, are placed in the classic ejblocal:
server/JVM-scoped namespace, while remote default bindings are placed in the root context of the server
of the classic globally scoped namespace if they are short, or in the <server_root>/ejb context (following
the root context of the server) if they are long. Thus, the only default bindings in the globally scoped root
context of the server are the short bindings for remote interfaces, which is the best balance between
providing a simple, portable usage model and keeping the globally scoped root context of the server from
becoming too cluttered.

Default classic binding pattern

The patterns for each type of classic binding are displayed in the table. In these patterns, strings written in
<bracketed italics> represent a value. For example, <package.qualified.interface> might be
com.mycompany.AccountService, and <component-id> might be AccountApp/module1.jar/ServiceBean.

Table 42. Default binding patterns. Default binding patterns
Binding patterns Description

ejblocal:<package.qualified.interface> Short form local interfaces, homes, and no-interface views

<package.qualified.interface> Short form remote interfaces and homes

ejblocal:<component-id>#<package.qualified.interface> Long form local interfaces, homes, and no-interface views

ejb/<component-id>#<package.qualified.interface> Long form remote interfaces and homes

The component-id default pattern is <application-name>/<module-jar-name>/<ejb-name> unless it is
overridden in the EJB module binding file using the component-id attribute as described in the next
section, “Conflicts in short default binding names when multiple enterprise beans implement the same
interface”. The <module-jar-name> variable, when not overridden by the EJB module binding file, is the
name of the physical module file within the EAR including the extension, for example, .jar, .ear, .war, as
described in the previous “Module name” section, even if a logical module name is specified in the
deployment descriptor.

Conflicts in short default classic binding names when multiple enterprise beans implement the same
interface

When more than one enterprise bean that is running in the application server implements a given interface
or no-interface view, the short default classic binding name becomes ambiguous because the short name
might refer to any of the Enterprise JavaBeans that implement this interface or no-interface view. To avoid

Chapter 10. Developing EJB applications 421

this situation, you must either explicitly define a binding for each Enterprise JavaBeans that implements
the given interface or no-interface view as described in the next section, or disable short default classic
bindings for applications containing these Enterprise JavaBeans by defining a WebSphere product JVM
custom property, com.ibm.websphere.ejbcontainer.disableShortDefaultBindings. For more information
about defining the JVM custom property, read about Java Virtual machine custom properties.

To use this JVM custom property, set the property name to
com.ibm.websphere.ejbcontainer.disableShortFormBinding and the property value to either * (asterisk) as a
wildcard value to disable short form default classic bindings for all applications in the server, or to a
colon-delimited sequence of the Java EE application names for which you want to disable short default
classic bindings, for example, PayablesApp:InventoryApp:AccountServicesApp.

Effect of explicit assignment on default classic bindings

If you explicitly assign a binding definition for an interface, home, or no-interface view, no short or long
default classic bindings are performed for that interface or no-interface view.

Note: This only applies to the specific interfaces or no-interface views for which you assign an explicit
binding. Other interfaces on that enterprise bean, without explicitly assigned bindings, are bound by
using default classic binding names.

java:[scope] namespaces

The java:global, java:app, and java:module namespaces are introduced by the Java EE 6 specification.
They provide a mechanism for binding and looking up resources that are portable across application
servers.

The server always creates a default long-form binding for each EJB interface, including the no-interface
view, and places them into the java:global, java:app, and java:module namespaces. A short-form binding is
also created and placed into the java:global, java:app, and java:module namespaces, if the bean exposes
only one interface, including the no-interface view. The default bindings are only created for session
beans. They are not created for entity beans or message driven beans.

The long-form and short-form bindings both contain the application name, the module name, and the bean
component name. The application name is defaulted to the base name of the .ear file, without the
extension. The application name can be overridden using the application-name element in the
application.xml file. The module name is defaulted to the path name of the module, with the extension
removed and any directory names included. The module name can be overridden using the module-name
element in the ejb-jar.xml or web.xml files. The bean component name defaults to the unqualified name of
the bean class. The bean component name can be overridden using the name attribute on the EJB
component defining annotation, or the ejb-name element in the ejb-jar.xml file.

The long-form binding pattern is java:global/<applicationName>/<moduleName>/<bean component
name>!<fully qualified interface name>.

The short-form binding pattern is java:global/<applicationName>/<moduleName>/<bean component
name>.

For example, the bean component MyBeanComponent exposes just the one
com.foo.MyBeanComponentLocalInterface interface, and is packaged in the myModule.jar module in the
myApp.ear file. As a result, the following bindings are created in the java:[scope] namespaces:

v java:global/myApp/myModule/MyBeanComponent!com.foo.MyBeanComponentLocalInterface

v java:global/myApp/myModule/MyBeanComponent

v java:app/myModule/MyBeanComponent!com.foo.MyBeanComponentLocalInterface

v java:app/myModule/MyBeanComponent

422 Developing WebSphere applications

v java:module/MyBeanComponent!com.foo.MyBeanComponentLocalInterface

v java:module/MyBeanComponent

The MyBeanComponent bean can be obtained from the java:[scope] namespaces using one of the
following techniques:

v Use the lookup attribute on the @EJB annotation; for example:
@EJB(lookup="java:global/myApp/myModule/MyBeanComponent")

v Use the lookup-name element in ejb-jar.xml; for example:
<lookup-name>java:global/myApp/myModule/MyBeanComponent!com.ibm.MyBeanComponentLocalInterfaces</lookup-name>

v Complete a lookup on the InitialContext object; for example:
initialContext.lookup("java:global/myApp/myModule/MyBeanComponent!com.foo.MyBeanComponentLocalInterfaces")

In addition to the default bindings created by the application server, you can define references in the
java:global, java:app, and java:module namespaces. References defined in the java:global, java:app, and
java:module namespaces do not go into the component namespace. References defined in the java:global,
java:app, or java:module namespaces must be looked up or injected from those namespaces. They cannot
be looked up or injected from the component namespace.

A bean component can use the java:module namespace to declare a reference that is usable by a
component packaged in the same module. It can use the java:app namespace to declare a reference that
is usable by a component packaged in a different module within the same application. It can use the
java:global namespace to declare a reference that is usable by a component packaged in a different
application.

References with identical names in the java:global, java:app, or java:module namespaces might conflict
with each other, just as references with identical names in the component namespace might conflict. A
reference scoped to the java:app namespace for one application does not conflict with an identically
named reference scoped to the java:app namespace for a different application. Likewise, a reference
scoped to the java:module namespace for one module does not conflict with an identically named
reference scoped to the java:module namespace for a different module.

A reference can be declared in the java:global namespace using annotations; for example:
@EJB(name="java:global/env/myBean")

A reference can be declared in the ejb-jar.xml file; for example:
<resource-ref>

<res-ref-name>java:global/env/myDataSource</res-ref-name>
....

</resource-ref>

For additional documentation on the java:[scope] namespaces, see section 5.2.2 of the Java EE 6
specification and section 4.4 of the Enterprise JavaBeans 3.1 specification.

User-defined bindings for EJB business interfaces, homes, and no-interface views

For cases where you want to manually assign binding locations rather than using the product default
bindings, you can use the EJB module binding file to assign your own binding locations to specific
interfaces, homes, and no-interface views. You can also use this file to only override the component ID
portion of the default bindings on one or more enterprise beans in the module. Overriding the component
ID provides a middle ground between using all default bindings and completely specifying the binding
name for each interface or no-interface view.

To specify user-defined bindings information for EJB 3.x modules, place the file ibm-ejb-jar-bnd.xml, in the
META-INF directory for the EJB Java archive (JAR) file. The suffix on this file is XML. Also, when defining

Chapter 10. Developing EJB applications 423

a classic binding for a local interface or no-interface view, you must preface the name with the string
“ejblocal:” so it is bound into the classic JVM-scoped ejblocal: namespace.

The ibm-ejb-jar-bnd.xml file is used for EJB 3.0 and later modules that run on the product, whereas the
ibm-ejb-jar.bnd.xmi file is used for pre-EJB 3.0 modules and for web modules. The binding file format in
the ibm-ejb-jar.bnd.xml file is different from the XMI file format for the following reasons:

v Bindings and extensions that are declared in the XMI file format depend on the presence of a
corresponding ejb-jar.xml deployment descriptor file that explicitly refers to unique ID numbers that are
attached to elements in that file. This system is no longer viable for EJB 3.0 and later modules, where it
is no longer a requirement for the module to contain an ejb-jar.xml deployment descriptor.

v The XMI file format was designed to be machine-edited only by the product development tools and
system management functions; it was effectively part of the internal implementation of the product and
the file structure was never documented externally. This made it impossible for developers to manually
edit binding files, or create them as part of a WebSphere independent build process, in a supported
way.

v Rather than referring to encoded ID numbers in the ejb-jar.xml deployment descriptor, the XML-based
binding file refers to an EJB component by its EJB name. Each EJB component in a module has a
unique EJB name, either by default or through explicit assignment by the developer. Therefore, this
behavior provides an unambiguous way to target bindings and extensions.

v The new binding files are XML-based, and an XML Schema Definition (XSD) file is provided to
externally document the structure. These .xsd files can be consumed by many common XML file editors
to assist in syntactic verification and code completion functions. As a result, it is now possible for
developers to produce and edit the binding and extension files independently of the application server
infrastructure.

The following table lists the ibm-ejb-jar-bnd.xml elements and attributes that are used to assign bindings
to EJB interfaces and homes for EJB 3.x modules and no-interface views for EJB 3.1 modules.

Table 43. ibm-ejb-jar-bnd.xml elements and attributes. ibm-ejb-jar-bnd.xml elements and attributes
Element or
attribute How used Example Comments

<session> Declares a group of binding
assignments for a session bean.

<session name="AccountServiceBean"/> Requires name attribute and at
least one of the following
attributes: simple-binding-name
attribute, local-home-binding-
name attribute,
remote-home-binding-name
attribute, or <interface> element.

name Attribute that identifies the
ejb-name of the enterprise bean
that a <session>,
<message-driven>, or <entity>, or
other element applies to.

<session name="AccountServiceBean"/> The name value is the name
declared in the <ejb-name>
element of an ejb-jar.xml
deployment descriptor file, the
name attribute of a @Stateful,
@Stateless, @Singleton, or
@MessageDriven annotation, or
defaults to the unqualified class
name of the EJB
implementation class annotated
with the @Session or
@MessageDriven annotation (if
no <ejb-name> value is
declared in the XML deployment
descriptor and no name
parameter is declared on the
annotation).

424 Developing WebSphere applications

Table 43. ibm-ejb-jar-bnd.xml elements and attributes (continued). ibm-ejb-jar-bnd.xml elements and attributes
Element or
attribute How used Example Comments

component-
id

Attribute that overrides the default
component ID value for an
enterprise bean. The default
long-form classic bindings for this
enterprise bean uses the specified
component ID instead of
<app_name>/<module_jar_name>/
<bean_name>.

<session name="AccountServiceBean"
component-id="Dept549/AccountProcessor"/>

The previous example results in the bean whose ejb-name is
AccountServiceBean, having its long-form default classic local
interfaces bound at ejblocal:Department549/
AccountProcessor#<package.qualified.interface> Its long-form
default classic remote interfaces are bound at
ejb/Department549/
AccountProcessor#<package.qualified.interface>

Can be used alone, or in
combination with the <interface>
element, the
local-home-binding-name
attribute, or the
remote-home-binding-name
attribute. Interfaces that are not
assigned explicit bindings might
have default classic bindings
performed using the
user-specified component ID
value. Interfaces that are
assigned explicit bindings are
bound using those values.

Since the simple-binding-name
attribute is intended to apply to
all defined interfaces on a given
enterprise bean (leaving no
interfaces defaulted), applying a
component-id in combination
with a simple-binding-name is
typically not useful.

Chapter 10. Developing EJB applications 425

Table 43. ibm-ejb-jar-bnd.xml elements and attributes (continued). ibm-ejb-jar-bnd.xml elements and attributes
Element or
attribute How used Example Comments

simple-
binding-
name

A simple mechanism for assigning
interface bindings for Enterprise
JavaBeans that:

v Implement a single EJB 3.x
business interface

v Implement a pre-EJB 3.0 style
component interface (local,
remote or both types) with a
companion EJB home.

The value of the attribute is used
as the binding location of the
enterprise bean business interface,
or the binding location of the
Enterprise JavaBeans local, remote
homes, or both. The binding is
placed in the classic ejblocal:
namespace if the interface or home
is local, and placed in the root
context of the application server of
the classic globally scoped JNDI
namespace if the interface or home
is remote.

<session name="AccountServiceBean"
simple-binding-name="ejb/AccountService"/>

This example results in the bean whose ejb-name is
AccountServiceBean, having its local business interface or
home, if any, bound at ejblocal:ejb/AccountService in the
classic local JVM-scoped EJB namespace, and its remote
business interface or home (if any) bound at
ejb/AccountService in the root context of the application server
of the classic globally scoped JNDI namespace.
Important: Important:The exact value of the attribute,
including, in this specific example, the “ejb” subcontext name is
used even if the interface is a local interface bound into the
ejblocal: namespace. When user-defined bindings are
specified, the exact name specified by the attribute is used.)

Not to be used in combination
with local-home-binding-name or
remote-home-binding-name
attributes, or the <interface>
element. Also, must not be used
on beans that implement more
than one business interface -
use the <interface> element in
that case instead.

If this attribute is used on an
enterprise bean that implements
more than one business
interface, or a combination of
business interface and
local/remote component
interface with home, the
resulting bindings are
disambiguated by appending a
hash or number sign (# symbol)
to the attribute value, followed
by the package-qualified class
name of each interface, home,
or both on the enterprise bean.
This condition can be avoided,
however, by using the
<interface> element to define a
binding for each of the business
interfaces instead of using
simple-binding-name.

Important: Important: defining
a simple-binding-name on a
bean that implements more than
one business interface is not the
same as overriding the default
component ID for a bean using
<component-id>. Remote
interface default bindings
defined with a component-id are
still grouped under the EJB
context (as all remote interface
default bindings are), while
remote interface bindings
disambiguated by the EJB
container in response to
erroneous use of
simple-binding-name on a bean
with multiple interfaces are not
grouped under the ejb
context.Additionally, the
inclusion of the
package-qualified class name
always occurs for long-form
default classic bindings,
whereas with
simple-binding-name it occurs
only on error conditions, where
disambiguation is necessary. Do
not depend on the binding name
created through disambiguation,
since whether that effect occurs
might change if the bean is
changed to implement more or
fewer interfaces.

local-home-
binding-
name

Attribute to specify the binding
location of the local home of an
enterprise bean.

<session name="AccountServiceBean"
local-home-binding-name="ejblocal:AccountService"/>

Not to be used in combination
with the simple-binding-name
attribute. Since local homes
must always be bound into the
classic JVM-scoped
namespace, the value must
begin with the ejblocal: prefix.

426 Developing WebSphere applications

Table 43. ibm-ejb-jar-bnd.xml elements and attributes (continued). ibm-ejb-jar-bnd.xml elements and attributes
Element or
attribute How used Example Comments

remote-
home-
binding-
name

Attribute to specify the binding
location of the remote home of an
enterprise bean.

<session name="AccountServiceBean"
remote-home-binding-name=
"ejb/services/AccountService"/>

Not to be used in combination
with the simple-binding-name
attribute. The value cannot
begin with the classic ejblocal:
prefix, since remote homes
cannot be bound into the classic
ejblocal: namespace.

<interface> A subelement of the <session>
element that assigns a binding to a
specific EJB business interface or
no-interface view. In contrast to the
simple-binding-name,
local-home-binding-name and
remote-home-binding-name
attributes, both a binding-name
parameter and a class parameter
are necessary (in fact, this
distinction is why a separate XML
element is necessary rather than
an attribute). The class parameter
specifies the package-qualified
name of the business interface or
no-interface view class to be
bound.

<interface class="com.ejbs.InventoryService"
binding-name="ejb/Inventory"/>

(declared as a subelement inside a <session> element)

Not to be used in combination
with the simple-binding-name
attribute. Since local interfaces
and no-interface views must
always be bound into the classic
JVM-scoped namespace, the
binding-name value must begin
with the ejblocal: prefix when
this element is applied to a local
interface or no-interface view.

binding-
name

Attribute to specify the binding
location of a business interface
bound with the <interface>
element.

<interface class="com.ejbs.InventoryService"
binding-name="ejb/Inventory"/>

(declared as a subelement inside a <session> element)

Required in combination with
the <interface> element (and
used on that element only).
Since local interfaces must
always be bound into the classic
JVM-scoped namespace, the
binding-name value must begin
with the ejblocal: prefix when
applied to a local interface.

Binding file Example 1

The following example is a basic ibm-ejb-jar-bnd.xml file that contains only the elements and attributes that
assign binding names to EJB interfaces and no-interface views. It overrides the component ID used for
default bindings on the enterprise bean that is named S01, and assigns explicit bindings to some of the
interfaces on the enterprise beans, S02 and S03, in this module.
<?xml version="1.0" encoding="UTF-8?">
<ejb-jar-bnd xmlns=http://websphere.ibm.com/xml/ns/javaee xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance "xsi:schemaLocation"=
http://websphere.ibm.com/xml/ns/javaee
http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd "version 1.0">
<session name="S01" component-id="Department549/AccountProcessors"/>
<session name="S02" simple-binding-name="ejb/session/S02"/>
<session name="S03">
<interface class="com.ejbs.BankAccountService" binding-name="ejblocal:session/BAS"/>
</session>
</ejb-jar-bnd>

The binding file has the following results:

v The session bean with ejb-name S01 is assigned a user-defined component ID, overriding the default
component ID (application name/ejb-jar module name/bean name) for all interfaces and no-interface
views on that bean. Local interfaces and no-interface views on this bean are bound at
ejblocal:Department549/AccountProcessors#<package.qualified.interface.name> while remote
interfaces are bound at ejb/Department549/AccountProcessors#<package.qualified.interface.name>

v The session bean with ejb-name S02 is assumed to have a single EJB 3.x business interface or EJB
3.1 no-interface view. Alternatively, it could have a pre-EJB 3.0 “component” interface with local home,
remote home, or both local and remote homes. The business interface, or the home or homes of the
component interface are bound at ejblocal:ejb/session/S02 if it is local, or ejb/session/S02 if it is remote.

Chapter 10. Developing EJB applications 427

If bean S02 has more than one business interface, or business interfaces and home, a
simple-binding-name is ambiguous. In that case, the container disambiguates the binding assignments
by appending #<package.qualified.interface.name> to the simple binding name, ejb/session/S02, for
each of the bean interfaces.

v The EJB 3.x business interface or EJB 3.1 no-interface view, com.ejbs.BankAccountService, on the
session bean with ejb-name S03 is bound at ejblocal:session/BAS.

All other business interfaces, homes, and no-interface views on this bean, if present, are assigned default
classic bindings. The com.ejbs.BankAccountService interface is assumed to be local since it was
designated for the ejblocal: namespace in this example; an error occurs if the interface is not local.

The next section expands on this example, introducing elements for resolving the targets of various kinds
of reference and injection entries that are declared either in the XML deployment descriptor or through
annotations.

User-defined bindings for resolving references and injection targets

The previous section showed examples of assigning user-defined binding names for business interfaces,
homes, and no-interface views. This section covers resolving linkage targets for references, injection
directives, and message-driven bean destinations.

Table 44. Elements and attributes to resolve linkage targets for references and injection targets. Elements and
attributes to resolve linkage targets for references and injection targets
Element or
attribute How used Example Comments

<jca-adapter> Defines the JCA 1.5 adapter
activation spec, and a
message-destination JNDI
location, for delivery of messages
to a message-driven bean.

<jca-adapter
activation-spec-binding-name="jms/InternalProviderSpec"
destination-binding-name="jms/ServiceQueue"/>

Requires activation-spec-
binding-name attribute. If the
corresponding message-drive
bean does not identify its
message destination by using
the <message-destination-link>
element, then the
destination-binding-name
attribute is also required. Can
optionally include
activation-spec-auth-alias
attribute.

<ejb-ref> Resolves the target of an ejb-ref
declaration, which is declared
through the @EJB annotation or
through the ejb-ref in the
ejb-jar.xml deployment descriptor,
providing the linkage between the
name declared in the
component-scoped java:comp/env
namespace and the name of the
target enterprise bean in the
classic JVM-scoped ejblocal:, or
classic globally scoped JNDI
namespace.

<ejb-ref name="com.ejbs.BankAccountServiceBean/s02Ref"
binding-name="ejb/session/S02"/>

Requires the name and
binding-name attributes.

<message-
driven>

Declares a group of binding
assignments for a
message-driven bean.

<message-driven name="EventRecorderBean">
<jca-adapter
activation-spec-binding-name="jms/InternalProviderSpec"
destination-binding-name="jms/ServiceQueue"/>
</message-driven>

Requires name attribute and
<jca-adapter> subelement.

428 Developing WebSphere applications

Table 44. Elements and attributes to resolve linkage targets for references and injection targets (continued).
Elements and attributes to resolve linkage targets for references and injection targets
Element or
attribute How used Example Comments

<message-
destination>

Associates the name of a
message destination, which is a
logical name defined in a Java
EE module deployment
descriptor, with a specific global
JNDI name, which is an actual
name in the JNDI namespace.
<message-destination-ref>
elements in the Java EE module
deployment descriptor, or
@Resource injection directives
that inject message destinations,
can then use the
<message-destination-line>
element to refer to this
message-destination by the
destination logical name, rather
than requiring individual
<message-destination-ref>
binding entries in the binding file
for each defined
message-destination-ref.

<message-destination name="EventProcessingDestination"
binding-name="jms/ServiceQueue"/>

Requires name and
binding-name attributes.

<message-
destination-
ref>

Resolves the target of a
message-destination-ref
declaration that is declared
through the @Resource
annotation or through the
message-destination-ref in
ejb-jar.xml, providing the linkage
between the name declared in
the component-scoped
java:comp/env namespace and
the name of the target resource
environment in the global JNDI
namespace.

<message-destination-ref
name="com.ejbs.BankAccountServiceBean/serviceQueue"
binding-name="jms/ServiceQueue"/>

Requires the name and
binding-name attributes.

<resource-ref> Resolves the target of a
resource-ref declaration that is
declared through the @Resource
annotation or through
resource-ref in ejb-jar.xml,
providing the linkage between the
name declared in the
component-scoped java:comp/env
namespace and the name of the
target resource in the global JNDI
namespace.

<resource-ref
name="com.ejbs.BankAccountServiceBean/dataSource"
binding-name="jdbc/Default"/>

Requires the name and
binding-name attributes. Can
include the authentication-alias
or custom-login-configuration
attributes.

<resource-
env-ref>

Resolves the target of a
resource-env-ref declaration that
is declared through the
@Resource annotation or through
resource-env-ref in ejb-jar.xml,
providing the linkage between the
name declared in the
component-scoped java:comp/env
namespace and the name of the
target resource environment in
the global JNDI namespace.

<resource-env-ref
name="com.ejbs.BankAccountServiceBean/dataFactory"
binding-name="jdbc/Default"/>

Requires the name and
binding-name attributes.

<env-entry> Overrides an environment entry
with the specified value
represented in string format or
object which can be accessed
with a JNDI lookup on the
specified lookup name applied to
the default initial context.

<env-entry name="java:module/env/taxYear" value="2010"/>
<env-entry name="java:module/env/taxYear"
binding-name="cell/persistent/MyApp/MyModule/taxYear"/

Requires the name attribute and
either the value or the
binding-name attribute, but not
both.

Chapter 10. Developing EJB applications 429

Table 44. Elements and attributes to resolve linkage targets for references and injection targets (continued).
Elements and attributes to resolve linkage targets for references and injection targets
Element or
attribute How used Example Comments

<data-source> Overrides a data source
definition, which is declared
through the
@DataSourceDefinition
annotation or through the
data-source element in the
application, or a module
deployment descriptor, with a
managed resource.

<data-source name="java:module/env/myDS"
binding-name="jdbc/DB2DS"/>

Requires the name and
binding-name attributes.

name Attribute that identifies the
naming location, typically within
the component-specific
java:comp/env namespace, that
defines the “source” side of a
reference/target linkage, such as
in ejb-ref, resource-ref,
resource-env-ref,
message-destination, or
message-destination-ref.

<ejb-ref name="com.ejbs.BankAccountServiceBean/goodBye"
binding-name="ejb/session/S02"/>

binding-name Attribute that identifies the
naming location within the classic
ejblocal: or classic globally
scoped JNDI namespace, or
java:global namespace that
defines the “target” side of a
reference/target linkage, such as
in ejb-ref, resource-ref,
resource-env-ref,
message-destination, or
message-destination-ref.

<ejb-ref name="com.ejbs.BankAccountServiceBean/goodBye"
binding-name="ejb/session/S02"/>

value Attribute that specifies the value
to use for an env-entry binding.

<env-entry name="java:module/env/taxYear" value="2010"/>

activation-
spec-binding-
name

Attribute that identifies the JNDI
location of the activation
specification associated with the
JCA 1.5 adapter to be used to
deliver messages to a
message-driven bean.

<jca-adapter
activation-spec-binding-name="jms/InternalProviderSpec"
destination-binding-name="jms/ServiceQueue"/>

This name must match the
name of a JCA 1.5 activation
specification that you define to
WebSphere Application Server.

activation-
spec-auth-
alias

Optional attribute that identifies
the name of a J2C authentication
alias used for authentication of
connections to the JCA resource
adapter. A J2C authentication
alias specifies the user ID and
password that is used to
authenticate the creation of a new
connection to the JCA resource
adapter.

<jca-adapter
activation-spec-binding-name="jms/InternalProviderSpec"
activation-spec-auth-alias="jms/Service47Alias"
destination-binding-name="jms/ServiceQueue"/>

This name must match the
name of a J2C authorization
alias that you define to
WebSphere Application Server

destination-
binding-name

Attribute that identifies the JNDI
name that the message-driven
bean uses to look up its JMS
destination in the JNDI name
space.

<jca-adapter
activation-spec-binding-name="jms/InternalProviderSpec"
destination-binding-name="jms/ServiceQueue"/>

This name must match the
name of a JMS queue or topic
that you define to WebSphere
Application Server.

authentication
-alias

Optional subelement of the
<resource-ref> binding element. If
the resource reference is for a
connection factory, then an
optional JAAS login configuration
can be specified; in this case a
simple authentication alias name.

<resource-ref
name="com.ejbs.BankAccountServiceBean/dataSource"
binding-name="jdbc/Default">
<authentication-alias name="defaultAuth"/>
<resource-ref>

This name must match the
name of a JAAS authentication
alias that you define to
WebSphere Application Server.

custom-login-
configuration

Optional subelement of the
<resource-ref> binding element. If
the resource reference is for a
connection factory, then an
optional JAAS login configuration
can be specified; in this case a
set of properties (name/value
pairs).

<resource-ref
name="com.ejbs.BankAccountServiceBean/dataSource"
binding-name="jdbc/Default">
<custom-login-configuration-name="customLogin">
<property name="loginParm1" value="ABC123"/>
<property name="loginParm2" value="DEF456"/>
</custom-login-configuration>
</resource-ref>

This name must match the
name of a JAAS login
configuration that you define to
WebSphere Application Server.

430 Developing WebSphere applications

Binding file Example 2

The following example is an expansion of the basic ibm-ejb-jar-bnd.xml file introduced in Example 1.
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-bnd xmlns="http://websphere.ibm.com/xml/ns/javaee" "xmlns:xsi"=
"http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee"
"http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd version" "1.0">
<session name="S01" component-id="Department549/AccountProcessors"/>
<session name="S02" simple-binding-name="ejb/session/S02"/>
<session name="S03">
<interface class="com.ejbs.BankAccountService"
binding-name="ejblocal:session/BAS"/>
<ejb-ref name="com.ejbs.BankAccountServiceBean/goodBye"
binding-name="ejb/session/S02"/>
<resource-ref name="com.ejbs.BankAccountServiceBean/dataSource"
binding-name="jdbc/Default"/>

</session>
<message-driven name="MO1">
<jca-adapter activation-spec-binding-name="jms/InternalProviderSpec"
destination-binding-name=jms/"ServiceQueue"/>

</message-driven>
<session name="S04" simple-binding-name="ejb/session/S04">
<resource-ref name="ejbs.S04Bean/dataSource"
binding-name="jdbc/Default">
<authentication-alias name="defaultlogin"/>
</resource-ref>
</session>
<session name="S05">
<interface class="com.ejbs.InventoryService"
binding-name="ejb/session/S05Inventory"/>
<resource-ref name="ejbs.S05Bean/dataSource"
binding-name="jdbc/Default">
<custom-login-configuration name="customLogin">
<property name="loginParm1" value="ABC123"/>
<property name="loginParm2" value="DEF456"/>
</custom-login-configuration>
</resource-ref>
</session>
</ejb-jar-bnd>

This binding has the following results:

1. The business interface, home, and no-interface view bindings for the session beans named S01, S02,
and S03 are unchanged from the previous example.

2. The session bean whose ejb-name is S03 now includes two reference target resolution bindings:

v The ejb-ref binding resolves the EJB reference defined at java:comp/env/
com.ejbs.BankAccountServiceBean/goodBye, to the JNDI location ejb/session/S02 within the root
JNDI context of the application server. The EJB reference can also be defined by an @EJB injection
in the class com.ejbs.BankAccountServiceBean, into an instance variable named “goodBye”.

Note: ejb/session/S02 is the JNDI location of session bean S02 also defined in this same binding
file, which means that the reference points to the session bean whose name is S02.

v The resource-ref binding resolves the resource reference defined at java:comp/env/
com.ejbs.BankAccountServiceBean/dataSource, to the JNDI location jdbc/Default. The resource
reference could also have been defined by a @Resource injection in the class
com.ejbs.BankAccountServiceBean, into an instance variable named “dataSource”.

3. Bindings are defined for a message-driven bean whose ejb-name is M01. The MDB receives
messages from a JMS destination defined to WebSphere Application Server, whose JNDI name is
jms/ServiceQueue, using a JCA 1.5 adapter whose JCA 1.5 activation spec has been defined to
WebSphere Application Server with the name jms/InternalProviderSpec.

4. The session bean whose ejb-name is S04 is assumed to have a single business interface or
no-interface view, which is bound at ejb/session/S04, if remote or ejblocal:ejb/session/S04, if local. It
has a resource-ref with name, java:comp/env/ejbs/S04Bean/dataSource. This can also be the class,
ejbs.S04Bean, with an @Resource injection into a variable named, dataSource. This resource-ref
resolved to the JNDI location jdbc/Default. The resource-ref refers to a J2C connection and connects
to this resource using a simple authentication alias named defaultlogin that has been defined in
WebSphere Application Server.

Chapter 10. Developing EJB applications 431

5. A business interface binding is defined for the interface whose class name is
com.ejbs.InventoryService implemented by the session bean whose ejb-name is S05; the interface is
assumed to be remote since it is not prefixed with “ejblocal:” and might thus be bound at
ejb/session/S05Inventory in the root JNDI context of the server in the classic globally-scoped
namespace. Any other business interfaces implemented by this bean are assigned default classic
bindings. The bean has a resource-ref with name java:comp/env/ejbs.S05Bean/dataSource (or a
@Resource injection in the class ejbs.S05Bean into a variable named “dataSource”) that is resolved to
the JNDI location jdbc/Default. The resource-ref refers to a J2C connection and connects to this
resource using a custom login configuration that includes two name-value pairs.

Bindings file Example 3

This example later in this section demonstrates how to define and resolve EJB reference bindings to
perform JNDI lookups across application server instances within the same WebSphere Application Server
cell. It uses two EJB beans: a called bean that defines an explicit binding using the simple-binding-name
attribute, and a calling bean that performs an @EJB injection and uses the ejb-ref element within its
associated binding file to resolve the reference so it points at the called bean, that resides in a different
application server process.

ibm-ejb-jar-bnd.xml (called bean)
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-bnd xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee"
"http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd" version="1.0">
<session name="FacadeBean" simple-binding-name="ejb/session/FacadeBean"/>
</ejb-jar-bnd>

This binding file content assumes that the session bean whose ejb-name is “FacadeBean” implements a
single business interface, and thus the simple-binding-name attribute can be used as an alternative to the
<interface> subelement. In this case, the FacadeBean implements a single remote business interface,
bound at ejb/session/FacadeBean in the server root JNDI context of the application server where the
FacadeBean resides.

Code snippet (calling bean)
@EJB(name="ejb/FacadeRemoteRef")
FacadeRemote remoteRef;
try {

output = remoteRef.orderStatus(input);
}
catch (Exception e) {

// Handle exception, etc.
}

This code snippet performs an EJB resource injection into the instance variable named “remoteRef”, which
is of type FacadeRemote. The injection overrides the “name” parameter, setting the resulting ejb-ref
reference name to ejb/FacadeRemoteRef. The code invokes a business method on the injected reference.

ibm-ejb-jar-bnd.xml (calling bean)
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-bnd xmlns="http://websphere.ibm.com/xml/ns/javaee"
"xmlns:xsi="
"http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee"
"http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd" version="1.0">
<session name="CallingBean">
<ejb-ref name="ejb/FacadeRemoteRef"
binding-name="cell/nodes/S35NLA1/servers/S35serverA1/ejb/session/FacadeBean"/>

</session>
</ejb-bnd-jar>

Finally, this binding file resolves the EJB reference with an ejb-ref name of ejb/FacadeRemoteRef to point
to the classic globally scoped JNDI name of cell/nodes/S35NLA1/servers/S35serverA1/ejb/session/
FacadeBean. This classic globally scoped JNDI name represents an interface bound at
ejb/session/FacadeBean under the server root context of the server named “S35serverA1” on the node

432 Developing WebSphere applications

named “S35NLA1” within the WebSphere Application Server cell of the calling bean. To point to a location
within a different WebSphere Application Server cell, a CORBAName-style name can be used instead of a
standard JNDI name.

Instructions on how to modify the ibm-ejb-jar-bnd.xml file can be found in the topic, Ways to update
application files.

The relationship between injections and references

There is a one-to-one correspondence between injection directives and reference declarations - every
injection implicitly defines a reference of some type, and conversely, every reference can optionally also
define an injection. You can think of an injection annotation as being the mechanism to define references
through annotations rather than defining them in the XML deployment descriptor.

By default, an injection defines a reference with a name formed from the package-qualified class name of
the component performing the injection, a forward slash (/), then the name of the variable or property
being injected into. For example, an injection performed in the class com.ejbs.AccountService, into a
variable or property named “depositService”, results in a reference named java:comp/env/
com.ejbs.AccountService/depositService. However, specifying the optional “name” parameter on the
injection directive overrides this default name and causes the reference to be named according to the
value of the “name” parameter.

Knowing this rule, it is easy to see how a bindings file can be used not only to resolve targets for
references declared in an XML deployment descriptor, but also to resolve targets for references implicitly
declared by an annotation injection directive. Simply use the value of the “name” parameter on the
injection annotation, or the default reference name from the class name and variable/property name if no
“name” parameter is specified, as if it were the name of the reference declared in an XML deployment
descriptor.

Default resolution of EJB references and EJB injections: The EJBLink and
AutoLink features

The EJBLink and AutoLink features are two different mechanisms that resolve references to EJB
components that are packaged in the same application and application server process as the referring
component. Both EJBLink and AutoLink remove the need to explicitly resolve the EJB reference with
binding information. The EJBLink feature is defined by the EJB specification, while the AutoLink feature is
a WebSphere Application Server extension.

The EJBLink and AutoLink features use different search criteria to locate the targeted bean component.
EJBLink searches for the targeted bean component using the explicitly specified bean name. AutoLink
searches for the targeted bean component using the interface that the bean implements. If no explicit
bindings are provided, but a bean name is provided, then the EJBLink feature is used. If no explicit
bindings are provided, and no bean name is provided, then the AutoLink feature is used. The EJBLink and
AutoLink features are never used together as part of the same search process.

Except for the search criteria, the EJBLink and AutoLink features are similar. Both features search a
specific module first, and then if needed fall back to searching the other modules in the same application
and application server process. Both features require that the search criteria resolve to exactly one bean
component, and consider it an error condition when the search criteria resolves to multiple bean
components. An error condition exists because the application server does not know that which of the
multiple bean components must be used. In this case, the exception
com.ibm.websphere.ejbcontainer.AmbiguousEJBReferenceException occurs. This exception is thrown at
run time when the referencing component attempts to find the targeted bean component.

The EJBLink feature supports three different formats.

v Specify only the name of the bean component. For example, MyBean.

Chapter 10. Developing EJB applications 433

v Specify the name of the physical module file, including the extension, that contains the targeted bean
component, followed by the # character, followed by the name of the bean component. For example,
myModule.jar#MyBean

v Specify the logical name of the module that contains the targeted bean component, the slash character
(/), followed by the name of the bean component. For example, MyModule/MyBean.

You can optionally specify the logical name of the module using the module-name element in the EJB
deployment descriptor for an ejb-jar module, or you can use the module-name element in the web
deployment descriptor file for a WAR module that contains EJB content. For a WAR module that contains
EJB content, the module-name element specified in the EJB deployment descriptor is ignored, and the
module-name element specified in the web deployment descriptor is processed. When no module-name
value is specified in the deployment descriptor, a default logical name is assigned to the module. The
default logical module name is the base name of the module file, minus the extension. For example, the
module file, MyModule.jar, has the default logical module name MyModule.

Specifying the name of the physical module file is still supported even when the module has a logical
name. Specifying the logical name of the module is still supported even when no logical module name is
configured in the deployment descriptor. In this case, the base name of the module is used as the logical
name of the module.

The embeddable EJB container supports all EJBLink formats. To support the physical module file format,
the embeddable EJB container does not allow you to start multiple modules with the same base name.

AutoLink is a value-add feature of WebSphere Application Server that eliminates the need to explicitly
resolve EJB reference targets in certain usage scenarios. In WebSphere Application Server V8, AutoLink is
implemented within the boundaries of each WebSphere Application Server process. The AutoLink
algorithm works as follows.

When the EJB container in the product encounters an EJB reference within a given EJB module, it first
checks to see if you have explicitly resolved the target of that reference through inclusion of an entry in the
binding file of the module. If it finds no explicit resolution of the target in the binding file, the container
searches within the referring module for an enterprise bean that implements the interface type or
no-interface view you have defined within the reference.

If it finds exactly one enterprise bean within the module that implements the interface or no-interface view,
it uses that enterprise bean as the target for the EJB reference. If the container cannot locate an
enterprise bean of that type within the module, it expands the search scope to the application that the
module is part of, and searches other modules within that application that are assigned to the same
application server as the referring module. Again, if the container finds exactly one enterprise bean that
implements the target interface or no-interface view, within the other modules of the application assigned
to the same server as the referring module, it uses that enterprise bean as the reference target.

The scope of AutoLink is limited to the application in which the EJB reference appears, and to the
application server on which the referring module is assigned. References to enterprise beans in a different
application, enterprise beans in a module assigned to a different application server, or to enterprise beans
residing in a module that has been assigned to a WebSphere Application Server cluster, must be explicitly
resolved using reference target bindings in the ibm-ejb-jar-bnd.xml file of the EJB module, or the
ibm-web-bnd.xmi file of the web module.

It is important to note that AutoLink is only supported for EJB references, not other types of references
although it is supported from the EJB container, the web container, and the application client container.
Also, because the scope of the AutoLink function is limited to the server that the referring module is
assigned to, or in the case of the Java EE client container, to the server that the client container is
configured as its JNDI bootstrap server, it is useful mainly in development environments and other
single-server usage scenarios. Even with these present limitations, it can be a significant value during the
development experience by removing the need to explicitly resolve EJB references.

434 Developing WebSphere applications

Resolution of EJB and resource references and injections: The lookup feature

The lookup feature is defined by the EJB 3.1 specification as a mechanism that resolves references to
EJBs or resources, by an explicit JNDI name. You can specify the lookup attribute on the javax.ejb.EJB
annotation or on the javax.annotation.Resource annotation. The corresponding XML attribute in the
ejb-jar.xml file is <lookup-name>, on one of the following elements: <ejb-ref>, <ejb-local-ref>,
<env-entry>, <resource-ref>, <resource-env-ref>, or <message-destination-ref>. lookup or <lookup-name>
is a JNDI name relative to the java:comp/env naming context.

On an EJB reference, lookup or <lookup-name> must not be specified with beanName or with <ejb-link>.
The administrative console displays lookup-name and ejb-link as read-only. However, if a JNDI name is
specified in the application installation step “Map EJB references to beans”, it overrides the lookup-name
or ejb-link value.

Overriding environment entries defined in applications

Applications might define environment entries with values that are suitable for unit testing, but not for
integration testing or production use. If you want to override an environment entry value, you can add the
following element to the corresponding binding file:
<env-entry name=“name” value=“value”/>

where name is the env-entry name as it is defined in the application and value is the value assigned to the
env-entry represented in string format. The string for value is parsed according to the type of the
environment entry as if the value had been specified in the deployment descriptor using env-entry-value.
For example,
<env-entry name="java:module/env/taxYear" value="2010"/>

associates the env-entry named “java:module/env/taxYear” with a value of “2010”.

Alternatively, you can configure an env-entry as a reference to another object accessible through JNDI.
The object returned from the JNDI lookup is used as the env-entry value. The element for that option has
the following form:
<env-entry name="name" binding-name="lookupName"/>

where name is the env-entry name as it is defined in the application and lookupName is a JNDI name that
resolves when applied to a lookup on the default initial context. For example,
<env-entry name="java:module/env/taxYear" binding-name="cell/persistent/MyApp/MyModule/taxYear"/>

associates the env-entry named “java:module/env/taxYear” with a value returned from a default initial
context lookup operation on “cell/persistent/MyApp/MyModule/taxYear”. You are responsible for creating
the JNDI object binding. The class of the bound object must be assignable to the object type of the
associated env-entry.

Environment entries can be defined at the application level and in EJB, web, and client modules. Those
levels correspond to the binding files application-bnd.xml, ejb-jar-bnd.xml, web-app-bnd.xml, and
application-client-bnd.xml.

Overriding data source definitions

With Java EE 6, you can develop applications that define data sources using the @DataSourceDefinition
annotation or <data-source> deployment descriptor entry.

Your applications should look up resource references as opposed to looking up data source definitions
directly. If you are installing an existing application that contains direct lookups to a data source definition,

Chapter 10. Developing EJB applications 435

and you want it to use another data source definition, you can override the data source definition with a
binding that resolves to a managed resource that you create. Create the binding by adding the following
element to your binding file:
<data-source name="name" binding-name="lookupName"/>

where name is the env-entry name as it is defined in the application and lookupName is a JNDI name that
resolves when applied to a lookup on the default initial context. For example,
<data-source name="java:module/env/myDS" binding-name="jdbc/DB2DS"/>

causes lookups on “java:module/env/myDS” to resolve to the data source bound with the name,
“jdbc/DB2DS”, relative to the default initial context. The data source bound under jdbc/DB2DS can be
created, for example, through the administrative console.

Data sources can be defined at the application level and in EJB, web, and client modules. Those levels
correspond to the binding files application-bnd.xml, ejb-jar-bnd.xml, web-app-bnd.xml, and
application-client-bnd.xml.

Naming considerations in clustered and cross-server environments

The classic global JNDI naming conventions in the previous sections apply in non-clustered environments
and when the lookup target is within the same cluster as the source of the lookup. When a lookup is
performed from outside a cluster on a binding that is within a given cluster, the lookup string must be
qualified to indicate the name of the cluster in which the target resides, according to the following
convention:
cell/clusters/<cluster-name>/<name-binding-location>

For example, given an EJB interface binding location within the application server root context:
ejb/Department549/AccountProcessors/CheckingAccountReconciler

If the EJB implementing this interface is assigned to an application server that is a member of a cluster
named Cluster47, the lookup string external to that cluster is as follows:
cell/clusters/Cluster47/ejb/Department549/AccountProcessors/CheckingAccountReconciler

When a lookup is performed across application server processes, the lookup string must be qualified to
indicate the name of the node and server in which the target resides, according to the following
convention:
cell/nodes/<node-name>/servers/<server-name>/<name binding location>

Again, given an EJB interface binding location within the application server root context:
ejb/Department549/AccountProcessors/CheckingAccountReconciler

If the enterprise bean that is implementing this interface is assigned to an application server named
Server47A1 that is located on a node named S47NLA1, the cross-server lookup string is as follows:
cell/nodes/S47NLA1/servers/Server47A1/ejb/Department549/AccountProcessors/CheckingAccountReconciler

User-defined EJB extension settings

For cases where you want to specify values for WebSphere Application Server EJB Extension settings,
you can use an EJB module extension file to assign these settings to specific EJB types within that
module. You specify extension settings information for EJB 3.x modules by placing one, or both, of two
files into the META-INF directory for the EJB JAR file, depending on the type of extension being defined.
The names of the two files are ibm-ejb-jar-ext.xml and ibm-ejb-jar-ext-pme.xml.

Note: The suffix on these files are XML, not XMI as in prior versions of WebSphere Application Server.

436 Developing WebSphere applications

The ibm-ejb-jar-ext.xml and ibm-ejb-jar-ext-pme.xml files are used for EJB 3.x modules running in
WebSphere Application Server, whereas the ibm-ejb-jar-ext.xmi and ibm-ejb-jar-ext-pme.xmi files are
used for pre-3.0 EJB modules. WebSphere Application Server Version 8.0 uses a new XML-based
extension file format instead of the previous .xmi file format for the following reasons:

1. Bindings and extensions declared in the xmi file format depend on the presence of a corresponding
ejb-jar.xml deployment descriptor file, explicitly referring to unique ID numbers attached to elements in
that file. This system is no longer viable for EJB 3.0 and later modules, where it is no longer a
requirement for the module to contain an ejb-jar.xml deployment descriptor.

2. The xmi file format was designed to be machine-edited only by WebSphere development tools and
system management functions; it was effectively part of WebSphere's internal implementation and the
structure of the file was never documented externally. This made it impossible for developers to
manually create or edit binding or extension files, or create them as part of a WebSphere independent
build process, in a supported manner.

3. Rather than referring to encoded ID numbers in ejb-jar.xml, the XML-based extension file format
refers to EJB components by their EJB name. Each EJB component in a module is guaranteed to
have a unique EJB name, either by default or through explicit assignment by the developer, so this
provides an unambiguous way to target bindings and extensions.

4. The new binding and extension file formats are XML-based, and XML Schema Definition (xsd) files are
provided to externally document their structure. These .xsd files might be consumed by many common
XML file editors to assist in syntactic verification and code completion functions. As a result, it is now
possible for developers to produce and edit these binding and extension files independently of
WebSphere Application Server infrastructure, using a generic XML editor or scripting system of their
choice.

Extensions defined in META-INF/ibm-ejb-jar-ext.xml

The following tables outlines extension elements and attributes that must be placed in the
META-INF/ibm-ejb-jar-ext.xml file. The subsequent section lists elements and attributes that appear in a
separate file, META-INF/ibm-ejb-jar-ext-pme.xml.

Table 45. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file. Elements and attributes of the
META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<session> Declares a group of extension
settings for a session bean.

<session name="AccountServiceBean"/> Requires name attribute. In
order to have any effect, also
include at least one extension
setting definition subelement.

<message-
driven>

Declares a group of extension
settings for a message-driven
bean.

<message-driven name="EventProcessorBean"/> Requires name attribute. In
order to have any effect, also
include at least one extension
setting definition subelement.

Table 46. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file. Elements and attributes of the
META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<time-out> Subelement to the <session> element that optionally declares
the number of seconds between method invocations after
which a stateful session bean might no longer be available.

<session
name="ShoppingCartBean">
<time-out value="600"/>

</session>

Requires value
attribute, a positive
integer.
Note: Only applicable
to stateful session
beans; must not be
used on stateless
beans.

Attribute default: 300 (5
minutes)

Chapter 10. Developing EJB applications 437

Table 46. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file (continued). Elements and attributes of
the META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<bean-
cache>

Subelement of <session> element used to declare bean
activation/passivation settings for stateful session beans.

<session
name="ShoppingCartBean">
<bean-cache
activation-policy="TRANSACTION"/>

</session>

To have any effect,
also include the
activation-policy
attribute.

activation-
policy

Attribute of <bean-cache> element that declares the conditions
under which the bean instance might be activated and
passivated. Applicable to stateful session beans. Allowable
values and their meanings are:

v TRANSACTION: Indicates that the bean activates at the
start of a transaction and passivates (and is removed from
the active EJB instance cache) at the end of the transaction.

v ONCE: Indicates that the bean activates when it is first
accessed in the server process, and passivates (and is
removed from the active EJB instance cache) at the
discretion of the container, for example, when the cache
becomes full.

v ACTIVITY_SESSION: Indicates that the bean activates and
passivates as follows:

1. On an ActivitySession boundary, if an ActivitySession
context is present on activation

2. On a transaction boundary, if a transaction context (but
no ActivitySession context) is present on activation, or

3. on an invocation boundary.

<session
name="ShoppingCartBean">
<bean-cache
activation-policy="ONCE"/>

</session>

Attribute default: ONCE
for stateful session
beans.

Table 47. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file. Elements and attributes of the
META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<global-
transaction>

Subelement to the <session> and <message-driven> elements
that can be used to declare the transaction timeout (in seconds)
to be used on transactions started by this specific EJB type
(overriding the server setting for global transaction timeout) and
also might declare whether this EJB type propagates global
transaction context received through web service atomic
transactions, across the heterogeneous web service
environment.

<session
name="AccountServiceBean"
<global-transaction
transaction-timeout="180"
send-wsat-context="FALSE"/>

</session>

Requires at least one of
transaction-timeout or
send-wsat-context
attributes.

Attribute default: Server
transaction timeout
setting for
transaction-timeout;
FALSE for
send-wsat-context

438 Developing WebSphere applications

Table 47. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file (continued). Elements and attributes of
the META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<local-
transaction>

Subelement to the <session> and <message-driven> elements
that can be used to declare settings related to local transactions.
Supported attributes are boundary, resolver, and
unresolved-action; these attributes configure, for the component,
the behavior of the local transaction containment (LTC)
environment of the container that the container establishes
whenever a global transaction is not present. The meaning of
each attribute is as follows:

Boundary

This setting specifies the containment boundary at which all
contained resource manager local transactions (RMLTs) must be
completed. Possible values are:

v BEAN_METHOD: This is the default value. If you select this
option, RMLTs must be resolved within the same bean method
in which they were started.

v ACTIVITY_SESSION: RMLTs must be resolved within the
scope of any ActivitySession in which they were started or, if
no ActivitySession context is present, within the same bean
method in which they were started.

Resolver

This setting specifies the component responsible for initiating
and ending RMLTs. Possible values are:

v APPLICATION: This is the default value. The application is
responsible for starting RMLTs and for completing them within
the local transaction containment (LTC) boundary. Any RMLTs
that are not completed by the end of the LTC boundary are
cleaned up by the container according to the value of the
Unresolved action attribute.

v CONTAINER_AT_BOUNDARY: The container is responsible
for starting RMLTs and for completing them within the LTC
boundary. The container begins an RMLT when a connection
is first used within the LTC scope, and completes it
automatically at the end of the LTC scope. If Boundary is set
to ActivitySession, the RMLTs are enlisted as ActivitySession
resources and directed to complete by the ActivitySession. If
Boundary is set to BeanMethod, the RMLTs are committed at
the end of the method by the container.

Unresolved Action

This setting specifies the direction that the container requests
RMLTs to take, if those transactions are unresolved at the end of
the LTC boundary scope and the Resolver is set to Application.
Possible values are:

v ROLLBACK: This is the default value. At end of the LTC
boundary scope, the container instructs all unresolved RMLTs
to roll back.

v COMMIT: At the end of the LTC boundary scope, the
container instructs all unresolved RMLTs to commit. The
container instructs the RMLTs to commit only in the absence
of an unhandled exception. If the application method that is
running in the local transaction context ends with an
exception, any unresolved RMLTs are rolled back by the
container. This is the same behavior as for global transactions.

<session
name>="AccountServiceBean">
<local-transaction
boundary="BEAN_METHOD"
resolver="APPLICATION"
unresolved-action="ROLLBACK"/>

</session>

Requires at least one of
boundary, resolver, or
unresolved-action
attributes.

Attribute default:

boundary="BEAN_METHOD";
resolver="APPLICATION";
unresolved-action=
"ROLLBACK"

Chapter 10. Developing EJB applications 439

Table 48. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file. Elements and attributes of the
META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<method> Sub-element to the <method-session-attribute> and
<run-as-mode> elements that is used to specify the
method name, method signature, or method types to
which a given setting might apply. Supported attributes
are type, name, and params. Each attribute is described
as follows:

type

v UNSPECIFIED: The setting applies to all methods
matching the name and params attributes, regardless
of interface type.

v REMOTE: The setting applies to remote business
interface and remote component interface methods
matching the name and params attributes.

v LOCAL: The setting applies to local business interface,
local component interface methods, and no-interface
views that match the name attribute, params attribute,
or both.

v HOME: The setting applies to remote home interface
methods matching the name and params attributes
matching the name and params attributes.

v LOCAL_HOME: The setting applies to local home
interface methods matching the name and params
attributes.

v SERVICE_ENDPOINT: The setting applies to methods
on the JAX-RPC service endpoint interface matching
the name and params attributes.

name

The name of the method to which the setting is applied,
or an asterisk (*) if the setting is to be applied to all
methods regardless of name.

params

The parameter signature of the method to which the
setting is applied. This can be used to uniquely qualify a
particular method in cases where more than a single
method uses the same name. The parameter signature is
a comma-separated list of Java types. Primitive types are
specified using their name only; non-primitive types are
specified using their fully qualified class or interface name
including any Java package, and arrays of Java types are
specified by the type of the array element followed by
one or more pair of square brackets (for example int[][]).

<session
/name="AccountServiceBean">
<method-session-attribute
type="REQUIRES_NEW">

<method
type="LOCAL"
name="debitAccount"
params="java.lang.String[], int,

com.xyz.CustomerInfo"/>
</method-session-attribute;>

</session>

<run-as-
mode>

Sub-element to the <session> and <message-driven>
elements that can be used to declare the security identity
that a given EJB method might have while the method is
being executed. The identity can be set to use the
identity of the caller (mode = CALLER_IDENTITY), the
identity of the EJB server (mode = SYSTEM_IDENTITY),
or the identity of a specific security role (mode =
SPECIFIED_IDENTITY).

<session
name="AccountServiceBean">
<run-as-mode
mode="SPECIFIED_IDENTITY">

<specified-identity
role="admin"/>

<method type="UNSPECIFIED"
name="testRunAsRole"/>

</run-as-mode>
</session>

Requires mode attribute
and <method> subelement.
If the mode is
SPECIFIED_IDENTITY, the
<specified-identity
subelement is also
required.

<start-at-
app-start>

Subelement to the <session> and <message-driven>
elements that can be used to inform the EJB container
that specified EJB type might be initialized at the time the
application is first started, rather than the time the EJB
type is first used by the application.

<session
name="AccountServiceBean">
<start-at-app-startvalue="TRUE"/>

</session>

Requires value attribute.

Attribute default: FALSE
(initialize EJB type when
EJB is first used by
application) for beans other
than message-driven
beans. Always TRUE for
message-driven beans.

440 Developing WebSphere applications

Table 48. Elements and attributes of the META-INF/ibm-ejb-jar-ext.xml file (continued). Elements and attributes of
the META-INF/ibm-ejb-jar-ext.xml file
Element or
Attribute Description Example Usage notes

<resource-
ref>

Subelement to the <session> and <message-driven>
elements, that might be used to declare additional
settings on a Java EE resource reference, such as
isolation level to be used on transactions driven through
the connection referred to by the reference. Allowable
attributes include isolation-level. The attributes are
defined as follows:

isolation-level

v TRANSACTION_REPEATABLE_READ: This isolation
level prohibits dirty reads and nonrepeatable reads, but
it allows phantom reads.

v TRANSACTION_READ_COMMITTED: This isolation
level prohibits dirty reads, but allows nonrepeatable
reads and phantom reads.

v TRANSACTION_READ_UNCOMMITTED: This
isolation level allows reading uncommitted changes
(data changed by a different transaction that is still in
progress). It also allows dirty reads, nonrepeatable
reads, and phantom reads.

v TRANSACTION_SERIALIZABLE: This isolation level
prohibits the following types of reads:

1. Dirty reads, in which a transaction reads a
database row containing uncommitted changes
from a second transaction,

2. Nonrepeatable reads, in which one transaction
reads a row, a second transaction changes the
same row, and the first transaction rereads the row
and gets a different value, and

3. Phantom reads, in which one transaction reads all
rows that satisfy an SQL WHERE condition, a
second transaction inserts a row that also satisfies
the WHERE condition, and the first transaction
applies the same WHERE condition and gets the
row inserted by the second transaction.

v TRANSACTION_NONE: This isolation level indicates
that transactions are not supported on this type of
resource.

<session
name="AccountServiceBean">
<resource-ref
name="jdbc/Default"
isolation-level="TRANSACTION_NONE">

</session>

Requires name attribute. To
have any effect, also
include the isolation-level
attribute.

Extensions defined in META-INF/ibm-ejb-jar-ext-pme.xml file

The following tables list extension elements and attributes that must be placed in the META-INF/ibm-ejb-
jar-ext-pme.xml file.

Chapter 10. Developing EJB applications 441

Table 49. Extensions defined in META-INF/ibm-ejb-jar-ext-pme.xml. Extensions defined in META-INF/ibm-ejb-jar-
ext-pme.xml
Element or
Attribute Description Example Usage notes

<internationalization> Element that might be
used to declare the
locale that might be
used by the EJB type
(locale of the caller or
locale of the server).

<internationalization>
<application>
<ejb name="S01"/>
<ejb name="S02"/>
</application>
<run-as-caller>
<method type="LOCAL" name="getFoo" params="int">
<ejb name="C01"/>

</method>
</run-as-caller>
<run-as-server>
<method type="LOCAL" name="getBar" params="int">
<ejb name="C02"/>
</method>
</run-as-server>
<run-as-specified name="North American English">
<locale lang="en" country="US" variant="foo"/>
<locale lang="en" country="CA" variant="bar" />
<time-zone name="GMT"/>
<method type="LOCAL" name="getFoo" params="int">
<ejb name="C03"/>
</method>
</run-as-specified>
<run-as-specified name="North American French">
<locale lang="fr" country="US" variant="foo"/>
<locale lang="fr" country="US" variant="bar" />
<time-zone name="GMT" />
<method type="LOCAL" name="getBar" params="int">
<ejb name="C04"/>
</method>
</run-as-specified>

</internationalization>

For information about this
extension, see Container
internationalization attributes:
WebSphere Application Server.

Due to the complexity of this
function, you might want to use
a tool designed for WebSphere
Application Server such as
Rational Application Developer
to produce the wanted
extension file stanzas, then
modify the XML file as wanted.

<activity-sessions> Element that optionally
declares the type of
activity session
management to be used
on a designated session
bean (BEAN or
CONTAINER) and for
container-managed
activity sessions, the
type of activity session
behavior to be provided
by the container.

<activity-sessions>
<container-activity-session
name="Foo" type="NOT_SUPPORTED">
<methodtype="HOME" name="findByPrimaryKey"
params="int">
<ejb name="C01"/>
</method>
</container-activity-session>
<./activity-sessions>

For information about this
extension, see Setting EJB
module ActivitySession
deployment attributes.

Due to the complexity of this
function, you might want to use
a tool designed for WebSphere
Application Server such as
Rational Application Developer

<app-profiles> Element that optionally
declares application
profile settings for one
or more EJB files.

<app-profiles>
<defined-access-intent-policy name="foo">
<collection-scope type"SESSION"/>
<optimistic-read/>
<read-ahead-hint hint="foo.bar.baz"/>
</defined-access-intent-policy>
<run-as-task
name="TestEJB1.ejbs.C01LocalHome.createjava.lang.Integer"
type="RUN_AS_SPECIFIED_TASK">
<task name=“/>
<method type="LOCAL" name="getFoo" params="int">
<ejb name="C01"/>
</method>
</run-as-task>
<ejb-component-extension ejb="C01">
<task name="SomeTask"/>
</ejb-component-extension>
</app-profiles>

Due to the complexity of this
function, you might want to use
a tool designed for WebSphere
Application Server such as
Rational Application Developer
to produce the wanted
extension file stanzas, then
modify the XML file as wanted.

Legacy (XMI) bindings

Existing modules and applications can continue to use the legacy binding support provided in the product,
therefore, the existing tools and wizards can be used to specify binding and extension information for
applications and modules. Use of the legacy support is limited to EAR files and modules using J2EE
1.4-style XML deployment descriptors.

442 Developing WebSphere applications

EJB modules that use a version 3.x XML deployment descriptor schema or do not have an XML
deployment descriptor file must use either defaulted bindings and AutoLink, or user-specified XML binding
files.

It is required that CMP entity beans always be packaged in a module with a 2.1 XML deployment
descriptor schema version so that existing tools can be used to provide mappings, bindings, and extension
support.

User-specified XML bindings

The default bindings for each interface and AutoLink reference resolution for each reference can be
overridden by specifying bindings for the EJB module by creating a META-INF/ibm-ejb-jar-bnd.xml file.

The schema files that describe the format are located in the <WAS_HOME>/properties/schemas directory.
This form of bindings specification can only be used for modules containing either no XML deployment
descriptor or an EJB 3.x deployment descriptor.

Note: It is not required to specify all bindings. Any binding name or reference that is not defined uses the
default bindings and AutoLink support.

Bindings can be specified for the following beans:

v Session beans using the <session> element.

v Message Driven beans using the <message-driven> element

The only attributes and subelements supported for the <session> element are:

v id attribute

v name attribute

v simple-binding-name attribute

v component-id attribute

v ejb-ref element

v resource-ref element and its attributes

v resource-env-ref element and its attributes

v message-destination-ref element and its attributes

v env-entry element

v data-source element

The only attributes and sub elements supported for the <message-driven> element are:

v id attribute

v name attribute

v jca-adapter attribute

v ejb-ref element and its attributes

v resource-ref element and its attributes

v resource-env-ref element and its attributes

v message-destination-ref element and its attributes

v env-entry element

v data-source element

EJB 3.x module packaging overview
This topic describes application packaging when you use Enterprise JavaBeans (EJB) 3.x beans.

Chapter 10. Developing EJB applications 443

Packaging applications that use EJB 3.x beans is similar to the assembly requirements for Java Platform,
Enterprise Edition (Java EE) 1.4 applications: components are packaged into modules, and modules are
packaged into application enterprise archive (EAR) files. The components and modules both have
describing metadata provided in an Extensible Markup Language (XML) deployment descriptor. The EJB
3.x specifications support an additional method to describing metadata and for packaging persistence
units.

The EAR file is a package file format similar to a .zip or .tar file format. The EAR file can be visualized as
a collection of logical directories and files that are packaged together into a simple file. Each EAR file
includes one or more Java EE module files, which can include the following modules:

v Java application archive (JAR) files for EJB modules. Java EE application client modules and utility
class modules.

v Web application archive (WAR) files for web modules, or EJB content. The WAR file must be version
2.5 or later to contain EJB content.

v Other technology-specific modules such as resource application archive (RAR) files and other types of
modules.

EJB modules without deployment descriptors

You can package EJB modules without a deployment descriptor if you are using EJB 3.x beans. To do
this, you must create a JAR file or WAR file with metadata in an annotation which is located in the EJB
component. EJB 3.x beans do not need an entry in the ejb-jar.xml file for metadata that you have
defined through annotations.

With EJB 3.0, the default was to scan annotations during the installation of an EJB 3.0 module. For
WebSphere Application Server, Version 8.5, the default is not to scan pre-Java EE 5 modules during the
application installation or at server startup.

To preserve backward compatibility with both the Feature Pack for EJB 3.0 and the Feature Pack for Web
Services, you have a choice whether to scan legacy web modules for additional metadata. A server level
switch is defined for each feature pack scan behavior. If the default is not appropriate, the switch must be
set on each server and administrative server that requires a change in the default. The switches are server
custom properties com.ibm.websphere.webservices.UseWSFEP61ScanPolicy={true|false} and
com.ibm.websphere.ejb.UseEJB61FEPScanPolicy={true|false}. To define these properties in the
administrative console click Application servers > server name > Process definition > Java Virtual
Machine > Custom properties.

EJB modules with deployment descriptors

You can continue to use EJB modules with deployment descriptors. Modules with deployment descriptors
can support any EJB specification version level, including EJB 3.x, but generally these descriptors should
reflect the implementation requirements of the components in the module.

An EJB module can have an EJB 3.x, 2.x, or 1.x deployment descriptor.

For EJB 2.x or 1.x deployment descriptors, it is assumed that the deployment descriptor contains the full
metadata for the module, and no additional scanning of annotation metadata occurs.

The EJB container annotation scanning is performed on EJB modules that either have no deployment
descriptor or have an ejb-jar.xml deployment descriptor at the EJB 3.0 schema level with the
metadata-complete XML attribute set to false or omitted. See the Annotation scanning behavior section for
the complete set of rules used by the server to determine if annotation scanning is performed.

444 Developing WebSphere applications

Note: You cannot scan for component annotation metadata contained within shared libraries defined using
the WebSphere Application Server system management shared library feature. However, content
defined as a BLA Asset is scanned for annotation data.

Annotation scanning behavior

The server can inspect the class files in the module for annotation content. The server searches for
annotation content that might define a component, a reference to a resource, or a particular behavior. For
example, annotations might be used to define an EJB component, or to declare a reference to a data
source that must be used by an EJB component, or to declare the transactional or security attributes that
are associated with an EJB method. This inspection process is referred to as annotation scanning. If the
class files in the module contain annotations that must be respected by the server, then the server must
be configured so that annotation scanning occurs. If the class files in the module do not contain
annotations, then for performance reasons you can configure the server so that annotation scanning does
not occur.

The server uses the following criteria to determine whether it scans content for annotations:

v Whether the ejb-jar.xml deployment descriptor file exists

v Version of the ejb-jar.xml deployment descriptor, when it is exists

v Value of the metadata-complete setting in the ejb-jar.xml deployment descriptor, when it exists

v Version of the web.xml deployment descriptor, when the EJB content is packaged in a WAR module,
and the ejb-jar.xml deployment descriptor does not exist

v Value of the metadata-complete setting in the web.xml deployment descriptor, when the EJB content is
packaged in a WAR module, and the ejb-jar.xml deployment descriptor does not exist

The following tables indicate how the decision to scan, or not scan, annotations is made for EJB content
that is packaged in an EJB JAR module or a WAR module.

Table 50. Annotation scanning for EJB content packaged in an EJB JAR module. Annotation scanning for EJB
content packaged in an EJB JAR module
ejb-jar.xml metadata-complete value in ejb-jar.xml Are annotations scanned?

Exists, with a version of 2.x or earlier NA No

Exists, with a version of 3.x or later true No

Exists, with a version of 3.x or later false (or omitted) Yes

Does not exist NA Yes

Table 51. Annotation scanning for EJB content packaged in a WAR module. Annotation scanning for EJB content
packaged in a WAR module

ejb-jar.xml file
metadata-complete
value in ejb-jar.xml web.xml file

metadata-complete value
in web.xml

Are annotations
scanned?

Exists, with a version of 3.x or later true NA NA No

Exists, with a version of 3.x or later false (or omitted) NA NA Yes

Exists, with a version of 2.x or earlier NA NA NA No

Does not exist NA Exists, with a version of
2.5 or later

true No

Does not exist NA Exists, with a version of
2.5 or later

false (or omitted) Yes

Does not exist NA Exists, with a version of
2.4 or earlier

NA No

Does not exist NA Does not exist NA Yes

Note:

Chapter 10. Developing EJB applications 445

It is important to understand the distinction between the metadata-complete attribute of the ejb-jar
element of the ejb-jar.xml deployment descriptor, and the metadata-complete install setting that
may be specified during the application or module installation process.

The metadata-complete attribute of the ejb-jar element of the ejb-jar.xml file is an XML attribute. It
is used by the server to determine if classes must be scanned for annotation data, as just
described by the rules in the Annotation Scanning For EJB Content tables.

In contrast, the metadata-complete setting that may be specified at install time is used by the server
to help generate the ejb-jar.xml file. If no ejb-jar.xml file exists in the module, and the
metadata-complete install setting is assigned a value of true, then the server scans for annotation
content and uses that to generate an ejb-jar.xml file, and then sets the metadata-complete XML
attribute in that file to a value of true.

Persistence units

Persistence units, including the persistence.xml file and the classes associated with it, can be packaged
in the module for which they are required. They can also be packaged in the separate utility JAR file that
is packaged in the EAR file with its dependent module.

When a separate utility JAR file is packaged, it is necessary for the module that desires it to use the
persistence units to declare a dependency on the utility JAR file using the typical MANIFEST. MF
Class-Path: declarations. See the example scenario for this packaging method under the section in this
topic called “Session facades used for persistence scenario”

Note: Packaging of persistence units contained within shared libraries defined using the WebSphere
Application Server system management shared library feature is not supported at this time.

Application packaging

You can mix EJB 2.x and earlier beans with EJB 3.x beans in the same application. However, EJB 3.x
beans are not recognized in EJB 2.x or EJB 1.x modules.

In the case that the EAR file only contains the JAR and web application archive (WAR) files, and no
application.xml file, the product provides a default J2EE 1.4 deployment descriptor that is based on the
following defaults that are outlined in the Java EE specification:

v The application name is assumed to be the name of the EAR file, but with the EAR file extension
removed.

v Files that are ending in .war are assumed to be web modules. The context root of the web module is
the name of the file that is relative to the root of the application package, but with the WAR file
extension removed.

v Files that are ending in .jar that are not in the /lib directory, and that contain either an ejb-jar.xml file
or at least one class that defines a @Stateful, @Stateless, @Singleton, or @MessageDriven
annotation, are assumed to be EJB modules.

v Other JAR files that are not in the /lib directory are not assumed to be EJB modules.

If the application archive file contains an application.xml descriptor, processing occurs according to the
directives in that descriptor.

AutoLink

AutoLink provides the ability to attempt to automatically resolve EJB references to components contained
with an EAR file, without having to specify a JNDI binding name. This simplifies application deployment
with large numbers of beans and references if they are unique and unambiguous.

446 Developing WebSphere applications

Restriction: AutoLink should not be used for references to components deployed on a cluster.

JPA packaging

It is recommend that persistence units be packaged in separate JAR files to make them more accessible
and reusable. These can be tested outside the container, with or without actual database persistence
occurring. Persistence units can be included in stand-alone applications or into EAR files as utility JAR
files. Because of the variety of use cases and potential performance issues when scanning large quantities
of classes, it is recommended that the persistence unit defines the classes of the persistence units.

Session facades used for persistence scenario

A common pattern is to use session facades for persistence. Using session bean facades to drive JPA is
supported. The EntityManager interface is not thread safe, therefore, servlets should never inject
@PersistenceContext. Servlets must either use the facade pattern or use an EntityManagerFactory
instance to create an EntityManager on each request.

It is recommended that JPA persistence units be defined in a separate JAR file, apart from the session
bean facades. Not only is this a best practice that gives greater flexibility in sharing, it also avoids
problems mixing JPA and non-JPA annotated classes.

Typically, a JAR file is created to hold the entity classes and the JPA persistence.xml definition and
added to the EAR file as a utility JAR file. The EJB 3.x module adds a dependency on the JAR file by
declaring it in the EJB 3.x module MANIFEST.MF. For example, if an EAR contains a TradeApp.ear,
TradeWeb.war, EJB3Trade.jar, and TradeInfo.jar file, the EJB3Trade.jar file would have a MANIFEST.MF
that looks like the following:
Manifest-Version: 1.0
Class-Path: TradeInfo.jar

The session facade in the EJB3Trade.jar file refers to JPA entity classes and persistence units in the
TradeInfo.jar file. The web application defined in the TradeWeb.war file can do the same to work with the
JPA entity objects as Data Transfer Objects flowing between the web and EJB container tiers.

Cross-tier and cross version session bean reference scenario

There are several ways to define and use references to EJB 3.x session beans. For EJB 3.x session to
session, the @EJB injection target can be used. For cross-tier, for example, web application to EJB 3.x
session, or cross-version, for example, EJB 2.1 session to EJB 3.x session, an XML deployment descriptor
reference can be used to define ejb-refs and ejb-local-refs. There are two variations of these, depending
on whether an EJB 3.x business interface is referred to, or a pre-EJB 3.x component-style interface that
also defines an EJBLocalHome is referred to. Web applications and client applications can also use the
@EJB annotation if the component being referenced can be resolved using autolink.

For migration scenarios where session beans are being converted from EJB 2.1 beans to EJB 3.x beans,
the pattern is typically to edit the Session bean class, replace the implements SessionBean with
implements the business interface, remove extends EJBLocalObject from the local interface and
non-business throws clauses, and add the @Stateful @Local @LocalHome(<localhome>.class) or similar
annotations. Existing ejb-refs and ejb-local-refs are bound to the new implementation of the session bean.

Note: The default binding name does change.

The previous scenario uses an EJB 2.1-style client pattern with an EJB 3.x-style session bean
implementation. For a more current client style, the client-side can be cleaned up to look up the session
bean business interface directly, rather than going through a home interface. In this case, it is not
necessary to define the @LocalHome(<localhome>.class) annotation. You can use a variant definition of

Chapter 10. Developing EJB applications 447

ejb-ref and ejb-local-ref to do this. Use a null value for the local-home element value and bind the
ejb-local-ref to the session bean's ejblocal: binding rather than the home binding. For example:
<ejb-local-ref id="EJBLocalRef_1154112538064">
<description>com.ibm.persistence.ejb3.order.facadecom.ibm.persistence.ejb3.order.facade</description>
<ejb-ref-name>ejb/OrderEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>com.ibm.persistence.ejb3.order.facade.OrderProcessor</local>
</ejb-local-ref>

The client code also must be adjusted to do the appropriate casting for the object being looked up. In this
case, the business interface instead of the home interface:
try {
InitialContext ctx = new InitialContext();
orderProcessor = (OrderProcessor)ctx.lookup("java:comp/env/ejb/OrderEJB");
}
catch(Exception e) {
e.printStackTrace(System.out);
throw new ServletException(e);
}

Assembling EJB 3.x modules
An enterprise bean is a managed Java component that can be combined with other resources to create
Java Enterprise Edition (Java EE) applications.

Before you begin

This topic assumes that you have created and unit tested an enterprise bean that you want to assemble in
an enterprise application and deploy onto an application server.

About this task

Assemble an EJB 3.x module to contain enterprise beans and related code artifacts. Group web
components, client code, and resource adapter code in separate modules. After the EJB module is
assembled, install it as a stand-alone application or combine it with other modules into an enterprise
application.

To learn about how to assemble an EJB 3.x module with an assembly tool, see the Rational Application
Developer documentation.

Rational Application Developer can be extended with additional plug-ins to provide development support
specifically for Java Persistence API (JPA).

See the Eclipse open source project, Dali, for a plug-in that provides this extension. See the related links
in this topic for the Dali JPA tools website.

Note: Issues and problems using this plug-in need to resolved through the Eclipse open source
community.

What to do next

Deploy the EJB module.

Assembling EJB modules
An enterprise bean is a Java component that can be combined with other resources to create Java
Platform Enterprise Edition (Java EE) applications. This topic describes assembling Enterprise JavaBeans
(EJB) modules based on the EJB specifications.

448 Developing WebSphere applications

Before you begin

This topic assumes that you have created and unit tested an enterprise bean file that you want to
assemble in an enterprise application and deploy onto an application server.

About this task

Assemble an EJB module to contain enterprise beans and related code artifacts. Group web components,
client code, and resource adapter code in separate modules. After assembling an EJB module, you can
install it as a stand-alone application or combine it with other modules into an enterprise application.

Use an assembly tool to assemble an EJB module in any of the following ways:
v Import an existing EJB module (EJB JAR file).
v Create a new EJB module.
v Copy code artifacts, such as entity beans, from one EJB module into a new EJB module.

For information on assembling EJB modules, refer to the online documentation or the information center
for your assembly tool. The Rational Application Developer product provides supported assembly tools.

Procedure
v Assemble an EJB 2.x module. See the topic Assembling EJB 2.x modules.

v Assemble an EJB 3.x module. See the topic Assembling EJB 3.x modules.

What to do next

After you finish assembling your EJB module, you are ready to deploy your module.

EJB modules
An Enterprise JavaBeans (EJB) module is used to assemble one or more enterprise beans into a single
deployable unit. An EJB module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:

v One or more deployable enterprise beans.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file. This file declares the
contents of the module, defines the structure and external dependencies of the beans in the module,
and describes how the beans are to be used at run time.

It is not necessary to use XML deployment descriptors in EJB 3.x modules, although XML descriptors
are supported. Instead of deployment descriptors, you can use annotations to provide component
metadata.

You can deploy an EJB module as a stand-alone application, or combine it with other EJB modules or with
web modules to create a Java application. An EJB module is installed and run in an enterprise bean
container.

If you want to package an EJB 3.x module with a deployment descriptor, there are several ways to do it.
You can package an EJB 3.x module with an EJB 3.x style session and/or message-driven beans
exclusively; with an EJB 2.1 style session and/or message-driven beans exclusively, or a combination of
2.1 and 3.x style beans. The XML deployment descriptor must be a Version 3.x deployment descriptor. It is
required that 2.1 entity beans are packaged in modules with 2.1 deployment descriptors.

EJB modules that contain EJB 3.x beans must be at the EJB 3.x specification level when running on the
product. To set the EJB module to support EJB 3.x beans, you can set the ejb-jar.xml deployment
descriptor level to 3.0 or 3.1, or you can make sure that the module does not contain an ejb-jar.xml

Chapter 10. Developing EJB applications 449

deployment descriptor. If the module level is EJB 2.1 or earlier, no EJB 3.x functions, including annotation
scanning or resource injection is performed at run time.

For more information about packaging and deployment of EJB 3.x beans, see the topic EJB 3.x module
packaging overview.

Local client views

The EJB specification only requires local client views to be supported for EJBs packaged within the same
application. This includes local homes, local business interfaces, and the no-interface view. The product
permits access to local client views to EJBs packaged within a separate application with some restrictions:

v The local interface and all parameter, return, and exception types used by the local interface must be
visible to the class loader of both the calling application and the target EJB application. You can ensure
this by either using a shared library associated with a server class loader or by using an isolated shared
library associated with both applications. Read the Creating shared libraries topic for more information.

v When the target EJB application is stopped, any cached references to the EJB must be refreshed. You
can complete one of the following actions:

– Restart the calling application. The simplest solution is to restart the calling application whenever
you restart a target EJB application on which it relies.

– Obtain a new reference from JNDI. By default, JNDI lookups from the java namespace are cached,
and the cache must either be disabled or cleared to obtain a new reference. Read the Developing
applications that use JNDI topic for more information.

EJB method invocations throw com.ibm.websphere.ejbcontainer.EJBStoppedException when the
target EJB application has been stopped. If you have cached the EJB reference in an instance
variable by using either @EJB injection or JNDI lookup, then you can catch this exception and
refresh the EJB reference by performing a non-cached lookup.

– Enable indirect local EJB proxies for the target EJB application. This causes the local EJB proxy to
be refreshed automatically when the application is restarted. Enabling indirect local proxies causes
some additional overhead for each EJB method invocation.

You can enable indirect local proxies using, for example, an administrative console. Click
Applications > Application Types > WebSphere enterprise applications > application_name >
Custom properties > New. Specify a name of
com.ibm.websphere.ejbcontainer.indirectLocalProxies and a value of true for the custom
property, then apply and save the changes.

EJB content in WAR modules
Use this topic to understand the packaging requirements of Enterprise JavaBeans (EJB) content in web
application archive (WAR) modules.

Supported EJB content

Except for explicitly stated restrictions, the EJB function that is supported for beans packaged inside EJB
Java archive (JAR) modules is also supported for beans packaged inside WAR modules. A bean that is
packaged inside a WAR module can have the same behavior as a bean that is packaged inside an EJB
JAR module.

All types of EJB 3.x beans are supported in WAR modules, and 2.x and 1.x session beans. See the EJB
3.1 specification for complete details.

Packaging mechanics

The rules for packaging EJB content in a WAR module are different from the rules for packaging EJB
content in a JAR module.

450 Developing WebSphere applications

The bean class files must be placed in one of two locations within the WAR module:

v Loosely in the WEB-INF/classes directory structure

v Within a JAR file that is placed in the WEB-INF/lib directory

For example, you might loosely place the bean class com.foo.MyBean in the WAR module at this location:
WEB-INF/classes/com/foo/MyBean.class.

You might also place this bean class in the myJar.jar file, which is then placed in this location:
WEB-INF/lib/myJar.jar.

A WAR module can have some bean code loosely placed in the WEB-INF/classes directory structure, and
have other bean code inside JAR files in the WEB-INF/lib directory. It is also valid for a WAR module to
have all the bean code in the WEB-INF/classes directory structure and nothing in the WEB-INF/lib directory,
or all the bean code in JAR files in the WEB-INF/lib directory and nothing in WEB-INF/classes.

It is valid to have multiple JAR files in the WEB-INF/lib directory, all of which might contain bean code.

If the same bean class is loosely placed in the WEB-INF/classes directory structure and also placed in a
JAR file in the WEB-INF/lib directory, then the instance of the class placed loosely in the WEB-INF/classes
directory structure is loaded, and the instance placed in a JAR file in the WEB-INF/lib directory is ignored.

If the same bean class is placed in two different JAR files in the WEB-INF/lib directory, it is not known
which instance of the class is loaded, and which instance is ignored. At run time, the server arbitrarily
picks one class instance and loads it, and ignores the other class instance.

The EJB deployment descriptor files must be placed in the WEB-INF directory. This directory contains the
ejb-jar.xml deployment descriptor, and any ibm-ejb-jar-ext and ibm-ejb-jar-bnd XML or XMI bindings
and extensions files. EJB descriptor files that are located inside JAR files in the WEB-INF/lib directory are
ignored. As with an EJB JAR module, there might be 0 or 1 instance of each EJB descriptor file. There
cannot be multiple instances of any EJB descriptor file. This does not include the persistence.xml file, if
one exists. Per the Java Persistence API specification, if a persistence.xml file is present, it must remain
in a META-INF directory located in either the WEB-INF/classes directory of the WAR module or in a JAR file
in the WEB-INF/lib directory of the WAR module. For example:

v WEB-INF/classes/META-INF/persistence.xml

v WEB-INF/lib/MyEntity.jar

The MyEntity.jar contains META-INF/persistence.xml.

If an ejb-jar.xml file is located in a JAR file in the WEB-INF/lib directory, a warning message displays.
For example:
IWAE0068W The EJB deployment descriptor META-INF/ejb-jar.xml in the library archive
foo.jar file is ignored. The product does not process the META-INF/ejb-jar.xml deployment
descriptor in library archives. Move the META-INF/ejb-jar.xml deployment descriptor from the
library archive to the WEB-INF directory in the WAR module.

A WAR module must be version 2.5 or later to contain EJB content. EJB content placed in a WAR module
that is version 2.4 or earlier is ignored.

Note: If a WAR module is version 2.5 or later, the web metadata files containing bindings and extensions
information must use the XML version of the files, not the XMI version.

Technical differences for enterprise beans that are packaged in a WAR file

The following list contains key technical differences that exist between beans that are packaged in a WAR
module and beans that are packaged in an EJB JAR module:

v Shared component namespace

Chapter 10. Developing EJB applications 451

All components in a WAR module share a single component namespace. This means that each EJB
component shares a single component namespace with all other EJB components in the WAR file, and
any non-EJB components like servlets. In contrast, an EJB component that is packaged in an EJB JAR
module has its own private component namespace, which is not shared with any other component.

The shared component namespace has important impacts. First, one component (EJB or non-EJB)
might declare a reference, and a different component might search the component namespace for that
reference. Second, references declared by one component might conflict with references declared by
another component. In contrast, an EJB packaged in an EJB JAR module cannot look up in the
component namespace a reference declared by a different EJB or non-EJB component, and it is
impossible for a reference declared by the EJB to conflict in the component namespace with a
reference declared by any other component, even if the references have the same name.

When using the shared namespace, it is valid for the same reference to be declared multiple times, as
long as these reference declarations do not conflict with each other. If the reference declarations do not
conflict, then the server behaves as if the reference had been declared exactly once.

If reference declarations do conflict, then an error message is emitted, and the application fails to start.
A warning message is emitted for each conflicted reference. The warning message indicates the name
of the conflicted reference, and the multiple values assigned to that reference. After all the warning
messages are emitted, an exception is thrown.

v Location of EJB descriptor files

The ejb-jar.xml deployment descriptor file, and any other descriptor file, must be placed in the WEB-INF
directory of the WAR. Any instance of an EJB descriptor file elsewhere in the WAR, including in the
META-INF directory of a JAR file in the WEB-INF/lib directory, is ignored.

v Determining if annotations are scanned

The rules for determining whether to scan for annotations are different for EJB JAR and WAR modules.
See the topic, EJB 3.x module packaging overview, for the complete set of rules.

v Class loading and visibility

The most common usage pattern for EJB classes that are packaged in a WAR module is local method
invocations from web components packaged within the same module. However, these EJB classes can
also be accessed by remote method invocations or by clients in other modules. In these cases, it is
important to understand the visibility rules of EJB classes that are packaged in a WAR module. Visibility
rules are different when compared to EJB classes that are packaged in a JAR module.

In the case of remote EJB method invocations, there are no visibility differences introduced by
packaging the EJB classes in a WAR module. The EJBs are bound into the global namespace and can
be looked up from, or injected into, components in other modules. The remote client must make method
invocations with an appropriate stub class. Stub class generation is described in this topic under the
section, "Stub generation".

In the case of local EJB method invocations from components in other modules, there are visibility
differences because the EJBs are packaged in a WAR module. These visibility differences occur
because there are class loader implications that must be considered.

The content that is packaged in all EJB JAR modules for the entire application is loaded by a single
application class loader instance.

In contrast, all content that is packaged in a WAR module is loaded on a class loader instance that is
specific to that WAR module. The single application class loader instance that is used to load all the
EJB JAR content, is the parent to each of the class loader instances that are used to load the WAR
content.

The visibility of a class is affected by the class loader instance that loaded it. A class loader instance
can see classes loaded by itself, or by a parent class loader. However, a class loader cannot see a
class loaded on a class loader that is not itself, nor one of its parents.

As a result, classes loaded by a class loader specific to a WAR module can see classes in an EJB JAR
module, but they cannot see classes in another WAR module. Classes in an EJB JAR module cannot

452 Developing WebSphere applications

see classes in any WAR module. For example, if there is EJB content packaged inside EJB JAR
module ejb3.jar, and there is also EJB content packaged inside the ejb1.jar file and the ejb2.jar file,
then:

– If the ejb1.jar file and the ejb2.jar file are installed as EJB JAR modules, then the content inside
the ejb1.jar file, ejb2.jar file, and ejb3.jar file is all loaded on the same class loader instance,
which is also used to load any other EJB JAR modules in the application. In this case, the classes in
all three JAR files can see each other, because they are all loaded by the same class loader
instance.

– If the ejb1.jar file and the ejb2.jar file are both packaged inside the WEB-INF/lib directory of a
WAR file, the content inside the ejb1.jar file and the ejb2.jar file is loaded by a single class loader
instance. However, this class loader is not the same one used to load the content for the ejb3.jar
file and any other EJB JAR in the application. In this case, the classes in the ejb1.jar file and the
ejb2.jar file can see each other and can also see the classes in the ejb3.jar file. The classes in
the ejb3.jar file cannot see the classes in the ejb1.jar file or the ejb2.jar file.

– If the ejb1.jar file is packaged inside the WEB-INF/lib directory of the firstWar.war file, and the
ejb2.jar file is packaged inside the WEB-INF/lib directory of the secondWar.war file, the content in
the ejb1.jar file is loaded on one class loader instance, the content in the ejb2.jar file is loaded on
a second class loader instance, and the content in the ejb3.jar file and all other EJB JAR in the
application is loaded on a third class loader instance. In this case, the classes in the ejb1.jar file
and the ejb2.jar file cannot see each other, but they can see the classes in the ejb3.jar file. The
classes in the ejb3.jar file cannot see the classes in either the ejb1.jar file or the ejb2.jar file.

One strategy to avoid these class loader complications is to package the EJB interface classes in a
shared library.

Note: Do not package the same class, both an EJB JAR module and a WAR module, in the same
application. Packaging the same class in multiple locations within the same application might
result in confusion regarding which instance of the class is loaded and used at run time. This
distinction can matter if the two .class files represent different versions of the class. To avoid
this scenario, package the .class file in only one location or change the package structure of the
class so that the fully qualified name of the class packaged inside the WAR module is different
from the fully qualified name of the class packaged inside the EJB JAR module.

v Application profile extension

The application profile extension is not supported for EJB classes that are packaged in WAR modules.

Stub generation

Remote access of EJB methods requires the use of client-side stub classes. For most client environments,
the product runtime automatically generates the required stub classes. One exception is the thin client
environment. For thin clients, the stub classes must be manually generated and packaged with the client.

Use the createEJBStubs tool to generate stubs when the EJB content is packaged in a WAR module,
regardless of the EJB version.

See the topic, Create stubs command, for more information.

Note: When packaging EJB 2.1 classes in a WAR module, do not include any stub classes generated by
the EJBDeploy tool. These stub classes are different than the stub classes automatically generated
by the product run time and can cause failures. In most situations the automatically generated stub
classes are sufficient. The exception is if a component in the web module must make a remote
method invocation on an EJB 2.1 class packaged in another JAR module. In this case, the
EJBDeploy generated stub class for the EJB in the other JAR module must be packaged in the
WAR module.

Chapter 10. Developing EJB applications 453

EJB 2.x and 1.x content in a WAR module

Except for entity beans, EJB 2.x and 1.x content is supported in a WAR module.

A 2.x or 1.x module packaged inside a WAR file requires an ejb-jar.xml deployment descriptor at version
2.x or 1.x in the WEB-INF directory of the WAR module. If XMI bindings and extension files are present, you
must also package these bindings and files in the WEB-INF directory of a WAR module.

Session beans and message driven beans that you implement according to the 2.x or 1.x coding style can
be packaged inside a WAR module.

Both bean managed persistence (BMP) and container managed persistence (CMP) entity beans are not
supported in a WAR module.

The application profiling and access intent services are not supported in a WAR module. Session beans
found in a WAR module cannot access application profiling tasks.

EJB content that you implement according to both the 3.x coding style and the 2.x and 1.x coding styles,
can be packaged together in a single WAR module. However, in this case, you must declare any bindings
and extensions information with the XML version of the files, not the XMI version.

Moving existing EJB content from EJB JAR modules into WAR modules

One approach is to put the existing EJB JAR file in the WEB-INF/lib directory of the WAR file. Then,
remove the descriptor files from the META-INF directory of the JAR file and place them in the WEB-INF
directory of the WAR file.

A second approach is to put the class files from the EJB JAR file in the correct location under the
WEB-INF/classes directory in the WAR module. Then, remove the descriptor files from the META-INF
directory of the JAR file and place them into the WEB-INF directory of the WAR file.

If multiple EJB JAR modules are moved into a single WAR module, you must merge the contents of each
of the descriptor files previously found in the META-INF directories of the EJB JAR modules into the single
version of the descriptor files that are now placed in the WEB-INF directory of the WAR file. Examples of
descriptor files that may be merged include, but are not limited to, ejb-jar.xml, ibm-ejb-jar-bnd.xml,
ibm-ejb-jar-ext.xml, and ibm-ejb-jar-ext-pme.xml.

You must inspect the references declared by the various components in the WAR module, both EJB and
non-EJB, to ensure that they do not conflict with each other, since everything in the WAR module shares a
single component name space.

You must modify the bindings and extension XMI files that are moved from an EJB JAR module to a WAR
module in several places to remove references to META-INF/ejb-jar.xml and replace them with
WEB-INF/ejb-jar.xml.

EJB function that is supported in EJB JAR modules, but not in WAR modules

The following EJB function is not supported in WAR modules:

v BMP and CMP entity beans

v Pre EJB 3.1 style startup beans

Attention: Singleton startup beans defined by EJB 3.1 are supported.

If an entity bean is placed in a WAR module, error messages display, and the application fails to start. For
example, the foo entity bean is placed in the foo.war module in the FooApp application. This results in the
following messages:

454 Developing WebSphere applications

CWMDF0025E: Entity beans in EJB web application archive (WAR) modules are not allowed,
per the EJB 3.1 specification.

WSVR0039E: Unable to start EJB JAR, foo.war: Entity beans in EJB web application archive
(WAR) modules are not allowed, per the EJB 3.1 specification. The foo bean in the foo.war module
must be moved to a stand-alone EJB module. Examine the log to see a full list of invalid entity
beans in a WAR module.

EJB 3.x module packaging overview
This topic describes application packaging when you use Enterprise JavaBeans (EJB) 3.x beans.

Packaging applications that use EJB 3.x beans is similar to the assembly requirements for Java Platform,
Enterprise Edition (Java EE) 1.4 applications: components are packaged into modules, and modules are
packaged into application enterprise archive (EAR) files. The components and modules both have
describing metadata provided in an Extensible Markup Language (XML) deployment descriptor. The EJB
3.x specifications support an additional method to describing metadata and for packaging persistence
units.

The EAR file is a package file format similar to a .zip or .tar file format. The EAR file can be visualized as
a collection of logical directories and files that are packaged together into a simple file. Each EAR file
includes one or more Java EE module files, which can include the following modules:

v Java application archive (JAR) files for EJB modules. Java EE application client modules and utility
class modules.

v Web application archive (WAR) files for web modules, or EJB content. The WAR file must be version
2.5 or later to contain EJB content.

v Other technology-specific modules such as resource application archive (RAR) files and other types of
modules.

EJB modules without deployment descriptors

You can package EJB modules without a deployment descriptor if you are using EJB 3.x beans. To do
this, you must create a JAR file or WAR file with metadata in an annotation which is located in the EJB
component. EJB 3.x beans do not need an entry in the ejb-jar.xml file for metadata that you have
defined through annotations.

With EJB 3.0, the default was to scan annotations during the installation of an EJB 3.0 module. For
WebSphere Application Server, Version 8.5, the default is not to scan pre-Java EE 5 modules during the
application installation or at server startup.

To preserve backward compatibility with both the Feature Pack for EJB 3.0 and the Feature Pack for Web
Services, you have a choice whether to scan legacy web modules for additional metadata. A server level
switch is defined for each feature pack scan behavior. If the default is not appropriate, the switch must be
set on each server and administrative server that requires a change in the default. The switches are server
custom properties com.ibm.websphere.webservices.UseWSFEP61ScanPolicy={true|false} and
com.ibm.websphere.ejb.UseEJB61FEPScanPolicy={true|false}. To define these properties in the
administrative console click Application servers > server name > Process definition > Java Virtual
Machine > Custom properties.

EJB modules with deployment descriptors

You can continue to use EJB modules with deployment descriptors. Modules with deployment descriptors
can support any EJB specification version level, including EJB 3.x, but generally these descriptors should
reflect the implementation requirements of the components in the module.

An EJB module can have an EJB 3.x, 2.x, or 1.x deployment descriptor.

Chapter 10. Developing EJB applications 455

For EJB 2.x or 1.x deployment descriptors, it is assumed that the deployment descriptor contains the full
metadata for the module, and no additional scanning of annotation metadata occurs.

The EJB container annotation scanning is performed on EJB modules that either have no deployment
descriptor or have an ejb-jar.xml deployment descriptor at the EJB 3.0 schema level with the
metadata-complete XML attribute set to false or omitted. See the Annotation scanning behavior section for
the complete set of rules used by the server to determine if annotation scanning is performed.

Note: You cannot scan for component annotation metadata contained within shared libraries defined using
the WebSphere Application Server system management shared library feature. However, content
defined as a BLA Asset is scanned for annotation data.

Annotation scanning behavior

The server can inspect the class files in the module for annotation content. The server searches for
annotation content that might define a component, a reference to a resource, or a particular behavior. For
example, annotations might be used to define an EJB component, or to declare a reference to a data
source that must be used by an EJB component, or to declare the transactional or security attributes that
are associated with an EJB method. This inspection process is referred to as annotation scanning. If the
class files in the module contain annotations that must be respected by the server, then the server must
be configured so that annotation scanning occurs. If the class files in the module do not contain
annotations, then for performance reasons you can configure the server so that annotation scanning does
not occur.

The server uses the following criteria to determine whether it scans content for annotations:

v Whether the ejb-jar.xml deployment descriptor file exists

v Version of the ejb-jar.xml deployment descriptor, when it is exists

v Value of the metadata-complete setting in the ejb-jar.xml deployment descriptor, when it exists

v Version of the web.xml deployment descriptor, when the EJB content is packaged in a WAR module,
and the ejb-jar.xml deployment descriptor does not exist

v Value of the metadata-complete setting in the web.xml deployment descriptor, when the EJB content is
packaged in a WAR module, and the ejb-jar.xml deployment descriptor does not exist

The following tables indicate how the decision to scan, or not scan, annotations is made for EJB content
that is packaged in an EJB JAR module or a WAR module.

Table 52. Annotation scanning for EJB content packaged in an EJB JAR module. Annotation scanning for EJB
content packaged in an EJB JAR module
ejb-jar.xml metadata-complete value in ejb-jar.xml Are annotations scanned?

Exists, with a version of 2.x or earlier NA No

Exists, with a version of 3.x or later true No

Exists, with a version of 3.x or later false (or omitted) Yes

Does not exist NA Yes

Table 53. Annotation scanning for EJB content packaged in a WAR module. Annotation scanning for EJB content
packaged in a WAR module

ejb-jar.xml file
metadata-complete
value in ejb-jar.xml web.xml file

metadata-complete value
in web.xml

Are annotations
scanned?

Exists, with a version of 3.x or later true NA NA No

Exists, with a version of 3.x or later false (or omitted) NA NA Yes

Exists, with a version of 2.x or earlier NA NA NA No

Does not exist NA Exists, with a version of
2.5 or later

true No

Does not exist NA Exists, with a version of
2.5 or later

false (or omitted) Yes

456 Developing WebSphere applications

Table 53. Annotation scanning for EJB content packaged in a WAR module (continued). Annotation scanning for
EJB content packaged in a WAR module

ejb-jar.xml file
metadata-complete
value in ejb-jar.xml web.xml file

metadata-complete value
in web.xml

Are annotations
scanned?

Does not exist NA Exists, with a version of
2.4 or earlier

NA No

Does not exist NA Does not exist NA Yes

Note:

It is important to understand the distinction between the metadata-complete attribute of the ejb-jar
element of the ejb-jar.xml deployment descriptor, and the metadata-complete install setting that
may be specified during the application or module installation process.

The metadata-complete attribute of the ejb-jar element of the ejb-jar.xml file is an XML attribute. It
is used by the server to determine if classes must be scanned for annotation data, as just
described by the rules in the Annotation Scanning For EJB Content tables.

In contrast, the metadata-complete setting that may be specified at install time is used by the server
to help generate the ejb-jar.xml file. If no ejb-jar.xml file exists in the module, and the
metadata-complete install setting is assigned a value of true, then the server scans for annotation
content and uses that to generate an ejb-jar.xml file, and then sets the metadata-complete XML
attribute in that file to a value of true.

Persistence units

Persistence units, including the persistence.xml file and the classes associated with it, can be packaged
in the module for which they are required. They can also be packaged in the separate utility JAR file that
is packaged in the EAR file with its dependent module.

When a separate utility JAR file is packaged, it is necessary for the module that desires it to use the
persistence units to declare a dependency on the utility JAR file using the typical MANIFEST. MF
Class-Path: declarations. See the example scenario for this packaging method under the section in this
topic called “Session facades used for persistence scenario”

Note: Packaging of persistence units contained within shared libraries defined using the WebSphere
Application Server system management shared library feature is not supported at this time.

Application packaging

You can mix EJB 2.x and earlier beans with EJB 3.x beans in the same application. However, EJB 3.x
beans are not recognized in EJB 2.x or EJB 1.x modules.

In the case that the EAR file only contains the JAR and web application archive (WAR) files, and no
application.xml file, the product provides a default J2EE 1.4 deployment descriptor that is based on the
following defaults that are outlined in the Java EE specification:

v The application name is assumed to be the name of the EAR file, but with the EAR file extension
removed.

v Files that are ending in .war are assumed to be web modules. The context root of the web module is
the name of the file that is relative to the root of the application package, but with the WAR file
extension removed.

v Files that are ending in .jar that are not in the /lib directory, and that contain either an ejb-jar.xml file
or at least one class that defines a @Stateful, @Stateless, @Singleton, or @MessageDriven
annotation, are assumed to be EJB modules.

v Other JAR files that are not in the /lib directory are not assumed to be EJB modules.

Chapter 10. Developing EJB applications 457

If the application archive file contains an application.xml descriptor, processing occurs according to the
directives in that descriptor.

AutoLink

AutoLink provides the ability to attempt to automatically resolve EJB references to components contained
with an EAR file, without having to specify a JNDI binding name. This simplifies application deployment
with large numbers of beans and references if they are unique and unambiguous.

Restriction: AutoLink should not be used for references to components deployed on a cluster.

JPA packaging

It is recommend that persistence units be packaged in separate JAR files to make them more accessible
and reusable. These can be tested outside the container, with or without actual database persistence
occurring. Persistence units can be included in stand-alone applications or into EAR files as utility JAR
files. Because of the variety of use cases and potential performance issues when scanning large quantities
of classes, it is recommended that the persistence unit defines the classes of the persistence units.

Session facades used for persistence scenario

A common pattern is to use session facades for persistence. Using session bean facades to drive JPA is
supported. The EntityManager interface is not thread safe, therefore, servlets should never inject
@PersistenceContext. Servlets must either use the facade pattern or use an EntityManagerFactory
instance to create an EntityManager on each request.

It is recommended that JPA persistence units be defined in a separate JAR file, apart from the session
bean facades. Not only is this a best practice that gives greater flexibility in sharing, it also avoids
problems mixing JPA and non-JPA annotated classes.

Typically, a JAR file is created to hold the entity classes and the JPA persistence.xml definition and
added to the EAR file as a utility JAR file. The EJB 3.x module adds a dependency on the JAR file by
declaring it in the EJB 3.x module MANIFEST.MF. For example, if an EAR contains a TradeApp.ear,
TradeWeb.war, EJB3Trade.jar, and TradeInfo.jar file, the EJB3Trade.jar file would have a MANIFEST.MF
that looks like the following:
Manifest-Version: 1.0
Class-Path: TradeInfo.jar

The session facade in the EJB3Trade.jar file refers to JPA entity classes and persistence units in the
TradeInfo.jar file. The web application defined in the TradeWeb.war file can do the same to work with the
JPA entity objects as Data Transfer Objects flowing between the web and EJB container tiers.

Cross-tier and cross version session bean reference scenario

There are several ways to define and use references to EJB 3.x session beans. For EJB 3.x session to
session, the @EJB injection target can be used. For cross-tier, for example, web application to EJB 3.x
session, or cross-version, for example, EJB 2.1 session to EJB 3.x session, an XML deployment descriptor
reference can be used to define ejb-refs and ejb-local-refs. There are two variations of these, depending
on whether an EJB 3.x business interface is referred to, or a pre-EJB 3.x component-style interface that
also defines an EJBLocalHome is referred to. Web applications and client applications can also use the
@EJB annotation if the component being referenced can be resolved using autolink.

For migration scenarios where session beans are being converted from EJB 2.1 beans to EJB 3.x beans,
the pattern is typically to edit the Session bean class, replace the implements SessionBean with
implements the business interface, remove extends EJBLocalObject from the local interface and

458 Developing WebSphere applications

non-business throws clauses, and add the @Stateful @Local @LocalHome(<localhome>.class) or similar
annotations. Existing ejb-refs and ejb-local-refs are bound to the new implementation of the session bean.

Note: The default binding name does change.

The previous scenario uses an EJB 2.1-style client pattern with an EJB 3.x-style session bean
implementation. For a more current client style, the client-side can be cleaned up to look up the session
bean business interface directly, rather than going through a home interface. In this case, it is not
necessary to define the @LocalHome(<localhome>.class) annotation. You can use a variant definition of
ejb-ref and ejb-local-ref to do this. Use a null value for the local-home element value and bind the
ejb-local-ref to the session bean's ejblocal: binding rather than the home binding. For example:
<ejb-local-ref id="EJBLocalRef_1154112538064">
<description>com.ibm.persistence.ejb3.order.facadecom.ibm.persistence.ejb3.order.facade</description>
<ejb-ref-name>ejb/OrderEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>com.ibm.persistence.ejb3.order.facade.OrderProcessor</local>
</ejb-local-ref>

The client code also must be adjusted to do the appropriate casting for the object being looked up. In this
case, the business interface instead of the home interface:
try {
InitialContext ctx = new InitialContext();
orderProcessor = (OrderProcessor)ctx.lookup("java:comp/env/ejb/OrderEJB");
}
catch(Exception e) {
e.printStackTrace(System.out);
throw new ServletException(e);
}

Defining container transactions for EJB modules
Container transaction properties specify how an Enterprise JavaBeans (EJB) container is to manage
transaction scopes for the enterprise bean method invocations.

About this task

A transaction attribute is mapped to one or more methods. Some container transaction settings are not
available for all enterprise beans. Also, some methods are not available for particular transaction settings
and beans. These rules have been implemented in the Add Container Transaction wizard based on the
EJB specification.

To complete this task see the topic, Defining container transactions for EJB modules, in the assembly tool
information center.

References in application deployment descriptor files
References are logical names used to locate external resources for enterprise applications. References
are defined in the application's deployment descriptor file. At deployment, the references are bound to the
physical location (global Java Naming and Directory Interface (JNDI) name) of the resource in the target
operational environment.

This product supports the following types of references:
v An Enterprise JavaBeans (EJB) reference is a logical name used to locate the home interface of an

enterprise bean.
v A resource reference is a logical name used to locate a connection factory object.

These objects define connections to external resources such as databases and messaging systems. The
container makes references available in a JNDI naming subcontext. By convention, references are
organized as follows:

Chapter 10. Developing EJB applications 459

v EJB references are made available in the java:comp/env/ejb subcontext.
v Resource references are made available as follows:

– JDBC data source references are declared in the java:comp/env/jdbc subcontext.
– JMS connection factories are declared in the java:comp/env/jms subcontext.
– Mail connection factories are declared in the java:comp/env/mail subcontext.
– URL connection factories are declared in the java:comp/env/url subcontext.

EJB references
Use this page to view and modify the Enterprise JavaBeans (EJB) references to the enterprise beans.
References are logical names used to locate external resources for enterprise applications. References
are defined in the application's deployment descriptor file. At deployment, the references are bound to the
physical location (global Java Naming and Directory Interface (JNDI) name) of the resource in the target
operational environment.

If your application defines EJB references, for Map EJB references to beans, specify JNDI names for
enterprise beans that represent the logical names that are specified in EJB references. Each EJB
reference defined in the application must be bound to an EJB file before clicking Finish in the Summary
panel.

If the EJB reference is from an EJB 3.x, Web 2.4, Web 2.5, or Client 5.0 module, the JNDI name is
optional. If the Allow EJB reference targets to resolved automatically option is enabled, the JNDI name
is optional for all modules. The runtime provides a container default or automatically resolves the EJB
reference if a binding is not provided.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > EJB references.

Values are displayed for Lookup name and EJB Link if they are configured in the application. Only one of
these values is allowed. If both are set, the value must be overridden by a target resource JNDI name.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Resource Reference
Specifies the name of the EJB reference that is used in the enterprise bean, if applicable, and declared in
the deployment descriptor of the application module.

Class
Specifies the name of a Java class associated with this enterprise bean.

Target Resource JNDI Name
Specifies the JNDI name of the enterprise bean.

460 Developing WebSphere applications

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Information Value
Data type String

EJB JNDI names for beans
Use this page to view and modify the Java Naming and Directory Interface (JNDI) names of
non-message-driven enterprise beans in your application or module.

If your application uses Enterprise JavaBeans (EJB) 2.1 and earlier modules, on the Provide JNDI names
for beans panel, specify a JNDI name for each enterprise bean in every EJB 2.1 and earlier module. You
must specify a JNDI name for every EJB 2.1 and earlier enterprise bean defined in the application. For
example, for the EJB module MyBean.jar, specify MyBean.

The JNDI name for an EJB module can be used for both EJB 3.x modules and pre-EJB 3.0 modules. For
a pre-EJB 3.0 module, you need to provide a JNDI name for the bean. For an EJB 3.x module, you have
three options

v Provide no JNDI names at all

v Select the radio button to provide a JNDI name for the bean, or

v Select the radio button to provide local or remote home JNDI names.

If no JNDI name is provided, the run time provides a default value. If JNDI name for the bean is provided,
you cannot provide any JNDI name for business interface in the Provide JNDI names for business
interfaces panel.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application > EJB JNDI names.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Target Resource JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Information Value
Data type String

Chapter 10. Developing EJB applications 461

Bind EJB business settings
Use this administrative console page to specify Java Naming and Directory (JNDI) name bindings for each
enterprise bean with a business interface in an EJB module. Each enterprise bean with a business
interface in an EJB module must be bound to a JNDI name. For any business interface that does not
provide a JNDI name, or if its bean does not provide a JNDI name, a default binding name is provided. If
its bean provides a JNDI name, the default JNDI name for the business interface is provided on top of its
bean JNDI name by appending the package-qualified class name of the interface.

If you specify the JNDI name for a bean in the Provide JNDI names for beans page, do not specify any
business interface JNDI name in this page for the same bean. If you do not specify the JNDI name for a
bean in the Provide JNDI names for beans page, you can optionally specify a business interface JNDI
name. If you do not specify a business interface JNDI name, the run time provides a container default.

To view this page in the administrative console, click Applications > Application Types > WebSphere
enterprise applications > application_name > Bind EJB business.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the EJB module that contains the enterprise beans that bind to the JNDI name.

Bean
Specifies the enterprise bean that binds to the JNDI name.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Business Interface
Specifies the enterprise bean business interface in an EJB module.

For a no-interface view, the business interface value is an empty string ("").

JNDI Name
Specifies the JNDI name associated with the enterprise bean business interface in an EJB module.

Developing EJB 2.x entity beans that use access intents

Using the AccessIntent API
This task describes how to programmatically retrieve and call the AccessIntent API during the execution of
bean managed persistence (BMP) entity bean methods.

Procedure
1. Look up the access intent service from the namespace. For example:

InitialContext ic = new InitialContext();
AccessIntentService aiService = ic.lookup("java:comp/websphere/AppProfile/AccessIntentService");

2. From a method of the remote or local component interface of the BMP, get the current AccessIntent
object using the javax.ejb.EntityContext. This object is passed to the BMP when the container calls the
setEntityContext method. Assume the EntityContext was stored in a variable named myEntityCtx. For
example:

462 Developing WebSphere applications

AccessIntent ai = aiService.getAccessIntent (myEntityCtx);

3. Use the get() methods of AccessIntent interface to obtain the wanted information. For example:
int concurrency = ai.getConcurrencyControl();
int accessType = ai.getAccessType();
if ((concurrency == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

&& (accessType == AccessIntent.ACCESS_TYPE_UPDATE)) {
int exclusive = ai.getPessimisticUpdateLockHint();
// . . .

}
// . . .

For a detailed example of the use of the AccessIntent API, see the topic Example: Using IBM extended
APIs to share connections between CMP beans and BMP beans..

Results

The access intent object reference retrieved from the java:comp lookup is current for the duration of the
method in which the reference was looked up. Depending on how you configured the application profile,
subsequent calls of the same method might not retrieve the same access intent reference. You can only
look up the object reference during the call of a BMP entity bean method; the reference does not exist
during a request on a container managed persistence (CMP) entity bean. Therefore, do not cache access
intent object references beyond, or used outside of, the scope of the execution of any given BMP method.

AccessIntent interface
The AccessIntent interface is available to bean-managed persistence (BMP) entity beans.

A BMP entity bean can get and use an instance of the AccessIntent interface. For more information see
“Using the AccessIntent API” on page 462.

AccessIntent interface
package com.ibm.websphere.appprofile.accessintent;

/**
* This interface defines the essential access intents
* available at run time.
*/
public interface AccessIntent {

/**
* Returns the concurrency control intent, which indicates
* the application prefers either pessimistic or optimistic
* concurrency control when accessing the current component
* in the context of the current transaction.
*/
public int getConcurrencyControl();
public final int CONCURRENCY_CONTROL_PESSIMISTIC = 1;
public final int CONCURRENCY_CONTROL_OPTIMISTIC = 2;

/**
* Returns access type intent, which indicates the application
* intends either update or read access of the current component
* in the context of the current transaction.
*/
public int getAccessType();
public final int ACCESS_TYPE_UPDATE= 1;
public final int ACCESS_TYPE_READ = 2;

/**
* Returns an integer value that indicates that the run time should
* assume that there will be no collision on retrieved rows.
*/
public int getPessimisticUpdateLockHint();
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

Chapter 10. Developing EJB applications 463

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

/*
* Returns an integer value that indicates that the run time should
* assume that there will be collisions on retrieved rows.
*/
public int getPessimisticUpdateLockHint();
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;
public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

/**
* Returns the collection access intent, which indicates the
* application intends to access the objects returned by the
* currently executing finder in either serial or random fashion.
*/
public int getCollectionAccess();
public final int COLLECTION_ACCESS_RANDOM = 1;
public final int COLLECTION_ACCESS_SERIAL = 2;

/**
* Returns the collection scope, which indicates the maximum
* lifespan of a lazy collection.
*/
public int getCollectionScope();
public final int COLLECTION_SCOPE_TRANSACTION = 1;
public final int COLLECTION_SCOPE_ACTIVITYSESSION = 2;
public final int COLLECTION_SCOPE_TIMEOUT = 3;

/**
* Returns the timeout value in seconds when collectionScope is Timeout.
*/
public int getCollectionTimeout();

/**
* Returns the number of elements the application requests be contained
* in each segment of the element collection returned by the currently
* executing finder.
*/
public int getCollectionIncrement();

/**
* Returns the ReadAheadHint requested by the application for the currently
* executing finder.
*/
public ReadAheadHint getReadAheadHint();

/**
* Returns the number of elements the application requests be contained in
* each segment of a query made on a database.
*/
public int getResourceManagerPreFetchIncrement();

}

Assembling access intents to EJB 2.x entity beans

Applying access intent policies to beans
You can apply an access intent policy to an application's entity beans through the assembly tool.

464 Developing WebSphere applications

About this task

Container-managed persistence (CMP) developers can use access intent to provide hints on how the
application server run time should manage the details of persistence without having to explicitly manage
any of the persistence logic from within their application.

Using the access intent service is also an option for programmers who develop bean-managed persistence
(BMP) entity beans. Because the only meaningful difference between BMP and CMP components is the
mechanism that provides the persistence logic, BMP beans leverage access intent hints in the same
manner as the EJB container manages accent intent for CMP beans. This ability becomes especially
important when BMP entities and CMP entities want to share connections. BMP beans configured with the
same concurrency as the CMP beans and implemented to the same isolation level mapping as the CMP
can share connections.

Developers can apply access intent policies to BMP entity beans as well as to CMP entity beans. It is
expected that BMP developers use only those access intent attributes that are important to a particular
BMP bean. The access intent service interface is bound into the java:comp namespace for each particular
BMP bean. The access intent policy retrieved from the access intent service is current from the time that
the ejbLoad process is called until the time that the ejbStore process completes its invocation.

Note: This is the preferred technique to define access intent policies. Method-level access intent is
deprecated in Version 6.0.

Procedure
1. Start an assembly tool.

2. Optional: Open the Java EE perspective to work with Java EE projects. Click Window > Open
Perspective > Other > Java EE.

3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another
helpful view is the Navigator view (Window > Show View > Navigator).

4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR
file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the
New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

5. In the Project Explorer view of the J2EE perspective, right-click Deployment Descriptor: EJB
Module Name under the EJB module for the bean instance, then select Open With > Deployment
Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

6. Select the Access tab.

7. In the Access Intent for Entities 2.x (Bean Level) panel, select the name of the bean.

8. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add
Access Intent panel displays.

9. In the Access intent name field, select wsPessimisticUpdate from the drop-down list.

10. Optional: Enter a Description to help you remember what this policy does.

11. Optional: Change the Persistence Option setting

12. Click Finish. The access intent policy for the entity bean is shown in the Access Intent for Entities
2.x (Bean Level) panel

Chapter 10. Developing EJB applications 465

Configuring read-read consistency checking with an assembly tool
Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another
transaction. The product checks that the data is consistent with the data store, and ensures that it is not
updated after checking for access intents that are repeatable read (RR).

About this task

For access intents that are read committed (RC), the product checks that the data is consistent at the
point of checking; it does not guarantee that the data does not change after the checking. This makes the
behavior of the LifeTimeInCache bean the same as beans that are non-LifeTimeInCache.

To perform this checking, you need to configure CMP entity beans with read-read consistency checking.
You can do this using an assembly tool. To learn how to complete this task see the topic, Adding
bean-level access intent for entity beans 2.x in the assembly tool information center.

Example: Read-read consistency checking
Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another
transaction.

Usage scenario

For the access intents that are for repeatable read (RR), this means the product checks that the data is
consistent with that in the data store and ensures that no one updates it after the checking. For the Access
Intents that are for read committed (RC), this means the product checks that the data is consistent at the
point of checking, but it does not guarantee that the data does not change after the checking. This makes
the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

You have three options for setting consistency checking, as shown in the following scenarios concerning
the calculation of interest in "Ann's" bank account. In each case, the data store is shared by this
Enterprise JavaBeans (EJB) container managed persistence (CMP) application to calculate the interest
and other applications, such as EJB bean managed persistence (BMP) , Java Database Connectivity
(JDBC), or legacy applications. Also in each case, the EJB account is configured as a long-lifetime bean.

NONE
v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey("10001"), account data for Ann is read from the
database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account "10001", Ann’s data is read from
cache, with a balance of $100.

v Calculate Ann’s interest, but the result might not be correct because of the data integrity issue.

Read-read checking AT_TRAN_BEGIN
v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey("10001"), account data for Ann is read from the
database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account "10001", Ann’s data is read from
cache, with a balance of $100.

v PM performs read-read check on Ann's account and finds that the balance of 100 is changed. It issues
a database query to retrieve balance of $120, and Ann’s data in the cache is refreshed.

466 Developing WebSphere applications

v Calculate Ann’s interest, proceed with the transaction because data integrity is protected.

Read-read checking AT_TRAN_END
v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey("10001"), account data for Ann is read from the
database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account "10001", Ann’s data is read from
database, with balance of $100.

v Calculate Ann’s interest.

v During end of transaction 2, PM performs read-read check on Ann's account and finds that the balance
of 100 is changed.

v PM rolls back the transaction and invalidates the cache. The transaction fails and again data integrity is
protected.

Access intent service
Access intent is an application server runtime service that enables you to precisely manage an
application's persistence.

The access intent service defines a set of declarative annotations used by the Enterprise JavaBeans (EJB)
container and its agents to make performance optimizations for entity bean access. These annotations are
organized into sets called access intent policies.

Access intent policies contain a set of annotations considered as hints by the EJB container and its
agents. Most access intent policies are hints representing high-level abstractions that can be mapped to a
specific back end resource manager. It is the responsibility of the EJB persistence machinery to ensure the
necessary concurrency control, connection, and cache management when carrying out the persistence
details. The EJB persistence manager can use access intent hints to make better performance decisions
when carrying out its assigned task. A smaller number of access intents are hints to the EJB container,
influencing the management of EJB collections.

Typically, you configure bean level access intent for your applications. You can also apply access intent
policies to beans within the scope of application profiles. Consequently, you can configure beans with
multiple and opposing access intent policies. The application profiling documentation explains in more
detail how to configure an application to apply a particular access intent policy to a bean for one request,
then apply another access intent policy to the same bean for a different request.

Support for applying access intent policies at the method level is deprecated in WebSphere Application
Server Version 6.0. In this practice of configuring access intent, you apply a policy to methods within the
scope of an EJB module so that the policy becomes the default access intent for all requests upon those
methods.

Access intent design considerations

best-practices: Refrain from over-tuning an application. You can introduce errors by incorrectly using the
access intent service. For example, misuse of the wsPessimisticUpdate-NoCollision policy
can result in lost updates; inappropriately setting the collection increment value can
introduce performance issues; and problem determination is more difficult when an
application is configured with multiple access intent policies.

Note: Clarity and simplicity should be your guiding principles when using the access intent service. This is
even more important when applying access intent polices within the scope of application profiles.

Chapter 10. Developing EJB applications 467

Even though access intent policies can be configured on any method of an entity bean, some attributes of
a policy can only be leveraged by the runtime environment under certain conditions. For example,
concurrency and access intent are only used for CMP entity beans when the ejbLoad method is driven to
open a connection and read data from a given resource; that data is cached and used to drive the proper
queries during invocation of the ejbStore method. Read-ahead hints are only used during the execution of
a finder for a bean. The collection increment and resource manager prefetch increment are only used on
multi-object finders. Configuring policies on methods that do not use the policy is not an error. Only certain
attributes of any policy are used, even when the policy is appropriately applied to a method. However,
configuring policies unnecessarily throughout an application obscures the design of the application and
complicates the maintenance of the application.

Access intent with BMP entity beans

Access intent's declarative functionality provides great power to you as a CMP entity bean developer. You
can provide hints on how the product should manage the details of persistence without having to explicitly
manage any of the persistence logic in the application. There are situations, however, in which you might
need to develop BMP entity beans. Since the only meaningful difference between BMP and CMP
components is who provides the persistence logic, BMP entity beans should be able to leverage access
intent hints just as the product does on behalf of CMP entity beans. BMP entity beans that use the access
intent service participate in application profiling; that is, the value of the access intent attributes can differ
from request to request, allowing the BMP entity bean to seamlessly modify its persistence strategy.

You can apply access intent policies to BMP entity bean methods as well as CMP entity bean methods.
Because access intent hints are not contractual in nature, there is no obligation for a BMP entity bean to
exploit them. BMP entity beans are expected to use only those access intent attributes that are important
to that particular bean.

The current access intent policy is bound into the java:comp namespace for a particular BMP entity bean.
That policy is current only for the duration of the method call during which the access intent policy was
retrieved. In a typical scenario, you would cache the access type during invocation of the ejbLoad method
so that appropriate actions can be taken during invocation of the ejbStore method.

Access intent best practices

When applying access intent policies to EJB methods, consider the following issues.
v Start by configuring the default access intent policy for an entity. After your application is built and

started, you can tune certain access paths in your application using application profiling or method-level
access intent.

v Don't mix access types. Avoid using both pessimistic and optimistic policies in the same transaction. For
most databases, pessimistic and optimistic policies use different isolation levels. This can result in
multiple database connections, which prevents you from taking advantage of the performance benefits
possible through connection sharing.

v Take care when applying the wsPessimisticUpdate-NoCollision policy. This policy does not ensure data
integrity. No database locks are held, so concurrent transactions can overwrite each other's updates.
Use this policy only if you can be sure that only one transaction attempts to update persistent store at
any time.

For further information on Java Persistence API (JPA) Access intent, see the topic on JPA Access intent.

Applying access intent policies to methods
You apply an access intent policy to a method, or set of methods, in an application's entity beans through
the assembly tool.

About this task

Note: Method-level access intent is deprecated in Version 6.0.

468 Developing WebSphere applications

Procedure
1. Start an assembly tool.

2. Optional: Open the Java EE perspective to work with Java EE projects. Click Window > Open
Perspective > Other > Java EE.

3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another
helpful view is the Navigator view (Window > Show View > Navigator).

4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR
file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the
New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

5. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB
Module Name under the EJB module for the bean instance, then select Open With > Deployment
Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

6. Select the Access tab.

7. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add
Access Intent panel displays.

8. Specify the Name for your new intent policy.

9. Select the Access intent name from the drop-down list.

10. Enter a Description to help you remember what this policy does.

11. Optional: Select Read Ahead Hint. A single access intent read ahead hint might not refer to the same
bean type in more than one relationship. For example, if a Department enterprise bean has a
relationship employees with the Employee enterprise bean, and also has a relationship manager with
the Employee enterprise bean, then a read ahead hint cannot specify both employees and manager.

12. Click Next. The next Add Access Intent panel displays, with optional attributes.

13. Optional: Decide whether or not to overwrite these optional access intent attributes. Click on those
you want to change.

14. Click Next. The next Add Access Intent panel, with a list of Enterprise Beans, displays.

15. Select one or more Enterprise Beans from the list.

Note: If you selected Read Ahead Hint in an earlier step, you can only select ONE bean at this
step.

16. Click Next. The next Add Access Intent panel, with a list of methods, displays.

17. Select the methods you want to use.

18. If you DID NOT select Read Ahead Hint in an earlier step, click Finish. If you DID select the Read
Ahead Hint option, you can click Next to specify your Read Ahead Hint for the specified bean. The
next Add Access Intent panel, with a list of EJB preload paths, displays.

19. Edit the EJB preload path by selecting relationship roles from the Relationship roles: window.

20. Click Finish. A new entry is created in the Access Intent for Entities 2.x (Method Level) panel

Chapter 10. Developing EJB applications 469

Developing applications that use the Java Persistence API

Developing JPA 2.x applications for a Java EE environment
Containers in the application server can provide many of the necessary functions for the Java Persistence
API (JPA) in a Java Enterprise Edition (Java EE) environment. The application server also provides JPA
command tools to assist you with developing applications in a Java EE environment.

About this task

Attention: When you use these JPA command tools, run them from the <profile_root>/bin directory,
rather than from the app_server_root/bin directory to make sure that you have the latest version of the
commands for your release level.

For this task, you must specify the com.ibm.ws.jpa.thinclient_8.0.0.jar stand-alone Java archive (JAR)
file in your class path. This stand-alone JAR file is available from the installation images. The location of
this file on the server installation image is ${app_server_root}/runtimes/
com.ibm.ws.jpa.thinclient_8.0.0.jar..

Important: JPA applications require different configuration techniques from applications that use
container-managed persistence (CMP) or bean-managed persistence (BMP). They do not
follow the typical deployment techniques that are associated with applications that implement
CMP or BMP. In JPA applications, you must define a persistence unit and configure the
appropriate properties to ensure that the applications can run in a Java EE environment.

The container supports all necessary injections to ensure that applications run in the Java EE
environment. For example, the container can inject the @PersistenceUnit and @PersistenceContext for
your applications.

Procedure
1. Generate your entities classes. These are Plain Old Java Object (POJO) entities. Depending upon

your development model, you might use some or all of the JPA tools:

v Top-down mapping: You start from scratch with the entity definitions and the object-relational
mappings, and then you derive the database schemas from that data. If you use this approach, you
are most likely concerned with creating the architecture of your object model and then writing your
entity classes. These entity classes would eventually drive the creation of your database model. If
you are using a top-down mapping of the object model to the relational model, develop the entity
classes and then use OpenJPA functionality to generate the database tables that are based on the
entity classes. The wsmapping tool helps with this approach.

v Bottom-up mapping: You start with your data model, which are the database schemas, and then
you work upwards to your entity classes. The wsreversemapping tool helps with this approach.

v Meet in the middle mapping: probably the most common development model. You have a
combination of the data model and the object model partially complete. Depending on the goals and
requirements, you must negotiate the relationships to resolve any differences. Both the wsmapping
tool and the wsreversemapping tool help with this approach.

The JPA solution for the application server provides several tools that help with developing JPA
applications. Combining these tools with IBM Rational Application Developer provides a solid
development environment for either Java EE or Java SE applications. Rational Application Developer
includes GUI tools to insert annotations, a customized persistence.xml file editor, a database explorer,
and other features. Another alternative is the Eclipse Dali project. More information about Rational
Application Developer or the Eclipse Dali plug-in can be found at their respective websites.

2. Compile the entity classes.

470 Developing WebSphere applications

Compile the entities as you would any Java class, unless you are using the Criteria API. If you are
using the Criteria API, you must also generate the Criteria API metamodel classes by including the
following option with the javac command:
-Aopenjpa.metamodel=true

The following are examples of how you use this option.

For Linux, UNIX and z/OS platforms:
app_server_root/java/bin/javac
-Aopenjpa.metamodel=true
-classpath app_server_root/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar
mypackage/MyEntity.java

For Windows platform:
app_server_root\java\bin\javac
-Aopenjpa.metamodel=true
-classpath app_server_root\runtimes\com.ibm.ws.jpa.thinclient_8.0.0.jar
mypackage\MyEntity.java

Using the javac command and the J2EE server plug-in:

For Linux, UNIX and z/OS platforms:
app_server_root/java/bin/javac
-Aopenjpa.metamodel=true
-classpath app_server_root/plugins/javax.j2ee.persistence.jar
mypackage/MyEntity.java

For Windows platform:
app_server_root\java\bin\javac
-Aopenjpa.metamodel=true
-classpath app_server_root\plugins\javax.j2ee.persistence.jar
mypackage\MyEntity.java

For more information about using Criteria API and AnnotationProcessor6, refer to the Apache OpenJPA
User Guide, Chapter 11: JPA Criteria and Chapter 4: Generation of Canonical Metamodel classes for
AnnotationProcessor6 options and the information center topic, Criteria API.

3. Enhance the entity classes using the JPA enhancer tool, wsenhancer, for the application server. An
enhancer is a tool that automatically adds code to your persistent classes after you have written them.
The enhancer post-processes the bytecode that is generated by the Java compiler and adds the fields
and methods that are necessary to implement the persistence features. Although JPA for the
application server and OpenJPA can automatically enhance the entities at run time, you obtain better
performance if you can enhance your entities when you build the application. The application does not
attempt to enhance entities that are already enhanced.

For examples of how to use the wsenhancer tool, see the topic, wsenhancer command.

4. Optional: If you are not using the development model for bottom-up mapping, generate or update your
database tables automatically or by using the wsmapping tool.

v By default, the object-relational mapping does not occur automatically, but you can configure the
application server to provide that mapping with the openjpa.jdbc.SynchronizeMappings property.
This property can accelerate development by automatically ensuring that the database tables match
the object model. To enable automatic mapping, include the following line in the persistence.xml
file:
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema(ForeignKeys=true)"/>

Note: To enable automatic object-relational mapping at run time, all of your persistent classes must
be listed in the Java .class file, mapping file, and Java archive (JAR) file elements in XML
format.

v To manually update or generate your database tables, run the JPA mapping tool for the application
server from the command line to create the tables in the database. For examples on how to run the
wsmapping tool, see the topic, wsmapping command.

Chapter 10. Developing EJB applications 471

5. Optional: If you are using DB2 and want to use static Structured Query Language (SQL), run the
wsdbgen command. In order to use the wsdbgen command, IBM Optim pureQuery Run time must be
installed. The wsdbgen command creates the persistence_unit_name.pdqxml file under the same
META-INF directory where your persistence.xml file is located. If you have multiple persistence units,
the wsdbgen command must be run for each persistence unit.

When multiple pdqxml files are referenced by an application, use the Merge utility to combine them into
a single pdqxml file. Specify the combined pdqxml file as pureQueryXml property of pdqProperties.
Refer to the Merge utility documentation in the IBM Integrated Data Management information center.

For examples on how to run this command, see the topic, wsdbgen command.

6. Optional: If you are using application-managed identity, generate an application-managed identity class
with the wsappid tool. When you use an application-managed identity, one or more of the fields must
be an identity field. Use an identity class if your entity has multiple identity fields and at least one of
the fields is related to another entity. The application-managed identity tool generates Java code that
uses the identity class for any persistent type that implements application-managed identity.

For examples on how to use the wsappid tool, see the topic wsappid command.

Example

The following is an example of a persistence.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="TheWildZooPU" transaction-type="JTA">
<jta-data-source>jdbc/DataSourceJNDI</jta-data-source>
<!-- additional Mapping file, in addition to orm.xml>
<mapping-file>META-INF/JPAorm.xml</mapping-file>

<class>com.company.bean.jpa.PersistebleObjectImpl</class>
<class>com.company.bean.jpa.Animal</class>
<class>com.company.bean.jpa.Dog</class>
<class>com.company.bean.jpa.Cat</class>

<properties>
<property name="openjpa.ConnectionFactoryProperties"

value="PrettyPrint=true, PrettyPrintLineLength=72"/>
<property name="openjpa.jdbc.SynchronizeMappings"

value="buildSchema(ForeignKeys=true)"/>
</properties>

</persistence-unit>
</persistence>

What to do next

For more information about the commands, classes or other OpenJPA information, refer to the Apache
OpenJPA User Guide.

Developing JPA 2.x applications for a Java SE environment
Prepare persistence applications to test outside of the application server container in a Java SE
environment.

About this task

Attention: When you use these JPA command tools, run them from the profile_root/bin directory, rather
than from the app_server_root/bin directory to make sure that you have the latest version of the
commands for your release level.

472 Developing WebSphere applications

For this task, you must specify the com.ibm.ws.jpa.thinclient_8.0.0.jar stand-alone Java archive (JAR)
file in your class path. This stand-alone JAR file is available from the installation images. The location of
this file on the server installation image is ${app_server_root}/runtimes/
com.ibm.ws.jpa.thinclient_8.0.0.jar..

Important: Java Persistence API (JPA) applications require different configuration techniques from
applications that use container-managed persistence (CMP) or bean-managed persistence
(BMP). They do not follow the typical deployment techniques that are associated with
applications that implement CMP or BMP. In JPA applications, you must define a persistence
unit and configure the appropriate properties in the persistence.xml file to ensure that the
applications can run in a Java SE environment.

There are some considerations for running JPA applications in a Java SE environment:

v Resource injection is not available. You must configure these services specifically or programmatically.

v The life cycle of the EntityManagerFactory and EntityManager are managed by the application.
Applications control the creation, manipulation, and deletion of these constructs programmatically.

Procedure
1. Generate your entities classes.

These are Plain Old Java Object (POJO) entities. Depending upon your development model, you might
use some or all of the JPA tools:

Top-down mapping
You start from scratch with the entity definitions and the object-relational mappings, and then
you derive the database schemas from that data. If you use this approach, you are most likely
concerned with creating the architecture of your object model and then writing your entity
classes. These entity classes would eventually drive the creation of your database model. If
you are using a top-down mapping of the object model to the relational model, develop the
entity classes and then use OpenJPA functionality to generate the database tables that are
based on the entity classes. The wsmapping tool would help with this approach.

Bottom-up mapping
You start with your data model, which are the database schemas, and then you work upwards
to your entity classes. The wsreversemapping tool would help with this approach.

Meet in the middle mapping
Probably the most common development model. You have a combination of the data model
and the object model partially complete. Depending on the goals and requirements, you must
negotiate the relationships to resolve any differences. Both the wsmapping tool and the
wsreversemapping tool would help with this approach.

The JPA solution for the application server provides several tools that help with developing JPA
applications. Combining these tools with IBM Rational Application Developer provides a solid
development environment for either Java EE or Java SE applications. Rational Application Developer
includes GUI tools to insert annotations, a customizedpersistence.xml file editor, a database explorer,
and other features. Another alternative is the Eclipse Dali project. More information about Rational
Application Developer or the Eclipse Dali plug-in can be found at their respective websites.

2. Compile the entity classes.

Compile the entities as you would any Java class, unless you are using the Criteria API. If you are
using the Criteria API, you must also generate the Criteria API metamodel classes by including the
following option with the javac command:
-Aopenjpa.metamodel=true

The following are examples of how you use this option.

Chapter 10. Developing EJB applications 473

app_server_root/java/bin/javac
-Aopenjpa.metamodel=true
-classpath app_server_root/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar
mypackage/MyEntity.java

app_server_root\java\bin\javac
-Aopenjpa.metamodel=true
-classpath app_server_root\runtimes\com.ibm.ws.jpa.thinclient_8.0.0.jar
mypackage\MyEntity.java

For more information about using Criteria API and AnnotationProcessor6, refer to the Apache OpenJPA
User Guide, Chapter 11: JPA Criteria and Chapter 4: Generation of Canonical Metamodel classes for
AnnotationProcessor6 options and the information center topic, Criteria API.

3. Enhance the entity classes using the JPA enhancer tool, or specify the Java agent to perform dynamic
enhancement at run time.

v Use the wsenhancer tool. The enhancer post-processes the bytecode that is generated by the Java
compiler and adds the fields and methods that are necessary to implement the persistence features.
For example examples on how to use the wsenhancer tool, see the topic, wsenhancer command.

v You can specify the Java agent mechanism to perform the dynamic enhancement at run time. For
example, type the following at the command prompt:

java -javaagent:${app_client_root}/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar com.xyz.Main

Attention: You can either run the wsenhancer tool or specify the javaagent command. You do not
need to do both.

4. Optional: If you are not using the development model for bottom-up mapping, generate or update your
database tables automatically or by using the wsmapping tool.

v By default, the object-relational mapping does not occur automatically, but you can configure the
application server to provide that mapping with the openjpa.jdbc.SynchronizeMappings property.
This property can accelerate development by automatically ensuring that the database tables match
the object model. To enable automatic mapping, include the following line in the persistence.xml
file:
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema(ForeignKeys=true)"/>

Note: To enable automatic object-relational mapping at run time, all of your persistent classes must
be listed in the Java .class file, mapping file, and Java archive (JAR) file elements in XML
format.

v To manually update or generate your database tables, run the JPA mapping tool for the application
server from the command line to create the tables in the database. For examples on how to run the
wsmapping tool, see the topic, wsmapping command.

5. Optional: If you are using DB2 and want to use static Structured Query Language (SQL), run the
wsdbgen command. In order to use the wsdbgen command, IBM Optim™ PureQuery Run time must be
installed. The wsdbgen command creates the persistence_unit_name.pdqxml file under the same
META-INF directory where your persistence.xml file is located. If you have multiple persistence units,
the wsdbgen command must be run for each persistence unit.

When multiple pdqxml files are referenced by an application, use the Merge utility to combine them into
a single pdqxml file. Specify the combined pdqxml file as pureQueryXml property of pdqProperties. See
the Merge utility documentation in the IBM Integrated Data Management information center.

For examples on how to run this command, see the topic, wsdbgen command.

6. Optional: If you are using application-managed identity, generate an application-managed identity class
with the wsappid tool. When you use an application-managed identity, one or more of the fields must
be an identity field. Use an identity class if your entity has multiple identity fields and at least one of
the fields is related to another entity. The application-managed identity tool generates Java code that
uses the identity class for any persistent type that implements application-managed identity.

For examples on how to use the wsappid tool, see the topic wsappid command.

474 Developing WebSphere applications

Example

The following is a sample persistence.xml file for the Java SE Environment:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="TheWildZooPU" transaction-type="RESOURCE_LOCAL">

<!-- additional Mapping file, in addition to orm.xml>
<mapping-file>META-INF/JPAorm.xml</mapping-file>

<class>com.company.bean.jpa.PersistebleObjectImpl</class>
<class>com.company.bean.jpa.Animal</class>
<class>com.company.bean.jpa.Dog</class>
<class>com.company.bean.jpa.Cat</class>

<properties>
<property name="openjpa.ConnectionDriverName"

value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.ConnectionURL"

value="jdbc:derby:target/database/jpa-test-database;create=true" />
<property name="openjpa.Log"

value="DefaultLevel=INFO,SQL=TRACE,File=./dist/jpaEnhancerLog.log,Runtime=INFO,Tool=INFO" />
<property name="openjpa.ConnectionFactoryProperties"

value="PrettyPrint=true, PrettyPrintLineLength=72" />
<property name="openjpa.jdbc.SynchronizeMappings"

value="buildSchema(ForeignKeys=true)" />
<property name="openjpa.ConnectionUserName"

value="user" />
<property name="openjpa.ConnectionPassword"

value="password"/>
</properties>

</persistence-unit>

</persistence>

What to do next

For more information about any of the commands, classes or other OpenJPA information, refer to the
Apache OpenJPA User Guide.

Bean validation in JPA
Data validation is a common task that occurs in all layers of an application, including persistence. The
Java Persistence API (JPA) 2.0 provides support for the Bean Validation API so that data validation can be
done at run time. This topic includes a usage scenario where bean validation is used in the JPA
environment of a sample digital image gallery application.

The Bean Validation API provides seamless validation across technologies on Java Enterprise Edition 6
(Java EE 6) and Java Platform, Standard Edition (JSE) environments. In addition to JPA 2.0, these
technologies include JavaServer Faces (JSF) 2.0 and Java EE Connector Architecture (JCA) 1.6. You can
read more about bean validation in the topic, Bean Validation API.

There are three core concepts of bean validation: constraints, constraint violation handling, and the
validator. If you are running applications in an integrated environment like JPA, there is no need to
interface directly with the validator.

Chapter 10. Developing EJB applications 475

Validation constraints are annotations or XML code that are added to a class, field, or method of a
JavaBeans component. Constraints can be built in or user-defined. They are used to define regular
constraint definitions and for composing constraints. The built-in constraints are defined by the bean
validation specification and are available with every validation provider. For a list of built-in constraints, see
the topic, Bean validation built-in constraints. If you need a constraint different from the built-in constraints,
you can build your own user-defined constraint.

Constraints and JPA

The following usage scenario illustrates how a built-in constraint is used in the JPA architecture of a
sample digital image gallery application.

In the first code example, a built-in constraint is added to a simple entity of the JPA model called image.
An image has an ID, image type, file name, and image data. The image type must be specified and the
image file name must include a valid JPEG or GIF extension. The code shows the annotated image entity
with some built-in bean validation constraints applied.
package org.apache.openjpa.example.gallery.model;

import javax.persistence.Entity;
import javax.persistence.EnumType;
import javax.persistence.Enumerated;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;

@Entity
public class Image {

private long id;
private ImageType type;
private String fileName;
private byte[] data;

@Id
@GeneratedValue
public long getId() {

return id;
}

public void setId(long id) {
this.id = id;

}

@NotNull(message="Image type must be specified.")
@Enumerated(EnumType.STRING)
public ImageType getType() {

return type;
}

public void setType(ImageType type) {
this.type = type;

}

@Pattern(regexp = ".*\\.jpg|.*\\.jpeg|.*\\.gif",
message="Only images of type JPEG or GIF are supported.")

public String getFileName() {
return fileName;

}

public void setFileName(String fileName) {
this.fileName = fileName;

}

476 Developing WebSphere applications

public byte[] getData() {
return data;

}

public void setData(byte[] data) {
this.data = data;

}
}

The Image class uses two built-in constraints, @NotNull and @Pattern. The @NotNull constraint ensures
that an ImageType element is specified and the @Pattern constraint uses regular expression pattern
matching to ensure that the image file name is suffixed with a supported image format. Each constraint
has corresponding validation logic that gets started at run time when the image entity is validated. If either
constraint is not met, the JPA provider throws a ConstraintViolationException with the defined message.
The JSR-303 specification also makes provisions for the use of a variable within the message attribute.
The variable references a keyed message in a resource bundle. The resource bundle supports
environment-specific messages and globalization, translation, and multicultural support of messages.

You can create your own custom validator and constraints. In the previous example, the Image entity used
the @Pattern constraint to validate the file name of the image. However, it did not check constraints on the
actual image data itself. You can use a pattern-based constraint; however, you do not have the flexibility
that you would if you created a constraint specifically for checking constraints on the data. In this case you
can build a custom method-level constraint annotation. The following is a custom or user-defined
constraint called ImageContent.
package org.apache.openjpa.example.gallery.constraint;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

import javax.validation.Constraint;
import javax.validation.Payload;

import org.apache.openjpa.example.gallery.model.ImageType;

@Documented
@Constraint(validatedBy = ImageContentValidator.class)
@Target({ METHOD, FIELD })
@Retention(RUNTIME)
public @interface ImageContent {

String message() default "Image data is not a supported format.";
Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};
ImageType[] value() default { ImageType.GIF, ImageType.JPEG };

}

Next, you must create the validator class, ImageContentValidator. The logic within this validator gets
implemented by the validation provider when the constraint is validated. The validator class is bound to the
constraint annotation through the validatedBy attribute on the @Constraint annotation as shown in the
following code:
package org.apache.openjpa.example.gallery.constraint;
import java.util.Arrays;
import java.util.List;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import org.apache.openjpa.example.gallery.model.ImageType;
/**
* Simple check that file format is of a supported type
*/

Chapter 10. Developing EJB applications 477

public class ImageContentValidator implements ConstraintValidator<ImageContent, byte[]> {
private List<ImageType> allowedTypes = null;
/**
* Configure the constraint validator based on the image
* types it should support.
* @param constraint the constraint definition
*/
public void initialize(ImageContent constraint) {

allowedTypes = Arrays.asList(constraint.value());
}
/**
*Validate a specified value.
*/
public boolean isValid(byte[] value, ConstraintValidatorContext context) {

if (value == null) {
return false;

}
// Verify the GIF header is either GIF87 or GIF89
if (allowedTypes.contains(ImageType.GIF)) {

String gifHeader = new String(value, 0, 6);
if (value.length >= 6 &&

(gifHeader.equalsIgnoreCase("GIF87a") ||
gifHeader.equalsIgnoreCase("GIF89a"))) {
return true;

}
}
// Verify the JPEG begins with SOI and ends with EOI
if (allowedTypes.contains(ImageType.JPEG)) {

if (value.length >= 4 &&
value[0] == 0xff && value[1] == 0xd8 &&
value[value.length - 2] == 0xff && value[value.length -1] == 0xd9) {
return true;

}
}
// Unknown file format
return false;

}
}

Apply this new constraint to the getData() method on the Image class; for example:
@ImageContent

public byte[] getData() {
return data;

}

When validation of the data attribute occurs, the isValid() method in the ImageContentValidator is started.
This method contains logic for performing simple validation of the format of the binary image data. A
potentially overlooked feature in the ImageContentValidator is that it can also validate for a specific image
type. By definition, it accepts JPEG or GIF formats, but it can also validate for a specific format. For
example, by changing the annotation to the following code example, the validator is instructed to only
permit image data with valid JPEG content:
@ImageContent(ImageType.JPEG)

public byte[] getData() {
return data;

}

Type-level constraints are also a consideration because you might need to validate combinations of
attributes on an entity. In the previous examples validation constraints were used on individual attributes.
Type-level constraints make it possible to provide collective validation. For example, the constraints
applied to the image entity validate that an image type is set (not null), the extension on the image file
name is of a supported type, and the data format is correct for the indicated type. But, for example, it does
not collectively validate that a file named img0.gif is of type GIF and the format of the data is for a valid
GIF file image. For more information about type-level constraints, see the white paper, OpenJPA Bean

478 Developing WebSphere applications

Validation Primer, and the section "Type-level constraints."

Validation groups

Bean validation uses validation groups to determine what type of validation and when validation occurs.

There are no special interfaces to implement or annotations to apply to create a validation group. A
validation group is denoted by a class definition.

Note: When using groups, use simple interfaces. Using a simple interface makes validation groups more
usable in multiple environments. Whereas, if a class or entity definition is used as a validation
group, it might pollute the object model of another application by bringing in domain classes and
logic that do no make sense for the application. By default, if a validation group or multiple groups
is not specified on an individual constraint, it is validated using the javax.validation.groups.Default
group. Creating a custom group is as simple as creating a new interface definition.

For more information about validation groups, read the white paper, OpenJPA Bean Validation Primer, and
the section "Validation groups."

JPA domain model

In addition to the Image entity are Album, Creator and Location persistent types. An Album entity contains
a reference to collection of its Image entities. The Creator entity contains a reference to the album entities
that the image Creator contributed to and a reference to the Image entities created. This provides full
navigational capabilities to and from each of the entities in the domain. An embeddable location, has been
added to image to support storing location information with the image.

The Album and Creator entities have standard built-in constraints. The embeddable location is more
unique in that it demonstrates the use of the @Valid annotation to validate embedded objects. To embed
location into an image, a new field and corresponding persistent properties are added to the Image class;
for example:
private Location location;

@Valid
@Embedded
public Location getLocation() {

return location;
}

public void setLocation(Location location) {
this.location = location;

}

The @Valid annotation provides chained validation of embeddable objects within a JPA environment.
Therefore, when image is validated, any constraints on the location it references are also validated. If
@Valid is not specified, the location is not validated. In a JPA environment, chained validation through
@Valid is only available for embeddable objects. Referenced entities and collections of entities are
validated separately to prevent circular validation.

Bean validation and the JPA environment

The JPA 2.0 specification makes integration with the Bean Validation API simple. In a JSE environment,
bean validation is enabled by default when you provide the Bean Validation API and a bean validation
provider on your runtime class path. In a Java EE 6 environment, the application server includes a bean
validation provider so there is no need to bundle one with your application. In both environments, you must
use a Version 2.0 persistence.xml file.

Chapter 10. Developing EJB applications 479

A Version 1.0 persistence.xml provides no means to configure bean validation. Requiring a Version 2.0
persistence.xml prevents a pure JPA 1.0 application from incurring the validation startup and runtime
costs. This is important given that there is no standard means for a 1.0-based application to disable
validation. In a Java EE 6 environment, enable validation in an existing 1.0 application by modifying the
root element of your persistence.xml file. The following example represents the persistence.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0" >

...
</persistence>

Bean validation provides three modes of operation within the JPA environment:

v Auto

Enables bean validation if a validation provider is available within the class path. Auto is the default.

v Callback

When callback mode is specified, a bean validation provider must be available for use by the JPA
provider. If not, the JPA provider throws an exception upon instantiation of a new JPA entity manager
factory.

v None

Disables bean validation for a particular persistence unit.

Auto mode simplifies deployment, but can lead to problems if validation does not take place because of a
configuration problem.

Note: Use either none or callback mode explicitly for consistent behavior.
Also, if none is specified, JPA optimizes at startup and does not attempt to perform unexpected validation.
Explicitly disabling validation is especially important in a Java EE 6 environment where the container is
mandated to provide a validation provider. Therefore, unless specified, a JPA 2.0 application started in a
container has validation enabled. This process adds additional processing during life cycle events.

There are two ways to configure validation modes in JPA 2.0. The simplest way is to add a
validation-mode element to the persistence.xml with the wanted validation mode as shown in the
following example:
<persistence-unit name="auto-validation">

...
<!-- Validation modes: AUTO, CALLBACK, NONE -->
<validation-mode>AUTO</validation-mode>
...

</persistence-unit>

The other way is to configure the validation mode programmatically by specifying the
javax.persistence.validation.mode property with value auto, callback, or none when creating a new JPA
entity manager factory as shown in the following example:
Map<String, String> props = new HashMap<String, String>();

props.put("javax.persistence.validation.mode", "callback");
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("validation", props);

Bean validation within JPA occurs during JPA life cycle event processing. If enabled, validation occurs at
the final stage of the PrePersist, PreUpdate, and PreRemove life cycle events. Validation occurs only after
all user-defined life cycle events, since some of those events can modify the entity that is being validated.
By default, JPA enables validation for the default validation group for PrePersist and PreUpdate life cycle

480 Developing WebSphere applications

events. If you must validate other validation groups or enable validation for the PreRemove event, you can
specify the validation groups to validate each life cycle event in the persistence.xml as shown in the
following example:
<persistence-unit name="non-default-validation-groups">

<class>my.Entity</class>
<validation-mode>CALLBACK</validation-mode>
<properties>
<property name="javax.persistence.validation.group.pre-persist"

value="org.apache.openjpa.example.gallery.constraint.SequencedImageGroup"/>
<property name="javax.persistence.validation.group.pre-update"

value="org.apache.openjpa.example.gallery.constraint.SequencedImageGroup"/>
<property name="javax.persistence.validation.group.pre-remove"

value="javax.validation.groups.Default"/>
</property>
</persistence-unit>

The following example shows various stages of the JPA life cycle, including persist, update, and remove:
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("BeanValidation");
EntityManager em = emf.createEntityManager();

Location loc = new Location();
loc.setCity("Rochester");
loc.setState("MN");
loc.setZipCode("55901");
loc.setCountry("USA");

// Create an Image with non-matching type and file extension
Image img = new Image();
img.setType(ImageType.JPEG);
img.setFileName("Winter_01.gif");
loadImage(img);
img.setLocation(loc);

// *** PERSIST ***
try {

em.getTransaction().begin();
// Persist the entity with non-matching extension and type
em.persist(img);

} catch (ConstraintViolationException cve) {
// Transaction was marked for rollback, roll it back and
// start a new one
em.getTransaction().rollback();
em.getTransaction().begin();
// Fix the file type and re-try the persist.
img.setType(ImageType.GIF);
em.persist(img);
em.getTransaction().commit();

}

// *** UPDATE ***
try {

em.getTransaction().begin();
// Modify the file name to a non-matching file name
// and commit to trigger an update
img.setFileName("Winter_01.jpg");
em.getTransaction().commit();

} catch (ConstraintViolationException cve) {
// Handle the exception. The commit failed so the transaction
// was already rolled back.
handleConstraintViolation(cve);

}
// The update failure caused img to be detached. It must be merged back
// into the persistence context.
img = em.merge(img);

Chapter 10. Developing EJB applications 481

// *** REMOVE ***
em.getTransaction().begin();
try {

// Remove the type and commit to trigger removal
img.setType(ImageType.GIF);
em.remove(img);

} catch (ConstraintViolationException cve) {
// Rollback the active transaction and handle the exception
em.getTransaction().rollback();
handleConstraintViolation(cve);

}
em.close();
emf.close();

Exceptions

Validation errors can occur in any part of JPA life cycle.

If one or more constraints fail to validate during a life cycle event, a ConstraintViolationException is thrown
by the JPA provider. The ConstraintViolationException thrown by the JPA provider includes a set of
ConstraintViolations that occurred. Individual constraint violations contain information regarding the
constraint, including: a message, the root bean or JPA entity, the leaf bean which is useful when validating
JPA embeddable objects, the attribute which failed to validate, and the value that caused the failure. The
following is a sample exception handling routine:
private void handleConstraintViolation(ConstraintViolationException cve) {

Set<ConstraintViolation<?>> cvs = cve.getConstraintViolations();
for (ConstraintViolation<?> cv : cvs) {

System.out.println("--");
System.out.println("Violation: " + cv.getMessage());
System.out.println("Entity: " + cv.getRootBeanClass().getSimpleName());
// The violation occurred on a leaf bean (embeddable)
if (cv.getLeafBean() != null && cv.getRootBean() != cv.getLeafBean()) {

System.out.println("Embeddable: " +
cv.getLeafBean().getClass().getSimpleName());

}
System.out.println("Attribute: " + cv.getPropertyPath());
System.out.println("Invalid value: " + cv.getInvalidValue());

}
}

Constraint violation processing is typically simple when using attribute-level constraints. If you are using a
type-level validator with type-level constraints, it can be more difficult to determine which attribute or
combination of attributes failed to validate. Also, the entire object is returned as the invalid value instead of
an individual attribute. In cases where specific failure information is required, use of an attribute-level
constraint or a custom constraint violation might be provided as described in the Bean Validation
specification.

Sample

The JPA model and image gallery application usage scenario provided in this topic can be implemented
through a sample that is provided in the white paper, OpenJPA Bean Validation primer.

wsjpa properties
The extension properties of Java Persistence API (JPA) for WebSphere Application Server can be
specified with the openjpa or wsjpa prefix. This topic features the wsjpa properties.

482 Developing WebSphere applications

wsjpa.AccessIntent
Use this property to define a TaskName that in the persistence.xml file using the wsjpa.AccessIntent
property name in a persistence unit. The property value is a list of TaskNames, entity types and access
intent definitions.

For more information and examples on how the wsjpa.AccessIntent property is used, see the topic
Specifying TaskName in a JPA persistence unit.

wsjpa.jdbc.Schema
Specifies the schema name in a DB2 package collection when using multiple DB2 package collections.

For more information about using the wsjpa.jdbc.Schema property see the topic, Configuring pureQuery to
use multiple DB2 package collections.

wsjpa.jdbc.CollectionId
Specifies the collection Id name in a DB2 package collection when using multiple DB2 package
collections.

For more information about using the wsjpa.jdbc.CollectionId property see the topics, Configuring
pureQuery to use multiple DB2 package collections and Configuring data source JDBC providers to use
pureQuery in a Java SE environment.

Criteria API
The Criteria API is an API for building queries with Java objects, as an alternative to building strings for
Java Persistence Query Language (JPQL) queries.

The Criteria API supports building queries dynamically at run time, and also the ability to build type-safe
queries that can be verified by the compiler. The correctness of JPQL queries cannot be verified by the
compiler, and must be verified at run time during testing.

The following is a sample JPQL query that returns a list of employees with less than five years of service:
SELECT e FROM Employee e WHERE e.serviceyears < 5

Here is a sample of the equivalent Criteria query:
QueryBuilder qb = emf.getQueryBuilder();
CriteriaQuery q = qb.create(Employee.class);
Root e = q.from(Employee.class);
q.where(qb.lt(e.get(Employee_.serviceyears), 5));
TypedQuery tq = em.createQuery(q);
List result = q.getResultList();

Note: Employee_ is the Metamodel of the Employee class.

Two important features are improvements from JPQL:

v The Criteria API can express queries that are not possible through JPQL. For more detailed information
see the section, “Editable data store expressions”, in the developerWorks article, Dynamic, typesafe
queries in JPA 2.0.

v A CriteriaQuery can be edited programmatically. For more information see the section, “Editable query”,
in the developerWorks article, Dynamic, typesafe queries in JPA 2.0.

You can read more about the Criteria API in the Apache OpenJPA User Guide.

wsappid command
The Java Persistence API (JPA) specification supports an entity primary key to be made up of more than
one column. In this case, the primary key is called a composite or compound primary key. Provide an ID

Chapter 10. Developing EJB applications 483

class, which is specified by the @IdClass annotation, to manage a composite primary key. Use the identity
tool for JPA to generate an ID class for entities that use composite primary keys.

Syntax

Before running the command, you must have a copy of the persistence.xml file on the classpath, or
specify it as a properties file in the -p [path_to_persistence.xml] argument. Issue the command from the
bin subdirectory of the profile_root directory.

The command syntax is as follows:

wsappid.sh [parameters][arguments]

wsappid.bat [parameters][arguments]

Parameters

The wsappid tool accepts the standard set of command-line arguments that are defined by the
configuration framework along with the following:
v -directory/-d <output_directory>: The path to the output directory.

If the directory does not match the generated output ID class package, the package structure is created
beneath the directory. If this parameter is not specified, the wsappid tool attempts to find the directory of
the .java file for the class that supports persistence. If a .java file is not found, the wsappid tool uses
the current directory.

v -ignoreErrors/-i <true/t | false/f>: If this parameter is set to false, an exception is occurs when
the tool is run on any class that does not use the application identity. An error also occurs if any class
does not have the base class in the inheritance hierarchy.

v -token/-t <token>: The token that is used to separate the values of strung primary keys in the string
form of the object ID.

Use this option only if there are multiple primary key fields. The default is "::".
v -name/-n <id_class_name>: The name of the identity class to generate.

If this option is specified, the wsappid tool must run on exactly one class. If the class metadata already
names an ID class for the object, this option is ignored. If the name is not fully qualified, the package of
the persistence class is appended to form the fully qualified name.

v suffix <id_class_suffix>: A string with which to suffix each persistent class name to form the identity
class name.

This option is overridden by the -name/-n parameter or by any object ID class that is specified in the
metadata.

Each additional argument to the wsappid tool must be one of the following:
v The full name of a persistent class.
v The .java name for a persistent class.
v The .class file of a persistent class.

Usage

The identity tool used with JPA for application server simplifies the task of creating an identity class for
entities that use composite IDs. A composite ID is an identity with more than one field as its primary key.
The entity class must be compiled, and primary keys must be identified in the entity class. Run the
wsappid tool from the command line in the profile_root/bin/ directory. When you run this command, a new
class representing the composite ID of the entity is generated. Messages and errors are logged to the
console as specified.

484 Developing WebSphere applications

Examples

Consider the following entity:
@Entity
public class Employee {

@Id
private int division;

@Id private int id;
// . . .
}

Before the entity is used, an ID class is needed. For this example, assume that the entity is found in the
src/main/java directory.

To generate an ID class for the Magazine entity run the following:

wsappid.sh -s Id src/main/java/Employee.java -d src/main/java

wsappid.bat -s Id src\main\java\Employee.java -d src\main\java

A new class, EmployeeId.java, is generated in the src/main/java directory.

Additional information

Read the Application identity tool in persistence classes information in the Apache OpenJPA User Guide
for more information.

wsenhancer command
The entity enhancer tool for Java Persistence API (JPA) applications inserts bytecode into an entity class
file that supports the JPA provider to manage the state of an entity.

JPA with the application server requires that all entity classes be enhanced if you want to manage their
state. In a container-managed environment, automated enhancement is provided by the containers. In a
Java SE environment, though, there are no containers to manage persistence and you might use this
command frequently before packaging application files for testing. After you have created the JPA entities,
you can run the wsenhancer tool to inject bytecode into the entities before packaging the Java archive
(JAR) file into the enterprise archive (EAR) file for the application.

Syntax

Before running the command, you must have a copy of the persistence.xml file on the classpath, or
specify it as a properties file in the -p [path_to_persistence.xml] argument. Issue the command from the
bin subdirectory of the profile_root directory.

The command syntax is as follows:

wsenhancer.sh [parameters][arguments]

wsenhancer.bat [parameters][arguments]

Chapter 10. Developing EJB applications 485

Parameters

The enhancer accepts the standard set of command-line arguments defined by the configuration
framework along with the following:
v -directory/-d <output directory>: Specifies the path to the output directory.

If the directory does not match the enhanced class package, the package structure is created beneath
the directory. By default, the enhancer overwrites the original .class file.

v -enforcePropertyRestrictions/-epr <true/t | false/f>: Specifies whether to generate an exception
when a property access entity is not obeying the restrictions that are placed on property access.

The default is set to false.
v -addDefaultConstructor/-adc <true/t | false/f>: Specifies that all of the persistent classes define a

no-argument constructor. This flag informs the enhancer to add a protected no-arg constructor to any
persistent classes in which the constructor is not already present.

v -tmpClassLoader/-tcl <true/t | false/f>: Specifies whether the enhancer should load persistent
classes with a temporary class loader.

This function supports other code to load the enhanced version of the class afterward within the same
Java virtual machine (JVM). The default is set to true.

Note: If you are encountering class loading problems when running the enhancer, you can set this flag
to false as a debugging step.

v For class name, specify one of the following:
– The full name of a class.
– The .java name for a class.
– The .class file of a class.

If you do not provide arguments to the enhancer, it runs on the classes in your persistent class list.

Usage

To use the wsenhancer tool you need entities defined to the JPA specifications, and the entities must be
compiled. Run the wsenhancer tool against the entities before packaging them into a JAR file. If the
entities are already packaged, you extract the entity class files, run the enhancer, and recreate the JAR
file.

To enhance your entities:

v Verify that your entities are in the class path, if they are not, add them.

v Run the wsenhancer command. It is found in ${profile_root}/bin directory.

Messages and errors are logged to the administrative console as specified in the log settings. After starting
the wsenhancer command, your files are enhanced.

Examples

To enhance all entities on the class path:

$ cd build
/home/user/myproject/build $ ${profile_root}/bin/wsenhancer.sh

C:\myproject\cd build
C:\myproject\build>%profile_root%\bin\wsenhancer.bat

All entities in myproject are enhanced.

To enhance a specific entity when you have the source files:

486 Developing WebSphere applications

$ cd build
/home/user/myproject/build $ ${profile_root}/bin/wsenhancer.sh Magazine.java

C:\myproject\cd build
C:\myproject\build>%profile_root%\bin\wsenhancer.bat Magazine.java

To enhance a specific entity when you have the compiled class files:

$ export CLASSPATH=target/classes
$ ${profile_root}/bin/wsenhancer.sh /bin/wsenhancer.sh target/classes/jpa/example/MyEntity.class

C:> cd build
C:\build> SET CLASSPATH=target\classes
C:\build>%profile_root%\bin\wsenhancer.bat \bin\wsenhancer.bat target\classes\jpa\example\Magazine.class

The entity, Magazine.java, located in project are enhanced.

Additional information

For more information about enhancement tools, see the section on persistent classes in the Apache
OpenJPA documentation.

wsmapping command
The wsmapping tool is used to provide top-down mapping of the entity object model to the database
relational model. You can use the wsmapping tool to create database tables.

Syntax

Before running the command, you must have a copy of persistence.xml on the class path, or specify it as
a properties file in the -p [path_to_persistence.xml] argument. Issue the command from the bin
subdirectory of the profile_root directory.

The command syntax is as follows:

wsmapping.sh [options][arguments]

wsmapping.bat [options][arguments]

Parameters

The mapping tool accepts the standard set of command-line arguments defined by the configuration
framework with the following options:
v -schemaAction/-sa <add | refresh | drop | build | reflect | retain | createDB | import |

export | none>: The action to implement against the schema.

These options correspond to the actions of the schema tool. Add is the default action if none is
specified. Actions can be composed in a list separated by commas.

Note: The wsmapping tool accepts the -action/-a flag to specify the action to take on individual classes.
Unless you are running wsmapping on all of your persistent types at once, or dropping a

Chapter 10. Developing EJB applications 487

mapping, you must use the default add action or the build action. Otherwise, you might
inadvertently drop schema components that are used by classes that you are not currently
running the tool against.

v -schemaFile/-sf <true/t | false/f>: This option can be used to write the planned schema to an XML
document rather than modify the database.

The XML document can then be modified, manipulated and committed to the database with the schema
tool.

v -sqlFile/-sql <stdout | output file>: This option can be used to write the planned schema
modifications to an SQL script rather than modify the database.

Combine this parameter with a schemaAction of build to generate a script that recreates the schema for
the current mappings, even if the schema exists.

v -dropTables/-dt <true/t | false/f>: When this option is set to true, schema drops tables that appear
to be unused during retain and refresh actions.

The default is true.
v -dropSequences/-dsq <true/t | false/f>: If this option is set to true, schema drops sequences that

are unused during retain and refresh actions.

The default is true.
v -openjpatables/-ot <true/t | false/f>: When reflecting the schema, this parameter determines

whether to reflect on tables and sequences with names that start with OPENJPA_.

Certain OpenJPA components use these tables and sequences, such as the table schema factory.
When using other actions, the openjpaTables parameter controls whether these tables can be dropped
or not. The default setting is false.

v -ignoreErrors/-i <true/t | false/f>: If set to false, an exception is occurs if the tool encounters
database errors.

The default is set to false.
v -schemas/-s <schema list>: Denotes a list of schema and table names the OpenJPA should access

when running the wsschema tool.

This is the equivalent to setting the openjpa.jdbc.Schemas property to run once. This parameter
corresponds to the -schemas/-s parameter in the wsschema tool. This option is ignored if
-readSchema/-rs is not set to true.

v -readSchema/-rs <true/t | false/f>: Set this option to true to read the entire existing schema when
the mapping tool runs.

Reading the existing schema ensures that OpenJPA does not generate any mappings that use the
table, index, primary key or foreign key names that conflict with existing names.

Note: Depending on the particular JDBC driver, selecting the -readSchema/-rs function can slow down
the process for large schemas.

v -primaryKeys/-pk <true/t | false/f>: This flag determines if the primary keys can be manipulated on
existing tables.

The default is true.
v -foreignKeys/fk <true/t | false/f>: This flag determines if foreign keys can be manipulated on

existing tables.

The default is true. This means that to add a new foreign key to a class that has already been mapped,
you must explicitly set this parameter flag to true.

v -indexes/-ix <true/t | false/f>: This flag determines if indexes can be manipulated on existing
tables.

The default is true. This means that to add new indexes to a class that has already been mapped, you
must explicitly set this parameter flag to true.

v -sequences/-sq <true/t | false/f>: This flag determines if sequences can be manipulated.

The default is true.
v -meta/-m <true/t | false/f>: This flag determines whether a mapping applies to metadata rather than,

or in addition to, standard mappings.

488 Developing WebSphere applications

v The wsmapping tool accepts the -action/-a flag to specify the action to take on each class. Multiple
actions can be composed in a list, separated by commas. The available actions are:
– buildSchema: This is the default action. The buildSchema action makes the database schema match

your existing mappings. If the provided mappings conflict with the class definitions, OpenJPA fails
with an informative exception.

– validate: Ensure that the mappings for the given classes are valid and that they match the schema
of the database. No mappings of tables are changed as a result of this action. An exception occurs if
any mappings are invalid.

Each additional argument to the wsmapping tool must be one of the following:
v The full name of a persistent class.
v The .java name for a persistent class.
v The .class file of a persistent class.

If you do not supply any arguments to the wsmapping tool, it runs on the classes in the persistent classes
list.

Usage

Before running the wsmapping tool, you must configure the data source information, including the URL,
user, and password. It is required that the wsenhancer tool is run before the wsmapping tool to insert
bytecode into the entity classes. Also, the compiled class files for your entities should be on the class path.
Assume that entity class files can be found in target/classes, for example:

export CLASSPATH=${CLASSPATH}:target/classes

wsmapping.sh ...

SET CLASSPATH=%CLASSPATH%;target\classes

wsmapping.bat . . .

To create tables, run the wsmapping command from the ${profile_root}/bin directory. When completed, the
database tables are created or updated. Messages and errors are logged to the administrative console as
specified by log settings.

wsmapping.sh . . . On Windows :

Tip: By specifying the buildSchema parameter to the openjpa.jdbc.SynchronizeMappings property, the
mapping tool provides the default mapping that matches with the database schema automatically.
You are not required to run this mapping tool if the default mapping satisfies the necessary database
schema.

Examples

To create the database tables needed for the Magazine.java file:

${profile_root}/bin/wsmapping.sh Magazine.java

${profile_root}\bin\wsmapping.sh Magazine.java

To drop the tables for Magazine.java:

Chapter 10. Developing EJB applications 489

C:\> %profile_root%/bin/wsmapping.sh -sa dropDB Magazine.java

C:\> %profile_root%\bin\wsmapping.bat -sa dropDB Magazine.java

To validate the mappings for all classes on the class path:

C:\> %profile_root%/bin/wsmapping.sh -a validate

C:\> %profile_root%\bin\wsmapping.bat -a validate

Additional information

See the mapping information in the Apache OpenJPA User Guide for more information and examples.

wsreversemapping command
The wsreversemapping tool generates persistent class definitions and metadata from a database schema.

Syntax

Before running the command, you must have a copy of the persistence.xml file on the class path, or
specify it as a properties file in the -p [path_to_persistence.xml] argument. Issue the command from the
bin subdirectory of the profile_root directory.

The command syntax is as follows:

wsreversemapping.sh [parameters][arguments]

wsreversemapping.bat [parameters][arguments]

Parameters

The wsreversemapping tool accepts the standard set of command-line arguments defined by the
configuration framework along with the following:
v -schemas/-s <schema and table names>: A list of schema and table names, separated by commas, to

run the wsreversmapping tool on if no XML schema file is supplied.

Each element of the list must follow the naming conventions for the openjpa.jdbc.Schemas property. If
this parameter flag is omitted, it defaults to the value of the Schemas property. If the Schemas property is
not defined, then all schemas are reverse mapped.

v -package/-p <package name>: The package name of the generated classes.

If no package name is given, the generated code does not contain package declarations.
v -directory/-d <output directory>: All generated code and metadata is written to the directory at this

path.

If the path does not match the package of a class, the package structure is created beneath this
directory. This parameter defaults to the current directory.

v -useSchemaName/-sn <true/t | false/f>: Set this parameter flag to true to include the schema and the
table name in the name of each generated class.

This method can be useful when dealing with multiple schemas that have tables with identical names.

490 Developing WebSphere applications

v -useForeignKeyName/-fkn <true/t | false/f>: Set this parameter flag to true if you want the field
names for relations to be based on the database foreign key name.

By default, relation field names are derived from the name of the related class.
v -nullableAsObject/-no <true/t | false/f>: By default, all non-foreign key columns are mapped to

primitives.

Set this parameter flag to true to generate primitive wrapper fields instead for columns that support null
values.

v -blobAsObject/-bo <true/t | false/f>: By default, all binary columns are mapped to the byte[] fields.

Set this parameter flag to true to map them to Object fields instead.

Attention: When mapped this way, the column is presumed to contain a serialized Java object.
v -primaryKeyOnJoin/pkj <true/t | false/f>: The standard reverse mapping tool behavior is to map all

tables with primary keys to persistent classes.

If your schema has primary keys on many join tables as well, set this flag to true to avoid creating
classes for those tables.

v -inverseRelations/-ir <true/t | false/f>: Set this parameter flag to false to prevent the creation of
inverse one-to-many or one-to-one relations for every many-to-one or one-to-one relation detected.

v -useDatastoreIdentity/-ds <true/t | false/f>: Set to true to use data store identity for tables that
have single numeric primary key columns.

Typically, the tool uses application identity for all generated classes.
v -useBuiltinIdentityClass/-bic <true/t | false/f>: Set this parameter flag to false to prevent the

wsreversemapping tool from using built-in application identity classes when possible.

This forces the tool to create custom application identity classes even when there is only one primary
key column.

v -innerIdentityClasses/-inn <true/t | false/f>: Set this parameter flag to true to have any
generated application identity classed be created as static inner classes within the persistent classes.

The default setting is false.
v -identityClassSuffix/-is <suffix>: Suffix to append to the class names to form application identity

class names, or for inner identity classes, the inner class name.

The default suffix is Id.
v -typeMap/-typ <type mapping>: A string that specifies the default Java classes to generate for each

SQL type that is seen in the schema.

The format is SQLTYPE1=JavaClass1, SQLTYPE2=JavaClass2. The SQL type name first looks for a
customization that is based on SQLTYPE(SIZE,PRECISION), then SQLTYPE(SIZE), and then
SQLTYPE. If a column with type CHAR is found, it first looks for the CHAR(50,0) type name
specification, then it looks for the CHAR(50), and finally for the CHAR. For example, to generate a char
array for every char column whose size is exactly 50 characters, and to generate a short for every type
name of INTEGER, you might specify, CHAR(50)=char[],INTEGER=short.

Attention: Various databases report different type names differently, one database type might not
work for another database. Enable TRACE level logging on the metadata channel to track which type
names JPA for WebSphere Application Server is examining.

v -customizerClass/-cc <class name>: The full class name of an
org.apache.openjpa.jdbc.meta.ReverseCustomizer customization plug-in.

If you do not specify a reverse customizer of your own, the system defaults to a
PropertiesReverseCustomizer. This customizer supports specifying simple customization options in the
properties file given with the -customizerProperties flag.
– -customizerProperties/-cp<properties file or resource>: The path or resource name of a properties

file to pass to the reverse customizer on initialization.
– -customizer/-c <property name> <property value>: The given property name is matched with the

corresponding Java bean property in the specified reverse customizer, and set to the given value.

Chapter 10. Developing EJB applications 491

Usage

The wsreversemapping tool is used to perform reverse (bottom-up) mappings of database tables to entity
source files. This is useful if developers want to generate Java files from a database for use in other JPA
applications. To run this tool:

v You must have database tables and your database connection configured.

v Run the wsreversemapping tool from the command line in the $ {profile_root}/bin directory.

v The tool generates .java files for every class, along with an XML descriptor file, orm.xml.

The generated Java files from the wsreversemapping tool might require some editing before they can be
used in an application. Also, generated files do not contain annotations. Annotations can be added
manually. Messages and errors are logged to the administrative console as specified by the configuration.

Examples

Generate entities based on the information saved in the schema.xml file. Schema.xml was created by
running the schema tool. The Java files are created in the src directory and use the package com.xyz:

${profile_root}/bin/wsreversemapping.sh -pkg com.xyz -d ./src schema.xml

${profile_root}\bin\wsreversemapping.bat -pkg com.xyz -d ./src schema.xml

Generate entities based on information in a DB2 database. Entities are created in the src directory, and
use the package com.reversemapped:

C:\> %profile_root%/bin/wsreversemapping.bat -sa dropDB Magazine.javapkg com.reversemapped -d src
-connectionDriverName=com.ibm.db2.jcc.DB2Driver -connectionURL=jdbc:db2:localhost:50000/TEST
-connectionUser=db2User -connectionPassword=db2Password

C:\> %profile_root%\bin\wsreversemapping.bat -sa dropDB Magazine.javapkg com.reversemapped -d src
-connectionDriverName=com.ibm.db2.jcc.DB2Driver -connectionURL=jdbc:db2:localhost:50000/TEST
-connectionUser=db2User -connectionPassword=db2Password

Additional information

For more information, read the mapping section in the Apache OpenJPA User Guide.

wsschema command
The schema tool can be used to view the database schema in XML form or match an XML schema to an
existing database.

The wsschema tool can reflect on the current database schema, optionally translating it into an XML
representation for further manipulation. The schema tool can take an XML schema definition, calculate the
differences between the XML and the existing database schema, and apply the necessary changes to
make the databases correspond to the XML schema. The XML format used by the schema tool is abstract
from the differences in SQL dialects used by different vendors. The tool also automatically adapts its SQL
to meet foreign dependencies, thus the schema tool is useful as a general way to manipulate the
schemas.

492 Developing WebSphere applications

Syntax

The command syntax is as follows:

wsschema.sh [parameters][arguments]

wsschema.bat [parameters][arguments]

Issue the command from the bin subdirectory of the profile_root directory.

Parameters

The wsschema tool accepts the standard set of command-line arguments defined by the configuration
framework along with the following:
v -ignoreErrors/-i <true/t | false/f>: If set to false, an exception occurs if the tool encounters any

database errors.

The default is set to false.
v -file/-f <stdout | output file>: Use this option to write a SQL script for the planned schema

modifications, rather than committing them to the database.

When used with the export or reflect actions, the named file is used to write the exported schema XML.
If the file names a resource in the class path, data is written to that resource. Use stdout to write to
standard output. The default setting is stdout.

v -openjpatables/-ot <true/t | false/f>: When reflecting the schema, this parameter determines
whether to reflect on tables and sequences whose names start with OPENJPA_.

Certain OpenJPA components can use such tables and sequences, like the table schema factory. When
using other actions, openjpaTables controls if these tables can be dropped. The default setting is false.

v -dropTables/-dt <true/t | false/f>: When this option is set to true, schema drops tables that are
unused during retain and refresh actions.

The default is true.
v -dropSequences/-dsq <true/t | false/f>: If this option is set to true, schema drops sequences that

are unused during retain and refresh actions.

The default is true.
v -sequences/-sq <true/t | false/f>: This flag determines if sequences can be manipulated.

The default is true.
v -indexes/-ix <true/t | false/f>: This flag determines if indexes can be manipulated on existing

tables.

The default is true.
v -primaryKeys/-pk <true/t | false/f>: This flag determines if primary keys can be manipulated on

existing tables.

The default is true.
v -foreignKeys/fk <true/t | false/f>: This flag determines if foreign keys can be manipulated on

existing tables.

The default is true.
v -record/-r <true/t | false/f>: This flag permits or prevents writing schema changes made by the

schema tool to the current schema factory.

Select true to permit writing schema changes or false to prevent writing schema changes. The default
is set to true.

v -schemas/-s <schema list>: Denotes a list of schema and table names the OpenJPA should access
when running the schema tool.

This is the equivalent to setting the openjpa.jdbc.Schemas property to run one time.

Chapter 10. Developing EJB applications 493

Important: The schema tool accepts the -action/-a flag. Multiple actions can be composed in a list,
separated by commas. The available actions are:
– add: This is the default action if no other actions are specified. It updated the schema

with the given XML documents by adding tables, columns, indexes, or other
components. This action never drops any schema components.

– retain: This action keeps all schema components in the given XML definition but drops
the rest from the database. This action never adds any schema components.

– drop: Drops all schema components in the schema XML. This action drops tables only if
they would have 0 columns after dropping all columns listed in the XML.

– refresh: This action is the equivalent of the retain and the add functions.
– build: Generates SQL to build a schema matching the one in the supplied XML file.

Unlike theadd action, this option does not take into account the fact that part of the
schema defined in the XML file may already exist in the database. This action is typically
used with the -file/-f parameter flag to write a SQL script. This script can be used
later to recreate the schema in the XML.

– reflect: Generates an XML representation of the current database schema.
– createDB: This action generates SQL to recreate the current database. This action is

typically used with the -file/-f parameter flag to write a SQL script that can be used to
recreate the current schema on a new database.

– dropDB: Generates SQL to drop the current database. Like the createDB action, this can
be used with the -file/-f parameter flag to script a database drop rather than manually
perform it.

– import: Imports the given XML schema definition into the current schema factory.

Note: This action does nothing if the schema factory does not store a record of the
schema.

– export: Exports the current schema factory stored schema definition to an XML file.

Note: This can produce an empty file if the schema factory does not store a record of
the schema.

– deleteTableContents: This action implements SQL to delete all rows from all tables that
OpenJPA finds.

Usage

The wsschema tool is used to obtain an XML file that describes the schema of your database. To generate
an XML schema file:

v You must have database tables and your database connection configured.

v Run the wsschema tool from the command line in the $ {profile_root}/bin directory.

v The tool generates an XML file that describes the database schema.

Messages and errors are logged to the administrative console as specified by the configuration.

Examples

Add the necessary schema components to the database to match the given XML document without
dropping any data:

$ wsschema.sh targetSchema.xml

$ wsschema.bat targetSchema.xml

494 Developing WebSphere applications

Repeat the same action as the previous example, this time not changing the database but instead writing
any planned changes to a SQL script:

wsschema.sh -f script.sql targetSchema.xml

wsschema.bat -f script.sql targetSchema.xml

Write an SQL script that recreates the current database:

$ wsschema.sh -a createDB -f script.sql

$ wsschema.bat -a createDB -f script.sql

Refresh the schema and delete all the contents of all the tables that OpenJPA knows about:

$ wsschema.bat -a refresh,deleteTableContents

$ wsschema.bat -a refresh,deleteTableContents

Drop the current database:

$ wsschema.sh -a dropDB

$ wsschema.bat -a dropDB

Write an XML representation of the current schema to the file schema.xml:

$ wsschema.sh -a reflect -f schema.xml

$ wsschema.bat -a reflect -f schema.xml

Additional information

For more information read the JDBC information in the Apache OpenJPA documentation.

wsdbgen command
The command supports utilization of the pureQuery feature in Java Persistence API (JPA) applications.

This command has been renamed wsdbgen for Feature Pack for OSGi Applications and JPA 2.0 and later
releases. The command is used in the same way as the wsdb2gen command. The command, wsdb2gen,
which implies for DB2 only, works only for DB2 database in WebSphere Application Server V7.0. In this
release, the command can be used for DB2, Informix and Oracle databases. Because of that, a synonym,
wsdbgen command, is introduced.

Chapter 10. Developing EJB applications 495

The JPA commands (.bat on Windows or .sh on UNIX) are run from the profile_root/bin directory, rather
than from the app_server_root/bin directory to make sure that you have the latest version of the
commands for your release.

Syntax

The command syntax is as follows:

wsdbgen.sh [parameters]

wsdbgen.bat [parameters]

Before running the command, your persistence.xml file must be in the META-INF directory and the
META-INF directory must be in the class path.

Parameters
v -help: This parameter displays the help information.

v -pu: The name of the persistence unit defined in persistence.xml file.

v -collection: The collection-id which is assigned to package names. The default is NULLID.

v -url: The URL of the target database.

This is used to validate the generated SQL. A URL must be specified either in the persistence.xml file
or as a command option. If both are specified, the URL that is specified in the command option is used.

v -user: The user ID.

v -pw: The corresponding password to connect to target database.

If this parameter is not specified, the value found in the persistence.xml file is used.

v -package: If this parameter is specified, the -package parameter takes the string value package name
and a single database package with the specified name is generated. If the -package parameter is not
specified, then one package is generated for each entity class. The entity name is used as package
name if the -package option is not specified. The name length limit is the database limit -1, for example:
128 - 1 = 127.

Usage

The persistence.xml file must be included in the application Java archive (JAR) file and is also used as
input in the DB2 bind to create the DB2 package. The command requires a connection to a database to
validate generated SQL. The database does not have to be the same as the run time database, but it
should be at the same version and release level.

Ensure that the following JAR files are on the class path:

v pdq.jar

v pdqmgmt.jar

v db2jcc.jar

v db2jcc_licence_cu.jar

If the database URL specifies a DB2 for z/OS database, then the following JAR file must also be on the
class path: db2jcc_licence_cisuz.jar

Attention: Read more about the DB2 JAR level compliance for IBM Optim PureQuery Runtime at the
IBM Support website: System requirements for IBM Optim PureQuery Runtime for Linux, UNIX, and
Windows.

496 Developing WebSphere applications

Attention: You can review information about pureQuery StaticBinder in the Data Studio Information
Center by reading the topic, “The pureQuery StaticBinder utility.”

Examples

DB2

wsdbgen.sh -pu payroll -collection prod1 -url jdbc:db2://myhostname:50000/proddb -user produser -pw secret

wsdbgen.bat -pu payroll -collection prod1 -url jdbc:db2:\\myhostname:50000\proddb -user produser -pw secret

Informix

wsdbgen.sh -pu payroll -collection prod1 -url jdbc:ids://myhostname:9089/proddb -user produser -pw secret

wsdbgen.bat -pu payroll -collection prod1 -url jdbc:ids:\\myhostname:9089\proddb -user produser -pw secret

ANT task WsJpaDBGenTask
The ANT task WsJpaDBGenTask provides an alternative to the wsdbgen command.

The WsJpaDBGenTask ANT task utility supports utilizing the pureQuery feature in Java Persistence API (JPA)
2.0 and later applications that do not use DB2 databases. Instead of using the wsdbgen from the command
line, you can use the example code in your ANT build XML file to use the WsJpaDBGenTask in your build
process.

Both the PDQ runtime Java archive (JAR) files, pdq.jar and pdqmgmt.jar, must be specified using the
ANT -lib option.

Attention: Read more about the DB2 JAR level compliance for pureQuery at the IBM Support website:
System requirements for IBM Optim pureQuery Run time for Linux, UNIX, and Windows.

Example

The following example is run in the Windows environment with the ANT command:
C:\jpa\ant jar -noclasspath -lib c:/was8/dev/JavaEE/j2ee.jar
-lib ${app_server_root}/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar
-lib c:/sqllib/java/db2jcc.jar
-lib c:/sqllib/java/db2jcc_license_cu.jar
-lib c:/sqllib/java/pdq.jar
-lib c:/sqllib/java/pdqmgmt.jar

When calling the ANT command, the JAR files for pureQuery, JPA, and the JDBC driver must be on the
library list.
<?xml version="1.0"?>
<project name="sample" default="jar">
<taskdef name="enhancer" classname="org.apache.openjpa.ant.PCEnhancerTask" />
<taskdef name="wsdbgen" classname="com.ibm.websphere.persistence.pdq.ant.WsJpaDB2GenTask" />
<target name="clean" description="remove intermediate files">
<delete dir="classes"/>
<delete dir="enhanced" />
<delete>
<fileset dir="." includes="META-INF/*.pdqxml" />
<fileset dir="." includes="sample.jar" />
</delete>
</target>

Chapter 10. Developing EJB applications 497

<target name="compile"
description="compile the Java source code to class files">
<mkdir dir="classes"/>
<javac srcdir="." destdir="classes">
<classpath>
<pathelement location="c:/was8/dev/JavaEE/j2ee.jar>"
<pathelement location="c:/was8/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar" />
</classpath>
</javac>
</target>

<target name="enhance" depends="compile" >
<mkdir dir="enhanced" />
<enhancer directory="./enhanced" >
<config propertiesFile="META-INF/persistence.xml" />
<classpath>
<pathelement location="." />
<pathelement location="classes" />
</classpath>
</enhancer>
</target>

<target name="wsdbgen" depends="enhance" >
<wsdb2gen pu="MyAntTest" url="jdbc:db2://localhost:50000/demodb" user="user1" pw="secret" >
<classpath>
<pathelement location="."/>
<pathelement location="enhanced" />
</classpath>
</wsdb2gen>
</target>

<target name="jar" depends="wsdbgen"
description="create a Jar file for the application">
<jar destfile="sample.jar">
<fileset dir="classes" includes="**/*.class"/>
<fileset dir="." includes="META-INF/*.xml" />
</jar>
</target>
</project>

SQL statement batching for JPA applications
SQL statement batching can improve the performance of your application server.

About this task

Attention: Support for SQL statement batching is no longer a WebSphere Application Server for JPA
extension. You can find information regarding statement batching in the Apache OpenJPA documentation.

By default, statement batching is enabled for DB2 and Oracle databases. To enable SQL statement
batching and to set the batch limit for JPA applications, you must configure the persistence.xml file. The
following steps review how to enable and disable statement batching, and set the batch limit:

Procedure
1. Define the UpdateManager property in the persistence.xml file. For example:

<property name="openjpa.jdbc.UpdateManager"
value="com.ibm.ws.persistence.jdbc.kernel.OperationOrderUpdateManager(batchLimit=100)"/>

Note: The example shows that the SQL statement batch limit is set to 100.

498 Developing WebSphere applications

Remember: If you are using a DB2 or an Oracle database, by default the SQL statement batching is
enabled and set to batchLimit=100. However, if you are using DB2 or Oracle, you are not
required to specify this property in the persistence.xml file.

2. If you must disable SQL statement batching, set the batchLimit value to 0 or remove the property.
However, if you are using a DB2 or an Oracle database, you must specify the DBDictionary property,
database, and set the defaultBatchLimit to 0 . For example:
<property name="openjpa.jdbc.DBDictionary" value="db2(defaultBatchLimit=0)"/>

Results

You have now updated the persistence.xml file to enable or disable statement batching and set the batch
limit.

Database generated version ID with JPA
Java Persistence API (JPA) for WebSphere Application Server has extended OpenJPA to work with
database generated version IDs. These generated version fields, timestamp, or token, can be used to
efficiently detect changes to a given row.

Trigger based version ID generation is supported for all databases that WebSphere Application Server
supports. Support is based on two Version Strategies in JPA for WebSphere Application Server.

v @VersionStrategy("com.ibm.websphere.persistence.RowChangeTimestampStrategy"), if the entity
version field type is Timestamp, and

v @VersionStrategy("com.ibm.websphere.persistence.RowChangeVersionStrategy"), if the entity version
field type is Long

The Entity class is defined with the new Version Strategy annotation. The Entity has a surrogate version
column. For example,
@Entity(name="Item")
@VersionColumn(name="versionField")
@VersionStrategy("com.ibm.websphere.persistence.RowChangeTimestampStrategy")
public class Item implements Serializable
{
@Id
private int id2;

private String name;

private double price;

@OneToOne
private Owner master;

}

The create table statement is as follows:
CREATE TABLE ITEM
(ID2 INT NOT NULL,
NAME VARCHAR(50) ,
PRICE DOUBLE,
OWNER_ID INT,

VERSIONFIELD GENERATED ALWAYS FOR EACH ROW ON
UPDATE AS ROW CHANGE TIMESTAMP

PRIMARYKEY(ID2));

During any updates to Item, insert or update, the VersionColumn value is updated in the database. After
the update, the value for VersionColumn is retrieved from the database and updated in the in-memory
object. Thereby the objects in the data cache reflect the correct version value. Here the Entity is using the
@VersionColumn, which produces a Surrogate Version ID rather than defining an explicit field in the entity.

Chapter 10. Developing EJB applications 499

The Entity could also use @Version annotation to define an explicit version field. The explicit version field
could be of type Long or Timestamp corresponding to the @VersionStrategy. During any updates to Item,
insert or update, the Version value is updated in the database. After the update, the value for Version is
retrieved from the database and updated in the in memory object. Thereby the objects in the data cache
reflect the correct version value.

This is an example where the Entity has a version field defined, and the type Timestamp matches the
RowChangeTimestampStrategy in the @VersionStrategy. If the version field type is using type long, then
the RowChangeVersionStrategy should be annotated to match:
@Entity(name="Item")
@VersionStrategy("com.ibm.websphere.persistence.RowChangeTimestampStrategy")
public class Item implements Serializable

{
@Id
private int id2;

private String name;

private double price;

@Version
private Timestamp versionField;

@OneToOne
private Owner master;

}

Note: Be aware of the following conditions when you use RowChangeVersionStrategy:

v For z/OS DB2 V9 and Linux, UNIX, and Windows DB2 V9.5, the generated database column
must be of type timestamp, but both the RowChangeTimestampStrategy and the
RowChangeVersionStrategy are supported. Microsoft SQL Server only supports a non-timestamp
generated version ID that goes with the RowChangeVersionStrategy. To use the
RowChangeTimestampStrategy, you must use a trigger on a timestamp field in the database. For
other databases, you can use triggers to simulate database version generation and use either
strategy.

v For z/OS DB2 V9, install the PTF for APAR PK67706, and ensure that you have installed the
required level of IBM Optim PureQuery Runtime (1.3.100 or later) and JCC drivers (3.52.95 or
later).

Mapping persistent properties to XML columns for JPA
If your database supports Extensible Markup Language (XML) column types, you can use mapping tools
to manage XML objects. You have the choice of mapping XML columns to a Java string or a Java byte
array field.

About this task

Attention: Support for mapping persistent properties to XML columns is no longer a WebSphere
Application Server for JPA extension. You can find information regarding XML mapping in the Apache
OpenJPA documentation.

JPA for the application server supports the management of XML objects by using a third-party solution for
mapping management. These mapping techniques make using the XML objects as strings or byte arrays
difficult.

DB2, Oracle, and SQLServer databases support XML column types, XPath queries, and indices over
these columns.

500 Developing WebSphere applications

Persistent properties to XML mapping

An embedded class with XML column support must use XML marshaling to write the data to the XML
column and unmarshalling to retrieve the data from the XML column. The path expressions and predicates
over the embedded class are converted to XML predicates, XPATH expressions, or XQuery expressions
and are written to the database.

WebSphere Application Server supports JPA applications to use a third-party tool for XML mapping. This is
done through the extension points for custom field mappings. The third-party mapping tool uses the
extension points by providing a custom value handler for the persistent fields that are mapped to the XML
columns. In OpenJPA, this value handler is named org.apache.openjpa.xmlmapping.XmlValueHandler and
this handler requires the @Strategy annotation on the Java field that is mapped to the XML column.

Procedure
1. Annotate the entity property using the XML value handler strategy. The mapping of persistent

properties to XML columns requires the @Strategy and the @Persistent annotation.
@Persistent
@Strategy("org.apache.openjpa.xmlmapping.XmlValueHandler")

The XML value handler for the persistent property is set to
org.apache.openjpa.xmlmapping.XmlValueHandler.

2. Change the default for fetch type if it is necessary. For example:
@Persistence(fetch=FetchType.LAZY)

The fetch type is now LAZY. If a value for the fetch type is not entered, the default is set to EAGER.

3. Annotate your embedded classes with the binding annotations for Java API for XML Binding (JAXB).
These bindings can be created from an XML schema by using the Java Architecture for XML Binding
Compiler (XJC).

4. Make sure that the class that maps to the root of the XML document is annotated with
@XmlRootElement, in addition to the other annotations.

5. Compile your Java sources.

6. Run the enhancer tool on the entities. Refer to the topic on the entity enhancer tool for more
information.

Example

For example, shipAddress, a property of Order Entity, is mapped to XML column shipaddr:
@Entity
public class Order {
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
int oid;
@Persistent
@Strategy("org.apache.openjpa.xmlmapping.XmlValueHandler")

@Column(name="shipaddr")
Address shipAddress;

...

The OpenJPA mapping tool generates a SHIPADDR column with XML type in the table definition for
ORDER table.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Chapter 10. Developing EJB applications 501

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 54. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 55. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

502 Developing WebSphere applications

Table 56. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 57. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 58. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 59. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 10. Developing EJB applications 503

Table 60. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Assembling applications that use the Java Persistence API

Assembling a JPA application in a Java EE environment
You have developed and configured your applications to work with the Java Persistence API (JPA). Now
you need to package the JPA applications for your environment.

About this task

Procedure

Package the application. There are several packaging options for an application that uses JPA in a Java
EE environment. Choose the packaging option that best suits the JPA usage and configuration within the
modules of your application. These are some of the most common packaging options. For a definitive list
of packaging options, see the Java Persistence API specification.

Note: IBM Optim PureQuery Runtime, add the persistence_unit_name.pdqxml file to the JPA application
JAR file. The files are located in same META-INF directory where the persistence.xml file is located.
These persistence files were created during the development task. See the topic, Developing JPA
applications for a Java EE environment for more information.

v For a standalone Enterprise JavaBeans (EJB) module or a stand-alone application client module,
package the EJB and application client modules in a standard Java archive (JAR) file. Ensure that you
package the application with these conditions:

– The JAR file must contain your EJB class files or the Java class files for the application client.

– The META-INF directory of the archive must include your persistence.xml file.

– If your application uses mapping files, orm.xml, or a custom mapping file, the JAR file must also
contain those files. If the location of the orm.xml file is not specified in the persistence unit, the
default location is the META-INF directory of the JAR file.

– The Criteria Metamodel class files that are generated by the Annotation Processor when you
developed your application needs to be included in the JAR file in the same location as the entity
class files.

v For a stand-alone web module, package the application in a standard web application archive (WAR)
file. Ensure that you package the application with these conditions:

– The Criteria Metamodel class files that are generated by the Annotation Processor while developing
your application needs to be included in the WAR file in the same location as the entity class files.

– The WAR file must contain your web application class files. The web application class files must be
included in the WEB-INF/classes directory or in a JAR file that is located in the WEB-INF/lib directory
of the WAR file.

504 Developing WebSphere applications

– The persistence.xml file must be included in the WEB-INF/classes/META-INF directory or in the
META-INF directory of a JAR file that is included in your WEB-INF/lib directory of your WAR file.

– If your application uses mapping files, orm.xml, or a custom mapping file, the WAR file must also
contain those files. Mapping files can reside in the WEB-INF/classes directory or in a JAR file that is
contained within the WEB-INF/lib directory of the WAR file. Use the <mapping-file> element of the
persistence.xml file to specify the location of mapping files. For example:
<mapping-file>META-INF/JPAorm.xml</mapping-file>

v For enterprise application that contains one or more modules, package the application in a standard
Enterprise application archive (EAR) file. An enterprise application can contain one ore more EJB
module, web module, or application client module. Ensure that you package the application with these
conditions:

– If multiple modules use the same persistence unit, you can create a persistence archive and
package the persistence archive within the EAR file.

– Include your entity classes, associated Criteria Metamodel classes, any necessary supporting
classes, the persistence.xml file, and additional mapping files in the persistence archive file. Follow
the packaging rules for EJB and application client modules for the location of your persistence.xml
file and mapping files.

– Each module that uses the persistence archive must have a class path entry in its
META-INF/MANIFEST.MF file. Here is an example manifest file:
Manifest-Version: 1.0
Class-Path: MyJPAEntities.jar

– If your modules use separate persistence units and share entity classes, you can package the entity
classes in a persistence archive and specify different persistence.xml file and mapping files for each
module. If the modules do not share entity classes or a persistence configuration, package each
module as a standalone EJB module, a stand-alone application client module, or a standalone web
application archive and then package them in the EAR file.

What to do next

For more information about the commands, classes or other OpenJPA information, refer to the Apache
OpenJPA User Guide.

Assembling JPA applications for a Java SE environment
You have developed and configured your applications to work with the Java Persistence API (JPA). Now
you must package the JPA applications for your environment.

About this task

For this task, you must specify the com.ibm.ws.jpa.thinclient_8.0.0.jar stand-alone Java archive (JAR)
file in your class path. This stand-alone JAR file is available from the client and server installation images.
The location of this file on the client installation image is ${app_client_root}/runtimes/
com.ibm.ws.jpa.thinclient_8.0.0.jar. The location of this file on the server installation image is
${app_server_root}/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jar.

Procedure
1. Package the application.

Note: Package the persistence units in separate JAR files to make them more accessible and
reusable. If you package the persistence units this way, they can be tested outside the
container both with and without the occurrence of database persistence. The persistence units
can be included in stand-alone applications or they can be packaged into EAR files as
persistence archive files. If you package the persistence unit into a persistence archive file, all

Chapter 10. Developing EJB applications 505

of the application components must be able to access the persistence archive. The application
that uses the persistence units must declare a dependency on the persistence archive using the
MANIFEST.MF Class-Path: declaration.

The Criteria Metamodel class files that are generated by the Annotation Processor when you
developed your JPA application, must be included in the JAR file in the same location as the
entity class files.

Note: If you are using IBM Optim PureQuery Run time, add the persistence_unit_name.pdqxml files
to the JPA application JAR file. The files are located in same META-INF directory where your
persistence.xml file is located. These persistence files were created during the development
task, Developing JPA applications for a Java SE environment.

To package the application use the following command:
jar -cvf ${jar_Name} ${entity_Path}

where ${jar_Name} represents the name of the JAR file to create, and ${entityPath} represents the root
location where the entities reside, which is where you compiled them. Make sure that your
${entity_Path} also contains the META-INF/persistence.xml file.

2. When you run your stand-alone application, specify the JAR files in your class path when starting your
application. The JPA runtime starts the stand-alone JAR file, com.ibm.ws.jpa.thinclient_8.0.0.jar.
For example, use the following Java call to run the com.xyz.Main stand-alone application:
java -cp /your/directory/${jar_Name}
-javaagent:${app_client_root}/runtimes/com.ibm.ws.jpa.thinclient_8.0.0.jarcom.xyz.Main

What to do next

For more information about any of the commands, classes or other OpenJPA information, refer to the
Apache OpenJPA User Guide.

Using JPA access intent
Java Persistence API (JPA) access intent specifies the isolation level and lock level used when reading
data from a data source. Access intent controls the Java Database Connectivity (JDBC) isolation level and
whether read, update, or exclusive locks are acquired when retrieving data.

About this task

For a JPA persistence provider on the application server, the application can specify isolation and
ReadLockMode based on a TaskName. The TaskName provides a better control over applying these
characteristics. The application defines a set of entity types and corresponding access intent for each
TaskName defined in a persistence unit.

Restriction:

v Access intent is available for application in the Java EE server environment

v Access intent is applicable to non-query entity manager interface methods. Query uses
query hint interface to set its isolation and read lock values.

v Access intent is only available for DB2 databases.

v Access intent is in effect only when pessimistic lock manager is used. Add the following to
the persistence unit property list. <property name="openjpa.LockManager"
value="pessimistic"/>

506 Developing WebSphere applications

Table 61. Access intent Properties and Descriptions. The following table compares the Enterprise JavaBeans (EJB)
2.x entity bean access intent with the JPA access intent properties:

WebSphere EJB 2.x entity
bean access intent JPA access intent Description

optimistic isolation: Read Committed Data is read but no lock is held. Version ID
is used on update to ensure data integrity.
Other transactions can read and update
data.

lockManager: Optimistic

query Hint: ReadLockMode: READ

pessimistic read isolation: Repeatable Read Data is read with shared locks. Other
transactions attempting to update data are
blocked.

lockManager: Optimistic

query Hint: ReadLockMode: READ

pessimistic update isolation: Repeatable Read Data is retrieved with update or exclusive
lock. Other writes are blocked until commit.
This access intent can be used to serialize
update access to data when there are
multiple writers.

lockManager: Pessimistic

query Hint: ReadLockMode: WRITE

pessimistic exclusive isolation: Serializable Data is retrieved with update or exclusive
lock. Other writes are blocked until commit.
This access intent can be used to serialize
update access to data when there are
multiple writers.

lockManager: Pessimistic

query Hint: ReadLockMode:WRITE

A TaskName is set on a transaction context by one of the following:

v TaskName is automatically set in the EJB container when a transaction begins using WebSphere local
transaction (EJB unspecified transaction), JTA global transaction in a Container-Managed Transaction
(CMT) or user-initiated global transaction in a Bean-Managed Transaction (BMT).

v TaskName is manually set in an application using the TaskNameAccessor API provided for JPA.

Using task names supports the specification of access intent on a request scope rather than specifying it
in the persistence.xml file, which has an application scope across all entities. Often a query is contained
in a method or component which is used in many different transaction contexts. Some of these contexts
might require repeatable-read and update lock intent but other contexts do not.

Isolation level and read locks can be specified on:

v An application scope in the persistence.xml file. These isolation levels and read lock types are
properties specified in the persistence.xml file. They apply to all entities that are defined in the
persistence unit.

v A transaction scope in the task name. Transaction scoped hints override application scope values.

v Query instance with a query hint. Query hint can be used to override isolation and ReadLockMode for a
particular query instance. A query hint overrides isolation level and read locks specified at the
application or transaction scope.

Procedure
1. “Setting a TaskName using TaskNameAccessor API” on page 508 This task explains how to use the

TaskNameAccessor API to set JPA TaskName at run time.

2. “Specifying TaskName in a JPA persistence unit” on page 509 This task explains how to specify a
TaskName in JPA persistence unit .

What to do next

For more information about Access intent, see the topic, Access intent service.

Chapter 10. Developing EJB applications 507

Setting a TaskName using TaskNameAccessor API
Using the TaskNameAccessor API to set Java Persistence API (JPA) TaskName at runtime.

About this task

In the Enterprise JavaBeans (EJB) container, a task name is automatically set by default upon a
transaction begins. This action is performed when a component or business method is invoked in a CMT
session bean or when an application invoke the sessionContext.getTransaction().begin() in a BMT
session bean. This TaskName consists of a concatenation of the fully package qualified session bean type,
a dot character and the method name. For example: com.acme.MyCmtSessionBean.methodABC.

If using JPA in the context of the web container, an application must use the TaskNameAccessor API to
set the TaskName in the current thread of execution.

Note: Once a TaskName is set on a transaction context, application must not set the TaskName again in
the same transaction. This will avoid problems with on the JDBC connection for different database
access.

This example contains the TaskNameAccessor API definition
package com.ibm.websphere.persistence;

public abstract class TaskNameAccessor {

/**
* Returns the current task name attached in the current thread context.
* @return current task name or null if none is found.
*/
public static String getTaskName ();

/**
* Add a user-defined JPA access intent task name to the current thread
* context.
*
* @param taskName
* @return false if an existing task has already attached in the current
* thread or Transaction Synchronization Registry (TSR) is not
* available (i.e. in JSE environment).
*/
public static boolean setTaskName(String taskName);

}

This code example shows how to set a TaskName using TaskNameAccessor.
package my.company;

@Remote
class Ejb1 {

// assumer no tx from the caller
@TransactionAttribute(Requires)
public void caller_Method1() {

// an implicit new transaction begins
// TaskName "my.company.Ejb1.caller_Method1" set on TSR

ejb1.callee_Method?();
}

@TransactionAttribute(RequiredNew)
public void callee_Method2() {

// an implicit new transaction begins i.e. TxRequiredNew.
// TaskName "my.company.Ejb1.callee_Method2" set on TSR

508 Developing WebSphere applications

}

@TransactionAttribute(Requires)
public void callee_Method3() {

// In caller’s transaction, hence TaskName remains
// "my.company.Ejb1.caller_Method1"

}

@TransactionAttribute(NotSupported)
public void callee_LocalTx () {

// Unspecified transaction, a new local transaction implicitly started.
// TaskName "my.company.Ejb1.callee_LocalTx" set on TSR

}

}

Attention: In the above example, an application must be aware of transaction boundary will be subtly
changed if Ejb1 uses local interface (@Local). For example, when caller_Method1() calls
callee_Method3 or callee_LocalTx, this will be treated as a Java method call. No EJB
transaction semantics are honored.

What to do next

Once you have completed this step, continue on with the topic Specify TaskName in a JPA persistence
unit.

Specifying TaskName in a JPA persistence unit
Specifying a TaskName in Java Persistence API (JPA) persistence unit

About this task

A TaskName is defined in the persistence.xml file using the wsjpa.AccessIntent property name in a
persistence unit. The property value is a list of TaskNames, entity types and access intent definitions. The
following example shows the contents of the wsjpa.AccessIntent property name in a persistence unit.
<property name = "wsjpa.AccessIntent"

value = "Tasks=’ <taskName> { <entityName> (<isolationLockValue>) } ’ "/>
A A A | | |
| | +--------- , --------+ | |
| +----------------- , -----------------+ |
+----------------------- , --------------------------+

Tasks ::= <task> [’,’ <task>]*

<task> ::= <taskName> ’{’ <entity> [’,’ <entity>]* ’}’

<entity> ::= <entityName> ’(’ <isolationLockValues> ’)’

<taskName> ::= <fully_qualified_identifier>

<entityName> ::= <fully_qualified_identifier>

<fully_qualified_identifier> ::= <identifier> [’.’ <identifier>]*

<identifier> ::= <idStartCharacter> [<idCharacter>]*

<idStartCharacter> ::= Character.isJavaIdentifierStart | ’?’ | ’*’

<idStartCharacter> ::= Character.isJavaIdentifierPart | ’?’ | ’*’

<isolationLockValues> ::= <isolationLockValue> [’,’ <isolationLockValue>]

<isolationLockValue> ::= <isolation> | <readLock>

Chapter 10. Developing EJB applications 509

<isolation> ::= "isolation" ’=’ <isolationValue>

<readLock> ::= "readlock" ’=’ <readlockValue>

<isolationValue> ::= "read-uncommitted"|"read-committed"|"repeatable-read"|"serializable"

<readlockValue> ::= "read" | "write"

Before setting the TaskName in a persistence unit, keep the following in mind:

v White spaces are ignored between tokens.

v Only <isolation> and <readLock> contents are not case sensitive.

v <TaskName> is in the form of a fully package qualified method name, such as
com.acme.bean.MyBean.increment, or an arbitrary user-defined task name, such as MyProfile.

v <entityName> is in the form of a fully package qualified class name such as com.acme.bean.Entity1.

v The wild card characters '?' or '*' can be used in <TaskName> and <entityName>. "?" matches any
single character and "*" matches zero or more sequence characters.

v Only hintNames isolation and readLock are allowed on a task definition and the order is not significant

v If readLock has the value write, then isolation must be repeatable-read or serializable

v If readLock has the value read, it has no effect if the isolation is read-uncommitted.

The following code example shows how to specify a TaskName in JPA persistence unit.
package my.company;

@Remote
class Ejb1 {

// assumer no tx from the caller
@TransactionAttribute(Requires)
public void caller_Method1() {

// an implicit new transaction begins
// TaskName "my.company.Ejb1.caller_Method1" set on TSR

ejb1.callee_Method?();
}

@TransactionAttribute(RequiredNew)
public void callee_Method2() {

// an implicit new transaction begins i.e. TxRequiredNew.
// TaskName "my.company.Ejb1.callee_Method2" set on TSR

}

@TransactionAttribute(Requires)
public void callee_Method3() {

// In caller’s transaction, hence TaskName remains
// "my.company.Ejb1.caller_Method1"

}

@TransactionAttribute(NotSupported)
public void callee_LocalTx () {

// Unspecified transaction, a new local transaction implicitly started.
// TaskName "my.company.Ejb1.callee_LocalTx" set on TSR

}

}

510 Developing WebSphere applications

Since a wild card can be used to specify TaskName and entity type, multiple specification matches may
occur at runtime. The order defined in the wsjpa.AccessIntent property will be used to search for task
names and entity types.
<properties>

<property name="wsjpa.AccessIntent" value="Tasks="
*.Task1 { *.Employee1 (isolation=read-uncommitted),

*.Employee? (isolation=repeatable-read, readlock=write),
},

* { *.Employee3 (isolation=serializable, readlock=write) },
’" />

</properties>

Associating persistence providers and data sources
Java Persistence API (JPA) applications specify the underlying data source that is used by the persistence
provider to access the database.

About this task

The application server provides three methods for defining the data sources in the persistence.xml file.

Procedure
v Explicitly specify the Java Naming and Directory Interface (JNDI) name in the persistence.xml file, and

the application directly references the data source. Switching to another data source requires an update
to the persistence.xml file.

JPA has two transactional patterns for accessing a data source:

– The Java Transaction API (JTA) resource pattern depends on global transactions. The JTA resource
pattern is typically used within the scope of an Enterprise JavaBeans (EJB) session facade. This
supports the session bean to control transaction and security contexts while JPA handles the
persistence mappings. In this case, the application does not use the EntityTransaction interface but
relies on the EntityManager enlisted with the global transaction when it is accessed.

– The non-JTA resource pattern is used when dealing with a single resource in the absence of global
transactions. The non-JTA resource pattern is typically used within the scope of a web application or
an application client. The application controls the transaction with the data source with the
EntityTransaction interface.

Within the application server, the use of the <non-jta-data-source> element requires a special
configuration for a non-transactional data source. Data sources that are configured for the application
server do not function as a <non-jta-data-source>, because all data sources that are configured by
the application server are automatically enlisted with the current transactional context. To prevent this
automatic enlistment, add an additional data source custom property
nonTransactionalDataSource=true:

1. Select Resources > JDBC > Data sources

2. Select the name of the data source that you want to configure.

3. Select WebSphere Application Server data source properties from the Additional Properties
heading.

4. Select Non-transactional data source.

5. Click OK.

Note: The JPA specification assumes that connections are obtained with an isolation level that does not
hold long-term locks in the database, such as READ_COMMITTED. This might not match the
WebSphere Application Server default isolation level, which is REPEATABLE_READ for most
databases. You can find the level that is used for your database by reading the topic,
Requirements for setting isolation level.

Chapter 10. Developing EJB applications 511

If the default for your database is not READ_COMMITTED, you can change the default by adding an
additional data source custom property webSphereDefaultIsolationLevel.

Table 62. Isolation level values. This table shows valid isolation level values.
Value Isolation Level

1 READ_UNCOMMITTED

2 READ_COMMITTED (JPA default)

4 REPEATABLE_READ (WebSphere Application Server default)

8 SERIALIZABLE

If the isolation level is set to a value that holds long-term read locks, configure the JPA provider
to use Pessimistic Locking instead of the default Optimistic Locking. For the JPA provider
included with WebSphere Application Server, you can do this by adding the following properties
to persistence.xml file:
<property name="openjpa.Optimistic" value="false"/>
<property name="openjpa.LockManager" value=pessimistic"/>

The JPA specification mandates that the data sources that are defined in <jta-data-source> and
<non-jta-data-source> elements of a persistence unit register in the JNDI name space. For example,
the persistence.xml file should contain an entry like the following:
<jta-data-source>jdbc/DataSourceJNDI</jta-data-source>

v The JPA for WebSphere Application Server solution extends the JNDI data-source implementation to
allow you to reference data sources in the component name space. In the EJB or web module
deployment descriptor file, this is the <resource-ref> element. You can prefix the data source with
java:comp/env/ so the application indirectly references the data source by using the local JNDI name. In
this association, the application does not require updates, you change <resource-ref> to use another
data source. See the following example:
<jta-data-source>java:comp/env/jdbc/DataSourceJNDI</jta-data-source>

v You can declare openjpa.Connection* properties in the persistence unit as follows:
<property name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/database/jpa-test-database;create=true"/>

OR

You can use alternative standard JPA properties that are equivalent to the OpenJPA properties, such as:

Table 63. Standard JPA 2.0 property equivalents. Standard JPA 2.0 properties and the OpenJPA equivalents.
Standard JPA 2.0 OpenJPA Equivalent

javax.persistence.jdbc.driver openjpa.ConnectionDriverName

javax.persistence.jdbc.url openjpa.ConnectionURL

What to do next

For information about configuring data sources, see the topic on creating and configuring a data source.

For information about data sources and JPA, see the section on persistence in the Apache OpenJPA User
Guide.

512 Developing WebSphere applications

Chapter 11. Developing Internationalization service

This page provides a starting point for finding information about globalization and the internationalization
service, a WebSphere extension for improving developer productivity.

With the internationalization service, you can automatically recognize the time zone and location
information of the calling client so that your application can act appropriately. The technology enables you
to deliver each user, around the world, the right date and time information, the appropriate currencies and
languages, and the correct date and decimal formats.

This documentation also includes information about internationalizing interface strings using the
localizable-text application programming interface.

Task overview: Globalizing applications
An application that can present information to users according to regional cultural conventions is said to be
globalized: The application can be configured to interact with users from different localities in culturally
appropriate ways. In a globalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as currencies, are presented
appropriately for users in the specified region. A user in another region sees output in the conventional
language or format for that region. Globalization consists of two phases: internationalization (enabling an
application component for multicultural support) and localization (translating and implementing a specific
regional convention). This product supports globalization through the use of its localizable-text API and
internationalization service.

Procedure
v Make sure the server runtime environment is properly configured.

For more information about supported locales and character encodings, see “Working with locales and
character encodings” on page 515.

v Implement message catalogs in your application by using the localizable-text API.

This product supports the maintenance and deployment of centralized message catalogs for the output
of properly formatted, language-specific (localized) interface strings.

For more information about the localizable-text API, see “Task overview: Internationalizing interface
strings (localizable-text API)” on page 518.

v Implement more extensive locale support by using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization
information, or internationalization context, that is necessary to support globalized Java Platform,
Enterprise Edition (Java EE) application components. Supported application components also include
web service client environments and web service-enabled enterprise beans.

For more information about the internationalization service, see “Task overview: Internationalizing
application components (internationalization service)” on page 529.

Globalization
An application that can present information to users according to regional cultural conventions is said to be
globalized: The application can be configured to interact with users from different localities in culturally
appropriate ways. In a globalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as currencies, are presented
appropriately for users in the specified region. A user in another region sees output in the conventional
language or format for that region. Globalization consists of two phases: internationalization (enabling an
application component for multicultural support) and localization (translating and implementing a specific
regional convention).

© IBM Corporation 2009 513

Historically, the creation of globalized applications has been restricted to large corporations writing
complex systems. However, given the rise in distributed computing and in the use of the World Wide Web,
application developers are pressured to globalize a much wider variety of applications. This trend requires
making globalization techniques much more accessible to application developers.

Internationalization of an application is driven by two variables, the time zone and the locale. The time
zone indicates how to compute the local time as an offset from a standard time like Greenwich Mean
Time. The locale is a collection of information about language, currency, and the conventions for
presenting information like dates. A time zone can cover many locales, and a single locale can span time
zones. With both time zone and locale, the date, time, currency, and language for users in a specific
region can be determined.

By convention, a given locale is specified with a pair of codes (for language and region) that are governed
by different standards. The ISO-639 standard governs the language code; the ISO-3166 standard governs
the regional code. In notation, the two codes are typically joined by an underscore (_) character, for
example, en_US for English in the United States. In Java code, locales are set and retrieved by means of
the java.util.Locale class.

A first step: Localization of interface strings

In an application that is not globalized, the user interface is unalterably written into the application code.
Internationalizing a user interface adds a layer of abstraction into the design of an application. The
additional layer of abstraction enables you to localize the application for each locale that must be
supported by the application.

In a localized application, the locale determines the message catalog from which the application retrieves
message strings. Instead of printing an error message, the application represents the error message with
some language-neutral information; in the simplest case, each error condition corresponds to a key. To
print a usable error message, the application looks up the key in a message catalog. Each message
catalog is a list of keys with associated strings. Different message catalogs provide strings for the different
languages that are supported. The application looks up the key in the appropriate catalog, retrieves the
corresponding error message in the requested language, and prints the string for the user.

Localization of text can be used for far more than translating error messages. For example, by using keys
to represent each element in a graphical user interface (GUI) and by providing the appropriate message
catalogs, the GUI (buttons, menus, and so on) can support multiple languages. Extending support to
additional languages requires that you provide message catalogs for those languages; in many cases, the
application needs no further modification.

The localizable-text package is a set of Java classes and interfaces that can be used to localize the
strings in distributed applications easily. Language-specific string catalogs can be stored centrally so that
they can be maintained efficiently.

Globalization challenges in distributed applications

With the advent of Internet-based business computational models, applications increasingly consist of
clients and servers that operate in different geographical regions. These differences introduce the following
challenges to the task of designing a solid client-server infrastructure:

Clients and servers can run on computers that have different endian architectures or code sets

Clients and servers can reside in computers that have different endian architectures: A client can
reside in a little-endian CPU, while the server code runs in a big-endian one. A client might want to
call a business method on a server running in a code set different from that of the client.

A client-server infrastructure must define precise endian and code-set tracking and conversion
rules. The Java platform has nearly eliminated these problems in a unique way by relying on its

514 Developing WebSphere applications

Java virtual machine (JVM), which encodes all of the string data in UCS-2 format and externalizes
everything in big-endian format. The JVM uses a set of platform-specific programs for interfacing
with the native platform. These programs perform any necessary code set conversions between
UCS-2 and the native code set of a platform.

Clients and servers can run on computers with different locale settings

Client and server processes can use different locale settings. For example, a Spanish client might
call a business method upon an object that resides on an American English server. Some
business methods are locale-sensitive in nature; for example, given a business method that
returns a sorted list of strings, the Spanish client expects that list to be sorted according to the
Spanish collating sequence, not in the English collating sequence of the server. Because data
retrieval and sorting procedures run on the server, the locale of the client must be available to
perform a legitimate sort.

A similar consideration applies in instances where the server has to return strings containing date,
time, currency, exception messages, and so on, that are formatted according to the cultural
expectations of the client.

Clients and servers can reside in different time zones

Client and server processes can run in different time zones. To date, all internationalization
literature and resources concentrate mainly on code set and locale-related issues. They have
generally ignored the time zone issue, even though business methods can be sensitive to time
zone as well as to locale.

For example, suppose that a vendor makes the claim that orders received before 2:00 PM are
processed by 5:00 PM the same day. The times given, of course, are in the time zone of the
server that is processing the order. It is important to know the time zone of the client to give
customers in other time zones the correct times for same-day processing.

Other time zone-sensitive operations include time stamping messages logged to a server, and
accessing file or database resources. The concept of Daylight Savings Time further complicates
the time zone issue.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on
computers with differing endian architecture and code sets. It does not provide dedicated support for
application components that run on computers with different locales or time zones.

The conventional method for solving locale and time zone mismatches across remote application
components is to pass one or more extra parameters on all business methods needed to convey the
client-side locale or time zone to the server. Although simple, this technique has the following limitations
when used in Enterprise JavaBeans (EJB) applications:
v It is intrusive because it requires that one or more parameters be added to all bean methods in the call

chain to locale-sensitive or time zone-sensitive methods.
v It is inherently error-prone.
v It is impracticable within applications that do not support modification, such as legacy applications.

The internationalization service addresses the challenges posed by locale and time zone mismatch without
incurring the limitations of conventional techniques. The service systematically manages the distribution of
internationalization contexts across the various components of EJB applications, including client
applications, enterprise beans, and servlets. For more information, see “Task overview: Internationalizing
application components (internationalization service)” on page 529.

Working with locales and character encodings
Internationalization support for this product relies on that provided by the Java Platform, Standard Edition
(JSE). Support varies by platform.

Chapter 11. Developing Internationalization service 515

Procedure
v Verify that the operating system on which the application server is installed supports the locales and

encodings that you plan to use.

Java internationalization support might use underlying services of the operating system. For example, if
user IDs for your server are expected to contain non-English characters, make sure that the operating
system is configured to process those characters.

v Plan for encoding changes as necessary.

Consider differences in encoding support among operating system subcomponents. Although this
product and the Java platform are based on Unicode encoding, it is not always possible to run
applications in a purely Unicode environment.

v Set the console.encoding property as necessary.

Results

If your application produces an UnsupportedEncodingException exception, check your operating system
documentation to determine if the target operating system supports the required encoding and adjust the
runtime environment as needed. Use the converter.properties file as appropriate to map an unsupported
character set to a supported character set. A typical converter.properties file appears below:
Shift_JIS=CP943C
EUC-JP=Cp33722C
EUC-JP=Cp33722C
EUC-KR=Cp970
EUC-TW=Cp964
Big5=Co950
GB2312=Cp1386
ISO-2022–KR=ISO2022KR

The converter.properties file implements a method for specifying a content type header field that browsers
would understand (such as, SHIFT_JIS) and a writer that can output characters correctly (such as,
Cp943c).

Example

For example, on the Windows platform, the command prompt runs in a Windows code page. Not all
Windows code pages are supported by the Java platform, so it is possible to get a Java exception when
running a command-line program, such as wsadmin, in an unsupported code page. To avoid exceptions,
use the chcp command to explicitly set the code page to an encoding that is supported by the Java
platform.

v Before command-line calls, change the code page.

For example, Arabic code page 720 is not supported by the Java platform, but the Arabic code page for
Windows (Cp1256) systems is. Type chcp 1256

v When starting a localized application from a command prompt, set the console.encoding property.

For Arabic, pass the following parameter: -Dconsole.encoding=Cp1256

Language versions offered by this product
This product is offered in several languages, as enabled by the operating platform on which the product is
installed.

WebSphere Application Server offers translations for the following languages.

v Brazilian Portuguese

v Chinese (Simplified)

v Chinese (Traditional)

516 Developing WebSphere applications

v Czech

v English

v French

v German

v Hungarian

v Italian

v Japanese

v Korean

v Polish

v Romanian

v Russian

v Spanish

Globalization: Resources for learning
Use links in this topic to find relevant supplemental information about globalization. The information resides
on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful
all or in part for understanding the product. When possible, links are provided to technical papers and IBM
Redbooks® publications that supplement the broad coverage of the release documentation with in-depth
examinations of particular product areas.

View links to additional information about:
v “Programming instructions and examples”
v “Programming specifications”

Programming instructions and examples
v Java internationalization tutorial

An online tutorial that explains how to use the Java SDK Internationalization API.
v Globalize your On Demand Business

IBM's portal site for delivering globalized applications.

Programming specifications
v Java 2 Platform Standard Edition 5.0 Development Kit Documentation: Internationalization

The Java internationalization documentation from Sun Microsystems, including a list of supported
locales and encodings. For other versions of the Java platform, click the “Internationalization Home
Page” link on that page.

v Java Specification Request 150, Internationalization Service for J2EE

The specification of the Java internationalization service that was developed through the Java
Community Process.

v W3C, Internationalization Core Working Group

The W3C's Internationalization Core Working Group responsible for investigating the internationalization
of web services, in particular, the dependence of web services on language, culture, region, and
locale-related contexts.

v Making the WWW truly World Wide

The W3C effort to make web technologies work with the many writing systems, languages, and cultural
conventions of the global community:

Chapter 11. Developing Internationalization service 517

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.ibm.com/software/globalization/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/International/core/
http://www.w3.org/International/

Task overview: Internationalizing interface strings (localizable-text API)
This topic summarizes the steps involved in implementing message catalogs through the localizable-text
API.

About this task

This product supports the maintenance and deployment of centralized message catalogs for the output of
properly formatted, language-specific (localized) interface strings.

Procedure
1. Identify localizable text in your application.

2. Create the message catalogs that are necessary for the locales to be supported by your application.

3. In your application code, compose the language-specific strings for output.

4. Using an assembly tool, assemble your application code as one or more application components.

5. Prepare the localizable-text package for deployment with your localized application. In this step, you
create a deployment Java archive (JAR) file.

6. Assemble the application modules and the deployment JAR file into a Java Platform, Enterprise Edition
(Java EE) application.

7. Deploy and manage the application.

Results

Your application is deployed with localized text.

Identifying localizable text
The first step in localizing strings in an application component is identifying the best candidates for
translation.

Procedure
1. Determine which elements of the application need translating. Good candidates for localization include

the following:
v Graphical user interfaces: window titles, menus and menu items, buttons, on-screen instructions
v Prompts in command-line interfaces
v Application output: messages and logs

2. Assign a unique key to each element for use in message catalogs for the application. The key provides
a language-neutral link between the application and language-specific strings in the message catalogs.
Establishing a naming convention for keys before creating the catalogs can make writing code with
these keys much more intuitive for interface programmers.

Example

Suppose you are localizing the GUI for a banking system, and the first window contains a pull-down list to
use for selecting a type of account.

The labels for the list and the account types in the list are good choices for localization. Three elements
require keys: the list and two items in the list.

518 Developing WebSphere applications

What to do next

Create message catalogs for the language-specific strings.

Creating message catalogs
Perform this task to begin the localization of strings in an application component.

Before you begin

Identify strings that need to be localized.

About this task

You can create a catalog as either a java.util.ResourceBundle subclass or a Java properties file. The
properties-file approach is more common, because properties files can be prepared by people without
programming experience and swapped without modifying the application code.

Procedure
1. For each string that is identified for localization, add a line to the message catalog that lists the string

key and value in the current language. In a properties file, each line has the following structure:
key = string associated with the key

2. Save the catalog, giving it a locale-specific name. To enable resolution to a specific properties file, the
Java API specifies naming conventions for the properties files in a resource bundle as
bundleName_localeID.properties. Give the set of message catalogs a collective name, for example,
BankingResources. For information about locale IDs that are recognized by the Java APIs, see
“Resources for learning”.

Example

The following English catalog (BankingResources_en.properties) supports the labels for the list and its two
list items:
accountString = Accounts
savingsString = Savings
checkingString = Checking

Do not create compound strings by concatenation (for example, combining the values of savingsString and
accountString to form Savings Accounts in English. Success depends upon the grammar of the original
language (in this case, English) and is not likely to extend to other languages.

The corresponding German catalog (BankingResources_de.properties) supports the labels as follows:
accountString = Konten
savingsString = Sparkonto
checkingString = Girokonto

What to do next

Write code to compose the language-specific strings.

Composing language-specific strings
Perform this task to complete the localization of strings in an application component.

Before you begin

Create message catalogs for the language-specific strings.

Chapter 11. Developing Internationalization service 519

Procedure
1. In application code, create a LocalizableTextFormatter instance, passing in required localization values.

2. Set other localization values as needed for more complex situations.

3. Generate a properly formatted, language-specific string.

What to do next

When the application is finished, deploy your application. For more information, see “Preparing the
localizable-text package for deployment” on page 527.

Localization API support
The com.ibm.websphere.i18n.localizabletext package contains classes and interfaces for localizing text.

This package makes extensive use of the internationalization features of the standard Java APIs, including
the following classes:
v java.util.Locale
v java.util.TimeZone
v java.util.ResourceBundle
v java.text.MessageFormat

For more information about the standard Java APIs, see “Globalization: Resources for learning” on page
517.

The localizable-text package wraps the Java support and extends it for efficient and simple use in a
distributed environment. The primary class used by application programmers is LocalizableTextFormatter.
Instances of this class are usually created in server programs, but client programs can also create them.
Formatter instances are created for specific resource-bundle names and keys. Client programs that
receive a LocalizableTextFormatter instance call its format method. This method uses the locale of the
client application to retrieve the appropriate resource bundle and compose a locale-specific message
based on the key.

For example, suppose that a distributed application supports both French and English locales; the server
is using an English locale and the client, a French locale. The server creates two resource bundles, one
each for English and French. When the client makes a request that triggers a message, the server creates
a LocalizableTextFormatter instance that contains the name of the resource bundle and the key for the
message and passes the instance back to the client.

When the client receives the LocalizableTextFormatter instance, it calls the format method of the object. By
using the locale and name of the resource bundle, the format method determines the name of the
resource bundle that supports the French locale and retrieves the message that corresponds to the key
from the French resource bundle. Formatting of the message is transparent to the client.

In this simple example, the resource bundles reside centrally with the server. They do not have to exist
with the client. Part of what the localizable-text package provides is the infrastructure to support
centralized catalogs. This implementation uses an enterprise bean (a stateless session bean provided with
the localizable-text package) to access the message catalogs. When the client calls the format method on
the LocalizableTextFormatter instance, the following events occur:

1. The client application sets the time-zone and locale values in the LocalizableTextFormatter instance,
either by passing them explicitly or through default values.

2. A LocalizableTextFormatterEJBFinder call is made to retrieve a reference to the formatter bean.

3. Information from the LocalizableTextFormatter instance, including the time zone and locale of the
client, is sent to the formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key, the time zone, and the
locale to compose a language-specific message.

520 Developing WebSphere applications

5. The formatter bean returns the formatted message to the client.

6. The formatted message is inserted into the LocalizableTextFormatter instance and returned by the
format method.

A call to the format method requires at most one remote call, to contact the formatter bean. As an
alternative, the LocalizableTextFormatter instance can cache formatted messages, eliminating the remote
call for subsequent uses. In addition, you can set a fallback string so that the application can return a
readable string even if it cannot access the appropriate message catalog.

The resource bundles can be stored locally. The localizable-text package provides a static variable that
indicates whether the bundles are stored locally (LocalizableConfiguration.LOCAL) or remotely
(LocalizableConfiguration.REMOTE). However, the setting of this variable applies to all applications
running within the same Java virtual machine.

LocalizableTextFormatter class
The LocalizableTextFormatter class, found in the com.ibm.websphere.i18n.localizabletext package, is the
primary programming interface for using the localizable-text package. Instances of this class contain the
information needed to create language-specific strings from keys and resource bundles.

The LocalizableTextFormatter class extends the java.lang.Object class and implements the following
interfaces:
v java.io.Serializable
v com.ibm.websphere.i18n.localizabletext.LocalizableText
v com.ibm.websphere.i18n.localizabletext.LocalizableTextL
v com.ibm.websphere.i18n.localizabletext.LocalizableTextTZ
v com.ibm.websphere.i18n.localizabletext.LocalizableTextLTZ

Creation and initialization of class instances

The LocalizableTextFormatter class supports the following constructors:
v LocalizableTextFormatter()
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName)
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName, Object[]

args)

The LocalizableTextFormatter instance must have certain values, such as a resource-bundle name, a key,
and the name of the formatting application. If you do not pass these values in by using the second
constructor listed previously, you can set them separately by making the following calls:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)

You can use a fourth method, setArguments(Object[] args), to set optional localization values after
construction. See “Processing of application-specific values” on page 522 at the end of this topic. For a
usage example, see “Composing complex strings” on page 524.

API for formatting text

The formatting methods in the LocalizableTextFormatter class generate a string from a set of message
keys and resource bundles, based on some combination of locale and time-zone values. Each method
corresponds to one of the four localizable-text interfaces implemented. The following list indicates the
interface in which each formatting method is defined:
v LocalizableText.format()
v LocalizableTextL.format(java.util.Locale locale)
v LocalizableTextTZ.format(java.util.TimeZone timeZone)
v LocalizableTextLTZ.format(java.util.Locale locale, java.util.TimeZone timeZone)

Chapter 11. Developing Internationalization service 521

The format method with no arguments uses the locale and time-zone values set as defaults for the Java
virtual machine. All four methods issue LocalizableException objects as needed.

Location of message catalogs and the appName value

Applications written with the localizable-text package can access message catalogs locally or remotely. In
a distributed environment, the use of remote, centrally located message catalogs is appropriate. All clients
can use the same catalogs, and maintenance of the catalogs is simplified. Local formatting is useful in test
situations and appropriate under some circumstances. To support either local or remote formatting, a
LocalizableTextFormatter instance must indicate the name of the formatting application.

For example, when an application formats a message by using remote catalogs, the message is actually
formatted by an enterprise bean on the server. Although the localizable-text package contains the code to
automate the lookup of the formatter bean and to issue a call to it, the application needs to know the
name of the formatter bean. Several methods in the LocalizableTextFormatter class use a value described
as appName, which refers to the name of the formatting application. It is not necessarily the name of the
application in which the value is set.

Caching of messages

LocalizableTextFormatter instances can optionally cache formatted messages so that they do not require
reformatting when needed again. By default, caching is not enabled, but you can use a
LocalizableTextFormatter.setCacheSetting(true) call to enable caching. When caching is enabled and
the format method is called, the method determines whether the message is already formatted. If so, the
cached message is returned. If the message is not found in the cache, the message is formatted and
returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages are cached, those messages remain in the cache until the cache is
cleared by a call to the LocalizableTextformatter.clearCache method. You can clear the cache at any time;
the cache is automatically cleared when any of the following methods is called:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)
v setArguments(Object[] args)

API for providing fallback information

Under some circumstances, it can be impossible to format a message. The localizable-text package
implements a fallback strategy, making it possible to get some information even if a message cannot be
formatted correctly into the requested language. The LocalizableTextFormatter instance can optionally
store fallback values for a message string, the time zone, and the locale. These values can be ignored
unless the LocalizableTextFormatter instance issues an exception. To set fallback values, call the following
methods as appropriate:
v setFallBackString(String message)
v setFallBackLocale(Locale locale)
v setFallBackTimeZone(TimeZone timeZone)

For a usage example, see “Generating localized text” on page 526.

Processing of application-specific values

The localizable-text package provides native support for localization based on time zone and locale, but
you can construct messages on the basis of other values as well. If you need to consider variables other
than locale and time zone in formatting localized text, write your own formatter class.

522 Developing WebSphere applications

Your formatter class can extend the LocalizableTextFormatter class or independently implement some or
all of the same localizable-text interfaces. As a minimum, your class must implement the
java.io.Serializable interface and at least one of the localizable-text interfaces and its corresponding format
method. If your class implements more than one localizable-text interface and format method, the order of
evaluation of the interfaces is as follows:
1. LocalizableTextLTZ
2. LocalizableTextL
3. LocalizableTextTZ
4. LocalizableText

As an example, the localizable-text package provides a class that reports the time and date
(LocalizableTextDateTimeArgument). In that class, date and time formatting is localized in accordance with
three values: locale, time zone, and style.

Creating a formatter instance
Perform this task to set localization values for strings in an application component.

About this task

Server programs typically create LocalizableTextFormatter instances that are sent to clients as the result of
some operation; clients format the objects at the appropriate time. Less typically, client programs create
LocalizableTextFormatter objects locally.

Procedure
1. If needed for your application, write your own formatter class. For more information about

implementation, see “LocalizableTextFormatter class” on page 521.

2. In application code, call the appropriate constructor for the formatter class and set required localization
values. Some localization values, such as resource bundle name, key and formatting application, must
be set, either through a constructor or soon after construction. Other localization values can be set
only as needed. For more information about the API, see the related reference.

Example

The following code creates a LocalizableTextFormatter instance by using the default constructor and then
sets the required localization values:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

public void drawAccountNumberGUI(String accountType) {
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
ltf.setPatternKey("accountNumber");
ltf.setResourceBundleName("BankingSample.BankingResources");
ltf.setApplicationName("BankingSample");
...

}

The line of code in boldface exploits default behavior of the Java platform. By default, the Java platform
looks first for a subclass of java.util.ResourceBundle called BankingResources. When none is found, the
Java platform looks for a valid properties file of the same name. In this continuing example, a properties
file is found.

The application that is requesting a localized message can specify the locale and time zone for message
formatting, or the application can use the default values set for the Java virtual machine.

Chapter 11. Developing Internationalization service 523

For example, a GUI can enable users to select the language in which to display the interface. A default
value must be set initially so that the GUI can be created properly when the application first starts, but
users can then change the locale for the GUI to suit their needs. The following code shows how to change
the locale used by an application based on the selection of a menu item:
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
...
import java.util.Locale;

public void actionPerformed(ActionEvent event) {
String action = event.getActionCommand();
...
if (action.equals("en_us")) {

applicationLocale = new Locale("en", "US");
...

}
if (action.equals("de_de")) {

applicationLocale = new Locale("de", "DE");
...

}
if (action.equals("fr_fr")) {

applicationLocale = new Locale("fr", "FR");
...

}
...

}

For more information, see “Generating localized text”.

What to do next

Set optional localization values.

Setting optional localization values
In addition to setting localization values that are required by the LocalizableTextFormatter interface, you
can set a number of optional values in application code, either through the constructor or by calling any of
several methods for that purpose.

About this task

With optional values, you can do the following actions:
v Compose complex strings from variable substrings
v Customize the formatting of strings, considering variables other than time zone and locale

Procedure
1. In application code, add the optional values into an array of type Object.

Object[] arg = {new String(getAccountNumber())};

2. Pass the array into a LocalizableTextFormatter instance. You can pass the array through the
appropriate constructor or call the setArguments(Object[]) method. For a usage example, see
“Composing complex strings.”

Because the array is passed by value rather than by reference, any updates to the array variable after
this point are not reflected in the LocalizableTextFormatter instance unless it is reset by calling the
setArguments(Object[]) method.

What to do next

Write code to generate the localized text.

Composing complex strings:

524 Developing WebSphere applications

Perform this task to insert variable substrings into a localized string.

Before you begin

Identify strings that need to be localized.

About this task

The localized-text package supports the substitution of variable substrings into a localized string that is
retrieved from the message catalog by key.

Procedure

1. In the message catalog, specify the location of the substitution in the string to be retrieved. Variable
components are designated by braces (for example, {0}).

2. In application code, create a LocalizableTextFormatter instance, passing in an array that contains the
variable value. If the variable substring must be localized, you can create a nested
LocalizableTextFormatter instance and pass the instance in instead of a value.

3. Generate a localized string. When a format method is called on a formatter instance, the formatter
takes each element of the array passed in the previous step and substitutes it for the placeholder with
the matching index in the string that is retrieved from the message catalog. For example, the value at
index 0 in the array replaces the {0} variable in the retrieved string.

Example

The following line from an English message catalog shows a string with a single substitution:
successfulTransaction = The operation on account {0} was successful.

The same key in message catalogs for other languages has a translation of this string with the variable at
the appropriate location for each language.

The following code shows the creation of a single-element argument array and the creation and use of a
LocalizableTextFormatter instance:
public void updateAccount(String transactionType) {

...
Object[] arg = {new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
arg);

...
successLTF.format(this.applicationLocale);
...

}

Nesting formatter instances for localized substrings:

The ability to substitute variable substrings into the strings retrieved from message catalogs adds a level of
flexibility to the localizable-text package, but this capability is of limited use unless the variable value can
be localized. You can localize this value by nesting LocalizableTextFormatter instances.

Before you begin

Identify strings that need to be localized.

Chapter 11. Developing Internationalization service 525

Procedure

1. In the message catalog, add entries that correspond to potential values for the variable substring.

2. In application code, create a LocalizableTextFormatter instance for the variable substring, setting
required localization values.

3. Create a LocalizableTextFormatter instance for the primary string, passing in an array that contains the
formatter instance for the variable substring.

Example

The following line from an English message catalog shows a string entry with two substitutions and entries
to support the localizable variable at index 0 (the second variable in the string, the account number, does
not need to be localized):
successfulTransaction = The {0} operation on account {1} was successful.
depositOpString = deposit
withdrawOpString = withdrawal

The following code shows the creation of the nested formatter instance and its insertion (with the account
number variable) into the primary formatter instance:
public void updateAccount(String transactionType) {

...
// Successful deposit
LocalizableTextFormatter opLTF =

new LocalizableTextFormatter("BankingResources",
"depositOpString",

"BankingSample");
Object[] args = {opLTF, new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
args);

...
successLTF.format(this.applicationLocale);
...

}

Generating localized text
Perform this task to specify the runtime formatting of localized text in an application component.

Before you begin

Create a formatter instance and set the localization values as needed.

Procedure
1. If needed, customize the formatting behavior.

2. In application code, call the appropriate format method.

Example

You can provide fallback behavior for use if the appropriate message catalog is not available at formatting
time.

The following code generates a localized string. If the formatting fails, the application retrieves and uses a
fallback string instead of the localized string:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

526 Developing WebSphere applications

public void drawAccountNumberGUI(String accountType){
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
...
ltf.setFallBackString("Enter account number: ");
try {

msg = new Label(ltf.format(this.applicationLocale), Label.CENTER);
}
catch (LocalizableException le) {

msg = new Label(ltf.getFallBackString(), Label.CENTER);
}
...

}

What to do next

When the application is finished, deploy your application. For more information, see “Preparing the
localizable-text package for deployment.”

Customizing the behavior of a formatting method:

Perform this task to change the runtime formatting of localized strings in an application component.

About this task

You can customize formatting behavior by passing your own formatter classes into a
LocalizableTextFormatter instance through an array of optional values. This action enables you to consider
variables other than locale and time zone when formatting localized text.

Procedure

1. Write your own formatter class. For more information about implementation, see
"LocalizableTextFormatter class."

2. In application code, create an instance of your formatter class as appropriate and pass it with any
other optional localization values into an instance of LocalizableTextFormatter. When the
LocalizableTextFormatter instance reads the instance that has been passed in, it attempts to call the
format() method on the passed-in instance. The string returned is then processed with any other
elements in the array.

Example

The localizable-text package provides an example of a user-defined class, called
LocalizableTextDateTimeArgument. This class enables date and time information to be selectively
formatted according to the style values defined in the java.text.DateFormat interface as well as the
constants that are defined within the LocalizableTextDateTimeArgument class.

Preparing the localizable-text package for deployment
The LocalizableTextEJBDeploy tool is used to create a deployment Java Archive (JAR) file for the
localizable text service. You must deploy the enterprise bean in each enterprise application that requires
support for localized text.

Before you begin

Write code to compose the language-specific strings.

Procedure
1. Make sure that the LocalizableTextEJBDeploy tool is included in the class path.

Chapter 11. Developing Internationalization service 527

transition: In versions 6.0.x and earlier, the LocalizableTextEJBDeploy tool used to reside in the file
app_server_root/lib/ltext.jar. It now resides in the file app_server_root/plugins/
com.ibm.ws.runtime_1.0.0.jar.

2. Set up a working directory for the LocalizableTextEJBDeploy tool to use. You need to pass this location
to the tool through a command-line interface.

3. Run the LocalizableTextEJBDeploy tool. You might be asked if you want to regenerate deployment
code for the LocalizableText bean. Do not redeploy the bean; if you do, an incorrect Java Naming and
Directory Interface (JNDI) name will be generated.

To deploy the bean on multiple hosts and servers, run the tool for each host and server combination.
This action generates a unique JNDI name for each deployment. After the tool is run, a deployment
JAR file is located in the working directory that you specified.

What to do next

Using an assembly tool, assemble the deployment JAR file in an enterprise application with other
application components.

As part of preparing for deployment, perform the following:
v Add the resource bundles for your application to the Enterprise Archive (EAR) file as files.
v Add the location of the EAR file to the server class path for the server so that the resource bundles can

be located on the virtual host and server.

The same deployment JAR file can be included in several enterprise applications.

LocalizableTextEJBDeploy command
This topic describes the command-line syntax for the LocalizableTextEJBDeploy tool.

transition: In versions 6.0.x and earlier, the LocalizableTextEJBDeploy tool used to reside in the file
app_server_root/lib/ltext.jar. It now resides in the file app_server_root/plugins/
com.ibm.ws.runtime_1.0.0.jar.

LocalizableTextEJBDeploy
-a applicationName
-h virtualHostName
-i installationDirectory
-s serverName
-w workingDirectory

Parameters

The required parameters, which can be specified in any order, follow:

applicationName
The name of the formatting session bean. This name is used in LocalizableTextFormatter instances to
specify where the actual formatting occurs. If the name cannot be resolved at run time, the format
method issues an exception.

virtualHostName
The name of the virtual host on which the formatting session bean is deployed. This value is
case-sensitive on all operating platforms.

installationDirectory
The location at which the application server product is installed.

serverName
The name of the application server. If this argument is not specified, the default server name for the
product is used.

528 Developing WebSphere applications

workingDirectory
A location for the tool to use temporarily.

Task overview: Internationalizing application components
(internationalization service)
This topic summarizes the steps involved in using the internationalization service.

About this task

With the internationalization service, you can manage the distribution of the internationalization information,
or internationalization context, that is necessary to support globalized Java Platform, Enterprise Edition
(Java EE) application components. Supported application components also include web service client
environments and web service-enabled enterprise beans.

Procedure
1. Use the internationalization context API within application components to obtain or manage

internationalization context.

Servlet and enterprise bean business methods can use internationalization context to perform locale-
and time zone-sensitive localizations. Enterprise JavaBeans (EJB) client applications, and server
components that are configured to manage internationalization context must use the
internationalization context API to set the context elements scoped to their invocations.

You use the internationalization context API within Web service-enabled Java EE client programs and
stateless session beans in the same manner that you would use conventional Java EE application
components, with one exception. Internationalization context propagated over Web service requests
contains a time zone ID, whereas conventional Remote Method Invocation/ Internet Inter-ORB Protocol
(RMI/IIOP) requests propagate complete time zone information, including the raw offset, Daylight
Savings Time information, and so on.

2. Assemble internationalized applications.

The internationalization type specifies the internationalization policy that applies to a servlet or an
enterprise bean and, in particular, indicates whether the application component or its hosting Java EE
container manages internationalization context. Container internationalization attributes can be
specified for container-managed servlet and enterprise bean business methods. These attributes tailor
a policy by indicating which context the container scopes to an invocation. Configuring
internationalization policies declaratively prescribes, by means of the application deployment descriptor,
the distribution and management of context throughout an application.

As you edit the deployment descriptor for assembly, you can also set the internationalization type and
configure any container internationalization attributes for the servlets and enterprise beans in your
application.

You configure internationalization type and container internationalization attributes for Web
service-enabled stateless session beans in the same manner as you do for conventional beans.

3. Manage the internationalization service.

Use the administrative console to enable the service on all application servers.

By default, the service is enabled within Java EE client environments but is disabled on application
servers. You must enable the service on all application servers hosting your servlets and enterprise
beans to use internationalization context.

4. Troubleshoot the internationalization service as needed.

Use the administrative console to enable the trace service to log internationalization service messages
when debugging your applications.

The trace strings for the internationalization service follow; use both:
com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Chapter 11. Developing Internationalization service 529

Internationalization service
In a distributed client-server environment, application processes can run on different machines, configured
for different locales, corresponding to different cultural conventions; they can also be located across
geographical boundaries. The internationalization service can help manage your application in a globally
distributed environment.

For an understanding of how differences in locale impact application development, read “Globalization” on
page 513.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on
computers with differing endian architecture and code sets. It does not provide dedicated support for
application components that run on computers with different locales or time zones.

The internationalization service addresses the challenges posed by locale and time zone mismatch without
incurring the limitations of conventional techniques. The service systematically manages the distribution of
internationalization contexts across the various components of EJB applications, including client
applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every service request within an
application. When a client-side component calls a business method, the internationalization service
interposes by obtaining the internationalization context associated with the current client-side process and
by attaching that context to the outgoing request. On the server side, the internationalization service again
interposes by detaching the context from the incoming request and associating it with the server-side
process on which the business method will run, effectively scoping the context to the business method.
For HTTP requests, the caller context is constructed from the HTTP attributes and default values. The
service propagates internationalization context on subsequent business method invocations in the same
manner, which distributes the context of the originating request over the entire chain of business method
invocations.

This basic operation of scoping and propagation is defined precisely by internationalization context
management policies. Internationalization policies specify whether an application component or its hosting
Java EE container are to manage internationalization context. For container-managed components, the
policy indicates which internationalization context the container scopes to invocations on that component.
Server components configured to manage internationalization context, as well as EJB clients, must use the
internationalization context API to manage the internationalization context elements scoped to their
invocations.

Every application component has a default policy, which can be overridden and tailored for servlets and
enterprise beans at assembly time.

At run time, application components can use the internationalization context API to get any element of the
internationalization contexts scoped to an invocation. To programmatically access context elements,
application components first resolve an internationalization context API reference, then call the appropriate
API method to access the various context elements, such as the caller locale or the invocation time zone.
These elements can be used in calls to Java SDK internationalization API methods; for example, to
perform localizations such as formatting messages, configuring dates, or comparing strings.

Assembling internationalized applications
Perform this task to configure application components for deployment with the internationalization service.

About this task

Use an assembly tool to configure internationalization in the deployment descriptors for servlets and
enterprise beans.

530 Developing WebSphere applications

Procedure
1. Set the internationalization type.

All servlets and enterprise beans have an internationalization type setting that specifies whether
internationalization context is managed by the application component or by its hosting Java Platform,
Enterprise Edition (Java EE) container during invocations of their respective life cycle and business
methods. The internationalization type can be configured for all server application components except
entity beans, which are container-managed only.

By default, all server components use container-managed internationalization (CMI). The default setting
suffices in most cases; when it does not, modify the internationalization type setting by completing the
steps that are described in one of the following topics:
v “Setting the internationalization type for servlets”
v “Setting the internationalization type for enterprise beans” on page 533

2. Set the container internationalization attribute.

You can associate CMI servlets, and business methods of CMI enterprise beans, with a container
internationalization attribute. That attribute specifies which of three internationalization contexts (Caller,
Server, or Specified) the container is to scope to an invocation. When running as specified, the
container internationalization attribute also specifies the custom internationalization context elements.

Named container internationalization attributes can be associated with sets of servlets or with sets of
Enterprise JavaBeans (EJB) business methods. Initially, CMI servlets and business methods implicitly
run as caller and do not associate with a container internationalization attribute. When the implicit
behavior or an associated attribute setting is unsuitable, configure an attribute by completing the steps
that are described in one of the following topics:
v “Configuring container internationalization for servlets” on page 532
v “Configuring container internationalization for enterprise beans” on page 533

Setting the internationalization type for servlets
This task sets the internationalization type for a servlet within a Web module.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported a dynamic Web project.

Procedure
1. In the Java EE perspective, open the Web project for which you want to set the internationalization

type.

a. Double-click Dynamic Web Projects.

b. Double-click the name of the Web project to see its contents.

c. Double-click the deployment descriptor object.

The Web Deployment Descriptor panel is displayed.

2. In the Web Deployment Descriptor panel, click the Servlets tab.

3. Scroll down to WebSphere Programming Model Extensions and then Internationalization.

4. From the Servlets and JSPs list of the Servlets panel, select the servlet for which you want to set the
internationalization type.

5. Under Internationalization, select a value from the Internationalization type list. Valid values are
Application or Container.

6. From the menu bar, click File > Save.

Chapter 11. Developing Internationalization service 531

Results

The internationalization type setting is assigned to the servlet.

What to do next

If you selected container-managed internationalization, you can then set container-managed
internationalization attributes for methods within the servlet. For more information, see "Configuring
container internationalization for servlets."

Configuring container internationalization for servlets
This task configures container internationalization for a servlet within a Web module.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported a dynamic Web project.

You must also have set the internationalization type of one or more servlets in a Web project to Container.

About this task

This procedure relates one or more servlets to a container-managed internationalization attribute.

Procedure
1. In the Java EE perspective, open the Web project for which you want to configure container

internationalization.

a. Double-click Dynamic Web Projects.

b. Double-click the name of the Web project to see its contents.

c. Double-click the deployment descriptor object.

The Web Deployment Descriptor panel is displayed.

2. In the Web Deployment Descriptor panel, click the Servlets tab.

3. Scroll down to WebSphere Programming Model Extensions and then Internationalization.

4. Following Container-managed Internationalization Attribute, set the Run As field by selecting
Caller, Server, or Specified.

5. If the servlet is to be run as Specified, select an internationalization policy from the Specified list or
define a new policy.

a. To define an internationalization policy, click New. The New Specified Initialization wizard is
displayed.

b. In the Description field, give the policy a name.

c. If needed, set a time zone ID and add a time zone description. If you do not find the appropriate
time zone in the ID list, click Customize to define one relative to Greenwich Mean Time (GMT).

d. Create at least one locale for the policy. To create a locale, click Add; select a language and
(optional) geographic region; specify a variant as needed. Add a locale description and click OK to
finish. The new locale is added to the Locales list.

e. If more than one locale is defined for the policy, select a locale from the Locales list and click
Finish. Otherwise, just click Finish

532 Developing WebSphere applications

6. From the menu bar, click File > Save.

Results

Selected servlets are now configured to run under the associated internationalization settings.

Setting the internationalization type for enterprise beans
This task sets the internationalization type for an enterprise bean within an Enterprise JavaBeans (EJB)
module.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported an EJB project.

About this task

Container-managed internationalization (CMI) is the default type; entity beans cannot be set to
application-managed internationalization (AMI). Use CMI also for stateless session beans that are enabled
for Web services.

Procedure
1. In the Java EE perspective, open the EJB project for which you want to set the internationalization

type.

a. Double-click EJB Projects.

b. Double-click the name of the EJB project to see its contents.

c. Double-click the deployment descriptor object.

The EJB Deployment Descriptor panel is displayed.

2. In the EJB Deployment Descriptor panel, click the Internationalization tab. Any enterprise beans that
are already configured for AMI are displayed in the Internationalization type list.

3. To set the internationalization type for any other enterprise beans to AMI, click Add following the
Internationalization type list. The Internationalization Type wizard opens. Only message-driven or
session beans can be selected.

4. Select the beans that you want to set and click Finish to exit the wizard.

5. From the menu bar, click File > Save.

Results

The internationalization type is assigned to the bean.

What to do next

For beans that use container-managed internationalization, you can then set container-managed
internationalization attributes. For more information, see "Configuring container internationalization for
enterprise beans."

Configuring container internationalization for enterprise beans
This task configures container internationalization for enterprise bean business methods.

Chapter 11. Developing Internationalization service 533

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported an EJB project.

You must also have one or more enterprise beans set to container-managed internationalization (CMI) by
default.

About this task

This procedure relates one or more business methods to one or more container-managed
internationalization (CMI) attributes. Use this procedure also for stateless session beans that are enabled
for Web services.

Procedure
1. In the Java EE perspective, open the EJB project for which you want to configure container

internationalization.

a. Double-click EJB Projects.

b. Double-click the name of the EJB project to see its contents.

c. Double-click the deployment descriptor object.

The EJB Deployment Descriptor panel is displayed.

2. In the EJB Deployment Descriptor panel, click the Internationalization tab. Any business methods that
are already configured are displayed in the Internationalization attributes list.

3. To configure a CMI business method, click Add following the Internationalization attributes list. The
Internationalization Attributes wizard opens.

4. Set the Run As field by selecting Caller, Server, or Specified. Add a meaningful description. As a
group, the CMI attribute settings comprise an internationalization policy.
v The description appears as Internationalization description (runAsSetting) in the

Internationalization attributes list when you are finished.
v If you do not provide a description, the policy name appears as Internationalization

(runAsSetting).

If the bean is to be run as Specified, complete the following steps to specify the context elements that
the container scopes to bean method invocations.

a. Set a time zone ID and add a time zone description as needed. If you do not find the appropriate
time zone in the ID list, click Custom to define one relative to Greenwich Mean Time (GMT).

b. Set a locale. Select a language and (optional) geographic region; specify a variant as needed. Add
a locale description as needed and click OK to finish.

5. Click Next.

6. Select the beans for which you want to configure method-level internationalization attributes and click
Next.

7. Select the methods that you want to configure and click Next. A check box is displayed next to each
method name that you select.

v Click Apply to All to place a check box next to the displayed bean name.

v Click Select Beans to select more beans with CMI.

8. Click Finish to exit the wizard.

9. From the menu bar, click File > Save.

534 Developing WebSphere applications

Results

The bean methods are now configured to run under the associated internationalization settings.

Using the internationalization context API
Enterprise JavaBeans (EJB) client applications, servlets, and enterprise beans can programmatically
obtain and manage internationalization context using the internationalization context API. For Web service
client applications, you use the API to obtain and manage internationalization context in the same manner
as for EJB clients.

Before you begin

The java.util and com.ibm.websphere.i18n.context packages contain all of the classes necessary to use
the internationalization service within an EJB application.

Procedure
1. Gain access to the internationalization context API.

Resolve internationalization context API references once over the life cycle of an application
component, within the initialization method of that component (for example, within the init method of
servlets, or within the SetXxxContext method of enterprise beans). For Web service client programs,
resolve a reference to the internationalization context API during initialization. For stateless session
beans enabled for Web services, resolve the reference in the setSessionContext method.

2. Access caller locales and time zones.

Every remote invocation of an application component has an associated caller internationalization
context associated with the thread that is running that invocation. A caller context is propagated by the
internationalization service and middleware to the target of a request, such as an Enterprise
JavaBeans (EJB) business method or servlet service method. This task also applies to Web service
client programs.

3. Access invocation locales and time zones.

Every remote invocation of a servlet service or Enterprise JavaBeans (EJB) business method has an
invocation internationalization context associated with the thread that is running that invocation.
Invocation context is the internationalization context under which servlet and business method
implementations run; it is propagated on subsequent invocations by the internationalization service and
middleware. This task also applies to Web service client programs.

Results

The resulting components are said to use application-managed internationalization (AMI). For more
information about AMI, see “Internationalization context: Management policies” on page 550.

Example

Each supported application component uses the internationalization context API differently. Code examples
are provided that illustrate how to use the API within each component type. Differences in API usage, as
well as other coding tips, are noted in comments that precede the relevant statement blocks.

v Managing internationalization context in an EJB client program

v Managing internationalization context in a servlet

v Managing internationalization context in a session bean

v Representing internationalization context in a SOAP header

Managing internationalization context in an EJB client program: The following code example
illustrates how to use the internationalization context API within a contained EJB client program or Web
service client program.

Chapter 11. Developing Internationalization service 535

//--
// Basic Example: J2EE EJB client.
//--
package examples.basic;

//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;
import java.util.SimpleTimeZone;

public class EjbClient {

public static void main(String args[]) {

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {
Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization ();
} catch (NamingException ne) {

log("Error: Cannot resolve UserInternationalization: Exception: " + ne);
} catch (IllegalStateException ise) {

log("Error: UserInternationalization is not available: " + ise);
}
...

//--
// INTERNATIONALIZATION SERVICE: Set invocation context.
//
// Under Application-managed Internationalization (AMI), contained EJB
// client programs may set invocation context elements. The following
// statements associate the supplied invocation locale and time zone
// with the current thread. Subsequent remote bean method calls will
// propagate these context elements.
//--
try {

invocationI18n.setLocale(new Locale("fr", "FR", ""));
invocationI18n.setTimeZone("ECT");

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
...

536 Developing WebSphere applications

//--
// INTERNATIONALIZATION SERVICE: Get locale and time zone.
//
// Under AMI, contained EJB client programs can get caller and
// invocation context elements associated with the current thread.
// The next four statements return the invocation locale and time zone
// associated above, and the caller locale and time zone associated
// internally by the service. Getting a caller context element within
// a contained client results in the default element of the JVM.
//--
Locale invocationLocale = null;
SimpleTimeZone invocationTimeZone = null;
Locale callerLocale = null;
SimpleTimeZone callerTimeZone = null;
try {

invocationLocale = invocationI18n.getLocale();
invocationTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
callerLocale = callerI18n.getLocale();
callerTimeZone = SimpleTimeZone)callerI18n.getTimeZone();

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing I18n context: " + ise);

}

...
} // main

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // EjbClient

Managing internationalization context in a servlet: The following code example illustrates how to use
the internationalization context API within a servlet. Note comments in the init and doPost methods.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

public class J2eeServlet extends HttpServlet {

...
//--
// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected Internationalization i18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

protected Locale callerLocale = null;

Chapter 11. Developing Internationalization service 537

protected Locale invocationLocale = null;

/**
* Initialize this servlet.
* Resolve references to the JNDI initial context and the
* internationalization context API.
*/
public void init() throws ServletException {

//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Under Container-managed Internationalization (CMI), servlets have
// read-only access to invocation context elements. Attempts to set these
// elements result in an IllegalStateException.
//
// Suggestion: cache all internationalization context API references
// once, during initialization, and use them throughout the servlet
// lifecycle.
//--
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
throw new ServletException("Cannot resolve UserInternationalization" + ne);

} catch (IllegalStateException ise) {
throw new ServletException ("Error: UserInternationalization is not

available: " + ise);
}
...

} // init

/**
* Process incoming HTTP GET requests.
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the
* Servlet.
*/
public void doGet(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

} // doGet

/**
* Process incoming HTTP POST requests
* @param request Object that encapsulates the request to
* the Servlet.
* @param response Object that encapsulates the response from
* the Servlet.
*/
public void doPost(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

...
//--
// INTERNATIONALIZATION SERVICE: Get caller context.
//
// The internationalization service extracts the accept-languages
// propagated in the HTTP request and associates them with the
// current thread as a list of locales within the caller context.
// These locales are accessible within HTTP Servlet service methods

538 Developing WebSphere applications

// using the caller internationalization object.
//
// If the incoming HTTP request does not contain accept languages,
// the service associates the server’s default locale. The service
// always associates the GMT time zone.
//
//--
try {

callerLocale = callerI18n.getLocale(); // caller locale
// the following code enables you to get invocation locale,
// which depends on the Internationalization policies.
invocationLocale = invI18n.getLocale(); // invocation locale

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
// NOTE: Browsers may propagate accept-languages that contain a
// language code, but lack a country code, like "fr" to indicate
// "French as spoken in France." The following code supplies a
// default country code in such cases.
if (callerLocale.getCountry().equals(""))

callerLocale = AccInfoJBean.getCompleteLocale(callerLocale);

// Use iLocale in JDK locale-sensitive operations, etc.
...

} // doPost

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // CLASS J2eeServlet

Managing internationalization context in a session bean: This code example illustrates how to perform
a localized operation using the internationalization service within a session bean or Web service-enabled
session bean.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

/**
* This is a stateless Session Bean Class
*/
public class J2EESessionBean implements SessionBean {

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";
...

Chapter 11. Developing Internationalization service 539

/**
* Obtain the appropriate internationalization interface
* reference in this method.
* @param ctx javax.ejb.SessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
log("Error: Cannot resolve UserInternationalization: Exception: " + ne);

} catch (IllegalStateException ise) {
log("Error: UserInternationalization is not available: " + ise);

}
} // setSessionContext

/**
* Set up resource bundle using I18n Service
*/
public void setResourceBundle()
{

Locale invLocale = null;

//--
// INTERNATIONALIZATION SERVICE: Get invocation context.
//--
try {

invLocale = invI18n.getLocale();
} catch (IllegalStateException ise) {

log ("An anomaly occurred while accessing Invocation context: " + ise);
}
try {

Resources.setResourceBundle(invLocale);
// Class Resources provides support for retrieving messages from
// the resource bundle(s). See Currency Exchange sample source code.

} catch (Exception e) {
log("Error: Exception occurred while setting resource bundle: " + e);

}
} // setResourceBundle

/**
* Pass message keys to get the localized texts
* @return java.lang.String []
* @param key java.lang.String []
*/
public String[] getMsgs(String[] key) {

setResourceBundle();
return Resources.getMsgs(key);

}

...
void log(String s) {

System.out.println(((s == null) ? ";null" : s));
}

} // CLASS J2EESessionBean

Representing internationalization context in a SOAP header: This code example illustrates how
internationalization context is represented within the SOAP header of a Web service request.

540 Developing WebSphere applications

<InternationalizationContext>
<Locales>

<Locale>
<LanguageCode>ja</LanguageCode>
<CountryCode>JP</CountryCode>
<VariantCode>Nihonbushi</VariantCode>

</Locale>
<Locale>

<LanguageCode>fr</LanguageCode>
<CountryCode>FR</CountryCode>

</Locale>
<Locale>

<LanguageCode>en</LanguageCode>
<CountryCode>US</CountryCode>

</Locale>
</Locales>
<TimeZoneID>JST</TimeZoneID>

</InternationalizationContext>

This representation is valid against the following schema:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="InternationalizationContext"
type="InternationalizationContextType">

</xsd:element>

<xsd:complexType name="InternationalizationContextType">
<xsd:sequence>

<xsd:element name="Locales"
type="LocalesType">

</xsd:element>
<xsd:element name="TimeZoneID"

type="xsd:string">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="LocalesType">
<xsd:sequence>

<xsd:element name="Locale"
type="LocaleType"
minOccurs="0"
maxOccurs="unbounded">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="LocaleType">
<xsd:sequence>

<xsd:element name="LanguageCode"
type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>
<xsd:element name="CountryCode"

type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>
<xsd:element name="VariantCode"

type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>

Chapter 11. Developing Internationalization service 541

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Gaining access to the internationalization context API
Perform this task to access the internationalization service by resolving a reference to the
internationalization context API.

About this task

Resolve internationalization context API references once over the life cycle of an application component,
within the initialization method of that component (for example, within the init method of servlets, or within
the SetXxxContext method of enterprise beans). For Web service client programs, resolve a reference to
the internationalization context API during initialization. For stateless session beans enabled for Web
services, resolve the reference in the setSessionContext method.

Procedure
1. Resolve a reference to the UserInternationalization interface by performing a lookup on the Java

Naming and Directory Interface (JNDI) name java:comp/websphere/UserInternationalization. For
example:
//--
// Internationalization context imports.
//--
import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
...

public class MyApplication {
...

//--
// Resolve a reference to the UserInternationalization interface.
//--
InitialContext initCtx = null;
UserInternationalization userI18n = null;
final String UserI18nUrl = "java:comp/websphere/UserInternationalization";
try {

initCtx = new InitialContext();
userI18n = (UserInternationalization)initCtx.lookup(UserI18nUrl);

}
catch (NamingException ne) {

// UserInternationalization URL is unavailable.
}

If the UserInternationalization object is unavailable because of an anomaly or a restriction, the JNDI
lookup invocation issues a javax.naming.NameNotFoundException exception that contains the
java.lang.IllegalStateException instance.

2. Use the UserInternationalization reference to create references to the CallerInternationalization or
InvocationInternationalization objects, which provide access to elements of the Caller or Invocation
internationalization contexts, respectively. The CallerInternationalization reference can be bound to the
Internationalization interface only; the InvocationInternationalization reference can be bound to either
the Internationalization or the InvocationInternationalization interfaces, depending on whether the
application requires read-only or read-write access to the invocation context. For example:

...
//--
// Resolve references to the Internationalization and
// InvocationInternationalization interfaces.
//--
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;

542 Developing WebSphere applications

try {
callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

}
catch (IllegalStateException ise) {

// An Internationalization interface(s) is unavailable.
}

Accessing caller locales and time zones
Perform this task to access elements of the caller internationalization context.

Before you begin

An application component must first resolve a reference to the CallerInternationalization object and then
bind it to the Internationalization interface.

About this task

Every remote invocation of an application component has an associated caller internationalization context
associated with the thread that is running that invocation. A caller context is propagated by the
internationalization service and middleware to the target of a request, such as an Enterprise JavaBeans
(EJB) business method or servlet service method. This task also applies to Web service client programs.

Procedure
1. Obtain the desired caller context elements.

java.util.Locale [] myLocales = null;
try {

myLocales = callerI18n.getLocales();
}
catch (IllegalStateException ise) {

// The Caller context is unavailable;
// is the service started and enabled?

}
...

The Internationalization interface contains the following methods to get caller internationalization
context elements:
v Locale [] getLocales() Returns the list of caller locales that are associated with the current thread.
v Locale getLocale() Returns the first in the list of caller locales that are associated with the current

thread.
v TimeZone getTimeZone() Returns the SimpleTimeZone caller that is associated with the current

thread.

The Internationalization interface supports read-only access to internationalization context within
application components. Methods of the Internationalization interface are available to all EJB
application components and are used in the same manner for each, but the method semantics vary
according to the component type. For instance, when obtaining the caller locale within an EJB client
application, the interface returns the default locale of the host Java virtual machine (JVM); in contrast,
when obtaining caller context within a servlet service method (for example, doPost or doGet methods),
the interface returns the first locale (accept-language) propagated within the corresponding HTML
request. See Internationalization context for a discussion of how the service propagates
internationalization context throughout an application.

2. Use the caller context elements to localize computations under a locale or time zone of the calling
process.
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

Accessing invocation locales and time zones
Perform this task to access elements of the invocation internationalization context.

Chapter 11. Developing Internationalization service 543

Before you begin

An application component must first resolve a reference to the InvocationInternationalization object and
then bind it to the InvocationInternationalization interface of the internationalization context API.

About this task

Every remote invocation of a servlet service or Enterprise JavaBeans (EJB) business method has an
invocation internationalization context associated with the thread that is running that invocation. Invocation
context is the internationalization context under which servlet and business method implementations run; it
is propagated on subsequent invocations by the internationalization service and middleware. This task also
applies to Web service client programs.

Procedure
1. Obtain the desired invocation context elements.

java.util.Locale myLocale;
try {

myLocale = invocationI18n.getLocale();
}
catch (IllegalStateException ise) {

// The invocation context is unavailable;
// is the service started and enabled?

}
...

The InvocationInternationalization interface contains the following methods to both get and set
invocation internationalization context elements:
v Locale [] getLocales(). Returns the list of invocation locales that is associated with the current

thread.
v Locale getLocale(). Returns the first in the list of invocation locales that is associated with the

current thread.
v TimeZone getTimeZone(). Returns the SimpleTimeZone invocation that is associated with the

current thread.
v setLocales(Locale []). Sets the list of invocation locales that are associated with the current thread

to the supplied list.
v setLocale(Locale). Sets the list of invocation locales that are associated with the current thread to a

list that contains the supplied locale.
v setTimeZone(TimeZone). Sets the invocation time zone that is associated with the current thread

to the supplied SimpleTimeZone.
v setTimeZone(String). Sets the invocation time zone that is associated with the current thread to a

SimpleTimeZone that has the supplied ID.

The InvocationInternationalization interface supports read and write access to invocation
internationalization context within application components. However, according to internationalization
context management policies, only components configured to manage internationalization context
(application-managed internationalization, or AMI, components) have write access to invocation
internationalization context elements. Calls to set invocation context elements within
container-managed internationalization (CMI) application components result in a
java.lang.IllegalStateException exception. Any differences in how application components can use
InvocationInternationalization methods are explained in Internationalization context.

2. Use the invocation context elements to localize a computation under a locale or time zone of the
calling process.
DateFormat df = DateFormat.getDateInstance(myLocale);

String localizedDate = df.getDateInstance().format(aDateInstance);
...

544 Developing WebSphere applications

Example

In the following code example, locale (en,GB) and simple time zone (GMT) transparently propagate on the
call to the myBusinessMethod method. Server-side application components, such as myEjb, can use the
InvocationInternationalization interface to obtain these context elements.
...
//--
// Set the invocation context under which the business method or
// servlet will run and propagate on subsequent remote business
// method invocations.
//--
try {

invocationI18n.setLocale(new Locale("en", "GB"));
invocationI18n.setTimeZone(SimpleTimeZone.getTimeZone("GMT"));

}
catch (IllegalStateException ise) {

// Is the component CMI; is the service started and enabled?
}
myEjb.myBusinessMethod();

Within CMI application components, the Internationalization and InvocationInternationalization interfaces
are semantically equivalent. You can use either of these interfaces to obtain the context associated with
the thread on which that component is running. For instance, both interfaces can be used to obtain the list
of locales propagated to the servlet doPost service method.

Internationalization context API: Programming reference
Application components programmatically manage internationalization context through the
UserInternationalization, Internationalization, and InvocationInternationalization interfaces in the
com.ibm.websphere.i18n.context package.

The following code example introduces the internationalization context API:
public interface UserInternationalization {

public Internationalization getCallerInternationalization();
public InvocationInternationalization
getInvocationInternationalization();

}

public interface Internationalization {
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZone getTimeZone();

}

public interface InvocationInternationalization
extends Internationalization {

public void setLocales(java.util.Locale[] locales);
public void setLocale(java.util.Locale jmLocale);
public void setTimeZone(java.util.TimeZonetimeZone);
public void setTimeZone(String timeZoneId);

}

UserInternationalization interface

The UserInternationalization interface provides factory methods for obtaining references to the
CallerInternationalization and InvocationInternationalization context objects. Use these references to
access elements of the caller and invocation contexts correlated to the current thread.

Methods of the UserInternationalization interface:
Internationalization getCallerInternationalization()

Returns a reference implementing the Internationalization interface that supports access to

Chapter 11. Developing Internationalization service 545

elements of the caller internationalization context correlated to the current thread. If the service is
disabled, this method issues an IllegalStateException exception.

InvocationInternationalization getInvocationInternationalization()
Returns a reference implementing the InvocationInternationalization interface. If the service is
disabled, this method issues an IllegalStateException exception.

Internationalization interface

The Internationalization interface declares methods that provide read-only access to internationalization
context. Given a caller or invocation internationalization context object created with the
UserInternationalization interface, bind the object to the Internationalization interface to get elements of
that context type. Observe that caller internationalization context can be accessed only through this
interface.

Methods of the Internationalization interface:
Locale[] getLocales()

Returns the chain of locales within the internationalization context (object) that is bound to the
interface, provided the chain is not null; otherwise this method returns a chain of length(1)
containing the default locale of the Java virtual machine (JVM).

Locale getLocale()
Returns the first in the chain of locales within the internationalization context (object) that is bound
to the interface, provided the chain is not null; otherwise this method returns the default locale of
the JVM.

TimeZone getTimeZone()
Returns the caller time zone (that is, the SimpleTimeZone instance) that is associated with the
current thread, provided the time zone is non-null; otherwise this method returns the process time
zone.

InvocationInternationalization interface

The InvocationInternationalization interface declares methods that provide read and write access to
InvocationInternationalization context. Given an invocation internationalization context object created with
the UserInternationalization interface, bind the object to the InvocationInternationalization interface to get
and set elements of the invocation context.

According to the container-managed internationalization (CMI) policy, all set methods, setXxx(), issue an
IllegalStateException exception when called within a CMI servlet or enterprise bean.

Methods of the InvocationInternationalization interface:
void setLocales(java.util.Locale[] locales)

Sets the chain of locales to the supplied chain, locales, within the invocation internationalization
context. The supplied chain can be null or have length(>= 0). When the supplied chain is null or
has length(0), the service sets the chain of invocation locales to an array of length(1) containing
the default locale of the JVM. Null entries can exist within the supplied locale list, for which the
service substitutes the default locale of the JVM on remote invocations.

void setLocale(java.util.Locale locale)
Sets the chain of locales within the invocation internationalization context to an array of length(1)
containing the supplied locale, locale. The supplied locale can be null, in which case the service
instead sets the chain to an array of length(1) containing the default locale of the JVM.

void setTimeZone(java.util.TimeZone timeZone)
Sets the time zone within the invocation internationalization context to the supplied time zone, time
zone. If the supplied time zone is not an exact instance of java.util.SimpleTimeZone or is null, the
service sets the invocation time zone to the default time zone of the JVM instead.

void setTimeZone(String timeZoneId)
Sets the time zone within the invocation internationalization context to the
java.util.SimpleTimeZone having the supplied ID, timeZoneId. If the supplied time zone ID is null or

546 Developing WebSphere applications

invalid (that is, the ID is not displayed in the list of IDs returned by the
java.util.TimeZone.getAvailableIds method) the service sets the invocation time zone to the simple
time zone having an ID of GMT, an offset of 00:00, and otherwise invalid fields.

Internationalization context:

An internationalization context is a distributable collection of internationalization information containing an
ordered list, or chain, of locales and a single time zone, where the locales and time zone are instances of
the java.util.Locale and java.util.TimeZone Java SDK types, respectively. A locale chain is ordered
according to the user's preference.

The internationalization service manages and makes available two varieties of internationalization context:
the caller context, which represents the caller's localization environment, and the invocation context, which
represents the localization environment under which a business method runs. Server application
components use elements of the caller and invocation internationalization contexts to appropriately tailor
locale-sensitive and time zone-sensitive computations.

The internationalization service does not support time zone types other than the java.util.SimpleTimeZone
type that is found in the Java SDK. Unsupported time zone types silently map to the default time zone of
the JVM when supplied to internationalization context API methods. For a complete description of the
java.util.Locale, java.util.TimeZone and java.util.SimpleTimeZone types, refer the Java SDK API
documentation.

Caller context

Caller internationalization context contains the locale chain and time zone received on incoming EJB
business method and servlet service method invocations; it is the internationalization context propagated
from the calling process. Use caller context elements within server application components to localize
computations to the calling component. Caller context is read-only and can be accessed by all application
components by using the Internationalization interface of the internationalization context API.

Caller context is computed in the following manner: On an EJB business method or servlet service method
invocation, the internationalization service extracts the internationalization context from the incoming
request and scopes this context to the method as the caller context. For any missing or null context
element, the service inserts the corresponding default element of the JVM (for example,
java.util.Locale.getDefault() or java.util.TimeZone.getDefault().) The service performs a similar insertion
whenever missing or null Caller context elements are encountered on invocations of stateless session
beans that are enabled for Web services.

Formally, caller context is the invocation context of the calling business method or application component.

Invocation context

Invocation internationalization context contains the locale chain and time zone under which EJB business
methods and servlet service methods run. It is managed by either the hosting container or the application
component, depending on the applicable internationalization policy. On outgoing business method
requests, it is the context that propagates to the target process. Use invocation context elements to
localize computations under the specified settings of the current application component.

Invocation context is computed in the following manner: On an incoming business method or servlet
service method invocation, the internationalization service queries the associated context management
policy. If the policy is container-managed internationalization (CMI), the container scopes the context
designated by the policy to the invocation; otherwise the policy is application-managed internationalization
(AMI), and the container scopes an empty context to the invocation that can be altered by the method
implementation.

Chapter 11. Developing Internationalization service 547

Application components can access invocation context elements through both the Internationalization and
InvocationInternationalization interfaces of the internationalization context API. Invocation context elements
can be set (overwritten) under the application-managed internationalization policy only.

On an outgoing business method request, the service obtains the currently scoped invocation context and
attaches it to the request. This outgoing exported context becomes the caller context of the target
invocation. When supplying invocation context elements, either for export on outgoing requests or through
the API, the internationalization service always provides the most recent element set using the API; the
service also supplies the corresponding default element of the JVM for any null invocation context
element.

Because the internationalization context that is propagated over Web services (SOAP) requests contains a
time zone ID rather than the entire state of a java.lang.SimpleTimeZone object, time zone information
might be lost when a Web service-enabled client program or session bean becomes involved in remote
business computation.

Internationalization context: Propagation and scope:

The scope of internationalization context is implicit. Every Enterprise JavaBeans (EJB) client application,
servlet service method, and EJB business method call has two internationalization contexts under which it
runs.

For each application component call, the container enters the caller context and the call context, as
indicated by the pertinent internationalization policy, into scope before the container delegates to the actual
implementation. When the implementation returns, the service removes these contexts from scope. The
internationalization service supplies no programmatic mechanism for components to explicitly manage the
scope of internationalization context.

The service scopes internationalization context differently with respect to application component type:
v “EJB client programs (contained)”
v “Servlets” on page 549
v “Enterprise beans” on page 549
v “Web service client programs (contained)” on page 549
v “Stateless session beans that are enabled for Web services” on page 550

Internationalization context observes by-value semantics over remote method requests. Changes to
internationalization context elements that are scoped to a call do not affect the corresponding elements of
the internationalization context that is scoped to the remote calling process. Also, modifications to context
elements obtained using the internationalization context API do not affect the corresponding elements that
are scoped to the invocation.

EJB client programs (contained)

Before it calls the main method of a client program, the Java EE client container introduces into scope
invocation and caller internationalization some contexts that contain null elements. These contexts remain
in scope throughout the life of the program. EJB client programs are the base in a chain of remote
business method invocations and, technically, do not have a logical caller context. Accessing a caller
context element yields the corresponding default element of the client JVM. On outgoing EJB business
method requests, the internationalization service propagates the invocation context to the target process.
Any unset (null) invocation context elements are replaced with the default of the JVM when exported by
the internationalization context API or by outgoing requests.

Tip:

548 Developing WebSphere applications

To propagate values other than the JVM defaults to remote business methods, EJB client programs,
as well as AMI servlets or enterprise beans, must set (override) elements of the invocation context.
To learn how to set invocation context elements, see “Accessing invocation locales and time zones”
on page 543.

Servlets

On every servlet service method (doGet or doPost) invocation, the Java EE Web container introduces
caller and invocation internationalization contexts into scope before delegating to the service method
implementation. The caller context contains the accept-languages propagated in the HTTP servlet request,
typically from a Web browser. The invocation context contains whichever context is indicated by the
container internationalization attribute of the internationalization policy that is associated with the servlet.
Any unset (null) invocation context elements are replaced with the default of the server JVM when
exported by the internationalization context API or by outgoing requests. The caller and invocation contexts
remain effective until immediately after the implementation returns, at which time the container removes
them from scope.

Enterprise beans

On every EJB business method invocation, the Java EE EJB container introduces caller and invocation
internationalization contexts into scope before delegating to the business method implementation. The
caller context contains the internationalization context elements imported from the incoming IIOP request;
if the incoming request lacks a particular internationalization context element, the container scopes a null
element. The invocation context contains whichever context is indicated by the container
internationalization attribute of the internationalization policy that is associated with the business method.

On outgoing EJB business method requests, the service propagates the invocation context to the target
process. Any unset (null) invocation context elements are replaced with the default of the server JVM
when exported by the internationalization context API or by outgoing requests. The caller and invocation
contexts remain effective until immediately after the implementation returns, when the container removes
them from scope.

Consider a simple EJB application with a Java client that calls the remote myBeanMethod bean method.
On the client side, the application can use the Internationalization Service API to set invocation context
elements. When the client calls myBeanMethod(), the service exports the client invocation context to the
outgoing request. On the server side, the service detaches the imported context from the incoming request
and scopes it to the method as its caller context; the service also scopes the invocation context to the
method as indicated by the associated internationalization context management policy. The EJB container
then calls the myBeanMethod method, which can use the internationalization context API to access
elements of either the caller or invocation contexts. When the myBeanMethod method returns, the EJB
container removes these contexts from scope.

Web service client programs (contained)

Before it calls the main method of a Web service client program, the client container introduces into scope
both invocation and caller internationalization contexts that contain null elements. These contexts remain in
scope throughout the duration of the program. Web service client programs are the base in a chain of
remote business method invocations and, technically, do not have a logical caller context. Accessing a
Caller context element yields the corresponding default element of the client virtual machine.

On outgoing Web service requests, the internationalization service transparently creates a SOAP header
block that contains the invocation context that is associated with the current thread; the SOAP
representation of invocation context is propagated through the request to the target process. Any unset
(that is, null) invocation context elements are replaced with the default element of the JVM when exported
by the internationalization context API or by outgoing requests. Also, because the header contains only a

Chapter 11. Developing Internationalization service 549

time zone ID, the additional state of the time zone object (java.lang.SimpleTimeZone) of the invocation
context might be lost, because it does not get propagated through the request.

Tip:

To propagate values other than the JVM defaults to remote business methods, Web service client
programs, as well as AMI servlets or enterprise beans, must set (override) elements of the invocation
context. For more information, see “Accessing invocation locales and time zones” on page 543.

Stateless session beans that are enabled for Web services

On every method invocation of a Web service-enabled bean, the EJB container introduces caller and
invocation internationalization contexts into scope before delegating control to the business method
implementation. The caller context contains the internationalization context elements that are imported
from the SOAP header block of the incoming request. If the incoming request lacks a particular
internationalization context element, the container introduces a null element into scope. The invocation
context contains whichever context is indicated by the container internationalization attribute of the
internationalization policy that is associated with the business method.

On outgoing EJB business method requests, the service propagates the invocation context to the target
process. Any unset (that is, null) invocation context elements are replaced with the default element of the
server JVM when exported by the internationalization context API or by outgoing requests. The caller and
invocation contexts remain effective until immediately after control returns from the business method
implementation, at which time the container removes them from scope.

On outgoing Web service requests, the internationalization service transparently creates a SOAP header
block that contains the invocation context associated with the current thread. The SOAP representation of
the invocation context is propagated through the request to the target process. Any unset (that is, null)
invocation context elements are replaced with the default element of the JVM when exported by the
internationalization context API or by outgoing requests.

Thread association considerations

The Web and EJB containers scope internationalization contexts to a method by associating the method
with the thread that run the method implementation. Similarly, methods of the internationalization context
API either associate context with, or obtain context associated with, the thread on which these methods
run.

In cases where new threads are spawned within an application component (for instance, a user-generated
thread inside the service method of a servlet, or a system-generated event handling thread in an AWT
client) the internationalization contexts associated with the parent thread does not automatically transfer to
the newly-spawned thread. In such instances, the service exports the default locale and time zone of the
JVM on any remote business method request and on any API calls that run on the new thread.

If the default context is inappropriate, the desired invocation context elements must be explicitly associated
to the new thread by using the setXxx methods of the InvocationInternationalization interface. Currently,
internationalization context management policies enable invocation context to be set within EJB client
programs, as well as within servlets, session beans, and message-driven beans that use
application-managed internationalization.

Internationalization context: Management policies:

Internationalization policies prescribe how Java EE application components or their hosting containers
manage internationalization context on component invocations. Two internationalization context
management policies apply to all component types: Application-managed internationalization (AMI) and
Container-managed internationalization (CMI).

550 Developing WebSphere applications

These policies are represented in two parts:
v Internationalization type
v Container internationalization attribute

The service defines a default, or implicit, internationalization policy for every application component type.
At development time, assemblers can override the default policy for server component types by explicitly
configuring their internationalization type, and optional container internationalization attributes. Policies
configured during assembly are preserved in the deployment descriptor for the application.

All components have an internationalization type that indicates whether it is AMI or CMI; that is, whether a
component is to deploy under the application-managed or the container-managed internationalization
policy. Application assemblers can set the internationalization type for servlets, session beans, and
message-driven beans. Entity beans are implicitly CMI and EJB clients are implicitly AMI; neither can be
configured otherwise.

For CMI servlets and enterprise beans, optional container internationalization attributes can be specified to
indicate which invocation internationalization context the container is to scope to service or business
methods. A CMI service or business method invocation can run under the context of the caller's process,
under the default context of the server JVM, or under a custom context specified in the attribute.
Assemblers can specify one container internationalization attribute per disjoint set of CMI servlets within a
Web module, or one Attribute per disjoint set of business methods of CMI beans within an EJB module. A
container internationalization attribute can be associated with more than one method, but a method cannot
be associated with more than one attribute.

When an application server launches an application, the internationalization service collects policy
information from the deployment descriptor, then uses this information to construct and associate an
internationalization policy to every component invocation. A policy is denoted as:
[<Internationalization Type>,<Container Internationalization Attribute>]

Several cases exist in which the deployment descriptor seems to lack policy information, for example: EJB
client applications have no configurable internationalization policy settings; AMI components do not have
container internationalization attributes; and you are not required to specify container internationalization
attributes for CMI components. When the service cannot obtain the explicit internationalization type and
container attribute settings from a well-formed deployment descriptor, it implicitly inserts the appropriate
setting into the policy.

The service observes the following conventions when applying policies to invocations:
v Servlets (service) and EJB business methods lacking all internationalization policy information in the

deployment descriptor implicitly run under policy [CMI,RunAsCaller].
v CMI servlets and business methods lacking a container internationalization attribute in the deployment

descriptor implicitly run under policy [CMI,RunAsCaller].
v AMI servlets and business methods always lack container internationalization attributes in the

deployment descriptor, but implicitly run under the logical policy [AMI,RunAsServer].
v EJB clients always lack internationalization policy information in the deployment descriptor. By definition,

EJB clients are implicitly AMI types and run under the invocation context of the JVM; they run under the
logical policy [AMI,RunAsServer].

For conditions other than these cited examples, such as a malformed deployment descriptor, refer to
Internationalization service errors.

Internationalization policies for EJB clients and HTTP clients cannot be configured; HTTP clients do,
however, run under the language priority settings of the hosting Web browser. These settings are
configurable under the options dialog of most Web browsers. Refer to your Web browser documentation
for details.

Internationalization type:

Chapter 11. Developing Internationalization service 551

Every server application component has an internationalization type setting that indicates whether the
invocation internationalization context is managed by the component or by the hosting Java EE container.

Server application components can be deployed to use one of two types of internationalization context
management:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

A server component can be deployed as AMI or CMI, but not both; CMI is the default. The setting applies
to the entire component on every invocation. Entity beans use CMI only. Enterprise JavaBeans (EJB)
client applications do not have an internationalization type setting; they implicitly use AMI.

Application-managed internationalization

Under the AMI deployment policy, component developers assume complete control over the invocation
internationalization context. AMI components can use the internationalization context API to
programmatically set invocation context elements.

AMI components are expected to manage invocation context. Invocations of AMI components implicitly run
under the default locale and time zone of the hosting JVM. Invocation context elements not set using the
API default to the corresponding elements of the JVM when accessed through the API or when exported
on business methods. To export context elements other than the JVM defaults, AMI servlets, AMI
enterprise beans, and EJB client applications must set (overwrite) invocation elements using the
internationalization context API. Moreover, the container logically suspends the caller context that is
imported on the AMI servlet lifecycle method and AMI EJB business method invocations. To continue
propagating the context of the calling process, AMI servlets and enterprise beans must use the API to
transfer caller context elements to the invocation context.

Specify AMI for server components that have internationalization context management requirements that
are not supported by container-managed internationalization (CMI).

Container-managed internationalization

CMI is the preferred internationalization context management policy for server application components; it is
also the default policy. Under CMI, the internationalization service collaborates with the Web and EJB
containers to set the invocation internationalization context for servlets and enterprise beans. The service
sets invocation context according to the container internationalization attribute of the policy that is
associated with a servlet (service method) or an EJB business method.

A CMI policy has a container internationalization attribute that indicates which internationalization context
the container is to scope to an invocation. For details, see Container internationalization attributes. By
default, invocations of CMI components run under the caller's internationalization context; or rather, they
adhere to the implicit policy [CMI,RunasCaller] whenever the servlet or business is not associated with an
attribute in the deployment descriptor. For complete details, see Internationalization context: Management
policies.

Methods within CMI components can obtain elements of the invocation context using the
internationalization context API, but cannot set them. Any attempt to set invocation context elements within
CMI components results in a java.lang.IllegalStateException exception.

Specify container-managed internationalization for server application components that require standard
internationalization context management. Then specify the container internationalization attributes for CMI
servlets and for business methods of CMI enterprise beans that you do not want to run under the caller's
internationalization context.

Container internationalization attributes:

552 Developing WebSphere applications

The internationalization policy of every CMI servlet and EJB business method has a container
internationalization attribute that specifies which internationalization context the container is to scope to its
invocation.

The container internationalization attribute has three main fields:
v Run as
v Locales
v Time zone ID

As a convenience, you can create named container internationalization attributes and associate them to
the following subsets:
v CMI servlets within a Web module
v Business methods of CMI enterprise beans within an Enterprise JavaBeans (EJB) module
v Business methods of Web service-enabled session beans. In the following descriptions, the term

supported enterprise bean refers to both CMI enterprise beans and Web service-enabled session
beans.

Run-as field

The Run-as field specifies one of three types of invocation context that a container can scope to a
method. For servlet service and EJB business methods, the container constructs the invocation
internationalization context according to the Run as field setting and associates this context to the current
thread before delegating to the method implementation.

By default, invocations of servlet service methods and EJB business methods implicitly run as caller
(RunAsCaller) unless the Run as field of a policy attribute specifies otherwise. EJB client applications and
AMI server components always run as server (RunAsServer).

You can specify the following invocation context types with the Run as field are:
Caller The container calls the method under the internationalization context of the calling process. For

any missing context element, the container supplies the corresponding default context element of
the Java virtual machine (JVM). Select run as caller when you want the invocation to run under
the invocation context of the calling process.

Server
The container calls the method under the default locale and time zone of the JVM. Select run as
server when you want the invocation to run under the invocation context of the JVM.

Specified
The container calls the method under the internationalization context specified in the attribute.
Select run as specified when you want the invocation to run under the custom invocation context
that is specified in the policy; then provide the custom context elements by completing the Locales
and Time zone ID fields.

Remember: Java Message Service (JMS) messages do not contain internationalization context. Although
container-managed message-driven beans can be configured to run as caller, the container
associates the default elements of the server process when calling the onMessage method of
any message-driven bean that is configured as [CMI, RunAsCaller]. You can also configure
the Run as field for Web service business methods.

Locales field

The Locales field specifies an ordered list of locales that the container scopes to an invocation. A locale
represents a specific geographical, cultural, or political region and contains three fields:
v Language code. Ideally, language code is one of the lower-case, two-character codes that are defined

by the ISO 639 standard; however, language code is not restricted to ISO codes and is not a required
field. A valid locale must specify a language code if it does not specify a country code.

Chapter 11. Developing Internationalization service 553

v Country code. Ideally, country code is one of the upper-case, two-character codes that are defined by
the ISO 3166 standard; however, country code is not restricted to ISO codes and is not a required field.
A valid locale must specify a country code if it does not specify a language code.

v Variant. Variant is a vendor-specific code. Variant is not a required field and serves only to supplement
the language and country code fields according to application- or platform-specific requirements.

A valid locale must specify at least a language code or a country code; the variant is always optional. The
first locale of the list is returned when accessing invocation context using the getLocale method of the
internationalization context API.

Time zone ID field

The Time zone ID field specifies an abbreviated identifier for a time zone that the container scopes to an
invocation. You can also configure the Time zone ID field for Web service business methods.

A time zone represents a temporal offset and computes daylight savings information. A valid ID indicates
any time zone supported by the java.util.TimeZone type. Specifically, a valid ID is any of the IDs that
appear in the list of time zone IDs returned by method java.util.TimeZone.getAvailableIds(), or a custom ID
having the form GMT[+|-]hh[[:]mm]; for example, America/Los_Angeles, GMT-08:00 are valid time zone IDs.

Administering the internationalization service
To use internationalization context in an Enterprise JavaBeans (EJB) application, the internationalization
service must be enabled in the runtime environments for all server-side components (servlets and
enterprise beans, including session beans enabled for Web service usage) as well as all client-side
components (EJB client applications and Web service clients).

About this task

If you do not require the internationalization service, do not enable it. Leaving the service disabled
prevents any possible performance degradation incurred by the implicit distribution of internationalization
resources.

The internationalization service cannot be enabled for HTTP clients, because support for
internationalization in that case is provided by the browser, not by the application server.

Procedure
v Enable or disable the internationalization service for servlets and enterprise beans. By default, the

service is disabled for server-side components within the application server. You enable the service by
using either the administrative console or the wsadmin tool.

v Enable or disable the internationalization service for EJB clients. By default, the service is disabled
within the client container. You enable the service by using the launchClient tool.

Enabling the internationalization service for servlets and enterprise beans
Perform this task to enable the internationalization service in the application server runtime environment.

About this task

Any servlet or enterprise bean can use internationalization context if the internationalization service is
enabled within the hosting application server instance.

Procedure
1. Start the administrative console.

2. Click Servers > Application servers > server_name > Container services > Internationalization
service.

554 Developing WebSphere applications

3. Enable the internationalization service.

a. If not already selected, select the Enable service at server startup check box.

b. Click OK.

Results

When you select the Enable service at server startup setting, the application server automatically
initializes and starts the internationalization service whenever the server starts. If you change this setting,
be sure to restart the application server for the new setting to take effect.

To disable the service, clear the Enable service at server startup check box. In this case, the
internationalization service is initialized but not started when the application server starts.

Example

Alternatively, the internationalization service can be enabled from the command line by using the wsadmin
tool. Start the wsadmin tool and enter the following commands:
set x [$AdminConfig list I18NService]
$AdminConfig modify $x { { enable true } }
$AdminConfig save
exit

What to do next

If you enable or disable the internationalization service, be sure to stop and then restart the application
server for the new setting to take effect.

Enabling the internationalization service for EJB clients
By default, the internationalization service is disabled for use within Enterprise JavaBeans (EJB) and
Web-service enabled client applications. You must enable the service for client applications as well as for
all server instances in the runtime environment.

Procedure

Enable the service.
When calling the launchClient tool, include the argument -CCDI18NService.enable=true or
-CCDI18NService.enable=yes.

Internationalization service settings
Use this page to enable or disable the internationalization service. The internationalization service
manages the implicit propagation and scoping of locale and time zone information, called
internationalization context, within application components. When the service is enabled, application
components can use the internationalization context API to programmatically manage locale and time zone
information. In turn, components can use that locale and time zone information with the Java Platform,
Standard Edition (JSE) Internationalization API to perform localizations. If internationalization support is not
required on the server, disabling the service can improve performance.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name. Then, under Container Settings, click Container Services > Internationalization
Service.

Enable service at server startup:

Specifies whether the server attempts to start the internationalization service.

Chapter 11. Developing Internationalization service 555

Information Value
Default Cleared
Range Valid values are Selected or Cleared

More information about valid values follows:
Selected

When the application server starts, it attempts to start the internationalization service automatically.
Cleared

The server does not try to start the internationalization service.

To enable the internationalization service for applications on this server, the system administrator must
select this property and then restart the server.

Internationalization service errors
Certain conditions might cause the internationalization service not to start, to issue
java.lang.IllegalStateException exceptions while an application is running, or to exercise default behaviors.

The java.lang.IllegalStateException exception indicates one of the following things:
v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose
internationalization type is set to container-managed internationalization (CMI) attempts to set invocation
context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot
modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory
Interface (JNDI) lookup on the UserInternationalization URL attribute issues a
javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions
might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to
exercise default behaviors:
v “The service is disabled ”
v “The service is not started” on page 557
v “Invalid context element” on page 558
v “Missing context element” on page 558
v “Invalid policy” on page 558
v “Missing policy” on page 558

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these
conditions. You need to examine the trace log to investigate these conditions, which requires that you
configure the diagnostic trace service to generate messages about internationalization service function.

The trace strings for the internationalization service follow; use both:
com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates
a message that indicates whether it is enabled or disabled. Applications cannot access the
internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the
UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the
reference cannot be found. In addition, the service does not scope (propagate) internationalization context
on incoming (outgoing) business method calls.

556 Developing WebSphere applications

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an
application attempts to access internationalization context and the service is not started, the API issues an
IllegalStateException exception. In addition, the service does not provide runtime support for servlets and
enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates
(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not
start. After the service is started, its state can change to BLOCKED in the event that a serious error
occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine
the problem. For instance, the internationalization service does not start if the activity service is
unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or runtime problems:
No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal
error. Examine the SystemErr.log and SystemOut.log files for information.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible Logging
(HPEL) log and trace infrastructure instead of using SystemOut.log , SystemErr.log,
trace.log, and activity.log files on distributed and IBM i systems. You can also use
HPEL in conjunction with your native z/OS logging facilities. If you are using HPEL, you can
access all of your log and trace information using the LogViewer command-line tool from
your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

No TCM support
The service cannot obtain an instance of its thread context manager (TCM). This condition is a
fatal error. Examine the SystemErr.log and SystemOut.log files for information.

No IIOP (activity service) support
The service cannot register with the activity service. This condition is a fatal error. The
internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol
(IIOP) requests without activity service support. Examine the SystemErr.log and SystemOut.log
files for information.

No AsynchBeans support
The service cannot register into the asynchronous beans environment. This warning indicates that
the asynchronous beans environment cannot support internationalization context.

No EJB container support
The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates
that the internationalization service cannot support enterprise beans. Without EJB container
support, internationalization contexts do not scope properly to EJB business methods. Review the
trace log for any EJB container-related error conditions.

No Web container support
The service cannot register with the Web container. This warning indicates that the
internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web
container support, internationalization contexts do not scope properly to servlet service methods.
Review the trace log for any Web container-related error conditions.

No Metadata support
The service cannot register with the metadata service. This warning indicates that the
internationalization service cannot process the internationalization policies within application
deployment descriptors. Without metadata support, the service associates the default

Chapter 11. Developing Internationalization service 557

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle
method and enterprise bean business method invocation. Review the trace log for any metadata
service-related error conditions.

No JNDI (Naming service) support
The service cannot bind the UserInternationalization object into the namespace. This condition is a
fatal error. Application components are unable to access internationalization context API
references, and are therefore unable to access internationalization context elements. Review the
trace log for any Naming (JNDI) service-related error conditions.

No API support
The service cannot obtain an instance of an internationalization context API object. This condition
is a fatal error. Application components are unable to access internationalization context API
references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization
service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service
encounters an unusable element, it logs a message and substitutes the corresponding default element of
the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from
application servers that do not support the internationalization service) lack internationalization context.
When the service attempts to access a caller internationalization context element (which does not exist in
this case), the service logs a message and substitutes the corresponding default element of the Java
virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers
that comprise an internationalized enterprise application. Read more information about Administering the
internationalization service in the Administering applications and their environment PDF book.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application
deployment descriptor. The service replaces the malformed attribute with the appropriate default. For
instance, if the internationalization type for an entity bean is set to Application during the run of a servlet
or EJB business method call, the service logs the inconsistency and enforces the Container setting
instead.

Also, AMI application components do have an implicit container internationalization attribute. By default
they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs
messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time
zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces
each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in
the Developing and deploying applications PDF book.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the
appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,
the service sets the attribute to Container.

558 Developing WebSphere applications

Container internationalization attributes are not mandatory for CMI application components. In the event
that a CMI servlet or EJB business method lacks a container internationalization attribute, the service
silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or metadata support is
unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet
service method and EJB business method invocation.

Read the information in the Developing and deploying applications PDF book:
v Assembling internationalized applications
v Container internationalization attributes
v Internationalization type

Chapter 11. Developing Internationalization service 559

560 Developing WebSphere applications

Chapter 12. Developing Mail, URLs, and other Java EE
resources

This page provides a starting point for finding information about resources that are used by applications
that are deployed on a Java Enterprise Edition (Java EE)-compliant application server. They include:

v JavaMail support for applications to send Internet mail

v URLs, for describing logical locations

v Resource environment entries, for mapping logical names to physical names

v Java DataBase Connectivity (JDBC) resources and other technology for data access (discussed
elsewhere)

v Java Message Service (JMS) resources and other messaging system support (discussed elsewhere)

Developing applications that use the JavaMail API

JavaMail API
The JavaMail APIs provide a framework that is platform and protocol independent for building mail client
applications that are based on Java. The JavaMail APIs are generic for sending and reading mail. They
require service providers, known in the application server as protocol providers, to interact with mail
servers that run on pertaining protocols. For example, Simple Mail Transfer Protocol (SMTP) is a popular
transport protocol for sending mail. Mail applications can connect to an SMTP server and send mail
through it by using this SMTP protocol provider.

The application server supports the JavaMail API, Version 1.4. In the application server, the JavaMail API
is supported in all web application components, namely:

v servlets

v JavaServer Pages (JSP) files

v enterprise beans

v application clients

In addition to service providers, the JavaMail API requires the JavaBeans Activation Framework (JAF) to
handle mail content that is not plain text, including Multipurpose Internet Mail Extensions (MIME), URL
pages, and file attachments.

The JavaMail APIs, the JAF, the service providers, and the protocols are shipped as part of the application
server. The API and related specifications are repackaged from materials that are licensed.

Note: If you are using Java 5 to run your code, you will need the JAF 1.1 package. For Java 6 and later,
the JAF package is part of the run time environment.

Debugging mail sessions
When you debug a mail application, you can use the mail debugging feature. The mail component
generates debugging information, on a per session basis, that can be used for problem determination or
tuning.

About this task

Enabling the debug mode triggers the mail component of the application server to print the following data
to the standard output stream:

v interactions with the mail servers

v properties of the mail session

© Copyright IBM Corp. 2012 561

This output stream is redirected to the SystemOut.log file for the specific application server.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure
1. Open the administrative console.

2. Click Resources > Mail > Mail sessions > mail session.

3. Click Enable debug mode. Debugging is enabled for that session only.

4. Click Apply or OK.

Example

The following example shows sample mail debugging output:
ResourceMgrIm I WSVR0049I: Binding Test as mail/test
SystemOut O *** In SessionReferenceable.getReference:
SystemOut O added StringRefAddr: type=ws.transport.password, content=****
SystemOut O added StringRefAddr: type=ws.isolated.class.loader, content=false
SystemOut O added StringRefAddr: type=mail.transport.protocol, content=smtp
SystemOut O added StringRefAddr: type=mail.imaps.class, content=com.sun.mail.imap.IMAPSSLStore
SystemOut O added StringRefAddr: type=mail.smtp.host, content=smtp.coldmail.com
SystemOut O added StringRefAddr: type=mail.debug, content=true
SystemOut O added StringRefAddr: type=mail.pop3s.class, content=com.sun.mail.pop3.POP3SSLStore
SystemOut O added StringRefAddr: type=mail.from, content=smith@coldmail.com
SystemOut O added StringRefAddr: type=mail.smtp.class, content=com.sun.mail.smtp.SMTPTransport
SystemOut O added StringRefAddr: type=mail.smtps.class, content=com.sun.mail.smtp.SMTPSSLTransport
SystemOut O added StringRefAddr: type=mail.imap.class, content=com.sun.mail.imap.IMAPStore
SystemOut O added StringRefAddr: type=mail.smtp.user, content=smith
SystemOut O added StringRefAddr: type=mail.pop3.class, content=com.sun.mail.pop3.POP3Store
SystemOut O added StringRefAddr: type=mail.mime.address.strict, content=true

SystemOut O DEBUG: JavaMail version 1.4ea
SystemOut O DEBUG: java.io.FileNotFoundException:
C:\Program Files\IBM\WebSphere\AppServer\java\jre\lib\javamail.providers
(The system cannot find the file specified.)
SystemOut O DEBUG: !anyLoaded
SystemOut O DEBUG: not loading resource: /META-INF/javamail.providers
SystemOut O DEBUG: successfully loaded resource: /META-INF/javamail.default.providers
SystemOut O DEBUG: Tables of loaded providers
SystemOut O DEBUG: Providers Listed By Class Name:

{com.sun.mail.smtp.SMTPSSLTransport=javax.mail.Provider
[TRANSPORT,smtps,com.sun.mail.smtp.SMTPSSLTransport,Sun Microsystems, Inc],
com.sun.mail.smtp.SMTPTransport=javax.mail.Provider
[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun Microsystems, Inc],
com.sun.mail.imap.IMAPSSLStore=javax.mail.Provider
[STORE,imaps,com.sun.mail.imap.IMAPSSLStore,Sun Microsystems, Inc],
com.sun.mail.pop3.POP3SSLStore=javax.mail.Provider
[STORE,pop3s,com.sun.mail.pop3.POP3SSLStore,Sun Microsystems, Inc],
com.sun.mail.imap.IMAPStore=javax.mail.Provider
[STORE,imap,com.sun.mail.imap.IMAPStore,Sun Microsystems, Inc],
com.sun.mail.pop3.POP3Store=javax.mail.Provider
[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun Microsystems, Inc]}
SystemOut O DEBUG: Providers Listed By Protocol:
{imaps=javax.mail.Provider[STORE,imaps,com.sun.mail.imap.IMAPSSLStore,Sun Microsystems,Inc],
imap=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Sun Microsystems, Inc],
smtps=javax.mail.Provider[TRANSPORT,smtps,com.sun.mail.smtp.SMTPSSLTransport,Sun Microsystems,Inc],
pop3=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun Microsystems, Inc],
pop3s=javax.mail.Provider[STORE,pop3s,com.sun.mail.pop3.POP3SSLStore,Sun Microsystems, Inc],
smtp=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun Microsystems, Inc]}
SystemOut O DEBUG: successfully loaded resource: /META-INF/javamail.default.address.map
SystemOut O DEBUG: !anyLoaded
SystemOut O DEBUG: not loading resource: /META-INF/javamail.address.map
SystemOut O DEBUG: java.io.FileNotFoundException:

C:\Program Files\IBM\WebSphere\AppServer\java\jre\lib\javamail.address.map
(The system cannot find the file specified.)

SystemOut O *** In SessionFactory.setPasswordAuthentication,
TRANSPORT PasswordAuthentication is based on:

SystemOut O url=smtp://smith@smtp.coldmail.com
SystemOut O user=smith
SystemOut O password=****

562 Developing WebSphere applications

SystemOut O *** In SessionFactory.getObjectInstance, session properties:
SystemOut O mail.transport.protocol=smtp
SystemOut O mail.imaps.class=com.sun.mail.imap.IMAPSSLStore
SystemOut O mail.smtp.host=smtp.coldmail.com
SystemOut O mail.debug=true

SystemOut O mail.pop3s.class=com.sun.mail.pop3.POP3SSLStore
SystemOut O mail.from=smith@coldmail.com
SystemOut O mail.smtp.class=com.sun.mail.smtp.SMTPTransport
SystemOut O mail.smtps.class=com.sun.mail.smtp.SMTPSSLTransport
SystemOut O mail.imap.class=com.sun.mail.imap.IMAPStore
SystemOut O mail.smtp.user=smith
SystemOut O mail.pop3.class=com.sun.mail.pop3.POP3Store
SystemOut O mail.mime.address.strict=true
SystemOut O DEBUG: mail.smtp.class property exists and points to com.sun.mail.smtp.SMTPTransport
SystemOut O DEBUG SMTP: useEhlo true, useAuth false
SystemOut O DEBUG SMTP: trying to connect to host "smtp.coldmail.com", port 25, isSSL false

javax.mail.MessagingException: Unknown SMTP host: smtp.coldmail.com;
nested exception is:
java.net.UnknownHostException: smtp.coldmail.com
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1280)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:370)
at javax.mail.Service.connect(Service.java:275)
at javax.mail.Service.connect(Service.java:156)
at javax.mail.Service.connect(Service.java:105)
at javax.mail.Transport.send0(Transport.java:168)
at javax.mail.Transport.send(Transport.java:98)
at com.ibm.ws.mail.ut.TestServlet.doTask(TestServlet.java:104)
at com.ibm.ws.mail.ut.TestServlet.doGet(TestServlet.java:65)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:707)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:820)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1397)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:759)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:429)
at com.ibm.ws.webcontainer.servlet.ServletWrapperImpl.handleRequest(ServletWrapperImpl.java:175)
at com.ibm.ws.webcontainer.webapp.WebApp.handleRequest(WebApp.java:3512)
at com.ibm.ws.webcontainer.webapp.WebGroup.handleRequest(WebGroup.java:273)
at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:896)
at com.ibm.ws.webcontainer.WSWebContainer.handleRequest(WSWebContainer.java:1530)
at com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:161)
at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpInboundLink.java:455)
at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewInformation(HttpInboundLink.java:384)
at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.ready(HttpInboundLink.java:272)
at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.sendToDiscriminators(NewConnectionInitialReadCallback.java:214)
at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.complete(NewConnectionInitialReadCallback.java:113)
at com.ibm.ws.tcp.channel.impl.AioReadCompletionListener.futureCompleted(AioReadCompletionListener.java:165)
at com.ibm.io.async.AbstractAsyncFuture.invokeCallback(AbstractAsyncFuture.java:217)
at com.ibm.io.async.AsyncChannelFuture.fireCompletionActions(AsyncChannelFuture.java:161)
at com.ibm.io.async.AsyncFuture.completed(AsyncFuture.java:138)
at com.ibm.io.async.ResultHandler.complete(ResultHandler.java:202)
at com.ibm.io.async.ResultHandler.runEventProcessingLoop(ResultHandler.java:766)
at com.ibm.io.async.ResultHandler$2.run(ResultHandler.java:896)
at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1487)
Caused by: java.net.UnknownHostException: smtp.coldmail.com
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:196)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)
at java.net.Socket.connect(Socket.java:519)
at java.net.Socket.connect(Socket.java:469)
at com.sun.mail.util.SocketFetcher.createSocket(SocketFetcher.java:232)
at com.sun.mail.util.SocketFetcher.getSocket(SocketFetcher.java:189)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1250)
... 32 more

This output illustrates a connection failure to a Simple Mail Transfer Protocol (SMTP) server because a
fictitious name, smtp.coldmail.com, is specified as the server name.

The following list provides tips on reading the previous sample of debugger output:

v The lines headed by DEBUG are printed by the mail provider at run time, while the two lines headed by
*** are printed by the application server at run time.

v In the second paragraph of code, the first few lines state that some configuration files are skipped. The
mail component attempts to load a number of configuration files from different locations at run time. All
those files are not required. If a required file cannot be accessed, however, the mail component creates
an exception. In this sample, there is no exception and the third-line announces that default providers
are loaded.

v The next few lines, headed by either Providers Listed by Class Name or Providers Listed by
Protocols, show the protocol providers that are loaded. The six providers that are listed are the default

Chapter 12. Developing Mail, URLs, and other Java EE resources 563

protocol providers that come under the built-in mail provider for the application server. If you install
special service providers, and these providers are used in the current mail session, those providers are
listed here with the default providers.

v The two lines headed by *** and the few lines below them are printed by the application server to show
the configuration properties of the current mail session. Although these properties are listed by their
internal name rather than the name you establish in the administrative console, you can easily
recognize the relationships between them. For example, the mail.store.protocol property corresponds to
the Protocol property in the Incoming Mail Properties section of the console panel for mail session
configuration. Review the listed properties and values to verify that they correspond.

v The few lines above the exception stack show the mail activities when sending a message. First, the
JavaMail API recognizes that the transport protocol is set to SMTP and that the
com.sun.mail.smtp.SMTPTransport provider exists. Next, the output log displays the useEhlo and
useAuth parameters, which are used by SMTP. Finally, the log shows the SMTP provider trying to
connect to the smtp.coldmail.com mail server.

v The output log show the exception stack next. This data indicates that the specified mail server either
does not exist or is not functioning.

564 Developing WebSphere applications

Chapter 13. Developing Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

v Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Programming to use asynchronous messaging
You can build enterprise applications that use Java Message Service (JMS) APIs directly to provide
asynchronous messaging services. You can also use message-driven beans as asynchronous message
consumers. If you are writing messaging programs that interoperate between WebSphere Application
Server and WebSphere MQ, there are some environmental differences that you need to take into account.

About this task

Enterprise applications can use JMS APIs directly to explicitly poll for messages on a JMS destination,
then retrieve messages for processing by business logic beans (enterprise beans).

Message-driven beans can also be used as asynchronous message consumers. When a message arrives
at the destination, the EJB container invokes the message-driven bean automatically without an application
having to explicitly poll the destination.

Procedure
v “Programming to use JMS and messaging directly” on page 566.

Your enterprise applications can use Java Message Service (JMS) programming interfaces directly to
provide messaging services, and methods that implement business logic.

If you choose not to use JNDI to obtain configuration information for your messaging provider, for
example for connection factories or destinations, you can instead use an API provided by your
messaging provider to specify that configuration information programmatically.

v “Programming for interoperation with WebSphere MQ” on page 580

There are some differences between the WebSphere Application Server environment and the
WebSphere MQ environment. If you are writing messaging programs that interoperate between these
two environments, you should be aware of these differences and take them into account when
designing, coding and deploying your programs.

© Copyright IBM Corp. 2012 565

v “Programming to use message-driven beans” on page 406.

Applications can use message-driven beans as asynchronous message consumers. You deploy a
message-driven bean as a message listener for a destination. When a message arrives at the
destination, the EJB container invokes the message-driven bean automatically without an application
having to explicitly poll the destination.

Asynchronous beans - WebSphere Trader sample application

The Asynchronous beans - WebSphere Trader sample application illustrates how to implement a streaming
stock ticker server and client using asynchronous beans and Java Platform, Enterprise Edition (Java EE)
services such as:

v Servlets

v Java Message Service (JMS)

v Session enterprise beans

v Container-managed persistence (CMP) 2.0 enterprise beans

v Message-driven beans (MDB)

This sample uses several parts to maximize the utilization of a server:

v Work - Runs Java EE context-aware code on a thread.

v Alarm - Runs Java EE context-aware code at a given time interval.

v EventSource - A method of broadcasting events to registered listeners.

v SubsystemMonitor - A thread that monitors the status of any asynchronous system and uses an
EventSource method to inform registered listeners of the system status.

v WorkManager - Thread configuration and Java EE context policies that are used by various
asynchronous beans parts.

v AsynchScope - A collection of alarms, subsystem monitors and other asynchronous scopes that support
relationships. This collection uses a single WorkManager thread and is also an event source.

v Startup Bean - A specialized, stateful session enterprise bean that supports bootstrapping asynchronous
work when the application starts.

This sample is available from the Samples section of the information center.

Programming to use JMS and messaging directly
Your enterprise applications can use Java Message Service (JMS) programming interfaces directly to
provide messaging services, and methods that implement business logic.

About this task

WebSphere Application Server supports asynchronous messaging as a method of communication based
on JMS programming interfaces. Using JMS, enterprise applications can exchange messages
asynchronously with other JMS clients by using JMS destinations (queues or topics). An enterprise
application can explicitly poll for messages on a destination.

If you choose not to use JNDI to obtain configuration information for your messaging provider, for example
for connection factories or destinations, you can instead use an API provided by your messaging provider
to specify that configuration information programmatically.

If you want to transmit messages between JMS applications and traditional WebSphere MQ applications,
you must consider how the JMS message structure is mapped onto a WebSphere MQ message. This
includes scenarios where you want to use WebSphere MQ to manipulate messages transmitted between
two JMS applications; for example, by using WebSphere MQ as a message broker.

566 Developing WebSphere applications

By default, JMS messages held on WebSphere MQ queues use an MQRFH2 header to hold some of the
JMS message header information. Many traditional WebSphere MQ applications cannot process
messages with these headers, and require their own characteristic headers, for example the MQWIH for
WebSphere MQ Workflow applications. For more information about how the JMS message structure is
mapped onto a WebSphere MQ message, see the section Mapping JMS messages in the WebSphere MQ
information center.

Example

This following example shows how to programmatically configure a resource for the default messaging
provider.

In this example, a JMS connection to a service integration bus is created by using the API in the
com.ibm.websphere.sib package. This is an alternative to using JNDI to look up administratively configured
connection factories. After the connection is established, the sample program reads lines of input from the
console and sends them as JMS text messages to the specified destination.

This example can be run as a thin client application, or as a stand-alone client application.
/*
* Sample program
* © COPYRIGHT International Business Machines Corp. 2009
* All Rights Reserved * Licensed Materials - Property of IBM
*
* This sample program is provided AS IS and may be used, executed,
* copied and modified without royalty payment by customer
*
* (a) for its own instruction and study,
* (b) in order to develop applications designed to run with an IBM
* WebSphere product for the customer’s own internal use.
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

import com.ibm.websphere.sib.api.jms.JmsConnectionFactory;
import com.ibm.websphere.sib.api.jms.JmsFactoryFactory;
import com.ibm.websphere.sib.api.jms.JmsQueue;
import com.ibm.websphere.sib.api.jms.JmsTopic;

/**
* Sample code to programmatically create a connection to a bus and
* send a text message.
*
* Example command lines:
* SIBusSender topic://my/topic?topicSpace=Default.Topic.Space MyBus localhost:7276
* SIBusSender queue://myQueue MyBus localhost:7286:BootstrapSecureMessaging InboundSecureMessaging
*/
public class SIBusSender {

/**
* @param args DEST_URL,BUS_NAME,PROVIDER_ENDPOINTS,[TRANSPORT_CHAIN]
*/
public static void main(String[] args) throws JMSException, IOException {

// Parse the arguments

Chapter 13. Developing Messaging resources 567

if (args.length < 3) {
throw new IllegalArgumentException(

"Usage: SIBusSender <DEST_URL> <BUS_NAME> <PROVIDER_ENDPOINTS> [TARGET_TRANSPORT_CHAIN]");
}
String destUrl = args[0];
String busName = args[1];
String providerEndpoints = args[2];
String targetTransportChain = "InboundBasicMessaging";
if (args.length >= 4) targetTransportChain = args[3];

// Obtain the factory factory
JmsFactoryFactory jmsFact = JmsFactoryFactory.getInstance();

// Create a JMS destination
Destination dest;
if (destUrl.startsWith("topic://")) {

JmsTopic topic = jmsFact.createTopic(destUrl);
// Setter methods could be called here to configure the topic
dest = topic ;

}
else {

JmsQueue queue = jmsFact.createQueue(destUrl);
// Setter methods could be called here to configure the queue
dest = queue;

}

// Create a unified JMS connection factory
JmsConnectionFactory connFact = jmsFact.createConnectionFactory();

// Configure the connection factory
connFact.setBusName(busName);
connFact.setProviderEndpoints(providerEndpoints);
connFact.setTargetTransportChain(targetTransportChain);

// Create the connection
Connection conn = connFact.createConnection();

Session session = null;
MessageProducer producer = null;
try {

// Create a session
session = conn.createSession(false, // Not transactional

Session.AUTO_ACKNOWLEDGE);

// Create a message producer
producer = session.createProducer(dest);

// Loop reading lines of text from the console to send
System.out.println("Ready to send to " + dest + " on bus " + busName);
BufferedReader lineInput = new BufferedReader(new InputStreamReader(System.in));
String line = lineInput.readLine();
while (line != null && line.length() > 0) {

// Create a text message containing the line
TextMessage message = session.createTextMessage();
message.setText(line);

// Send the message
producer.send(message,

Message.DEFAULT_DELIVERY_MODE,
Message.DEFAULT_PRIORITY,
Message.DEFAULT_TIME_TO_LIVE);

// Read the next line
line = lineInput.readLine();

}

568 Developing WebSphere applications

}
// Finally block to ensure we close our JMS objects
finally {

// Close the message producer
try {

if (producer != null) producer.close();
}
catch (JMSException e) {

System.err.println("Failed to close message producer: " + e);
}

// Close the session
try {

if (session != null) session.close();
}
catch (JMSException e) {

System.err.println("Failed to close session: " + e);
}

// Close the connection
try {

conn.close();
}
catch (JMSException e) {

System.err.println("Failed to close connection: " + e);
}

}
}

}

Designing an enterprise application to use JMS
There are many things to consider when designing an enterprise application to use the JMS APIs directly
for asynchronous messaging.

Procedure
v For messaging operations, you should write application programs that use only references to the

interfaces defined in Sun's javax.jms package.

JMS defines a generic view of messaging that maps onto the underlying transport. An enterprise
application that uses JMS makes use of the following interfaces that are defined in Sun's javax.jms
package:
Connection

Provides access to the underlying transport, and is used to create Sessions.
Session

Provides a context for producing and consuming messages, including the methods used to
create MessageProducers and MessageConsumers.

MessageProducer
Used to send messages.

MessageConsumer
Used to receive messages.

The generic JMS interfaces are subclassed into the following more specific versions for point-to-point
and publish/subscribe behavior.

Chapter 13. Developing Messaging resources 569

Table 64. The point-to-point and publish/subscribe versions of JMS common interfaces. The first column of this table
lists the JMS common interfaces, the second column lists the corresponding point-to-point interfaces, and the third
column lists the corresponding publish/subscribe interfaces.

JMS common interfaces Point-to-point interfaces Publish/subscribe interfaces

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession, TopicSession,

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver,
QueueBrowser

TopicSubscriber

For more information about using these JMS interfaces, see the Java Message Service Documentation
and the Using Java section of the WebSphere MQ information center.

The section “Java Message Service (JMS) Requirements” of the J2EE specification gives a list of
methods that must not be called in web and EJB containers:

javax.jms.Session method setMessageListener
javax.jms.Session method getMessageListener
javax.jms.Session method run
javax.jms.QueueConnection method createConnectionConsumer
javax.jms.TopicConnection method createConnectionConsumer
javax.jms.TopicConnection method createDurableConnectionConsumer
javax.jms.MessageConsumer method getMessageListener
javax.jms.MessageConsumer method setMessageListener
javax.jms.Connection setExceptionListener
javax.jms.Connection stop
javax.jms.Connection setClientID

This method restriction is enforced in WebSphere Application Server by throwing a
javax.jms.IllegalStateException exception.

v Applications refer to JMS resources that are predefined, as administered objects, to WebSphere
Application Server.

Details of JMS resources that are used by enterprise applications are defined to WebSphere Application
Server and bound into the JNDI namespace by the WebSphere administrative support. An enterprise
application can retrieve these objects from the JNDI namespace and use them without needing to know
anything about their implementation. This enables the underlying messaging architecture defined by the
JMS resources to be changed without requiring changes to the enterprise application.

Table 65. JMS resources for point-to-point and publish/subscribe messaging. The left hand column of this table lists
the JMS resources for point-to-point messaging, and the right hand column lists the JMS resources for
publish/subscribe.

Point-to-point Publish/subscribe

ConnectionFactory (or QueueConnectionFactory)
Queue

ConnectionFactory (or TopicConnectionFactory)
Topic

A connection factory is used to create connections from the JMS provider to the messaging system, and
encapsulates the configuration parameters needed to create connections.

v To improve performance, the application server pools connections and sessions with the JMS provider.
You have to configure the connection and session pool properties appropriately for your applications,
otherwise you might not get the connection and session behavior that you want.

v Applications must not cache JMS connections, sessions, producers or consumers. WebSphere
Application Server closes these objects when a bean or servlet completes, and so any attempt to use a
cached object will fail with a javax.jms.IllegalStateException exception.

To improve performance, applications can cache JMS objects that have been looked up from JNDI. For
example, an EJB or servlet needs to look up a JMS ConnectionFactory only once, but it must call the

570 Developing WebSphere applications

http://java.sun.com/products/jms/docs.html
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

createConnection method on each instantiation. Because of the effect of pooling on connections and
sessions with the JMS provider, there should be no performance impact.

v A non-durable subscriber can only be used in the same transactional context (for example, a global
transaction or an unspecified transaction context) that existed when the subscriber was created.

v Using durable subscriptions with the default messaging provider. A durable subscription on a JMS topic
enables a subscriber to receive a copy of all messages published to that topic, even after periods of
time when the subscriber is not connected to the server. Therefore, subscriber applications can operate
disconnected from the server for long periods of time, and then reconnect to the server and process
messages that were published during their absence. If an application creates a durable subscription, it
is added to the runtime list that administrators can display and act on through the administrative
console.

Each durable subscription is given a unique identifier, clientID##subName where:

clientID
The client identifier used to associate a connection and its objects with the messages
maintained for applications (as clients of the JMS provider). You should use a naming
convention that helps you identify the applications, in case you have to relate durable
subscriptions to the associated applications for runtime administration.

subName
The subscription name used to uniquely identify a durable subscription within a given client
identifier.

For durable subscriptions created by message-driven beans, these values are set on the JMS activation
specification. For other durable subscriptions, the client identifier is set on the JMS connection factory,
and the subscription name is set by the application on the createDurableSubscriber operation.

To create a durable subscription to a topic, an application uses the createDurableSubscriber operation
defined in the JMS API:

public TopicSubscriber createDurableSubscriber(Topic topic,
java.lang.String subName,
java.lang.String messageSelector,
boolean noLocal)
throws JMSException

topic The name of the JMS topic to subscribe to. This is the name of an object supporting the
javax.jms.Topic interfaces, such as found by looking up a suitable JNDI entry.

subName
The name used to identify this subscription.

messageSelector
Only messages with properties matching the message selector expression are delivered to
consumers. A value of null or an empty string indicates that all messages should be delivered.

noLocal
If set to true, this parameter prevents the delivery of messages published on the same
connection as the durable subscriber.

Applications can use a two argument form of the createDurableSubscriber operation that takes only
topic and subName parameters. This alternative call directly invokes the four argument version shown
above, but sets messageSelector to null (so all messages are delivered) and sets noLocal to false (so
messages published on the connection are delivered). For example, to create a durable subscription to
the topic called myTopic, with the subscription name of mySubscription:

session.createDurableSubscriber(myTopic,"mySubscription");

If the createDurableSubscription operation fails, it throws a JMS exception that provides a message and
linked exception to give more detail about the cause of the problem.

To delete a durable subscription, an application uses the unsubscribe operation defined in the JMS API

In normal operation there can be at most one active (connected) subscriber for a durable subscription at
a time. However, the subscriber application can be running in a cloned application server, for failover

Chapter 13. Developing Messaging resources 571

and load balancing purposes. In this case the “one active subscriber” restriction is lifted to provide a
shared durable subscription that can have multiple simultaneous consumers.

For more information about application use of durable subscriptions, see the section “Using Durable
Subscriptions” in the JMS specification.

v Decide what message selectors are needed. You can use the JMS message selector mechanism to
select a subset of the messages on a queue so that this subset is returned by a receive call. The
selector can refer to fields in the JMS message header and fields in the message properties.

v Acting on messages received. When a message is received, you can act on it as needed by the
business logic of the application. Some general JMS actions are to check that the message is of the
correct type and extract the content of the message. To extract the content from the body of the
message, cast from the generic Message class (which is the declared return type of the receive
methods) to the more specific subclass, such as TextMessage. It is good practice always to test the
message class before casting, so that unexpected errors can be handled gracefully.

In this example, the instanceof operator is used to check that the message received is of the
TextMessage type. The message content is then extracted by casting to the TextMessage subclass.

if (inMessage instanceof TextMessage)

...
String replyString = ((TextMessage) inMessage).getText();

v JMS applications using the default messaging provider can access, without any restrictions, the content
of messages that have been received from WebSphere Application Server Version 5 embedded
messaging or WebSphere MQ.

v JMS applications can access the full set of JMS_IBM* properties. These properties are of value to JMS
applications that use resources provided by the default messaging provider, the V5 default messaging
provider, or the WebSphere MQ provider.

For messages handled by WebSphere MQ, the JMS_IBM* properties are mapped to equivalent
WebSphere MQ Message Descriptor (MQMD) fields. For more information about the JMS_IBM*
properties and MQMD fields, see the Using Java section of the WebSphere MQ information center.

v JMS applications can use report messages as a form of managed request/response processing, to give
remote feedback to producers on the outcome of their send operations and the fate of their messages.
JMS applications can request a full range of report options using JMS_IBM_Report_Xxxx message
properties. For more information about using JMS report messages, see “JMS report messages” on
page 608.

v JMS applications can use the JMS_IBM_Report_Discard_Msg property to control how a request message
is disposed of if it cannot be delivered to the destination queue.

MQRO_Dead_Letter_Queue
This is the default. The request message should be written to the dead letter queue.

MQRO_Discard
The request message should be discarded. This is usually used in conjunction with
MQRO_Exception_With_Full_Data to return an undeliverable request message to its sender.

v Using a listener to receive messages asynchronously. In a client, not in a servlet or enterprise bean, an
alternative to making calls to QueueReceiver.receive() is to register a method that is called automatically
when a suitable message is available; for example:

...
MyClass listener =new MyClass();
queueReceiver.setMessageListener(listener);
//application continues with other application-specific behavior.
...

When a message is available, it is retrieved by the onMessage() method on the listener object.

import javax.jms.*;
public class MyClass implements MessageListener
{
public void onMessage(Message message)

572 Developing WebSphere applications

{
System.out.println("message is "+message);
//application specific processing here
...

}
}

For asynchronous message delivery, the application code cannot catch exceptions raised by failures to
receive messages. This is because the application code does not make explicit calls to receive()
methods. To cope with this situation, you can register an ExceptionListener, which is an instance of a
class that implements the onException() method. When an error occurs, this method is called with the
JMSException passed as its only parameter.

For more details about using listeners to receive messages asynchronously, see the Java Message
Service Documentation.

Note: An alternative to developing your own JMS listener class, you can use a message-driven bean,
as described in Programming with message-driven beans.

v If you want to use authentication with WebSphere MQ or the Version 5 Embedded Messaging support,
you cannot have user IDs longer than 12 characters. For example, the default Windows NT user ID,
administrator, is not valid for use with WebSphere internal messaging, because it contains 13
characters.

v The following points, as defined in the EJB specification, apply to the use of flags on createxxxSession
calls:
– The transacted flag passed on createxxxSession is ignored inside a global transaction and all work is

performed as part of the transaction. Outside of a transaction the transacted flag is used and, if set
to true, the application should use session.commit() and session.rollback() to control the completion
of the work. In an EJB2.0 module, if the transacted flag is set to true and outside of an XA
transaction, then the session is involved in the WebSphere local transaction and the unresolved
action attribute of the method applies to the JMS work if it is not committed or rolled back by the
application.

– Clients cannot use Message.acknowledge() to acknowledge messages. If a value of
CLIENT_ACKNOWLEDGE is passed on the createxxxSession call, then messages are automatically
acknowledged by the application server and Message.acknowledge() is not used.

v If you want your application to use WebSphere MQ as an external JMS provider, then send messages
within a container-managed transaction.

When you use WebSphere MQ as an external JMS provider, messages sent within a user-managed
transaction can arrive before the transaction commits. This occurs only when you use WebSphere MQ
as an external JMS provider, and you send messages to a WebSphere MQ queue within a
user-managed transaction. The message arrives on the destination queue before the transaction
commits.

The cause of this problem is that the WebSphere MQ resource manager has not been enlisted in the
user-managed transaction.

The solution is to use a container-managed transaction.

Developing an enterprise application to use JMS
Use this task to develop an enterprise application to use the JMS API directly for asynchronous
messaging.

About this task

This topic gives an overview of the steps needed to develop an enterprise application (servlet or enterprise
bean) to use the JMS API directly for asynchronous messaging.

Chapter 13. Developing Messaging resources 573

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

This topic only describes the JMS-related case; it does not describe general enterprise application
programming, which you should already be familiar with. For detailed information about these steps, and
for examples of developing an enterprise application to use JMS, see the Java Message Service
Documentation

Details of JMS resources that are used by enterprise applications are defined to WebSphere Application
Server and bound into the JNDI namespace by the WebSphere Application Server administrative support.

To use JMS, complete the following general steps:

Procedure
1. Import JMS packages. An enterprise application that uses JMS starts with a number of import

statements for JMS, which should include at least the following statements:

import javax.jms.*; //JMS interfaces
import javax.naming.*; //Used for JNDI lookup of administered objects

2. Get an initial context:

try {
ctx = new InitialContext(env);

...

3. Retrieve administered objects from the JNDI namespace. The InitialContext.lookup() method is used
to retrieve administered objects (a JMS connection factory and JMS destinations). The following
example shows how to receive a message from a queue:

qcf = (QueueConnectionFactory)ctx.lookup(qcfName);
...

inQueue = (Queue)ctx.lookup(qnameIn);
...

An alternative, but less manageable, approach to obtaining administratively-defined JMS destination
objects by JNDI lookup is to use the Session.createQueue(String) method or
Session.createTopic(String) method. For example:

Queue q = mySession.createQueue("Q1");

creates a JMS Queue instance that can be used to reference the existing destination Q1.

In its simplest form, the parameter to these create methods is the name of an existing destination.
For more complex situations, applications can use a URI-based format, which allows an arbitrary
number of name value pairs to be supplied to set various properties of the JMS destination object.

4. Create a connection to the messaging service provider. The connection provides access to the
underlying transport, and is used to create sessions. The createQueueConnection() method on the
factory object is used to create the connection.

connection = qcf.createQueueConnection();

The JMS specification defines that connections should be created in the stopped state. Until the
connection starts, MessageConsumers that are associated with the connection cannot receive any
messages. To start the connection, issue the following command:

connection.start();

5. Create a session, for sending or receiving messages. The session provides a context for producing
and consuming messages, including the methods used to create MessageProducers and
MessageConsumers. The createQueueSession method is used on the connection to obtain a
session. The method takes two parameters:
v A boolean that determines whether the session is transacted.
v A parameter that determines the acknowledge mode.

boolean transacted = false;
session = connection.createQueueSession(transacted,

Session.AUTO_ACKNOWLEDGE);

574 Developing WebSphere applications

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

In this example, the session is not transacted, and it should automatically acknowledge received
messages. With these settings, a message is backed out only after a system error or if the
application terminates unexpectedly.

The following points, as defined in the EJB specification, apply to these flags:
v The transacted flag passed on createQueueSession is ignored inside a global transaction and all

work is performed as part of the transaction. Outside of a transaction the transacted flag is used
and, if set to true, the application should use session.commit() and session.rollback() to control the
completion of the work. In an EJB2.0 module, if the transacted flag is set to true and outside of an
XA transaction, then the session is involved in the WebSphere local transaction and the unresolved
action attribute of the method applies to the JMS work if it is not committed or rolled back by the
application.

v Clients cannot use Message.acknowledge() to acknowledge messages. If a value of
CLIENT_ACKNOWLEDGE is passed on the createxxxSession call, then messages are
automatically acknowledged by the application server and Message.acknowledge() is not used.

6. Send a message.

a. Create MessageProducers to create messages. For point-to-point messaging the
MessageProducer is a QueueSender that is created by passing an output queue object (retrieved
earlier) into the createSender method on the session. A QueueSender is usually created for a
specific queue, so that all messages sent by that sender are sent to the same destination.

QueueSender queueSender = session.createSender(inQueue);

b. Create the message. Use the session to create an empty message and add the data passed.

JMS provides several message types, each of which embodies some knowledge of its content. To
avoid referencing the vendor-specific class names for the message types, methods are provided
on the Session object for message creation.

In this example, a text message is created from the outString property:
TextMessage outMessage = session.createTextMessage(outString);

c. Send the message.

To send the message, the message is passed to the send method on the QueueSender:
queueSender.send(outMessage);

7. Receive replies.

a. Create a correlation ID to link the message sent with any replies. In this example, the client
receives reply messages that are related to the message that it has sent, by using a
provider-specific message ID in a JMSCorrelationID.

messageID = outMessage.getJMSMessageID();

The correlation ID is then used in a message selector, to select only messages that have that ID:
String selector = "JMSCorrelationID = ’"+messageID+"’";

b. Create a MessageReceiver to receive messages. For point-to-point the MessageReceiver is a
QueueReceiver that is created by passing an input queue object (retrieved earlier) and the
message selector into the createReceiver method on the session.

QueueReceiver queueReceiver = session.createReceiver(outQueue, selector);

c. Retrieve the reply message. To retrieve a reply message, the receive method on the
QueueReceiver is used:

Message inMessage = queueReceiver.receive(2000);

The parameter in the receive call is a timeout in milliseconds. This parameter defines how long
the method should wait if there is no message available immediately. If you omit this parameter,
the call blocks indefinitely. If you do not want any delay, use the receiveNoWait()method. In this
example, the receive call returns when the message arrives, or after 2000ms, whichever is
sooner.

d. Act on the message received. When a message is received, you can act on it as needed by the
business logic of the client. Some general JMS actions are to check that the message is of the
correct type and extract the content of the message. To extract the content from the body of the

Chapter 13. Developing Messaging resources 575

message, it is necessary to cast from the generic Message class (which is the declared return
type of the receive methods) to the more specific subclass, such as TextMessage. It is good
practice always to test the message class before casting, so that unexpected errors can be
handled gracefully.

In this example, the instanceof operator is used to check that the message received is of the
TextMessage type. The message content is then extracted by casting to the TextMessage
subclass.

if (inMessage instanceof TextMessage)

...
String replyString = ((TextMessage) inMessage).getText();

8. Closing down. If the application needs to create many short-lived JMS objects at the Session level or
lower, it is important to close all the JMS resources used. To do this, you call the close() method on
the various classes (QueueConnection, QueueSession, QueueSender, and QueueReceiver) when the
resources are no longer required.

queueReceiver.close();
...

queueSender.close();
...

session.close();
session = null;

...
connection.close();
connection = null;

9. Publishing and subscribing to messages. To use JMS Publish/Subscribe support instead of
point-to-point messaging, the general actions are the same; for example, to create a session and
connection. The exceptions are that topic resources are used instead of queue resources (such as
TopicPublisher instead of QueueSender), as shown in the following example to publish a message:

// Creating a TopicPublisher
TopicPublisher pub = session.createPublisher(topic);

...
pub.publish(outMessage);

...
// Closing TopicPublisher
pub.close();

10. Handling errors Any JMS runtime errors are reported by exceptions. The majority of methods in JMS
throw JMSExceptions to indicate errors. It is good programming practice to catch these exceptions
and display them on a suitable output.

Unlike normal Java exceptions, a JMSException can contain another exception embedded in it. The
implementation of JMSException does not include the embedded exception in the output of its
toString()method. Therefore, you must check explicitly for an embedded exception and print it out, as
shown in the following example:

catch (JMSException je)
{

System.out.println("JMS failed with "+je);
Exception le = je.getLinkedException();
if (le != null)
{

System.out.println("linked exception "+le);
}

}

What to do next

After you have packaged your application, you can next deploy the application into WebSphere Application
Server, as described in “Deploying an enterprise application to use JMS” on page 2085.

576 Developing WebSphere applications

Developing a JMS client
Use this task to develop a JMS client application to use messages to communicate with enterprise
applications.

About this task

This topic gives an overview of the steps needed to develop a JMS client application. This topic only
describes the JMS-related case; it does not describe general client programming, which you should
already be familiar with. For detailed information about these steps, and for examples of developing JMS
clients, see the Java Message Service Documentation and the Using Java section of the WebSphere MQ
information center.

A JMS client assumes that the JMS resources (such as a queue connection factory and queue destination)
already exist. A client application can obtain suitable JMS resources either by JNDI lookup or
programmatically without using JNDI.

For information about the Thin Client for JMS with WebSphere Application Server, which is an embeddable
technology that provides JMS V1.1 connections to a WebSphere Application Server default messaging
provider messaging engine, see Using JMS to connect to a WebSphere Application Server default
messaging provider messaging engine.

For more information about developing client applications and configuring JMS resources for them, see
Developing J2EE application client code and related tasks.

To use JMS, a typical JMS client program completes the following general steps. This example is based
on the use of JNDI lookups to obtain JMS resources.

Procedure
1. Import JMS packages. An enterprise application that uses JMS starts with a number of import

statements for JMS; for example:

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.jms.*;

2. Get an initial context.

try {
ctx = new InitialContext(env);

...

3. Define the parameters that the client is to use; for example, to identify the queue connection factory
and to assemble a message to be sent.

public class JMSppSampleClient
{

public static void main(String[] args)
throws JMSException, Exception

{
String messageID = null;
String outString = null;
String qcfName = "java:comp/env/jms/ConnectionFactory";
String qnameIn = "java:comp/env/jms/Q1";
String qnameOut = "java:comp/env/jms/Q2";
boolean verbose = false;

QueueSession session = null;
QueueConnection connection = null;
Context ctx = null;

QueueConnectionFactory qcf = null;

Chapter 13. Developing Messaging resources 577

http://java.sun.com/products/jms/docs.html

Queue inQueue = null;
Queue outQueue = null;

...

4. Retrieve administered objects from the JNDI namespace. The InitialContext.lookup() method is used
to retrieve administered objects (a queue connection factory and the queue destinations):

qcf = (QueueConnectionFactory)ctx.lookup(qcfName);
...

inQueue = (Queue)ctx.lookup(qnameIn);
outQueue = (Queue)ctx.lookup(qnameOut);

...

5. Create a connection to the messaging service provider. The connection provides access to the
underlying transport, and is used to create sessions. The createQueueConnection() method on the
factory object is used to create the connection.

connection = qcf.createQueueConnection();

The JMS specification defines that connections should be created in the stopped state. Until the
connection starts, MessageConsumers that are associated with the connection cannot receive any
messages. To start the connection, issue the following command:

connection.start();

6. Create a session, for sending and receiving messages. The session provides a context for producing
and consuming messages, including the methods used to create MessageProducers and
MessageConsumers. The createQueueSession method is used on the connection to obtain a
session. The method takes two parameters:
v A boolean that determines whether the session is transacted.
v A parameter that determines the acknowledge mode.

boolean transacted = false;
session = connection.createQueueSession(transacted,

Session.AUTO_ACKNOWLEDGE);

In this example, the session is not transacted, and it should automatically acknowledge received
messages. With these settings, a message is backed out only after a system error or if the client
application terminates unexpectedly.

7. Send the message.

a. Create MessageProducers to create messages. For point-to-point the MessageProducer is a
QueueSender that is created by passing an output queue object (retrieved earlier) into the
createSender method on the session. A QueueSender is usually created for a specific queue, so
that all messages sent by that sender are sent to the same destination.

QueueSender queueSender = session.createSender(inQueue);

b. Create the message. Use the session to create an empty message and add the data passed.

JMS provides several message types, each of which embodies some knowledge of its content. To
avoid referencing the vendor-specific class names for the message types, methods are provided
on the Session object for message creation.

In this example, a text message is created from the outString property, which could be provided
as an input parameter on invocation of the client program or constructed in some other way:

TextMessage outMessage = session.createTextMessage(outString);

c. Send the message.

To send the message, the message is passed to the send method on the QueueSender:
queueSender.send(outMessage);

8. Receive replies.

a. Create a correlation ID to link the message sent with any replies. In this example, the client
receives reply messages that are related to the message that it has sent, by using a
provider-specific message ID in a JMSCorrelationID.

messageID = outMessage.getJMSMessageID();

578 Developing WebSphere applications

The correlation ID is then used in a message selector, to select only messages that have that ID:
String selector = "JMSCorrelationID = ’"+messageID+"’";

b. Create a MessageReceiver to receive messages. For point-to-point the MessageReceiver is a
QueueReceiver that is created by passing an input queue object (retrieved earlier) and the
message selector into the createReceiver method on the session.

QueueReceiver queueReceiver = session.createReceiver(outQueue, selector);

c. Retrieve the reply message. To retrieve a reply message, the receive method on the
QueueReceiver is used:

Message inMessage = queueReceiver.receive(2000);

The parameter in the receive call is a timeout in milliseconds. This parameter defines how long
the method should wait if there is no message available immediately. If you omit this parameter,
the call blocks indefinitely. If you do not want any delay, use the receiveNoWait()method. In this
example, the receive call returns when the message arrives, or after 2000ms, whichever is
sooner.

d. Act on the message received. When a message is received, you can act on it as needed by the
business logic of the client. Some general JMS actions are to check that the message is of the
correct type and extract the content of the message. To extract the content from the body of the
message, cast from the generic Message class (which is the declared return type of the receive
methods) to the more specific subclass, such as TextMessage. It is good practice always to test
the message class before casting, so that unexpected errors can be handled gracefully.

In this example, the instanceof operator is used to check that the message received is of the
TextMessage type. The message content is then extracted by casting to the TextMessage
subclass.

if (inMessage instanceof TextMessage)

...
String replyString = ((TextMessage) inMessage).getText();

9. Closing down. If the application needs to create many short-lived JMS objects at the Session level or
lower, it is important to close all the JMS resources used. To do this, you call the close() method on
the various classes (QueueConnection, QueueSession, QueueSender, and QueueReceiver) when the
resources are no longer required.

queueReceiver.close();
...

queueSender.close();
...

session.close();
session = null;

...
connection.close();
connection = null;

10. Publishing and subscribing messages. To use publish/subscribe support instead of point-to-point
messaging, the general client actions are the same; for example, to create a session and connection.
The exceptions are that topic resources are used instead of queue resources (such as TopicPublisher
instead of QueueSender), as shown in the following example to publish a message:

// Creating a TopicPublisher
TopicPublisher pub = session.createPublisher(topic);

...
pub.publish(outMessage);

...
// Closing TopicPublisher
pub.close();

11. Handling errors Any JMS runtime errors are reported by exceptions. The majority of methods in JMS
throw JMSExceptions to indicate errors. It is good programming practice to catch these exceptions
and display them on a suitable output.

Chapter 13. Developing Messaging resources 579

Unlike normal Java exceptions, a JMSException can contain another exception embedded in it. The
implementation of JMSException does not include the embedded exception in the output of its
toString()method. Therefore, you must check explicitly for an embedded exception and print it out, as
shown in the following example:

catch (JMSException je)
{

System.out.println("JMS failed with "+je);
Exception le = je.getLinkedException();
if (le != null)
{

System.out.println("linked exception "+le);
}

}

What to do next

For information about running a client against a specific remote server: “Running a Java EE client
application with launchClient” on page 2014.

Programming for interoperation with WebSphere MQ
There are some differences between the WebSphere Application Server environment and the WebSphere
MQ environment. If you are writing messaging programs that interoperate between these two
environments, you should be aware of these differences and take them into account when designing,
coding and deploying your programs.

Procedure
1. Learn more about the environment differences and other relevant concepts in How messages are

passed between service integration and a WebSphere MQ network.

2. Read about designing programs that interoperate with WebSphere MQ in “Designing an application for
interoperation with WebSphere MQ.”

Designing an application for interoperation with WebSphere MQ
To design an application to interoperate with queue managers in a WebSphere MQ network you need to
first consider the differences between the two environments, then design your JMS client based on the
Java EE pattern, then identify any name-handling incompatibilities between the service integration bus and
WebSphere MQ environments, then define the topic mappings.

Before you begin

Identify the WebSphere MQ queues with which your applications will interoperate. The exact names and
locations can be left to the installation.

Procedure
1. Familiarize yourself with important reference information for the two interoperating environments,

WebSphere MQ and the service integration bus.

There are three types of reference material:

v For mapping that is unique to service integration bus messaging, see “Mapping additional MQRFH2
header fields in service integration” on page 594.

v For mapping between WebSphere Application Server service integration bus messaging and
WebSphere MQ, see How service integration converts messages to and from WebSphere MQ
format and “Mapping additional MQRFH2 header fields in service integration” on page 594.

v For the differences between the WebSphere MQ functions and the service integration bus, see
“WebSphere MQ functions not supported by service integration” on page 598.

2. Design your JMS client based on the typical Java EE pattern:

580 Developing WebSphere applications

a. Use JNDI to find a ConnectionFactory object.

b. Use JNDI to find one or more Destination objects.

c. Use the connection factory to create a JMS Connection object.

d. Use the JMS connection to create one or more JMS Session objects.

e. Use a JMS session and the destinations to create the MessageProducer and MessageConsumer
objects.

f. Start delivery of messages by starting the JMS connection.

At this point a client has the basic JMS setup needed to produce and consume messages.

3. Identify any name-handling incompatibilities between the service integration bus and WebSphere MQ
environments. If necessary, identify alias requirements, so that the WebSphere MQ application can
handle service integration bus destination names of greater than 48 characters. For more information,
see How to address bus destinations and WebSphere MQ queues.

4. Identify any reply destinations that are used by your application and check them for name-handling
incompatibilities. For more information, see “Mapping destinations to and from WebSphere MQ
queues, topics, and destinations” on page 588.

5. If your application publishes messages that you want to be forwarded to WebSphere MQ brokers, work
with your administrator to define appropriate topic mappings on a publish/subscribe broker profile. You
must also define topic mappings for any permanent reply topics. See Reply-to topics for request-reply
messaging through a WebSphere MQ link and Request-reply messaging through a WebSphere MQ
link for more information.

Mapping the message body to and from WebSphere MQ format
The WebSphere MQ message header (MQRFH2) and descriptor (MQMD) can contain information about
the format of the WebSphere MQ message body. Service integration uses information contained in the
MQRFH2 and MQMD when converting a message from WebSphere MQ format, and puts information into
the MQRFH2 and MQMD when converting a message to WebSphere MQ format.

Exchanging messages between JMS programs through service integration and
WebSphere MQ

Usually, you do not have to be aware of conversion between message formats to exchange JMS
messages between service integration and WebSphere MQ, because service integration performs the
appropriate conversion automatically, including character and numeric encoding. However, you might have
to learn about message conversion if your JMS applications do not behave as expected, or if your service
integration configuration includes JMS programs or mediations that process messages to or from non-JMS
WebSphere MQ programs.

If your service integration applications exchange MapMessage objects with WebSphere MQ applications,
you might have to specify a non-default map message encoding format.

WebSphere MQ message payload: format indications

The WebSphere MQ format message contains the following two indications of the payload format:

MQRFH2 <mcd> folder, Msd field

This field can contain information about the payload format. This is the “JMS format” information.

v When service integration converts a message to WebSphere MQ format, it automatically sets
the appropriate value for the JMS message class.

v When service integration converts a message from WebSphere MQ format, it uses the value in
this field (if there is an MQRFH2 that contains the field) to set the JMS message class.

JMS message class MQRFH2 <mcd> folder, Msd field (“JMS format”)

TextMessage jms_text

Chapter 13. Developing Messaging resources 581

JMS message class MQRFH2 <mcd> folder, Msd field (“JMS format”)

BytesMessage jms_bytes

StreamMessage jms_stream

MapMessage jms_map

ObjectMessage jms_object

Message jms_none

If the “JMS format” information is not available, for example if there is no MQRFH2, service
integration sets the JMS message class based on the “MQ format”.

For more information about the MQRFH2 <mcd> folder, see the WebSphere MQ Using Java
documentation.

MQRFH2 (or MQMD) format field

The MQRFH2 (or the MQMD if there is no MQRFH2) format field contains information about the
payload format. This is the “MQ format” information. Typically it contains MQFMT_STRING, which
indicates that the payload is character data (and can be translated to a different codepage by
WebSphere MQ), or MQFMT_NONE, which indicates that the payload is not character data. These
values are suitable for most JMS messages, and when service integration converts a message to
WebSphere MQ format it automatically sets this field to one of the following values:

JMS message class MQRFH2 (or MQMD) format field (“MQ format”)

TextMessage MQFMT_STRING

BytesMessage MQFMT_NONE

StreamMessage MQFMT_STRING

MapMessage MQFMT_STRING

ObjectMessage MQFMT_NONE

Message MQFMT_NONE

If your application constructs messages for a WebSphere MQ application that requires a different
format value, you can override the value from the previous table by setting the JMS_IBM_Format
property to the required value. A particular example is when the WebSphere MQ application
requires an additional header (for example, the MQCIH header for a CICS bridge application).
Your application constructs a BytesMessage object that contains the header followed by any other
message data, then replaces the default “MQ format” (MQFMT_NONE) by setting the JMS_IBM_Format
property to the appropriate value for the header (for example, MQFMT_CICS for an MQCIH header).

When service integration converts a message from WebSphere MQ format, it sets the
JMS_IBM_Format property to the value in the “MQ format” field. If the “JMS format” is not available,
for example if there is no MQRFH2, service integration sets the JMS message class to
TextMessage if the “MQ format” is MQFMT_STRING and to BytesMessage otherwise.

For more information about the MQRFH2 (or MQMD) format field, see the WebSphere MQ
Application Programming Reference.

WebSphere MQ message payload: character and numeric encoding

In addition to the format field, the MQRFH2 (or the MQMD if there is no MQRFH2) contains fields that
identify the character encoding and numeric encoding for the message payload.

When service integration converts a message to WebSphere MQ format, it automatically selects
default values (UTF-8 character encoding and big-endian numeric encoding) that are suitable for most
JMS messages. If your application constructs messages for a WebSphere MQ application that requires a

582 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj10120_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/csqzak10.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/csqzak10.htm

different character or numeric encoding, you can override the character encoding value by setting the
JMS_IBM_Character_Set property to the required coded character set ID (CCSID), or the JMS_IBM_Encoding
property to the required numeric format, or both. For information about the values you can use for
JMS_IBM_Character_Set and JMS_IBM_Encoding, see the documentation in the WebSphere MQ library.

When the JMS message has a body that is encoded as character data in WebSphere MQ (TextMessage,
StreamMessage, or MapMessage), setting JMS_IBM_Character_Set causes service integration to convert
the text to that coded character set in the WebSphere MQ message body.

When the JMS message has a body that is not character data (BytesMessage or ObjectMessage), setting
JMS_IBM_Character_Set does not cause service integration to convert the bytes; it indicates to WebSphere
MQ that any character data in the message body is already encoded using the specified coded character
set. If the value of the JMS_IBM_Format is a format that WebSphere MQ recognises, it can convert that
character data to the coded character set that the receiving application requires.

When service integration converts a message from WebSphere MQ format, it sets the
JMS_IBM_Character_Set and JMS_IBM_Encoding properties from the fields in the MQRFH2 (or the MQMD if
there is no MQRFH2). If the JMS message is a TextMessage, StreamMessage, MapMessage, or
ObjectMessage, your application makes no use of the values of the JMS_IBM_Character_Set and
JMS_IBM_Encoding properties. If the JMS message is a BytesMessage, then the body of the JMS message
is binary data. In this case, your application must be aware of the values of the JMS_IBM_Character_Set
and JMS_IBM_Encoding properties, because they indicate the encoding of any character data or numeric
data that is embedded within the binary data of the message.

Mapping the message header fields and properties to and from WebSphere MQ
format
When service integration converts a message to WebSphere MQ format, it sets fields in the MQMD and
the MQRFH2 based on the service integration message header fields and properties; these include JMS
message header fields and properties applicable to the message. When service integration converts a
message from WebSphere MQ format, it sets the service integration message header fields and properties
from the MQMD and the MQRFH2 in the WebSphere MQ message.

Exchanging messages between JMS programs through service integration and
WebSphere MQ

Usually, you do not have to be aware of conversion between message formats to exchange JMS
messages between service integration and WebSphere MQ, because service integration performs the
appropriate conversion automatically, including character and numeric encoding. However, you might have
to learn about message conversion if your JMS applications do not behave as expected, or if your service
integration configuration includes JMS programs or mediations that process messages to or from non-JMS
WebSphere MQ programs.

If your service integration applications exchange MapMessage objects with WebSphere MQ applications,
you might have to specify a non-default map message encoding format.

WebSphere MQ message properties: the MQMD and the MQRFH2

WebSphere MQ messages contain message properties in the message descriptor (MQMD) and in the
rules and formatting header 2 (MQRFH2). The WebSphere MQ message always includes an MQMD, but
the MQRFH2 is optional because some WebSphere MQ applications cannot process messages that
contain an MQRFH2. To simplify interoperation, you can configure service integration to omit the MQRFH2
from messages for applications that cannot process the MQRFH2. When service integration omits the
MQRFH2, it discards the corresponding service integration header fields and properties.

Note: A small amount of the MQRFH2 information is also stored in MQMD fields. However, these MQMD
fields are not exact equivalents, tend to be less specific, and cannot be relied upon to provide an

Chapter 13. Developing Messaging resources 583

http://www.ibm.com/software/integration/wmq/library/

adequate substitute for the MQRFH2 information. Therefore if the receiving application can accept
an MQRFH2 header, you should always provide one.

Similarly, service integration might receive messages from WebSphere MQ applications that generate
messages with no MQRFH2. When service integration receives a message with no MQRFH2, it creates a
“best guess” service integration header, by getting as much information as it can from the MQMD, and
using default values for the other fields.

For detailed information about the contents of the message descriptor and the message headers, see the
WebSphere MQ Application Programming Reference. For details of WebSphere MQ JMS support,
including details of how WebSphere MQ stores JMS message properties and header fields in the MQMD
and the MQRFH2, see WebSphere MQ Using Java.

WebSphere MQ message properties: JMS header fields

The following table shows how service integration maps JMS header fields to and from MQMD and
MQRFH2 fields when converting messages to and from WebSphere MQ format.

The table shows the MQRFH2 field as folder.field, where folder is the name of the MQRFH2 folder that
contains the field, and field is the name of the field within the MQRFH2 folder.

For several JMS header fields, there is both an MQMD field and an MQRFH2 field. When service
integration is converting messages to WebSphere MQ format, it sets both the MQMD and the MQRFH2
fields. When service integration is converting messages from WebSphere MQ format, it sets the JMS
header field from the MQRFH2 field if it is available, otherwise from the MQMD field.

Table 66. JMS, MQMD and MQRFH2 header fields. The first column of this table lists the JMS header fields, and the
second column shows the MQMD fields that relate to the JMS header fields in the first column. The third column
shows the MQRFH2 fields that relate to the JMS header fields in the first column. The fourth column provides links,
where required, to the footnotes that appear after the table.

JMS header field MQMD field MQRFH2 field Notes

JMSCorrelationID CorrelId jms.Cid See Note 1.

JMSDeliveryMode Persistence jms.Dlv See Note 15.

JMSDestination jms.Dst See Note 16.

JMSExpiration Expiry jms.Exp

JMSMessageID MsgId

JMSPriority Priority See Note 2.

JMSRedelivered BackoutCount See Note 3.

JMSReplyTo ReplyToQ and ReplyToQMgr jms.Rto See Note 16.

JMSTimestamp PutDate and PutTime jms.Tms

JMSType mcd.Type

Note 1: The MQMD CorrelId field can hold a standard WebSphere MQ Correlation ID of 48 hexadecimal
digits (24 bytes). The JMSCorrelationID can be a byte[] value, a string value containing
hexadecimal characters and prefixed with “ID:”, or an arbitrary string value not beginning “ID:”.
The first two of these represent a standard WebSphere MQ Correlation ID and map directly to or
from the MQMD CorrelId field (truncated or padded with zeros as applicable); they do not use
the MQRFH2 jms.Cid field. The third (arbitrary string) uses the MQRFH2 jms.Cid field; the first
24 bytes of the string, in UTF-8 format, are written into the MQMD CorrelID.

Note 2: WebSphere MQ stores the JMSPriority value in the MQRFH2 jms.Pri field but does not use any
value already in that field. Service integration does not check or set the MQRFH2 jms.Pri field.

584 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/csqzak10.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj10120_.htm

Note 3: Service integration sets the JMSRedelivered indicator for a message it receives from WebSphere
MQ based on the BackoutCount field of the MQMD; a non-zero BackoutCount value indicates that
a previous receive for the message was rolled back.

WebSphere MQ message properties: JMS defined properties

The following table shows how service integration maps JMS defined properties to and from MQMD and
MQRFH2 fields when converting messages to and from WebSphere MQ format.

The table shows the MQRFH2 field as folder.field, where folder is the name of the MQRFH2 folder that
contains the field, and field is the name of the field within the MQRFH2 folder.

For several JMS-defined properties, there is both an MQMD field and an MQRFH2 field. When service
integration is converting messages to WebSphere MQ format, it sets both the MQMD and the MQRFH2
fields. When service integration is converting messages from WebSphere MQ format, it sets the JMS
defined property from the MQRFH2 field if it is available, otherwise from the MQMD field.

Table 67. JMS properties with MQMD and MQRFH2 fields. The first column of this table lists the JMS defined
properties, and the second column shows the MQMD fields that relate to the JMS defined properties in the first
column. The third column shows the MQRFH2 fields that relate to the JMS defined properties in the first column. The
fourth column provides links, where required, to the footnotes that appear after the table.

JMS defined property MQMD field MQRFH2 field Notes

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId jms.Gid See Notes 4 and 5.

JMSXGroupSeq MsgSeqNumber jms.Seq

JMSXUserID UserIdentifier

Note 4: The MQMD GroupId field can hold a standard WebSphere MQ GroupId of 48 hexadecimal digits
(24 bytes). The JMSXGroupID is a string value containing hexadecimal characters and prefixed with
“ID:” or an arbitrary string value not beginning “ID:”. The first of these represents a standard
WebSphere MQ GroupId and maps directly to or from the MQMD GroupId field (truncated or
padded with zeros as applicable). The second (arbitrary string) uses the MQRFH2 jms.Gid field;
the first 24 bytes of the string, in UTF-8 format, are written into the MQMD GroupId.

Note 5: When service integration is converting messages to WebSphere MQ format, if the JMSXGroupID
has been set then service integration also sets the MQMF_MSG_IN_GROUP flag in the MsgFlags field of
the MQMD. Note that when sending group messages, the sending JMS application must ensure
that the MQMF_LAST_MSG_IN_GROUP flag is set as required (see “WebSphere MQ message
properties: JMS provider-specific properties”).

WebSphere MQ message properties: JMS provider-specific properties

The following table shows how service integration maps JMS provider-specific properties to and from
MQMD and MQRFH2 fields when converting messages to and from WebSphere MQ format. Typically you
use these properties to satisfy special requirements in the receiving application, so you should consult the
developer or administrator of the receiving application for details of the required property values.

Chapter 13. Developing Messaging resources 585

Table 68. JSM provider-specific properties with MQMD and MQRFH2 fields. The first column of this table lists the
JMS provider-specific properties, and the second column shows the MQMD fields that relate to the JMS
provider-specific properties in the first column. The third column shows the MQRFH2 fields that relate to the JMS
provider-specific properties in the first column. The fourth column provides links, where required, to the footnotes that
appear after the table.

JMS provider-specific property MQMD field MQRFH2 field Notes

JMS_IBM_ArmCorrelator mqext.Arm See Note 6.

JMS_IBM_Character_Set CodedCharacterSetId CodedCharacterSetId See Note 7.

JMS_IBM_Encoding Encoding Encoding See Note 7.

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format Format See Note 7.

JMS_IBM_Last_Msg_In_Group MQMF_LAST_MSG_IN_GROUP See Note 8.

JMS_IBM_MQMD_CorrelId CorrelId See Notes 9 and 10.

JMS_IBM_MQMD_MsgId MsgId See Notes 9 and 11.

JMS_IBM_MQMD_Persistence Persistence See Notes 9, 12, and 15.

JMS_IBM_MQMD_ReplyToQ ReplyToQ See Notes 9, 13, and 16.

JMS_IBM_MQMD_ReplyToQMgr ReplyToQMgr See Notes 9, 13, and 16.

JMS_IBM_MsgType MsgType

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Report_* Report See Note 14.

JMS_IBM_RMCorrelator mqext.Wrm

JMS_TOG_ARM_Correlator mqext.Arm See Note 6.

Note 6: You should use the name JMS_TOG_ARM_Correlator for the ARM correlator. The name
JMS_IBM_ArmCorrelator is available for compatibility with some existing JMS programs.

Note 7: The JMS_IBM_Character_Set, JMS_IBM_Encoding, and JMS_IBM_Format properties contain
information about the WebSphere MQ message payload; that is, the part of the WebSphere MQ
message that follows the MQRFH2 (if there is one) or the whole WebSphere MQ message,
excluding the MQMD, if there is no MQRFH2. For more information about these properties and
how to use them, see “Mapping the message body to and from WebSphere MQ format” on page
581.

Note 8: MQMF_LAST_MSG_IN_GROUP is one of the flags in the MsgFlags field of the MQMD.

Note 9: The JMS_IBM_MQMD_CorrelId, JMS_IBM_MQMD_MsgId, JMS_IBM_MQMD_Persistence,
JMS_IBM_MQMD_ReplyToQ, and JMS_IBM_MQMD_ReplyToQMgr properties allow JMS applications to
override the service integration default processing of WebSphere MQ MQMD fields. When service
integration converts messages to WebSphere MQ format, service integration sets the
corresponding MQMD field for each of these properties if, and only if, that property has been
explicitly set by the application (using setObjectProperty() or setNonNullProperty()).

Service integration sets each of these properties from the corresponding MQMD field when it
converts a message from WebSphere MQ format.

Note 10: The JMS_IBM_MQMD_CorrelId property overrides the default processing of the JMSCorrelationID
property. When service integration converts messages to WebSphere MQ format, service
integration sets the MQMD CorrelId field to the value (byte[]) if explicitly set of the
JMS_IBM_MQMD_CorrelId property, regardless of the value (if any) of the JMSCorrelationID
property. Setting the JMS_IBM_MQMD_CorrelId property does not affect the value of the MQRFH2
jms.Cid field.

586 Developing WebSphere applications

When service integration converts messages from WebSphere MQ format, service integration
sets the JMS_IBM_MQMD_CorrelId property to the value (byte[]) of the MQMD CorrelId field,
regardless of the value (if any) of the MQRFH2 jms.Cid field.

Note 11: The JMS_IBM_MQMD_MsgId property overrides the JMS default processing of the JMSMessageID
property. When service integration converts messages to WebSphere MQ format, service
integration checks whether the JMS_IBM_MQMD_MsgId property has been explicitly set. If so,
service integration sets the MQMD MsgId field to this value (byte[]) , and replaces the unique
value of the JMSMessageID that JMS allocates to the message.

When service integration converts messages from WebSphere MQ format, service integration
sets the JMS_IBM_MQMD_MsgId property to the value (byte[]) of the MQMD MsgId field.

Note 12: The JMS_IBM_MQMD_Persistence property overrides the default processing of the JMSDeliveryMode
property. When service integration converts messages to WebSphere MQ format, service
integration sets the MQMD Persistence field to the value (integer) if explicitly set of the
JMS_IBM_MQMD_Persistence property, regardless of the value (if any) of the JMSDeliveryMode
property. Setting the JMS_IBM_MQMD_Persistence property does not affect the value of the
MQRFH2 jms.Dlv field.

When service integration converts messages from WebSphere MQ format, service integration
sets the JMS_IBM_MQMD_Persistence property to the value (integer) of the MQMD Persistence
field, regardless of the value (if any) of the MQRFH2 jms.Dlv field.

Note 13: The JMS_IBM_MQMD_ReplyToQ and JMS_IBM_MQMD_ReplyToQMgr properties override the default
processing of the JMSReplyTo property. When service integration converts messages to
WebSphere MQ format, service integration sets the MQMD ReplyToQ field to the value (string) if
explicitly set of the JMS_IBM_MQMD_ReplyToQ property and the MQMD ReplyToQMgr field to the
value (string) if explicitly set of the JMS_IBM_MQMD_ReplyToQMgr property, regardless of the value
(if any) of the JMSReplyTo property. Setting the JMS_IBM_MQMD_ReplyToQ or
JMS_IBM_MQMD_ReplyToQMgr field does not affect the value of the MQRFH2 jms.Rto field.

When service integration converts messages from WebSphere MQ format, service integration
sets the JMS_IBM_MQMD_ReplyToQ and JMS_IBM_MQMD_ReplyToQMgr property to the values (string) of
the MQMD ReplyToQ and ReplyToQMgr fields, regardless of the value (if any) of the MQRFH2
jms.Rto field.

Note 14: For a list of the JMS_IBM_Report_* properties, see “Mapping MQMD Report fields to JMS
provider-specific properties” on page 592.

Note 15: For more information see “Mapping the JMS delivery option and message reliability to and from
the WebSphere MQ persistence value.”

Note 16: For more information see “Mapping destinations to and from WebSphere MQ queues, topics,
and destinations” on page 588.

Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value
When converting messages between WebSphere MQ format and service integration format, service
integration processes the message header fields and properties relating to message delivery mode,
reliability, and persistence.

Quality of service indications in the WebSphere MQ format message

The WebSphere MQ format message contains the following indications of the quality of service:

MQMD persistence

Chapter 13. Developing Messaging resources 587

This property is present in all WebSphere MQ format messages. The property specifies the quality
of service that WebSphere MQ provides for the message as follows:

MQMD persistence Quality of service

MQPER_PERSISTENT Persistent quality of service. WebSphere MQ assures
once and once only delivery of the message.

MQPER_NOT_PERSISTENT Nonpersistent quality of service. WebSphere MQ can
discard the message in exceptional circumstances.

MQPER_PERSISTENCE_AS_Q_DEF WebSphere MQ sets the quality of service (persistent or
nonpersistent) to the value configured for the destination
queue.

For more information about the WebSphere MQ persistent and nonpersistent qualities of service,
see the WebSphere MQ documentation .

MQRFH2 jms.Dlv (JMSDeliveryMode)

This property is present in WebSphere MQ format JMS messages that include the MQRFH2
header. The property contains the JMSDeliveryMode that was set when the application issued send
for the message.

Quality of service indications when service integration converts a message to WebSphere
MQ format

Message reliability levels - JMS delivery mode and service integration quality of service describes how
service integration sets the message reliability. Briefly: JMS applications send messages with a JMS
delivery mode (persistent or nonpersistent), then service integration uses JMS connection factory
settings to map the JMS delivery mode to a service integration message reliability setting, and finally
additional settings on bus destinations (including foreign destinations and alias destinations) can override
this message reliability. When service integration converts the message to WebSphere MQ format, it sets
the MQMD persistence indicator as follows:

Service integration message reliability MQMD persistence

Reliable persistent Persistent

Assured persistent Persistent

Reliable nonpersistent Nonpersistent

Express nonpersistent Nonpersistent

Best effort nonpersistent Nonpersistent

The sending application can optionally override this by setting the JMS_IBM_MQMD_Persistence message
property in the message.

Quality of service indications when service integration converts a message from
WebSphere MQ format

When service integration receives a message from WebSphere MQ, it uses the MQMD persistence value of
the message together with the corresponding service integration reliability value that you configure in the
WebSphere MQ link receiver or the WebSphere MQ server queue point to determine the reliability of the
service integration message.

Mapping destinations to and from WebSphere MQ queues, topics, and
destinations
Service integration messages and WebSphere MQ messages both contain header fields and properties.
Some of these header fields and properties contain destinations or destination properties that provide

588 Developing WebSphere applications

information about send-to and reply-to destinations, and about destinations in the bus forward and reverse
routing paths. Because service integration and WebSphere MQ have different definitions for destinations,
mappings are used to process the destinations and destination properties when messages are converted
between service integration format and WebSphere MQ format.

Destinations and destination properties in the WebSphere MQ format message

The WebSphere MQ format message contains the following information related to destinations:

MQXQH RemoteQName
MQXQH RemoteQMgrName

These fields are present in the MQXQH (the WebSphere MQ Transmission-queue header). The
MQXQH is attached to messages only while they travel between WebSphere MQ queue managers, or
between WebSphere MQ queue managers and service integration buses across a WebSphere MQ
link. Sending and receiving applications cannot access these fields.

The RemoteQName field contains the name of the send-to queue (WebSphere MQ) or send-to
destination (service integration). The RemoteQMgrName field identifies the queue manager or
queue-sharing group (WebSphere MQ) or service integration bus (service integration) where the
send-to queue or destination is located. Usually, the RemoteQMgrName field contains the name of the
remote queue manager, queue-sharing group, or service integration bus, but it can contain a
WebSphere MQ queue manager alias or a service integration virtual queue manager name. Note that
these fields are not used for topics.

The RemoteQName and RemoteQMgrName values can be up to a maximum length of 48 characters, and
must conform to WebSphere MQ naming restrictions.

MQRFH2 jms.Dst (JMSDestination)

This field is present in WebSphere MQ format JMS messages that include the MQRFH2 header.

The jms.Dst field contains a serialized representation (a WebSphere MQ URI) of the send-to JMS
destination that was set when the application issued send for the message. Refer to the WebSphere
MQ library for more information about the WebSphere MQ URI format for JMS destinations.

When service integration sends a message that has a forward-routing path to WebSphere MQ, it adds
an ibmRoutingPath attribute to this URI. The ibmRoutingPath value identifies the forward routing path
from the service integration message. WebSphere MQ does not use the forward routing path, but the
send-to destination might be in a remote service integration bus that can use the forward routing path.

MQMD ReplyToQ
MQMD ReplyToQMgr

These fields are present in all WebSphere MQ format messages.

If the sending application specifies a reply-to queue, the ReplyToQ field contains the name of the
reply-to queue (WebSphere MQ) or reply-to destination (service integration), and the ReplyToQMgr field
identifies the queue manager or queue-sharing group (WebSphere MQ) or service integration bus
(service integration) where that queue is located. Usually, the ReplyToQMgr field contains the name of
the queue manager, queue-sharing group, or service integration bus, but it can contain a WebSphere
MQ queue manager alias or a service integration virtual queue manager name. If the sending
application specifies a reply-to topic, or if it does not specify a reply-to destination, these fields contain
null values.

The ReplyToQ and ReplyToQMgr values can be up to a maximum length of 48 characters, and must
conform to WebSphere MQ naming restrictions.

MQRFH2 jms.Rto (JMSReplyTo)

Chapter 13. Developing Messaging resources 589

This field is present in WebSphere MQ format JMS messages that include the MQRFH2 header and
that specify a reply-to destination. WebSphere MQ JMS applications usually use this message attribute
as the destination for reply messages, but other (non-JMS) WebSphere MQ applications usually do not
use it; they use the MQMD reply-to fields instead.

The jms.Rto field contains a serialized representation (a WebSphere MQ URI) of the reply-to JMS
destination that is set by the sending JMS application. Refer to the WebSphere MQ library for more
information about the WebSphere MQ URI format for JMS destinations.

When service integration sends a message that has a reverse-routing path to WebSphere MQ, service
integration adds an ibmRoutingPath attribute to this URI. The ibmRoutingPath value identifies the
reverse-routing path from the service integration message. When the receiving JMS application sends
a reply, WebSphere MQ includes the routing path information from the reply-to URI in the send-to URI
of the reply message so that service integration can use it for routing the reply message.

Note:

v When the sending application specifies a reply-to queue for a message, that queue is usually
located in the bus, queue manager, or queue-sharing group to which the sending application
connects. This allows the sending application to receive the reply message from the reply-to
queue. Service integration applications that send messages to or through WebSphere MQ should
not specify a reply-to queue in a different bus, queue manager, or queue-sharing group.

v It is important to understand that it is the receiving application which uses the reply-to destination
in a message. The bus, queue manager, or queue-sharing group to which the receiving
application connects must be configured with the information that allows routing to the reply-to
destination.

Destination conversion when service integration converts a message to WebSphere MQ
format

When service integration converts a message to WebSphere MQ format, it puts the following destination
information into the WebSphere MQ format message:

MQXQH RemoteQName
MQXQH RemoteQMgrName

These fields apply only when service integration is sending the message across a WebSphere MQ
link, and only when the destination is a queue.

Service integration sets these fields based on the resolved send-to destination for the message; that
is, if the send-to destination is an alias, service integration uses the target bus and target identifier.
Processing is then as follows:

v If the send-to destination is in an indirectly-connected bus, it stores the destination name (identifier)
as the RemoteQName and the bus name as the RemoteQMgrName.

v If the send-to destination is in the directly-connected bus and the destination name (identifier) is in
the form queue@queueManager, it stores the queue name (queue) as the RemoteQName and the
queue manager name (queueManager) as the RemoteQMgrName.

v If the send-to destination is in the directly-connected bus and the destination name (identifier) is not
in the form queue@queueManager, it stores the destination name as the RemoteQName and the bus
name as the RemoteQMgrName.

If the send-to destination is in an indirectly-attached service integration bus and its destination name
does not comply with WebSphere MQ naming restrictions, you must define an alias destination with a
compliant name; the sending application must use the compliant (alias) name. In this case, you must
define the alias destination in the remote (indirectly-attached) bus, not the local bus.

590 Developing WebSphere applications

If the send-to destination is in an indirectly-attached service integration bus and its bus name does not
comply with WebSphere MQ naming restrictions, there must be a virtual queue manager name for the
indirectly-attached bus. In this case, the local bus must define the indirectly-attached bus with its
virtual queue manager name, not its bus name.

For more information about mapping service integration bus names that do not comply with
WebSphere MQ naming restrictions, see How to address bus destinations and WebSphere MQ
queues.

MQRFH2 jms.Dst (JMSDestination)

If the WebSphere MQ format message includes the MQRFH2 header, service integration serializes the
JMSDestination header field into a WebSphere MQ URI and stores it in the JMSDestination field in the
WebSphere MQ message. If the message has a forward-routing path, service integration includes that
in the URI as the ibmRoutingPath attribute.

MQMD ReplyToQ
MQMD ReplyToQMgr

The sending JMS application can set these fields directly by using the provider-specific JMS message
properties JMS_IBM_MQMD_ReplyToQ and JMS_IBM_MQMD_ReplyToQMgr. If the sending application does not
do this, service integration sets the properties if (and only if) the message has a reply-to destination
and that destination is a queue.

Service integration sets these fields based on the unresolved reply-to destination for the message; that
is, if the reply-to destination is an alias, service integration uses the alias bus and identifier, not the
target bus and identifier. Service integration applications should not provide reply-to destinations that
are foreign destinations or have names that include the @ character. Provided applications do not do
this, processing is as follows:

v The reply-to destination name (identifier) is stored in the ReplyToQ field and the reply-to destination
bus name (that is, the local bus name) in the ReplyToQMgr field.

v If the virtual queue manager name is different from the local bus name, the virtual queue manager
name is stored in the ReplyToQMgr field instead of the local bus name.

If the real name of the reply-to destination does not comply with WebSphere MQ naming restrictions
(including if the name includes the @ character), you must define an alias destination with a compliant
name and the sending application must use the compliant (alias) name. In this case, you must define
the alias destination in the local bus, not in the remote (indirectly-attached) bus.

MQRFH2 jms.Rto (JMSReplyTo)

If the message has a reply-to destination and the WebSphere MQ format message includes the
MQRFH2 header, service integration constructs a WebSphere MQ URI to represent that reply-to
destination, and stores the URI in the JMSReplyTo property in the WebSphere MQ message. If the
reply-to destination is a queue, the URI includes the reply-to destination bus name (the local bus) or
the virtual queue manager name (if that is different). If the message has a reverse-routing path,
service integration includes that path in the URI in the ibmRoutingPath attribute.

Destination conversion when service integration converts a message from WebSphere MQ
format

When service integration converts a message from WebSphere MQ format, it uses the following
destination information from the WebSphere MQ format message:

MQXQH RemoteQName
MQXQH RemoteQMgrName

These fields are applicable only when service integration is receiving the message across a
WebSphere MQ link, and only when the destination is a queue.

Chapter 13. Developing Messaging resources 591

Service integration interprets the RemoteQName field as the destination identifier (always a queue) for
the message, and the RemoteQMgrName field as the name of the destination bus for the message. If the
RemoteQMgrName field contains the virtual queue manager name of the local bus, service integration
interprets it as the name of the local bus. Service integration then uses the resulting bus and
destination identifier combination (which can be an alias destination in the local bus) to deliver the
message in the usual way. For the case where the destination bus is a foreign bus, this includes
forwarding the message to that foreign bus.

MQRFH2 jms.Dst (JMSDestination)

If this field is available, service integration uses it to create the JMSDestination header field for the
message. If the URI includes the ibmRoutingPath attribute, service integration uses that to create the
forward-routing path for the message.

If this property is not available (for example, if the WebSphere MQ message has no MQRFH2 header),
service integration can create a JMSDestination header field from the service integration destination
where the message is delivered.

MQMD ReplyToQ
MQMD ReplyToQMgr

If these fields contain non-null values, service integration uses them to construct the first element of
the reverse-routing path for the service integration message, as follows:

v If ReplyToQMgr is the local bus name or virtual queue manager name, service integration sets the
bus to the local bus and the destination name (identifier) to ReplyToQ.

v If ReplyToQMgr is a foreign bus defined in the local bus, service integration sets the bus to
ReplyToQMgr and the destination name (identifier) to ReplyToQ.

v If ReplyToQMgr is not the local bus name, virtual queue manager name, or a foreign bus defined in
the local bus, service integration sets the bus to the directly-attached WebSphere MQ bus and the
destination name (identifier) to queue@queueManager where queue is ReplyToQ and
queueManager is ReplyToQMgr.

MQRFH2 jms.Rto (JMSReplyTo)

If this field is available, service integration uses it with the MQMD ReplyToQ and ReplyToQMgr fields to
construct the reverse-routing path and JMSReplyTo header field for the service integration message. It
constructs the reverse-routing path from the first element (which it constructs from the MQMD
ReplyToQ and ReplyToQMgr fields) and any remaining elements that it obtains from the ibmRoutingPath
attribute (if there is one) of the JMSReplyTo URI in the WebSphere MQ message. It constructs the
JMSReplyTo header field from the first element of the reverse-routing path together with the destination
attributes of the JMSReplyTo URI in the WebSphere MQ message.

Mapping MQMD Report fields to JMS provider-specific properties
JMS applications can use report messages as a form of managed request/response processing, to give
remote feedback to producers on the outcome of their send operations and the fate of their messages. A
JMS application can request different types of report message by setting JMS_IBM_Report_Xxxx message
properties and options.

JMS applications can request the following types of report message by setting the appropriate
JMS_IBM_Report_Xxxx message properties and options. The options have the same general syntax and
meaning:

MQRO_report-type
A report message of the indicated type is generated that contains the WebSphere MQ message
descriptor (MQMD) of the original message. It does not contain any message body data.

MQRO_report-type_WITH_DATA
A report message of the indicated type is generated that contains the MQMD, any MQ headers,
and 100 bytes of body data.

592 Developing WebSphere applications

MQRO_report-type_WITH_FULL_DATA
A report message of the indicated type is generated that contains all data from the original
message.

Use the following prefix with each option: com.ibm.websphere.sib.api.jms.

For example, to request a Confirm on delivery (COD) report message with full data, the JMS application
must set JMS_IBM_Report_COD to the value
com.ibm.websphere.sib.api.jms.MQRO_COD_WITH_FULL_DATA.

For each type of report message, the following table shows the JMS_IBM_Report_Xxxx message property
that a JMS application can set, and the MQMD Report field options that map to the property.

Type of report
message Description

JMS_IBM_Report_Xxxx message property
and options

Exception Send a report message if the request
message cannot be put to the target queue.
The exception report messages are
generated when a message has been
rerouted to an exception destination.

JMS_IBM_Report_Exception

v MQRO_EXCEPTION

v MQRO_EXCEPTION_WITH_DATA

v MQRO_EXCEPTION_WITH_FULL_DATA

Discard Discard the original request message rather
than sending it to an exception destination.
You can use this option with the
JMS_IBM_Report_Exception property set to
MQRO_EXCEPTION_WITH_FULL_DATA to
return an undeliverable request message to
its sender.

JMS_IBM_Report_Discard_Msg

v TRUE

v FALSE

Expiration Send a report message if the request
message passes its expiry time.

JMS_IBM_Report_Expiration

v MQRO_EXPIRATION

v MQRO_EXPIRATION_WITH_DATA

v MQRO_EXPIRATION_WITH_FULL_DATA

Confirm on arrival
(COA)

Send a report message when the request
message has been put to the target queue.

For publish/subscribe messaging, the COA
report message is generated only on the
producers messaging engine. Therefore,
such reports are relevant only to local
subscriptions.

For point-to-point messaging, COA messages
are generated when the message arrives at
the final destination. For partitioned queues,
the report message is generated only when
the put operation has committed and a final
destination has therefore been selected. Any
With_Data or With_Full_Data report options
specified are ignored; the COA report
message deals only with message headers.

If a forward-routing path is used, the COA
message are generated when the message
arrives at the final destination in the path.

JMS_IBM_Report_COA

v MQRO_COA

v MQRO_COA_WITH_DATA

v MQRO_COA_WITH_FULL_DATA

Chapter 13. Developing Messaging resources 593

Type of report
message Description

JMS_IBM_Report_Xxxx message property
and options

Confirm on delivery
(COD)

Send a report message when the request
message has been removed from the queue
or topic space by a message consumer.

For publish/subscribe messaging, the COD
message is generated when all subscribers
have received the request message.
Therefore, there is one COD message
generated for every COA. When a message
is consumed by a subscriber, the reference
count of the message on the topic space is
reduced. When the reference count reaches
zero, the message is removed from the topic
space then a COD report message is
generated.

For point-to-point messaging, the COD
message is generated after the message has
been successfully received by a consuming
application. Any With_Data or With_Full_Data
report options specified are ignored; the COD
report message deals only with message
headers.

JMS_IBM_Report_COD

v MQRO_COD

v MQRO_COD_WITH_DATA

v MQRO_COD_WITH_FULL_DATA

Positive action
notification (PAN)

Ask the consumer application to send a
report message when it has successfully
processed the request message.

JMS_IBM_Report_PAN

v TRUE

v FALSE

Negative action
notification (NAN)

Ask the consumer application to send a
report message if it has not successfully
processed the request message.

JMS_IBM_Report_NAN

v TRUE

v FALSE

The requesting application can control other aspects of the report message as follows:

v How the message Id is generated for the report message and any reply message:

MQRO_New_Msg_Id
This the default. A new message Id is generated for the report message.

MQRO_Pass_Msg_Id
The message Id of the report message is set to the message Id of the request message.

v How the correlation Id of the report or reply message is to be set.

MQRO_Copy_Msg_Id_To_Correl_Id
This the default. the correlation Id of the report message is set to the message Id of the request
message.

MQRO_Pass_Correl_Id
The correlation Id of the report message is set to the correlation Id of the request message.

For more information about report messages and the associated properties and options refer to the Using
Java section of the WebSphere MQ information center, available from the WebSphere MQ library.

Mapping additional MQRFH2 header fields in service integration
In the WebSphere MQ message header (MQRFH2), there are additional fields that are specific to the
service integration bus and that allow for functions that are not used in WebSphere MQ. When

594 Developing WebSphere applications

http://www.ibm.com/software/integration/wmq/library/

WebSphere MQ transports a message from one service integration bus to another service integration bus,
these fields convey information that can be used by service integration applications but is not required by
WebSphere MQ.

The additional fields are inserted in the MQRFH2 header of application messages, in the <sib> and <jms>
folders. These fields do not appear as JMS message fields or properties.

When a message is sent to WebSphere MQ, a <sib> folder is included in the MQRFH2 header of the
message if both of the following are true:

v The WebSphere MQ queue point attributes of the service integration destination are configured to use
MQRFH2 headers.

v The fields that correspond to the <sib> folder content are set in the service integration message.

MQRFH2 header and field (<jms> folder) SIBusMessage field or property

Frp (appended to Dst field) Forward routing path header field

Rrp (appended to Rto field) Reverse routing path header field

MQRFH2 header and field (<sib> folder) SIBusMessage field or property

RTopic Reply topic

RPri Reply priority

RPer Reply persistence

RTTL Reply time to live

JsApiUserId Application user ID (JMSXUserId) for the service
integration application

JsDst JMS destination

JsFmt Message format

JsSysMsgId System message identifier

Mapping the JMS Destination property between service integration and WebSphere MQ

The properties of service integration destinations differ from those used by WebSphere MQ queues, and
they cannot be mapped exactly. When service integration uses WebSphere MQ to transport a message, it
is useful to keep both representations of the JMS destination property in the message. To address this,
when a message leaves service integration and enters WebSphere MQ, an additional RFH2 property is
introduced into the RFH2 header to store the service integration destination property.

The service integration destination property is serialized, formatted as a hexadecimal string, then stored
using the JsDst property of the service integration RFH2 folder, the <sib> folder. WebSphere MQ
applications do not make use of this folder, but if the message is to be retrieved by another service
integration application, it can use the information.

For example, a service integration destination SIQ1 is localized on a WebSphere MQ queue MQQ1, residing
on queue manager QM1. The following actions occur when a service integration application sends a
message to SIQ1:

v A serialized representation of PMQ1 is placed in the <sib> folder of the RFH2 header, using the JsDst
property.

v The message is stored on MQQ1.

v The string “queue://QM1/MQQ1” is also placed in the <jms> folder of the RFH2 header, using the Dst
property.

Chapter 13. Developing Messaging resources 595

This follows the convention used by the WebSphere MQ messaging provider to encode JMS destinations.
If the message is retrieved by a service integration application, the JMS destination can be recovered from
the <sib> folder of the RFH2 header. If the message is retrieved by a WebSphere MQ application, the
JMS destination can be recovered from the contents of the <jms> folder of the RFH2 header.

Note: If a WebSphere MQ server bus member is configured so that it does not use RFH2 headers, the
JMS destination is not preserved when the message enters WebSphere MQ. In this situation, a
service integration application can still retrieve the JMS message, but any attempt to examine the
JMS destination property causes a JMS exception.

How to process WebSphere MQ message headers
WebSphere MQ messages can optionally include additional headers, or alternative headers, to the
MQRFH2 header, which contains JMS properties. WebSphere Application Server application programs can
use the com.ibm.mq.headers classes to access headers in messages from WebSphere MQ and to
construct headers in messages to WebSphere MQ.

WebSphere MQ message headers

WebSphere MQ messages always include a message descriptor (MQMD). They can also include headers
that contain additional information about the messages; for example, messages to or from JMS
applications usually include an MQRFH2 header that contains message properties. WebSphere MQ
defines the format and usage of some headers (for example, MQRFH2) and also allows users and
third-party software providers to define their own custom headers.

Typically it is not necessary for application programs to process WebSphere MQ message headers. Most
WebSphere MQ applications either do not use headers at all, or only use the MQRFH2 header, and the
service integration and WebSphere MQ messaging providers automatically process the MQRFH2 header
when you are communicating with these applications. However, if you are communicating with a
WebSphere MQ application that uses or creates additional or different headers, then your WebSphere
Application Server application can use the com.ibm.mq.headers classes to create the headers in
messages it sends, and process them in messages it receives.

In the WebSphere MQ message, the headers (if there are headers) are at the start of the message, before
the message payload. Each header contains fields that describe the following header, or the payload if
there are no more headers; the MQMD contains the fields that describe the first header, or the payload if
there are no headers. The MQMD and the MQRFH2 header do not normally appear in a JMS message.
When the messaging provider converts a WebSphere MQ message into a JMS message, it uses
information from the MQMD and MQRFH2 header to set JMS header fields and properties. Similarly, when
the messaging provider converts a JMS message into a WebSphere MQ message, it uses the JMS
header fields and properties to construct the MQMD and MQRFH2 header.

The JMS provider handles other headers in WebSphere MQ messages by converting the WebSphere MQ
message to or from a JMS BytesMessage; the headers appear at the start of the message body, followed
by the WebSphere MQ message payload (if any). The JMS_IBM_Format property of the JMS message
indicates the format of the data in the message body (in this case, first header) and the JMS_IBM_Encoding
and JMS_IBM_Character_Set properties indicate its encoding and CCSID.

Processing WebSphere MQ message headers in a JMS BytesMessage

The com.ibm.mq.headers package contains classes and interfaces that you can use to parse and
manipulate WebSphere MQ headers in the body of a JMS BytesMessage. The MQHeader interface
provides general-purpose methods for accessing header fields and for reading and writing message
content. Each header type has its own class that implements the MQHeader interface and adds getter and
setter methods for individual fields. For example, the MQCIH class represents the MQCIH (CICS Bridge)
header type. The header classes perform any necessary data conversion automatically, and can read or
write data in any specified numeric encoding or character set (CCSID).

596 Developing WebSphere applications

Two helper classes, MQHeaderIterator and MQHeaderList, assist with reading and decoding (parsing) the
header content in messages:

v MQHeaderIterator works like a java.util.Iterator. For as long as there are more headers in the message,
the next() method returns true, and the nextHeader() or next() method returns the next header object.

v MQHeaderList works like a java.util.List. Like MQHeaderIterator, it parses header content, but it also
allows you to search for particular headers, add new headers, remove existing headers, update header
fields, and then write the header content back to a message. Alternatively, you can create an empty
MQHeaderList, then populate it with header instances and write it to a message once or repeatedly.

Every header class implements the MQHeader interface, which provides the methods int read
(java.io.DataInput message, int encoding, int characterSet) and int write (java.io.DataOutput
message, int encoding, int characterSet). The java.io.DataInputStream and java.io.DataOutputStream
classes implement DataInput and DataOutput respectively. You can obtain DataInput and DataOutput
objects from byte arrays carried in JMS messages, as in the following example, which processes a single
MQCIH header:
import java.io.*;
import javax.jms.*;
import com.ibm.mq.headers.*;
...
BytesMessage bytesMessage = (BytesMessage) msg; // Message received from JMS consumer
byte[] bytes = new byte [(int) bytesMessage.getBodyLength ()];
bytesMessage.readBytes (bytes);
DataInput in = new DataInputStream (new ByteArrayInputStream (bytes));
MQCIH cih = new MQCIH (in,

bytesMessage.getIntProperty("JMS_IBM_Encoding"),
819);

Alternatively, you can use the MQHeaderIterator class to process a sequence of headers, replacing the
line starting MQCIH cih = new MQCIH with:
MQHeaderIterator it = new MQHeaderIterator (in,

bytesMessage.getStringProperty("JMS_IBM_Format"),
bytesMessage.getIntProperty("JMS_IBM_Encoding"),
819);

while (it.hasNext()) {
MQHeader item = (MQHeader) it.next();
...

}

This example creates a single header (an MQCIH type header) and adds it into a BytesMessage:
import java.io.*;
import javax.jms.*;
import com.ibm.mq.constants.CMQC;
import com.ibm.mq.headers.*;
...
MQCIH header = new MQCIH();
ByteArrayOutputStream out = new ByteArrayOutputStream ();

header.write (new DataOutputStream (out), CMQC.MQENC_NATIVE, 819);
byte[] bytes = out.toByteArray ();
BytesMessage newMsg = origSes.createBytesMessage();
newMsg.writeBytes(bytes);

This example uses the MQHeaderList class to add two headers into a BytesMessage:
import java.io.*;
import javax.jms.*;
import com.ibm.mq.constants.CMQC;
import com.ibm.mq.headers.*;
...
byte[] outheaders = null;
byte[] outbody = ...
try {

Chapter 13. Developing Messaging resources 597

MQHeaderList it = new MQHeaderList ();
MQHeader header1 = ... // Could be any header type
MQHeader header2 = ... // Could be any header type
ByteArrayOutputStream out = new ByteArrayOutputStream ();
DataOutput dout = new DataOutputStream(out);
it.add(header1);
it.add(header2);
it.write(dout);
outheaders = out.toByteArray();

} catch (Exception e) {
System.out.println("error generating MQ message headers : " + e);

}
BytesMessage newMsg = origSes.createBytesMessage();
newMsg.writeBytes(outheaders);
newMsg.writeBytes(bytes);

newMsg.setStringProperty("JMS_IBM_Format", "MQCICS");
newMsg.setIntProperty("JMS_IBM_Encoding", CMQC.MQENC_NATIVE);
newMsg.setIntProperty("JMS_IBM_Character_Set", 819);

Always use the correct values for the encoding and characterSet arguments. When you read headers,
specify the encoding and CCSID with which the byte content was originally written. When writing headers,
specify the encoding and CCSID that you want to produce. The data conversion is performed
automatically by the header classes.

More information about the com.ibm.mq.headers classes

The com.ibm.mq.headers package is part of the WebSphere MQ Resource Adapter, which is installed
automatically in WebSphere Application Server. This package comprises a set of classes and interfaces
that allow the Java programmer to work with WebSphere MQ Message Headers. These include the
MQHeaderIterator and MQHeaderList classes mentioned in this topic, and classes for some commonly
used WebSphere MQ Message Headers, including:

v MQCIH – CICS bridge header

v MQIIH – IMS™ information header

v MQSAPH – SAP header

You can also define classes representing your own headers.

WebSphere MQ functions not supported by service integration
There are various functions available in a WebSphere MQ network that are not available on a service
integration bus.

The following list helps you identify those functions but it is given as guidance rather than a complete
definition. Functions not supported include:

1. Native MQ client (this includes client applications that make use of the base MQ classes for Java)
attach.

2. Message segmentation.

3. Message grouping.

4. The MQMD Offset. Original length, MsgFlags, MsgSeqNumber, and GroupId fields are not supported
because Message grouping and message segmentation are not supported.

5. Distribution lists.

6. Reference messages.

7. Triggering.

8. Alternate user authority.

9. Pass/set identity context.

10. In a program, setting the attributes of a queue (that is, the equivalent function of MQSET).

598 Developing WebSphere applications

11. Confirmation of arrival/delivery.

12. Cluster sender/receiver channels (and cluster workload exits), because a messaging engine cannot
participate in a WebSphere MQ cluster.

13. Server and requestor channels.

14. API crossing exits.

15. Data conversion exits.

16. Channel exits.

17. The equivalent to the MCAUSER and PUTAUTH fields of a channel.

18. Networks based on NetBIOS, SPX or SNA.

19. Message based command server.

20. PCF (Programmable Canonical Form messages).

21. Model queues. Service integration does not allow you to define model queues of a given name.
Service integration technology supports only one model queue called the
SYSTEM.DEFAULT.MODEL.QUEUE.

22. Dynamic queue name prefix length. Service integration suffixes all dynamic queue names with “_Q”
and a unique id. This restricts the name specified in the dynamic queue name field of the Object
Descriptor to up to 12 chars. If this name is greater than 12 characters, then it is truncated to 12
characters. In service integration, it is not possible to create a dynamic queue with the full name
specified in the dynamic queue name field of the Object Descriptor.

23. Mark skip backout option.

24. Signal option on a get request.

25. Version 3 get message options structures.

26. All queue properties (the properties of a service integration destination do not map, one for one, to
the properties of a WebSphere MQ local queue, for example).

27. Poisoned messages. Service integration bus local destination definitions have a maximum failed
deliveries count (that is, the equivalent to the WebSphere MQ BackoutThreshold value) but there is
no equivalent of the WebSphere MQ backout requeue queue name. In service integration technology,
poisoned messages are instead backed out to an exception destination. Additionally, in service
integration technology, when the number of times an application backs out a poisoned message is
equal to the maximum failed deliveries count, the message is automatically backed out to an
ExceptionDestination. If there is more than one message in the current unit of recovery, only the
poisoned message is backed out to the ExceptionDestination. The remainder of the messages in the
unit of recovery are backed out to the destination from which they were read.

28. A strict limitation of 48 bytes on the name of a queue. Service integration bus destination names can
be greater than 48 bytes in length. If a destination name is to be returned to a WebSphere MQ JMS
application, then it is important to use 48 byte destination lengths. Though, in some cases, it might be
feasible to define an alias destination with a name length of up to 48 bytes to map to a local
destination with a name of length greater than 48 bytes.

Programming to use message-driven beans
Applications can use message-driven beans as asynchronous message consumers. You deploy a
message-driven bean as a message listener for a destination. When a message arrives at the destination,
the EJB container invokes the message-driven bean automatically without an application having to
explicitly poll the destination.

About this task

You can use a tool such as Rational Application Developer to develop applications that use
message-driven beans. You can use the WebSphere Application Server runtime tools, such as the
administrative console, to deploy and administer applications that use message-driven beans.

Chapter 13. Developing Messaging resources 599

For more information about implementing enterprise applications that use message-drive beans, see the
following topics:

Procedure
v Develop message-driven beans.

v Design an enterprise application to use message-driven beans.

v Develop an enterprise application to use message-driven beans.

v Deploy an enterprise application to use message-driven beans with JCA 1.5-compliant resources.

v Deploy an enterprise application to use message-driven beans with listener ports.

Developing message-driven beans
You can develop a bean implementation class for a message-driven bean as introduced by the Enterprise
JavaBeans specification. A message-driven bean (MDB) is a message consumer that implements business
logic and runs on the server.

Before you begin

Determine the messaging model you want for your application regarding use of topics, queues, producers
and consumers, publish or subscribe, and so on. You can refer to the message-driven bean component
contract that is described in the Enterprise JavaBeans™ specification.

About this task

A message-driven bean (MDB) is a consumer of messages from a Java Message Service (JMS) provider.
An MDB is invoked on arrival of a message at the destination or endpoint that the MDB services. MDB
instances are anonymous, and therefore, all instances are equivalent when not actively servicing a client
message. The container controls the life cycle of bean instances, which hold no state that is visible to a
client.

The following example is a basic message-driven bean:
@MessageDriven(activationConfig={

@ActivationConfigProperty(propertyName="destination", propertyValue="myDestination"),
@ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue")

})
public class MsgBean implements javax.jms.MessageListener {

public void onMessage(javax.jms.Message msg) {

String receivedMsg = ((TextMessage) msg).getText();
System.out.println("Received message: " + receivedMsg);

}

}

As with other enterprise bean types, you can also declare metadata for message-driven beans in the
deployment descriptor rather than using annotations, for example:
<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar id="EJBJar_1060639024453" version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
metadata-complete="false">

<enterprise-beans>

<message-driven>

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.ejb.MsgBean</ejb-class>

600 Developing WebSphere applications

<activation-config>
<activation-config-property>

<activation-config-property-name>destination</activation-config-property-name>
<activation-config-property-value>myDestination</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property-name>destinationType</activation-config-property-name>
<activation-config-property-value>javax.jms.Queue</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>

</enterprise-beans>
</ejb-jar>

Procedure
v Code the business logic of the message-driven bean, which must implement the appropriate message

listener interface defined by the messaging type; for example, javax.jms.MessageListener. The business
logic is invoked when the message listener method of the MDB is called to service a message; for
example, MessageListener.onMessage(). If the MDB implements more than one interface, denote the
message listener interface by coding the messageListenerInterface attribute of the MessageDriven
annotation, or by coding the <messaging-type> element of the message-driven deployment descriptor
element. You do not have to specify which is the message listener interface, as long as there is only
one interface other than java.io.Serializable, java.io.Externalizable, or any of the javax.ejb
package interfaces.

v You can optionally define message destination references on any type of enterprise bean. A message
destination reference is a logical name by which an enterprise bean can refer to a message destination.
The Resource annotation is used to inject a message destination reference, for example:
@Resource (name="jms/Outlet", type=javax.jms.Queue) Queue salesOutlet;

Alternatively, you can use the <message-destination-ref> element in the deployment descriptor to
specify the message destination reference; for example:
<message-destination-ref>

<message-destination-ref-name>jms/Outlet</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<injection-target>
<injection-target-class>com.acme.ejb.MsgBean</injection-target-class>
<injection-target-name>salesOutlet</injection-target-name>

</injection-target>
</message-destination-ref>

The message-destination-ref element is similar to the resource-env-ref element, but also has
subelements, message-destination-usage with possible values Produces, Consumes or
ProducesConsumes, and message-destination-link. You can use the message-destination-link element
to tie two or more message-destination-ref references in the deployment descriptor together, which
allows the deployer to bind the destination for several enterprise beans all at once, to the same
destination. The message-destination-link value must match the message-destination-name value in the
message-destination element; for example:
<ejb-jar>

<enterprise-beans>

<session>
<ejb-name>OutletBean</display-name>
...
<message-destination-ref>
<message-destination-ref-name>jms/target</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Produces</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

Chapter 13. Developing Messaging resources 601

<session>
<ejb-name>InletBean</display-name>
...
<message-destination-ref>
<message-destination-ref-name>jms/source</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Consumes</message-destination-usage>
<message-destination-link>destination</message-destination-link>

</message-destination-ref>
...

</session>

<message-driven>
<ejb-name>InletBean</display-name>
...

<ejb-name>MsgBean</ejb-name>
<ejb-class>com.acme.MsgBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>destination</message-destination-link>

...
</message-driven>

</enterprise-beans>
...

<assembly-descriptor>
...
<message-destination>
<message-destination-name>destination</message-destination-name>

</message-destination>
...

</assembly-descriptor>

</ejb-jar>

The message-destination-link element can refer to a destination that is defined in a different Java
archive (JAR) file within the same application, as with an ejb-link element. For example, to link to the
destination, ProduceQueue, defined in the grocery.jar file, enter the following line in the deployment
descriptor:
<message-destination-link>grocery.jar#ProduceQueue</message-destination-link>

v As with any enterprise bean, you can package a message-driven bean in a JAR file, or in a web
application archive (WAR) file.

Results

You developed a simple message-driven bean, along with some deployment and packaging options.

What to do next

Read related information about designing an enterprise application that uses message-driven beans.

Designing an enterprise application to use message-driven beans
To help you design your enterprise application, consider a generic enterprise application that uses one
message-driven bean to retrieve messages from a JMS queue destination, and passes the messages on
to another enterprise bean that implements the business logic.

About this task

To design an enterprise application to use message-driven beans, complete the following steps:

602 Developing WebSphere applications

Procedure
1. Identify the message listener interface for the message type that the message-driven bean is to

handle. The message-driven bean class must implement this message listener interface. For example,
an EJB message-driven bean class used for JMS messaging must implement the
javax.jms.MessageListener interface.

2. Identify the resources that the application is to use. This helps to identify the properties of resources
that must be used within the application and configured as application deployment descriptors or within
WebSphere Application Server.

Table 69. JMS resource types and examples of their properties. The left hand column of this table lists the JMS
resource types, and the right hand column shows examples of the properties of each of the JMS resource types
shown in the left hand column.

JMS resource type Properties (for example)

JMS connection factory Name: SamplePtoPQueueConnectionFactory
JNDI Name: Sample/JMS/QCF

JMS destination Name: Q1
JNDI Name: Sample/JMS/Q1

J2C activation specification properties Name: MyMDBsActivationSpec
JNDI Name: eis/MyMDBsActivationSpec
Destination JNDI Name: MyQueue
Destination type: javax.jms.Queue

Message-driven bean (deployment properties) Name: JMSppSampleMDBBean
Transaction type: Container
Message selector: JMSType=’car’
Acknowledge mode: Dups OK Acknowledge
Destination type: javax.jms.Queue
ActivationSpec JNDI name: MyMDBsActivationSpec

Business logic bean Name: MyLogicBean

Ensure that you use consistent values where needed; for example, the JNDI name for the J2C
activation specification must be the same in both the activation specification and the Message-driven
bean deployment attributes.

3. Separate out the business logic. You should develop a message-driven bean to delegate the business
processing of incoming messages to another enterprise bean. This provides clear separation of
message handling and business processing. This also enables the business processing to be invoked
by either the arrival of incoming messages or, for example, from a WebSphere J2EE client.

4. Decide whether to configure security. Messages arriving at a destination being processed by a listener
have no client credentials associated with them; the messages are anonymous. Security depends on
the role specified by the RunAs Identity for the message-driven bean as an EJB component. For more
information about EJB security, see EJB component security.

5. Understand how best effort nonpersistent messages are handled by the default messaging provider.

If you have a non-transactional message-driven bean, the system either deletes the message when the
message-driven bean starts, or when the message-driven bean completes. If the message-driven bean
generates an exception, and therefore does not complete, the system takes one of the following
actions:

v If the system is configured to delete the message when the message-driven bean completes, then
the message is despatched to a new instance of the message-driven bean, so the message has
another opportunity to be processed.

v If the system is configured to delete the message when the message-driven bean starts, then the
message is lost.

The message is deleted when the message-driven bean starts if the quality of service is set to Best
effort nonpersistent. For all other qualities of service, the message is deleted when the
message-driven bean completes.

Chapter 13. Developing Messaging resources 603

Developing an enterprise application to use message-driven beans
Applications can use message-driven beans as asynchronous message consumers. You deploy a
message-driven bean as a message listener for a destination. The message-driven bean is invoked by an
activation specification or a JMS listener when a message arrives on the input destination that is being
monitored.

About this task

You develop an enterprise application to use a message-driven bean as with any other enterprise bean,
except that a message-driven bean does not have a home interface or a remote interface.

You should develop your message-driven bean to delegate the business processing of incoming messages
to another enterprise bean, which provides clear separation of message handling and business
processing. This separation also means that the business processing can be invoked either by the arrival
of incoming messages or, for example, by a WebSphere J2EE client. Responses can be handled by
another enterprise bean acting as a sender bean, or they can be handled in the message-driven bean.

EJB 2.0 message-driven beans support only Java Message Service (JMS) messaging. EJB 2.1 and EJB 3
message-driven beans can support other messaging types in addition to JMS. All message-driven beans
must implement the MessageDrivenBean interface. For JMS messaging, a message-driven bean must
also implement the message listener interface javax.jms.MessageListener. Other Java EE Connector
Architecture (JCA)-compliant resource adapters might provide their own message listener interfaces that
must be implemented.

You can use the New Enterprise Bean wizard of Rational Application Developer to create an enterprise
bean with a bean type of Message-driven bean. The wizard creates appropriate methods for the type of
bean.

By convention, the message-driven bean class is named nameBean, where name is the name you assign
to the message-driven bean; for example:

public class MyJMSppMDBBean implements MessageDrivenBean, javax.jms.MessageListener

A message-driven bean can be registered with the EJB timer service for time-based event notifications if it
also implements the javax.ejb.TimedObject interface, and invokes the timer callback method by the
following call: void ejbTimeout(Timer). At the scheduled time, the container then calls the message-driven
bean ejbTimeout method.

The message-driven bean class must define and implement the following methods:
v onMessage(message), which must meet the following requirements:

– The method must have a single argument of type javax.jms.Message.
– The throws clause must not define any application exceptions.
– If the message-driven bean is configured to use bean-managed transactions, it must call the

javax.transaction.UserTransaction interface to scope the transactions. Because these calls occur
inside the onMessage() method, the transaction scope does not include the initial message receipt.
For more information, see the topic about message-driven beans transaction support.

To handle the message within the onMessage() method (for example, to pass the message on to
another enterprise bean), you use standard JMS. This is known as bean-managed messaging.

If you are using a JCA-compliant resource adapter with a different message listener interface, another
method besides the onMessage() method might be needed. For information about the message listener
interface needed, see the documentation that was provided with your JCA-compliant resource adapter.

v ejbCreate()

You must define and implement an ejbCreate method for each way in which you want a new instance of
an enterprise bean to be created.

v ejbRemove()

604 Developing WebSphere applications

This method is invoked by the container when a client invokes the remove method inherited by the
enterprise bean home interface from the javax.ejb.EJBHome interface. This method must contain any
code that you want to execute before an enterprise bean instance is removed from the container (and
the associated data is removed from the data source).

v ejbTimeout(Timer)

This method is needed only to support notifications from the timer service, and contains the business
logic that handles time events received.

Procedure
1. Create the Enterprise Application project.

2. Create the message-driven bean class. You can use the New Enterprise Bean wizard of Rational(r)
Application Developer to create the enterprise bean with a bean type of Message-driven bean.

For an example of how to create the message-driven bean class, see the Example section of this
topic. For more information, see Creating message-driven beans in the Rational Application Developer
information center. The result of this step is a message-driven bean that can be assembled into an
EAR file for deployment.

3. Optional: Use the EJB deployment descriptor editor to review and, if needed, change the deployment
attributes. You can use the EJB deployment descriptor editor to review deployment attributes that you
specified on the EJB creation wizard (such as Transaction type and Message selector) and other
default deployment attributes.

If needed, you can override the values of these attributes later, after the enterprise application has
been exported into an EAR file for deployment, as described in “Configuring deployment attributes for
a message-driven bean against JCA 1.5-compliant resources” on page 2087 and “Configuring
deployment attributes for a message-driven bean against a listener port” on page 2089.

a. In the property pane, select the Bean tab.

b. On the main panel, configure the Transaction type attribute.

Transaction type
This attribute determines whether the message-driven bean manages its own transactions, or
whether the container manages transactions on behalf of the bean.
Bean The message-driven bean manages its own transactions.
Container

The container manages transactions on behalf of the bean.

c. Under Activation Configuration, review the following attributes:

acknowledgeMode
This attribute determines how the session acknowledges any messages it receives.
Auto Acknowledge

The session automatically acknowledges delivery of each message.
Dups OK Acknowledge

The session lazily acknowledges the delivery of messages. This setting is likely to
result in the delivery of some duplicate messages if JMS fails, so it should be used
only by consumer applications that are tolerant of duplicate messages.

As defined in the EJB specification, clients cannot use the Message.acknowledge() method to
acknowledge messages. If a value of CLIENT_ACKNOWLEDGE is passed on the createxxxSession
call, then messages are automatically acknowledged by the application server and the
Message.acknowledge() method is not used.

Note:

The acknowledgement is sent when the message is deleted.

If you have a non-transactional message-driven bean, the system either deletes the
message when the message-driven bean starts, or when the message-driven bean

Chapter 13. Developing Messaging resources 605

completes. If the message-driven bean generates an exception, and therefore does not
complete, the system takes one of the following actions:

v If the system is configured to delete the message when the message-driven bean
completes, then the message is despatched to a new instance of the message-driven
bean, so the message has another opportunity to be processed.

v If the system is configured to delete the message when the message-driven bean
starts, then the message is lost.

The message is deleted when the message-driven bean starts if the quality of service is
set to Best effort nonpersistent. For all other qualities of service, the message is
deleted when the message-driven bean completes.

destinationType
This attribute determines whether the message-driven bean uses a queue or topic destination.
Queue The message-driven bean uses a queue destination.
Topic The message-driven bean uses a topic destination.

subscriptionDurability
This attribute determines whether a JMS topic subscription is durable or nondurable.
Durable

A subscriber registers a durable subscription with a unique identity that is retained by
JMS. Subsequent subscriber objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no active subscriber for a
durable subscription, JMS retains the subscription messages until they are received by
the subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their subscriber object. This means that
a client sees the messages published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages published on its topic.

A nondurable subscriber can only be used in the same transactional context (for
example, a global transaction or an unspecified transaction context) that existed when
the subscriber was created.

messageSelector
This attribute determines the JMS message selector that is used to select which messages the
message-driven bean receives. For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the message
properties. Message selectors cannot reference message body values.

d. Specify bindings deployment attributes.

Under WebSphere Bindings, select the JCA Adapter option then specify the bindings deployment
attributes:
ActivationSpec JNDI name

This attribute specifies the JNDI name of the activation specification that is used to deploy
this message-driven bean. This name must match the name of an activation specification
that you define to WebSphere Application Server.

ActivationSpec Authorization Alias
This attribute specifies the name of an authentication alias used for authentication of
connections to the JCA resource adapter. An authentication alias specifies the user ID and
password that is used to authenticate the creation of a new connection to the JCA resource
adapter.

Destination JNDI name
This attribute specifies the JNDI name that the message-driven bean uses to look up the
JMS destination in the JNDI namespace.

e. Optional: Specify Destination Link to enable message linking.

606 Developing WebSphere applications

Message linking allows the routing of messages to a specific message-driven bean in a
deployment. Message linking allows message flow to be orchestrated between components in the
same application.

For a message to be consumed and processed by a message-driven bean, the<message-
destination-link> element must be defined in the deployment descriptor associated with the
message-driven bean. The destination identified by the <message-destination-link> element
corresponds to the logical destination.

When the <message-destination-ref> includes a <message-destination-link> element, messages
are consumed at that destination.

In order to get the message-driven bean to consume messages sent to a destination, you can
declare a <message-destination-link> element in the deployment descriptor, or alternatively set it
in the activation specification.

4. Assemble and package the application for deployment.

Results

The result of this task is an EAR file, containing the message-driven bean, for the enterprise application
that can be deployed in WebSphere Application Server.

Example

The following example shows how to create the message-driven bean class. The example code shows
how to access the text and the JMS MessageID, from a JMS message of type TextMessage. In this
example, first the onMessage() method of a message-driven bean is used to unpack the incoming text
message and to extract the text and message identifier; then a private putMessage method (defined within
the same message bean class) is used to put the message onto another queue:

public void onMessage(javax.jms.Message msg)
{

String text = null;
String messageID = null;

try
{

text = ((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(), msg text2: "+text);

//
// store the message id to use as the Correlator value
//
messageID = msg.getJMSMessageID();

// Call a private method to put the message onto another queue
putMessage(messageID, text);

}
catch (Exception err)
{

err.printStackTrace();
}
return;

}

What to do next

After you have developed an enterprise application to use message-driven beans, configure and deploy
the application. For example, define activation specifications for the message-driven beans and, optionally,
change the deployment descriptor attributes for the application. For more information, see “Deploying an

Chapter 13. Developing Messaging resources 607

enterprise application to use message-driven beans with JCA 1.5-compliant resources” on page 2086 and
“Deploying an enterprise application to use message-driven beans with listener ports” on page 2089.

JMS report messages
JMS applications can use report messages as a form of managed request/response processing, to give
remote feedback to producers on the outcome of their send operations and the fate of their messages.

JMS applications can request the following types of report message by setting appropriate
JMS_IBM_Report_Xxxx message properties and options. The options have the same general syntax and
meaning:

MQRO_report-type
A report message of the indicated type is generated that contains the MQMD of the original
message. It does not contain any message body data.

MQRO_report-type_WITH_DATA
A report message of the indicated type is generated that contains the MQMD, any MQ headers,
and 100 bytes of body data.

MQRO_report-type_WITH_FULL_DATA
A report message of the indicated type is generated that contains all data from the original
message.

Use the following prefix with each option: com.ibm.websphere.sib.api.jms.

For example, to request a Confirm on delivery (COD) report message with full data, the JMS application
must set JMS_IBM_Report_COD to the value
com.ibm.websphere.sib.api.jms.MQRO_COD_WITH_FULL_DATA.

Type of report
message Description

JMS_IBM_Report_Xxxx message property
and options

Exception Send a report message if the request
message cannot be put to the target queue.
The exception report messages are
generated when a message has been
rerouted to an exception destination.

JMS_IBM_Report_Exception

v MQRO_EXCEPTION

v MQRO_EXCEPTION_WITH_DATA

v MQRO_EXCEPTION_WITH_FULL_DATA

Discard Discard the original request message rather
than sending it to an exception destination.
You can use this option with the
JMS_IBM_Report_Exception property set to
MQRO_EXCEPTION_WITH_FULL_DATA to
return an undeliverable request message to
its sender.

JMS_IBM_Report_Discard_Msg

v TRUE

v FALSE

Expiration Send a report message if the request
message passes its expiry time.

JMS_IBM_Report_Expiration

v MQRO_EXPIRATION

v MQRO_EXPIRATION_WITH_DATA

v MQRO_EXPIRATION_WITH_FULL_DATA

608 Developing WebSphere applications

Type of report
message Description

JMS_IBM_Report_Xxxx message property
and options

Confirm on arrival
(COA)

Send a report message when the request
message has been put to the target queue.

For publish/subscribe messaging, the COA
report message is generated only on the
producers messaging engine. Therefore,
such reports are relevant only to local
subscriptions.

For point-to-point messaging, COA messages
are generated when the message arrives at
the final destination. For partitioned queues,
the report message is generated only when
the put operation has committed and a final
destination has therefore been selected. Any
With_Data or With_Full_Data report options
specified are ignored; the COA report
message deals only with message headers.

If a forward-routing path is used, the COA
message are generated when the message
arrives at the final destination in the path.

JMS_IBM_Report_COA

v MQRO_COA

v MQRO_COA_WITH_DATA

v MQRO_COA_WITH_FULL_DATA

Confirm on delivery
(COD)

Send a report message when the request
message has been removed from the queue
or topic space by a message consumer.

For publish/subscribe messaging, the COD
message is generated when all subscribers
have received the request message.
Therefore, there is one COD message
generated for every COA. When a message
is consumed by a subscriber, the reference
count of the message on the topic space is
reduced. When the reference count reaches
zero, the message is removed from the topic
space then a COD report message is
generated.

For point-to-point messaging, the COD
message is generated after the message has
been successfully received by a consuming
application. Any With_Data or With_Full_Data
report options specified are ignored; the COD
report message deals only with message
headers.

JMS_IBM_Report_COD

v MQRO_COD

v MQRO_COD_WITH_DATA

v MQRO_COD_WITH_FULL_DATA

Positive action
notification (PAN)

Ask the consumer application to send a
report message when it has successfully
processed the request message.

JMS_IBM_Report_PAN

v TRUE

v FALSE

Negative action
notification (NAN)

Ask the consumer application to send a
report message if it has not successfully
processed the request message.

JMS_IBM_Report_NAN

v TRUE

v FALSE

The requesting application can control other aspects of the report message as follows:

v How the message Id is generated for the report message and any reply message:

Chapter 13. Developing Messaging resources 609

MQRO_New_Msg_Id
This the default. A new message Id is generated for the report message.

MQRO_Pass_Msg_Id
The message Id of the report message is set to the message Id of the request message.

v How the correlation Id of the report or reply message is to be set.

MQRO_Copy_Msg_Id_To_Correl_Id
This the default. the correlation Id of the report message is set to the message Id of the request
message.

MQRO_Pass_Correl_Id
The correlation Id of the report message is set to the correlation Id of the request message.

For more information about report messages and the associated properties and options, see the Report
messages section of the WebSphere MQ information center.

JMS interfaces
WebSphere Application Server supports applications that use JMS 1.1 domain-independent interfaces
(referred to as “common interfaces” in the JMS specification) and JMS 1.0.2 domain-specific interfaces.

With JMS 1.1, the preferred approach for implementing applications is to use common interfaces because
they provide a simpler programming model than domain-specific interfaces. Also, applications can create
both queues and topics in the same session and coordinate their use in the same transaction. Common
interfaces are parents of domain-specific interfaces.

Note: Domain-specific interfaces (provided for JMS 1.0.2 in WebSphere Application Server Version 5) are
supported only to provide compatibility for applications that have already been implemented to use
those interfaces.

Table 70. The point-to-point and publish/subscribe versions of JMS common interfaces. The first column of the table
lists the JMS common interfaces. The second column lists the point-to-point versions of the JMS common interfaces.
The third column lists the publish/subscribe versions of the JMS common interfaces.

JMS common interfaces Point-to-point interfaces Publish/subscribe interfaces

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession,

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver,
QueueBrowser

TopicSubscriber

For more information about JMS interfaces, see the JMS documentation at http://java.sun.com/products/
jms/docs.html.

610 Developing WebSphere applications

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Chapter 14. Developing Naming and directory

This page provides a starting point for finding information about naming support. Naming includes both
server-side and client-side components. The server-side component is a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming). The client-side component is a Java Naming and
Directory Interface (JNDI) service provider. JNDI is a core component in the Java Platform, Enterprise
Edition (Java EE) programming model.

The WebSphere JNDI service provider can be used to interoperate with any CosNaming name server
implementation. Yet WebSphere name servers implement an extension to CosNaming, and the JNDI
service provider uses those WebSphere extensions to provide greater capability than CosNaming alone.
Some added capabilities are binding and looking up of non-CORBA objects.

Java EE applications use the JNDI service provider supported by WebSphere Application Server to obtain
references to objects related to server applications, such as enterprise bean (EJB) homes, which have
been bound into a CosNaming name space.

Developing applications that use JNDI
References to enterprise bean (EJB) homes and other artifacts such as data sources are bound to the
WebSphere Application Server name space. These objects can be obtained through Java Naming and
Directory Interface (JNDI). Before you can perform any JNDI operations, you need to get an initial context.
You can use the initial context to look up objects bound to the name space.

About this task

The following examples describe how to get an initial context and how to perform lookup operations.
v Getting the default initial context
v Getting an initial context by setting the provider URL property
v Setting the provider URL property to select a different root context as the initial context
v Looking up an EJB home with JNDI

In these examples, the default behavior of features specific to the WebSphere Application Server JNDI
Context implementation is used.

The WebSphere Application Server JNDI context implementation includes special features. JNDI caching
enhances performance of repeated lookup operations on the same objects. Name syntax options offer a
choice of a name syntaxes, one optimized for typical JNDI clients, and one optimized for interoperability
with CosNaming applications. Most of the time, the default behavior of these features is the preferred
behavior. However, sometimes you should modify the behavior for specific situations.

JNDI caching and name syntax options are associated with a javax.naming.InitialContext instance. To
select options for these features, set properties that are recognized by the WebSphere Application Server
initial context factory. To set JNDI caching or name syntax properties which will be visible to the initial
context factory, do the following:

Procedure
1. Optional: Configure JNDI caches

JNDI caching can greatly increase performance of JNDI lookup operations. By default, JNDI caching is
enabled. In most situations, this default is the desired behavior. However, in specific situations, use the
other JNDI cache options.

© IBM Corporation 2009 611

Objects are cached locally as they are looked up. Subsequent lookups on cached objects are resolved
locally. However, cache contents can become stale. This situation is not usually a problem, since most
objects you look up do not change frequently. If you need to look up objects which change relatively
frequently, change your JNDI cache options.

JNDI clients can use several properties to control cache behavior.

You can set properties:

v From the command line by entering the actual string value. For example:
java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired
properties settings. For example:
...
com.ibm.websphere.naming.jndicache.cacheobject=none
...

If you use this technique, be aware that other instances of the jndi.properties file might exist in
the classpath, and might contain conflicting property settings. Property settings are determined by
the order in which the class loader picks up the jndi.properties files. There is no way to control
the order that the class loader uses to locate files in the classpath. WebSphere Application Server
does not initially contain or create any jndi.properties files that set the
com.ibm.websphere.naming.jndicache.cacheobject property.

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants, defined in the
com.ibm.websphere.naming.PROPS file. The constant definitions follow:
public static final String JNDI_CACHE_OBJECT =
"com.ibm.websphere.naming.jndicache.cacheobject";
public static final String JNDI_CACHE_OBJECT_NONE = "none";
public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";
public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";
public static final String JNDI_CACHE_OBJECT_DEFAULT =
JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME =
"com.ibm.websphere.naming.jndicache.cachename";
public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

public static final String JNDI_CACHE_MAX_LIFE =
"com.ibm.websphere.naming.jndicache.maxcachelife";
public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

public static final String JNDI_CACHE_MAX_ENTRY_LIFE =
"com.ibm.websphere.naming.jndicache.maxentrylife";
public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to a hashtable and pass
it to the InitialContext constructor as follows:
java.util.Hashtable env = new java.util.Hashtable();
...

// Disable caching
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE); ...
javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Following are examples that illustrate how you can use JNDI cache properties to achieve the desired
cache behavior. Cache properties take effect when an InitialContext object is constructed.

Example: Controlling JNDI cache behavior from a program
import java.util.Hashtable;
import javax.naming.InitialContext;
import javax.naming.Context;
import com.ibm.websphere.naming.PROPS;

/*****
Caching discussed in this section pertains to the WebSphere Application Server initial context factory.
Assume the property, java.naming.factory.initial, is set to
"com.ibm.websphere.naming.WsnInitialContextFactory" as a java.lang.System property.
*****/

Hashtable env;

612 Developing WebSphere applications

Context ctx;

// To clear a cache:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_CLEARED);
ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");
ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);
ctx = new InitialContext(env);
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should rarely change.
o = ctx.lookup("com/mycom/MyEJBHome");
// Narrow, etc. ...

// Do not use cache if data is volatile.
o = noCacheCtx.lookup("com/mycom/VolatileObject");
// ...

Example: Looking up a JavaMail session with JNDI

The following example shows a lookup of a JavaMail resource:
// Get the initial context as shown above
...
Session session =

(Session) initialContext.lookup("java:comp/env/mail/MailSession");

2. Optional: Specify the name syntax

INS syntax is designed for JNDI clients that need to interoperate with CORBA applications. This syntax
allows a JNDI client to make the proper mapping to and from a CORBA name. INS syntax is very
similar to the JNDI syntax with the additional special character, dot (.). Dots are used to delimit the id
and kind fields in a name component. A dot is interpreted literally when it is escaped. Only one
unescaped dot is allowed in a name component. A name component with a non-empty id field and
empty kind field is represented with only the id field value and must not end with an unescaped dot. An
empty name component (empty id and empty kind field) is represented with a single unescaped dot.
An empty string is not a valid name component representation.

JNDI name syntax is the default syntax and is suitable for typical JNDI clients. This syntax includes the
following special characters: forward slash (/) and backslash (\). Components in a name are delimited
by a forward slash. The backslash is used as the escape character. A forward slash is interpreted
literally if it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted literally if
it is escaped.

Most WebSphere applications use JNDI to look up EJB objects and do not need to look up objects
bound by CORBA applications. Therefore, the default name syntax used for JNDI names is the most
convenient. If your application needs to look up objects bound by CORBA applications, you may need
to change your name syntax so that all CORBA CosNaming names can be represented.

JNDI clients can set the name syntax by setting a property. The property setting is applied by the initial
context factory when you instantiate a new java.naming.InitialContext object. Names specified in JNDI
operations on the initial context are parsed according to the specified name syntax.

Chapter 14. Developing Naming and directory 613

You can set the property:
v From a command line, enter the actual string value. For example:

java -Dcom.ibm.websphere.naming.name.syntax=ins

v Create a file named jndi.properties as a text file with the desired properties settings. For example:
...
com.ibm.websphere.naming.name.syntax=ins
...

If you use this technique, be aware that other instances of the jndi.properties file might exist in
the classpath, and might contain conflicting property settings. Property settings are determined by
the order in which the class loader picks up the jndi.properties files. There is no way to control
the order that the class loader uses to locate files in the classpath. WebSphere Application Server
does not initially contain or create any jndi.properties files that set the
com.ibm.websphere.naming.name.syntax property.

v Use the PROPS.NAME_SYNTAX* Java constants, defined in the com.ibm.websphere.naming.PROPS
file, in a Java program. The constant definitions follow:
public static final String NAME_SYNTAX =

"com.ibm.websphere.naming.name.syntax";
public static final String NAME_SYNTAX_JNDI = "jndi";
public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to a hashtable and pass
it to the InitialContext constructor as follows:
java.util.Hashtable env = new java.util.Hashtable();
...
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS); // Set name syntax to INS
...
javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Setting the syntax used to parse name strings

The name syntax property can be passed to the InitialContext constructor through its parameter, in the
System properties, or in a jndi.properties file. The initial context and any contexts looked up from
that initial context parse name strings based on the specified syntax.

The following example shows how to set the name syntax to make the initial context parse name
strings according to INS syntax.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS; // WebSphere naming constants
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, ...);
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);
Context initialContext = new InitialContext(env);
// The following name maps to a CORBA name component as follows:
// id = "a.name", kind = "in.INS.format"
// The unescaped dot is used as the delimiter.
// Escaped dots are interpreted literally.
java.lang.Object o = initialContext.lookup("a\\.name.in\\.INS\\.format");
...

INS name syntax requires that embedded periods (.) in a name such as in.INS.format be escaped
using a backslash character (\). In a Java String literal, a backslash character (\) must be escaped with
another backslash character (\\).

3. Optional: Disable host name normalization

References to host names, IP addresses, and localhost in provider URLs are typically normalized.
The format of a normalized host name is the fully-qualified form of the host name. Host name
normalization improves system efficiency because it enables the same JNDI cache to be used for a
given bootstrap host regardless of the format of the reference in the provider URL. For example, host
name normalization enables the same JNDI cache to be used for myhost, myhost.mydomain.com, and
localhost references if all of these references refer to the same host.

614 Developing WebSphere applications

Because normalized host names are cached, subsequent normalizations execute more quickly. In
some network environments, domain name lookup data changes dynamically, causing the cached host
name normalization data to become stale. In such environments, you might need to disable hostname
normalization. When you disable host normalization, host name and IP addresses are used as is.
References to localhost typically resolve to the loopback address, 127.0.0.1.

JNDI clients can disable host name normalization by setting a property. The property setting is applied
by the initial context factory when you instantiate a new java.naming.InitialContext object.

Use one of the following techniques to set this property:

v You can enter the actual string value from a command line. For example:
java -Dcom.ibm.websphere.naming.hostname.normalizer=...none...

v You can create a file named jndi.properties as a text file with the desired properties settings. For
example:
...
com.ibm.websphere.naming.hostname.normalizer=...none...
...

If you use this technique, be aware that other instances of the jndi.properties file might exist in
the classpath, and might contain conflicting property settings. Property settings are determined by
the order in which the class loader picks up the jndi.properties files. There is no way to control
the order that the class loader uses to locate files in the classpath. WebSphere Application Server
does not initially contain or create any jndi.properties files that set the
com.ibm.websphere.naming.hostname.normalizer property.

v You can use the PROPS.HOSTNAME_NORMALIZER* Java constants in a Java program. These
Java constants are defined in the com.ibm.websphere.naming.PROPS file. Following are the
constant definitions to specify if you use this technique:
public static final String HOSTNAME_NORMALIZER =

"com.ibm.websphere.naming.hostname.normalizer";
public static final String HOSTNAME_NORMALIZER_NONE = "...none...;

To use these definitions in a Java program, add the property setting to a hashtable and pass it to
the InitialContext constructor:
java.util.Hashtable env = new java.util.Hashtable();
...
env.put(PROPS.HOSTNAME_NORMALIZER, PROPS.HOSTNAME_NORMALIZER_NONE);

// Disable hostname normalization
...
javax.naming.Context initialContext =

new javax.naming.InitialContext(env);

Example: Disabling host name normalization

You can pass the host name normalizer property to the InitialContext constructor through the
InitialContext constructor parameter in the system properties file, or in a jndi.properties file. The
initial context and any future contexts looked up from that initial context use this property setting.

The following example shows how to disable host name normalization.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS; // WebSphere naming constants
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, ...);
env.put(PROPS.HOSTNAME_NORMALIZER, PROPS.HOSTNAME_NORMALIZER_NONE);
Context initialContext = new InitialContext(env);
java.lang.Object o = initialContext.lookup(...);
...

Example: Getting the default initial context
There are various ways for a program to get the default initial context.

Chapter 14. Developing Naming and directory 615

The following example gets the default initial context. Note that no provider URL is passed to the
javax.naming.InitialContext constructor.
...
import javax.naming.Context;
import javax.naming.InitialContext;
...
Context initialContext = new InitialContext();
...

The default initial context returned depends the runtime environment of the Java Naming and Directory
Interface (JNDI) client. Following are the initial contexts returned in the various environments:

Thin client
The initial context is the server root context of the server running on the local host at port 2809.

Pure client
The initial context is the context specified by the java.naming.provider.url property passed to
launchClient command with the -CCD command line parameter. The context usually is the server
root context of the server at the address specified in the URL, although it is possible to construct a
corbaname or corbaloc URL which resolves to some other context.

If no provider URL is specified, it is the server root context of the server running on the host and
port specified by the -CCproviderURL, or -CCBootstrapHost and -CCBootstrapPort command line
parameters. The default host is the local host, and the default port is 2809.

Server process
The initial context is the server root context for that process.

Even though no provider URL is explicitly specified in the previous example, the InitialContext constructor
might find a provider URL defined in other places that it searches for property settings.

Users of properties which affect ORB initialization should read the rest of this section for a deeper
understanding of exactly how initial contexts are obtained.

Determining which server is used to obtain the initial context

WebSphere Application Server name servers are CORBA CosNaming name servers, and the product
provides a CosNaming JNDI plug-in implementation for JNDI clients to perform naming operations on
product namespaces. The CosNaming plug-in implementation is selected through a JNDI property that is
passed to the InitialContext constructor. This property is java.naming.factory.initial, and it specifies the
initial context factory implementation to use to obtain an initial context. The factory returns a
javax.naming.Context instance, which is part of its implementation.

The initial context factory, com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by
applications to perform JNDI operations. The WebSphere Application Server runtime environment is set up
to use this initial context factory if one is not specified explicitly by the JNDI client. When the initial context
factory is invoked, an initial context is obtained. The following paragraphs explain how the initial context
factory obtains the initial context in client and server environments.

v Registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch invocations on objects
running in that server. Services running in the server process can register initial references with the
ORB. Each initial reference is registered under a key, which is a string value. An initial reference can be
any CORBA object. WebSphere Application Server name servers register several initial contexts as
initial references under predefined keys. Each name server initial reference is an instance of the
interface org.omg.CosNaming.NamingContext.

v Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere Application Server
process, also have an ORB instance. This client ORB instance can be passed to the InitialContext

616 Developing WebSphere applications

constructor, but typically the initial context factory creates and initializes the client ORB instance
transparently. A client ORB can be initialized with initial references, but the initial references most likely
resolve to objects running in some server. The initial context factory does not define any default initial
references when it initializes an ORB. If the resolve_initial_references method is invoked on the
client ORB when no initial references have been configured, the method invocation fails. This condition
is typical for pure client processes. To obtain an initial NamingContext reference, the initial context
factory must invoke string_to_object with an IIOP type CORBA object URL, such as
corbaloc:iiop:myhost:2809. The URL specifies the address of the server from which to obtain the initial
context. The host and port information is extracted from the provider URL passed to the InitialContext
constructor.

If no provider URL is defined, the WebSphere
Application Server initial context factory uses the default provider URL of
corbaloc:iiop:localhost:2809.

The string_to_object ORB method resolves the URL and communicates with the target server ORB to
obtain the initial reference.

v Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial context factory
obtains a reference to the server ORB instance if the JNDI client does not provide an ORB instance.
Typically, JNDI clients running in server processes use the server ORB instance; that is, they do not
pass an ORB instance to the InitialContext constructor. The name server which is running in the server
process sets a provider URL as a java.lang.System property to serve as the default provider URL for all
JNDI clients in the process. This default provider URL is corbaloc:rir:/NameServiceServerRoot. This
URL resolves to the server root context for that server. (The URL is equivalent to invoking
resolve_initial_references on the ORB with a key of NameServiceServerRoot. The name server
registers the server root context as an initial reference under that key.)

v Understanding the legacy ORB protocol

Releases previous to WebSphere Application Server Version 5 used a different ORB implementation,
which used a legacy protocol in contrast with the Interoperable Name Service (INS) protocol now used.
This change has affected the implementation of the initial context factory. Certain types of pure clients
can experience different behavior when getting initial JNDI contexts as compared to previous releases
of WebSphere Application Server. This behavior is discussed in more detail later in this section.

The following ORB properties are used with the legacy ORB protocol for ORB initialization and are now
deprecated:
– com.ibm.CORBA.BootstrapHost
– com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default behavior if no initial
references are defined.

In the legacy ORB, the bootstrap host and
port values defaulted to localhost and 900.

All initial references were obtained from the server running on the bootstrap host and port. So, if the
ORB user provided no bootstrap host and port, all initial references are resolved from the server running
on the local host at port 900. The INS ORB has no concept of bootstrap host or bootstrap port. All initial
references are defined independently. That is, different initial references could resolve to different
servers. If ORB.resolve_initial_references is invoked with a key such that the ORB is not initialized
with an initial reference having that key, the call fails.

In releases previous to Version 5, the initial context factory invoked resolve_initial_references on the
ORB in the absence of any provider URL. This action succeeded if a name server at the default
bootstrap host and port was running. In the current release, with the INS ORB, this would fail. (Actually,
the ORB would fall back to the legacy protocol during the deprecation period, but when the legacy
protocol is no longer supported, the operation would fail.)

The initial context factory now uses a default
provider URL of corbaloc:iiop:localhost:2809, and invokes string_to_object with the provider URL.

Chapter 14. Developing Naming and directory 617

This operation preserves the behavior that pure clients in previous releases experienced when they set
no ORB bootstrap properties or provider URL. However, this different initial context factory
implementation changes the behavior experienced by certain legacy pure clients, which do not specify a
provider URL:
– Clients which set the ORB bootstrap properties previously listed when getting an initial context.
– Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:

– Always specify an IIOP type provider URL. This approach does not depend on the bootstrap host
and port properties and continues to work when support for the bootstrap host and port properties is
removed. For example, you can express bootstrap host and port property values of myHost and 2809,
respectively, as corbaloc:iiop:myHost:2809.

– Use an rir type provider URL:
- Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use a Version 5 server

as the bootstrap server.
- Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is initialized to use a Version

4.0.x server as the bootstrap server.
- Specify corbaloc:rir:/NameService if the ORB is initialized to use a server other than a Version 5

or 4.0.x server as the bootstrap server.

URLs of this type are equivalent to invoking resolve_initial_references on the ORB with the
specified key. If the bootstrap host and port properties are being used to initialize the ORB, this
approach will not work when the bootstrap and host properties are no longer supported.

v The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an application, the bootstrap
server depends on the value of the property, java.naming.provider.url.

If the property is not set (in server processes
the default value is set as a system property), the default host of localhost and default port of 2809 are
used as the address of the server from which to obtain the initial context.

The JNDI specification describes where the InitialContext constructor looks for java.naming.provider.url
property settings, but briefly, the property is picked up from the following places in the order shown:

InitialContext constructor
This does not apply to the previous example because the example uses the empty InitalContext
constructor.

System environment
You can add JNDI properties to the system environment as an option on the Java command
invocation and by program code. The recommended way to set the provider URL in the system
environment is as an option supplied to the Java command invocation. Setting the provider URL
in this manner is not temporal, so that getting a default initial context will always yield the same
result. It is generally recommended that program code not set the provider URL property in the
system environment because as a side-effect, this could adversely affect other, possibly
unrelated, code running elsewhere in the same process.

jndi.properties file
There may be many jndi.properties files that are within the scope of the class loader in effect.
All jndi.properties files are used for setting JNDI properties, but the provider URL setting is
determined by the first jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider URL
property
In general, Java Naming and Directory Interface (JNDI) clients should assume the correct environment is
already configured so there is no need to explicitly set property values and pass them to the
InitialContext constructor. However, a JNDI client might need to access a namespace other than the
one identified in its environment. In this case, it is necessary to explicitly set the java.naming.provider.url
(provider URL) property used by the InitialContext constructor. A provider URL contains bootstrap server

618 Developing WebSphere applications

information that the initial context factory can use to obtain an initial context. Any property values passed
in directly to the InitialContext constructor take precedence over settings of those same properties found
elsewhere in the environment.

You can use two different provider URL forms with theWebSphere Application Server initial context factory:
v A CORBA object URL
v An IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the recommended URL format to use.
CORBA object URLs are part of the OMG CosNaming Interoperable Naming Specification. A corbaname
URL, for example, can include initial context and lookup name information and can be used as a lookup
name without the need to explicitly obtain another initial context. The IIOP URLs are the legacy JNDI
format, but are still supported by the WebSphere Application Server initial context factory.

The following examples illustrate the use of these URLs.

v “Using a CORBA object URL”

v “Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation”

v “Using an IIOP URL” on page 620

Using a CORBA object URL
This example shows a CORBA object URL.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Using a CORBA object URL from a non-WebSphere Application Server JNDI
implementation
Initial context factories for CosNaming JNDI plug-in implementations other than the WebSphere Application
Server initial context factory most likely obtain an initial context using the object key, NameService. When
you use such a context factory to obtain an initial context from a WebSphere Application Server name
server, the initial context is the cell root context. Since system artifacts such as EJB homes associated
with a server are bound under the server's server root context, names used in JNDI operations must be
qualified. If you want to use relative names, ensure your initial context is the server root context under
which the target object is bound. In order to make the server root context the initial context, specify a
corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application Server JNDI
implementation. This example assumes full CORBA object URL support by the non-WebSphere Application
Server JNDI implementation. The object key of NameServiceServerRoot is specified so that the initial
context will be the specified server's server root context.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.somecompany.naming.TheirInitialContextFactory");

Chapter 14. Developing Naming and directory 619

env.put(Context.PROVIDER_URL,
"corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");

Context initialContext = new InitialContext(env);
...

If qualified names are used, you can use the default key of NameService.

Using an IIOP URL
The IIOP type of URL is a legacy format which is not as flexible as CORBA object URLs. However, URLs
of this type are still supported. The following example shows an IIOP type URL as the provider URL.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Example: Setting the provider URL property to select a different root
context as the initial context
Each server contains its own server root context, and, when bootstrapping to a server, the server root is
the default initial JNDI context. Most of the time, this default is the desired initial context, since system
artifacts such as EJB homes are bound there. However, other root contexts exist, which can contain
bindings of interest. It is possible to specify a provider URL to select other root contexts.

Examples for selecting other root contexts follow:
v Initial root contexts with a CORBA object URL
v Initial root contexts with the namespace root property

Selecting the initial root context with a CORBA object URL
There are several object keys registered with the bootstrap server that you can use to select the root
context for the initial context. To select a particular root context with a CORBA object URL object key, set
the object key to the corresponding value. The default object key is NameService. Using JNDI yields the
server root context. A table that lists the different root contexts and their corresponding object key follows:

Root Context CORBA Object URL Object Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot

Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to select the cell
persistent root context as the initial context.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

620 Developing WebSphere applications

env.put(Context.PROVIDER_URL,
"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);
...

Selecting the initial root context with the namespace root property
You can also select the initial root context by passing a namespace root property setting to the
InitialContext constructor. Generally, the object key setting previously described is sufficient. Sometimes a
property setting is preferable. For example, you can set the root context property on the Java invocation to
make which server root is being used as the initial context transparent to the application. The default
server root property setting is defaultroot, which yields the server root context.

Root Context Namespace Root Property Value

Server Root bootstrapserverroot

Cell Persistent Root cellpersistentroot

Cell Root cellroot

Node Root bootstrapnoderoot

The initial context factory ignores the namespace root property if the provider URL contains an object key
other than NameService.

The following example shows use of the namespace root property to select the cell persistent root context
as the initial context. Note that available constants are used instead of hard-coding the property name and
value.
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);
Context initialContext = new InitialContext(env);
...

Example: Looking up an EJB home or business interface with JNDI
Most applications that use Java Naming and Directory Interface (JNDI) run in a container. Some do not.
The name used to look up an object depends on whether or not the application is running in a container.
Sometimes it is more convenient for an application to use a corbaname URL as the lookup name.
Container-based JNDI clients and thin Java clients can use a corbaname URL.

The following examples show how to perform JNDI lookups from different types of applications.
v “JNDI lookup from an application running in a container”
v “JNDI lookup from an application that does not run in a container” on page 622
v “JNDI lookup with a corbaname URL” on page 624

JNDI lookup from an application running in a container

Applications that run in a container can use java: lookup names. Lookup names of this form provide a
level of indirection such that the lookup name used to look up an object is not dependent on the object's
name as it is bound in the name server's namespace. The deployment descriptors for the application

Chapter 14. Developing Naming and directory 621

provide the mapping from the java: name and the name server lookup name. The container sets up the
java: namespace based on the deployment descriptor information so that the java: name is correctly
mapped to the corresponding object.

The following example shows a lookup of an EJB 3.0 remote business interface. The actual home lookup
name is determined by the interface's ibm-ejb-jar-bnd.xml binding file, if present, or by the default name
assigned by the EJB container if no binding file is present. For more information, see topics on default
bindings for business interfaces and homes and on user-defined bindings for EJB business interfaces and
homes.
// Get the initial context as shown in a previous example.
...
// Look up the business interface using the JNDI name.
try {

java.lang.Object ejbBusIntf =
initialContext.lookup(

"java:comp/env/com/mycompany/accounting/Account");
accountIntf =

(Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);
}

catch (NamingException e) { // Error getting the business interface
...

}

The following example shows a lookup of an EJB 1.x or 2.x EJB home. The actual home lookup name is
determined by the application's deployment descriptors. The enterprise bean (EJB) resides in an EJB
container, which provides an interface between the bean and the application server on which it resides.
// Get the initial context as shown in a previous example
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome =
initialContext.lookup(

"java:comp/env/com/mycompany/accounting/AccountEJB");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object) ejbHome, AccountHome.class);
}

catch (NamingException e) { // Error getting the home interface
...

}

JNDI lookup from an application that does not run in a container

Applications that do not run in a container cannot use java: lookup names because it is the container
which sets the java: namespace up for the application. Instead, an application of this type must look the
object up directly from the name server. Each application server contains a name server. System artifacts
such as EJB homes are bound relative to the server root context in that name server. The various name
servers are federated by means of a system namespace structure. The recommended way to look up
objects on different servers is to qualify the name so that the name resolves from any initial context in the
cell. If a relative name is used, the initial context must be the same server root context as the one under
which the object is bound. The form of the qualified name depends on whether the qualified name is a
topology-based name or a fixed name. Examples of each form of qualified name follow.

v Topology-based qualified names

Topology-based qualified names traverse through the system namespace to the server root context
under which the target object is bound. A topology-based qualified name resolves from any initial
context in the cell.

Single server
The following example shows a lookup of an EJB business interface that is running in the single
server, MyServer, configured in the node, Node1.

622 Developing WebSphere applications

// Get the initial context as shown in a previous example.
// Using the form of lookup name below, it does not matter which
// server in the cell is used to obtain the initial context.
...
// Look up the business interface using the JNDI name
try {

java.lang.Object ejbBusIntf = initialContext.lookup(
"cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/Account");

accountIntf =
(Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}
catch (NamingException e) { // Error getting the business interface

...
}

The following example shows a lookup of an EJB home that is running in the single server,
MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

v Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its qualified form instead of
the topology-based qualified name. Even though the topology-based name works, the fixed name does
not change with the specific cell topology or with the movement of the target object to a different server.

An example lookup of an EJB business interface with a qualified fixed name follows.
// Get the initial context as shown in a previous example.
// Using the form of lookup name below, it does not matter which
// server in the cell is used to obtain the initial context.
...
// Look up the business interface using the JNDI name
try {

java.lang.Object ejbBusIntf = initialContext.lookup(
"cell/persistent/com/mycompany/accounting/Account");

accountIntf =
(Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}
catch (NamingException e) { // Error getting the business interface
...

}

An example lookup with a qualified fixed name follows:
// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/persistent/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface
...
}

Chapter 14. Developing Naming and directory 623

JNDI lookup with a corbaname URL

A corbaname can be useful at times as a lookup name. If, for example, the target object is not a member
of the federated namespace and cannot be located with a qualifiied name, a corbaname can be a
convenient way to look up the object.

A lookup of an EJB business interface with a corbaname URL follows.
// Get the initial context as shown in a previous example.
...
// Look up the business interface using a corbaname URL.
try {

java.lang.Object ejbBusIntf = initialContext.lookup(
"corbaname:iiop:someHost:2809#com/mycompany/accounting/Account");

accountIntf =
(Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}
catch (NamingException e) { // Error getting the business interface

...
}

A lookup with a corbaname URL follows.
// Get the initial context as shown in a previous example
...
// Look up the home interface using a corbaname URL
try {

java.lang.Object ejbHome = initialContext.lookup(
"corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

JNDI interoperability considerations
You must take extra steps to enable your programs to interoperate with non-product JNDI clients and to
bind resources from MQSeries® to a namespace.

EJB clients running in an environment other than WebSphere Application Server
accessing EJB applications running on product servers

When an enterprise bean (EJB) application running in WebSphere Application Server is accessed by a
non-product EJB client, the JNDI initial context factory is presumed to be a non-product implementation. In
this case, the default initial context is the cell root. If the JNDI service provider being used supports
CORBA object URLs, the corbaname format can be used to look up the EJB home.

Single server
Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean
installed in the server server1 in node node1 and bound in that server under the name myEJB:
initialContext.lookup(
"corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

Without CORBA object URL support
If the JNDI initial context factory being used does not support CORBA object URLs, the initial
context can be obtained from the server, and the lookup can be performed on the initial context as
follows:
Hashtable env = new Hashtable();
env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");
Context ic = new InitialContext(env);
Object o = ic.lookup("cell/clusters/myCluster/myEJB");

624 Developing WebSphere applications

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server Version 5.0, the MQSeries jmsadmin tool could be
used to bind resources to the namespace. When used with a WebSphere Application Server namespace,
the resource is bound within a transient partition in the namespace and does not persist past the life of the
server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them from the
administrative console, under Resources in the console navigation tree.

JNDI caching
To increase the performance of Java Naming and Directory Interface (JNDI) operations, the product JNDI
implementation employs caching to reduce the number of remote calls to the name server for lookup
operations. For most cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between the InitialContext
instance and a cache. The initial context and any contexts returned directly or indirectly from a lookup on
the initial context are all associated with that same cache instance. By default, the association is based on
the provider URL, in particular, the host name and port. The caller can specify the cache name to override
this default behavior. A cache instance of a given name is shared by all instances of InitialContext
configured to use a cache of that name which were created with the same context class loader in effect.
Two enterprise bean (EJB) applications running in the same server will use their own cache instances, if
they are using different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established, the association does not
change. A javax.naming.Context object returned from a lookup operation inherits the cache association of
the Context object on which the lookup was performed. Changing cache property values with the
Context.addToEnvironment() or Context.removeFromEnvironment() method does not affect cache
behavior. You can change properties affecting a given cache instance with each InitialContext instantiation.

A cache is restricted to a process and does not persist past the life of that process. A cached object is
returned from lookup operations until either the maximum cache life for the cache is reached, or the
maximum entry life for the object's cache entry is reached. After this time, a lookup on the object causes
the cache entry for the object to be refreshed. By default, caches and cache entries have unlimited
lifetimes.

Usually, cached objects are relatively static entities, and objects becoming stale is not a problem.
However, you can set timeout values on cache entries or on a cache so that cache contents are
periodically refreshed.

If a bind or rebind operation is executed on an object, the change is not reflected in any caches other than
the one associated with the context from which the bind or rebind was issued. This scenario is most likely
to happen when multiple processes are involved, since different processes do not share the same cache,
and context objects in all threads in a process typically share the same cache instance for a given name
service provider.

JNDI cache settings
Various Java Naming and Directory Interface (JNDI) cache property settings follow. Ensure that all
property values are string values.

com.ibm.websphere.naming.jndicache.cachename
The name of the cache to associate with an initial context instance can be specified with this property.

It is possible to create multiple InitialContext instances, each operating on the namespace of a different
name server. By default, objects from each bootstrap address are cached separately, since they each
involve independent namespaces and name collisions could occur if they used the same cache. The

Chapter 14. Developing Naming and directory 625

provider URL specified when the initial context is created by default serves as the basis for the cache
name. With this property, a JNDI client can specify a cache name. Valid options for cache names follow:

Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property as the basis for the cache name.
Cache names are based on the bootstrap host and port specified in the URL. The
boostrap host is normalized to a fully qualfied name, if possible. For example,
"corbaname:iiop:server1:2809#some/starting/context" and "corbaloc:iiop://server1" are
normalized to the same cache name. If no provider URL is specified, a default cache
name is used.

Any string Use the specified string as the cache name. You can use any arbitrary string with a
value other than "providerURL" as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject
Turn caching on or off and clear an existing cache with this property.

By default, when an InitialContext is instantiated, it is associated with an existing cache or, if one does not
exist, a new one is created. An existing cache is used with its existing contents. In some circumstances,
this behavior is not desirable. For example, when objects that are looked up change frequently, they can
become stale in the cache. Other options are available. The following table lists these other options along
with the corresponding property value.

Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the cache already exists, leave existing cache
entries in the cache; otherwise, create a new cache.

cleared Use a cache with the specified name. If the cache already exists, clear all cache
entries from the cache; otherwise, create a new cache.

none Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this
option will not disable a cache that is already associated with other InitialContext
instances. The InitialContext that is instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife
Impose a limit to the age of a cache with this property.

By default, cached objects remain in the cache for the life of the process or until cleared with the
com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI
client to set the maximum life of a cache. This property differs from the maxentrylife property in that the
entire cache is cleared when the cache lifetime is reached. The following table lists the various
maxcachelife values and their affect on cache behavior:

Valid values Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire cache, in minutes, to the specified value. When
the maximum lifetime for the cache is reached, the next attempt to read any entry from
the cache causes the cache to be cleared

com.ibm.websphere.naming.jndicache.maxentrylife
Impose a limit to the age of individual cache entries with this property.

By default, cached objects remain in the cache for the life of the process or until cleared with the
com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI
client to set the maximum lifetime of individual cache entries. This property differs from the maxcachelife
property in that individual entries are refreshed individually as their maximum lifetime reached. This might

626 Developing WebSphere applications

avoid any noticeable change in performance that might occur if the whole cache is cleared at once. The
following table lists the various maxentrylife values and their effect on cache behavior:

Valid values Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Positive integer Set the maximum lifetime of individual cache entries, in minutes, to the specified value.
When the maximum lifetime for an entry is reached, the next attempt to read the entry
from the cache causes the individual cache entry to refresh.

JNDI to CORBA name mapping considerations
WebSphere Application Server name servers are an implementation of the CORBA CosNaming interface.
The product provides a Java Naming and Directory Interface (JNDI) implementation which you can use to
access CosNaming name servers through the JNDI interface. Issues can exist when mapping JNDI name
strings to and from CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI name component
consists of no such fields. Each component in a JNDI name is atomic. Typical JNDI clients do not need to
make a distinction between the id and kind fields of a name component, or know how JNDI name strings
map to CORBA names. JNDI clients of this sort can use the JNDI syntax described later in this section.
When a name is parsed according to JNDI syntax, each name component is mapped to the id field of the
corresponding CORBA name component. The kind field always has an empty value. This basic syntax is
the least obtrusive to the JNDI client in that it has the fewest special characters. However, you cannot
represent with this syntax a CORBA name with a non-empty kind field. This restriction can prevent EJB
applications from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use CORBA names with
non-empty kind fields. These JNDI clients must make a distinction between id and kind so that JNDI
names are correctly mapped to CORBA names, particularly when the CORBA names contain components
with non-empty kind fields. Such JNDI clients can use the INS name syntax. With its additional special
character, you can use INS to represent any CORBA name. Use of this syntax is not recommended unless
it is necessary, because this syntax is more restrictive from the JNDI client's perspective in that the JNDI
client must be aware that name components with multiple unescaped dots are syntactically invalid. INS
name syntax is part of the OMG CosNaming Interoperable Naming Specification.

Developing applications that use CosNaming (CORBA Naming
interface)
CORBA clients can perform naming operations on WebSphere Application Server name servers through
the CosNaming interface.

About this task

The following examples show how to obtain an ORB instance and an initial context as well as how to look
up an EJB home.

Procedure
1. Get an initial context.

2. Perform desired CosNaming operations.

Example: Getting an initial context with CosNaming
In WebSphere Application Server, an initial context is obtained from a bootstrap server. The address for
the bootstrap server consists of a host and port. To get an initial context, you must know the host and port
for the server that is used as the bootstrap server.

Chapter 14. Developing Naming and directory 627

Obtaining an initial context consists of two basic steps:
1. Obtain an ORB reference.
2. Use an ORB reference to get an initial context. Alternatively, use an existing ORB and invoke

string_to_object with a CORBA object URL with multiple name server addresses to get an initial
context.

Obtaining an ORB reference
Pure CosNaming clients, that is clients that are not running in a server process, must create and initialize
an ORB instance with which to obtain the initial context. CosNaming clients which run in server processes
can obtain a reference to the server ORB with a JNDI lookup. The following examples illustrate how to
create and initialize a client ORB and how to obtain a server ORB reference.

Creating a client ORB instance

To create an ORB instance, invoke the static method, org.omg.CORBA.ORB.init. The init method requires
a property set to the name of the ORB class you want to instantiate. An ORB implementation with the
class name com.ibm.CORBA.iiop.ORB is included with the product. The WebSphere Application Server
ORB recognizes additional properties with which you can specify initial references.

The basic steps for creating an ORB are as follows:
1. Create a Properties object.
2. Set the ORB class property to the product's ORB class.
3. Set the initial reference properties.
4. Invoke ORB.init, passing in the Properties object.

...
import java.util.Properties;
import org.omg.CORBA.ORB;
...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.ORB");
props.put("com.ibm.CORBA.ORBInitRef.NameService",

"corbaloc:iiop:myhost.mycompany.com:2809/NameService");
props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");
ORB _orb = ORB.init((String[])null, props);
...

Obtaining a reference to the server ORB

CosNaming clients which run in a server process can obtain a reference to the server ORB with a JNDI
lookup on a java: name, shown as follows:
...
import javax.naming.Context;
import javax.naming.InitialContext;
import org.omg.CORBA.ORB;
...
Context initialContext = new InitialContext();
ORB orb = (ORB) initialContext.lookup("java:comp/ORB");
...

Using an ORB reference to get an initial naming reference
There are two basic ways to get an initial CosNaming context. Both ways involve an ORB method
invocation. The first way is to invoke the resolve_initial_references method on the ORB with an initial
reference key. For this call to work, the ORB must be initialized with an initial reference for that key. The
other way is to invoke the string_to_object method on the ORB, passing in a CORBA object URL with the
host and port of the bootstrap server. The following examples illustrate both approaches.

628 Developing WebSphere applications

Invoking resolve_initial_references

Once an ORB reference is obtained, invoke the resolve_initial_references method on the ORB to obtain a
reference to the initial context. The following code example invokes resolve_initial_reference on an ORB
reference.
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier in this section
...
org.omg.CORBA.Object obj = _orb.resolve_initial_references("NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is passed to the resolve_initial_references method. Other initial context
keys are registered in product servers. For example, NameServiceServerRoot can be used to obtain a
reference to the server root context in the bootstrap name server. For more information on the initial
contexts registered in server ORBs, refer to the topic on initial context support.

Invoking string_to_object with a CORBA object URL

You can use an INS-compliant ORB to obtain an initial context even if the ORB is not initialized with any
initial references or bootstrap properties, or if those property settings are for a different server than the
name server from which you want to obtain the initial context. To obtain an initial context by explicitly
specifying the bootstrap name server, invoke the string_to_object method on the ORB, passing in a
CORBA object URL which contains the bootstrap server host and port.

The code in the following example invokes the string_to_object method on an existing ORB reference,
passing in a CORBA object URL which identifies the desired initial context.
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier in this section
...
org.omg.CORBA.Object obj =
orb.string_to_object("corbaloc:iiop:myhost.mycompany.com:2809/NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is used in the corbaloc URL. Other initial context keys are registered in
product servers. For example, you can use NameServiceServerRoot to obtain a reference to the server
root context in the bootstrap name server.

Using an existing ORB and invoking string_to_object with a CORBA object URL
CORBA object URLs can contain more than one bootstrap server address. Use this feature when
attempting to obtain an initial context from a server cluster. You can specify the bootstrap server addresses
for all servers in the cluster in the URL. The operation will succeed if at least one of the servers is running,
eliminating a single point of failure. There is no guarantee of any particular order in which the address list
will be processed. For example, the second bootstrap server address may be used to obtain the initial
context even though the first bootstrap server in the list is available. An example of a corbaloc URL with
multiple addresses follows.
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Assume orb is an existing ORB instance

Chapter 14. Developing Naming and directory 629

org.omg.CORBA.Object obj = orb.string_to_object(
"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810/NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Example: Looking up an EJB home with CosNaming
You can look up an EJB home or other CORBA object from a WebSphere Application Server name server
through the CORBA CosNaming interface.

You can invoke resolve or resolve_str on the initial context, or you can invoke string_to_object on the
ORB. You can use a qualified name so that the name resolves regardless of which name server the
lookup is executed on, or use an unqualified name that only resolves from the server root context on the
name server that actually contains the object binding. (The qualified name traverses the federated system
namespace to the specified server root context.)

Qualified and unqualified names

Each application server contains a name server. System artifacts such as EJB homes are bound in that
name server. The various name servers are federated by means of a system namespace structure. The
recommended way to look up objects on different servers is to use a qualified name.

A qualified name can be a topology-based name, based on the name of the single server and node that
contains the object.

You can define fixed qualified names for objects. With qualified names, you can look up objects residing
on different servers from the same initial context by traversing the system namespace structure.
Alternatively, you can use an unqualified name, but an unqualified name will only resolve using the name
server associated with the object's application server.

CosNaming.resolve (and resolve_str) vs. ORB.string_to_object

If you have an initial context from any name server in a WebSphere Application Server cell, you can look
up any CORBA object with a qualified name. You do not need additional host and port information for the
target object's name server.

Alternatively, you can look up an object by invoking string_to_object on the ORB, passing in a
corbaname URL. Typically, an IIOP type URL is specified, so the bootstrap address information required
for an initial context must be contained in the URL. You can use a qualified or unqualified stringified name,
but an unqualifed name resolves only if the initial context is from the name server in which the object is
bound.

The following examples show CosNaming resolve operations using qualified topology-based lookup names
and an unqualified lookup name.

CosNaming resolve operation using a qualified name
The topology-based qualified name can be found for an object that is bound in a single server.

Single server

The following example shows the lookup of an EJB home that is running in a single server. The enterprise
bean that is being looked up is running in the server, MyServer, on the node, Node1.
// Get the initial context as shown in the previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = initialContext.resolve_str(

630 Developing WebSphere applications

"cell/nodes/Node1/servers/MyServer/mycompany/accounting/AccountEJB");
accountHome =
(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

ORB string_to_object operation using an unqualified stringified name
If the resolve operation is being performed on the name server that contains the object, the system
namespace does not need to be traversed, and you can use an unqualified lookup name. Note that this
name does not resolve on other name servers. If an unqualified name is provided, the object key must be
NameServiceServerRoot so that the correct initial context is selected. If a qualified name is provided, you
can use the default key of NameService.

The following example shows a lookup of an EJB home. The enterprise bean that is being looked up is
bound on the name server running on the host myHost on port 2809. Note the object key of
NameServiceServerRoot.
// Assume orb is an existing ORB instance
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = orb.string_to_object(

"corbaname:iiop:myHost:2809/NameServiceServerRoot#mycompany/accounting");
accountHome =

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

Chapter 14. Developing Naming and directory 631

632 Developing WebSphere applications

Chapter 15. Developing Object pools

This page provides a starting point for finding information about object pools.

Object pools provide an effective means of improving application performance at run time, by supporting
the reuse of multiple instances of objects.

Using object pools
An object pool helps an application avoid creating new Java objects repeatedly. Most objects can be
created once, used and then reused. An object pool supports the pooling of objects waiting to be reused.

About this task

Object pools are not meant to be used for pooling JDBC connections or Java Message Service (JMS)
connections and sessions. WebSphere Application Server provides specialized mechanisms for dealing
with those types of objects. These object pools are intended for pooling application-defined objects or
basic Developer Kit types.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Note: The Object pool manager service is only supported from within the EJB container or Web container.
Looking up and using a configured object pool manager from a Java 2 Platform Enterprise Edition
(J2EE) application client container is not supported.

Procedure
1. Start the administrative console.

2. Click Resources > Object pool managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.
Scope The scope of the configured resource. This value indicates the location for the configuration

file.
Name The name of the object pool manager. This name can be up to 30 ASCII characters long.
JNDI Name

The Java Naming and Directory Interface (JNDI) name for the pool manager.

5. [Optional] Specify a Description and a Category for the object pool manager.

Results

After you have completed these steps, applications can find the object pool manager by doing a JNDI
lookup using the specified JNDI name.

Example

The following code illustrates how an application can find an object pool manager object:
InitialContext ic = new InitialContext();
ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

When the application has an ObjectPoolManager, it can cache an object pool for classes of the types it
wants to use. The following is an example:
ObjectPool arrayListPool = null;
ObjectPool vectorPool = null;
try

© Copyright IBM Corp. 2012 633

{
arrayListPool = opm.getPool(ArrayList.class);
vectorPool = opm.getPool(Vector.class);

}
catch(InstantiationException e)
{
// problem creating pool

}
catch(IllegalAccessException e)
{
// problem creating pool

}

When the application has the pools, the application can use them as in the following example:
ArrayList list = null;
try
{
list = (ArrayList)arrayListPool.getObject();
list.clear(); // just in case
for(int i = 0; i < 10; ++i)
{
list.add("" + i);
}
// do what ever we need with the ArrayList

}
finally
{
if(list != null) arrayListPool.returnObject(list);

}

This example presents the basic pattern for using object pooling. If the application does not return the
object, then the only adverse effect is that the object cannot be reused.

Object pool managers
Object pool managers control the reuse of application objects and Developer Kit objects, such as Vectors
and HashMaps.

Multiple object pool managers can be created in an Application Server cell. Each object pool manager has
a unique cell-wide Java Naming and Directory Interface (JNDI) name. Applications can find a specific
object pool manager by doing a JNDI lookup using the specific JNDI name.

The object pool manager and its associated objects implement the following interfaces:
public interface ObjectPoolManager
{
ObjectPool getPool(Class aClass)
throws InstantiationException, IllegalAccessException;
ObjectPool createFastPool(Class aClass)
throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool
{
Object getObject();
void returnObject(Object o);

}

The getObject() method removes the object from the object pool. If a getObject() call is made and the pool
is empty, then an object of the same type is created. A returnObject() call puts the object back into the
object pool. If returnObject() is not called, then the object is no longer allocatable from the object pool. If
the object is not returned to the object pool, then it can be garbage collected.

634 Developing WebSphere applications

Each object pool manager can be used to pool any Java object with the following characteristics:
v The object must be a public class with a public default constructor.
v If the object implements the java.util.Collection interface, it must support the optional clear() method.

Each pooled object class must have its own object pool. In addition, an application gets an object pool for
a specific object using either the ObjectPoolManager.getPool() method or the
ObjectPoolManager.createFastPool() method. The difference between these methods is that the getPool()
method returns a pool that can be shared across multiple threads. The createFastPool() method returns a
pool that can only be used by a single thread.

If in a Java virtual machine (JVM), the getPool() method is called multiple times for a single class, the
same pool is returned. A new pool is returned for each call when the createFastPool() method is called.
Basically, the getPool() method returns a pool that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool because of the need to handle
thread synchronization. However, extreme care must be taken when using a fast pool.

Consider the following interface:
public interface PoolableObject
{
void init();
void returned();
}

If the objects placed in the pool implement this interface and the ObjectPool.getObject() method is called,
the object that the pool distributes has the init() method called on it. When the ObjectPool.returnObject()
method is called, the PoolableObject.returned() method is called on the object before it is returned to the
object pool. Using this method objects can be pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example, an application might
want to pool ArrayList objects. The ArrayList object needs clearing each time the application reuses it. The
application might extend the ArrayList object and have the ArrayList object implement a poolable object.
For example, consider the following:
public class PooledArrayList extends ArrayList implements PoolableObject
{
public PooledArrayList()
{
}

public void init() {
}

public void returned()
{
clear();
}
}

If the application uses this object, in place of a true ArrayList object, the ArrayList object is cleared
automatically when it is returned to the pool.

Clearing an ArrayList object simply marks it as empty and the array backing the ArrayList object is not
freed. Therefore, as the application reuses the ArrayList, the backing array expands until it is big enough
for all of the application requirements. When this point is reached, the application stops allocating and
copying new backing arrays and achieves the best performance.

It might not be possible or desirable to use the previous procedure. An alternative is to implement a
custom object pool and register this pool with the object pool manager as the pool to use for classes of

Chapter 15. Developing Object pools 635

that type. The class is registered by the WebSphere administrator when the object pool manager is
defined in the cell. Take care that these classes are packaged in Java Archive (JAR) files available on all
of the nodes in the cell where they might be used.

Object pool managers collection
An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Name
Specifies the name by which the object pool manager is known for administrative purposes.

Information Value
Data type String
Range 1 through 30 ASCII characters

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the object pool manager.

Information Value
Data type String

Scope
Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description
Specifies the description of the object pool manager.

Information Value
Data type String

Category
Specifies the category name used to classify or group this object pool manager.

Information Value
Data type String

Object pool managers settings
An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

636 Developing WebSphere applications

To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

The name by which the object pool manager is known for administrative purposes.

Information Value
Data type String
Range 1 through 30 ASCII characters

JNDI Name:

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

Information Value
Data type String

Description:

A description of the object pool manager.

Information Value
Data type String

Category:

A category name used to classify or to group this object pool manager.

Information Value
Data type String

Custom object pool collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name > Custom object pools.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

Chapter 15. Developing Object pools 637

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,
configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending
instructions on how to behave using custom properties.

To use an object pool the product administrator must define an object pool manager using the
administrative console. You can create multiple object pool managers in an Application Server cell.

Pool class name:

Specifies the fully qualified class name of the objects that are stored in the custom object pool.

Information Value
Data type String

Pool implementation class name:

Specifies the fully qualified class name of the implementation class for the custom object pool.

Information Value
Data type String

Custom object pool settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name > Custom object pools > objectpool_name.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,
configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending
instructions on how to behave using custom properties.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Pool Class Name:

The fully qualified class name of the objects that are stored in the object pool.

Information Value
Data type String

638 Developing WebSphere applications

Pool Impl Class Name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

Information Value
Data type String

Object pool service settings
Use this page to enable or disable the object pool service, which manages object pool resources used by
the server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container Services > Object pool service.

Enable service at server startup
Specifies whether the server attempts to start the object pool service.

Information Value
Default Cleared
Range Selected

When the application server starts, it attempts to start the object pool
service automatically.

Cleared
The server does not try to start the object pool service. If object pool
resources are used on this server, then the system administrator
must start the object pool service manually or select this property,
and then restart the server.

Object pools: Resources for learning
This topic provides links to find relevant supplemental information about object pools.

Use the following links to find relevant supplemental information about object pools. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Furthermore, these links provide guidance on using object pools. Since object pooling is a general topic
and the WebSphere Application Server product implementation is only one way to use it, you must
understand when object pooling is necessary. These articles help you make that decision.

Programming model and decisions
v Build your own ObjectPool in Java to boost application speed
v Improve the robustness and performance of your ObjectPool
v Recycle broken objects in resource pools

Chapter 15. Developing Object pools 639

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

MBeans for object pool managers and object pools
Legacy MBean names for object pool managers and object pools are deprecated. The legacy names are
based on the object pool manager name (which is not required to be unique) rather than the object pool
manager JNDI name.

About this task

For object pools, the legacy name is also lacking any identifier of the version of the pooled class.
Additionally, object pool Performance Monitoring Instrumentation (PMI) statistics are aggregated for object
pools with the same legacy object pool MBean name.

For example, if the object pool manager and pooled class are as follows:
object pool manager name: My ObjectPool
object pool manager JNDI name: op/MyObjectPool
pooled class name: java.util.ArrayList
hash code of java.util.ArrayList.class: 1111eb3f (hexadecimal)

the legacy object pool manager MBean name will be:
ObjectPoolManager_My ObjectPool

and the legacy object pool MBean name will be:
ObjectPool_My ObjectPool_java.util.ArrayList

Instead of using the deprecated legacy MBean names, use the MBean names that are based on the JNDI
name of the object pool manager.

For the example above, the JNDI name-based object pool manager MBean name is:
ObjectPoolManager_op/MyObjectPool

and the JNDI name-based object pool MBean name is:
ObjectPool_op/MyObjectPool_java.util.ArrayList.class@1111eb3f

Formats for MBean names

Type Name format

Deprecated legacy object pool manager MBean name: ObjectPoolManager_[object pool manager name]

JNDI name-based object pool manager MBean name: ObjectPoolManager_[object pool manager JNDI name]

Deprecated legacy object pool MBean name: ObjectPool_[object pool manager name]_[pooled class
name]

JNDI name-based object pool MBean name: ObjectPool_[object pool manager JNDI name]_[pooled
class name].class@[hexadecimal representation of the
hash code of the pooled class' java.lang.Class reference]

In all of the above formats, characters that are not valid for MBean names are replaced with the '.'
character.

640 Developing WebSphere applications

Chapter 16. Developing Object Request Broker (ORB)

This page provides a starting point for finding information about the Object Request Broker (ORB). The
product uses an ORB to manage communication between client applications and server applications as
well as among product components. These Java Platform, Enterprise Edition (Java EE) standard services
are relevant to the ORB: Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) and Java
Interface Definition Language (Java IDL).

The ORB provides a framework for clients to locate objects in the network and call operations on those
objects as though the remote objects were located in the same running process as the client, providing
location transparency.

Developing Object Request Brokers

Client-side programming tips for the Object Request Broker service
Every Internet InterORB Protocol (IIOP) request and response exchange consists of a client-side ORB and
a server-side ORB. It is important that any application that uses IIOP is properly programmed to
communicate with the client-side Object Request Broker (ORB).

The following tips should help you ensure that an application that uses IIOP to handle request and
response exchanges is properly programmed to communicate with the client-side Object Request Broker
(ORB).

Resolution of initial references to services
Client applications can use the ORBInitRef and ORBDefaultInitRef properties to configure the network
location that the ORB service uses to find a service such as naming. When set, these properties are
included in the parameters that are used to initialize the ORB, as illustrated in the following example:
org.omg.CORBA.ORB.init(java.lang.String[] args,

java.util.Properties props)

You can set these properties in client code or by command-line argument. It is possible to specify more
than one service location by using multiple ORBInitRef property settings (one for each service), but only a
single ORBDefaultInitRef value can be specified.

For setting in client code, these properties are com.ibm.CORBA.ORBInitRef.service_name and
com.ibm.CORBA.ORBDefaultInitRef, respectively. For example, to specify that the naming service
(NameService) is located in sample.server.com at port 2809, set the
com.ibm.CORBA.ORBInitRef.NameService property to corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and -ORBDefaultInitRef,
respectively. To locate the same naming service specified previously, use the following Java command:

After these properties are set for services that the ORB supports, Java Platform, Enterprise Edition (Java
EE) applications can call the resolve_initial_references function on the ORB, as defined in the
CORBA/IIOP specification, to obtain the initial reference to a given service.

Preferred API for obtaining an ORB instance
For Java EE applications, you can use either of the following approaches. However, it is strongly
recommended that you use the Java Naming and Directory Interface (JNDI) approach to ensure that the
same ORB instance is used throughout the client application; you avoid the unintended inconsistencies
that might occur when different ORB instances are used.

© IBM Corporation 2009 641

JNDI approach: For Java EE applications (including enterprise beans, Java EE clients and servlets), you
can obtain an ORB instance by creating a JNDI InitialContext object and looking up the ORB under the
java:comp/ORB name, as illustrated in the following example:
javax.naming.Context ctx = new javax.naming.InitialContext();
org.omg.CORBA.ORB orb =

(org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup("java:comp/ORB"),
org.omg.CORBA.ORB.class);

The ORB instance obtained using JNDI is a singleton object, shared by all the Java EE components that
are running in the same Java virtual machine process.

Note: You must use the JNDI approach if you want to take advantage of WLM functionality and cluster
failover within the application. For information on how to obtain an InitialContext from a server
cluster, see the example for using a CORBA object URL with multiple name server addresses,
which is in the topic on getting an initial context by setting the provider URL property.

CORBA approach: Because thin-client applications do not run in a Java EE container, they cannot use
JNDI interfaces to look up the ORB. In this case, you can obtain an ORB instance by using CORBA
programming interfaces, as follows:
java.util.Properties props = new java.util.Properties();
java.lang.String[] args = new java.lang.String[0];
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new ORB instance be created
each time the ORB.init method is called. If necessary to change the ORB default settings, you can add
ORB property settings to the Properties object that is passed in the ORB.init method call.

The use of the com.ibm.ejs.oa.EJSORB.getORBinstance method, supported in previous releases of this
product is deprecated.

API restrictions with sharing an ORB instance among Java EE application
components
For performance reasons, it often makes sense to share a single ORB instance among components in a
Java EE application. As required by the Java EE Specification, Version 1.3, all web and EJB containers
provide an ORB instance in the JNDI namespace as java:comp/ORB. Each container can share this
instance among application components but is not required to. For proper isolation between application
components, application code must comply with the following restrictions:
v Do not call the ORB shutdown or destroy methods
v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory, or unregister_value_factory

In addition, do not share an ORB instance among application components in different Java EE
applications.

Required use of rmic and idlj that ship with the IBM Developer Kit
The Java Runtime Environment (JRE) used by this product includes the rmic and idlj tools. You use the
tools to generate Java language bindings for the CORBA/IIOP protocol.

During product installation, the tools are installed in the app_server_root/java/ibm_bin directory. Versions
of these tools included with Java development kits in the $JAVA_HOME/bin directory other than the IBM
Developer Kit installed with this product are incompatible with this product.

When you install this product, the app_server_root/java/ibm_bin directory is included in the $PATH search
order to enable use of the rmic and idlj scripts provided by IBM. Because the scripts are in the
app_server_root/java/ibm_bin directory instead of the JRE standard app_server_root/java/bin directory,
it is unlikely that you can overwrite them when applying maintenance to a JRE not provided by IBM.

642 Developing WebSphere applications

In addition to the rmic and idlj tools, the JRE also includes Interface Definition Language (IDL) files. The
files are based on those defined by the Object Management Group (OMG) and can be used by
applications that need an IDL definition of selected ORB interfaces. The files are placed in the
app_server_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the app_server_root/java/ibm_bin directory is included
in the proper PATH variable search order in the environment. If your application uses IDL files in the
app_server_root/java/ibm_lib directory, also ensure that the directory is included in the PATH variable.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 71. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 72. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.

Chapter 16. Developing Object Request Broker (ORB) 643

Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 73. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 74. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 75. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

644 Developing WebSphere applications

Table 76. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 77. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Chapter 16. Developing Object Request Broker (ORB) 645

646 Developing WebSphere applications

Chapter 17. Developing OSGi applications

You can develop bundles, optionally group them into composite bundles, and add them to an OSGi
application or a bundle repository.

Procedure
v Develop an OSGi application.

As an introduction to developing an OSGi application, you can develop a simple hello-world OSGi
application, which consists of two bundles. One bundle defines a hello service, and the other is a client
bundle that uses this service to produce the message “OSGi Service: Hello World!”.

v Develop a composite bundle.

A composite bundle groups shared bundles together into aggregates. It provides one or more packages
at specific versions to an OSGi application. You can also extend a deployed application by adding one
or more composite bundles to the composition unit for the application.

v Convert existing applications to OSGi applications.

You can convert an enterprise application or a Spring application to an OSGi application.

What to do next

You might also want to explore the sample OSGi applications.

OSGi application design guidelines
When developing OSGi applications for WebSphere Application Server, consider these design guidelines
to make the most efficient use of OSGi technology.

The design guidelines described in this topic are:

1. Use OSGi services to configure EJB dependencies

2. Do not use the java:global or java:app namespaces

Details for each of these guidelines are provided in the sections that follow.

1. Use OSGi services to configure EJB dependencies

If your OSGi application has a client bundle that references an EJB in a service bundle, use OSGi
services to configure the EJB dependency.

Complete the following steps:

1. Declare the EJB in the Export-EJB header in the bundle manifest file of the service bundle, so that the
EJB is registered in the OSGi service registry.

2. Use a reference element in the Blueprint XML file of the client bundle to inject and call the EJB; for
more information, see References and the Blueprint Container

Here’s why
Configuring EJB dependencies by using OSGi services reduces the risk of the web or EJB
container of the client bundle being recycled, or the client bundle itself being restarted, either of
which might result in the temporary unavailability of one or more application endpoints.

2. Do not use the java:global or java:app namespaces

Do not use the java:global or java:app namespace references to bind to EJBs unless necessary.

© Copyright IBM Corp. 2012 647

Here’s why
These namespace references have the following fixed formats:
java:global/application_name/module_name/ejb_name

java:app/module_name/ejb_name

However, the constituent parts of these references can change after an OSGi application is
updated, so that the references must be modified accordingly, which makes this approach
impractical. Furthermore, the exposure of the name of the underlying EJB in the reference, rather
than using an abstraction such as an intermediate JNDI name, violates the principles of modular
application design.

Instead, use OSGi services to configure EJB dependencies, or declare an EJB reference and map
it to the EJB JNDI name.

Note: If you define java:global or java:app references in an @EJB annotation, or in a binding
file, you receive a warning when you deploy the OSGi application as a business-level
application.

Developing an OSGi application
As an introduction to developing an OSGi application, you can develop a simple hello-world OSGi
application, which consists of two bundles. One bundle defines a hello service, and the other is a client
bundle that uses this service to produce the message “OSGi Service: Hello World!”.

About this task

An OSGi application is a Java application that uses OSGi technologies. OSGi applications are collections
of OSGi bundles (typically bundles that use the Blueprint component model), and can expose or consume
a number of services. The OSGi application described in these topics demonstrates the use of the OSGi
service registry to share the hello service between the defining bundle and the client bundle. All
interactions with the service registry are handled through Blueprint.

OSGi bundles are packaged as Java archive (.jar) files. A single OSGi application is packaged in an
enterprise bundle archive (.eba) file, just as an enterprise application is packaged in an enterprise archive
(.ear) file. In this example application, the bundles are packaged directly in the .eba file. However the .eba
file does not have to contain the bundles; they can be pulled in at run time.

Note: The steps in the following procedure are specific to this example application, and lead you through
creating the application artifacts by using IBM Rational Application Developer Version 8 or a similar
tool.

Procedure
1. Create your service bundle.

2. Create your client bundle.

3. Create your OSGi application.

What to do next

After you create your OSGi application, you can deploy the application to WebSphere Application Server
by using either the administrative console or wsadmin commands; for details, see “Deploying an OSGi
application as a business-level application” on page 2093.

You might also want to explore the sample OSGi applications.

648 Developing WebSphere applications

http://www.ibm.com/software/awdtools/developer/application/

Creating a service bundle
For the simple hello-world OSGi application, the service bundle implements the HelloWorldEBA interface,
and exports it as an OSGi service.

About this task

A bundle, the modular unit in the OSGi model, is a JAR file that includes the OSGi application metadata.
This metadata is defined in the manifest file of the JAR file, META-INF/MANIFEST.MF.

IBM Rational Application Developer Version 8 provides graphical support for creating and packaging
bundles. The sample procedure that follows uses this tool. You can also use other tools, and the steps are
adaptable to other tools.

This sample procedure builds the following two bundles.

v com.ibm.ws.eba.helloWorld.api: this bundle declares the HelloWorldEBA interface.

v com.ibm.ws.eba.helloWorld.service: this bundle implements the HelloWorldEBA interface, and exports
it as an OSGi service. The exported service is used by client bundle
com.ibm.ws.eba.helloWorld.client, as described in “Creating a client bundle” on page 653.

Procedure
1. Create the com.ibm.ws.eba.helloWorld.api bundle. This bundle declares the HelloWorldEBA interface.

a. Click File > New > OSGi Bundle Project. The OSGi Bundle Project panel is displayed.

b. Configure the project.

v For the Project name, enter com.ibm.ws.eba.helloWorld.api.

v Clear the Add bundle to application check box. If you leave this check box selected, a new
OSGi application project is created automatically, and the bundle is added to it. Here, however,
the application project will be created manually in a separate task, “Creating an OSGi
application” on page 656.

v Leave the other options as the default values.

c. Click Next. The Java Configuration panel is displayed. Accept the default values for all the options
on this panel.

d. Click Next. The OSGi bundle settings panel is displayed. Accept the default values for all the
options on this panel.

e. Click Finish.

You have created your OSGi project.

2. Declare the HelloWorldEBA interface.

Create a package called com.ibm.ws.eba.helloWorld.api, that includes an interface called
HelloWorldEBA. Code this interface to contain just one method: hello().

a. Under your com.ibm.ws.eba.helloWorld.api project, right-click the folder src, then select New >
Package.

b. Name the new package com.ibm.ws.eba.helloWorld.api.

c. Click Finish.

d. Right-click the new package, then select New > Interface.

e. Name the new interface HelloWorldEBA.

f. Click Finish.

g. Copy and paste the following method to replace the content of the interface file:

Chapter 17. Developing OSGi applications 649

http://www.ibm.com/software/awdtools/developer/application/

package com.ibm.ws.eba.helloWorld.api;
public interface HelloWorldEBA {

public void hello();
}

h. Save and close the file.

3. Configure the com.ibm.ws.eba.helloWorld.api package as an exported package.

Edit the bundle manifest in the com.ibm.ws.eba.helloWorld.api project to allow other bundles to load
classes from the com.ibm.ws.eba.helloWorld.api package. Classes that are in packages not exported
in the bundle manifest are private to the defining bundle and cannot be loaded by any other bundle.

a. Open the bundle MANIFEST.MF file with the manifest editor. This file is in the BundleContent/META-
INF directory.

b. Click the Runtime tab.

c. In the Exported Packages pane, click Add.

d. Select the com.ibm.ws.eba.helloWorld.api package from the list, then click OK.

e. In the Exported Packages pane, click Properties.

f. In the Properties dialog, set the version to 1.0.0, then click OK.

g. Save and close the file.

4. Create the com.ibm.ws.eba.helloWorld.service bundle. This bundle implements the HelloWorldEBA
interface.

a. Click File > New > OSGi Bundle Project. The OSGi Bundle Project panel is displayed.

b. Configure the project.

v For the Project name, enter com.ibm.ws.eba.helloWorld.service.

v Clear the Add bundle to application check box. If you leave this check box selected, a new
OSGi application project is created automatically, and the bundle is added to it. Here, however,
the application project will be created manually in a separate task, “Creating an OSGi
application” on page 656.

v Leave the other options as the default values.

c. Click Next. The Java Configuration panel is displayed. Accept the default values for all the options
on this panel.

d. Click Next. The OSGi bundle settings panel is displayed. Accept the default values for all the
options on this panel.

e. Click Finish.

5. Make the HelloWorldEBA interface available to the service implementation bundle.

Edit the client bundle manifest to make classes inside the com.ibm.ws.eba.helloWorld.api package
available to the service implementation bundle. The com.ibm.ws.eba.helloWorld.api package is part of
the com.ibm.ws.eba.helloWorld.api bundle.

a. Expand the com.ibm.ws.eba.helloWorld.service project.

b. Open the bundle MANIFEST.MF file with the manifest editor. This file is in the BundleContent/META-
INF directory.

c. Click the Dependencies tab.

d. In the Imported Packages pane, click Add.

e. In the Package Selection dialog, enter com.ibm.ws.eba, select com.ibm.ws.eba.helloWorld.api
from the Exported Packages list, then click OK. The package is added to the Imported Packages
list.

f. In the Imported Packages list, select the com.ibm.ws.eba.helloWorld.api package then click
Properties.

g. In the Properties dialog, set the minimum version to 1.0.0 Inclusive, and set the maximum
version to 1.1.0 Exclusive, then click OK. The entry for this package in the Imported Packages
list is updated to com.ibm.ws.eba.helloWorld.api [1.0.0,1.1.0).

650 Developing WebSphere applications

This version syntax means “exported packages with versions between 1.0.0 inclusive and 1.1.0
exclusive will match this import”. For more information on the version syntax, see section 3.2.6
“Version Ranges” of the OSGi Service Platform Release 4 Version 4.2 Core Specification.

This version range has been specified to ensure that the implementation bundle uses an updated
version of the package only if it differs in the value of the micro version, because a major change,
such as removing a method from an interface, or a minor change, such as adding a method to an
interface, could cause the implementation bundle to cease functioning correctly.

h. Save and close the file.

6. Implement the HelloWorld service.

Create a package called com.ibm.ws.eba.helloWorld.service, that includes an implementation class
called HelloWorldService. Code this class to implement the hello() method from the HelloWorldEBA
interface. This implementation of the class causes “OSGi Service: Hello World!” to be displayed.

a. Under your com.ibm.ws.eba.helloWorld.service project, right-click the folder src, then select New
> Package.

b. Name the new package com.ibm.ws.eba.helloWorld.service.

c. Click Finish.

d. Right-click the new package, then select New > Class.

e. Name the new interface implementation class HelloWorldService.

f. Click Add alongside the Interfaces field.

g. Enter Hello, select HelloWorldEBA from the Matching items list, then click OK.

h. Ensure that the Inherited abstract methods check box is selected.

i. Click Finish.

j. Provide implementation code for the inherited hello() method. Replace the line
// TODO Auto-generated method stub

with the line
System.out.println(“OSGi Service: Hello World!”);

The complete code for the implementation class should now be as follows:
package com.ibm.ws.eba.helloWorld.service;

import com.ibm.ws.eba.helloWorld.api.HelloWorldEBA;

public class HelloWorldService implements HelloWorldEBA {

@Override
public void hello() {

System.out.println(“OSGi Service: Hello World!”);
}

}

k. Save and close the file.

7. Export the helloWorld service by using OSGi Blueprint XML.

A Blueprint configuration contains the bundle component assembly and configuration information. It
also describes how components are registered in the OSGi service registry, or how they look up
services from the OSGi service registry. This information is used at run time to instantiate and
configure the required components when the bundle is started.

a. In the project com.ibm.ws.eba.helloWorld.service, create a Blueprint XML file:

1) Right-click the com.ibm.ws.eba.helloWorld.service project, and select New > Blueprint File.

2) Accept the default values for all the options on this panel.

3) Click Finish.

b. Add a bean element to the Blueprint XML file.

Chapter 17. Developing OSGi applications 651

1) In the Design tab, click Add in the Overview pane.

2) Select Bean, and click OK.

3) Click Browse, select HelloWorldService, and click OK.

4) In the Bean ID field, enter HelloEBA, then click OK to add the bean element.

c. Add a service element to the Blueprint XML file.

1) Select Blueprint in the Overview pane, and click Add.

2) Select Service, and click OK.

3) Click Browse alongside the Service Interface field.

4) Enter Hello, select HelloWorldEBA from the Matching items list, and click OK.

5) Click Browse alongside the Bean Reference field, select HelloEBA, then click OK.

6) Click OK to add the service element.

d. Examine the Blueprint XML source code.

Select the Source tab. The source code should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="helloEBA"
class="com.ibm.ws.eba.helloWorld.service.HelloWorldService"/>

<service id=HelloEBAService ref="helloEBA"
interface="com.ibm.ws.eba.helloWorld.api.HelloWorldEBA"/>

</blueprint>

In the previous code block:

v The bean element defines a Blueprint component to be instantiated. In this example, the bean
element causes bean helloEBA to be instantiated, by calling the constructor for the
com.ibm.ws.eba.helloWorld.service.HelloWorldService class.

– The id attribute identifies the bean. You must specify this attribute if the bean is referenced
from elsewhere in the Blueprint information, for example from the service element.

– The class attribute specifies which implementation class of the bean is instantiated.

v The service element defines the registration of a component in the OSGi service registry. In this
example, the service element registers the bean with the name helloEBA as a service in the
OSGi service registry with interface com.ibm.ws.eba.helloWorld.api.HelloWorldEBA, specified
by the interface attribute.

– The ref attribute refers to the id of the bean to be registered. This id is defined in the bean
element.

– The interface attribute refers to the interface that the bean class implements.

For more information, see section 121.5 “Bean Manager” and section 121.6 “Service Manager” of
the OSGi Service Platform Release 4 Version 4.2 Enterprise Specification.

e. Save and close the file.

Note: You might get an exception message (visible in the Problems pane) saying that there is no
bin.include entry for OSGI-INF in the build properties file. If you see this message, use the
quick-fix option to add the entry (right-click the problem, then select quick-fix).

Results

You have created two bundles, com.ibm.ws.eba.helloWorld.api and com.ibm.ws.eba.helloWorld.service.
The com.ibm.ws.eba.helloWorld.service service implements the HelloWorldEBA interface that is declared
in the com.ibm.ws.eba.helloWorld.api bundle, and contains the business logic and metadata needed to
export the com.ibm.ws.eba.helloWorld.service service.

652 Developing WebSphere applications

What to do next

You can now create the client bundle that uses the com.ibm.ws.eba.helloWorld.service service.

Creating a client bundle
For the simple hello-world OSGi application, the client bundle consumes the HelloWorldService service,
and uses it to produce the message “OSGi Service: Hello World!”.

Before you begin

This task assumes that you have already created the HelloWorldService service, as described in “Creating
a service bundle” on page 649.

About this task

A bundle, the modular unit in the OSGi model, is a JAR file that includes the OSGi application metadata.
This metadata is defined in the manifest file of the JAR file, META-INF/MANIFEST.MF.

IBM Rational Application Developer Version 8 provides graphical support for creating and packaging
bundles. The sample procedure that follows uses this tool. You can also use other tools, and the steps are
adaptable to other tools.

This sample procedure builds a bundle called com.ibm.ws.eba.helloWorld.client. This bundle uses the
HelloWorldService service that is exported by the bundle com.ibm.ws.eba.helloWorld.service, as
described in “Creating a service bundle” on page 649.

Procedure
1. Create an OSGi bundle project.

a. Click File > New > OSGi Bundle Project. The OSGi Bundle Project panel is displayed.

b. Configure the project.

v For Project name, enter com.ibm.ws.eba.helloWorld.client.

v Clear the Add bundle to application check box. If you leave this check box selected, a new
OSGi application project is created automatically, and the bundle is added to it. Here, however,
the application project will be created manually in a separate task, “Creating an OSGi
application” on page 656.

v Leave the other options as the default values.

c. Click Next. The Java Configuration panel is displayed. Accept the default values for all the options
on this panel.

d. Click Next. The OSGi bundle settings panel is displayed. Accept the default values for all the
options on this panel.

e. Click Finish.

You have created your OSGi project.

2. Make the HelloWorldEBA interface available to the client implementation bundle.

Edit the client bundle manifest to make classes inside the com.ibm.ws.eba.helloWorld.api package
available to the client implementation bundle. The com.ibm.ws.eba.helloWorld.api package is part of
the com.ibm.ws.eba.helloWorld.api bundle.

a. Expand the com.ibm.ws.eba.helloWorld.client project

b. Open the bundle MANIFEST.MF file with the manifest editor. This file is in the BundleContent/META-
INF directory.

c. Click the Dependencies tab.

d. In the Imported Packages pane, click Add.

Chapter 17. Developing OSGi applications 653

http://www.ibm.com/software/awdtools/developer/application/

e. In the Package Selection dialog, enter com.ibm.ws.eba, select com.ibm.ws.eba.helloWorld.api
(1.0.0) from the Exported Packages list, then click OK. The package is added to the Imported
Packages list.

f. In the Imported Packages list, select the com.ibm.ws.eba.helloWorld.api package then click
Properties.

g. In the Properties dialog, set the minimum version to 1.0.0 Inclusive, and set the maximum
version to 2.0.0 Exclusive, then click OK. The entry for this package in the Imported Packages
list is updated to com.ibm.ws.eba.helloWorld.api [1.0.0,2.0.0).

This version syntax means “exported packages with versions between 1.0.0 inclusive and 2.0.0
exclusive will match this import”. For more information on the version syntax, see section 3.2.6
“Version Ranges” of the OSGi Service Platform Release 4 Version 4.2 Core Specification.

This version range has been specified to ensure that the client bundle uses an updated version of
the package if it differs in the value of the minor version or the micro version, but not the major
version, because only a binary incompatible change, such as the deletion of a public method, can
cause the client bundle to cease functioning correctly.

h. Save and close the file.

3. Create a class HelloWorldClient.

a. In the project source folder src, create a package called com.ibm.ws.eba.helloWorld.client. In
the package, create a class called HelloWorldClient with the following contents:
package com.ibm.ws.eba.helloWorld.client;

import com.ibm.ws.eba.helloWorld.api.HelloWorldEBA;

public class HelloWorldClient {
private HelloWorldEBA helloWorldEBAService = null; //a reference to the service

public void refHello() {
System.out.println("Client: Start...");
helloWorldEBAService.hello();
System.out.println("Client: End...");

}

public HelloWorldEBA getHelloWorldEBAService() {
return helloWorldEBAService;

}

public void setHelloWorldEBAService(HelloWorldEBA helloWorldEBAService) {
this.helloWorldEBAService = helloWorldEBAService;

}
}

In the previous code block:

v The line HelloWorldEBA helloWorldEBAService = null; defines the service dependency.

v The line helloWorldEBAService.hello(); demonstrates that a service has been injected for the
helloWorldEBAService dependency.

b. Save and close the file.

4. Create a Blueprint configuration.

A Blueprint configuration contains the bundle component assembly and configuration information. It
also describes how components are registered in the OSGi service registry, or how they look up
services from the OSGi service registry. This information is used at run time to instantiate and
configure the required components when the bundle is started.

a. In the project com.ibm.ws.eba.helloWorld.client, create a Blueprint XML file:

1) Right-click the com.ibm.ws.eba.helloWorld.client project, and select New > Blueprint File.

2) (Optional) Specify the file name. This can be any name provided it is an XML file. For
example, helloWorldRef.xml.

3) Leave the other options as the default values.

654 Developing WebSphere applications

4) Click Finish.

b. Add a reference element to the Blueprint XML file.

1) In the Design tab, click Add in the Overview pane.

2) Select Reference, and click OK.

3) Click Browse alongside the Reference Interface field.

4) Enter Hello, select HelloWorldEBA from the Matching items list, and click OK.

5) In the Reference ID field, enter helloEBARef, then click OK to add the reference element.

c. Add a bean element to the Blueprint XML file.

1) Select Blueprint in the Overview pane, and click Add.

2) Select Bean, and click OK.

3) Click Browse, select HelloWorldClient, and click OK.

4) Click OK to add the bean element.

5) In the Method References pane, click Browse alongside the Initialization method field.

6) Select refHello() and click OK

d. Add a property to the bean.

1) Select HelloWorldClientBean in the Overview pane, and click Add.

2) Select Property, and click OK.

3) In the Details pane, enter helloWorldEBAService in the Name field.

4) Click Browse alongside the Reference field.

5) Select helloEBARef and click OK.

e. Examine the Blueprint XML source code. This Blueprint file specifies the internal wiring of the
components.
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="helloEBARef"
interface="com.ibm.ws.eba.helloWorld.api.HelloWorldEBA"/>

<bean id="HelloWorldClientBean"
class="com.ibm.ws.eba.helloWorld.client.HelloWorldClient"
init-method="refHello">
<property name="helloWorldEBAService" ref="helloEBARef"/>

</bean>
</blueprint>

In the previous code block:

v The init-method refHello is called when the
com.ibm.ws.eba.helloWorld.client.HelloWorldClient bean is created.

v The property element specifies how a dependency is injected.

– The property helloWorldEBAService is set by invoking the property setter public void
setHelloWorldEBAService(HelloWorldEBA helloWorldEBAService). You can use setter
injection for bean properties that are defined in accordance with Java bean conventions.

– The attribute ref specifies the Blueprint element ID of the component to be injected. The ref
attribute must match a top-level element in this file. In this case, it matches the reference
element.

v The reference element defines a dependency of this Blueprint module on an OSGi service with
interface com.ibm.ws.eba.helloWorld.api.HelloWorldEBA. When the Blueprint Container starts
this module, it must match the name of the interface attribute with an available service in the
OSGi service registry. If this cannot be done, the Blueprint module is not started. In this case,
the service is defined in the service element of the Blueprint XML of the service bundle.

For more information, see section 121.5 “Bean Manager” and section 121.7 “Service Reference
Managers” of the OSGi Service Platform Release 4 Version 4.2 Enterprise Specification.

f. Save and close the file.

Chapter 17. Developing OSGi applications 655

Results

You have created a bundle called com.ibm.ws.eba.helloWorld.client. This bundle consumes the
HelloWorldService service, and uses it to produce the message “OSGi Service: Hello World!”.

What to do next

You can now create an OSGi application, in which multiple bundles are packaged together.

Creating an OSGi application
For the simple hello-world OSGi application, the bundle that defines the service, and the bundle that uses
the service, are packaged together in an OSGi application.

Before you begin

This topic assumes that you have already completed the following tasks:

v “Creating a service bundle” on page 649 com.ibm.ws.eba.helloWorld.service.

v “Creating a client bundle” on page 653 com.ibm.ws.eba.helloWorld.client.

You can create your application as described in this topic, in which case the application manifest file is
created for you by the tooling, or you can create your application using Apache Ant.

About this task

OSGi bundles are packaged as Java archive (.jar) files. A single OSGi application is packaged in an
enterprise bundle archive (.eba) file, just as an enterprise application is packaged in an enterprise archive
(.ear) file. In this example application, the bundles are packaged directly in the .eba file. However the .eba
file does not have to contain the bundles; they can be pulled in at run time. For an OSGi application
deployed to WebSphere Application Server, a bundle can be located in the .eba file, or in the WebSphere
Application Server internal bundle repository, or in an external bundle repository. Every .eba file contains
an application manifest (APPLICATION.MF) file, which contains the metadata that defines the application.
It lists the bundles that the application uses, and says where each bundle is located.

IBM Rational Application Developer Version 8 provides graphical support for creating and packaging
bundles. The sample procedure that follows uses this tool. You can also use other tools, and the steps are
adaptable to other tools.

This sample procedure creates a simple hello-world OSGi application called
com.ibm.ws.eba.helloWorldApp, in which the three bundles com.ibm.ws.eba.helloWorld.api,
com.ibm.ws.eba.helloWorld.service and com.ibm.ws.eba.helloWorld.client are packaged together in an
.eba file.

When you deploy and start this application, it prints the greeting message “OSGi Service: Hello World!” to
the system output log.

Procedure
1. Create an OSGi application project.

a. Click File > New > OSGi Application Project. The OSGi Application Project panel is displayed.

b. Configure the project.

v For Project name, enter com.ibm.ws.eba.helloWorldApp.

v Ensure that Use default location is selected.

v Ensure that Add project to working sets is cleared.

c. Click Next.

656 Developing WebSphere applications

http://www.ibm.com/software/awdtools/developer/application/

d. In the Contained Bundles list, select com.ibm.ws.eba.helloWorld.api 1.0.0,
com.ibm.ws.eba.helloWorld.client1.0.0 and com.ibm.ws.eba.helloWorld.service1.0.0.

For more information about these bundles, see “Creating a service bundle” on page 649 and
“Creating a client bundle” on page 653.

e. Click Finish.

2. Optional: Deploy and test the OSGi application project on a server running inside IBM Rational
Application Developer.

If you are using IBM Rational Application Developer Version 8, you can deploy to a local machine
without first exporting the OSGi application as an EBA file. This is typically how you would test your
application. If you are using another tool, omit this step.

a. Right-click the com.ibm.ws.eba.helloWorldApp project, then select Run As > Run on Server. The
Run On Server panel is displayed. If you have already configured a WebSphere Application Server
in your IBM Rational Application Developer workspace, you can select Choose an existing server,
and then select that server, otherwise manually define a new server by completing the remaining
steps.

b. Configure the Run On Server panel:

1) For server type, select IBM > WebSphere Application Server v8.0.

2) For server host name, enter a valid TCP/IP host name. For example, enter the TCP/IP
hostname for your computer or enter localhost.

3) For server name, enter the name by which you want to refer to the server within IBM Rational
Application Developer.

4) For server runtime environment, select WebSphere Application Server v8.0. If this option is
not available in the list, complete the following steps:

a) Click Add.

b) Navigate to the app_server_root directory for your installation of WebSphere Application
Server; for more information on the app_server_root directory, see app_server_root.

c) Click Finish.

5) Click Next.

The WebSphere Application Server Settings panel is displayed.

c. Configure the WebSphere Application Server Settings panel:

1) For the profile name, select the profile that you use with OSGi Applications.

2) For the application server name, verify that the application server name for your profile is
displayed. By default, the first application server for a profile is called server1.

3) If security is enabled on your application server, enter a user ID and password.

4) Click Next.

The list of configured OSGi application projects is displayed.

d. Check that your OSGi application project is in the list of configured projects.

e. Click Finish. The server starts automatically, your application is published and started, and the
following output is displayed on the Console tab:
[4/15/10 14:07:33:295 GMT] 00000023 SystemOut O Client: Start...
[4/15/10 14:07:33:581 GMT] 00000023 SystemOut O OSGi Service: Hello World!
[4/15/10 14:07:33:581 GMT] 00000023 SystemOut O Client: End...

3. Export the project as an EBA file.

a. Right-click the project name, then select Export > OSGi > OSGi Application EBA.

b. Enter a location for the exported file, then name the file com.ibm.ws.eba.helloWorldApp.eba.

c. Click Finish.

Chapter 17. Developing OSGi applications 657

Results

You have completed the detailed instructions for developing a simple OSGi application. In this application,
a client bundle that uses a service that is defined in a service bundle to produce the message “OSGi
Service: Hello World!”. Your application uses the OSGi service registry to share the hello service between
the defining bundle and the client bundle. All interactions with the service registry are handled through
Blueprint.

What to do next

You are now ready to deploy and start your OSGi application outside of IBM Rational Application
Developer, by completing the following steps:

1. Deploy your OSGi application as a business-level application.

2. Start your business-level application.

3. Check the system output log for the greeting message “OSGi Service: Hello World!”.

You can use the administrative console or wsadmin commands to deploy and start an OSGi application in
WebSphere Application Server. For information about how to do this for any OSGi application, see
“Deploying an OSGi application as a business-level application” on page 2093 and Starting your
business-level application. When you check the system output log, you should see the following message:

[4/15/10 14:07:33:295 GMT] 00000023 SystemOut O Client: Start...
[4/15/10 14:07:33:581 GMT] 00000023 SystemOut O OSGi Service: Hello World!
[4/15/10 14:07:33:581 GMT] 00000023 SystemOut O Client: End...

Creating an OSGi application using Apache Ant
You can use the Apache Ant (Ant) command-line tool to package bundles together into an OSGi
application.

Before you begin

This topic assumes that you understand how to use the Ant build tooling, and that you have already
created the bundles and the application manifest file that you want to package together as an OSGi
application.

For a detailed overview of creating an OSGi application, and instructions on how to do this using IBM
Rational Application Developer Version 8 or similar tooling, see “Creating an OSGi application” on page
656.

About this task

The code example in this topic shows the syntax for using the Ant zip task to package a set of bundles
and an application manifest (APPLICATION.MF) file into an enterprise bundle archive (.eba) file.

Example
<zip destfile="${output.dir}/myExample.eba" basedir="${basedir}">

<filename name="META-INF/APPLICATION.MF"/>
<fileset dir="${basedir}">

<include name="*.jar"/>
</fileset>

</zip>

This example packages the META-INF/APPLICATION.MFfile into the EBA file, and also includes all files
ending in “.jar” (that is, the bundles).

${output.dir} and ${basedir} refer to the following Ant properties:

v output.dir is user-defined, and specifies the output directory for your build.

658 Developing WebSphere applications

http://www.ibm.com/software/awdtools/developer/application/
http://www.ibm.com/software/awdtools/developer/application/

v basedir is predefined, and specifies the directory that contains the Ant build.xml file.

What to do next

You can use the administrative console or wsadmin commands to deploy and start an OSGi application in
WebSphere Application Server. See “Deploying an OSGi application as a business-level application” on
page 2093 and Starting your business-level application.

Developing a composite bundle
A composite bundle groups shared bundles together into aggregates. It provides one or more packages at
specific versions to an OSGi application. You can also extend a deployed application by adding one or
more composite bundles to the composition unit for the application. You can use OSGi application tooling
to develop a composite bundle.

About this task

When you want to ensure consistent behavior from a set of shared bundles in an OSGi application, you
use a composite bundle to provide that set of bundles to the application. If a required package or service
is available at the same version from both a bundle and a composite bundle, the provisioning process
selects the package or service from the composite bundle.

When you want to extend a deployed business-level application that contains an OSGi application, and
you do not want to stop the application or modify the underlying EBA asset, you add one or more
composite bundles to the composition unit.

A composite bundle is packaged as a composite bundle archive (CBA) file. This file is a compressed
archive file with a .cba file extension. If the composite bundle is part of an enterprise OSGi application, the
CBA file can be directly contained within the enterprise bundle archive (EBA) file for the application, or
pulled in by reference from the internal bundle repository or from an external repository that can process
composite bundles. A composite bundle can directly contain bundles in its CBA file. It can also include by
reference bundles that are hosted alongside the CBA file within the same EBA file, or bundles that are
installed in the same bundle repository.

A composite bundle is described in a composite bundle manifest file, META-INF/COMPOSITEBUNDLE.MF. This
manifest file lists the OSGi bundles that are directly contained in the composite bundle, and the reference
bundles that are hosted alongside the composite bundle in the same EBA file, or in the same bundle
repository.

If you want to use your composite bundle to extend a deployed application, you must install the CBA file in
the internal bundle repository or in an external repository that can process composite bundles. If you install
a composite bundle in a bundle repository, and the composite bundle includes bundles by reference, you
must ensure that the referenced bundles are also available in the same repository. If you use the internal
bundle repository, and the composite bundle directly contains bundles, the contained bundles are not listed
separately and are only available as part of the composite bundle. For more information, see Composite
bundles.

IBM Rational Application Developer Version 8 provides graphical support for creating and packaging
composite bundles. You can also use other tools.

Procedure
1. Develop the bundles.

See “Creating a service bundle” on page 649 and “Creating a client bundle” on page 653. You might
also want to explore the sample OSGi applications.

2. Create the composite bundle manifest.

Chapter 17. Developing OSGi applications 659

http://www.ibm.com/software/awdtools/developer/application/

Most OSGi application tooling, including IBM Rational Application Developer Version 8, helps you
create the composite bundle manifest. See also Example: OSGi composite bundle manifest file.

3. Package the directly-contained bundles and the composite bundle manifest as a compressed file with a
.cba file extension.

Note: The file extension must be.cba, but the composite bundle name need not include “cba”.

4. Check that all referenced bundles are available in the EBA file (if the composite bundle is part of an
enterprise OSGi application), or in a bundle repository that can process composite bundles (such as
the internal bundle repository).

See Administering bundles in the internal bundle repository or Administering bundles in the internal
bundle repository using wsadmin commands.

5. Add the CBA file to the EBA file or to the bundle repository.

What to do next
v If you have configured an enterprise OSGi application to use your composite bundle, you can now

import the application as an asset. See “Deploying an OSGi application as a business-level application”
on page 2093.

v If you want to use your composite bundle to extend a composition unit, see Adding or removing
extensions for an OSGi composition unit.

Converting existing applications to OSGi applications
You can convert an enterprise application or a Spring application to an OSGi application.

Procedure
v Convert an enterprise application to an OSGi application.

v Convert a Spring application to an OSGi application.

Converting an enterprise application to an OSGi application
You convert an enterprise application to an OSGi application by completing manual tasks that convert the
enterprise archive (EAR) file to an enterprise bundle archive (EBA) file.

To convert your enterprise application to an OSGi application, you must separately convert each of the
components in the EAR file.

Complete the following tasks:

1. Change the file extension from .ear to .eba.

2. Convert any web application archive (WAR) files to OSGi web application bundles.

3. Convert any enterprise bean (EJB) Java archive (JAR) files to OSGi EJB bundles.

4. Convert any utility JAR files to OSGi bundles.

5. Convert any persistence archive files to OSGi persistence bundles.

6. Convert Java 2 security settings to OSGi.

These tasks are described in detail in the following subtopics:

Converting a web application archive file to an OSGi web application bundle
When converting an enterprise archive (EAR) file to an enterprise bundle archive (EBA) file, you complete
manual tasks to convert any web application archive (WAR) files in the EAR file to OSGi web application
bundles.

660 Developing WebSphere applications

http://www.ibm.com/software/awdtools/developer/application/

Note: If you do not convert a WAR file manually, it is converted automatically when the containing EBA
file is imported as an asset. However, by completing all of the manual steps described in this topic,
you can ensure that your web application bundle is configured correctly for your deployment
environment.

To convert a WAR file to an OSGi web application bundle, complete the following steps:

1. Change the file extension from .war to .jar.

2. Define general bundle metadata by adding the following headers to the bundle manifest file,
META-INF/MANIFEST.MF:

Bundle-ManifestVersion
The version of the syntax in which the bundle manifest file is written. For OSGi Service
Platform Release 4, set the value to 2.

Bundle-Name
A human-readable name for the bundle.

Bundle-SymbolicName
A non-localizable name that identifies the bundle uniquely.

Bundle-Version
The version of the bundle. For more information, see the description of the Bundle-Version
header in the bundle manifest file.

Import-Package
The external packages on which the bundle depends. For more information, see the
description of the Import-Package header in the bundle manifest file.

Export-Package
The packages that are visible outside the bundle. For more information, see the description of
the Export-Package header in the bundle manifest file.

3. Define bundle-type-specific metadata by adding the following headers to the bundle manifest file:

Export-EJB
The presence of this header identifies the bundle as containing enterprise beans that are to be
loaded and run by the EJB container. Optionally, you can specify, as the value of the this
header, the list of enterprise beans that you want to export as OSGi services. For more
information, see the description of the Export-EJB header in the bundle manifest file.

Web-ContextPath
The default context from which the web content is hosted.

You must set the value of the Web-ContextPath header to the value of the <context-root>
element for the corresponding web module in the application.xml file of the enterprise
application EAR file.

4. Specify the bundle classpath by adding a Bundle-Classpath header to the bundle manifest file.

You must set the value of the Bundle-Classpath header to a comma separated list of the names of all
the JAR files and class subfolders that are contained in the WEB-INF\lib folder of the WAR file.

Converting an EJB JAR file to an OSGi EJB bundle
When converting an enterprise archive (EAR) file to an enterprise bundle archive (EBA) file, you complete
manual tasks to convert any enterprise bean (EJB) Java archive (JAR) files in the EAR file to OSGi EJB
bundles.

To convert an EJB JAR file to an OSGi application bundle, complete the following steps:

1. Define general bundle metadata by adding the following headers to the bundle manifest file,
META-INF/MANIFEST.MF:

Chapter 17. Developing OSGi applications 661

Bundle-ManifestVersion
The version of the syntax in which the bundle manifest file is written. For OSGi Service
Platform Release 4, set the value to 2.

Bundle-Name
A human-readable name for the bundle.

Bundle-SymbolicName
A non-localizable name that identifies the bundle uniquely.

Bundle-Version
The version of the bundle. For more information, see the description of the Bundle-Version
header in the bundle manifest file.

Import-Package
The external packages on which the bundle depends. For more information, see the
description of the Import-Package header in the bundle manifest file.

Export-Package
The packages that are visible outside the bundle. For more information, see the description of
the Export-Package header in the bundle manifest file.

2. Define bundle-type-specific metadata by adding the following headers to the bundle manifest file:

Export-EJB
The presence of this header identifies the bundle as containing enterprise beans that are to be
loaded and run by the EJB container. Optionally, you can specify, as the value of the this
header, the list of enterprise beans that you want to export as OSGi services. For more
information, see the description of the Export-EJB header in the bundle manifest file.

Converting a utility JAR file to an OSGi bundle
When converting an enterprise archive (EAR) file to an enterprise bundle archive (EBA) file, you complete
manual tasks to convert any utility JAR files in the EAR file to OSGi bundles.

To convert a utility JAR file to an OSGi application bundle, define general bundle metadata by adding the
following headers to the bundle manifest file, META-INF/MANIFEST.MF:

Bundle-ManifestVersion
The version of the syntax in which the bundle manifest file is written. For OSGi Service Platform
Release 4, set the value to 2.

Bundle-Name
A human-readable name for the bundle.

Bundle-SymbolicName
A non-localizable name that identifies the bundle uniquely.

Bundle-Version
The version of the bundle. For more information, see the description of the Bundle-Version header
in the bundle manifest file.

Import-Package
The external packages on which the bundle depends. For more information, see the description of
the Import-Package header in the bundle manifest file.

Export-Package
The packages that are visible outside the bundle. For more information, see the description of the
Export-Package header in the bundle manifest file.

:

662 Developing WebSphere applications

Converting a persistence archive file to an OSGi bundle
When converting an enterprise archive (EAR) file to an enterprise bundle archive (EBA) file, you complete
manual tasks to convert any persistence archive files in the EAR file to OSGi bundles.

To convert a persistence archive file to an OSGi application bundle, complete the following steps:

1. Define general bundle metadata by adding the following headers to the bundle manifest file,
META-INF/MANIFEST.MF:

Bundle-ManifestVersion
The version of the syntax in which the bundle manifest file is written. For OSGi Service
Platform Release 4, set the value to 2.

Bundle-Name
A human-readable name for the bundle.

Bundle-SymbolicName
A non-localizable name that identifies the bundle uniquely.

Bundle-Version
The version of the bundle. For more information, see the description of the Bundle-Version
header in the bundle manifest file.

Import-Package
The external packages on which the bundle depends. For more information, see the
description of the Import-Package header in the bundle manifest file.

Export-Package
The packages that are visible outside the bundle. For more information, see the description of
the Export-Package header in the bundle manifest file.

2. Define bundle-type-specific metadata by adding the following headers to the bundle manifest file:

Meta-Persistence
The file path to the persistence.xml file.

Converting Java 2 security settings in an enterprise application to OSGi
When converting an enterprise archive (EAR) file to an enterprise bundle archive (EBA) file, you can have
any Java 2 security settings converted automatically to OSGi, and then manually refine them to obtain the
required OSGi security configuration.

In an enterprise application, the was.policy file defines Java 2 security permissions. In the was.policy file,
you declare fine-grained security settings by using grant codeBase statements to grant permissions to
application components.

In an OSGi application, permissions that define application-level security are specified in a
permissions.perm file in the META-INF directory of the OSGi application. However, you can, in addition to
the application-level permissions.perm file, create a permissions.perm file in the OSGI-INF directory of
each bundle, to define finer-grained bundle-level access control.

When your Java 2 security settings in the was.policy are converted automatically, a permissions.perm file
is created for you in the META-INF directory of the OSGi application. However, the automatic conversion
process ignores grant codeBase statements, so that all the permissions in the was.policy file are copied
to the permissions.perm file as application-level permissions. Therefore, you should, after conversion,
review the permission settings in the permissions.perm file and move permissions to bundle-specific
permissions.perm files as necessary.

To convert your Java 2 security settings to OSGi, complete the following steps:

1. Ensure you have completed the following conversion tasks, depending on the components of your
EAR file:

Chapter 17. Developing OSGi applications 663

v Change the file extension from .EAR to .EBA.

v Convert any web application archive (WAR) files to OSGi web application bundles.

v Convert any enterprise bean (EJB) Java archive (JAR) files to OSGi EJB bundles.

v Convert any utility JAR files to OSGi bundles.

v Convert any persistence archive files to OSGi bundles.

2. Import the EBA file as an asset. The Java 2 security settings are converted automatically during the
import operation.

3. Export the EBA file to a location of your choice.

4. Open the permissions.perm file in the META-INF directory of the EBA file.

5. Review the permission settings in the permissions.perm file.

6. For those bundles that require bundle-specific permissions, create a permissions.perm file in the
OSGI-INF directory of the bundle, and move the appropriate permissions to the newly-created file.

7. Update the previously imported EBA file with the modified EBA file.

Converting a Spring application to an OSGi application
To convert an application that is created using the Spring Framework to an OSGi application and move
from the Spring Framework to standards-based technologies, you must modify the application manually. If
a Spring application contains only web application archive (WAR) files, you can convert it automatically to
run in OSGi Applications, but it still uses the Spring Framework.

About this task

In a Spring application, the Spring Framework manages features such as transactions, persistence, and
dependency injection, and handles the communication between the servlets in the web container and the
classes that handle the business logic of the application.

After you convert the application to an OSGi application that uses OSGi Applications support, the Blueprint
Container manages the transactions, persistence and dependency injection.

If the application is an enterprise archive (EAR) file that contains only web application archive (WAR) files,
you can convert it automatically. You might convert a Spring application in this way if a WAR file uses
other library JAR files that must remain unchanged for the application to work. See “Converting a web
application archive file to an OSGi web application bundle” on page 660.

Otherwise, you need to identify the Spring components and replace them with the equivalent code to make
them plain old Java objects (POJOs), then modify the relevant XML files so that the Blueprint container
manages those objects.

To convert a Spring application, you change it as follows:

v Create a well-defined interface to delegate to. The interface represents the classes that handle the
business logic of the application.

v Create a service for each class, so that the servlet in the web container can use them.

v Change code that is specific to the Spring Framework in the classes to use the equivalent in Java EE,
for example Java EE persistence classes.

v Create a handler servlet and interface to replace those from the Spring Framework.

v Modify XML and manifest files to use syntax that is correct for the Blueprint Container.

At the end of each step, the application is still usable, so you can decide whether to make all, or just
some, of these changes.

The following procedure describes these steps in more detail.

664 Developing WebSphere applications

Procedure
1. Create a well defined interface to delegate to, for example to replace a dispatcher servlet in the Spring

application. The following example replaces the Spring HttpRequestHandler interface in an example
application with the MyApplicationHandler interface.

a. Create an interface to replace the Spring HttpRequestHandler interface.
package com.ibm.ws.eba.example.springconversion;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

interface MyApplicationHandler {

void setMyApplicationHandle(MyApplicationUserInterface b);

void handleRequest(HttpServletRequest request, HttpServletResponse response)
throws Exception;

}

b. In each class that imports and implements the Spring HttpRequestHandler interface, implement the
new interface. For example, change the following code:
implements HttpRequestHandler

to :
implements MyApplicationHandler

c. If the method creates an exception that is not in a base Java package, for example a
ServletException exception, you can change it to use more general exception handling and avoid
additional OSGi package imports. For example, change the following code:
handleRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

to:
handleRequest(HttpServletRequest request, HttpServletResponse response)
throws Exception

To replace the Spring interface with this new interface, you must also replace the servlet, as described
in step 4 on page 667.

2. At this point, you could continue to use the Spring classes and use the Blueprint Container to manage
those objects. To do this, change the blueprint.xml file, as described in step 7 on page 668.

The configuration for dependency injection that the Blueprint Container uses is similar to the
configuration for the Spring Framework. For example, if the Spring Framework calls the
setMyApplicationHandle method to inject the MyApplicationUserInterface variable, this injection
continues to work in the Blueprint Container, as long as the blueprint.xml file is configured correctly.

3. Change the managed bean that handles persistence to use standard Java EE persistence classes. In
the following example, the Spring JpaTemplate interface handles persistence. It is equally valid if using
JPA directly through an entity manager.

a. Replace the JpaTemplate interface with Java EE persistence classes. For example, remove the
following import statement:
import org.springframework.orm.jpa.JpaTemplate;

Replace it with the following import statements:
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;

b. Use the relevant calls that are available in the API for those interfaces. For example, to replace the
JpaTemplate code with EntityManager code, remove the following code:

Chapter 17. Developing OSGi applications 665

@PersistenceUnit(unitName = "springExample")
private JpaTemplate jpaTemplate;

public void setJpaTemplate(JpaTemplate j)
{

jpaTemplate = j;
}

Replace it with the following code:
@PersistenceContext(unitName = "myApplication")

private EntityManager em;
public void setEntityManager(EntityManager e) {

em = e;
}

c. If a persistence unit is inside a web application, separate the persistence unit from the WAR and
create a persistence bundle. The persistence bundle must contain the entity classes and the
persistence.xml file. The bundle manifest must have a Meta-Persistence header that points to the
persistence unit, as shown in the following example:
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyPersistenceBundle
Bundle-SymbolicName: com.ibm.ws.eba.example.persistence
Bundle-Version: 1.0.0
Meta-Persistence: WEB-INF/classes/META-INF/persistence.xml
Import-Package: javax.persistence

d. Replace each instance of a call from the bean that handles persistence with an equivalent call that
uses the EntityManager interface, the Query interface, or both. For example, in the example Spring
application, the following code snippet shows two methods that call the jpaTemplate.find method:
@SuppressWarnings("unchecked")
public boolean checkEMailAddressUniqueness(String emailAddress)
{

boolean result = false;

List<UserInfo> users = jpaTemplate.find(uniqueEmailAddressQuery, emailAddress);

if (users.isEmpty()) {
result = true;

}

return result;
}

public boolean checkUsernameUniqueness(String username)
{

boolean result = false;

UserInfo user = jpaTemplate.find(UserInfo.class, username);

if (user == null) {
result = true;

}

return result;
}

The following code snippet shows replacement code:
private static final String uniqueEmailAddressQuery = "select u from UserInfo u
where u.emailAddress = ?1";

@SuppressWarnings("unchecked")
public boolean checkEMailAddressUniqueness(String emailAddress)
{

boolean result = false;

666 Developing WebSphere applications

Query q = em.createQuery(uniqueEmailAddressQuery);
q.setParameter(1, emailAddress);

List<UserInfo> users = q.getResultList();

if (users.isEmpty()) {
result = true;

}

return result;
}

public boolean checkUsernameUniqueness(String username)
{

boolean result = false;

UserInfo user = em.find(UserInfo.class, username);

if (user == null) {
result = true;

}

return result;
}

4. Create and register a handler servlet to replace the one from the Spring Framework.

a. Create a servlet to forward requests to the appropriate handler in the Blueprint Container to
process the business logic. This servlet is managed by the web container. The JNDI lookup is
constructed as follows:
osgi:service/class_name/ldap_filter

The following code snippet creates the MyApplicationHandlerServlet servlet that passes an HTTP
request to the MyApplicationHandler class in the Blueprint Container:
package com.ibm.ws.eba.example.springconversion;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MyApplicationHandlerServlet extends HttpServlet {

private static final long serialVersionUID = -3705932907251688199L;

@Override
public void service(HttpServletRequest request, HttpServletResponse response)
{
// Get servlet name
String servletName = this.getServletConfig().getServletName();

// Get business logic class from service registry that is
// associated with the servlet

try {
InitialContext ic = new InitialContext();
MyApplicationHandler myApplicationLogicClass = (MyApplicationHandler)
ic.lookup("osgi:service/com.ibm.ws.eba.example.springconversion.
MyApplicationHandler/(servlet.name="+servletName+")");
myApplicationLogicClass.handleRequest(request, response);

} catch (NamingException e) {
e.printStackTrace();

} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

Chapter 17. Developing OSGi applications 667

}

}

b. Register the new servlet by changing the servlet classes to define the servlet you just created,
rather than the Spring servlet. To do this, modify the web.xml file in the WEB-INF folder of the WAR
file.

For example, change the following servlet definition in the web.xml file:
<servlet>

<servlet-name>RegistrationServlet</servlet-name>
<servlet-class> org.springframework.web.context.support.HttpRequestHandlerServlet
</servlet-class>
</servlet>

to:
<servlet>

<servlet-name>RegistrationServlet</servlet-name>
<servlet-class>com.ibm.ws.eba.example.springconversion.MyApplicationHandlerServlet
</servlet-class>

</servlet>

c. Delete the following elements from the web.xml file:
<context-param>
<listener>

5. Separate the persistence unit from the EAR file and create a persistence bundle. The persistence
bundle must contain the entity classes and the persistence.xml file. The bundle manifest must have a
Meta-Persistence header that points to the persistence unit, as shown in the following example:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyPersistenceBundle
Bundle-SymbolicName: com.ibm.ws.eba.example.persistence
Bundle-Version: 1.0.0
Meta-Persistence: WEB-INF/classes/META-INF/persistence.xml
Import-Package: javax.persistence

6. If you removed the persistence unit from a WAR file, delete the following element from the web.xml file
in the WEB-INF folder of the WAR file:

<persistence-unit-ref>

7. Change the XML so that the Blueprint Container manages the objects, rather than the Spring
Framework.

a. Delete the springapp-service.xml file in the WEB-INF folder of the WAR file.

b. Create the OSGI-INF/blueprint/ directory.

c. Create a file named blueprint.xml in the OSGI-INF/blueprint/ directory. The following code shows
an example blueprint.xml file:
<blueprint xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.0.0"

xmlns:jpa="http://http://aries.apache.org/xmlns/jpa/v1.0.0">

<bean id="myApplicationImpl"
class="com.ibm.ws.eba.example.springconversion.impl.MyApplicationImpl">
<jpa:context property="entityManager" unitname="myApplication" />
<tx:transaction method="*" value="Required"/>

</bean>

<bean id="RegistrationServlet"
class="com.ibm.ws.eba.example.springconversion.Registration">
<tx:transaction method="*" value="Required"/>
<property name="myApplicationHandle" ref="myApplicationService" />

</bean>

<service id="myApplicationService" ref="myApplicationImpl" interface=

668 Developing WebSphere applications

"com.ibm.ws.eba.example.springconversion.MyApplicationUserInterface" />

<service id="registrationService" ref="RegistrationServlet" interface=
"com.ibm.ws.eba.example.springconversion.MyApplicationHandler" >
<service-properties>
<entry key="servlet.name" value="RegistrationServlet"/>

</service-properties>
</service>

</blueprint>

8. Update the persistence.xml file in the war/WEB-INF/classes/META-INF/ directory. For example, you
can change the JNDI lookups to use a service from a service registry. The following code is an
example:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="myApplication" transaction-type="JTA">
<description>Persistence unit for the Spring conversion sample application
</description>

<provider>com.ibm.websphere.persistence.PersistenceProviderImpl
</provider>

<jta-data-source>osgi:service/javax.sql.DataSource/
(osgi.jndi.service.name=jdbc/userdb)

</jta-data-source>
<non-jta-data-source>osgi:service/javax.sql.DataSource/
(osgi.jndi.service.name=jdbc/userdbnonjta)

</non-jta-data-source>
<class>com.ibm.ws.eba.example.springconversion.Post</class>
<class>com.ibm.ws.eba.example.springconversion.UserInfo</class>
<exclude-unlisted-classes/>

</persistence-unit>
</persistence>

9. Create the enterprise bundle archive (EBA) structure for the application.

a. Create a META-INF directory in the root of the project and create an application manifest,
APPLICATION.MF. The following code shows an example application manifest file:
Manifest-Version: 1.0
Application-ManifestVersion: 1.0
Application-Name: MyApplication
Application-SymbolicName: com.ibm.ws.eba.example.springconversion
Application-Version: 1.0
Application-Content: com.ibm.ws.eba.example.springconversion

b. Delete the context.xml file from the war/META-INF/ directory.

c. In the war/META-INF/ directory, create a bundle manifest file, MANIFEST.MF. The following code
shows an example bundle manifest file:
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyApplication
Bundle-SymbolicName: com.ibm.ws.eba.example.springconversion
Bundle-Version: 1.0.0
Bundle-Vendor: IBM
Bundle-ClassPath: WEB-INF/classes,
WEB-INF/lib/aspectjrt.jar,WEB-INF/lib/aspectweaver.jar,
WEB-INF/lib/commons-collections-3.2.jar,WEB-INF/lib/commons-lang-2.1.jar,
WEB-INF/lib/JSON4J.jar,WEB-INF/lib/jstl.jar,WEB-INF/lib/jta.jar,
WEB-INF/lib/openjpa-1.3.0-SNAPSHOT.jar,WEB-INF/lib/persistence.jar,
WEB-INF/lib/serp-1.13.1.jar,WEB-INF/lib/standard.jar
Web-ContextPath: myApplication

Chapter 17. Developing OSGi applications 669

Import-Package: javax.servlet;version="2.5",
javax.servlet.http;version="2.5",
javax.servlet.jsp;version="2.1",
javax.servlet.jsp.tagext;version="2.1",
org.osgi.framework;version="1.5.0",
javax.persistence

Accessing Enterprise JavaBeans in OSGi applications
There are alternative mechanisms that you can use in a client bundle to access an enterprise bean in a
service bundle. To maximize application availability during an update to a service bundle that contains one
or more enterprise beans, use OSGi service references to access the enterprise beans.

From an OSGi client bundle, you can access an enterprise bean in a service bundle in any of the following
ways:

v Define a <reference> element, in the Blueprint XML file of the client bundle, that refers to the enterprise
bean.

v Use an @EJB annotation.

v Define an EJB reference that is mapped to the JNDI name of the bean.

v Use an "osgi:service/" JNDI lookup.

The alternative ways of accessing an enterprise bean, and the corresponding differences in application
behaviour during an update to the service bundle, are discussed in more detail in the remaining sections
of this topic.

Using a <reference> element to access an enterprise bean

You can access an enterprise bean by defining a reference element for the bean in the Blueprint XML file
of the client bundle; for more information, see References and the Blueprint Container.

The enterprise bean must be in the list specified by the Export-EJB header in the bundle manifest file of
the service bundle, or the value of the Export-EJB header must be set to a single space character so that
all enterprise beans in the bundle are exported; for more information, see the description of the
Export-EJB header in the bundle manifest file.

To access the enterprise bean from a blueprint-managed bean, you can inject the enterprise bean through
a property on the blueprint-managed bean; for details, see References and the Blueprint Container.

To access the enterprise bean from a component that is not blueprint-managed, such as a servlet, use a
"blueprint:comp/" JNDI lookup; for details, see JNDI lookup for blueprint components.

If you subsequently update the service bundle, the client bundle does not have to be restarted. During the
update operation, an end user might experience a brief delay, because the service reference is damped,
so the client bundle waits for the update operation to complete, rather than a runtime exception being
thrown.

Using an @EJB annotation or an EJB reference to access an enterprise bean

You can create a reference to an enterprise bean by using an @EJB annotation in the source code of the
client bundle, or by defining an EJB reference in an ejb-jar.xml or web.xml file and using a JNDI lookup in
the source code. In either case, you map the reference to the enterprise bean JNDI name in an
ibm-ejb-jar-bnd.xml or ibm-web-bnd.xml file in the bundle, or in the WebSphere Application Server
administrative console when you deploy the bundle.

670 Developing WebSphere applications

WebSphere Application Server automatically generates an enterprise bean JNDI name and maps the
enterprise bean to it. In addition, you can explicitly map the enterprise bean to a JNDI name in the
ibm-ejb-jar-bnd.xml file in the service bundle, or in the WebSphere Application Server administrative
console when you deploy the bundle.

If you explicitly map the enterprise bean, and you subsequently update the service bundle, the client does
not have to be restarted, but the service bundle is briefly unavailable, during which time a runtime
exception is thrown if the client bundle attempts to invoke a method on the enterprise bean.

If you do not explicitly map the enterprise bean, and you subsequently update the service bundle, the
JNDI name changes. The EJB reference to the JNDI name in the client bundle is updated automatically
and the client bundle is restarted, during which time the client bundle is unavailable. In addition, the
service bundle is briefly unavailable during the update operation, and if the client bundle becomes
available before the service bundle and attempts to invoke a method on the enterprise bean, a runtime
exception is thrown.

Using an "osgi:service/" lookup to access an enterprise bean

You can access an enterprise bean by using, in the source code of the client bundle, an "osgi:service/"
lookup, in either of the following ways:

v Use a JNDI lookup with a URL of the following form:

osgi:service/interface_name/optional_filter

For example:

try {
InitialContext ic = new InitialContext();
return (BloggingService)
ic.lookup("osgi:service/com.ibm.samples.websphere.osgi.blog.api.BloggingService");

} catch (NamingException e) {
.
.
.

v Inject a reference to the enterprise bean by using an @Resource annotation of the following form:

@Resource(lookup="osgi:service/interface_name/optional_filter")

For example:

@Resource(lookup="osgi:service/com.ibm.samples.websphere.osgi.blog.api.BloggingService")
BloggingService bloggingService;

If you subsequently update the service bundle, the client bundle continues to run without interruption, but a
ServiceUnavailableException is thrown if the code attempts to use the service object while the service
bundle is being updated, so the source code must be written to handle this situation.

For details of the OSGi URL scheme, see section 126.6 of the OSGi Service Platform Release 4 Version
4.2 Enterprise Specification.

Summary

The following table summarizes the degree of availability during an update to an OSGi application that
contains enterprise beans, depending on the enterprise bean access mechanism used:

Access mechanism Summary of application availability

OSGi service reference The client bundle remains available. The service
reference is damped, so client threads block until the EJB
service becomes available again.

Chapter 17. Developing OSGi applications 671

http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42

Access mechanism Summary of application availability

@EJB annotation or EJB reference, with explicit JNDI
name mapping

The client bundle remains available. If the client bundle
attempts to use the injected EJB, a runtime exception is
thrown during the service bundle update.

"osgi:service/" JNDI lookup or injected reference The client bundle remains available. If the client bundle
attempts use the injected EJB, a runtime exception is
thrown during the service bundle update. This behavior is
similar to using an @EJB annotation or EJB reference
with explicit JNDI name mapping, but more client code is
required to achieve the same result.

@EJB annotation or EJB reference, without explicit JNDI
name mapping

The client bundle is restarted. If the client bundle
becomes available before the service bundle, attempts
use the injected EJB will result in runtime exceptions
being thrown until the service bundle update is complete.

Sample OSGi applications
OSGi Applications support includes sample applications that demonstrate how to write and package
bundles into an enterprise bundle archive (EBA) file.

Two sample OSGi applications are provided: “Blog” and “Blabber”. Both applications demonstrate all of the
following OSGi Applications features:

v Using Blueprint management.

v Using bean injection.

v Using services from the OSGi service registry.

v Publishing services to the OSGi service registry.

v Using the Java Persistence API (JPA).

The samples are provided in the OSGi_blogSample.zip and OSGi_blabberSample.zip compressed archive
files, which can be downloaded from the Samples download page. The EBA file for each sample
application is in the installableApps directory of the sample compressed file, and the source code is
provided in other subdirectories of the sample compressed file.

For information about how to install and run each sample application, see the sample_osgi_blog_readme
and sample_osgi_blabber_readme respectively. These files are available in the root directory of the
associated sample compressed file. They are also available in the information center as topics “OSGi blog
sample application” on page 673 and “OSGi blabber sample application” on page 678.

Blog sample application

The blog sample application is a traditional blogging application, used for publishing essay-length articles
and allowing readers to comment on them. The application contains the following bundles:

v com.ibm.ws.eba.example.blog.persistence.

This bundle contains JPA-related code, and the interfaces that enable the main application code to
update and query blog entries.

v com.ibm.ws.eba.example.blog_1.0.0.

This bundle contains the main application logic code and interacts between the web front end and the
back end persistence code layer.

v com.ibm.ws.eba.example.blog.web.

This bundle contains the static web content and backing Java code for the web front end of the
application.

v com.ibm.ws.eba.example.blog.api.

672 Developing WebSphere applications

This bundle contains the API for the sample.

v com.ibm.ws.eba.example.blog.persistence_1.1.0.

This bundle contains an optional upgraded persistence bundle that also supplies a comment service.

To run the blog sample application, you can use all the bundles that are listed, or all the bundles except
the upgraded persistence bundle (the last in the list).

For more information, see “OSGi blog sample application.”

Blabber sample application

The blabber sample application is a microblogging application, used to enable many different people to
share brief comments. The application contains the following bundles:

v com.ibm.ws.eba.example.blabber.persistence.

This bundle contains code that relates to the Java Persistence API (JPA) layer and the interface for the
main application code.

v com.ibm.ws.eba.example.blabber.

This bundle contains the main application code and the code for the web front end of the application.

For more information, see “OSGi blabber sample application” on page 678.

OSGi blog sample application
The blog sample application is a traditional blogging application, used for publishing essay-length articles
and allowing readers to comment on them. This sample application shows how to write and package
bundles into an enterprise bundle archive (EBA) file. The sample includes example code for Blueprint
management, bean injection, using and publishing services from and to the OSGi service registry, and the
use of Java persistence.

Before you begin

The blog sample application consists of five bundles, but can be run with four bundles because the fifth
bundle is an upgrade to the persistence bundle.

The sample application requires that the supplied com.ibm.samples.websphere.osgi.logging.api.jar and
com.ibm.samples.websphere.osgi.logging.impl.jar bundles are installed into the internal bundle
repository. The following procedure describes how to do this. These two JAR files, and the blog sample
EBA file, are provided in the installableApps directory of the OSGi_blogSample.zip compressed archive
file.

About this task

The bundles are divided into the following functional areas:

v com.ibm.samples.websphere.osgi.blog.persistence, which contains code relating to the Java
Persistence API (JPA) layer, and also contains interfaces that are used by the main application code to
update and query blog entries.

v com.ibm.samples.websphere.osgi.blog_1.0.0, which contains the main application logic code, and
interacts between the web front end and the back end persistence code layer.

v com.ibm.samples.websphere.osgi.blog.web, which contains the static web content and backing Java
code for the web front end for the application.

v com.ibm.samples.websphere.osgi.blog.api, which contains the API for the whole sample.

v com.ibm.samples.websphere.osgi.blog.persistence_1.1.0, which contains an upgraded persistence
bundle that also supplies a comment service.

Chapter 17. Developing OSGi applications 673

You can use scripts to completely install the sample application, or you can use scripts to complete the
initial configuration of the application then use the administrative console to install the application into the
application server. You can also use, modify and remove the sample, and upgrade the persistence service
that is provided by the sample.

Procedure

Configure and install the blog sample.
You can either configure and install the sample using scripts (the first optional step in the instructions that
follow), or you can configure the sample using scripts then install the sample using the administrative
console (the second optional step in the instructions that follow).
The scripts that you use to do this are provided in the scripts directory of the OSGi_blogSample.zip
compressed archive file. The createBlogDb.sql script contains the necessary configuration commands to
create the required Derby database and associated tables. The blogSampleInstall.py script contains the
required jython to create data sources, and to install the blog sample with default configuration. You should
fully qualify the path to the script if you do not run it from the directory that contains the script.

Note: If you have data sources already defined in your environment, and these data sources have the
same name as the data sources that are specified in the blogSampleInstall.py script, then the
sample might not install and run successfully.

In the following steps you must substitute your own values for the variables app_server_root, profileName,
serverName, nodeName, blogSample.eba_Location,
com.ibm.samples.websphere.osgi.logging.api.jar_Location,
com.ibm.samples.websphere.osgi.logging.impl.jar_Location, uncompressed_sample_directory, and
path_to_ant.

v Optional: Configure and install the sample using scripts.

1. Create and configure the “BLOGDB” Derby database and associated tables by running the following
command.

On UNIX platforms:
app_server_root/derby/bin/embedded/ij.sh scripts/createBlogDb.sql

On Windows platforms:
app_server_root\derby\bin\embedded\ij.bat scripts\createBlogDb.sql

2. Create the data sources, create the business-level application and import the .eba file as an asset
by running the following command.

Note: The target application server must be running before you use this script.

On UNIX platforms:
app_server_root/profiles/profileName/bin/wsadmin.sh

-f scripts/blogSampleInstall.py fullInstall serverName nodeName
blogSample.eba_Location
com.ibm.samples.websphere.osgi.logging.api.jar_Location
com.ibm.samples.websphere.osgi.logging.impl.jar_Location

On Windows platforms:
app_server_root\profiles\profileName\bin\wsadmin.bat

-f scripts\blogSampleInstall.py fullInstall serverName nodeName
blogSample.eba_Location
com.ibm.samples.websphere.osgi.logging.api.jar_Location
com.ibm.samples.websphere.osgi.logging.impl.jar_Location

v Optional: Configure the sample using scripts, then install the sample using the administrative console.

1. Create and configure the “"BLOGDB" ” Derby database and associated tables by running the
following command.

On UNIX platforms:
app_server_root/derby/bin/embedded/ij.sh scripts/createBlogDb.sql

On Windows platforms:

674 Developing WebSphere applications

app_server_root\derby\bin\embedded\ij.bat scripts\createBlogDb.sql

2. Create the data sources by running the following command.

On UNIX platforms:
app_server_root/profiles/profileName/bin/wsadmin.sh

-f scripts/blogSampleInstall.py setupOnly serverName nodeName

On Windows platforms:
app_server_root\profiles\profileName\bin\wsadmin.bat

-f scripts\blogSampleInstall.py setupOnly serverName nodeName

3. Use the administrative console to add the com.ibm.samples.websphere.osgi.logging.api.jar file to
the internal bundle repository.

a. Navigate to Environment > OSGi bundle repositories > Internal bundle repository

b. Click New.

c. Select the file system that hosts the com.ibm.samples.websphere.osgi.logging.api.jar file, then
click Browse.

d. Browse to the uncompressed_sample_dir/installableApps directory.

e. Select the com.ibm.samples.websphere.osgi.logging.api.jar file, then click OK.

f. Click OK.

g. Click Save.

4. Repeat the previous step to add the com.ibm.samples.websphere.osgi.logging.impl.jar file to the
internal bundle repository.

5. Use the administrative console to import the application (EBA file) as an asset, and to configure the
business-level application.

a. Import the asset.

1) Navigate to Applications > New application > New Asset.

2) On the Upload asset panel, browse to the uncompressed_sample_dir/installableApps
directory.

3) Select the com.ibm.samples.websphere.osgi.blog.eba file, then click Next.

4) On the Select options for importing an asset panel, click Next.

5) On the Summary panel, click Finish.

6) Click Save.

b. Create the business-level application and add the asset.

1) Navigate to Applications > New application > New Business Level Application.

2) On the New Application panel, enter a name for the business-level application. For
example, “blog”.

3) Click Apply.

4) In the Deployed assets pane, click Add > Add Asset.

5) Select the com.ibm.samples.websphere.osgi.blog.eba asset, then click Continue.

6) On the Set options panel, click Next.

7) Select a target for the composition unit, then click Next.

8) Modify the context root if required, then click Next.

9) Modify the virtual host if required, then click Next.

10) On the Summary panel, click Finish.

11) Click Save.

6. Start the application.

a. Select the newly-created business-level application.

b. Click Start.

Use the blog sample.

Chapter 17. Developing OSGi applications 675

v Use your browser to navigate to http://server:port/context_root/ (by default http://
localhost:9080/blog/). The View blog screen is displayed.

v Register yourself as an Author. You need to do this before you can create blog entries.

1. Click Create Author.

2. Complete the form.

3. Click Submit.

v Create a blog entry.

1. Navigate back to http://localhost:9080/blog/ (or click Blog Home).

2. Click Create New Post.

3. Complete the form. Use the email address that you specified when you created the Author.

4. Click Submit.

The View blog screen is redisplayed, and should contain your post.
Upgrade the persistence service.

To add the new persistence bundle to the blog application, use the administrative console to load the
com.ibm.samples.websphere.osgi.blog.persistence_1.1.0.jar file into the internal bundle repository, then
modify the asset to expect a new bundle version. Complete the following steps:

v Load the persistence bundle into the internal bundle repository.

1. Navigate to Environment > OSGi bundle repositories > Internal bundle repository.

2. Click New.

3. Browse to the uncompressed_sample_dir/installableApps directory.

4. Select the com.ibm.samples.websphere.osgi.blog.persistence_1.1.0.jar file, then click OK.

5. Save your changes to the master configuration.

v Add the persistence bundle to the blog application.

1. Navigate to Applications > Application types > Assets.

2. Click com.ibm.samples.websphere.osgi.blog.eba to view the asset information.

3. Scroll to the end of the asset information, then click Update bundle versions in this application.

4. Find the com.ibm.samples.websphere.osgi.blog.persistence bundle in the list.

5. Click the down arrow beside the text “no preference”. You are offered a choice between version
1.0.0 or 1.1.0 of the persistence bundle.

6. Select version 1.1.0, then work through the preview, create and save screens.

v Update the application to use the new bundle version.

1. Navigate to Applications > Application types > Business-level applications.

2. Click the blog sample application to display its details.

3. Click com.ibm.samples.websphere.osgi.blog.eba to view the asset information.

4. Click Update to latest deployment, then click OK.

5. Save your changes to the master configuration.

v Stop and restart the blog application.

1. Navigate to Applications > Application types > Business-level applications.

2. Select the check box alongside the blog sample application, then click Stop.

3. Wait until the status column shows that the application has stopped, then click Start.

4. Use your browser to navigate to http://server:port/context_root/ (by default
http://localhost:9080/blog/) then refresh the screen. The View blog screen is displayed. There is
a new option to add comments to blog posts.

Modify the blog sample

676 Developing WebSphere applications

All the source code for this application is provided in sub-directories below the uncompressed_sample_dir
directory. Each part of the project has its own ant build.xml script. To build the whole application into a
newly-available EBA file, you use the ant build.xml file located in the uncompressed_sample_dir directory.
WebSphere Application Server ships a version of ant in its bin directory called ws_ant. To build the
sample, you also need a JAR file on the ant classpath. To simplify matters, you can edit the was.root
property in the supplied build.properties file to point to this JAR file.

v Put the JAR file j2ee.jar on the ant classpath:

This JAR file is available in the dev/JavaEE directory of Websphere Application Server. Edit the was.root
property in the supplied uncompressed_sample_dir/scripts/build.properties file, and point it to your
app_server_root directory. If you have copied the JAR file to another location, modify the was.root
property to point to this location.

v Run the following ant command from the uncompressed_sample_dir directory:

path_to_ant -propertyfile scripts/build.properties -buildfile build.xml

The newly-built binary file (EBA file) is in the uncompressed_sample_dir/output directory.

Note: This is the only location to which this EBA file is written. The script does not overwrite the original
binary file located in the uncompressed_sample_dir/installableApps directory.

Remove the blog sample.

To remove the blog sample, you complete the following 3 steps:

1. Remove the application configuration and the data sources, either by using a script (the first optional
step in the instructions that follow), or by using the administrative console (the second optional step in
the instructions that follow).

2. Remove the shared logging bundles from the internal bundle repository.

3. Remove the database.

Note: Only remove the bundles if you have no other applications installed that use them. Both the blog
and blabber sample applications use the shared logging bundles, so if both applications are
installed these bundles should not be removed.

The uninstall script is provided in the scripts directory of the OSGi_blogSample.zip compressed archive
file. The blogSampleUninstall.py script contains the required jython to remove data sources and to
remove the installation of the blog sample with default configuration. You should fully qualify the path to
the script if you do not run it from the directory that contains the script.

In the following steps you must substitute your own values for the variables app_server_root, and
profileName.

v Optional: Remove the application configuration and the data sources by running the following command.

Note: The target application server must be running before you use this script.

On UNIX platforms:

app_server_root/profiles/profileName/bin/wsadmin.sh
-f scripts/blogSampleUninstall.py

On Windows platforms:

app_server_root\profiles\profileName\bin\wsadmin.bat
-f scripts\blogSampleUninstall.py

v Optional: Remove the application configuration and the data sources by using the administrative
console.

1. Remove the application configuration.

a. Navigate to Applications > Application types > Business-level applications.

b. Select the business-level application representing the blog sample application, then click Stop.

Chapter 17. Developing OSGi applications 677

c. Click the business-level application representing the blog sample application to view the
configuration details.

d. Select all the deployed assets, then click Delete.

e. Click OK to confirm removal.

f. Click Save.

g. Select the business-level application representing the blog sample application, then click Delete.

h. Navigate to Applications > Application types > Assets.

i. Select the com.ibm.samples.websphere.osgi.blog.eba asset, then click Delete.

j. Click OK to confirm removal.

k. Click Save.

2. Remove the data sources.

a. Navigate to Resources > JDBC > Data sources.

b. Select the two data sources configured for the blog application.

c. Click Delete.

d. Click Save.

v Remove the shared logging bundles from the internal bundle repository by using the administrative
console.

1. Navigate to Environment > OSGi bundle repositories > Internal bundle repository.

2. Select the following bundles:

– com.ibm.samples.websphere.osgi.logging.api.jar

– com.ibm.samples.websphere.osgi.logging.impl.jar

– com.ibm.samples.websphere.osgi.blog.persistence_1.1.0

3. Click Delete.

4. Click Save.

v Remove the database.

On UNIX platforms, open a command prompt, then enter the following command:

cd app_server_root/derby
rm -fr BLOGDB

On Windows platforms, delete the app_server_root\derby\BLOGDB directory.

OSGi blabber sample application
The blabber sample application is a microblogging application, used to enable many different people to
share brief comments. This sample application shows how to write and package bundles into an enterprise
bundle archive (EBA) file. The sample includes example code for Blueprint management, bean injection,
using and publishing services from and to the OSGi service registry, and the use of Java persistence.

Before you begin

The sample application requires that the supplied com.ibm.samples.websphere.osgi.logging.api.jar and
com.ibm.samples.websphere.osgi.logging.impl.jar bundles are installed into the internal bundle
repository. The following procedure describes how to do this. These two JAR files, and the blabber sample
EBA file, are provided in the installableApps directory of the OSGi_blabberSample.zip compressed
archive file.

About this task

The blabber sample application consists of two bundles, divided into the following functional areas:

v com.ibm.samples.websphere.osgi.blabber.persistence, which contains code relating to the Java
Persistence API (JPA) layer, and also contains the interface that is used by the main application code.

678 Developing WebSphere applications

v com.ibm.samples.websphere.osgi.blabber, which contains the main application logic code, and interacts
between the web front end and the back end persistence code layer.

You can use scripts to completely install the sample application, or you can use scripts to complete the
initial configuration of the application then use the administrative console to install the application into the
application server. You can also use, modify and remove the sample.

Procedure

Configure and install the blabber sample.
You can either configure and install the sample using scripts (the first optional step in the instructions that
follow), or you can configure the sample using scripts then install the sample using the administrative
console (the second optional step in the instructions that follow).
The scripts that you use to do this are provided in the scripts directory of the OSGi_blabberSample.zip
compressed archive file. The createblabberDb.sql script contains the necessary configuration commands
to create the required Derby database and associated tables. The blabberSampleInstall.py script
contains the required jython to create data sources, and to install the blabber sample with default
configuration. You should fully qualify the path to the script if you do not run it from the directory that
contains the script.

Note: If you have data sources already defined in your environment, and these data sources have the
same name as the data sources that are specified in the blabberSampleInstall.py script, then the
sample might not install and run successfully.

In the following steps you must substitute your own values for the variables app_server_root, profileName,
serverName, nodeName, blabberSample.eba_Location,
com.ibm.samples.websphere.osgi.logging.api.jar_Location,
com.ibm.samples.websphere.osgi.logging.impl.jar_Location, uncompressed_sample_directory, and
path_to_ant.

v Optional: Configure and install the sample using scripts.

1. Create and configure the “BLABBERDB” Derby database and associated tables by running the
following command.

On UNIX platforms:
app_server_root/derby/bin/embedded/ij.sh scripts/createBlabberDb.sql

On Windows platforms:
app_server_root\derby\bin\embedded\ij.bat scripts\createBlabberDb.sql

2. Create the data sources, create the business-level application and import the .eba file as an asset
by running the following command.

Note: The target application server must be running before you use this script.

On UNIX platforms:
app_server_root/profiles/profileName/bin/wsadmin.sh

-f scripts/blabberSampleInstall.py fullInstall serverName nodeName
blabberSample.eba_Location
com.ibm.samples.websphere.osgi.logging.api.jar_Location
com.ibm.samples.websphere.osgi.logging.impl.jar_Location

On Windows platforms:
app_server_root\profiles\profileName\bin\wsadmin.bat

-f scripts\blabberSampleInstall.py fullInstall serverName nodeName
blabberSample.eba_Location
com.ibm.samples.websphere.osgi.logging.api.jar_Location
com.ibm.samples.websphere.osgi.logging.impl.jar_Location

v Optional: Configure the sample using scripts, then install the sample using the administrative console.

1. Create and configure the “"BLABBERDB" ” Derby database and associated tables by running the
following command.

Chapter 17. Developing OSGi applications 679

On UNIX platforms:
app_server_root/derby/bin/embedded/ij.sh scripts/createBlabberDb.sql

On Windows platforms:
app_server_root\derby\bin\embedded\ij.bat scripts\createBlabberDb.sql

2. Create the data sources by running the following command.

On UNIX platforms:
app_server_root/profiles/profileName/bin/wsadmin.sh

-f scripts/blabberSampleInstall.py setupOnly serverName nodeName

On Windows platforms:
app_server_root\profiles\profileName\bin\wsadmin.bat

-f scripts\blabberSampleInstall.py setupOnly serverName nodeName

3. Use the administrative console to add the com.ibm.samples.websphere.osgi.logging.api.jar file to
the internal bundle repository.

a. Navigate to Environment > OSGi bundle repositories > Internal bundle repository

b. Click New.

c. Select the file system that hosts the com.ibm.samples.websphere.osgi.logging.api.jar file, then
click Browse.

d. Browse to the uncompressed_sample_dir/installableApps directory.

e. Select the com.ibm.samples.websphere.osgi.logging.api.jar file, then click OK.

f. Click OK.

g. Click Save.

4. Repeat the previous step to add the com.ibm.samples.websphere.osgi.logging.impl.jar file to the
internal bundle repository.

5. Use the administrative console to import the application (EBA file) as an asset, and to configure the
business-level application.

a. Import the asset.

1) Navigate to Applications > New application > New Asset.

2) On the Upload asset panel, browse to the uncompressed_sample_dir/installableApps
directory.

3) Select the com.ibm.samples.websphere.osgi.blabber.app.eba file, then click Next.

4) On the Select options for importing an asset panel, click Next.

5) On the Summary panel, click Finish.

6) Click Save.

b. Create the business-level application and add the asset.

1) Navigate to Applications > New application > New Business Level Application.

2) On the New Application panel, enter a name for the business-level application. For
example, “blabber”.

3) Click Apply.

4) In the Deployed assets pane, click Add > Add Asset.

5) Select the com.ibm.samples.websphere.osgi.blabber.app.eba asset, then click Continue.

6) On the Set options panel, click Next.

7) Select a target for the composition unit, then click Next.

8) Modify the context root if required, then click Next.

9) Modify the virtual host if required, then click Next.

10) On the Summary panel, click Finish.

11) Click Save.

6. Start the application.

680 Developing WebSphere applications

a. Select the newly-created business-level application.

b. Click Start.

Use the blabber sample.

v Use your browser to navigate to http://server:port/context_root/ (by default http://
localhost:9080/blabber/). The main blabber screen is displayed.

v Register yourself as a user. You need to do this before you can create blabber entries.

1. Click Click here to sign-up!.

2. Complete the form.

3. Click Create my account!.

The status update home page is displayed.

v Explore the blabber application.

From the status update home page, you can select any of the following options:

– Set a status message.

– Search for and track other users.

– View your profile.

– Sign out.

Within each of the previous options, there is an option to return to the status update home page.

Note:

– When you enter some status then click Update, your status message is displayed on the
current page.

– You can only view or use the tracking option if the application has more than one user.

Modify the blabber sample.

All the source code for this application is provided in sub-directories the uncompressed_sample_dir
directory. Each part of the project has its own ant build.xml script. To build the whole application into a
newly-available EBA file, you use the ant build.xml file located in the uncompressed_sample_dir directory.
WebSphere Application Server ships a version of ant in its bin directory called ws_ant. To build the
sample, you also need several JAR files on the ant classpath. To simplify matters, you can edit the
was.root property in the supplied build.properties file to point to these JAR files.

v Put the following jar files on the ant classpath:

– javax.j2ee.persistence.jar

– javax.j2ee.jsp.jar

– javax.j2ee.servlet.jar

– com.ibm.ws.prereq.jaxrs.jar

These JAR files are available in the plugins directory of Websphere Application Server. Edit the
was.root property in the supplied uncompressed_sample_dir/scripts/build.properties file, and point it
to your app_server_root directory. If you have copied the jars to another location, modify the was.root
property to point to this location.

v Run the following ant command from the uncompressed_sample_dir directory:

path_to_ant -propertyfile scripts/build.properties -buildfile build.xml

The newly-built binary file (EBA file) is in the uncompressed_sample_dir/output directory.

Note: This is the only location to which this EBA file is written. The script does not overwrite the original
binary file located in the uncompressed_sample_dir/installableApps directory.

Remove the blabber sample.

Chapter 17. Developing OSGi applications 681

To remove the blabber sample, you complete the following 3 steps:

1. Remove the application configuration and the data sources, either by using a script (the first optional
step in the instructions that follow), or by using the administrative console (the second optional step in
the instructions that follow).

2. Remove the shared logging bundles from the internal bundle repository.

3. Remove the database.

Note: Only remove the bundles if you have no other applications installed that use them. Both the blabber
and blog sample applications use the shared logging bundles, so if both applications are installed
these bundles should not be removed.

The uninstall script is provided in the scripts directory of the OSGi_blabberSample.zip compressed
archive file. The blabberSampleUninstall.py script contains the required jython to remove data sources
and to remove the installation of the blabber sample with default configuration. You should fully qualify the
path to the script if you do not run it from the directory that contains the script.

In the following steps you must substitute your own values for the variables app_server_root, and
profileName.

v Optional: Remove the application configuration and the data sources by running the following command.

Note: The target application server must be running before you use this script.

On UNIX platforms:

app_server_root/profiles/profileName/bin/wsadmin.sh
-f scripts/blabberSampleUninstall.py

On Windows platforms:

app_server_root\profiles\profileName\bin\wsadmin.bat
-f scripts\blabberSampleUninstall.py

v Optional: Remove the application configuration and the data sources by using the administrative
console.

1. Remove the application configuration.

a. Navigate to Applications > Application types > Business-level applications.

b. Select the business-level application representing the blabber sample application, then click
Stop.

c. Click the business-level application representing the blabber sample application to view the
configuration details.

d. Select all the deployed assets, then click Delete.

e. Click OK to confirm removal.

f. Click Save.

g. Select the business-level application representing the blabber sample application, then click
Delete.

h. Navigate to Applications > Application types > Assets.

i. Select the com.ibm.samples.websphere.osgi.blabber.app.eba asset, then click Delete.

j. Click OK to confirm removal.

k. Click Save.

2. Remove the data sources.

a. Navigate to Resources > JDBC > Data sources.

b. Select the two data sources configured for the blabber application.

c. Click Delete.

d. Click Save.

682 Developing WebSphere applications

v Remove the shared logging bundles from the internal bundle repository by using the administrative
console.

1. Navigate to Environment > OSGi bundle repositories > Internal bundle repository.

2. Select the following bundles:

– com.ibm.samples.websphere.osgi.logging.api.jar

– com.ibm.samples.websphere.osgi.logging.impl.jar

3. Click Delete.

4. Click Save.

v Remove the database.

On UNIX platforms, open a command prompt, then enter the following command:

cd app_server_root/derby
rm -fr BLABBERDB

On Windows platforms, delete the app_server_root\derby\BLABBERDB directory.

Chapter 17. Developing OSGi applications 683

684 Developing WebSphere applications

Chapter 18. Developing Portlet applications

This page provides a starting point for finding information about portlet applications, which are special
reusable Java servlets that appear as defined regions on portal pages. Portlets provide access to many
different applications, services, and web content.

Portlet aggregation and preferences

Supported optional features of the JSR-286 Portlet Specification
The simple portal framework, which builds on top of the portlet container, is JSR-286-compliant. However,
the WebSphere Application Server implementation supports a subset of the optional features in the
JSR-286 Portlet Specification.

The following table lists the optional features that are available in the JSR-286 Portlet Specification and
indicates to what extent these optional features are available in WebSphere Application Server.

Table 78. Optional features in the JSR-286 Portlet Specification. The Availability column describes whether the
product supports a specification feature.
Feature Availability

Container runtime options The following container runtime options are supported:

v javax.portlet.escapeXml

v javax.portlet.servletDefaultSessionScope

v javax.portlet.actionScopedRequestAttributes

Setting the HTML head section elements using the
MimeResponse.MARKUP_HEAD_ELEMENT property

This property is not supported as its setting does not have an effect.

Custom portlet modes and custom window states The feature is supported, but without special treatment.

Portlet-managed modes This feature is fully supported.

Dynamically setting the portlet title using the RenderResponse.setTitle(String)
method

This feature is partially supported. You need to make use of this
feature in a portlet document filter or an aggregation JavaServer
Pages (JSP) file.

Dynamically setting the next possible portlet modes using the
RenderResponse.setNextPossiblePortletModes(Collection<PortletMode>)
method

This feature is not supported.

Expiration and validation-based caching This feature is fully supported. You need to activate the portlet
fragment caching and a cachespec.xml defined as a prerequisite.

Aliases in public render parameters The aliases in public render parameters are supported in the
PortletServingServlet servlet and the aggregation tag library.

Aliases and wild cards in eventing These aliases and wild cards are not supported as setting these
functions does not have an effect.

Aggregation tag library attributes
The aggregation tag library is used to aggregate multiple portlets on one page. This topic describes the
attributes within the aggregation tag library.

Supported arguments include:

init
This tag initializes the portlet framework and has to be used in the beginning of the JSP. All other tags
described in this section are only valid in the body of this tag, therefore the init tag usually encloses
the whole body of a JSP. In case the current URL contains an action flag the action method of the
corresponding portlet is called. The state and insert tags are sub-tags of the init tag.

The init tag has the following attributes:

v portletURLPrefix = ”<any string>”

© Copyright IBM Corp. 2012 685

This URL defines the prefix used for PortletURLs. Portlet URLs are created either by the state tag
or within a portlet's render method, which is called by using the insert tag. This is a required
attribute.

v portletURLSuffix = ”<any string>”

This URL defines the suffix used for PortletURLs. Portlet URLs are created either by the state tag or
within a portlet's render method, which is called by using the insert tag. This is attribute optional.

v portletURLQueryParams = ”<any string>”

This URL defines the query parameters used for PortletURLs. Portlet URLs are created either by
the state tag or within a portlet's render method, which is called by using the insert tag. This is
attribute optional.

scope, portlet
The scope tag and portlet tag are used to provide information that is necessary when a portlet
application is installed under a multiple part context root, for example, /context1/context2. These tags
also define which portlet windows should participate in portlet coordination via public render
parameters, and add a render parameter to the newly created URL.

The urlParam tag has the following attributes:

v context = "/<context1>/<context2>"

Specifies the context root of the portlet application in which the portlet is deployed. This attribute is
required.

v portletname = "<portlet-name>"

Specifies the portlet-name. This attribute is required.

v windowId = ”<any string>”

Defines the window ID for the concrete portlet instance. This attribute is required.

The following is an example of how to use the scope and portlet tags:
<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>

<portlet:scope>
<portlet:portlet context="/myportletcontext1/myportletcontext2” portletname="MyPortlet" windowId="sample"/>

</portlet:scope>

<portlet:init portletURLPrefix="/myportalcontext/ ">
....
</portlet:init>

state
The state tag creates a URL pointing to the given portlet using the given state. You can place this URL
either into a variable specified by the var attribute or you can write it directly to the output stream. This
tag is useful to create URLs for HTML buttons, images, and other items such that when the URL is
invoked, the state changes defined in the URL are applied to the given portlet.

The state tag has the following attributes:

v url = ”<context>/<portlet-name>”

Identifies the portlet for this tag by using the context and portlet-name to address the portlet. This
attribute is required.

v windowId = ”<any string>”

Defines the window ID for the portlet URL created by this tag. This is attribute optional.

v var = ”<any string>”

If defined the URL is written into a variable with the given scope and name, not to the output
stream. This is attribute optional.

v scope = ”page|request|session|application”

This attribute is only valid if the var attribute is specified. If defined, the URL is not written to the
output stream but a variable is created in the given scope with the given name. The default is page.
This is attribute optional.

686 Developing WebSphere applications

v portletMode = ”view|help|edit|<custom>”

This attribute sets the portlet mode.

v portletWindowState = ”maximized|minimized|normal|<custom>”

This attribute sets the window state.

v action = ”true/false”

This attribute defines whether this is an action URL. This is attribute optional. The default is false.

urlParam
Adds a render parameter to the newly created URL.

The urlParam tag has the following attributes:

v name = ”<any string>”

Indicates the name of the parameter. This is attribute required.

v value = ”<any string>”

Indicates the value of the parameter. This is attribute required.

insert
This tag calls the render method of the portlet and retrieves the content as well as the title. You can
optionally place the content and title of the specified portlet into variables using the contentVar and
titleVar attributes.

The insert tag has the following attributes:

v url = ”<context>/<portlet-name>” (mandatory) Identifies the portlet for this tag by using the context
and portlet-name to address the portlet

This is attribute required.

v windowId = ”<any string>”

Defines the window ID of the portlet. This is attribute optional.

v contentVar = ”<any string>”

If defined, the portlet's content is not written to the output stream but written into a variable with the
given scope and name. This is attribute optional.

v contentScope = ”page|request|session|application”

This attribute is only valid if the contentVar tag is used. If defined, the portlet's content is written into
a variable with the given scope and name, not to the output stream. The default is page. This is
attribute optional.

v titleVar = ”<any string>”

If defined the portlet's title is written into a variable with the given scope and name. If it is not
defined, the title is ignored and not written to the output stream. This is attribute optional.

v titleScope = ”page|request|session|application”

This attribute is only valid if titleVar tag is used. If defined, the portlet's title is written into a variable
with the given scope and name, not to the output stream. The default is page. This is attribute
optional.

Example: Using the portlet aggregation tag library
You can use the aggregation tag library to aggregate multiple portlets to have multiple and different
content on one page. The library can be used by every JavaServer Pages (JSP) file that has been
included by a servlet.

To use the portlet aggregation tag library, you must declare the tag-lib at the top of the JSP file using, <%@
taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>, as in the following example.
The following JSP file example shows how to aggregate portlets on one page.
<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>
<%@ page isELIgnored="false" import="java.util.Enumeration"%>

<portlet:init portletURLPrefix="/dummy/portletTagTest/" portletURLSuffix="/more" portletURLQueryParams="p1=v1&p2=v2">

Chapter 18. Developing Portlet applications 687

<portlet:insert url="worldclock/StdWorldClock" contentVar="worldclockcontent" titleVar="worldclocktitle"/>
<portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockview"

portletWindowState="maximized">
<portlet:urlParam name="namea" value="valuea"/>
<portlet:urlParam name="nameb" value="valueb"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" portletMode="edit" var="worldclockedit" portletWindowState="normal">

<portlet:urlParam name="name1" value="value1"/>
<portlet:urlParam name="name2" value="value2"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockmin"

portletWindowState="minimized">
<portlet:urlParam name="namemin" value="valuemin"/>
<portlet:urlParam name="namemin" value="valuemin"/>

</portlet:state>

<portlet:insert url="worldclock/StdWorldClock" windowId="min" contentVar="simplecontent" titleVar="simpletitle"/>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simpleview"

portletWindowState="maximized">
<portlet:urlParam name="name3" value="value3"/>
<portlet:urlParam name="name4" value="value4"/>
<portlet:urlParam name="name5" value="value5"/>
<portlet:urlParam name="name5" value="value5a"/>
<portlet:urlParam name="name5" value="value5b"/>
<portlet:urlParam name="name5" value="value5c"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="edit" var="simpleedit"

action="true" portletWindowState="normal">
<portlet:urlParam name="name6" value="value6"/>
<portlet:urlParam name="name6" value="value6z"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simplemin"

portletWindowState="minimized">
<portlet:urlParam name="name1" value="value1"/>
<portlet:urlParam name="name2" value="value2"/>

</portlet:state>

<portlet:insert url="test/TestPortlet1" contentVar="testcontent" titleVar="testtitle"/>
<portlet:state url="test/TestPortlet1" portletMode="view" var="testview" portletWindowState="maximized"/>
<portlet:state url="test/TestPortlet1" portletMode="edit" var="testedit" portletWindowState="maximized"/>

<!-- This table is the outtermost table for creating two-column portal layout -->
<TABLE border="0" CELLPADDING="3" CELLSPACING="8" WIDTH="100%">
<TR>
<TD VALIGN="top">

<!-- This table is the top portlet in the first column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top left">
<tr><td class="portletTitle" NOWRAP>worldclock title:${worldclocktitle}</td>

<td CLASS="portletTitleControls" NOWRAP>
view
edit
minimize

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${worldclockcontent}
</td>
</tr>

</table>

<!-- This table is the bottom portlet in the first column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet bottom left">
<tr>
<td class="portletTitle" NOWRAP>test title:${testtitle}</td>

<td CLASS="portletTitleControls" NOWRAP>
view
edit

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${testcontent}
</td>
</tr>

</table>

</TD>

688 Developing WebSphere applications

<TD VALIGN="top">

<!-- This table is the top portlet in the second column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top right">
<tr>

<td class="portletTitle" NOWRAP>simple title:${simpletitle}</td>
<td CLASS="portletTitleControls" NOWRAP>

view
edit
minimize

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${simplecontent}
</td>
</tr>

</table>

</TD>
</TR>
</table>

</portlet:init>

You can include the following formatting to the previous example JSP file immediately once you have
declared the tag library.
<STYLE TYPE="TEXT/CSS">
BODY {

font-family:Verdana,sans-serif; font-size:70%
}
.portletTitle {

text-align: left;border-top: #000000 1px solid; border-bottom: #000000 1px solid; FONT-SIZE: 60.0%;
COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; BACKGROUND-COLOR: #5495d5;

}
.portletTitleControls {

text-align: right;border-top: #000000 1px solid; border-right: #000000 1px solid; border-bottom: #000000
1px solid; FONT-SIZE: 60.0%; COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif;
BACKGROUND-COLOR: #5495d5;

}
.portletTitleControls A {

COLOR: #ffffff; text-decoration:none; border:#5495d5 1px solid;border-left:white 1px solid;
padding-left:0.5em; padding-right:0.5em;

}
.portletTitleControls A:hover {

COLOR: #ffffff; text-decoration:none; border-top:white 1px solid;
border-bottom:white 1px solid;border-right:white 1px solid;

}
.minimizeControl {

font-weight:bold; font-size:100%;
}
.portletTable {

border-left: gray 1px solid;
border-bottom: gray 1px solid;
border-right: gray 1px solid;

}
.portletBody {

font-family:Verdana,sans-serif; font-size:70%
}

</STYLE>

Portlet aggregation using JavaServer Pages
The aggregation tag library generates a portlet aggregation framework to address one or more portlets on
one page If you write JavaServer Pages, you can aggregate multiple portlets on one page using the
aggregation tag library. This tag library does not provide full featured portal aggregation implementation,
but provides a good migration scenario if you already have aggregating servlets and JavaServer Pages
and want to switch to portlets.

To allow the customer to create a simple portal aggregation, the aggregation tag library also provides the
following features.

v Invoke a portlet's action method

v Render multiple portlets on one page

v Provide links to change the portlet's mode or window state

Chapter 18. Developing Portlet applications 689

v Display the portlet's title

v Retain the portlet cookie state

The aggregation tag library and JavaServer Pages that use the aggregation tag library will only work with
the WebSphere Application Server portlet container implementation because the protocol between the tags
and the container is not standardized.

Refer to the Aggregation tag library attributes article for information on the aggregation tag library
attributes.

The following diagram depicts how an HTML page would look like and what tags are used in order to
create the page. Refer to the Aggregation tag library attributes article for information on the aggregation
tag library attributes.

When you use the aggregation tag library, you must set the portletUrlPrefix attribute of the init tag to the
aggregating application. You need to:

v Ensure that the portletUrlPrefix attribute is set to the following in the aggregator page.
"http://" + <server_address> + ":" + <server_port> + "/" + <aggregator context> + "/" <aggregator mapping>

v Reference the aggregation JSP page within the web.xml file through a servlet mapping ending with /*.
For example, /aggregation/*

690 Developing WebSphere applications

When aggregating multiple portlets on a single page, special care must be used with the naming
conventions of form attribute names in your portlets. Because your portlets are all on the same page, they
all share the same HttpServletRequest. When one portlet is viewed the entire page is refreshed and form
data is re-posted. Therefore, if there are multiple portlets that are aggregated on a single page with the
same form attribute names, there could be logic corruption when form data is re-posted.

Aggregation tag library attributes
The aggregation tag library is used to aggregate multiple portlets on one page. This topic describes the
attributes within the aggregation tag library.

Supported arguments include:

init
This tag initializes the portlet framework and has to be used in the beginning of the JSP. All other tags
described in this section are only valid in the body of this tag, therefore the init tag usually encloses
the whole body of a JSP. In case the current URL contains an action flag the action method of the
corresponding portlet is called. The state and insert tags are sub-tags of the init tag.

The init tag has the following attributes:

v portletURLPrefix = ”<any string>”

This URL defines the prefix used for PortletURLs. Portlet URLs are created either by the state tag
or within a portlet's render method, which is called by using the insert tag. This is a required
attribute.

v portletURLSuffix = ”<any string>”

This URL defines the suffix used for PortletURLs. Portlet URLs are created either by the state tag or
within a portlet's render method, which is called by using the insert tag. This is attribute optional.

v portletURLQueryParams = ”<any string>”

This URL defines the query parameters used for PortletURLs. Portlet URLs are created either by
the state tag or within a portlet's render method, which is called by using the insert tag. This is
attribute optional.

scope, portlet
The scope tag and portlet tag are used to provide information that is necessary when a portlet
application is installed under a multiple part context root, for example, /context1/context2. These tags
also define which portlet windows should participate in portlet coordination via public render
parameters, and add a render parameter to the newly created URL.

The urlParam tag has the following attributes:

v context = "/<context1>/<context2>"

Specifies the context root of the portlet application in which the portlet is deployed. This attribute is
required.

v portletname = "<portlet-name>"

Specifies the portlet-name. This attribute is required.

v windowId = ”<any string>”

Defines the window ID for the concrete portlet instance. This attribute is required.

The following is an example of how to use the scope and portlet tags:
<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>

<portlet:scope>
<portlet:portlet context="/myportletcontext1/myportletcontext2” portletname="MyPortlet" windowId="sample"/>

</portlet:scope>

<portlet:init portletURLPrefix="/myportalcontext/ ">
....
</portlet:init>

Chapter 18. Developing Portlet applications 691

state
The state tag creates a URL pointing to the given portlet using the given state. You can place this URL
either into a variable specified by the var attribute or you can write it directly to the output stream. This
tag is useful to create URLs for HTML buttons, images, and other items such that when the URL is
invoked, the state changes defined in the URL are applied to the given portlet.

The state tag has the following attributes:

v url = ”<context>/<portlet-name>”

Identifies the portlet for this tag by using the context and portlet-name to address the portlet. This
attribute is required.

v windowId = ”<any string>”

Defines the window ID for the portlet URL created by this tag. This is attribute optional.

v var = ”<any string>”

If defined the URL is written into a variable with the given scope and name, not to the output
stream. This is attribute optional.

v scope = ”page|request|session|application”

This attribute is only valid if the var attribute is specified. If defined, the URL is not written to the
output stream but a variable is created in the given scope with the given name. The default is page.
This is attribute optional.

v portletMode = ”view|help|edit|<custom>”

This attribute sets the portlet mode.

v portletWindowState = ”maximized|minimized|normal|<custom>”

This attribute sets the window state.

v action = ”true/false”

This attribute defines whether this is an action URL. This is attribute optional. The default is false.

urlParam
Adds a render parameter to the newly created URL.

The urlParam tag has the following attributes:

v name = ”<any string>”

Indicates the name of the parameter. This is attribute required.

v value = ”<any string>”

Indicates the value of the parameter. This is attribute required.

insert
This tag calls the render method of the portlet and retrieves the content as well as the title. You can
optionally place the content and title of the specified portlet into variables using the contentVar and
titleVar attributes.

The insert tag has the following attributes:

v url = ”<context>/<portlet-name>” (mandatory) Identifies the portlet for this tag by using the context
and portlet-name to address the portlet

This is attribute required.

v windowId = ”<any string>”

Defines the window ID of the portlet. This is attribute optional.

v contentVar = ”<any string>”

If defined, the portlet's content is not written to the output stream but written into a variable with the
given scope and name. This is attribute optional.

v contentScope = ”page|request|session|application”

692 Developing WebSphere applications

This attribute is only valid if the contentVar tag is used. If defined, the portlet's content is written into
a variable with the given scope and name, not to the output stream. The default is page. This is
attribute optional.

v titleVar = ”<any string>”

If defined the portlet's title is written into a variable with the given scope and name. If it is not
defined, the title is ignored and not written to the output stream. This is attribute optional.

v titleScope = ”page|request|session|application”

This attribute is only valid if titleVar tag is used. If defined, the portlet's title is written into a variable
with the given scope and name, not to the output stream. The default is page. This is attribute
optional.

Example: Using the portlet aggregation tag library
You can use the aggregation tag library to aggregate multiple portlets to have multiple and different
content on one page. The library can be used by every JavaServer Pages (JSP) file that has been
included by a servlet.

To use the portlet aggregation tag library, you must declare the tag-lib at the top of the JSP file using, <%@
taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>, as in the following example.
The following JSP file example shows how to aggregate portlets on one page.
<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>
<%@ page isELIgnored="false" import="java.util.Enumeration"%>

<portlet:init portletURLPrefix="/dummy/portletTagTest/" portletURLSuffix="/more" portletURLQueryParams="p1=v1&p2=v2">

<portlet:insert url="worldclock/StdWorldClock" contentVar="worldclockcontent" titleVar="worldclocktitle"/>
<portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockview"

portletWindowState="maximized">
<portlet:urlParam name="namea" value="valuea"/>
<portlet:urlParam name="nameb" value="valueb"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" portletMode="edit" var="worldclockedit" portletWindowState="normal">

<portlet:urlParam name="name1" value="value1"/>
<portlet:urlParam name="name2" value="value2"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockmin"

portletWindowState="minimized">
<portlet:urlParam name="namemin" value="valuemin"/>
<portlet:urlParam name="namemin" value="valuemin"/>

</portlet:state>

<portlet:insert url="worldclock/StdWorldClock" windowId="min" contentVar="simplecontent" titleVar="simpletitle"/>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simpleview"

portletWindowState="maximized">
<portlet:urlParam name="name3" value="value3"/>
<portlet:urlParam name="name4" value="value4"/>
<portlet:urlParam name="name5" value="value5"/>
<portlet:urlParam name="name5" value="value5a"/>
<portlet:urlParam name="name5" value="value5b"/>
<portlet:urlParam name="name5" value="value5c"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="edit" var="simpleedit"

action="true" portletWindowState="normal">
<portlet:urlParam name="name6" value="value6"/>
<portlet:urlParam name="name6" value="value6z"/>

</portlet:state>
<portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simplemin"

portletWindowState="minimized">
<portlet:urlParam name="name1" value="value1"/>
<portlet:urlParam name="name2" value="value2"/>

</portlet:state>

<portlet:insert url="test/TestPortlet1" contentVar="testcontent" titleVar="testtitle"/>
<portlet:state url="test/TestPortlet1" portletMode="view" var="testview" portletWindowState="maximized"/>
<portlet:state url="test/TestPortlet1" portletMode="edit" var="testedit" portletWindowState="maximized"/>

<!-- This table is the outtermost table for creating two-column portal layout -->
<TABLE border="0" CELLPADDING="3" CELLSPACING="8" WIDTH="100%">
<TR>
<TD VALIGN="top">

<!-- This table is the top portlet in the first column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top left">
<tr><td class="portletTitle" NOWRAP>worldclock title:${worldclocktitle}</td>

<td CLASS="portletTitleControls" NOWRAP>

Chapter 18. Developing Portlet applications 693

view
edit
minimize

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${worldclockcontent}
</td>
</tr>

</table>

<!-- This table is the bottom portlet in the first column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet bottom left">
<tr>
<td class="portletTitle" NOWRAP>test title:${testtitle}</td>

<td CLASS="portletTitleControls" NOWRAP>
view
edit

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${testcontent}
</td>
</tr>

</table>

</TD>

<TD VALIGN="top">

<!-- This table is the top portlet in the second column -->

<table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top right">
<tr>

<td class="portletTitle" NOWRAP>simple title:${simpletitle}</td>
<td CLASS="portletTitleControls" NOWRAP>

view
edit
minimize

</td>
</tr>
<tr>
<td CLASS="portletBody" COLSPAN="2">
${simplecontent}
</td>
</tr>

</table>

</TD>
</TR>
</table>

</portlet:init>

You can include the following formatting to the previous example JSP file immediately once you have
declared the tag library.
<STYLE TYPE="TEXT/CSS">
BODY {

font-family:Verdana,sans-serif; font-size:70%
}
.portletTitle {

text-align: left;border-top: #000000 1px solid; border-bottom: #000000 1px solid; FONT-SIZE: 60.0%;
COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; BACKGROUND-COLOR: #5495d5;

}
.portletTitleControls {

text-align: right;border-top: #000000 1px solid; border-right: #000000 1px solid; border-bottom: #000000
1px solid; FONT-SIZE: 60.0%; COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif;
BACKGROUND-COLOR: #5495d5;

}
.portletTitleControls A {

COLOR: #ffffff; text-decoration:none; border:#5495d5 1px solid;border-left:white 1px solid;
padding-left:0.5em; padding-right:0.5em;

}
.portletTitleControls A:hover {

COLOR: #ffffff; text-decoration:none; border-top:white 1px solid;
border-bottom:white 1px solid;border-right:white 1px solid;

}
.minimizeControl {

694 Developing WebSphere applications

font-weight:bold; font-size:100%;
}
.portletTable {

border-left: gray 1px solid;
border-bottom: gray 1px solid;
border-right: gray 1px solid;

}
.portletBody {

font-family:Verdana,sans-serif; font-size:70%
}

</STYLE>

Portlet preferences
Preferences are set by portlets to store customized information. By default, the PortletServingServlet
servlet stores the portlet preferences for each portlet window in a cookie. However, you can change the
location to store them in either a session, an .xml file, or a database.

Storing portlet preferences in cookies

The attributes of the cookie are defined as follows:

Path
context/portlet-name/portletwindow

Name:
The name of the cookie has the fixed value of PortletPreferenceCookie.

Value
The value of the cookie contains a list of preferences by mapping to the following structure:

*[’/’ pref-name *[’=’ pref-value]]

All preferences start with '/' followed by the name of the preference. If the preference has one or more
values, the values follow the name separated by the '=' character. A null value is represented by the
string '#*!0_NULL_0!*#'. As an example, the cookie value may look like,
/locations=raleigh=boeblingen/regions=nc=bw

Customizing the portlet preferences storage

You can override how the cookie is handled to store preferences in a session, an .xml file or database. To
customize the storage, you must create a filter, servlet or JavaServer Pages file as new entry point that
wraps the request and response before calling the portlet. Examine the following example wrappers to
understand how to change the behavior of the PortletServingServlet to store the preferences in a session
instead of cookies.

The following is an example of how the main servlet manages the portlet invocation.
public class DispatchServlet extends HttpServlet
{

...
public void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");

// create wrappers to change preference storage
RequestProxy req = new RequestProxy(request);
ResponseProxy resp = new ResponseProxy(request, response);

// create url prefix to always return to this servlet
...
req.setAttribute("com.ibm.wsspi.portlet.url.prefix", urlPrefix);

// prepare portlet url
String portletPath = request.getPathInfo();

Chapter 18. Developing Portlet applications 695

...

// include portlet using wrappers
RequestDispatcher rd = getServletContext().getRequestDispatcher(modifiedPortletPath);

rd.include(req, resp);
}

}

In the following example, the request wrapper changes the cookie handling to retrieve the preferences out
of the session.
public class RequestWrapper extends HttpServletRequestWrapper
{

...
public Cookie[] getCookies() {

Cookie[] cookies = (Cookie[]) session.getAttribute("SessionPreferences");
return cookies;

}
}

In the following example, the response wrapper changes the cookie handling to store the preferences in
the session:
public class ResponseProxy extends HttpServletResponseWrapper
{

...
public void addCookie(Cookie cookie) {

Cookie[] oldCookies = (Cookie[]) session.getAttribute("SessionPreferences");
int newPos = (oldCookies == null) ? 0 : oldCookies.length;
Cookie[] newCookies = new Cookie[newPos+1];
session.setAttribute("SessionPreferences", newCookies);

if (oldCookies != null) {
System.arraycopy(oldCookies, 0, newCookies, 0, oldCookies.length);
}
newCookies[newPos] = cookie;

}
}

Portlet coordination
You can use either the events mechanism or the public render parameters mechanism to coordinate
portlets within a portal.

JSR 286 defines these two mechanisms as follows:

v Events: Loose-coupling of portlets during action phase.

v Public render parameters: Sharing of view state between portlets.

The WebSphere Application Server portlet container supports both concepts with one exception. The
wiring of events on a portal level is not supported.

To make use of the public render parameters on a portal page defined with the aggregation tag library, you
must explicitly declare the portal scope:
<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>
<%@ page isELIgnored ="false"%>

<!-- define portal scope for public render parameters -->
<portlet:scope>
<portlet:portlet context="/simpleportlet" portletname="SimplePortlet1" windowId="id1"/
<portlet:portlet context="/simpleportlet2" portletname="SimplePortlet2" windowId="id2"/>

</portlet:scope>

<portlet:init portletURLPrefix="/my-webapp-context/my-portal-jsp-url-pattern/">
<!-- insert your portlets here, wrapped with your html markup -->
...

<portlet:insert url="simpleportlet/SimplePortlet1" windowId="id1" titleVar="portlettitle_1"/>

696 Developing WebSphere applications

...
<portlet:insert url="simpleportlet2/SimplePortlet2" windowId="id2" titleVar="portlettitle_1"/>

...
</portlet:init>

The public render parameters are only visible to the portlet windows mentioned within this defined scope.
This condition assumes, as a prerequisite, that the corresponding portlets have also declared support for a
given public render parameter in their portlet.xml file, according to the JSR 286 specification:
...

<portlet>
<portlet-name>portlet_name1</portlet-name>
...
<supported-public-render-parameter>foo</supported-public-render-parameter>

</portlet>
<portlet>

<portlet-name>portlet_name2</portlet-name>
...
<supported-public-render-parameter>foo</supported-public-render-parameter>

</portlet>
<public-render-parameter>

<identifier>foo</identifier>
<qname xmlns:x="http://example.com/params">x:foo2</qname>

</public-render-parameter>
...

Converting portlet fragments to an HTML document
A portlet only delivers fragment output whereas a servlet typically delivers document output. However, you
can use the PortletServingServlet servlet, which is similar to the FileServingServlet servlet, to address
portlets like servlets.

About this task

A default document servlet filter, the DefaultFilter filter, is applied to the PortletServingServlet servlet to
return the portlet‘s content inside of a document. This filter only applies to requests, not to includes or
forwards using the RequestDispatcher method. A servlet filter that is used to embed the portlet‘s content
into a document is called the document servlet filter. You can define additional document servlet filters in a
.xml file. The FilterRequestHelper attribute within com.ibm.wsspi.portletcontainer.util is provided to assist
the document servlet filters in analyzing a request regarding filter chain and portlet information. It is used
in supporting dynamic portlet titles, as a marker for redirection for document servlet filters and to ensure
that document conversion is completed once.

Procedure
1. Add a new document servlet filter. The filter capability is a server feature, therefore all filters must be

installed into the server to use the filter capability of the server. The filters need to be available in any
classes or library directory on a server level. You must also register the filter in a plugin.xml file within
the root of a Java archive (JAR) file. The following is an example of how to register the filter in a
plugin.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin id="sample.plugin" name="Customer_Plugin" provider-name="Customer" version="1.0.0">

<extension point="com.ibm.ws.portletcontainer.portlet-document-filter-config">
<portlet-document-filter class-name="sample.filter.CustomFilter" order="200" />

</extension>
</plugin>

2. Optional: Set dynamic portlet titles by providing the dynamic title as a request attribute. The
PortletServingServlet servlet supports dynamic portlet titles by providing the dynamic title as a request
attribute, FilterRequestHelper.DYNAMIC_TITLE. This attribute returns the dynamic portlet title if it has
been set by the portlet, otherwise it returns the static portlet title of the portlet.xml file if defined.

Chapter 18. Developing Portlet applications 697

DYNAMIC_TITLE = ‘javax.portlet.title' The DefaultFilter uses this request attribute to set the
document title while converting the fragment into a document. If you want the filter to support browser
caching or dynamic portlet titles, you must cache the complete portlet content.

3. Specify cache handling for the portlet rendering call to support dynamic title. Redirection for document
servlet filters

A document servlet filter can set a marker as request attribute, FilterRequestHelper.REDIRECT. This
marker ensures that the portlet container returns to the document servlet filter after the portlet action
has been called prior to any render calls. You must define the following constants, REDIRECT =
‘com.ibm.websphere.portlet.action' and REDIRECT_VALUE = 'redirect'. The DefaultFilter uses this
request attribute to provide special cache handling for the portlet rendering call to support dynamic
title.

4. Convert the portlet's fragment into a valid document. Document conversion must be completed only
once. Therefore each document servlet filter must ensure that the fragment has not yet been converted
to a document previously. If the document servlet filter converts the fragment to a document, the
request attribute FilterRequestHelper.DOCUMENT must be set to
FilterRequestHelper.DOCUMENT_VALUE. This request attribute marks whether the conversion still
needs to be completed. The following constants are defined, DOCUMENT =
‘com.ibm.websphere.portlet.filter' and DOCUMENT_VALUE = 'document'. The DefaultFilter uses this
request attribute to check whether it should convert the fragment to an Hypertext Markup Language
(HTML) document. For example, this allows another document servlet filter in front to convert the
fragment into a valid Wireless Markup Language (WML) document instead.

Assembling portlets

Portlet Uniform Resource Locator (URL) addressability
You can request a portlet directly through a Uniform Resource Locator (URL) to display its content without
portal aggregation. The PortletServingServlet servlet registers each web application that contains portlets.
It is similar to the FileServingServlet servlet of the web container that serves resources. The
PortletServingServlet servlet supports direct rendering of portlets into a full browser page by a URL
request.

You can invoke each portlet by its context root and name with the URL mapping /<portlet-name> that is
created for each portlet. For example:
http://<host>:<port>/<context-root>/<portlet-name> For example,
http://localhost:9080/portlets/TestPortlet1

The context root identifies the web application archive (WAR) file that contains the portlet. The portlet
name uniquely identifies the portlet with a portlet application of a WAR file. The DefaultDocumentFilter
servlet only supports HTML, UTF8 encoding and an extended URL form based on the basic URL form as
shown above.

You can only display one portlet at a time using the PortletServingServlet servlet. If you want to aggregate
multiple portlets on the page, you need to use the aggregation tag library. Refer to the Portlet aggregation
using JavaServer Pages article for additional information.

Because a portlet only delivers fragment output whereas a servlet usually delivers document output, a
mechanism is introduced to convert the fragment into a document, called the PortletDocumentFilter filter.
By default, the PortletDocumentFilter filter only supports converting HTML. The conversion is implemented
using a servlet filter before the PortletServingServlet servlet is initiated to return the portlet‘s content inside
of a document. This default document servlet filter only applies to URL requests, not for includes or
forwards using the RequestDispatcher method. You can create servlet filters to support other markups
additional document servlet filters. Refer to the Converting portlet fragments to an HTML document article,
for additional information.

698 Developing WebSphere applications

The PortletServingServlet servlet does not persist portlet preferences in a XML file or database. It places
the portlet preferences directly into a cookie to store the preferences persistently. Refer to the Portlet
preferences article, for additional information on how to change this behavior.

Portlet URL syntax

You can add additional portal context such as portlet mode or window state. You can access the
PortletServingServlet servlet by using a URL mapping that has the following structure:
http://host:port/context/portlet-name [/portletwindow[/ver [/action |
/resource[/id=custom-id][/cacheability]] [/mode] [/state] [rparam][/?name]]]

Any differing URL structure results in a com.ibm.wsspi.portletcontainer.InvalidURLException exception.
Empty strings are not permitted as parameter values and creates an InvalidURLException exception. The
following is a list of valid parameters:

http:// host:port/context/portlet-name
This is the minimum URL required to access a portlet. A default portlet window called “default” is
created. The portlet-name variable is case-sensitive.

/portletwindow
This parameter identifies the portlet window. You must set this parameter if you choose to add
more portal context information to the URL.

/ver=major.minor
This optional parameter is used to define the version of the portlet API that is used. You must set
this parameter if you choose to add more portal context information to the URL. Only versions
“1.0” and “2.0” are supported. Any other version creates an InvalidURLException exception.

/action
This is a required parameter if you call the action method of the portlet. The action parameter
causes the action process of the portlet to be called. After the action has been completed, a
redirect is automatically issued to call the render process. To control the subsequent render
process, a document servlet filter can set a request attribute with name
“com.ibm.websphere.portlet.action” and value “redirect” to specify that the portlet serving servlet
directly returns after action without calling the render process.

/mode=view | edit | help | custom-mode
This optional parameter defines the portlet mode that is used to render the portlet. The default
mode is “view”. The value is not case-sensitive. For example, “Vew”, “view” or “VIEW” results in
the same mode.

/state=normal | maximized | minimized | custom-state
This optional parameter defines the window state that is used to render the portlet. The default
state is “normal”. The value is not case-sensitive, for example, “Normal”, “normal”, or “NORMAL”
results in the same state.

* [/rparam=name *[=value]]
This optional parameter specifies render parameters for the portlet. Repeat this parameter chain to
provide more than one render parameter. For example, /rparam=invitation/
rparam=days=Monday=Tuesday.

?name=value&name2=value2 ...
Query parameters may follow optionally. They are not explicitly supported by the portlet container,
but they do not invalidate the URL format.

/action | /resource
This parameter defines the methods of the portlet that is called. Valid values are no, action or
resource parameter. No specific method defined calls the render method. The resource parameter
is only supported for JSR 286 portlets.

Chapter 18. Developing Portlet applications 699

/resource [/id=custom-id] [/cacheability=cacheLevelFull | cacheLevelPortlet | cacheLevelPage]
Set this parameter to define the method of the portlet to be called. No redirection occurs. No other
method of the portlet is called. To control the resource parameter, you can add an additional ID
parameter to provide a resource serving identifier that is passed through to the portlet. The
cacheability parameter defines the cache level of this resource URL. This parameter is only
supported with JSR 286 portlets .

The following list includes examples of valid JSR 168 and JSR 286 URLs:

v http:// localhost:9080/sample/WorldClock

v http:// localhost:9080/sample/WorldClock/myPortlet/ver=1.0/mode=edit/rparam=timezone=UTC

v http:// localhost:9080/sample/WorldClock/myPortlet/ver=1.0/action/state=maximized?timezone=UTC

v http://localhost:9080/sample/WorldClock/myPortlet/ver=2.0/resource/id=somePicture.jpg

Example: Configuring the extended portlet deployment descriptor to
disable PortletServingServlet
Portlet URL serving supports direct access to all functions and states of a portlet by creating the
appropriate URLs. In a production setup where the portlet is served through an enterprise portal
application that applies its own access control, is considered a security risk. By setting the
portletServingEnabled property to false, an administrator can ensure that a sensitive portlet is never
accessed by direct URL serving.

Extensions for the portlet deployment descriptor are defined within a file called ibm-portlet-ext.xmi. This
deployment descriptor is an optional descriptor that you can use to configure WebSphere extensions for
the portlet application and its portlets. For example, you can disable the PortletServingServlet servlet for
the portlet application in the extended portlet deployment descriptor.

The ibm-portlet-ext.xmi extension file is loaded during application startup. If there are no extension files
specified with this setting, the default values of the portlet container are used.

The default for the portletServingEnabled attribute is true. The following is an example of how to configure
the application so that a PortletServingServlet servlet is not created for any portlet on the portlet
application.
<?xml version="1.0" encoding="UTF-8"?>
<portletappext:PortletApplicationExtension xmi:version="1.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:portletappext="portletapplicationext.xmi"
xmlns:portletapplication="portletapplication.xmi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmi:id="PortletApp_ID_Ext"
portletServingEnabled="false">

<portletappext:portletApplication href="WEB-INF/portlet.xml#myPortletApp"/>
</portletappext:PortletApplicationExtension>

700 Developing WebSphere applications

Chapter 19. Developing SCA composites

This page provides a starting point for finding information about Service Component Architecture (SCA)
composites, which consist of components that implement business functions in the form of services.

You typically do not deploy SCA composites directly onto a product server. To deploy SCA composites, you
import SCA composites as assets to the product repository and add the assets to business-level
applications.

Selecting the implementation type for an SCA composite
A benefit of Service Component Architecture (SCA) is that you can use existing assets in an application,
without having to change the asset implementation. Many enterprises have application assets developed
using a variety of technologies and frameworks, including assets previously deployed in a WebSphere
Application Server environment, which is predominantly Java Platform, Enterprise Edition (Java EE) or
Java-centric. SCA supports several service implementation technologies.

Before you begin

Determine which application files or artifacts (assets) you want to deploy in an SCA application. If
necessary, develop the files or artifacts.

About this task

You can use SCA composites to:

v Reuse existing service implementations in the definition of an SCA component for use in an SCA
composite application.

v Enable the services within those technologies to be exposed or use a service over the supported
access bindings without changing the business logic of the service.

Each component within an SCA assembly specifies the implementation technologies which provide the
specific business logic which implements the services described in the component definition. A composite
is composed of 1-to-many components, each of which can be made up of differing implementation
technologies.

SCA supports the following implementation programming model technologies. The product supports all of
these implementation types on OSOA but does not support the implementation types OSGi, Java EE
(JEE), Spring, or Widget on OASIS.

implementation.java
The implementation conforms to the SCA Java Component Implementation specification.

implementation.composite
The implementation conforms to an SCA composite as defined in the SCA Assembly Model
specification.

implementation.web
The implementation conforms to Java EE 1.5 for Web modules and Web archive (WAR) files.

implementation.ejb
The implementation conforms to Java EE 1.5 for Enterprise JavaBeans (EJB) 2.1 and 3.0
Stateless Session Beans.

implementation.jee
The implementation conforms to Java EE 1.5 for enterprise archive (EAR) files.

© Copyright IBM Corp. 2012 701

implementation.osgiapp
The implementation conforms to the OSGi application programming model as supplied in the
product.

implementation.spring
The implementation conforms to the SCA Spring Component Implementation specification.

WebSphere Application Server does not include the Spring 2.5.5 package. You must obtain the
Spring 2.5.5 package from the supplying vendor.

implementation.widget
The implementation is SCA-enhanced JavaScript contained within an HTML page. Unlike the other
implementation types, this component runs on the server but it is returned to browsers from the
server. You wire services that JavaScript code references through SCA bindings.

Procedure
1. Select the implementation type to use for the SCA component.

Table 79. Supported SCA implementation types. Based on the implementation technology of an asset, select the
SCA implementation type to use in the SCA component.

Asset implementation technology SCA implementation type

SCA Java implementation.java

SCA assembly implementation.composite

Java EE application (EAR) implementation.jee

Java EE EJB module, session bean, or message-driven bean implementation.ejb

Java EE Web module in a Java EE application implementation.web

Enterprise bundle archive (EBA) artifact that uses OSGi bundles and
Blueprint components

implementation.osgiapp

Bean that follows the Java 2 Platform, Standard Edition (J2SE) programming
model in a Spring 2.5.5 container.

implementation.spring

HTML page enriched with JavaScript code that contains SCA for return to a
browser. An SCA service returns data in JavaScript. The data can be in
Atom collections or in JavaScript Object Notation (JSON) format.

implementation.widget

2. Configure the binding for the selected implementation type and use the binding in an SCA component
or application.

See topics in the related links for information on specifying implementations and bindings.

Results

The SCA composite makes the appropriate environmental transitions to connect the implementation
technology to any exposed bindings that are also in the composite definition.

What to do next

Deploy the SCA composite or application in a business-level application.

Developing Service Component Architecture (SCA) services
To develop SCA service implementations, you can use either a top-down development approach starting
with an existing Web Services Description Language (WSDL) file or you can use a bottom-up development
approach starting from an existing Java interface or implementation. When using either the top-down or
bottom-up development methodologies, you can develop service clients or use tools to map business
exceptions on remotable interfaces.

702 Developing WebSphere applications

Developing SCA services from existing WSDL files
You can develop a Service Component Architecture (SCA) service implementation when starting with an
existing Web Services Description Language (WSDL) file.

Before you begin

Locate the WSDL file that defines the SCA service that you want to implement. You can develop a WSDL
file or obtain one from an existing SCA service. The WSDL file describes your service interface as a
WSDL portType and includes XSD schema definitions of your business data.

The product supports Web Services Description Language (WSDL) Version 1.1 definitions that also
conform to the WS-I Basic Profile Version 1.1 and Simple SOAP Binding Profile 1.0 standards, and use
the document literal style. All these conditions are required for support.

About this task

There are two ways to develop an SCA service implementation:

v Top-down development starting with an existing Web Services Description Language (WSDL)

v Bottom-up development starting from existing Java code that uses Java Architecture for XML Binding
(JAXB) data types

The top-down development approach takes advantage of the interoperable XML-based WSDL, and XSD
interface and data definitions.

This task describes the steps when using the top-down development approach to develop an SCA service
implementation in Java when starting from a WSDL interface and XSD data definitions.

Note: It is a best practice to use the top-down methodology to develop SCA service implementations
because this approach uses the capabilities of the XML interface description and provides greater
ease in interoperability across platforms, bindings, and programming languages.

Use the wsimport command-line tool to generate the Java representations of your business service
interfaces and your business data when an existing WSDL file describes the wanted SCA service interface
as a WSDL portType, along with XSD schema definitions of your business data. The wsimport tool
generates Java classes that you can use to write a Java implementation that reflects your business logic.
The result is a Plain Old Java Object (POJO) implementation of the generated interface using the
generated JAXB data types. By adding the @Service annotation to the Java implementation, the
annotation defines the Java implementation as an SCA service implementation.

The generated annotated Java classes that correspond to your business data contain all the necessary
information that the JAXB runtime environment requires to build and parse the XML for marshaling and
unmarshaling. In other words, the data programming model is limited to object instantiation and the use of
getter and setter methods, and you do not need to write code to convert the data between the XML wire
format and the Java application.

Note: The product uses XML marshaling as defined by JAXB to marshal and unmarshal data across a
remotable interface. If you start with a remotable Java interface for your implementation rather than
starting with a WSDL portType interface, be careful when selecting the input and output Java data
types and ensure that you understand which data is preserved across JAXB marshaling and
unmarshalling. However, when authoring an implementation on a local interface, you can use any
Java type because local interfaces use pass-by-reference semantics, which implies no data is
copied.

Note: The product does not support using a WSDL file when the Java mapping requires holder classes.
The product uses the JAX-WS specification to define the mapping between WSDL files and Java,

Chapter 19. Developing SCA composites 703

including the mapping between a WSDL portType object and a Java interface. When you have
WSDL portType objects with operations that use in-out parameters or operations that use multiple
output parameters, the JAX-WS specification uses instances of the javax.xml.ws.Holder class in the
mapping of the WSDL portType object to a Java interface. When using the product, do not use a
WSDL file when the Java mapping requires holder classes. Instead, use a WSDL file that does not
map to holder classes.

When you develop an SCA service when starting from an existing WSDL file, the interface is considered a
remotable interface. The remotable interface uses pass-by-value semantics, which implies your data is
copied.

You can use and deploy the resulting Java implementation as an SCA component that is defined in a
composite definition. The composite definition defines SCA artifacts, such as service references, imports,
and exports. The component is defined in terms of development artifacts such as the WSDL, the Java
implementation, and bindings that are defined during deployment.

The JAXB APIs require that you register Java class types that you want to marshal or unmarshall with a
JAXBContext class. The product runtime environment registers these Java class types for you by
introspecting your Java interface. When this introspection occurs, be careful of possible problems when
polymorphism (inheritance) is used. When an interface is defined in terms of a base superclass type, and
you want to pass argument instances of a derived subclass type at run time, the subclasses are not
known to the JAXBContext class by simply introspecting the interface parameter types.

In JAXB, you can use the javax.xml.bind.annotation.XmlSeeAlso annotation to solve this problem with
polymorphism. Place the @XmlSeeAlso annotation on the generated Java interface that is generated with
the @WebService annotation, to refer to additional JAXB derived subclass classes that are added to the
JAXBContext class along with those classes introspected from the interface parameters.

Procedure
1. Use the wsimport command-line tool to develop SCA Java representations of your business service

interfaces and your business data.

The wsimport tool processes a WSDL file and generates Java classes and the JAXB data types that
are used to create the SCA service.

It is important to include all generated classes within your application archive, including the classes
that you might not directly reference in your Java implementation. Even if you have simple interfaces
that pass simple parameter types like String and Integer, or where no JAXB data types are necessary,
be sure to include all classes, including indirect references, in this code generation step.

v Run the wsimport command to generate the artifacts.

The wsimport tool is located in the app_server_root/bin/ directory.

app_server_root\bin\wsimport.bat -keep wsdl_URL

app_server_root/bin/wsimport.sh -keep wsdl_URL

The -keep option specifies to keep the generated Java source files and the compiled class files.

2. Locate the Java interface that directly corresponds to your WSDL portType from the generated
artifacts. The interface is generated with an @WebService annotation, and it is an interface and not a
class file.

3. Complete the implementation of your SCA service. Write a Java implementation of the generated Java
interface that reflects your business logic. The Java implementation is a Plain Old Java Object (POJO)
implementation of the generated interface using the generated JAXB data types. This implementation
is annotated based on the SCA Java component implementation programming model.

704 Developing WebSphere applications

4. Annotate the Java implementation. Add the @Service annotation to the Java implementation to specify
this implementation is an SCA service. When you complete this step, you have created an SCA
component implementation.

5. Define a component within a composite definition using this component implementation. In the
definition of your composite, define a component that refers to the original WSDL portType interface
and the SCA implementation.

a. Under the <component> element, create a <implementation.java> child element that refers to the
class name of your POJO component implementation.

b. Under the <component> element, create a <service> child element.

c. Under the <service> element, create a <interface.wsdl ..> element that refers to the WSDL
portType. The @name attribute of the <service> element must match the unqualified class name of
your Java interface.

You now have a component with a well-defined component name and service name with a well-defined
interface.

In addition to these aspects of your component definition described by these development procedures,
there are other aspects of defining a component. These aspects include adding bindings, configuring
property values, defining intents, attaching policy sets, and resolving references. You can create
multiple components using this same implementation, but all component definitions are the same with
respect to the <implementation.java>, <interface.wsdl> and <service> elements described in this
step.

6. Deploy the SCA service by creating the SCA business level application from a deployable composite.

In the previous step, you defined a component providing your SCA service within a composite
definition. This composite is either a deployable composite, or one that is used recursively as a
composite implementation of a component in a higher-level composite. To learn how to deploy the SCA
service, read about deploying and administering business-level applications.

Results

You have created an SCA implementation by starting with an existing WSDL file.

Example

The following example illustrates using an existing WSDL interface to generate a Java interface that is
used to create a Java implementation that is an SCA service.

1. Copy the following sample account.wsdl WSDL file to a temporary directory.
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:account="http://www.myaccount.com/account"
targetNamespace="http://www.myaccount.com/account"
name="AccountService">

<wsdl:types>
<schema targetNamespace="http://www.myaccount.com/account"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:account="http://www.myaccount.com/account">

<element name="computeAccountAverage">
<complexType>

<sequence>
<element name="account" type="account:Account" />
<element name="days" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="computeAccountAverageResponse">

<complexType>

Chapter 19. Developing SCA composites 705

<sequence>
<element name="return" type="xsd:float" />

</sequence>
</complexType>

</element>

<complexType name="Account">
<attribute name="accountNumber" type="xsd:int" />
<attribute name="accountID" type="xsd:string" />
<attribute name="accountType" type="xsd:string" />
<attribute name="balance" type="xsd:float" />

</complexType>

</schema>
</wsdl:types>

<wsdl:message name="computeAccountAverageRequest">
<wsdl:part element="account:computeAccountAverage"

name="parameters" />
</wsdl:message>

<wsdl:message name="computeAccountAverageResponse">
<wsdl:part element="account:computeAccountAverageResponse"

name="parameters" />
</wsdl:message>

<wsdl:portType name="AccountService">
<wsdl:operation name="computeAccountAverage">

<wsdl:input message="account:computeAccountAverageRequest" name="accountReq"/>
<wsdl:output message="account:computeAccountAverageResponse" name="accountResp"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="AccountServiceSOAP" type="account:AccountService">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="computeAccountAverage">

<soap:operation
soapAction="computeAccountAverage" />

<wsdl:input name="accountReq">
<soap:body use="literal" />

</wsdl:input>
<wsdl:output name="accountResp">

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="AccountWSDLService">
<wsdl:port binding="account:AccountServiceSOAP"

name="AccountServicePort">
<soap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

2. Run the wsimport command from the app_server_root/bin/ directory.

app_server_root\bin\wsimport.bat -keep -verbose account.wsdl

Run the wsimport command,
app_server_root/bin/wsimport.sh -keep -verbose account.wsdl

After generating the template files using the wsimport command, the following Java files are generated:
com/myaccount/account/Account.java
com/myaccount/account/AccountService.java
com/myaccount/account/AccountWSDLService.java

706 Developing WebSphere applications

com/myaccount/account/ComputeAccountAverage.java
com/myaccount/account/ComputeAccountAverageResponse.java
com/myaccount/account/ObjectFactory.java
com/myaccount/account/package-info.java

3. Identify the generated Java interface from the generated classes.
//
// Generated By:JAX-WS RI IBM 2.1.1 in JDK 6 (JAXB RI IBM JAXB 2.1.3 in JDK 1.6)
//
package com.myaccount.account;
...
@WebService(name = "AccountService", targetNamespace = "http://www.myaccount.com/account")
...
public interface AccountService {

/**
*
* @param days
* @param account
* @return
* returns float
*/
@WebMethod(action = "computeAccountAverage")
@WebResult(targetNamespace = "")
@RequestWrapper(localName = "computeAccountAverage", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverage")

@ResponseWrapper(localName = "computeAccountAverageResponse", targetNamespace = "http://www.myaccount.com/account",
className = "com.myaccount.account.ComputeAccountAverageResponse")

public float computeAccountAverage(
@WebParam(name = "account", targetNamespace = "")
Account account,
@WebParam(name = "days", targetNamespace = "")
int days);

}

This code example is a Java interface, not merely a Java class. The @WebService annotation is
present in this Java interface. It is important to know that this example is not the same as the
generated @WebServiceClient class, com.myaccount.account.AccountWSDLService, which is not an
interface and is not needed in your SCA application.

4. Complete the implementation of your SCA service by writing a Java implementation of this generated
Java interface. Be sure to add the SCA @Service annotation to the implementation.
package com.myaccount.account;
import org.osoa.sca.annotations.Service;
@Service(AccountService.class)
public class AccountServiceImpl implements AccountService

public float computeAccountAverage(Account account, int days) {

// Write your business logic here. Account is a
// generated JAXB type and so use the JAXB programming model.
// For example, object instantation is performed using
// the ObjectFactory.createAccount()) method.

}
}

By completing this step, you have completed a component implementation. Not only is this component
implementation a Java implementation of a Java interface, but the @Service annotation signifies that
this is a Java component implementation of an SCA service interface. The implementation class itself
does not need all the JAX-WS or JAXB annotations. The runtime environment loads the appropriate
annotations from the generated classes that the implementation refers to.

5. Create a component using the component implementation. You create a component definition in a
composite that references the original WSDL portType interface and the SCA implementation. In SCA,
a component is a configured instance of a component implementation. There are other aspects of
defining a component that are not shown here such as configuring bindings, configuring property
values, defining intents, attaching policy sets, and resolving references. Shown here are the aspects of
component creation that are common for all component definitions using the implementation developed
in this example. This example also includes bindings that you can modify or omit for other components
using this component implementation.

Chapter 19. Developing SCA composites 707

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://account.customer"

name="accountComposite">
<component name="BankingComponent">

<implementation.java class="com.myaccount.account.AccountServiceImpl"/>

<!-- The @name value matches the contents of the @Service which in turn
comes from the WSDL portType. -->

<service name="AccountService">

<!-- This statement specifies the QName of the WSDL portType,
“http://www.myaccount.com/account#AccountService” in the syntax as
illustrated in the interface.wsdl statement. -->

<interface.wsdl interface="http://www.myaccount.com/account#wsdl.interface(AccountService)" />
<binding.ws/>

<!-- This example uses the SCA web services binding. However, it does not matter which SCA binding
you choose. -->

</service>
</component>

</composite>

6. After your component is defined as part of a deployable composite, either directly or recursively
through use of one or more layers of components with composite implementation, you are ready to
deploy the SCA service by creating an SCA business level application.

Developing SCA services with existing Java code
You can develop an Service Component Architecture (SCA) service implementation when starting with an
existing Java application.

About this task

There are two ways to develop an SCA service implementation:

v Top-down development starting with an existing Web Services Description Language (WSDL)

v Bottom-up development starting from existing Java code that uses Java Architecture for XML Binding
(JAXB) data types

The bottom-up development approach provides a simplified way to begin developing SCA services for the
Java developer that does not desire to work with WSDL or XML schema (XSD) authoring or when building
new SCA services that expose existing legacy implementations with Java interfaces.

The top-down development approach takes advantage of the interoperable XML-based WSDL, and XSD
interface and data definitions.

This task describes the steps when using the bottom-up development approach to develop an SCA service
implementation when starting with Java.

When using the bottom-up development methodology, begin by writing a Java interface and
implementation that describes the desired business logic. This implementation is then packaged into an
application archive file such as a web application archive (WAR) file or a Java archive (JAR) file that is
subsequently is used by an SCA component that is configured with deployment information containing the
bindings when the SCA application is deployed.

Note: It is a best practice to use the top-down methodology to develop SCA service implementations
because this approach leverages the capabilities of the XML interface description and provides a
greater ease in interoperability across platforms, bindings, and programming languages. To learn
more about using the top-down methodology, read about developing SCA services from existing
WSDL files.

708 Developing WebSphere applications

Note: The product uses XML marshalling as defined by JAXB to marshal and unmarshal data across a
remotable interface. If you start with a remotable Java interface for your implementation rather than
starting with a WSDL portType interface, be careful when selecting the input and output Java data
types and ensure you understand which data is preserved across JAXB marshalling and
unmarshalling. However, when authoring an implementation on a local interface, you can use any
Java type because local interfaces use pass-by-reference semantics, which implies no data is
copied.

Note: The data marshalling and unmarshalling that is used to instantiate the copying of data over
remotable interfaces is defined by the JAXB specification rather than by Java serialization or the
java.io.Serializable or java.io.Externalizable interfaces. Because of this behavior, certain existing
Java types are not suitable for use on remotable interfaces, as these types are not serialized using
Java serialization. For data types that are not annotated, the class is introspected and its Java
properties determine the data that is preserved in the copy. For data types that take advantage of
JAXB annotations, you can customize the mapping of Java classes to XSD types and of Java
instances to XML documents. Custom Java serialization routines such as the readObject() or
writeObject() are not applicable in this scenario. The SCA runtime environment takes an XML
centric view of the business data and leverages the JAXB standards to define the mappings
between the Java programming model and the XML data format on the wire.

Procedure
1. Access the existing Java interface that you want to expose as an SCA service.

2. Determine if you are using a local or a remotable interface.

v If you are using a remotable interface, add the @Remotable annotation to the Java interface. The
input and output Java data types on the remotable interface use pass-by-value semantics which
implies your data is copied using XML serialization as defined by JAXB.

3. Complete the implementation of your SCA service. Write a Java implementation of the generated Java
interface that reflects your business logic. The Java implementation is a Plain Old Java Object (POJO)
implementation of the original interface.

4. Annotate the Java implementation. Add the @Service annotation to the Java implementation to specify
this is an SCA service. When you complete this step, you have created an SCA component
implementation.

5. Define a component within a composite definition using this component implementation. In the deinition
of your composite, define a component that refers back to the original Java interface and the SCA
implementation.

a. Under the <component> element, create a <implementation.java> child element that refers to the
class name of your POJO component implementation.

b. Under the <component> element, create a <service> child element.

c. Under the <service> element, create a <interface.java ..> element that refers back to the
original Java interface. The @name attribute of the <service> element must match the unqualified
class name of your Java interface.

You now have a component with a well-defined component name and service name with a well-defined
interface.

In addition to these aspects of your component definition described by these development procedures,
there are other aspects of defining a component. These aspects include adding bindings, configuring
property values, defining intents, attaching policy sets, and resolving references. You can create
multiple components using this same implementation, but all component definitions are the same with
respect to the <implementation.java>, <imterface.java> and <service> elements described in this
step.

6. Deploy the SCA service by creating the SCA business level application from a deployable composite.

In the previous step, you defined a component providing your SCA service within a composite
definition. This composite is either a deployable composite, or one that is used recursively as a

Chapter 19. Developing SCA composites 709

composite implementation of a component in a higher-level composite. To learn how to deploy the SCA
service, read about deploying and administering business-level applications.

Results

You have developed an SCA service using the bottom-up methodology by starting with an existing Java
interface or implementation.

Example

The following example illustrates how to create a component implementation of a remotable SCA service
interface starting from existing Java code:

1. Start with Java interface myintf.NameGetter using type mypkg.Person.
//NameGetter.java
package myintf;
import mypkg.Person;
public interface NameGetter {

public String getName(Person p);
}

//Person.java

package mypkg;

public class Person {

protected String firstName;
protected String lastName;

public String getFirstName() {
return firstName;

}

public void setFirstName(String value) {
this.firstName = value;

}

public String getLastName() {
return lastName;

}

public void setLastName(String value) {
this.lastName = value;

}
}

In this example, the mypkg.Person class is well-suited for use over a remotable interface, because it
follows the JavaBeans pattern and contains a public getter and setter pair for its important data fields.
The XML wire format used by the runtime environment will serialize and deserialize this class.
However, other existing Java types that do not adhere to the JavaBeans pattern can cause problems
as they dol not serialize correctly and data loss occurs. For this reason, it is a best practice to use a
top-down development approach, starting from schema definitions and generating JAXB classes for
use in the application programming model. See the developing SCA services from existing WSDL files
to learn more about the top-down development approach.

2. Because we are creating a service with a remotable interface, add the @Remotable annotation.
//NameGetter.java
package myintf;

import mypkg.Person;
import org.osoa.sca.annotations.Remotable;

710 Developing WebSphere applications

@Remotable
public interface NameGetter {

public String getName(Person p);
}

3. Unless you have an existing Java implementation, write a Java implementation of the generated Java
interface that reflects your business logic.
package myintf;
import mypkg.Person;

public class NameGetterImpl implements NameGetter {

public String getName(Person p) {
// Example "business logic"
return p.getFirstName() + " " + p.getLastName();

}

}

4. Add the @Service annotation to the Java implementation.
package myintf;
import mypkg.Person;
import org.osoa.sca.annotations.Service;

@Service(NameGetter.class)
public class NameGetterImpl implements NameGetter {

public String getName(Person p) {
// Example "business logic"
return p.getFirstName() + " " + p.getLastName();

}

}

5. Create a component using the component implementation. You will create a component definition in a
composite that references the original Java implementation class, as well as its Java interface. In SCA,
a component is a configured instance of a component implementation. There are other aspects of
defining a component that are not shown here such as configuring bindings, configuring property
values, defining intents, attaching policy sets, and resolving references. Shown here are the aspects of
component creation that are common for all component definitions using the implementation developed
in this example. This example also includes bindings that you can modify or omit for other components
using this component implementation.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://org.services.naming"

name="NameServices">

<component name="NamingServicesComponent">
<implementation.java class="myintf.NameGetterImpl"/>
<service name="NameGetter">

<!-- The interface.java is not required because the run time can introspect it. -->

<interface.java interface=”myintf.NameGetter”/>

<!-- The choice of bindings is not important for the example. Here, both the SCA default and
web services bindings are configured. -->

<binding.ws/>
<binding.sca/>

</service>
</component>

</composite>

6. After your component is defined as part of a deployable composite, either directly or recursively
through use of one or more layers of components with composite implementation, you are ready to
deploy the SCA service by creating an SCA business level application.

Chapter 19. Developing SCA composites 711

Developing SCA service clients
You can develop a Service Component Architecture (SCA) service client starting with either a Java
interface or a WSDL file for the SCA service that you want to invoke.

About this task

You can develop SCA service clients that can both access and invoke an SCA service that are based on
the Service Component Architecture specification. An SCA client can consume a diverse set of services
such as enterprise beans, web services, and other SCA services, through the capabilities of the respective
SCA bindings and by using the Plain Old Java Object (POJO) client programming model.

To develop SCA service clients, you can start with either an existing Web Services Description Language
(WSDL) file and use the wsimport tool to generate the Java interface or you can start with an existing Java
interface.

Developing SCA client components starting with an existing WSDL file

When you have an existing WSDL file that describes your SCA service interface as a WSDL
portType, along with XSD schema definitions of your business data, you can use the wsimport tool
to generate the SCA Java representations of your business service interfaces and your business
data. The wsimport tool generates Java classes that you can use to write a Java implementation
that reflects your business logic. You can use the generated output of the proxy class and the
JAXB data binding types in your Java client to invoke the SCA service using the simple POJO
programming model.

The generated annotated Java classes that correspond to your business data contain all the
necessary information that the Java Architecture for XML Binding (JAXB) runtime environment
requires to build and parse the XML for marshaling and unmarshaling. In other words, the data
programming model is limited to object instantiation and the use of getter and setter methods, and
you do not need to write code to convert the data between the XML wire format and the Java
application.

Now that you have the generated annotated Java classes, you must use the Java interface and
data type classes to create the reference proxy as described in the developing SCA clients starting
with a Java interface section.

Developing SCA client components starting with a Java interface

When you have a Java interface to your SCA service, obtained either by starting from a WSDL
and generating the Java classes or by starting with Java code, use the Java interface and data
type classes to create the reference proxy. If your client is designed so that its reference proxy is
injected from the SCA container, the Java interface is the same type as your proxy field and this
file contains the corresponding @Reference annotation. You can only create the static reference
from another SCA component implementation that acts as a client of the original service. If your
reference proxy is created programmatically, you must create a proxy variable that has the same
type as your Java interface, and use an API such as CompositeContext.getService(Class
interfaze, ...) to create the reference proxy. The generated Java interface type is the
interface parameter that is passed to this API. Read about locating and invoking SCA services to
learn more about creating the reference proxy dynamically.

Regardless of whether the proxy is created by injection methods or programmatically, the Java
interface is the class of the proxy and the generated JAXB types are the parameter types which
includes inputs, outputs, and exceptions.

Considerations for local and remotable interfaces

It is important to understand that a remotable interface uses an XML wire format for data.
Therefore, clients must use a JAXB-based programming model for the data types. In contrast, a
local interface uses pass-by-reference semantics, so there is no data copy. Using the local
interface, data is read and written without any special programming model such as JAXB.

712 Developing WebSphere applications

Though WSDL-based interfaces are always remotable, you can also mark a Java interface that is
not generated from a WSDL file as remotable by annotating it with the @Remotable annotation.
The @Remotable annotation results in a data copy with XML serialization as defined by JAXB.

Defining the remotable interface is straightforward when you start with a WSDL interface, because
you use the wsimport tool to generate the JAXB data types that you use when you write your SCA
client. The remotable interface is less apparent when starting from a remotable Java interface,
unless the Java types are decorated with JAXB annotations. XML serialization behaves differently
than Java serialization. For an POJO that is not annotated, Java serialization preserves instance
data including private fields, whereas JAXB serialization preserves JavaBeans properties.

The focus of this topic is the use of remotable interfaces.

You can develop a component that consumes or acts as a client of the target service using a component
reference. In addition to consuming a service from another component's reference, the product also
provides a mechanism for consuming an SCA service over the default binding from a non-SCA
component.

Procedure
1. Determine if you are developing the SCA service client starting with an existing WSDL file or with an

existing Java interface.

2. Develop the client Java interfaces and data types from a WSDL file if you are not starting with an
existing Java interface. Use the wsimport command to generate the SCA service client Java interfaces.

3. Create the reference proxy based on the Java interface.

a. Create a reference proxy field or setter method that has the same type as the generated Java
interface

b. Annotate this field or setter with the @Reference annotation.

Now you have completed the steps required to add the reference to your Java component
implementation

4. Create a component definition using the Java implementation.

In the composite definition, add a <reference> element that refers back to the original interface and the
field or setter of your SCA implementation. The reference is added as a child element of your
component. The component is part of a composite definition.

The <reference> name attribute must correspond to the field or setter that contains the @Reference
annotation. For a field that contains the @Reference annotation, the name attribute must match exactly.
For a setter that contains the @Reference annotation, use the usual Java conventions for translating
an annotated setter into a corresponding field, which in turn must match the name attribute.

For the interface:

v If your SCA client development started with an existing WSDL file, create an <interface.wsdl>
element as a child element of the <reference> element that points to the WSDL portType.

v If your SCA client development started from existing Java interface, create an <interface.java>
element as a child element of the <reference> element that points to the original Java interface.
This is optional, since the runtime environment can introspect the Java interface.

In addition to these aspects of your component definition described by these development procedures,
there are other aspects of defining a component. These aspects include adding bindings, configuring
property values, defining intents, attaching policy sets, and resolving references. You can create
multiple components using this same implementation, but all component definitions are the same with
respect to the <implementation.wsdl> element and <reference> element described in this step.

5. Deploy the SCA component by creating the SCA business level application from a deployable
composite.

In the previous step, you defined a component providing your SCA service within a composite
definition. This composite is either a deployable composite, or one that is used recursively as a

Chapter 19. Developing SCA composites 713

composite implementation of a component in a higher-level composite. To learn how to deploy the SCA
service, read about deploying and administering business-level applications.

Results

You have created an SCA component that can consume an existing SCA service using a WSDL or Java
interface.

Example

The following example illustrates using an existing WSDL interface to generate a Java interface that is
used to create a Java implementation that is an SCA client. If you are starting with an existing Java
interface, begin with step 4 to follow this example.

1. Copy the following sample account.wsdl WSDL file to a temporary directory.
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:account="http://www.myaccount.com/account"
targetNamespace="http://www.myaccount.com/account"
name="AccountService">

<wsdl:types>
<schema targetNamespace="http://www.myaccount.com/account"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:account="http://www.myaccount.com/account">

<element name="computeAccountAverage">
<complexType>

<sequence>
<element name="account" type="account:Account" />
<element name="days" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="computeAccountAverageResponse">

<complexType>
<sequence>

<element name="return" type="xsd:float" />
</sequence>

</complexType>
</element>

<complexType name="Account">
<attribute name="accountNumber" type="xsd:int" />
<attribute name="accountID" type="xsd:string" />
<attribute name="accountType" type="xsd:string" />
<attribute name="balance" type="xsd:float" />

</complexType>

</schema>
</wsdl:types>

<wsdl:message name="computeAccountAverageRequest">
<wsdl:part element="account:computeAccountAverage"

name="parameters" />
</wsdl:message>

<wsdl:message name="computeAccountAverageResponse">
<wsdl:part element="account:computeAccountAverageResponse"

name="parameters" />
</wsdl:message>

<wsdl:portType name="AccountService">
<wsdl:operation name="computeAccountAverage">

<wsdl:input message="account:computeAccountAverageRequest" name="accountReq"/>
<wsdl:output message="account:computeAccountAverageResponse" name="accountResp"/>

</wsdl:operation>

714 Developing WebSphere applications

</wsdl:portType>

<wsdl:binding name="AccountServiceSOAP" type="account:AccountService">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="computeAccountAverage">

<soap:operation
soapAction="computeAccountAverage" />

<wsdl:input name="accountReq">
<soap:body use="literal" />

</wsdl:input>
<wsdl:output name="accountResp">

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="AccountWSDLService">
<wsdl:port binding="account:AccountServiceSOAP"

name="AccountServicePort">
<soap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

2. Run the wsimport command from the app_server_root/bin/ directory.

app_server_root\bin\wsimport.bat -keep -verbose account.wsdl

Run the wsimport command,
app_server_root/bin/wsimport.sh -keep -verbose account.wsdl

After generating the template files using the wsimport command, the following Java files are generated:
com/myaccount/account/Account.java
com/myaccount/account/AccountService.java
com/myaccount/account/AccountWSDLService.java
com/myaccount/account/ComputeAccountAverage.java
com/myaccount/account/ComputeAccountAverageResponse.java
com/myaccount/account/ObjectFactory.java
com/myaccount/account/package-info.java

3. Identify the generated Java interface from the generated classes.
//
// Generated By:JAX-WS RI IBM 2.1.1 in JDK 6 (JAXB RI IBM JAXB 2.1.3 in JDK 1.6)
//
package com.myaccount.account;
...
@WebService(name = "AccountService", targetNamespace = "http://www.myaccount.com/account")
...
public interface AccountService {

/**
*
* @param days
* @param account
* @return
* returns float
*/
@WebMethod(action = "computeAccountAverage")
@WebResult(targetNamespace = "")
@RequestWrapper(localName = "computeAccountAverage", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverage")
@ResponseWrapper(localName = "computeAccountAverageResponse", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverageResponse")
public float computeAccountAverage(

@WebParam(name = "account", targetNamespace = "")
Account account,
@WebParam(name = "days", targetNamespace = "")
int days);

}

Chapter 19. Developing SCA composites 715

This code example is a Java interface, not merely a Java class. The @WebService annotation is
present in this Java interface. It is important to know that this example is not the same as the
generated @WebServiceClient class, com.myaccount.account.AccountWSDLService. This class is not
an interface and is actually not needed in your SCA application.

4. Now that you have Java interface either by generating the Java interface from a WSDL file or you
have an existing Java interface, you are ready to develop your SCA client from the Java interface.

5. Place the @Reference annotation on a public or protected field or setter, with the same type as your
Java interface.
package com.myaccount.client;

import bank.process.BankProcess;
import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.Service;

import com.myaccount.account.*;

@Service(BankProcess.class)
public class AccountClientComponent implements BankProcess {

// Note the type, 'AccountService’, is the Java interface generated from
// from the WSDL portType
private AccountService accountServiceRef;

//
// Injected by the SCA container
//
@Reference
public void setAccountServiceRef(AccountService accountServiceRef) {

this.accountServiceRef = accountServiceRef;
}

public String someMethod(String input) {

//... some business logic ...

// We’ll show a simple example of JAXB API usage
ObjectFactory factory = new ObjectFactory();
Account account = factory.createAccount();
account.setAccountNumber(4);
account.setAccountID("CHECKING");

int days = 5;

float avg = accountServiceRef.computeAccountAverage(account, days);

//... the rest of the business logic ...
}

}

6. Create a component using the component implementation. When using a WSDL portType interface,
you must create component definitions in the composite definition that references the original portType
along with the SCA Java implementation. In SCA, a component is a configured instance of a
component implementation. There are other aspects of defining a component that are not shown here
such as configuring bindings, configuring property values, defining intents, attaching policy sets, and
resolving references. Shown here are the aspects of component creation that are common for all
component definitions using the implementation developed in this example. This example also includes
bindings that you can modify or omit for other components using this component implementation.

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://bank.process/customer"

name="bpComposite">

<component name="BankProcessComponent">

<implementation.java class="com.myaccount.client.AccountClientComponent"/>
<!-- The @name attribute corresponds to the setter that is annotated with the @Reference annotation. -->

<reference name="accountServiceRef">

716 Developing WebSphere applications

<!-- This statement specifies the QName of the WSDL portType,
"http://www.myaccount.com/account#AccountService" in the syntax as
illustrated in the interface.wsdl statement. -->

<interface.wsdl interface="http://www.myaccount.com/account#wsdl.interface(AccountService)" />
<binding.ws uri="http://localhost:9080/BankingComponent/AccountService"/>

<!-- This example uses the SCA web services binding. However, it does not matter which specific binding
you choose. You can also choose to use the SCA default binding or the SCA EJB binding. -->

</reference>
</component>

</composite>

7. Configure the composite definition when starting with a Java interface.

The following snippet is another example of the syntax if you develop an SCA client starting with a
Java interface rather than with a WSDL portType. To simplify this example, use the same
AccountService Java interface from the previous step but in this case, assume that it was not
generated from a WSDL file.

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://bank.process/customer"

name="bpComposite">

<component name="BankProcessComponent">

<implementation.java class="com.myaccount.client.AccountClientComponent"/>

<!-- The @name value corresponds to the setter that is annotated with the @Reference annotation. -->
<reference name="accountServiceRef">

<!-- Because the runtime can introspect the interface, it is unnecessary to specify
the interface.java in the composite definition. This is what the interface looks like if you include it.

<interface.java interface=”com.myaccount.account.AccountService”/> -->

<!-- The SCA binding type is omitted. It does not matter which specific SCA binding you choose. -->
</reference>

</component>
</composite>

8. After a component is defined as part of a deployable composite, either directly or recursively through
use of one or more layers of components with composite implementation, you are now ready to deploy
the SCA component by creating a SCA business level application.

Developing asynchronous SCA services and clients
You can create applications that use Service Component Architecture (SCA) OASIS specifications to
asynchronously run request-response services.

Before you begin

Note: SCA OASIS specifications support the asynchronous running of request-response services. This
enables a client thread to continue doing other work while the service runs. You can use SCA
OASIS annotations and APIs in Java interfaces to enable asynchronization in services.

To learn about asynchronous invocations of SCA services, see the SCA OASIS Java Common Annotations
and APIs specification. For a list of common annotations in SCA OASIS specifications, see
http://docs.oasis-open.org/opencsa/sca-j/javadoc/index.html.

About this task

An SCA client and an SCA service have independent capabilities for asynchronous invocation which can
be intermixed. This means that a client can synchronously run an asynchronous service or asynchronously
run a synchronous service. Typically, a client asynchronously runs an asynchronous service.

Chapter 19. Developing SCA composites 717

When developing an asynchronous service and client, consider the following:

v Use the SCA OASIS annotation @AsyncInvocation in the Java service interface to enable
asynchronization.

v Use the SCA OASIS annotation @AsyncFault in the Java service interface for exception errors.

v In the composite definition, use the implementation.java type for the SCA component.

v Asynchronous interfaces are supported by binding.sca only.

Topics in the procedure cover developing SCA services and clients that run asynchronously.

Procedure
1. Develop an asynchronous SCA service.

2. Develop an asynchronous SCA client.

What to do next

Deploy the SCA composites in a business-level application.

For SCA OASIS applications, an sca-contribution.xml file is required for deployable composites in the
META-INF/ directory, and not in a subdirectory.

Developing asynchronous SCA services
You can create services that use Service Component Architecture (SCA) OASIS specifications to
asynchronously run request-response services.

Before you begin

To learn about asynchronous invocations of SCA services, see the SCA OASIS Java Common Annotations
and APIs specification. For a list of common annotations in SCA OASIS specifications, see
http://docs.oasis-open.org/opencsa/sca-j/javadoc/index.html.

About this task

To develop an asynchronous SCA service, you can create three files:

v A Java service interface that uses the SCA OASIS @AsyncInvocation annotation and, for exception
errors, the @AsyncFault annotation

v A Java service implementation that has an @Service annotation which refers to the service interface

v An SCA OASIS composite

Procedure
1. Create an asynchronous service interface.

You can derive an interface from the business interface between the client and the service. For
example, suppose that the service has the following business interface:
package broker;
public interface StockQuote {
float getPrice(String symbol) throws UnknownSymbolException;
}

Copy the business interface and modify it to create an equivalent asynchronous service interface:
package broker.impl;
import broker.UnknownSymbolException;
import org.oasisopen.sca.ResponseDispatch;
import org.oasisopen.sca.annotation.AsyncFault;
import org.oasisopen.sca.annotation.AsyncInvocation;

@AsyncInvocation

718 Developing WebSphere applications

public interface StockQuote {
@AsyncFault(UnknownSymbolException.class)
void getPriceAsync(String symbol, ResponseDispatch<Float> dispatch); }

An asynchronous service interface is a contract between the SCA container and the service
implementation. It is not used by the client.

Use the @AsyncInvocation annotation on the interface to indicate it is asynchronous. Derive each
method from its equivalent method in the business interface as follows:

v Append the characters Async to the method name.

v Change the return type to void.

v Add a ResponseDispatch argument which is typed by the method’s original return type.

v Move exceptions from the throws clause to @AsyncFault annotations.

For simplicity, use the same simple name for the asynchronous service interface as for the business
interface, but specify a different package name. By default, an SCA service name is the simple name
of its interface, so using the same interface names helps to ensure that a consistent SCA service
name is used.

2. Create the asynchronous service implementation.

For example, create an implementation that references the StockQuote SCA service interface:
package broker.impl;
import broker.UnknownSymbolException;
import org.oasisopen.sca.ResponseDispatch;
import org.oasisopen.sca.annotation.Service;
@Service(StockQuote.class)
public class StockQuoteImpl {

public void getPriceAsync(String symbol, ResponseDispatch<Float> dispatch) {
if (!isValidSymbol(symbol))

dispatch.sendFault(new UnknownSymbolException());
else

dispatch.sendResponse(getPrice(symbol));
}
private boolean isValidSymbol(String symbol) {

// fill in
}
private Float getPrice(String symbol) {

// fill in
}

}

The @Service annotation must refer to the asynchronous service interface.

Each method is passed a ResponseDispatch object which must be used to return a response to the
client. The example shows the response being sent inside the method body but this is not required.
The method can save the input arguments, including the ResponseDispatch object, for another thread
to handle.

Do not perform a long-running computation directly in the method body because this might cause the
client to receive a timeout exception. Instead, queue the work to another thread. One approach for
queueing work to another thread is to use an asynchronous bean.

3. Create a composite file.

For example, create an SCA OASIS composite that defines an implementation.java component which
uses the implementation StockQuoteImpl class:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.example.com" name="StockQuoteComposite">
<component name="StockQuoteComponent">

<implementation.java class="broker.impl.StockQuoteImpl"/>
</component>

</composite>

Asynchronous services must use the binding.sca binding type because it is the only binding that
supports asynchronous invocation. However, binding.sca is the default binding so you do not need to
include it in the composite file.

Chapter 19. Developing SCA composites 719

What to do next

Develop an asynchronous SCA client to run an SCA service.

Developing asynchronous SCA clients
You can create clients that use Service Component Architecture (SCA) OASIS specifications to run
asynchronously.

Before you begin

To learn about asynchronous invocations of SCA services, see the SCA OASIS Java Common Annotations
and APIs specification. For a list of common annotations in SCA OASIS specifications, see
http://docs.oasis-open.org/opencsa/sca-j/javadoc/index.html.

About this task

An SCA client can synchronously run an asynchronous service or asynchronously run a synchronous
service. Typically, a client asynchronously runs an asynchronous service.

To develop an asynchronous SCA client, you can create three files:
v A Java client interface
v A Java client implementation that has an @Reference annotation
v An SCA OASIS composite

To dispatch client-side asynchronous requests, you can use a default SCA work manager.

A few limitations apply when using asynchronous interfaces from an SCA client:

v If the client application or its host server is stopped, responses to active asynchronous requests are
lost, and are not delivered when the application is restarted.

v Because the SCA container invokes an asynchronous request from a separate thread, the client must
not modify any arguments passed to the request until after it receives the response.

v Asynchronous invocation is not supported with services obtained using the
org.oasisopen.sca.client.SCAClientFactory interface.

v A client can synchronously invoke an asynchronous service. The SCA container waits for up to 120
seconds for a response from the asynchronous service.

Procedure
1. Create an asynchronous client interface.

You can derive an interface from the business interface between the client and the service. For
example, suppose that the service has the following business interface:
package broker;
public interface StockQuote {
float getPrice(String symbol) throws UnknownSymbolException;
}

Copy the business interface and modify it to create an equivalent asynchronous client interface:
package broker.client;
import broker.UnknownSymbolException;
import java.util.concurrent.Future;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;
public interface StockQuote {

float getPrice(String symbol) throws UnknownSymbolException;
Response<Float> getPriceAsync(String symbol);
Future<?>getPriceAsync(String symbol, AsyncHandler<Float> callback);

}

An asynchronous client interface is a contract between the client and the SCA container. It is not used
by the service.

720 Developing WebSphere applications

An asynchronous client interface has additional methods to support polling or callback delivery. Derive
the polling method from its equivalent method in the business interface as follows:

v Append the characters Async to the method name.

v Change the return type to javax.xml.ws.Response.

Derive the callback method from its equivalent method in the business interface as follows:

v Append the characters Async to the method name.

v Change the return type to java.util.concurrent.Future.

v Add a javax.xml.ws.AsyncHandler argument which is typed by the return type of the original
method.

2. Create the asynchronous client implementation.

For example, create an implementation that uses the callback interface:
package broker.client;
import broker.UnknownSymbolException;
import java.util.concurrent.ExecutionException;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;
import org.oasisopen.sca.annotation.Reference;
public class StockQuoteClientImpl {

@Reference
public StockQuote quoteService;

public void getStockPrice(String symbol) {
CallbackHandler callback = new CallbackHandler(symbol);
quoteService.getPriceAsync(symbol, callback);

}

private class CallbackHandler implements AsyncHandler<Float>{
private String symbol;
public CallbackHandler(String symbol) {

this.symbol = symbol;
}
public void handleResponse(Response<Float>arg0) {

try {
Float price = arg0.get();
// Process the response

} catch (ExecutionException e) {
if (e.getCause() instanceof UnknownSymbolException) {

// Process the exception
}

} catch (Throwable t) {
// Process the exception

}
}

}

3. Create a composite file.

For example, create an SCA OASIS composite that defines an implementation.java component which
uses the implementation StockQuoteClientImpl class:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.example.com" name="StockQuoteClientComposite">
<component name="StockQuoteClientComponent">

<implementation.java class="broker.client.StockQuoteClientImpl"/>
</component>

</composite>

Asynchronous clients must use the binding.sca binding type because it is the only binding that
supports asynchronous invocation. However, binding.sca is the default binding so you do not need to
include it in the composite file.

4. Configure the default SCA work manager.

The SCA container uses the default SCA work manager to dispatch client-side asynchronous requests.
See Configuring the default SCA Work manager for the SCA layer.

Chapter 19. Developing SCA composites 721

What to do next

Deploy the SCA client and service in a business-level application.

Using business exceptions with SCA interfaces
You can implement exceptions for remotable interfaces in the Service Component Architecture (SCA)
environment to provide additional flow of control for error conditions to meet the needs of your business
application.

About this task

To develop SCA service implementations, you can use either a top-down development approach starting
with an existing Web Services Description Language (WSDL) file or you can use a bottom-up development
approach starting from an existing Java interface or implementation. When using either the top-down or
bottom-up development methodologies, you can use tools to map business exceptions on remotable
interfaces.

In order to achieve the SOA goal of providing an interoperable platform that is both language and
technology neutral, the SCA runtime environment takes an XML-centric view of interfaces and data. When
working with Java code, the Java API for XML-Based Web Services (JAX-WS) standard is used to define
the mapping between Java code and the XML-based Web Services Description Language (WSDL) file.
This mapping also includes the Java programming model with respect to exceptions. Exceptions for
remotable interfaces in the SCA environment is defined by the JAX-WS specification. This topic describes
the best practices for using business exceptions with SCA interfaces.

Differences between business exceptions and fault beans

To better understand the implications of implementing business exceptions in an SCA environment,
it is helpful to understand differences between an exception and a fault bean.

The JAX-WS specification distinguishes between a checked exception and the fault bean that it
wrappers. However, this distinction might not be clear because a single class can serve the
checked exception and the fault bean functions, especially when you use the bottom-up approach
of developing an SCA service starting with a Java interface. When you use the top-down
development approach of developing an SCA service starting with a WSDL file, section 2.5 of the
JAX-WS specification describes the wrapper pattern for how the fault message maps to a Java
checked exception that wraps a fault bean. The fault bean maps to the fault element and in SCA
environments, the mapping is defined by Java Architecture for XML Binding (JAXB) data binding.
The fault bean represents the cross-platform view of the fault message data and includes a
schema description. You can use the Java exception within the Java runtime environment and as
part of the Java programming model. However, the exception is not part of the interoperable data
representation.

When developing SCA services using the bottom-up approach, the distinction between an
exception, the fault bean, and the mapping from Java to WSDL or XSD schema is clear if you
follow the wrapper pattern described in section 2.5 of the JAX-WS specification. If you have
existing Java exceptions, use the standard mapping defined in section 3.7 of the JAX-WS
specification for service specific exceptions. In SCA environments, these service specific
exceptions are referred to as business exceptions. The mapping for the business exceptions is
different than the mapping described in section 2.5 of the JAX-WS specification. Because this
wrapper pattern only applies for certain exceptions, this approach has limitations when using the
bottom-up development approach. The possible limitations of using the wrapper pattern to
implement error handling when using bottom-up development of SCA applications provides
additional reasons to consider the advantages of the best practice of top-down development of
SCA applications.

Top-down development, starting from a WSDL operation with fault messages

722 Developing WebSphere applications

It is a best practice to use the top-down methodology to develop SCA service implementations
because this approach leverages the capabilities of the XML interface description and provides a
greater ease in interoperability across platforms, bindings, and programming languages. A WSDL
operation can be defined, along with one or more fault messages, provided each fault message is
defined in terms of a fault element. When the wsimport command-line tool is used to generate
Java code the tool generates Java exception code that wraps a fault element in the format
specified by the Java API for XML-Based Web Services (JAX-WS) specification, section 2.5.

Bottom-up development, starting from a Java operation with throws clause

Bottom-up development of SCA services occurs when you start with existing Java code. Using this
development approach, do not design a remotable interface that might cause a technology
exception such as java.sql.SQLException. This exception is more appropriate for a local interface
rather than a coarse-grained remotable interface.

Procedure
1. For top-down development of SCA applications, implement a wrapper pattern for business exceptions.

The wrapper pattern is based on section 2.5 of the JAX-WS specification.

a. Obtain your WSDL file; for example:
<wsdl:types>

...
<element name="errorCode" type="xsd:int"/>
...

</wsdl:types>

<wsdl:message name="BadInputMsg">
<wsdl:part element="tns:errorCode" name="parameters"/>

</wsdl:message>

<wsdl:portType name="GuessAndGreet">
<wsdl:operation name="sendGuessAndName">

<wsdl:input.../>
<wsdl:fault message="tns:BadInputMsg" name="BadInputMsg"/>

b. Generate the Java artifacts using the wsimport tool. You can define the fault according to section
2.5 of the JAX-WS specification; for example:
Interface

public Person sendGuessAndName(...) throws BadInputMsg;

c. Wrap an exception in a fault; for example:
import javax.xml.ws.WebFault;

@WebFault(name = "errorCode", targetNamespace = "....")
public class BadInputMsg extends Exception
{

private int faultInfo;

public BadInputMsg(String message, int faultInfo) {
super(message);
this.faultInfo = faultInfo;

}

public BadInputMsg(String message, int faultInfo, Throwable cause) {
super(message, cause);
this.faultInfo = faultInfo;

}

public int getFaultInfo() {
return faultInfo;

}
}

2. For bottom-up development of SCA applications, implement or convert the exception to follow the
wrapper pattern or use the default mapping for of a JAX-WS service specific exception.

If you have a Java business exception, the complexity of this scenario increases, especially if your
exception wraps fault data. For example, the exception wraps data such as an error code or an object
that it needs to provide to the client that receives the exception. In this scenario, there are two options:

Chapter 19. Developing SCA composites 723

v Convert the Java business exception to follow the wrapper pattern as described in section 2.5 of the
JAX-WS specification.

Using the wrapper pattern for the exception enables the exception to map easily from the WSDL to
Java code format and then from the Java code to WSDL format. If you modify the exception to
follow the wrapper pattern, you can use the wsgen tool to convert from Java code to WSDL and later
use the wsimport tool to convert from WSDL to Java code, the exception is similar to the one that
you modified. To achieve this end goal, you must perform the following steps:

a. Add constructors that take the fault bean as input parameters.

b. Implement a public getFaultInfo() method that returns the fault bean.

c. Add the @javax.xml.ws.WebFault annotation. See the example that wraps an exception in a
fault.

v Use the default mapping of a JAX-WS service specific exception or business exception as described
in section 3.7 of the JAX-WS specification.

If you use the wsgen command-line tool to generate the WSDL, the tool uses this pattern for
business exceptions. If you do not generate the WSDL file before deployment, the application server
runtime environment implicitly generates the business exception using this pattern.

Use this option when you:

– cannot change the exception class to follow the JAX-WS wrapper pattern.

– rely on the runtime environment to map the Java code into WSDL such as declaring a
<binding.ws> binding on a service that is deployed without a WSDL file.

Either of these options work without any additional complexity as long as the exception does not
contain fault data.

For exceptions with fault data, the data is handled correctly for each field that contains a public
getter or setter method. However, data is lost without a getter or setter pair. In other words, serialize
or deserialize the exception by viewing it as a Java code.

When using this second option, the following items are important:

– The supported fault pattern is not easily determined. One exception with fault data and also with
the getter and setter methods is that some are handled correctly while others are not. Running
the wsgen tool at development time generates the schema based on the exception getter
methods without assuring that the corresponding setter methods exist in order to populate the
exception during unmarshalling.

– If you run wsimport tool against the generated WSDL, you get a different exception class. Your
client and service programming model are different which might confuse the Java programmer.
However, this generated Java exception follows the pattern described in the JAX-WS
specification in section 2.5. You might need to add customization for JAXB data binding in order
to generate the client. The results can produce exception names similar to
MyException_Exception.

– Although the service-specific exception pattern is described in section 3.7 of the JAX-WS
specification, not all details for the pattern are specified. Other software implementing JAX-WS
might implement the pattern differently. This is not critical, since the WSDL file is interoperable
across platforms.

Example 1: No fault

The following examples illustrates using the bottom-up development of SCA applications and using the
business exception mapping as described in section 3.7 of the JAX-WS specification.

The string message is the fault in this example, and it is serialized and deserialized successfully.
public class RealSimpleException extends Exception {

public RealSimpleException(String message) {
super(message);

}

724 Developing WebSphere applications

public RealSimpleException(String message, Throwable cause) {
super(message, cause);

}
}

This example works correctly because the string userdata fault has associated public getter and setter
methods. The string message is also handled correctly.
public class TestException extends Exception {

private String userdata;

public TestException(String message) {
super(message);

}

public TestException(String message, String userdata) {
super(message);
this.userdata = userdata;

}

public String getUserdata() {
return userdata;

}

public void setUserdata(String userdata) {
this.userdata = userdata;

}

}

This example does not work correctly because the errorCode fault data does not have a setter method.
The SCA runtime is not able to correctly determine how to populate the exception with this fault data. The
exception occurs, but it is displayed with data loss.
package java.sql;

public class SQLException extends Exception ... {
...
public SQLException(String theReason, String theSQLState, int theErrorCode) ...

public int getErrorCode()
}

What to do next

Increase portability of your exception classes in top-down development

One issue that you might encounter with Java exceptions generated from WSDL in the top-down manner
is that the fault bean might not be Java-serializable. In other words, the fault bean might not implement
java.io.Serializable. This does not present a problem if the bindings that your application uses are in XML
wireformat because, in that scenario, XML serialization is used instead of Java serialization. However,
XML serialization limits the usefulness of your exception class. Therefore, it might not be suitable to use
with SCA binding configurations using a wireformat with Java serialization, or in other contexts in which
Java serialization is used to serialize and deserialize an exception.

To avoid this limitation, annotate your schema definition for the fault element type with a JAXB
customization designed for this purpose. When this customization is present, the JAXB type that is
generated, that corresponds to the fault bean, is marked as implementing the java.io.Serializable interface,
and is therefore Java serializable, in addition to being serializable to XML, because the class is also still a
conforming JAXB type.

Example:

Chapter 19. Developing SCA composites 725

<schema targetNamespace="http://com.mycompany/banking/" jaxb:version="2.0"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns="http://www.w3.org/2001/XMLSchema">
<annotation>
<appinfo>
<jaxb:globalBindings>
<jaxb:serializable uid="1"/>

</jaxb:globalBindings>
</appinfo>

</annotation>

<!-- Continue with the rest of the schema definition-->

</schema>

SCA programming tip for binding neutrality

The JAX-WS defined mapping between exceptions in Java and an XML wireformat relies on the use of the
fault bean to pass back data from the service provider throwing the exception to the client that is catching
it. Normal Java-centric mechanisms, such as exception chaining, are not preserved in mapping between
the Java application and the wire. Therefore, the best way to write application code that can be used
across binding configurations using either of a Java serialization wireformat or an XML wireformat is to rely
exclusively on the fault bean for communicating useful application level data relating to the exception.

Even though using a chained exception across a binding that uses a Java-serialization based wireformat
works fine, using a chained exception across a binding using XML wireformat might not work. Therefore
relying on a chained exception would not be a recommended practice in an SCA environment, because
SCA strives to provide a binding-neutral programming model.

Considerations for developing SCA applications using EJB bindings
When developing Service Component Architecture (SCA) applications that you intend to use with
Enterprise JavaBeans (EJB) bindings, keep in mind that the SCA EJB binding is architected in a
Java-centric manner, in contrast to the XML-centric implementations of the SCA default binding and the
SCA web services binding.

The EJB transports marshal and unmarshal application data into the wire format by using Java
serialization, whereas the web services and default bindings use XML serialization. This difference also
affects the programming model in that the SCA clients and implementations using the EJB binding must
use java.io.Serializable types, in contrast to the Java Architecture for XML Binding (JAXB) data
types-based programming model that is used for the SCA default and web services bindings.

SCA reference

In this case, you have an existing EJB that you want to invoke with an SCA client using a reference that is
configured with an EJB binding.

When you develop an SCA client that will invoke an existing EJB using the SCA EJB binding, you must
use a Java interface when developing the SCA client rather than using a WSDL interface. The EJB binding
marshalling of application data into the wire data format is performed using Java serialization, not XML
serialization as defined by JAXB.

To learn more about SCA references, read about developing SCA service clients. However, when you are
using the SCA EJB binding, the information in this topic takes precedence.

Because you obtain the Java interface and parameter types from the EJB provider for use in your client,
you do not have to worry about the effects of marshalling and unmarshalling when writing your client.
However, when you provide these data types across new services, problems can occur if you pass these

726 Developing WebSphere applications

data types across new services, because they might not serialize correctly over other bindings, such as
the default binding, because of the difference in Java serialization and the JAXB XML marshalling and
unmarshalling.

The following example illustrates the problematic scenario of starting with an existing EJB interface and
using a Java serializable data type that does not serialize well using JAXB marshalling and unmarshalling.
public interface NameService extends javax.ejb.EJBObject {

public String computeName(Person p) throws RemoteException;
}

// This snippet is intended as an example of a type that is problematic.
public class Person implements java.io.Serializable {

private int code;
private String name;

// The code field must be passed into constructor. However, this causes problems for
// for SCA default and web services bindings that use JAXB marshalling/unmarshalling.

public Person(int code) {
this.code = code;

}

public Person() {
}

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

}

The following SCA client A example works correctly. The Person object that is instantiated directly in the
ClientAImpl implementation is correctly marshalled to invoke the EJB with a remote interface of
NameService.
// Client A ClientAImpl.java
.....
@Reference
public NameService nameService

public someClientMethod() {
// No problem when Person object is instantiated by client
Person person = new Person(5);
String name = nameService.computeName(person);

}

In contrast, the following example demonstrates the problem with the Person type. The client code has
been refactored so that it contains a reference to NameService, and it obtains the Person object that is
passed into the computeName method over a new remotable interface, rather than constructing it directly.
// Problem client interface

import org.osoa.sca.annotations.Remotable;
@Remotable
public interface PersonFilter {

boolean filterPerson(Person p);
}

// Problem client implementation

@Service(PersonFilter.class)
public class PersonFilterImpl implements PersonFilter {

Chapter 19. Developing SCA composites 727

@Reference
public NameService nameService

boolean filterPerson(Person p) {
// ... business logic
String name = nameService.computeName(person);
// ... business logic
}

}

If the PersonFilterImpl class receives a Person object from the client over the PersonFilter interface and
the implementation is invoked using the SCA default binding, the data is not handled correctly. The default
binding does not preserve the code field of the Person object that is passed to the PersonFilterImpl class.

For a class without JAXB annotations, JAXB marshalling and unmarshalling preserves JavaBeans
properties, but not private data such as the code field, which does not have a setter and is only
established in the constructor. When the Person object is passed to the NameService EJB, the code value is
set to the default value of 0 regardless of what the PersonFilter client passed to the PersonFilterImpl
class.

If the Person type was written in the JavaBeans style with getters and setters for all important data, then
this type works correctly in the example for the PersonFilterImpl client. However, if you are consuming an
existing EJB, you do not have control over the types it already uses on its interface. Not all existing Java
types are optimal for SCA Java programming. To address the problems in this example, you must create a
new type for use on the PersonFilter interface and translate the data for this type into a Person object
within the PersonFilterImpl class which directly invokes the EJB with the remote interface NameService.

In this example, if the PersonFilter interface was defined as a local interface, then the concerns with
preserving data integrity do not apply. The runtime environment performs pass-by-reference semantics
across local interfaces that are appropriate for tightly-coupled clients and services such that no data is
copied.

SCA service

If you write a new SCA service and intend to expose it over the SCA EJB binding so that an EJB client
can invoke the service, it is a best practice to develop the SCA service using the top-down methodology
starting with an existing WSDL file or XSD schema and generating the JAXB classes that are used to write
the service implementation. Using this approach, you can easily address the differences between Java
serialization and JAXB marshalling and unmarshalling by specifying that the generated JAXB classes are
Java serializable.

To enable the generated JAXB classes to work correctly over the SCA EJB binding, add the serializable
customization to the schema definition so that the generated JAXB classes are Java serializable and
implement the java.io.Serializable interface. For example:
<schema targetNamespace="http://com.mycompany/banking/" jaxb:version="2.0"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns="http://www.w3.org/2001/XMLSchema">
<annotation>

<appinfo>
<jaxb:globalBindings>

<jaxb:serializable uid="....."/>
</jaxb:globalBindings>
</appinfo>

</annotation>

<!-- Continue with the rest of the schema definition-->

</schema>

728 Developing WebSphere applications

As a result, you can use your Java implementation with the generated JAXB data types over the EJB
binding, which uses Java serialization. At this point, because you have the generated JAXB artifacts, you
can also use your Java implementation with the generated JAXB data types over the SCA default and
SCA web services bindings, which use XML serialization as defined by JAXB.

If you develop your SCA service using the bottom-up approach starting with Java code, you must use
types that implement the java.io.Serializable interface as required when writing an EJB. See the
developing SCA services with existing Java code documentation for more information regarding
requirements for your user-defined types. Also, see the SCA reference section to learn how to avoid
problems with your user-defined types when using EJB bindings because of the differences between Java
serialization and JAXB marshalling and unmarshalling.

Specifying bindings in an SCA environment
After you develop an Service Component Architecture (SCA) component, you can use bindings to specify
how SCA services and references enable the component to communicate with other applications.

About this task

Services and references enable a component to communicate with other applications. By design, however,
the SCA services and references say nothing about how this communication occurs. Bindings are used to
determine how a component communicates with the world outside its domain. SCA services use bindings
to describe the access mechanism that clients must use to call the service. SCA references use bindings
to describe the access mechanism that is used to call a service. Depending on what the SCA component
is communicating with, a component might or might not have explicitly specified bindings.

The product supports the following binding types:

v SCA binding

The SCA binding is also referred to as the default binding. It is the binding that is used when no other
binding is specified for configuration of a component reference or service. It is the natural binding to use
when your SCA client invokes an SCA service in the same domain.

SCA default bindings are not compatible across implementations by architecture; however, some
interoperability scenarios are enabled between Open SCA and Classic SCA as implemented in the BPM
Suite of products like WebSphere Process Server.

Components communicating within the same domain only need to explicitly configure a default binding
on a service or reference when there is at least one non-default binding, such as the SCA web services
binding or the SCA EJB binding, that is also configured.

v Web service binding

The SCA web services binding applies to the services and references of components. The web service
binding is designed for SOAP-based Web Services-Interoperability (WS-I) compliant web services. This
binding defines the manner in which a service is made available as a web service, and in which a
reference can invoke or access a web service. The web service binding enables SCA applications to
expose SCA services as web services to external clients that might or might not be implemented as an
SCA component. This binding is a Web Services Description Language (WSDL)-based binding which
means that the web service binding either references an existing WSDL binding or enables you to
specify enough information to generate a WSDL file. When an existing WSDL binding is not referenced,
you can generate a WSDL binding. You can further customize an SCA web services binding using SCA
policy sets.

Web services technology plays an important role in most SOA solutions relevant today, including SCA.
The SCA web service binding type enables SCA applications to expose services as web services to
external clients as well as enabling SCA components access to external web services. External clients
that access SCA services exposed as web services may or may not be implemented as an SCA
component. You can use the web service binding element <binding.ws> within either a component
service or a component reference definition. When the web service binding is used with a component

Chapter 19. Developing SCA composites 729

service, this binding type enables clients to access a service offered by a particular component as a
web service. When the web service binding is used with a component reference, components in an
SCA component can consume an external web service and access as if it was any other SCA
component. Only WSDL Version 1.1 is supported.

v EJB binding

EJB session beans are a common technology used to implement business services. The ability to
integrate SCA with services based on session beans is useful because it preserves the investment
incurred during the creation of those business services, while enabling the enterprise to embrace the
newer SCA technology in incremental steps. The simplest form of integration is to simply enable SCA
components to invoke session beans as SCA services. There is also a need to expose services such
that they are consumable by programmers skilled in the EJB programming model. This enables existing
session bean assets to be enhanced to exploit newly deployed SCA services without the EJB
programmers having to learn a new programming model.

The SCA EJB binding enables SCA to integrate with existing Java EE applications. It exposes SCA
services as stateless session beans to external clients. The binding element <binding.ejb> is used
within a component service or component reference definition. Support is provided for the EJB binding
when using both 2.x and 3.0 EJB styles for both the SCA service and reference.

v JMS binding

Use the SCA Java Message Service (JMS) binding to compose and assemble SCA services from new
and existing services that are available using the JMS programming interface. By taking advantage of
the ability to integrate SCA with existing services based on JMS, you can preserve your investment in
enterprise messaging technology, while enabling the enterprise to embrace the new SCA technology in
incremental steps.

The SCA JMS binding enables an open, implementation neutral, service-oriented description of the SCA
service assembly and composition. Use the binding element <binding.jms> within a component service
or component reference definition. SCA services using the JMS binding are exposed using the Java EE
Connector Architecture (JCA)-based messaging provider in WebSphere Application Server.

The product supports the default messaging provider or WebSphere MQ as the messaging engine.

v Atom binding

Use the Atom binding to work with services that provide or consume entries described in the Atom
Syndication Format and Atom Publishing Protocol. An SCA component can reference existing external
web feeds defined using the Atom protocol and work with them inside a Java implementation. Also, you
can use the Atom binding to compose new services and expose them as an Atom feed.

The product supports the Atom binding for OSOA, but not for OASIS.

v HTTP binding

Use the HTTP binding to expose SCA services for consumption by remote JavaScript-enabled web
browser clients. Using this binding, clients can invoke Remote Procedure Calls (RPC) to server-side
SCA components.

The product supports the HTTP binding for OSOA, but not for OASIS.

Procedure
1. Select a binding type to use for an SCA component.

v Use the SCA default binding when you want to invoke an SCA service from an SCA client.

v Use the SCA web services binding to specify that an SCA service is made available as a web
service or an SCA reference can invoke a web service.

v Use the SCA EJB binding to integrate SCA with services based on session beans.

v Use the SCA JMS binding to compose and assemble SCA services from new and existing services.

v Use the Atom binding to expose collections of data as an Atom feed or to reference existing external
Atom feeds.

v Use the HTTP binding with a wire format of JSON-RPC to expose services to remote web browser
clients.

730 Developing WebSphere applications

2. Configure the selected binding and use it in an SCA component or application.

Results

SCA components can use the configured bindings to communicate with other SCA services and
references.

What to do next

Deploy the SCA component or application.

Configuring the SCA default binding
You can configure the Service Component Architecture (SCA) default binding for services and references.

About this task

Bindings determine how a component communicates with the world outside its domain. Services use
bindings to describe the access mechanism that clients must use to call the service. References use
bindings to describe the access mechanism used to call a service. The SCA binding is also referred to as
the default binding. The default binding is the binding that is used when no other binding is specified for a
configuration of a component reference or service. Use this binding when an SCA client invokes an SCA
service in the same domain. It is not intended to be interoperable in any way with other implementations of
SCA runtime environments.

Procedure
v Configure an SCA service with the SCA default binding.

If the service is only exposed over the default binding, then you do not need to explicitly add the
<binding.sca> element because this binding is default binding for SCA. If your SCA service has more
than one binding and the SCA default binding must be one of them, you must specify the <binding.sca>
element in the composite definition.

v Configure an SCA reference with the SCA default binding.

For the reference, you also do not need to specify the <binding.sca> element. For an reference with a
default binding, the reference specifies a target attribute indicating the target service. To indicate the
target at the reference, specify target=componentName/serviceName. If only one service exists for the
service component, then you only need to specify the componentName; for example:
target=ComponentName.

Results

You have implicitly or explicitly configured the SCA default binding for your SCA service or reference.

Example

The following examples illustrate multiple scenarios for configuring the SCA default bindings.

Top level composite with SCA service binding
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples" name="MyComposite">

<component name="HelloWorldServiceComponent">
<implementation.java class="test.HelloWorldImpl"/>

</component>

</composite>

Top level composite with SCA reference binding

Chapter 19. Developing SCA composites 731

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="TargetComponent"/>

</component>

</composite>

OR:

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="TargetComponent/HelloWorld"/>
<!-- compName/serviceName -->
</component>

</composite>

Top level composite with SCA service binding with transaction policy attribute defined
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://neworder/sca/jdbc"
name="NewOrderComposite">

<component name="NewOrderServiceComponent">
<service name="NewOrderService" requires="propagatesTransaction.false"/>
<implementation.java class="neworder.sca.jdbc.NewOrderServiceImpl" requires="managedTransaction.local"/>

</component>

</composite>

Top level composite with SCA service binding supporting WSDL interface
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<service name="HelloWorldService">
<interface.wsdl interface="http://helloworld#wsdl.interface(HelloWorld)"/>

</service>
<implementation.java class="test.HelloWorldImpl"/>
</component>

</composite>

Top level composite with SCA reference binding supporting WSDL interface
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples" name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="MyServiceComponent">

<interface.wsdl interface="http://helloworld#wsdl.interface(HelloWorld)"/>
</reference>

</component>

</composite>

Intra composite over SCA default binding

732 Developing WebSphere applications

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="Service1Composite">

<component name="HWServiceComponent">
<implementation.java class="test.HelloWorldImpl"/>
<reference name="component2Ref" target="Component2"/>

</component>

<component name="Component2">
<implementation.java class="test.Component2Impl"/>
</component>

</composite>

SCA Service with workManager specified for the service
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" xmlns:wm="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://mysca/samples" name="Composite2">

<component name="Component2">
<service name="OneWayService">
<!-- This service uses the @oneway annotation to specify this operation only has an input message

and no output message. -->
<wm:workManager value="wm/scatest"/>
<!-- This service specifies a workManager where the jndiName is wm/scatest. -->

</service>
<implementation.java class="test.Component2Impl"/>
<reference name="component3" target="Component3"/>

</component>

<!-- component service with @oneway (non blocking operation -->
<component name="Component3">
<!-- By not defining the workManager, the SCADefaultWorkmanager that is created by the SCA

runtime environment is used here. -->
<implementation.java class="test.Component3Impl"/>

</component>

</composite>

What to do next

Deploy the SCA component or application.

Configuring Java serialization for the SCA default binding
You can convert objects to a wire format, or serialize the objects, before transmitting them. You can
serialize objects for applications that use the Service Component Architecture (SCA) default binding.

About this task

When using the default binding, objects are serialized to one of several wire formats before being sent. By
default, objects are serialized to XML and sent as text over the wire. However, XML serialization occurs
only with classes that are JAXB serializable. These classes require a default, no-argument constructor as
well as getter and setter methods for each field.

To use non-JAXB serializable objects, you must specify a different wire format in the composite definition
file. Specify the default binding element wireFormat.javaObject as a child element.

Chapter 19. Developing SCA composites 733

When wireFormat.javaObject is used, objects use Java serialization instead of XML and travel as a
stream of bytes over the wire. This enables you to use, for example, non-JAXB serializable Enterprise
JavaBeans with the default binding.

Procedure
1. Open an editor on the composite definition file for your SCA application.

2. Add Java serialization in the default binding of the composite definition file.

a. Add the product SCA namespace to the composite:
<composite xmlns:sca="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06">

b. For each service or reference <binding.sca> element, add a wireFormat.javaObject child element
using that namespace:
<sca:wireFormat.javaObject/>

3. Save the changes to the composite definition file.

Results

You have configured Java serialization over the default bindings for your SCA service or reference.

Using the incorrect wire format might cause a runtime exception in your application.

Example

The following composite definition file configures Java serialization in the SCA default binding:
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://scajavaserialize"
xmlns:sca="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
name="sca-java-serialize-backend">

<component name="SCAJavaSerializationBackendComponent">
<implementation.java class="test.bindings.sca.SerializeBackendImpl"/>

<service name="SerializeBackendService">
<interface.java

interface="test.bindings.sca.SerializeBackendService"
callbackInterface="test.bindings.sca.SerializeCallback">

SCA domain

Component

Composite Composite

Wire

<sca:wireFormat.javaObject/>

Binding SCABinding SCA

Component Component

ServiceReference

Figure 1. For non-JAXB serializable objects, use the wire format javaObject for the SCA default binding

734 Developing WebSphere applications

<binding.sca>
<sca:wireFormat.javaObject/>

</binding.sca>

<callback>
<binding.sca>

<sca:wireFormat.javaObject/>
</binding.sca>

</callback>
</service>

</component>

</composite>

What to do next

Deploy your SCA component in an application.

Using the SCA default binding to find and locate SCA services
The product supports APIs that Service Component Architecture (SCA) and non-SCA clients can use to
find and invoke SCA services over the SCA default binding.

About this task

A non-SCA client can use the OASIS SCAClientFactory API to obtain a service proxy for an OASIS SCA
service in the same domain (product cell). An OASIS SCA client also can use this API as an alternative to
wiring a reference in the composite file.

A non-SCA client can use the product CompositeContext API to obtain a service proxy for an OSOA SCA
service in the same domain. An OSOA SCA client also can use this API as an alternative to wiring a
reference in the composite file.

The SCA service must be deployed, running, and accessible over the default binding, <binding.sca>.

Procedure
v Obtain a service proxy for an OASIS SCA service in the same domain.

The following example shows how to use the OASIS SCAClientFactory API:
import org.oasisopen.sca.client.SCAClientFactory
SCAClientFactory scaClientFactory = SCAClientFactory.newInstance(URI.create("default"));
EchoService echoService = scaClientFactory.getService(EchoService.class, "SCASimpleEchoService");

v Obtain a service proxy for an OSOA SCA service in the same domain.

The following example shows how to use the product CompositeContext API:
import com.ibm.websphere.sca.context.CurrentCompositeContext;
import com.ibm.websphere.sca.context.CompositeContext;
CompositeContext compositeContext = CurrentCompositeContext.getContext();
EchoService echoService =
(EchoService) compositeContext.getService(EchoService.class, "SCASimpleEchoService");

What to do next

To improve performance, the caller can cache the service proxy that is returned by
SCAClientFactory.getService() or CompositeContext.getContext(). Caching echoService in the example
can avoid calls to the service registry for subsequent requests, resulting in better performance.

Chapter 19. Developing SCA composites 735

Configuring the SCA web service binding
You can expose a Service Component Architecture (SCA) application as a web service by configuring an
SCA web service binding.

About this task

The web service binding enables SCA applications to expose services as web services to external clients
and gives SCA components access to external web services. External clients that access SCA services
exposed as web services might or might not be implemented as an SCA component. You can use the web
service binding element <binding.ws> within either a component service or a component reference
definition. When this binding is used with a component service, the web service binding enables clients to
access a service that is offered by a particular component as a web service. If the web service binding is
used with a component reference, components in an SCA composite can consume an external web
service and access it like any other SCA component.

The product supports Web Services Description Language (WSDL) Version 1.1 definitions that also
conform to the WS-I Basic Profile Version 1.1 and Simple SOAP Binding Profile 1.0 standards, and use
the document literal style. For OASIS-level applications only, the rpc-literal style is also supported as long
as it conforms to the above WS-I profiles. All these conditions are required for support.

An SCA web service binding is a WSDL-based binding; meaning that the binding either references an
existing WSDL document or enables you to specify enough information to generate a WSDL document.

You can typically use the same policy set functionality, that you use for defining qualities of service on
Java EE-based web services that are running in the application server, to define quality of service
definitions on SCA clients and services that use the SCA web service binding. When the instructions for
administratively configuring these policy set definitions are different for SCA-based web services than they
are for Java EE-based web services, then special topics and instructions are provided in this information
center. If there are no special instructions for SCA, configure the corresponding quality of service on the
SCA-based web service the same way that you would configure that quality of service for a Java
EE-based web service.

Note: An SCA web service binding provides support for providing and consuming services using the
SOAP Version 1.1 over HTTP and SOAP V1.2 over HTTP protocols.

Note: The product does not support the following functions:

v Java API for XML-Based Web Services (JAX-WS) handlers when using a SCA web service
binding

v Message Transmission Optimization Mechanism (MTOM) or SOAP with Attachments (SwA)
binary message optimizations

Use an SCA web service binding without implementing JAX-WS handlers. Do not use SwA binary
message optimizations or MTOM optimizations for transferring binary data between SCA clients and
services that use the SCA web services binding. Instead of implementing MTOM or SwA binary
message optimizations to send binary data, use the base64Binary XML Schema Definition (XSD)
encoding to embed the data within the SOAP message.

Procedure
1. Configure an SCA service with an SCA web service binding.

Depending on whether you develop your SCA service using the top-down approach starting with an
existing WSDL file or you develop your SCA service using the bottom-up approach starting with
existing Java code, you might or might not have a WSDL file available. Also, the WSDL file might
define only a portType or it might include a port definition as well.

736 Developing WebSphere applications

v For SCA applications that are developed top-down starting from a WSDL port, you must refer to the
port definition in the existing WSDL file by adding a <binding.ws> element as a child of your
<service> element. An example of the syntax for this step follows:
<binding.ws wsdlElement=”<port target Namespace>#wsdl.port(<service name attr>/<port name attr>)”/>

The location attribute of the <address> element for the port is ignored by the runtime environment
when determining the URL at which your service is invoked.

The following WSDL file and composite definition illustrate this scenario:

WSDL file
<wsdl:definitions targetNamespace="http://www.ibm.com/" xmlns:tns="http://www.ibm.com/" ...>

....
<wsdl:portType name="MyPortType ">
....
<wsdl:binding name="MyBinding" type="tns:MyPortType">
....
<wsdl:service name="MyService">

<wsdl:port binding="tns:MyBinding" name="MyPort">
<wsdlsoap:address location=""/>

</wsdl:port>
</wsdl:service>

Composite definition
<composite...>

<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<interface.wsdl interface="http://www.ibm.com/#wsdl.interface(MyPortType)" />
<binding.ws wsdlElement="http:// www.ibm.com/#wsdl.port(MyService/MyPort)" />

</service>
</component>
...

</composite>

v For SCA applications that are developed top-down starting from a WSDL portType, you must create
an empty <binding.ws> element as the child of your <service> element. The empty <binding.ws>
element directs the runtime environment to generate a port that corresponds to your WSDL portType
definition. The generated port uses a SOAP 1.1 over HTTP WSDL binding.

The following WSDL file and composite definition illustrate this scenario:

WSDL file
<wsdl:definitions targetNamespace="http://www.ibm.com/" xmlns:tns="http://www.ibm.com/" ...>

....
<wsdl:portType name="MyPortType ">

Composite definition
<composite...>

<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<interface.wsdl interface="http://www.ibm.com/#wsdl.interface(MyPortType)" />
<binding.ws/>

</service>
</component>
...

</composite>

v For SCA applications that are developed bottom-up starting from existing Java code, you must
create an empty <binding.ws> element as the child of your <service> element. The empty
<binding.ws> element directs the runtime environment to generate a WSDL portType that
corresponds to your Java interface, and a port with a SOAP 1.1 over HTTP WSDL binding.

The following example demonstrates the <binding.ws> element for this scenario:
<composite...>

<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<binding.ws/>

Chapter 19. Developing SCA composites 737

</service>
</component>
...

</composite>

2. Determine the endpoint URL and test the endpoint of your deployed SCA service.

After you configure the SCA service with a web service binding, you can test the endpoint for your
deployed SCA service. Accessing the endpoint with a web browser displays the Axis2 cover page.

The endpoint URL is determined based on one of the following scenarios:

v If there is no uri attribute on the binding, the component resembles:
<component name="C1">
<service name="S1">
<binding.ws/>

Then the endpoint is:
http://<host>:<port>/C1_name/S1_name

v If the uri attribute on the binding is relative, the component resembles:
<component name="C1">
<service name="S1">
<inding.ws name="B1" uri="U1"/>

Then the endpoint is:
http://<host>:<port>/C1/U1

v If the uri attribute on the binding is absolute, which applies to OASIS only and not to OSOA, the
component resembles:
<component name="C1">
<service name="S1">
<inding.ws name="B1" uri="/U1"/>

Then the endpoint is:
http://<host>:<port>/U1

For SCA services that are configured using wsdlElement#wsdl.service, the ports are appended; for
example:
http://<host>:<port>/Component_name/Service_name/Port_name

For OASIS, wsdl.service is not supported.

3. View WSDL or XSD documents for the SCA service with the web service binding.

Append the query string ?wsdl to the endpoint URL. Accessing the URL with a web browser returns
the outermost WSDL. You can then view included and imported documents using relative URLs.

4. Configure an SCA reference (client) with an SCA web service binding.

a. Configure the reference with an <interface.wsdl> element that refers to the portType of the target
service. Read about developing SCA service clients to learn how to configure the reference with an
<interface.wsdl>.

b. Resolve the SCA reference to an actual endpoint of a deployed web service using one of the
mechanisms provided by the SCA web service binding support.

v When the target web service is deployed as an SCA component service in the same domain as
the client component, you can resolve the reference to the target component using the @target
attribute of the <reference> element for OSOA composites or the <binding.ws> element for
OASIS composites. Using the @target attribute eliminates the need to know the specific URL of
the deployed target service.

For example, assume the target service is defined as follows:
<component name="TargetComponent">
<implementation.java .../>
<service name="MyService">

<interface.wsdl ... />
<binding.ws ... />

</service>
</component>

A reference in an OSOA composite can be wired to this service as follows:

738 Developing WebSphere applications

<component name="ClientComponent">
<implementation.java .../>

<!-- Resolution uses @target attribute on reference element. -->
<reference name="myRef" target=”TargetComponent/MyService”>

<interface.wsdl ... />

<!-- The binding does not need endpoint-related info added. -->

<binding.ws/>
</reference>

</component>

A reference in an OASIS composite can be wired to this service as follows:
<component name="ClientComponent">
<implementation.java .../>

<reference name="myRef">
<interface.wsdl ... />

<!-- Resolution done using the @target attribute on binding element. -->
<binding.ws target=”TargetComponent/MyService”/>

</reference>
</component>

In these examples, the binding.ws element does not specify a wsdlElement attribute. The SCA
run time creates a SOAP binding, WSDL service, and WSDL port on each side. If your service
binding specifies a SOAP binding, either directly or indirectly using the WSDL port, your
reference binding must specify a compatible SOAP binding.

v If the target web service is not an SCA service in the same domain as the client, you must use a
binding-specific endpoint resolution mechanism. You can also resolve a reference to an SCA
service in the same domain by using the binding-specific mechanisms, instead of using the
@target annotation.

1) You can define the endpoint for a deployed web service in an existing WSDL file using
<wsdlsoap:address>. For example:
<wsdl:definitions targetNamespace=”http://my.work/test/”

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" ... >
...
<wsdl:portType name="MyPortType">
...
<wsdl:binding name="MyBinding" type="tns:MyPortType">
...
<wsdl:service name="MyService">

<wsdl:port name="MyPort" binding="tns:MyBinding">
<wsdlsoap:address

location="http://www.mywork.com:9080/TargetComponent/MyService "/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

The client points to the WSDL port using a @wsdlElement attribute on the <binding.ws>
element using the following syntax:
<port target Namespace>#wsdl.port(service_name_attribute/port_name_attribute)"/>

For example:
<component name="ClientComponent">

<implementation.java .../>
<reference name="myRef">

<interface.wsdl ... />
<binding.ws wsdlElement="http://my.work/test/#wsdl.port(MyService/MyPort)”/>

</reference>
</component>

2) If the endpoint is not present in the WSDL for the service, there are several ways to specify
the endpoint using the reference. In the following WSDL file, the endpoint
(wsdlsoap:address) is not specified.
<wsdl:definitions targetNamespace=”http://my.work/test/”

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" ... >

...
<wsdl:portType name="MyPortType">

Chapter 19. Developing SCA composites 739

...
<wsdl:binding name="MyBinding" type="tns:MyPortType">
...

<wsdl:service name="MyService">
<wsdl:port name="MyPort" binding="tns:MyBinding">
...

<!-- In this case, the endpoint is not specified. -->
<wsdlsoap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

For OSOA, you can add the endpoint to the composite definition. Add the @uri attribute to
the <binding.ws> element to specify the endpoint. For example:
<!-- An OSOA example composite definition. -->
<component name="ClientComponent">

<implementation.java .../>
<reference name="myRef">

<interface.wsdl ... />
<binding.ws wsdlElement="http://my.work/test/#wsdl.port(MyService/MyPort)”

uri=”http://www.mywork.com:9080/TargetComponent/MyService” />
</reference>

</component>

For OASIS based references, one approach is to add a WSDL binding to the reference.
Then add @uri to the component <binding.ws> element.
<!-- An OASIS example composite definition. -->
<component name="ClientComponent">

<implementation.java .../>
<reference name="myRef">

<interface.wsdl interface="http://my.work/test/#wsdl.interface(MyPortType)"/>
<binding.ws uri=”http://www.mywork.com:9080/TargetComponent/MyService”

wsdlElement="http://my.work/test/#wsdl.binding(MyBinding)” />
</reference>

</component>

5. Optional: If your service or reference interface is bidirectional such that a callback is defined, you must
also configure the web service binding on the callback.

v Configure callback for your SCA web services binding using the WSDL port.

Configuring callback for your SCA web services binding is similar to configuring an SCA service with
the SCA web services binding; however, you add a second service, the callback. When you
configure an SCA service with the SCA web services binding, you define a WSDL port, either
explicitly by pointing directly to a WSDL port definition, or implicitly by giving the runtime enough
information to calculate a WSDL port. Similarly, you must also define a WSDL port for the callback.
A difference for the callback is that the runtime environment defines the WSDL port that is used for
the callback because the runtime environment must keep this port tightly coupled to the forward call.
Therefore, the most you can do when developing your SCA application using the top-down approach
and defining a callback for this service, is to point to a WSDL binding. For example:
<!-- Configuring a service with callback with web service binding -->
<component name="HelloWorldServiceComponent">
<implementation.java class="..." />
<service name="HelloWorldService">
<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”

callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.port(HelloWorldService/HelloWorldSoapPort)"/>
<callback>
<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.binding(HelloWorldCallbackSoapBinding)"/>

</callback>
</service>

</component>

The following example shows a configuration of a client component with reference to this service
with callback defined. The reference and service configuration each share the same view of which
direction is the forward direction and which is the callback direction.
<!-- Configuring a reference with callback with web service binding. -->
<component name="HelloWorldClientComponent">
<implementation.java class="..." />
<reference name="helloWorldRef">
<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”

callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.port(HelloWorldService/HelloWorldSoapPort)"/>
<callback>

740 Developing WebSphere applications

<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.binding(HelloWorldCallbackSoapBinding)" />
</callback>

</reference>
</component>

v Configure callback for your SCA web service binding using the WSDL portType.

Similar to the scenario of configuring a service with a web service binding when starting with a
WSDL port, you also configure an empty <binding.ws> element to configure callback using the
WSDL portType. The following composite definition example illustrates the scenario when starting
with two WSDL portType definitions that has such that one interface uses a forward direction and
the other interface uses callback:
<!-- Configuring a service with callback with web service binding -->
<component name="HelloWorldServiceComponent">
<implementation.java class="..." />
<service name="HelloWorldService">
<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”

callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws/>

<callback>
<binding.ws/>

</callback>
</service>

</component>

<!-- Configuring a reference with callback with web service binding -->
<component name="HelloWorldClientComponent">
<implementation.java class="..." />
<reference name="helloWorldRef">
<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”

callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws/>
<callback>
<binding.ws/>

</callback>
</reference>

</component>

v Configure callback for your SCA web service binding using the Java interface.

For the bottom-up case starting with a Java interface, the composite definition is identical to the
WSDL port and portType scenarios, except that you must replace the <interface.wsdl> elements
with the <interface.java> element. For example:
<interface.java interface="helloworld.HelloWorldService"

callbackInterface="helloworld.HelloWorldCallback"/>

v (Optional: OASIS only) Configure your service to use SOAP 1.1 or 1.2.

You can configure your SCA web service to require a particular SOAP version by providing an
intent. For example:
<binding.ws requires="sca:SOAP.v1_2"/>

Supported intents are sca:SOAP.v1_1 and sca:SOAP.v1_2.

Results

You have a configured SCA web service binding service or reference.

There are additional ways for the web service binding to generate a WSDL port that are not described in
this topic. These additional methods rely on WSDL generation at run time. This can cause problems if the
generated WSDL does not match the original WSDL obtained from a service provider.

You can avoid problems by ensuring that client package references the original WSDL obtained from a
web service provider. If you use the shortcut of omitting a client-side reference to the WSDL, be sure to do
so only in the case when you are sure the WSDL port that is generated for the client is identical to the
WSDL port of the deployed service because the service port is generated using the same algorithm.

For an example that is not problematic, suppose you write a service using the bottom-up style, starting
from a Java interface, and deploy the service with a <binding.ws> element with no attributes. This directs

Chapter 19. Developing SCA composites 741

the runtime environment to generate the WSDL port for this service. Also suppose an SCA client is
developed with access to the original Java classes used to write the service implementation. This SCA
client is used to test the SCA service using a client-side reference with web service binding. You can
configure this reference without any knowledge of the service WSDL. In this case, the reference interface
is the original Java interface of the service, and you can resolve the reference using the <reference>
@target mechanism. See the resolving SCA references documentation for more information about using
the @target attribute to resolve an SCA reference. Using this approach, there is no WSDL to obtain or
refer to in constructing the client. This works because the product runtime environment maps the
service-side Java to WSDL in an identical manner as it maps the client-side Java to WSDL.

In contrast, the following scenario is problematic. Suppose that you write an SCA client with a web service
binding reference to a web service that is hosted on a platform other than the product. It might seem
reasonable to generate your Java client from the service provider, and then ignore the WSDL from that
point on, avoiding the additional syntax in your client-side composite definition. To do this, you use the
<binding.ws> element @uri attribute to specify the endpoint URL where the service is hosted. This
scenario is problematic because it forces the runtime environment to generate a WSDL port for the client
which might result in subtle mismatches between the WSDL generated for the client side and the actual
WSDL port description of the deployed web service.

What to do next

Deploy your composite that has the SCA web services binding service or reference.

Note: If the composite uses a bidirectional interface as an SCA service interface and a
NullPointerException results when you add your SCA module or application to a business-level
application (for example, using the wsadmin AdminTask.addCompUnit command), you might need
to add the SCA @Callback annotation to the forward Java interface.

A NullPointerException can occur whether you are using a top-down development style (starting from
WSDL or XSD) or a bottom-up style (starting from Java). With the top-down style, a composite definition
typically includes a bidirectional interface definition such as the following:
<interface.wsdl interface="http://forward.my/intf#wsdl.interface(ForwardIntf)"

callbackInterface="http://callback.my/intf#wsdl.interface(CallbackIntf)"/>

With the bottom-up style, a composite definition typically includes a bidirectional interface definition such
as the following:
<interface.java interface="my.forward.intf.ForwardIntf"

callbackInterface="my.callback.intf.CallbackIntf"/>

The NullPointerException can occur if the forward Java interface is not annotated with @Callback, or more
specifically @org.osoa.sca.annotations.Callback. In the top-down example, the forward Java interface is
the class generated from portType, http://forward.my/intf/ForwardIntf using the wsimport tool or
my.forward.intf.ForwardIntf if the default options are used. In the bottom-up example, the forward Java
interface is the class my.forward.intf.ForwardIntf.

To fix the NullPointerException problem, add the @Callback annotation to the forward Java interface and
recompile. The @Callback annotation is a class-level annotation with a single argument, the callback
interface Class object; for example:
...
import org.osoa.sca.annotations.Callback
@Callback(my.callback.intf.CallbackIntf.class)
public interface ForwardIntf {
...

If you are using the recommended top-down development style, the forward Java interface is a generated
class. It is generated from the WSDL portType using the wsimport tool. Use the -s or -keep option so that

742 Developing WebSphere applications

wsimport generates the Java source files, and then add the @Callback annotation manually to the
generated class and recompile.

Configuring web service binding custom endpoints to support a proxy server
You can configure custom service endpoints for Service Component Architecture (SCA) web service
bindings that are accessed by Hypertext Transfer Protocol (HTTP).

Before you begin

Before you begin this task, install your SCA application.

About this task

When a service is exposed over the SCA web service binding, the service endpoint is specific to the
server in which the service is hosted. Clients use this endpoint URI to access the service. In some cases,
you may want clients to indirectly reference the service by using a proxy server as the service endpoint.
For example, a proxy server is required to implement clustered web service binding endpoints. To enable
clients to use a proxied endpoints, there are two ways to do this:

v If your endpoints are specified in the SCA contributions composite definition or WSDL document
location attribute, you must specify the proxy server endpoint instead of the WebSphere server specific
endpoint.

v If your client resolves the endpoint by using the target attribute in your client composite definition, use
the administrative console to configure the custom endpoints for SCA composites that are accessed by
the Hypertext Transfer Protocol (HTTP) protocol. This approach is the most flexible for SCA clients
within the same domain as their service providers. When using the target attribute, SCA references can
resolve the service endpoints without the client specifying endpoints in the composite definition or
WSDL document.

Procedure
1. In the administrative console, click Applications > Application Types > Business-level applications

> application_name > composition_unit_name > Provide HTTP endpoint URL information.

2. Select the HTTP endpoint URL prefix.

When entering custom endpoints, specify one and only one endpoint URL prefix each for the HTTP
and HTTPS protocols.

Results

You have configured web service bindings custom endpoints.

What to do next

You can configure the bindings to do transport layer authentication.

Configuring the SCA web service binding to transport SOAP messages over JMS
You can configure a Service Component Architecture (SCA) web service binding to transport SOAP
messages over Java Message Service (JMS) protocol.

Before you begin

For information about web service bindings, read “Configuring the SCA web service binding” on page 736.

About this task

Web services technology plays an important role in most service-oriented architecture (SOA) solutions
relevant today, including SCA. The web service binding type enables SCA applications to expose services

Chapter 19. Developing SCA composites 743

as web services to external clients and gives SCA components access to external web services. Using
JMS as a transport for web services provides a reliable asynchronous messaging transport for request and
response.

This topic describes how to configure a web service binding to flow SOAP messages over JMS.

Note: The web service binding supports Web Services Description Language (WSDL) Version 1.1.
Further, the web service binding supports industry standard SOAP/JMS protocol and IBM
proprietary SOAP over JMS protocol.

Procedure
1. Identify and configure JMS resources using the administrative console or the wsadmin scripting tool.

Refer to topics on creating JMS resources based on different JMS providers.

For example, to identify and configure JMS resources based on the default JMS provider, do the
following:

a. Create a service integration bus and associate a bus member.

b. Create destinations for the request and response for the service integration bus.

c. Create destinations for the request and response under JMS resources.

d. Create an activation specification that is associated with a request destination.

e. Create connection factories to process the request and to send the response.

2. Configure an SCA service with an SCA web service binding to transport SOAP messages over JMS.

Configure a web service binding as described in “Configuring the SCA web service binding” on page
736 with three additional attributes under the <binding.ws> element to use a JMS transport:

v Web service binding endpoint uri attribute

v @activationSpec attribute

v Response @responseConnectionFactory attribute

a. Open an editor on the SCA composite definition file that specifies an SCA service with a web
service binding.

b. In the composite definition file, configure the web service binding endpoint uri attribute.

Specify the uniform resource identifier (URI) in SOAP over JMS endpoint uniform resource locator
(URL) syntax. A JMS endpoint URL accesses web services with a JMS transport. The URL
specifies the JMS destinations, connection factory, and port component name for the web service
request.

Specify the URI in syntax that supports either of the following protocols:
v Industry standard SOAP/JMS protocol (recommended)
v IBM proprietary SOAP over JMS protocol (deprecated)

URI based on industry standard SOAP over JMS protocol

The syntax for a URI based on industry standard SOAP over JMS protocol is as follows:
uri=jms:jndi:<destination_JNDI_name>?<property>=<value>&<property>=<value>& ...

The URL consists of the jms: transport type, followed by the jndi: variant type, followed by the
Java Naming and Directory Interface (JNDI) name of the destination queue or topic, followed by
the query string containing a list of property and value pairs that specify JMS endpoint information.
The jndi: variant means that JNDI is used to locate object names in the endpoint URL string.

For property, you can specify URL properties such as the following:

Table 80. JMS endpoint URL properties typically used for a URI based on industry standard SOAP over JMS
protocol. The properties are jndiConnectionFactoryName, targetService, and replyToName.
Property name Description

jndiConnectionFactoryName Specifies the JNDI name of the connection factory that is used by the client run time to establish a connection to
the JMS messaging engine. jndiConnectionFactoryName is optional for the service uri attribute.

744 Developing WebSphere applications

Table 80. JMS endpoint URL properties typically used for a URI based on industry standard SOAP over JMS
protocol (continued). The properties are jndiConnectionFactoryName, targetService, and replyToName.
Property name Description

targetService Specifies the target service to which to deliver the message. For a forward call from a service to a reference,
targetService has the format serviceComponentName/serviceName. In a callback uri, targetService has the format
referenceComponentName/referenceName.

replyToName Specifies the JNDI name of the JMS destination to which the response message is sent. replyToName is a
JMS-related property that enables the client to use a previously defined, permanent queue rather than a temporary
queue, for receiving replies.

For a complete list of properties supported, refer to the topic on JMS endpoint URL syntax.

A URI based on industry standard SOAP over JMS protocol resembles the following:
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"

URI based on IBM proprietary SOAP over JMS protocol

Attention: IBM proprietary SOAP over JMS protocol is deprecated.

The syntax for a URI based on IBM proprietary SOAP over JMS protocol is as follows:
uri=jms:/[queue|topic]?<property>=<value>&<property>=<value>& ...

The URL consists of the jms: transport type, followed by either /queue or /topic to specify the
JMS destination type, followed by the query string containing a list of property and value pairs that
specify the JMS endpoint information.

For property, you can specify URL properties such as the following:

Table 81. JMS endpoint URL properties typically used for a URI based on IBM proprietary SOAP over JMS protocol.
The properties are destination, connectionFactory, replyToDestination, and targetService.
Property name Description

destination Specifies the JNDI name of the destination queue or topic.

connectionFactory Specifies the JNDI name of the connection factory. connectionFactory is optional for the service uri attribute.

replyToDestination Specifies the JNDI name to which a response is sent. replyToDestination is optional for the service uri attribute.

targetService Specifies the target service to which to deliver the message. For a forward call from a service to a reference,
targetService has the format serviceComponentName/serviceName. In a callback uri, targetService has the format
referenceComponentName/referenceName.

For a complete list of properties supported, refer to the IBM proprietary SOAP over JMS protocol
topic.

A URI based on IBM proprietary SOAP over JMS protocol resembles the following:
uri="jms:/queue?destination=jms/MyBankAccountService_Request&connectionFactory
=jms/MyBankAccountService_CF&replyToDestination=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"

c. In the composite definition file, configure an @activationSpec attribute under the <binding.ws>
element.

The attribute identifies the activation specification that the service uses to connect to the JMS
destination and to process incoming request messages.

For the destination associated with this activation specification, specify the request destination
defined in the web service binding endpoint uri; for example:
soapjms:activationSpec="jms/AccountActivationSpec"

Qualify the OSOA SCA composite by setting xmlns:soapjms="http://www.ibm.com/xmlns/prod/
websphere/sca/1.0/2007/06".

Qualify the OASIS SCA composite by setting xmlns:soapjms="http://www.ibm.com/xmlns/prod/
websphere/sca/1.1".

d. In the composite definition file, configure a response @responseConnectionFactory attribute under
the <binding.ws> element to send a response back to the client when request-response messaging
pattern is used.

For example:

Chapter 19. Developing SCA composites 745

soapjms:responseConnectionFactory="jms/Account_Response_CF"

Qualify the OSOA SCA composite by setting xmlns:soapjms="http://www.ibm.com/xmlns/prod/
websphere/sca/1.0/2007/06".

Qualify the OASIS SCA composite by setting xmlns:soapjms="http://www.ibm.com/xmlns/prod/
websphere/sca/1.1".

After these updates are made to the <binding.ws> element, the OSOA SCA composite definition file
resembles:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.ibm.com/samples/sca/mybank"
name="MyBank">
<component name="AccountServiceComponent">
<implementation.java
class="samples.mybank.AccountServiceImpl"/>

<service name="AccountService">
<interface.wsdl
interface=

"http://www.mybank.com/account#wsdl.interface(AccountService)" />
<binding.ws

wsdlElement=
"http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"

uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"

soapjms:activationSpec="jms/MyBankAccountService_AS"

soapjms:responseConnectionFactory="jms/MyBankAccountService_CF"/>
</service>

</component>
</composite>

The OASIS SCA composite definition file is similar except for the namespace prefixes, which are:
xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"

3. Configure an SCA reference (client) with an SCA web service binding to transport SOAP message over
JMS.

Configure a web service binding with a web service binding endpoint uri attribute specific to JMS
transport under the <binding.ws> element.

a. Open an editor on the SCA composite definition file that specifies an SCA reference with a web
service binding.

b. In the composite definition file, configure the web service binding endpoint uri.

Specify the URI in SOAP over JMS endpoint URL syntax. The URL specifies the JMS destinations,
connection factory, and port component name for the web service request. A JMS endpoint URL
can be based on industry standard SOAP/JMS protocol (recommended) or on IBM proprietary
SOAP over JMS protocol. For a description of the URI syntax, see step 2(b). In SOAP over JMS
support for web service bindings, you must use the <binding.ws> uri attribute for endpoint
resolution to the target component; you cannot use the SCA reference @target attribute.

The URI resembles the following:
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"

After you define the URI in the <binding.ws> element, the OSOA SCA composite definition file
resembles:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://www.ibm.com/samples/sca/mybank"
name="MyBankClient">
<component name="AccountSummaryService">
<implementation.java

746 Developing WebSphere applications

class="samples.mybank.AccountSummaryServiceImpl"/>
<reference name="accountService">
<interface.wsdl
interface=
"http://www.mybank.com/account#wsdl.interface(AccountService)" />

<binding.ws
wsdlElement=
"http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"

uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"/>

</reference>
</component>

</composite>

In an OASIS SCA composite definition file, the binding element cannot include both the uri and
wsdlElement attributes. You must use one or the other. If you use wsdlElement, the WSDL port
definition in the WSDL file specifies the URI as shown in the following example:
<wsdl:service name="AccountService">
<wsdl:port binding="account:AccountServiceSOAP" name="AccountServicePort">
<soap:address
location="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"/>

</wsdl:port>
</wsdl:service>

Results

You have a configured an SCA web service binding service or reference.

Example

Configuring a request-response Message Exchange Pattern for SOAP over JMS

This example describes a <binding.ws> element in the composite definition file for a request-response
message exchange pattern from an SCA component reference to an SCA component service.

The following example shows an OSOA SCA component with a reference binding:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.ibm.com/samples/sca/mybank" name="MyBankClient">

<component name="AccountSummaryService">
<implementation.java class="samples.mybank.AccountSummaryServiceImpl"/>
<reference name="accountService">
<interface.wsdl interface="http://www.mybank.com/account#wsdl.interface(AccountService)"/>
<binding.ws
wsdlElement="http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"/>

</reference>
</component>

</composite>

The following example shows an OSOA SCA component with a service binding:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.ibm.com/samples/sca/mybank" name="MyBank">

<component name="AccountServiceComponent">
<implementation.java class="samples.mybank.AccountServiceImpl"/>
<service name="AccountService">
<interface.wsdl interface="http://www.mybank.com/account#wsdl.interface(AccountService)"/>
<binding.ws

Chapter 19. Developing SCA composites 747

wsdlElement="http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response
&targetService=AccountServiceComponent/AccountService"

soapjms:activationSpec="jms/MyBankAccountService_AS"
soapjms:responseConnectionFactory="jms/MyBankAccountService_CF"/>

</service>
</component>

</composite>

You can use these composite definition examples for @OneWay Message Exchange Pattern. When using
@OneWay, the reference binding URI does not need to specify replyToName because there is no reply for
the @OneWay call.

Configuring an SCA callback for SOAP over JMS

This example describes a <binding.ws> element in the composite definition file for a callback message
exchange pattern between an SCA component reference and an SCA component service.

The following example shows an OSOA SCA component with a reference binding:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.ibm.com/samples/sca/mybank" name="MyBankClient">

<component name="AccountSummaryService">
<implementation.java class="samples.mybank.AccountSummaryServiceImpl"/>
<reference name="accountService">
<interface.wsdl

interface="http://www.mybank.com/account#wsdl.interface(AccountService)"
callbackInterface="http://www.mybank.com/account#wsdl.interface(AccountServiceCallback)"/>

<binding.ws
wsdlElement="http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName

=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response&
targetService=AccountServiceComponent/AccountService"/>

<callback>
<binding.ws

wsdlElement="http://www.mybank.com/account#wsdl.binding(AccountServiceCallback)"
uri="jms:jndi:jms/MyBankAccountService_Callback?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response&
targetService=AccountServiceComponent/AccountService"
soapjms:activationSpec="jms/$MyBankAccountService_Callback_AS"
soapjms:responseConnectionFactory="jms/MyBankAccountService_CF"/>

</callback>
</reference>

</component>
</composite>

For the OASIS SCA composite, the soapjms namespace is:
xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"

targetService is the target service to which a message is delivered. In a forward call from a service to a
reference, specify the targetService in the format serviceComponentName/serviceName. In the callback URI,
specify the targetService in the format referenceComponentName/referenceName.

The callback binding on the reference becomes an SCA service binding for the callback call. Hence
activationSpec and responseConnectionFactory must be defined.

The following example shows an OSOA SCA component with a service binding:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.ibm.com/samples/sca/mybank" name="MyBank">

<component name="AccountServiceComponent">

748 Developing WebSphere applications

<implementation.java class="samples.mybank.AccountServiceImpl"/>
<service name="AccountService">
<interface.wsdl interface="http://www.mybank.com/account#wsdl.interface(AccountService)"

callbackInterface="http://www.mybank.com/account#wsdl.interface(AccountServiceCallback)"/>
<binding.ws

wsdlElement="http://www.mybank.com/account#wsdl.port(AccountService/AccountServicePort)"
uri="jms:jndi:jms/MyBankAccountService_Request?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response&
targetService=AccountServiceComponent/AccountService"
soapjms:activationSpec="jms/MyBankAccountService_AS"
soapjms:responseConnectionFactory="jms/MyBankAccountService_CF" />
<callback>
<binding.ws

wsdlElement="http://www.mybank.com/account#wsdl.binding(AccountServiceCallback)"
uri="jms:jndi:jms/MyBankAccountService_Callback?jndiConnectionFactoryName
=jms/MyBankAccountService_CF&replyToName=jms/MyBankAccountService_Response&
targetService=AccountServiceComponent/AccountService" />

</callback>
</service>

</component>
</composite>

For the OASIS SCA composite, the soapjms namespace is:
xmlns:soapjms="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"

The service binding callback element does not need to specify a JMS endpoint URI because the callback
URI is derived from the reference binding.

The callback binding on the service becomes a SCA reference binding for the callback call from the
service back to the reference. Hence activationSpec and responseConnectionFactory need not be defined.

In some examples, the uri value is shown on multiple lines for publication. In your composite definition,
place the uri value on one line.

What to do next

Deploy the SCA composite in an application and test the flow of messages over the web service binding.

Configuring EJB bindings in SCA applications
Use this task to learn how to use Enterprise JavaBeans (EJB) bindings in SCA applications.

Support is provided for EJB bindings in 2.x and 3.x-style beans, for service and reference.

The EJB bindings do not support interface.wsdl files.

The following is an example of an composite definition that has a service exposed over an EJB 3.x
binding:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://neworder/sca/jdbc"
name="NewOrderComposite">

<component name="NewOrderEJB3ServiceComponent">
<implementation.java class="neworder.sca.jdbc.NewOrderServiceImpl" requires="managedTransaction.local"/>
<service name="NewOrderService" requires="suspendsTransaction">
<interface.java interface="neworder.sca.jdbc.NewOrderService"/>
<binding.ejb ejb-version="EJB3"/>
</service>
</component>
</composite>

Chapter 19. Developing SCA composites 749

A client that wants to invoke the resultant enterprise bean would treat it like any other enterprise bean and
not like a regular SCA service. CompositeContext.getService is not supported for a non-SCA binding,
therefore, a getService() on the CompositeContext would not work here. The following is the client code
for the previous example:
InitialContext ctxt = new InitialContext();
Object remoteObj = ctxt.lookup("ejb/sca/ejbbinding/NewOrderEJB3ServiceComponent/NewOrderService#neworder.sca.jdbc.NewOrderServiceRemote");
NewOrderServiceRemote newOrderRemote = (NewOrderServiceRemote) PortableRemoteObject.narrow(remoteObj, NewOrderServiceRemote.class);

The following is an example of an composite definition that contains references to both EJB 2.x and EJB
3.x bindings:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://erww.workload" name="ConvertComposite">

<component name="ConvertInputOutputServiceComponent">
<implementation.java class="convert.inputoutput.sca.ConvertInputOutputServiceImpl"

<reference name="priceQuoteSessionReference">
<interface.java interface="priceQuoteSession.PriceQuoteSession"/>
<binding.ejb uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#ejb/session/PriceQuoteSessionFacadeBean"/>
</reference>
</component>
</composite>

Different binding.ejb attributes can be used for service side EJB bindings or reference side EJB bindings.
The following information explains how the default value is calculated for each side:

Service side

The service side EJB binding applies only to Java archive (JAR)-packaged SCA applications.

EJB 2.0-level beans
URI is the JNDI name for the home; it can be calculated with the default short name in the
following form:
/sca/ejbbinding/component_name/service_name

Therefore, the URI can be calculated as:
corbaname:iiop:localhost:2812/NameServiceServerRoot#ejb/sca/ejbbinding/component_name/service_name

You can use it to look up home.

EJB 3.x-level beans
The URI contains the component-id, therefore, it is calculated the same as the EJB 2.0 beans as
follows:
sca/ejbbinding/component_name/service_name

The URI can be calculated as:
corbaname:iiop:localhost:2812/NameServiceServerRoot#ejb/sca/ejbbinding/component_name/service_name#package.qualified.interface of
SCA Java interface with prefix of Remote or Local to the class name

You can use it directly to get the business interface.

The following code example displays as if it were a session bean:
<session name="ServiceNameBean" component-id="sca/ejbbinding/component_name/service_name"/>

When an SCA service is exposed through an EJB service binding, the service is exposed through an
enterprise bean. During deployment, the SCA runtime generates a session bean for the service exposed
through the EJB binding. The caller of the composite service can invoke this service by accessing the
generated enterprise bean as if they are invoking any enterprise bean.

750 Developing WebSphere applications

The generated enterprise bean for the composite service is in the profile_root/installedApps/cell_name/
sca.composite.nameApp.ear/ directory. Callers need to include the client required classes, such as remote
or home, of the generated bean in the classpath or bundle the classes in the JAR file. In addition, if the
caller application is running on a non-WebSphere application server, a "Bare" Java Standard Edition (SE),
or a version of WebSphere Application Server previous to version 7.0 without the Feature Pack for EJB
3.0, then you must run the createEJBStubs command for the generated EJB module to generate
client-side stubs and include the generated subs at the client application. The createEJBStubs command is
under the profile_root/installedApps/cell_name/sca.composite.nameApp.ear/ directory. See the topic
on the create stubs command.

Reference side

The reference side EJB binding applies to both JAR-packaged applications and web application archive
(WAR)-packaged applications, if not otherwise stated.

v The URI is used to lookup either the EJB 2.x home or EJB 3.x business interface. Follow the naming
convention of the Java Enterprise Edition (JEE) specification if you are using an existing JEE EJB
module. If you use an SCA service with the binding.ejb attribute, use the value mentioned above. For
more information about the EJB 3.x JNDI name, see the topic EJB 3.x bindings overview.

v homeInterface: Not used

v ejb-link-name: Only applies to WAR-packaged SCA applications. When URI is not defined, use it to look
up an EJB module that is defined in the same enterprise archive (EAR) as the WAR.

v session-type: default value "stateless"

v ejb-version: default value "EJB2"

Attention: A lookup issue for EJB 3.x reference bindings might occur when the URI follows the
corbaname:iiop:host:port/NameServiceServerRoot##ejb3_binding_longform pattern This problem exists
only for EJB 3.x reference bindings. When the EJB 3.x reference binding URI follows the
corbaname:iiop:host:port/NameServiceServerRoot##ejb3_binding_longform pattern, where
ejb_binding_longform is ejb/<component-id#<package.qualified.interface>, and if more than one
enterprise bean that is implementing the same interface is deployed on that server, lookup may not be
directed to the correct EJB with corresponding component ID.

An example of a URI where this problem can occur is as follows:
uri="corbaname:iiop:host:port/NameServiceServerRoot#ejb/EJB3CounterSample/EJB3Beans.jar
/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter

There are two enterprise beans implementing the com.ibm.websphere.ejb3sample.counter.RemoteCounter
interface. To avoid this issue:

v Use a URI that does not start with "corbaname:"

v Use a binding name in the URI that is an EJB binding short form, for example,
corbaname:iiop:host:port/NameServiceServerRoot#<package.qualified.interface>.

v Use a binding name in the URI that is a unique user-defined binding name.

v Ensure that the two enterprise beans that are deployed on the server do not implement the same
interface.

v Ensure that the EJB binding URI is pointing to an EJB 2.0 bean.

To resolve this problem, follow these guidelines:

v If the EJB reference binding is accessing an enterprise bean that is located in the same cell, the URI
should not start with "corbaname:."

v For same cell lookup, the URI pattern should be one of the following.
uri="ejb/EJB3CounterSample/EJB3Beans.jar/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

or

Chapter 19. Developing SCA composites 751

|
|
|
|
|
|
|
|
|

uri="cell/clusters/cluster_name/ejb/EJB3CounterSample/EJB3Beans.jar
/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

or
uri="cell/nodes/node_name/servers/server_name//ejb/EJB3CounterSample/EJB3Beans.jar
/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

v Even in cross cell access, the recommended method is to create a namespace binding for the
enterprise bean that is accessed by the EJB reference binding. After the namespace binding is created,
use the namespace binding in the URI of the EJB reference binding as uri="cell/persistent/
name_in_namespace_binding".

Different patterns of the SCA EJB reference binding URI are based on the user setup and configurations.
If the SCA EJB reference binding is accessing a stateless session bean on the same server, the EJB
reference binding URI can be designated as the JNDI name, uri="ejb/com/app/resumebank/
ResumeBankHome". If the SCA EJB reference binding is referencing another SCA service with an EJB
binding in the same server, the URI can be designated as the JNDI name, uri="ejb/com/app/resumebank/
ResumeBankHome".

If the EJB reference binding is accessing a stateless session bean that is deployed in the same cell, the
URI can be based on cluster/node/server setup, for example:
uri="cell/clusters/cluster2/ejb/com/app/resumebank/ResumeBankHome"
uri="cell/nodes/node_name/servers/server_name/ejb/com/app/resumebank/ResumeBankHome"

If the EJB reference binding is accessing a stateless session bean on a different cell (cross cell) or a
mixed cell, you need to create a namespace binding, either an enterprise bean or Corba type, in the
administrative console and use the name in namespace binding in EJB reference binding URI such as,
uri="cell/persistent/name_in_namespace_binding". For example, uri="cell/persistent/neworder"
where neworder is name in the namespace binding.

Using EJB bindings in SCA applications in a cluster environment
Use this task to learn how to use Enterprise JavaBeans (EJB) bindings that are deployed in Service
Component Architecture (SCA) applications in a cluster environment.

Service side

When an SCA service is exposed with a binding.ejb element, the service is exposed through an enterprise
bean. During deployment, the SCA runtime generates a session bean for the service that is exposed
through EJB binding. The caller of the composite service can invoke this service by accessing the
generated EJB.

If the service is exposed through an EJB 2 bean, the EJB is bound at:
ejb/sca/ejbbinding/component_name/service_name

For example:
ejb/sca/ejbbinding/CompanyComponent/Company

If the service is exposed through an EJB 3.x bean, the EJB is bound at:
ejb/sca/ejbbinding/component_name/service_name#fullyQualifiedServiceInterfaceNameRemote

For example:
ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.CompanyRemote

The generated EJB for the composite service will be under profile_root/installedApps/cell_name/
composite_name.ear/.

752 Developing WebSphere applications

|
|
|
|
|
|

Callers need to include client required classes (such as remote or home) of this generated bean in their
classpath (or bundle the classes in their JAR file).

Lookup and invoke of this generated service EJB from a clustered environment is the same as lookup and
invoke of any EJB in a product clustered setup. Refer to "Naming considerations in clustered and
cross-server environments" in the EJB 3.x application bindings overview topic.

Reference side

When used on the reference side, the binding.ejb element should specify a URI attribute with values that
match the value that is typically used when an EJB client calls the initialContext.lookup() method. The
general convention is:
"corbaname:iiop:host:port/NameServiceServerRoot#JNDI_name"

where JNDI_name is the JNDI name of the target EJB.

For example:
uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#ejb/session/PriceQuoteSessionFacadeBean"

JNDI name syntax differs if the target EJB is an EJB 2 or EJB 3.x bean.

When the referred EJB service is in a different cell, the URI might resemble one of the following:
uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

or
uri="corbaname::/NameServiceServerRoot#cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

or
uri="cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

if the target EJB is on the same machine but on different cluster.

In advanced scenarios on multiple-server environments, a simpler and more portable way to access the
target EJB application from an SCA composite is to set up a namespace binding and use the namespace
binding name in the URI attribute of the binding.ejb along with cell/persistent/. For example:
uri="cell/persistent/PriceQuote"

where PriceQuote is the name field in the namespace.

The namespace binding can be of type EJB or CORBA based on the advanced scenario.

If the target EJB application which the composite is trying to access is on same cell, but on a different
server, node or cluster, configure an EJB namespace binding. You can do this from the administrative
console:

1. Click Environment > Naming > Name space bindings.

2. Select the cell scope.

3. Click New.

4. On the Specify binding type page, select the EJB binding type.

5. On the Specify basic properties page, specify the binding identifier, name in namespace, enterprise
bean location such as server cluster or single server (with node), and JNDI name as needed. Use the
Name in name space field to construct the URI as cell/persistent/name_in_namespace.

Chapter 19. Developing SCA composites 753

If the composite is running on a Version 7.0 cell and the target EJB application is running on a Version 6.1
product, configure a CORBA namespace binding with the correct Corbaname URL of the target EJB.
Example Corbaname URL syntax is:
"corbaname:iiop:host:port/NameServiceServerRoot#jndi_name"

After you configure the namespace binding, use the Name in name space field to construct the URI; for
example, uri="cell/persistent/PriceQuote" where PriceQuote is the value in the Name in name space
field of the binding.

An advantage of using a namespace binding is, even when the target EJB changes, the composite
definition does not need to change. Only the namespace binding needs to change accordingly.

SCA EJB reference binding URI patterns

Use an EJB reference binding URI pattern that is appropriate for the user setup and configuration:

v If an EJB reference binding accesses a stateless session bean on the same server, the EJB reference
binding URI can be a Java Naming and Directory Interface (JNDI) name of the stateless session bean.
For example:
uri="ejb/com/app/resumebank/ResumeBankHome"

v If the EJB reference binding references another SCA service with the EJB binding on the same server,
then the EJB reference binding URI can be either of the following:

– The JNDI name of the stateless session bean. For example,
uri="ejb/com/app/resumebank/ResumeBankHome"

– A binding that uses the SCA reference target mechanism instead of the binding URI:
<reference name="service1" target=”component_name/service_name”>
....
<binding.ejb/>
</reference>

v If the EJB reference binding is accessing a stateless session bean that is deployed in the same cell, the
EJB reference binding URI can be based on the cluster/node/server setup. See the following examples:

– Accessing a stateless session bean deployed in the same cell and on cluster2
uri="cell/clusters/cluster2/ejb/com/app/resumebank/ResumeBankHome"

– Accessing a stateless session bean deployed in the same cell but on a different node.
uri="cell/nodes/node_name/servers/server_name/ejb/com/app/resumebank/ResumeBankHome"

v If an EJB reference binding accesses a stateless session bean on a cell other than the current cell or
on a mixed cell, then you can configure a reference binding URI in either of the following ways:

– Create a namespace binding of either a Corba or EJB type using the administrative console. After
configuring the namespace binding, use the Name in name space value to construct the URI as:
uri="cell/persistent/name_in_namespace_binding"

For example, if neworder is the name in the namespace binding, then the URI is
uri="cell/persistent/neworder".

– Use corbaname for the EJB reference binding URI. For example:
corbaname:iiop:<hostName><port>/NameServiceServerRoot#jndi_name

where hostName and port are the respective host and port, and where the target stateless session
bean is running. jndi_name is the JNDI name of the EJB which differs between EJB2 and EJB3.

Configuring EJB bindings in SCA OASIS applications
You can configure Enterprise JavaBeans (EJB) service and reference bindings for use in SCA OASIS
applications.

754 Developing WebSphere applications

About this task

Note: The SCA stateless session bean binding is a protocol binding that you can use to integrate SCA
with EJB-based services. The product provides OASIS support for both EJB 3.x and 2.x bindings
for services and references.

v Configure an EJB service binding to expose an SCA service as a stateless session bean for
consumption by Java Platform, Enterprise Edition (Java EE) applications.

v Configure an EJB reference binding to enable SCA components to invoke stateless session beans.

Procedure
v Configure EJB service bindings and invoke them in caller applications.

Steps follow for configuring EJB 3.x and 2.x bindings:

EJB 3.x binding

1. Configure an EJB 3.x binding in a composite definition.

The following example shows an OASIS composite definition that has a service exposed over an
EJB 3.x binding:
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.ibm.com/samples/sca/ejb/jobbank"
name="JobBank">

<component name="CompanyComponent">
<implementation.java class="com.app.jobbank.CompanyImpl"/>
<!-- Expose service over the EJB 3.x binding -->

<service name="Company">
<interface.java interface="com.app.jobbank.Company"/>
<binding.ejb/>

</service>
</component>

</composite>

The default ejb-version is EJB3 in an SCA OASIS implementation. You do not need to specify
ejb-version. However, you can explicitly define ejb-version; for example:
<binding.ejb ejb-version="EJB3"/>

Do not specify the uniform resource identifier (URI) for the EJB service binding in the composite
definition. The run time will generate a unique URI, which is used as the JNDI name for the session
bean endpoint that is generated for the SCA service, and ignore any URI for the EJB service binding
in the composite definition.

2. Package the SCA composite with the service interface and implementation in a Java archive (JAR)
and deploy the JAR in a business-level application.

During SCA service startup, the run time generates a stateless session bean endpoint in memory
that a Java EE client can invoke using the Java EE client programming model.

The JNDI name for a generated session bean has the following format:
ejb/sca/ejbbinding/component_name/service_name#package.qualified.sca.interface

The JNDI name for the generated session bean for the jobbank composite service in step 1 is:
ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.Company

3. Invoke the SCA service from a Java EE client application.

The following code shows how to lookup and invoke an SCA service exposed as an EJB 3.x binding
from a Java EE caller application:
// Look up EJB for the SCA service
Object remoteObj =

initialContext.lookup("ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.Company");
Company company = (Company) PortableRemoteObject.narrow(remoteObj, Company.class);
// Invoke component service by invoking EJB method
String result = company.getCompanyInfo("ACME");

The Java EE caller application should use an SCA service interface as an EJB remote interface for
the lookup and invocation. In the sample code, Company is an SCA service or business interface that
is declared under the <interface.java> element. Thus, the only class required by the Java EE
caller application is an SCA service or business interface.

Chapter 19. Developing SCA composites 755

The SCA service can be looked up based on the WebSphere topology like a typical EJB; for
example:

"cell/nodes/node_name/servers/server_name/ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.Company"

"cell/clusters/cluster_name/ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.Company"

"corbaname:iiop:host:port/NameServiceServerRoot#ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.Company"

EJB 2.x binding

1. Configure an EJB 2.x binding in a composite definition.

The following example shows an OASIS composite definition that has a service exposed over an
EJB 2.x binding:
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.ibm.com/samples/sca/ejb/jobbank"
name="JobBank">

<component name="CompanyComponent">
<implementation.java class="com.app.jobbank.CompanyImpl"/>
<!-- Expose service over the EJB 3.x binding -->
<service name="Company">

<interface.java interface="com.app.jobbank.Company"/>
<binding.ejb ejb-version="EJB2"/>

</service>
</component>

</composite>

You must explicitly define ejb-version as EJB2.

Do not specify the URI for the EJB service binding in the composite definition. The run time will
generate a unique URI, which is used as the JNDI name for the session bean endpoint that is
generated for the SCA service, and ignore any URI for the EJB service binding in the composite
definition.

2. Package the SCA composite with the stateless session bean service binding in a JAR and deploy
the JAR in a business-level application.

During deployment, the SCA run time generates a 2.x stateless session bean. The JNDI name
pattern for a generated session bean is:
ejb/sca/ejbbinding/component_name/service_name

The JNDI name for the generated session bean for the jobbank composite service in step 1 is:
ejb/sca/ejbbinding/CompanyComponent/Company

The generated session bean for the composite service is under the directory, profile_root/
installedApps/cell_name/sca.composite.nameApp.ear; for example: profile_root/installedApps/
cell_name/JobBankApp.ear.

3. Invoke the SCA service from a Java EE client application.

The Java EE caller application invoking this SCA service should do either of the following:

– Bundle generated classes from the directory in step 2 with the client application.

– Add the generated EJB module JAR file from the directory in step 2 to the client class path.

If the caller application is running on a non-WebSphere application server, a "Bare" Java
Standard Edition (SE), or a version of WebSphere Application Server previous to version 7.0
without the Feature Pack for EJB 3.0, then you must run the createEJBStubs command for the
generated EJB module to generate client-side stubs and include the generated subs at the client
application. The createEJBStubs command is under the profile_root/installedApps/cell_name/
sca.composite.nameApp.ear/ directory. See the topic on the create stubs command.

If the caller of the SCA service is another SCA reference with an EJB binding, the caller SCA
composite does not need to include the generated home, remote interface because the SCA
reference binding implementation can invoke the SCA service binding implementation using only
the SCA interface.

v Configure EJB reference bindings.

An EJB reference binding enables SCA components to invoke stateless session beans.

The following example shows an SCA composite definition that contains an SCA reference with an EJB
binding:

756 Developing WebSphere applications

|
|
|
|
|
|

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
targetNamespace="http://www.ibm.com/samples/sca/ejb/jobbank"
name="JobBank">

<component name="CompanyComponent">

<reference name="extEJBService">
<interface.java interface="com.app.resumebank.ResumeBank"/>
<binding.ejb uri="ejb/com/app/resumebank/ResumeBankHome"/>

</reference>

</component>
</composite>

An EJB reference binding supports invocation of both local and remote stateless session beans.

The binding URI should be the JNDI name of the stateless session bean which the SCA reference is
trying to invoke. The JNDI name of the session bean can be in the EJB 2.x or EJB 3.x format based on
whether the target EJB version is 2.x or 3.x. The JNDI name can be local if the target is a local session
bean or remote if the target is remote.

You do not need to specify an ejb-version attribute under the <binding.ejb> element for an EJB
reference binding.

Also, you do not need to package the target session bean home interface or client stubs with an SCA
component with an EJB reference binding. The EJB session bean binding implementation can
dynamically look up, create, and invoke the bean without the usual EJB client classes.

For the SCA reference interface, use either the target EJB interface or its compatible interface. Interface
compatibility rules are defined under Section 3.1, Compatibility of Interfaces used for SCA Services &
References with EJB Session Bean Interfaces, of the EJB Session Bean Binding Specification 1.1.

Some of the supported binding uri formats are in the following list. For binding uri, follow EJB 2.x or
EJB 3.x JNDI lookup name formats based on the target EJB type.

Corba url format
<binding.ejb uri="corbaname:iiop:host:port/NameServiceServerRoot#jndi_name"/>

Local session bean
<binding.ejb uri="ejblocal:jndi_name"/>

uri based on the topology

Cluster
<binding.ejb uri="cell/clusters/cluster_name/jndi_name" />

Server
<binding.ejb uri="cell/nodes/node_name/servers/server_name/jndi_name" />

Persistent namespace
<binding.ejb uri="cell/persistent/name_in_persistent_namespace_binding"/>

Results

You have configured an EJB service or reference binding for an SCA OASIS application.

Use of the bindings has the following limitations:

v A local EJB invocation from a Java EE application to an SCA service with an EJB 2.x or EJB 3.x
binding is not supported.

v A Java EE application running on a non-WebSphere application server, on “bare” Java Standard Edition
(SE), or on a WebSphere application server previous to Version 7.0 without the Feature Pack for EJB
3.0 cannot invoke the SCA EJB 3.x service binding.

v The product does not support an SCA composite that has both EJB 2.x and EJB 3.x services in
different components but implements the same interface.

Chapter 19. Developing SCA composites 757

|
|

What to do next

Ensure that your components do not use an SCA OASIS implementation that the product does not
support.

Table 82. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA EJB Session Bean Binding specification.

Section Not supported in SCA OASIS implementation

2 Session Bean Binding Schema binding.ejb/@uri for SCA service binding

v The SCA stateless EJB implementation automatically generates a unique URI based on the
component name, service name, and service interface. The URI is used as the EJB service
endpoint.

See step 1 in the "Configure EJB service bindings and invoke them in caller applications"
procedure.

corbaname:rir:#ejb/MyHome

v The product supports the cobra url format:

corbaname:iiop:host:port/NameServiceServerRoot#jndi_name

ejb-link-name

v The product does not support ejb-link-name in the SCA OASIS implementation.

Configuring the SCA JMS binding
You can configure the Service Component Architecture (SCA) Java Message Service (JMS) binding for
services and references to support messaging between SCA applications and JMS providers.

Before you begin

Use the administrative console to enable the SIB service and Configuration reload enabled option on the
application server where the application runs. Restart the server to enable the dynamic reloading of the
SIB configuration files for this server. See the SIB service settings information to learn more about
enabling the SIB service.

When you use the JMS binding, it is important that you follow best practice guidelines on design,
configuration, and tuning of the messaging topology. Following these guidelines is especially important
when you design systems for high throughput or high availability. Read the documentation on using JMS
bindings in this information center, specifically “Multiple-server bus with clustering.” The developerWorks
articles “Configuring and tuning WebSphere MQ for performance on Windows and UNIX” and
“Performance tuning for Java Messaging Service on WebSphere Application Server on z/OS” also provide
useful information.

About this task

Bindings determine how a component communicates with the world outside its domain. SCA services use
bindings to describe the access mechanism that clients must use to call the service. SCA references use
bindings to describe the access mechanism used to call a service.

Using the SCA JMS binding, you can make SCA components available over JMS or you can use existing
JMS applications within an SCA environment. You can use the SCA JMS binding element, <binding.jms>,
within either a component service or a component reference definition. When a JMS binding is applied
within a component service interface definition, the JMS binding enables clients to access an SCA service
that is offered by a JMS provider. When the JMS binding is applied on a component reference, the SCA
component can consume an external JMS application or another SCA component using JMS.

WebSphere Application Server supports asynchronous messaging using JMS. The default messaging
provider enables enterprise applications deployed on WebSphere Application Server to perform

758 Developing WebSphere applications

asynchronous messaging without the need for you to install a JMS provider. The default messaging
provider is installed and runs as part of WebSphere Application Server. The product supports the default
messaging provider or WebSphere MQ as the messaging engine.

The SCA JMS Binding specification describes the <binding.jms> binding element and available attributes
and options. To learn more about the <binding.jms> binding element, see the SCA JMS Binding
specification documentation.

The product supports both the OASIS and the OSOA SCA JMS binding specification. Unless otherwise
specified, the information in this topic pertains to applications for both the OSOA and OASIS specification.

SCA with JMS supports the following messaging exchange patterns:

v request-response messaging

v one-way messaging

v one-way messaging with callback

A request is a message that is sent to an SCA service or sent by an SCA reference. A response is a
message that is received back at a reference or a message that is sent by a service in response to a
previous request message. In SCA, a response is always a reply to a previous request. In a one-way
message, a request message is sent and a response is not expected.

This task describes the steps necessary to enable SCA applications for JMS using request-response or
one-way messaging.

Procedure
1. Identify the SCA business-level application that you want to enable for JMS messaging.

2. Identify and configure the JMS resources for your SCA application.

You can configure JMS resources for the default messaging provider before deployment of the SCA
application. During deployment of the SCA application, the product can dynamically create any JMS
resources that the JMS binding needs that do not exist if the composite definition file is configured for
dynamic resource creation.

SCA applications are bound to JMS resources through their binding definitions in a corresponding
composite definition file. The composite definition file for JMS uses Java Naming and Directory
Interface (JNDI) names to identify JMS administered objects that are used by the SCA runtime
environment on behalf of the SCA application to provide access over the specified binding.

You can configure the following JMS resource references in the JNDI directory or choose for the
product to dynamically create the resources for you:

v a service integration bus

v a request queue and a response queue. A response queue is only required for request-response
messaging. The physical queues and the logical queues must be defined.

v an activation specification to handle the request to the service

v a connection factory to process the response

To learn more about manually creating JMS resources, see the documentation on JMS resources for
the default messaging provider. To learn more about dynamically creating JMS resources, see the
dynamic JMS resource creation during deployment information.

3. Configure an SCA service with the SCA JMS binding.

To expose an SCA service over the JMS binding, add the <binding.jms> element within the service
definition.

Within the <binding.jms> element, define the following:

v an <activationSpec> element to identify the activation specification that the binding uses to connect
to a JMS destination to process request messages

v a response <connectionFactory> element for request-response messaging patterns

Chapter 19. Developing SCA composites 759

v a response <destination> element that describes the JMS destination for responses from the JMS
binding. Specifying the response destination is optional because the runtime environment obtains
the JMSReplyTo destination that is set on the incoming request message to determine the response
destination. If the JMSReplyTo attribute is not set on the request message, the response
<destination> element is used to identify the response destination. This element is not applicable
for one-way messaging patterns.

4. Configure an SCA reference with the SCA JMS binding.

To consume or expose a JMS application or SCA reference with the JMS binding, add the
<binding.jms> element within the SCA reference definition.

Within the <binding.jms> element, define the following:

v a <connectionFactory> element to identify the JNDI name of the connection factory used to process
messages sent from the reference to the referenced service

v a <destination> element to identify the JMS queue or topic that is used to send messages to the
referenced service

v a response <destination> element that describes the JMS destination queue used to process
responses from the JMS binding. This element is optional for request-response messaging and not
applicable for one-way messaging

Note: Differences between the OSOA and OASIS JMS binding specifications might affect migration of
applications from OSOA to OASIS. Some commonly encountered differences include:

v The validation schemas used for the OASIS applications are defined by the OASIS SCA
specification. The OASIS binding schema definition mandates that binding elements appear
in the exact order as defined in the schema. For OSOA applications, element order does not
affect validation so, when migrating applications from OSOA, ensure the binding elements
are in the order specified by the OASIS binding schema.

v For the <destination>, <connectionFactory>, and <activationSpec> elements, the name
attribute is jndiName in OASIS.

v In OASIS composites, callback references must specify a destination element. The specified
destination is used only if the destination cannot be determined from the
scaCallbackDestination or JMSReplyTo properties of the service request message. In OSOA
composites, callback references can omit the destination element if it is known that one of
the properties is always set.

For information on other differences, consult the OASIS specification for additional information
about specific elements.

5. Optional: Configure JMS message correlation.

You can optionally configure a JMS correlation identification for a request message and its response.
Because of the asynchronous nature of JMS, it is important to determine if message correlation is
required. A request-response messaging pattern is not equivalent to synchronous messaging.

You can use the @correlationScheme element to identify the correlation scheme used when sending a
reply or callback messages.

For OSOA, the valid values for this element are: RequestMsgIDToCorrelID,
RequestCorrelIDToCorrelID, and none. The default value is RequestMsgIDToCorrelID.

For OASIS, the valid values for this element are: sca:messageID, sca:correlationID, and sca:none.

To configure JMS message correlation, you can specify a correlationID element within the composite
definition file that is used within the JMS header to link two messages.

6. Optional: Invoke an operation using JMS operation selection

v Use the default JMS binding operation selection.

v Use JMS user property operation selection.

v Use a JMS custom operation selector.

760 Developing WebSphere applications

Using the @nativeOperation attribute in a composite definition, your application can override operation
selection; for example, in OSOA:
<service>
<binding.jms>
...
<operationProperties
name="operationToInvoke"
nativeOperation="selectedOperation"/>

...
</binding.jms>

</service>

Or, in OASIS:
<service>
<binding.jms>
...
<operationProperties
name="operationToInvoke"
selectedOperation="selectedOperation"/>

...
</binding.jms>

</service>

In this example, when the configured operation selector selects the operation named
selectedOperation, the run time invokes operation operationToInvoke on the target service
implementation. The overriding occurs whether the service binding is configured using default JMS
operation selection, JMS user property operation selection, or a JMS custom selector.

Results

You have defined the JMS resources you need for your SCA application, configured the SCA JMS binding
for your SCA services and references, and deployed your application. Your application is now ready for
use.

Example

The following example illustrates two SCA component implementations and the use of request-response
and one-way messaging.

HelloService
component

LoggingService
component

Logging
queue

Java SE
JMS client

Request
queue

Response
queue

Request-response
messaging

JMS binding
on an SCA
service interface

JMS binding
on an SCA
reference

JMS binding
on an SCA
service interface

One-way messaging

Figure 2. SCA JMS binding example

Chapter 19. Developing SCA composites 761

The HelloService component implementation illustrates the request-response message pattern. This
HelloService component exposes the service interface with the name, getGreeting, that is used to
illustrate a return response of hello plus the value of getGreeting.

The LoggingService component implementation is a logging service. This component exposes a one-way
service interface with the name, log, that receives a message and logs the message in a repository.

The HelloService has an SCA reference to the LoggingService. Each time the HelloService service
receives a message, it calls the LoggingService service to log the message.

In this example, a Thin Client for JMS application sends a message, formatted as a JMS ObjectMessage
message type to the SCA HelloService using the jms/SCA_sample_Request queue. The ObjectMessage
sets the scaOperationName property to the value, getGreetings. The HelloServiceComponent receives the
message over the JMS HelloService binding. The HelloServiceComponent then sends a request to the
referenced service, LoggingService, and the one-way operation is complete. HelloServiceComponent
sends a response of hello plus the value of getGreetings to the client application using the
jms/SCA_sample_Response queue to complete the request-response operation.

Configuring an SCA JMS binding for a request-response service from a JMS client to SCA service

The following example describes a <binding.jms> element within the component definition file for a
request-response message exchange pattern from a JMS client to an SCA service:

OSOA composite
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.0"
name="HelloServiceComposite">

<component name="HelloServiceComponent">
<implementation.java class="soa.sca.samples.jms.HelloServiceImpl"/>
<service name="HelloService">

<interface.java interface="soa.sca.samples.jms.HelloService"/>
<binding.jms>
<ts:wireFormat.jmsObject/>
<destination name="jms/SCA_sample_Request" type="queue"/>
<activationSpec name="jms/SCA_sample_AS"/>
<response>

<destination name="jms/SCA_sample_Response" type="queue"/>
<connectionFactory name="jms/SCA_sample_CF"/>

</response>
</binding.jms>

</service>
</component>

</composite>

OASIS composite
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.1"
name="HelloServiceComposite">

<component name="HelloServiceComponent">
<implementation.java class="soa.sca.samples.jms.HelloServiceImpl"/>
<service name="HelloService">

<interface.java interface="soa.sca.samples.jms.HelloService"/>
<binding.jms>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_sample_Request" type="queue"/>
<activationSpec jndiName="jms/SCA_sample_AS"/>
<response>

762 Developing WebSphere applications

<destination jndiName="jms/SCA_sample_Response" type="queue"/>
<connectionFactory jndiName="jms/SCA_sample_CF"/>

</response>
</binding.jms>

</service>
</component>

</composite>

v The <destination> describes the JMS destination. The destination type is either a queue or topic. This
example illustrates the JMS destination queue type. The destination is used to process requests by the
JMS binding to the component implementation that contains the service interface

v The <activationSpec> element identifies the activation specification that the binding uses to connect to
a JMS destination to process request messages. The activation specification name must be a JNDI
name. The <activationSpec> element is only supported within the SCA <service> tag.

v The <response> element defines the resources used for processing response messages. In this
example, the response element specifies the resources for sending messages from the <service> back
to the client.

v The response <destination> element describes the JMS destination queue that is used to process
responses from the service interface.

v The response <connectionFactory> element identifies the JNDI name of the connection factory that the
binding uses to process response messages.

v The <ts:wireFormat.jmsObject/> specifies to the JMS binding that the payload of the message is of the
type, javax.jms.Message (ObjectMessage).

The following example describes a <binding.jms> element within the component definition file for a
one-way interaction from one SCA service to another SCA service. The <binding.jms> binding definition is
similar to the HelloService; however, because the message operation is one-way, there is not a response
definition.

OSOA composite
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.0"
name="HelloServiceComposite">

<component name="LoggingService">
<implementation.java class="soa.sca.samples.jms.LoggingServiceImpl"/>

<service name="LoggingService">
<interface.java interface="soa.sca.samples.jms.LoggingService"/>

<binding.jms>
<ts:wireFormat.jmsObject/>
<destination name="jms/SCA_Logging_Request" type="queue"/>
<activationSpec name="jms/SCA_sample_AS"/>

</binding.jms>
</service>

</component>
</composite>

OASIS composite
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.1"
name="HelloServiceComposite">

<component name="LoggingService">
<implementation.java class="soa.sca.samples.jms.LoggingServiceImpl"/>

<service jndiName="LoggingService">

Chapter 19. Developing SCA composites 763

<interface.java interface="soa.sca.samples.jms.LoggingService"/>
<binding.jms>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_Logging_Request" type="queue"/>
<activationSpec jndiName="jms/SCA_sample_AS"/>

</binding.jms>
</service>

</component>
</composite>

Configuring an SCA JMS binding for two-way service from a JMS client to SCA reference

The following example describes a <binding.jms> element within the component definition file for a
request-response message exchange pattern from a JMS client to an SCA reference:

OSOA SCA reference
<reference name="helloWorldService">

<interface.java interface="my.HelloWorldService"/>
<binding.jms>

<connectionFactory name="jms/helloWorldServiceCF"/>
<destination name="jms/HelloWorldService"/>
<response>

<destination name="jms/SCA_sample_Response"/>
</response>

</binding.jms>
</reference>

OASIS SCA reference
<reference name="helloWorldService">

<interface.java interface="my.HelloWorldService"/>
<binding.jms>

<connectionFactory jndiName="jms/helloWorldServiceCF"/>
<destination jndiName="jms/HelloWorldService"/>
<response>

<destination jndiName="jms/SCA_sample_Response"/>
</response>

</binding.jms>
</reference>

v The <connectionFactory> element is used in the SCA reference to identify the JNDI name of the
connection factory used to process messages sent from the reference to the referenced service. The
<activationSpec> element is not supported in a reference.

v The <destination> element is the JMS queue or topic that is used to send messages to the referenced
component implementation.

v The response <destination> element is the JMS resource that is used to receive response messages
to the SCA reference.

Authenticating with a secure bus

You can specify an authentication alias on the reference binding or service binding in the composite file to
authenticate with a secure bus. Use the authentication-alias attribute to specify the predefined
authentication alias instead of specifying it in the activation specification or connection factory settings.

A <binding.jms> element does not propagate the identity of the client. For details on creating a J2C
authentication alias, see Managing Java 2 Connector Architecture authentication data entries for JAAS.

OSOA SCA composite
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:websphere="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"

764 Developing WebSphere applications

name="HelloServiceComposite">
<component name="HelloServiceComponent">
<implementation.java class="soa.sca.samples.jms.HelloServiceImpl"/>
<service name="HelloService">
<interface.java interface="soa.sca.samples.jms.HelloService"/>
<binding.jms websphere:authentication-alias="SCA_Auth_Alias">
<destination name="jms/SCA_sample_Request" type="queue"/>
<activationSpec name="jms/SCA_sample_AS"/>
<response>
<destination name="jms/SCA_sample_Response" type="queue"/>
<connectionFactory name="jms/SCA_sample_CF"/>

</response>
<ts:wireFormat.jmsObject/>

</binding.jms>
</service>

</component>
</composite>

OASIS SCA composite
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://www.ibm.com/soa/sca/samples"
xmlns:hw="http://www.ibm.com/soa/sca/samples"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.1"
xmlns:websphere="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"
name="HelloServiceComposite">

<component name="HelloServiceComponent">
<implementation.java class="soa.sca.samples.jms.HelloServiceImpl"/>
<service name="HelloService">
<interface.java interface="soa.sca.samples.jms.HelloService"/>
<binding.jms websphere:authentication-alias="SCA_Auth_Alias">
<destination jndiName="jms/SCA_sample_Request" type="queue"/>
<activationSpec jndiName="jms/SCA_sample_AS"/>
<response>
<destination jndiName="jms/SCA_sample_Response" type="queue"/>
<connectionFactory jndiName="jms/SCA_sample_CF"/>

</response>
<ts:wireFormat.jmsObject/>

</binding.jms>
</service>

</component>
</composite>

What to do next

Based on your business needs, you can configure an SCA JMS binding wire format or configure
transactions for the SCA JMS binding.

Explore the JMS binding samples to better understand how to invoke an SCA component service using a
JMS client. For information on JMS samples, see “SCA samples.” To download JMS binding samples from
a product website:

1. Go to the Samples, Version 8.5 information center.

2. On the Downloads tab, click FTP or HTTP in the Service Component Architecture section.

3. In the authentication window, click OK.

4. From the SCA.zip compressed file, download the SCA/JMS directory and follow instructions in
SCA/JMS/documentation/readme.html to build the files.

Instead of building deployable files, you can use the prebuilt jms-callback-service.jar,
jms-twoway-oneway-service.jar, and jms-twoway-service.jar files in the SCA/installableApps
directory of the compressed file.

After you obtain your SCA components, deploy the components in an application and test the JMS
binding.

Chapter 19. Developing SCA composites 765

Configuring SCA JMS binding wire formats
You can configure the messaging data formats between an SCA application and a JMS producer or
consumer, by configuring your SCA application to take advantage of a supported message type and data
format.

Before you begin

Configure the JMS binding for your SCA application.

About this task

JMS producers and consumers use a variety of message types to hold application data payloads. You can
use the JMS BytesMessage, ObjectMessage, or TextMessage message types. In some cases, the
TextMessage message type might be expected to contain additional structure such as application data in
serialized XML format.

Wire format describes the format of the data that is on the wire. For the SCA JMS binding, the wire format
is the format of the data in the JMS message that flows through the JMS provider. Because of the variety
of message types and formats, SCA services and references that are configured with a JMS binding might
require additional configuration so that the runtime environment can perform the marshalling and
unmarshalling required to translate between application data formats and the format of the JMS message
on the wire. The additional configuration of message types is the specification of the wire format for
message handling.

Whether you are configuring an SCA service or reference, it is important to recognize if the wire format is
previously established by your existing messaging application infrastructure, or if you are selecting the wire
format along with your SCA application. If you are starting with an application with a preexisting messaging
infrastructure and you are adding your SCA application to this environment, the wire format is likely
already determined by the messaging infrastructure. If you are starting with an SCA application and you
intend for this application to interact with future JMS message producers or consumers, you can specify
the wire format within your SCA application.

For the cases when the wire format is predetermined, it is expected behavior that the wire format enables
a natural mapping to the format expected by your preexisting message producers and consumer when
dealing with input and non-exception output. However, exception conditions might not be handled
according to the convention for the wire format type in your existing messaging application infrastructure. If
you want exceptions to flow over the JMS binding, you might need to adjust the producers or consumers
interacting with your SCA application over the JMS binding according to the exception handling behavior.

JMS binding wire format is supported for applications coded to both the OSOA and OASIS specifications.
Unless otherwise specified, the information in this topic pertains to both OSOA and OASIS applications.

Procedure
1. Determine if you are using a wire format that is predetermined by your existing messaging

infrastructure or if you are starting with an SCA application and defining the message wire format.

2. Determine the message type to use for your wire format.

See Supported message types for SCA JMS binding wire formats.

3. If you are using a wire format predetermined by your existing messaging infrastructure, add the
corresponding wire format element into the composition definition file.

4. Ensure that your SCA service and service client implementation and interfaces map appropriately for
the specific wire format that you selected.

5. (optional) If you want exception checking to occur over the JMS binding, ensure that the JMS producer
and consumer that is interoperating with your SCA application follows the SCA JMS binding exception
handling procedures described previously.

766 Developing WebSphere applications

6. If you are starting with an SCA application and defining the message infrastructure, add the
appropriate wire format element into the composition definition file, and ensure that your future JMS
producer or consumer applications understand how to interoperate with this message data format.

Results

You have configured the messaging data format between an SCA application and a JMS producer or
consumer.

Examples of configuring SCA JMS binding wire formats

The following examples illustrate the configuration of composite definition files using the various wire
format schemes. Component references are configured in an analogous manner

TextMessage with serialized XML wire format that maps data using JAXB

This example illustrates the TextMessage with serialized XML wire format that maps data using JAXB,
which is the default wire format:

OSOA
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test/soa/sca/"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.0"
name="JBC">

<component name="JAXBComponent">
<implementation.java class="test.backend.HelloWorldJAXBBackendImpl" />
<service name="HelloWorldJAXBService">
<interface.wsdl interface="http://test.hello#wsdl.interface(HelloWorld)"/>
<binding.jms>
<destination name="jms/Request1" type="queue" create="never"/>
<activationSpec name="jms/AS1"/>
<response>
<destination name="jms/Response1" type="queue" create="never"/>
<connectionFactory name="jms/CF" create="never"/>

</response>
<!-- No wire format element is necessary, the default is used. -->

</binding.jms>
</service>

</component>
</composite>

OASIS
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

targetNamespace="http://test/soa/sca/"
xmlns:ts="http://tuscany.apache.org/xmlns/sca/1.1"
name="JBC">

<component name="JAXBComponent">
<implementation.java class="test.backend.HelloWorldJAXBBackendImpl" />
<service name="HelloWorldJAXBService">
<interface.wsdl interface="http://test.hello#wsdl.interface(HelloWorld)"/>
<binding.jms>
<!-- No wire format element is necessary, the default is used. -->
<destination jndiName="jms/Request1" type="queue" create="never"/>
<activationSpec jndiName="jms/AS1"/>
<response>
<destination jndiName="jms/Response1" type="queue" create="never"/>
<connectionFactory jndiName="jms/CF" create="never"/>

</response>

Chapter 19. Developing SCA composites 767

</binding.jms>
</service>

</component>
</composite>

ObjectMessage wire format that maps to the java.lang.Object class

This example illustrates the ObjectMessage wire format that maps to the java.lang.Object class:

OSOA
<component name="SerializableComponent">

<implementation.java class="test.backend.HelloWorldSerializableBackendImpl"/>
<service name="HelloWorldSerializableService">

<interface.java interface="test.HelloWorldSerializableService"/>
<binding.jms>
<destination name="jms/Request2" type="queue" create="never"/>
<activationSpec name="jms/AS2"/>
<response>
<destination name="jms/Response2"/>
<connectionFactory name="jms/CF" create="never"/>

</response>
<!-- The wire format element must appear last in the binding definition

to conform to the OSOA schema. -->
<ts:wireFormat.jmsObject/>

</binding.jms>
</service>

</component>

OASIS
<component name="SerializableComponent">

<implementation.java class="test.backend.HelloWorldSerializableBackendImpl"/>
<service name="HelloWorldSerializableService">

<interface.java interface="test.HelloWorldSerializableService"/>
<binding.jms>
<!-- The wire format element must appear first in the binding definition

to conform to the OASIS schema. -->
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/Request2" type="queue" create="never"/>
<activationSpec jndiName="jms/AS2"/>
<response>
<destination jndiName="jms/Response2"/>
<connectionFactory jndiName="jms/CF" create="never"/>

</response>
</binding.jms>

</service>
</component>

TextMessage wire format that maps to single string messages

This example illustrates the TextMessage wire format that maps to single string messages:

OSOA
<component name="JMSTextBackendComponent">

<implementation.java class="test.backend.HelloWorldTextBackendImpl" />
<service name="HelloWorldTextService">

<interface.java interface="test.HelloWorldTextService"/>
<binding.jms>

<destination name="jms/Request3"/>
<activationSpec name="jms/AS3"/>
<response>

<destination name="jms/Response3"/>
<connectionFactory name="jms/CF" create="never"/>

</response>
<!-- The wire format element must appear last in the binding definition

to conform to the OSOA schema. -->

768 Developing WebSphere applications

<ts:wireFormat.jmsText/>
</binding.jms>

</service>
</component>

OASIS
<component name="JMSTextBackendComponent">

<implementation.java class="test.backend.HelloWorldTextBackendImpl" />
<service name="HelloWorldTextService">

<interface.java interface="test.HelloWorldTextService"/>
<binding.jms>

<!-- The wire format element must appear first in the binding definition
to conform to the OASIS schema. -->

<ts:wireFormat.jmsText/>
<destination jndiName="jms/Request3"/>
<activationSpec jndiName="jms/AS3"/>
<response>

<destination jndiName="jms/Response3"/>
<connectionFactory jndiName="jms/CF" create="never"/>

</response>
</binding.jms>

</service>
</component>

BytesMessage wire format that maps to single byte array messages

This example illustrates the BytesMessage wire format that maps to single byte array messages:

OSOA
<component name="JMSBytesBackendComponent">

<implementation.java class="test.backend.HelloWorldBytesBackendImpl" />
<service name="HelloWorldBytesService">
<interface.java interface="test.HelloWorldBytesService"/>
<binding.jms>
<destination name="jms/Request4"/>
<activationSpec name="jms/AS4"/>
<response>
<destination name="jms/Response4"/>
<connectionFactory name="jms/CF" create="never"/>

</response>
<!-- The wire format element must appear last in the binding definition

to conform to the OSOA schema. -->
<ts:wireFormat.jmsBytes/>

</binding.jms>
</service>

</component>

OASIS
<component name="JMSBytesBackendComponent">

<implementation.java class="test.backend.HelloWorldBytesBackendImpl" />
<service name="HelloWorldBytesService">
<interface.java interface="test.HelloWorldBytesService"/>
<binding.jms>
<!-- The wire format element must appear first in the binding definition

to conform to the OASIS schema. -->
<ts:wireFormat.jmsBytes/>
<destination jndiName="jms/Request4"/>
<activationSpec jndiName="jms/AS4"/>
<response>
<destination jndiName="jms/Response4"/>
<connectionFactory jndiName="jms/CF" create="never"/>

</response>
</binding.jms>

</service>
</component>

Chapter 19. Developing SCA composites 769

JMS message wire format that does not extract the message payload and maps to the javax.jms.Message
class

This example illustrates the JMS Message wire format that does not extract the message payload and
maps to the javax.jms.Message class:

OSOA
<component name="JMSTextBackendComponent">

<implementation.java class="test.backend.HelloWorldTextBackendImpl" />
<service name="HelloWorldTextService">
<interface.java interface="test.HelloWorldTextService"/>
<binding.jms>
<destination name="jms/Request4"/>
<activationSpec name="jms/AS4"/>
<response>
<destination name="jms/Response4"/>
<connectionFactory name="jms/CF" create="never"/>

</response>
<!-- The wire format element must appear last in the binding definition

to conform to the OSOA schema. -->
<ts:wireFormat.jmsText/>

</binding.jms>
</service>

</component>

OASIS
<component name="JMSTextBackendComponent">

<implementation.java class="test.backend.HelloWorldTextBackendImpl" />
<service name="HelloWorldTextService">
<interface.java interface="test.HelloWorldTextService"/>
<binding.jms>
<!-- The wire format element must appear first in the binding definition

to conform to the OASIS schema. -->
<ts:wireFormat.jmsText/>
<destination jndiName="jms/Request4"/>
<activationSpec jndiName="jms/AS4"/>
<response>
<destination jndiName="jms/Response4"/>
<connectionFactory jndiName="jms/CF" create="never"/>

</response>
</binding.jms>

</service>
</component>

Examples of TextMessage messages using JAXB

The following examples illustrate the contents of TextMessage messages produced by using JAXB
marshalling in the default wire format. These examples are based on using the bottom-up approach of
developing SCA applications starting with a Java interface, rather than the best practice of starting with a
WSDL interface, such that the runtime environment generates the WSDL file.

v For a client invoking an SCA reference with the following interface method:
package com.ibm.test.soa.sca;
public String getGreetings(String name);

The binding produces a TextMessage request message with XML payload similar to the following:
<ns2:getGreetings xmlns:ns2="http://sca.soa.test.ibm.com/">

<arg0>Mike</arg0>
</ns2:getGreetings>

The response message must be a TextMessage with XML payload similar to the following:
<ns2:getGreetingsResponse xmlns:ns2="http://sca.soa.test.ibm.com/">

<return>Hello Mike</return>
</ns2:getGreetingsResponse>

770 Developing WebSphere applications

Similarly, an SCA service bound to a destination, from which TextMessage messages of this format
were delivered, requires the same service interface method; for example:
package com.ibm.test.soa.sca;
public String getGreetings(String name);

v For a client invoking an SCA reference with the following interface method:
package com.ibm.test.soa.sca;
public void getGreeting(FullName name, String string);

In this example, the FullName type is mapped to Java using JAXB using the following schema definition:
<schema targetNamespace="http://www.ibm.com/test/soa/sca/"

elementFormDefault="qualified"
xmlns=http://www.w3.org/2001/XMLSchema>

<complexType name="FullName">
<sequence>
<element name="firstName" type="string"/>
<element name="lastName" type="string"/>

</sequence>
</complexType>

</schema>

The binding produces a TextMessage request message with XML payload similar to the following:
<ns2:getGreetings xmlns:ns2="http://sca.soa.test.ibm.com/">

<arg0>Mike</arg0>
</ns2:getGreetings>

The response message must be a TextMessage request message with XML payload similar to the
following:
<ns3:getGreeting xmlns:ns3="http://sca.soa.test.ibm.com/"

xmlns:ns2="http://www.ibm.com/test/soa/sca/">
<arg0>

<ns2:firstName>Bob</ns2:firstName>
<ns2:lastName>Jones</ns2:lastName>

</arg0>
<arg1>home</arg1>

</ns3:getGreeting>

Similarly, an SCA service bound to a destination, from which TextMessage messages of this format
were delivered, requires the same service interface method; for example:
package com.ibm.test.soa.sca;
public String getGreeting(FullName name, String string);

Supported message types for SCA JMS binding wire formats:

For a Service Component Architecture (SCA) application that has a Java Message Service (JMS) binding
to send and receive messages, the application must use a message type and data format that the JMS
binding supports. Supported message types include JMS BytesMessage, ObjectMessage, and
TextMessage. The message type to use depends on whether you are configuring an SCA service or
reference and whether the JMS wire format of the service or reference is already determined.

The supported message types apply to applications coded to both the OSOA and OASIS specifications.
Unless otherwise specified, the information in this topic pertains to both OSOA and OASIS applications.

The following sections describe supported message types:

v Message types for SCA services when the JMS binding wire format is predetermined

v Message types for SCA references when the JMS binding wire format is predetermined

v Message types for SCA services and references when the JMS binding wire format is not
predetermined

Chapter 19. Developing SCA composites 771

Message types for SCA services when the JMS binding wire format is predetermined

For an SCA service to consume messages that are produced in a predetermined JMS binding wire format,
use the following message types:

v TextMessage or BytesMessage with serialized XML wire format that maps data using JAXB

The TextMessage or BytesMessage wire format uses Java Architecture for XML Binding (JAXB)
technology to marshal and unmarshal data into XML. This wire format is the default wire format. Thus,
this wire format applies if no wire format element is specified in the composite definition file. To specify
this wire format, add the following wire format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsdefault

OASIS
{http://docs.oasis-open.org/ns/opencsa/sca/200912}wireFormat.jmsDefault

– Mapping a request message payload to input arguments

The TextMessage or BytesMessage payload contains XML data that represents serialized input
arguments. The format of the service is described by a WSDL interface that is specified by either a
interface.wsdl element from the component service definition, or by a WSDL that is generated by
the Java interface of the SCA service if the interface.wsdl element is not explicitly defined.

This runtime environment Java-to-WSDL mapping is based on the JAXB and JAX-WS specifications.
The default behavior results in a document-literal wrapped WSDL interface, except when there is a
single parameter method. A single argument input parameter is not wrapped by a "wrapper" element
corresponding to the operation name.

JAXB unmarshalling is used to deserialize incoming XML payloads into the service arguments that
are passed to the component implementation.

– Mapping an output return value to a response message payload

The return value of the service method is marshalled in a similar manner to the unmarshalling of the
request message input. The marshalling uses JAXB and JAX-WS technology to map to XML in a
WSDL defined format such that the WSDL is specified explicitly or the runtime environment
generates the WSDL from the Java interface. The resulting serialized XML is never wrapped by the
operation name, even if the WSDL defines a wrapper element.

If the request payload is a BytesMessage, the non-wrapped XML is set as the payload of a response
BytesMessage. If the request payload received is a TextMessage, the non-wrapped XML is set as a
TextMessage. The response format is always the same as the request message format.

– Mapping exceptions to a response message payload

If you have a checked exception, the runtime environment will not marshall the exception. Instead,
the runtime environment serializes the fault, as defined by JAX-WS, into an XML payload of a
response TextMessage. If you have an unchecked exception, an instance of RuntimeException is set
as the payload of a response ObjectMessage. In both cases, a Boolean message property with the
name, org_apache_tuscany_sca_fault, is set totrue on the response message. To learn more about
exceptions and faults, see the documentation on using business exceptions with SCA interfaces.

v TextMessage with serialized XML wire format that maps data using JAXB

The TextMessage wire format uses JAXB technology to marshal and unmarshal data into XML. To
specify this wire format, add the following wire format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsTextXML

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsTextXML

– Mapping a request message payload to input arguments

The TextMessage payload contains XML data that represents serialized input arguments. The format
of the service is described by a Web Services Description Language (WSDL) interface that is
specified by either a interface.wsdl element from the component service definition, or by a WSDL

772 Developing WebSphere applications

that is generated by the Java interface of the SCA service if the interface.wsdl element is not
explicitly defined. This runtime environment Java-to-WSDL mapping is based on the JAXB and Java
API for XML-Based Web Services (JAX-WS) specifications. This mapping results in a
document-literal wrapped WSDL interface; however, the presence of the operation-level wrapper
does not impact operation selection for the messages. JAXB unmarshalling is used to deserialize
incoming XML payloads into the service arguments that are passed to the component
implementation.

– Mapping an output return value to a response message payload

The return value of the service method is marshalled in a similar manner to the unmarshalling of the
request message input. The marshalling uses JAXB and JAX-WS technology to map to XML in a
WSDL defined format such that the WSDL is specified explicitly or the runtime environment
generates the WSDL from the Java interface. The resulting serialized XML is the payload of a
TextMessage response message.

– Mapping exceptions to a response message payload

If you have a checked exception, the runtime environment will not marshall the exception. Instead,
the runtime environment serializes the fault, as defined by JAX-WS, into an XML payload of a
response TextMessage. If you have an unchecked exception, an instance of RuntimeException is set
as the payload of a response ObjectMessage. In both cases, a Boolean message property with the
name, org_apache_tuscany_sca_fault, is set totrue on the response message. To learn more about
exceptions and faults, see the documentation on using business exceptions with SCA interfaces.

v ObjectMessage wire format that maps to the java.lang.Object class

The ObjectMessage wire format uses serialized Java objects. To specify this wire format, add the
following wire format element to the composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsObject

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsObject

– Mapping a request message payload to input arguments

The ObjectMessage payload returned by a getObject() method is typically an array that maps to the
input parameters of your service method. In the case of a single non-array object, the object is
mapped to the single argument of a method with only one parameter. The parameter type must be
serializable by Java and implement the Java serialization interface, java.io.Serializable.

For a method with exactly one parameter, the payload returned from getObject() can either be
unwrapped, as described in the previous special case, or wrapped in an array of size one that maps
to the single input parameter. When the runtime cannot determine if the payload array is a wrapper
array that maps to the input parameters of your service method or if the payload array is the actual
argument itself, the default behavior is to map the payload directly to the single argument of the
method. You can override this behavior by setting the wrapSingle attribute on the
wireFormat.jmsObject element to true. When wrapSingle is set to true, the content of the payload
array, which is a single element because the size of the array is one, is mapped to the single
argument of the method. The payload array itself is not mapped to the method argument.

– Mapping an output return value to a response message payload

The return value of the service method is set as the ObjectMessage payload. The return type must
also be Java-serializable and implement the Java serialization interface, java.io.Serializable. In
the case of a void return type, the response payload is set to the value, null.

– Mapping exceptions to a response message payload

If you have a checked exception, the runtime environment sets the exception as the ObjectMessage
payload. For an unchecked exception, an instance of RuntimeException is set as the payload of a
response ObjectMessage. In both cases, a Boolean message property with name
org_apache_tuscany_sca_fault is set to true on the response message.

v TextMessage wire format that maps to single String messages

Chapter 19. Developing SCA composites 773

Use the wireFormat.jmsText format to map between the payload of a TextMessage and a single String
argument or return value. To specify this wire format, add the following wire format element to the
composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsText

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsText

– Mapping a request message payload to input arguments

When using this wire format, the service interface method must contain a single parameter of type
String; for example: void myMethod(String str). The TextMessage payload that is returned by the
getText() method is mapped to this single parameter.

– Mapping an output return value to a response message payload

The return type of the service method is typically either String or void. If the return type is String,
the return value is set as the response TextMessage payload. If the return type is void, a null value
is set as the payload. For a return value of type other than String, the payload is defined by setting
a String.valueOf() on the return value.

– Mapping exceptions to a response message payload

Rather than defining a convention for mapping exceptions to a TextMessage, ObjectMessage
messages are used to map exceptions. If you have a checked exception, the runtime environment
sets the exception as the ObjectMessage payload. For an unchecked exception, an instance of
RuntimeException is set as the payload of a response ObjectMessage message. In both cases, a
Boolean message property with name org_apache_tuscany_sca_fault is set to true on the response
message.

v BytesMessage with XML wire format that maps data using JAXB

The BytesMessage wire format uses JAXB technology to marshal and unmarshal data into XML. To
specify this wire format, add the following wire format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsBytesXML

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsBytesXML

– Mapping a request message payload to input arguments

The input arguments are marshalled into an XML payload, and added to a request BytesMessage.
The format of the service is described by a WSDL interface that is specified by either a
interface.wsdl element from the component service definition, or by a WSDL that is generated by
the Java interface of the SCA service if the interface.wsdl element is not explicitly defined. This
runtime environment Java-to-WSDL mapping is based on the JAXB and JAX-WS specifications. This
mapping results in a document-literal wrapped WSDL interface; however, the presence of the
operation-level wrapper does not impact operation selection for the messages. The product uses
JAXB marshalling to serialize the Java client input argument into the XML payload.

– Mapping exceptions to a response message payload

The runtime environment first determines whether the response message represents an unchecked
exception condition by looking for the org_apache_tuscany_sca_fault Boolean message property. If
this property is set to true on the response message, the runtime environment expects an
ObjectMessage as the response. When this condition occurs, a ServiceRuntimeException error is
returned to the client. If this property is not set, or set to false, the message is a BytesMessage that
can represent either a checked exception or normal output data. If a checked exception, the
BytesMessage payload contains a fault in XML serialized form. The runtime environment deserializes
the fault using JAXB unmarshalling, and returns the corresponding checked exception back to the
client, wrappering the fault data. For more information about exceptions and faults, see the topic on
using business exceptions with SCA interfaces.

– Mapping an output return value to a response message payload

774 Developing WebSphere applications

The return value of the service method is marshalled in a similar manner to the unmarshalling of the
request message input. The marshalling uses JAXB and JAX-WS technology to map to XML in a
WSDL defined format such that the WSDL is specified explicitly or the runtime environment
generates the WSDL from the Java interface. The resulting XML of the response BytesMessage is
deserialized using JAXB unmarshalling and returned to the client.

v BytesMessage wire format that maps to single byte array messages

Use the wireFormat.jmsBytes format to map between the payload of a BytesMessage and a byte[]
argument or return value. To specify this wire format, add the following wire format element to the
composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsBytes

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsBytes

– Mapping a request message payload to input arguments

When using this wire format, the service interface method must contain a single parameter of type
byte[]; for example: void myMethod(byte[] bytes);. The BytesMessage payload that is obtained
using the readBytes() method is mapped to this single parameter.

– Mapping an output return value to a response message payload

The return type of the service method must be byte[] or void. If the return type is byte[], the return
value is set as the response BytesMessage payload.

– Mapping exceptions to a response message payload

When using this wire format, ObjectMessage messages are used to map exceptions, as in the
ObjectMessage wire format case. If you have a checked exception, the runtime environment sets the
exception as the ObjectMessage payload. For an unchecked exception, an instance of
RuntimeException is set as the payload of a response ObjectMessage message. In both cases, a
Boolean message property with name org_apache_tuscany_sca_fault is set to true on the response
message.

v JMS message wire format that does not extract the message payload and maps to the
javax.jms.Message class

You can use a wire format mechanism that instructs the JMS binding to provide the raw JMS message
to the service implementation without extracting the payload out of the message. To use this wire
format, the service interface must consist of a single method with one input parameter of
javax.jms.Message, such as:
void methodA(javax.jms.Message msg);

The method name is not important; only the input parameter type is relevant. This method is similar to
the javax.jms.MessageListener interface. The support for this method enables existing message-driven
beans logic to be reused in SCA component implementations.

Use the default wire format to enable this mechanism to obtain the raw JMS message. To specify the
default wire format, add the following wire format element to the composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsdefault

OASIS
{http://docs.oasis-open.org/ns/opencsa/sca/200912}wireFormat.jmsDefault

Because this wire format is the default, the same result is achieved by not specifying a wire format
element.

This wire format is not the same as the TextMessage JAXB XML format. In this scenario, the wire
format selection does not describe a specific format of data on the wire. Instead, the specification of this
wire format indicates to the runtime environment to identify this specialty case to obtain the raw JMS
message and handle the incoming data by passing the raw JMS message to the application.

The response message is a TextMessage with a null payload. The response message is sent unless
the onMessage method is annotated as a one-way operation.

Chapter 19. Developing SCA composites 775

Message types for SCA references when the JMS binding wire format is predetermined

For an SCA reference to produce messages that are consumed in a predetermined JMS binding wire
format, use the following message types:

v TextMessage with serialized XML wire format that maps data using JAXB

The TextMessage wire format uses JAXB technology to marshal and unmarshal data into XML. To
specify this wire format, add the following wire format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsTextXML

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsTextXML

– Mapping input arguments to a request message payload

Using this wire format, the input arguments are marshalled into an XML payload, and added to a
request TextMessage. The format of the service is described by a WSDL file interface that is
specified by either a interface.wsdl element from the component service definition, or by a WSDL
that is generated from the Java interface of the SCA service if the interface.wsdl element is not
explicitly defined. The Java-to-WSDL mapping is based on the JAXB and Java API for XML-Based
Web Services (JAX-WS) specifications. This mapping results in a document-literal wrapped WSDL
file, and the wrapper element corresponds to the operation name. JAXB marshalling is used to
serialize the Java client input arguments into the XML payload.

– Mapping a response message payload to output return value and exceptions

The runtime environment first determines whether the response message represents an unchecked
exception condition by checking for the org_apache_tuscany_sca_fault Boolean message property. If
this property is set to true on the response message, the runtime environment expects an
ObjectMessage as the response. When this condition occurs, a ServiceRuntimeException error is
returned to the client. If this property is not set, or set to false, the message is a TextMessage that
can represent either a checked exception or output data.

The return value of the service method is unmarshalled in a similar manner to the marshalling of the
request message input. The marshalling uses JAXB and JAX-WS technology to map to XML in a
WSDL defined format such that the WSDL is specified explicitly or the runtime environment
generates the WSDL from the Java interface. The XML payload of the response TextMessage
message is deserialized using JAXB unmarshalling and returned to the client.

If you have a checked exception, the TextMessage payload contains a fault in XML serialized form.
The runtime environment deserializes the fault using JAXB unmarshalling and the corresponding
checked exception is sent back to the client, wrappering the fault data. To learn more about
exceptions and faults, see the documentation on using business exceptions with SCA interfaces.

v The BytesMessage or TextMessage with serialized XML wire format that maps data using JAXB

The BytesMessage or TextMessage wire format uses JAXB technology to marshal and unmarshal data
into XML. This wire format is the default wire format. Thus, this wire format applies if no wire format
element is specified in the composite definition file. To specify this wire format, add the following wire
format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsdefault

OASIS
{http://docs.oasis-open.org/ns/opencsa/sca/200912}wireFormat.jmsDefault

– Mapping input arguments to a request message payload

Using this wire format, the input arguments are marshalled into an XML payload, and added to a
request BytesMessage. The format of the service is described by a WSDL file interface that is
specified by either a interface.wsdl element from the component reference definition, or by a
WSDL that is generated from the Java interface of the SCA service if an interface.wsdl element is
not defined.

776 Developing WebSphere applications

The runtime Java-to-WSDL mapping is based on the JAXB and JAX-WS specifications. This
mapping results in a document-literal wrapped WSDL file, and the wrapper element corresponds to
the operation name, except when there is a single parameter method. A single argument input
parameter is never wrapped by a wrapper element corresponding to the operation name. JAXB
marshalling is used to serialize the Java client input arguments into the XML payload.

– Mapping a response message payload to output return value and exceptions

The runtime environment first determines whether the response message represents an unchecked
exception condition by checking for the org_apache_tuscany_sca_fault Boolean message property. If
this property is set to true on the response message, the runtime environment expects an
ObjectMessage as the response. When this condition occurs, a ServiceRuntimeException error is
returned to the client. If this property is not set, or set to false, the message is a BytesMessage or
TextMessage that can represent either a checked exception or output data.

If you have a checked exception, the BytesMessage or TextMessage payload contains a fault in XML
serialized form. The runtime environment deserializes the fault using JAXB unmarshalling and the
corresponding checked exception is sent back to the client, wrappering the fault data. To learn more
about exceptions and faults, see the topic on using business exceptions with SCA interfaces.

For non-exception output data, the return value of the service method is unmarshalled in a similar
manner to the marshalling of the request message input. The unmarshalling uses JAXB and JAX-WS
technology to map to XML in a WSDL defined format such that the WSDL is specified explicitly or
the runtime environment generates the WSDL from the Java interface. The XML payload is always
expected to be in unwrapped format even if the WSDL defines a wrapper with an operation name.
The XML payload of the response BytesMessage or TextMessage is deserialized using JAXB
unmarshalling and returned to the client.

v ObjectMessage wire format that maps to the java.lang.Object class

The ObjectMessage wire format uses serialized Java objects. To specify this wire format, add the
following wire format element to the composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsObject

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsObject

– Mapping input arguments to a request message payload

The arguments that are passed to the SCA reference are wrapped in an array and are set into the
request ObjectMessage payload using the setObject() method, except for methods with exactly one
parameter. By default, arguments are not wrapped in an array for methods with a single argument
unless the wrapSingle attribute is set to true on the wireFormat.jmsObject element.

– Mapping a response message payload to output return value and exceptions

The runtime environment obtains the response ObjectMessage payload using the getObject()
method. If the payload object is an unchecked exception, a ServiceRuntimeException error is
returned to the client. If the payload object is an instance of a checked exception, the checked
exception is returned to the client If the payload object represents non-exception output data, that
payload object is returned back to the client application.

v TextMessage wire format that maps to single string messages

Use the wireFormat.jmsText format to map between the payload of a TextMessage and a single String
argument or return value. To specify this wire format, add the following wire format element to the
composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsText

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsText

– Mapping input arguments to a request message payload

Chapter 19. Developing SCA composites 777

When using this wire format, the service interface method typically has a single parameter of type
String ; for example: void myMethod(String str). The single String passed to the SCA reference is
set into the request TextMessage payload by the setText() method.

For method signatures with different input parameters, the result of performing a String.valueOf()
method on the first argument is set as the payload, regardless of how many arguments are present.

– Mapping a response message payload to output return value and exceptions

The return type of the service method is must be either String or void; for example: String
myMethod(String str).

The runtime environment first determines whether the response message represents an exception
condition by checking for the org_apache_tuscany_sca_fault Boolean message property. If this
property is set to true on the response message, the runtime environment expects an
ObjectMessage message as the response, and the message payload is obtained by the getObject()
method. If the payload object is an unchecked exception, a ServiceRuntimeException is returned
back to the client. If the payload object is an instance of a checked exception, that checked
exception is returned to the client.

If this property is not set, or set to false, the runtime environment expects non-exception output data
and a TextMessage response. In this case, if the return type is String, a getText() method used to
obtain the payload object that will be returned to the client application as a String value.

v The BytesMessage with XML wire format that maps data using JAXB

The BytesMessage wire format uses JAXB technology to marshal and unmarshal data into XML. To
specify this wire format, add the following wire format element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsBytesXML

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsBytesXML

– Mapping input arguments to a request message payload

Using this wire format, the input arguments are marshalled into an XML payload, and added to a
request BytesMessage. The format of the service is described by a WSDL file interface that is
specified by either a interface.wsdl element from the component reference definition, or by a
WSDL that is generated from the Java interface of the SCA service if an interface.wsdl element is
not defined.

The runtime Java-to-WSDL mapping is based on the JAXB and JAX-WS specifications. By default,
this mapping results in a document-literal wrapped WSDL file, and the wrapper element corresponds
to the operation name. JAXB marshalling is used to serialize the Java client input arguments into the
XML payload.

– Mapping a response message payload to output return value and exceptions

The runtime environment first determines whether the response message represents an unchecked
exception condition by checking for the org_apache_tuscany_sca_fault Boolean message property. If
this property is set to true on the response message, the runtime environment expects an
ObjectMessage as the response. When this condition occurs, a ServiceRuntimeException error is
returned to the client. If this property is not set, or set to false, the message is a BytesMessage that
can represent either a checked exception or normal output data.

If you have a checked exception, the BytesMessage payload contains a fault in XML serialized form.
The runtime environment deserializes the fault using JAXB unmarshalling and the corresponding
checked exception is sent back to the client, wrappering the fault data. To learn more about
exceptions and faults, see the topic on using business exceptions with SCA interfaces.

For non-exception output data, the return value of the service method is unmarshalled in a similar
manner to the marshalling of the request message input. The unmarshalling uses JAXB and JAX-WS
technology to map to XML in a WSDL defined format such that the WSDL is specified explicitly or
the runtime environment generates the WSDL from the Java interface. The XML payload of the
response BytesMessage is deserialized using JAXB unmarshalling and returned to the client.

778 Developing WebSphere applications

v BytesMessage wire format that maps to single byte array messages

Use the wireFormat.jmsBytes format to map between the payload of a BytesMessage and a single
byte[] argument or return value. To specify this wire format, add the following wire format element to
the composition definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsBytes

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}wireFormat.jmsBytes

– Mapping input arguments to a request message payload

When using this wire format, the service interface method must contain a single parameter of type
byte[]; for example: void myMethod(byte[] bytes);. The single argument is mapped to a
BytesMessage payload using the writeBytes() method.

– Mapping a response message payload to output return value and exceptions

The return type of the service method must be byte[] or void.

The runtime environment first determines whether the response message represents an exception
condition by checking for the org_apache_tuscany_sca_fault Boolean message property. If this
property is set to true on the response message, the runtime environment expects an
ObjectMessage message as the response, and the message payload is obtained by the getObject()
method. If the payload object is an unchecked exception, a ServiceRuntimeException error is
returned to the client. If the payload object is an instance of a checked exception, that checked
exception is returned to the client

If this property is not set, or set to false, the runtime environment expects non-exception output data
and a BytesMessage response message. In this case, a readBytes() method is used to obtain the
payload object that will be returned to the client application as a byte[] value.

Message types for SCA services and references when the JMS binding wire format is not
predetermined

Suppose you are adding a JMS binding to an SCA service or reference to produce messages that will be
consumed at a future time by a JMS producer or consumer, and there is not a predetermined wire format.

It is a best practice to use the default wire format when starting with the SCA application. Use the JAXB
programming model with the top-down approach to developing SCA applications as these service
implementations and clients are easily used with the SCA default binding, the SCA web service binding,
and the SCA JMS binding. Adopting an XML-centric view of your business data provides maximum
portability across diverse platforms and technologies, and takes advantage of the design goals of a typical
SOA environment. To learn more about top-down development of SCA applications, see the developing
SCA applications from existing WSDL files documentation.

If you have business data that is described within Java classes that implement the Java serialization
interface, java.io.Serializable, but the JAXB marshalling and unmarshalling does not satisfactorily
preserve the data over the wire, you can use the ObjectMessage wire format.

Configuring JMS binding request and response wire formats:

You can configure the messaging data formats between an SCA application and a JMS producer or
consumer, by configuring your SCA application to take advantage of a supported message type and data
format. In general, each wire format can map to the service or reference side, and even into serialization
and deserialization. As a result, you can configure each service or reference request and response to use
different wire formats.

Before you begin

Configure the JMS binding for your SCA application. Then, configure the JMS binding wire format.

Chapter 19. Developing SCA composites 779

The product supports both the OASIS and the OSOA SCA JMS binding specification. Unless otherwise
specified, the information in this topic pertains to applications for both the OSOA and OASIS specification.

About this task

In most cases, the response wire format can be the same as the request wire format for a messaging
application. However, in certain scenarios this might not be reasonable, such as when the inputs and
outputs of an operation cannot use the same wire format. In this situation, you can override the request
wire format by explicitly configuring the response wire format with a wireformat element as a child on the
binding.jms response element.

When choosing a request and response wire format, consider any restrictions imposed by the application
itself and also the limitations of any particular wire format. For example, consider the following interface
method:
public MyJavaObject method(MyJAXBObject mjo)

MyJavaObject is not an XML-serializable object and MyJAXBObject is not Java-serializable so you cannot
use only one wire format. However, you can use wireFormat.jmsTextXML for the request wire format and
wireFormat.jmsObject for the response.

Procedure

1. Open an editor on a composite definition file and configure a reference-side wire format.

A reference-side wire format resembles the following:

OSOA
<component name="JAXBJMSFrontendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.HelloWorldJAXBFrontendImpl"/>
<reference name="hwJAXBService">
<interface.java interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>
<binding.jms>
<destination name="jms/SCA_JMS_Request1"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<response>
<destination name="jms/SCA_JMS_Response1"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsObject/>

</response>
</binding.jms>

</reference>
</component>

OASIS
<component name="JAXBJMSFrontendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.HelloWorldJAXBFrontendImpl"/>
<reference name="hwJAXBService">
<interface.java interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>
<binding.jms>
<destination jndiName="jms/SCA_JMS_Request1"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>
<response>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_JMS_Response1"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>

</response>
</binding.jms>

</reference>
</component>

In the example component configuration, the binding level wire format is the default because no wire
format is specified. However, the response wire format is overridden by the jmsObject wire format.

2. Open an editor on a composite definition file and configure a service-side wire format.

A service-side wire format resembles the following:

OSOA

780 Developing WebSphere applications

<component name="JAXBJMSBackendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.HelloWorldJAXBBackendImpl"/>
<service name="HelloWorldJAXBService">
<interface.java interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>
<binding.jms>
<destination name="jms/SCA_JMS_Response1"/>
<activationSpec name="jms/SCA_JMS_AS1"/>
<response>
<destination name="jms/SCA_JMS_Response1"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsObject/>

</response>
</binding.jms>

</service>
</component>

OASIS
<component name="JAXBJMSBackendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.HelloWorldJAXBBackendImpl"/>
<service name="HelloWorldJAXBService">
<interface.java interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>
<binding.jms>
<destination jndiName="jms/SCA_JMS_Response1"/>
<activationSpec jndiName="jms/SCA_JMS_AS1"/>
<response>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_JMS_Response1"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>

</response>
</binding.jms>

</service>
</component>

The response wire format is always the same as the request wire format unless the response level
wire format is explicitly configured.

Results

You have configured the request and response wire format for a messaging application.

Examples

More example component configurations that show request and response wire formats follow.

Component configuration for a multiple-parameter reference

OSOA
<component name="MultipleParameterFrontendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.MultipleParameterFrontendImpl"/>
<reference name="mpService">
<interface.java interface="com.ibm.test.soa.sca.MultipleParameterService"/>
<binding.jms>
<destination name="jms/SCA_JMS_Request2"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<response>
<destination name="jms/SCA_JMS_Response2"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsObject/>

</response>
<ts:wireFormat.jmsObject/>

</binding.jms>
</reference>

</component>

OASIS
<component name="MultipleParameterFrontendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.MultipleParameterFrontendImpl"/>
<reference name="mpService">

Chapter 19. Developing SCA composites 781

<interface.java interface="com.ibm.test.soa.sca.MultipleParameterService"/>
<binding.jms>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_JMS_Request2"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>
<response>
<ts:wireFormat.jmsObject/>
<destination jndiName="jms/SCA_JMS_Response2"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>

</response>
</binding.jms>

</reference>
</component>

Component configuration for a multiple-parameter service that uses jmsBytesXML wire format

OSOA
<component name="MultiParameterJMSBackendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.MultipleParameterBackendImpl"/>
<service name="MultipleParameterService">
<interface.java interface="com.ibm.test.soa.sca.MultipleParameterService"/>
<binding.jms>
<destination name="jms/SCA_JMS_Request2"/>
<activationSpec name="jms/SCA_JMS_AS2"/>
<response>
<destination name="jms/SCA_JMS_Response2"/>
<connectionFactory name="jms/SCA_JMS_CF" create="never"/>
<ts:wireFormat.jmsBytesXML/>

</response>
</binding.jms>

</reference>
</component>

OASIS
<component name="MultiParameterJMSBackendReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.MultipleParameterBackendImpl"/>
<service name="MultipleParameterService">
<interface.java interface="com.ibm.test.soa.sca.MultipleParameterService"/>
<binding.jms>
<destination jndiName="jms/SCA_JMS_Request2"/>
<activationSpec jndiName="jms/SCA_JMS_AS2"/>
<response>
<ts:wireFormat.jmsBytesXML/>
<destination jndiName="jms/SCA_JMS_Response2"/>
<connectionFactory jndiName="jms/SCA_JMS_CF" create="never"/>

</response>
</binding.jms>

</reference>
</component>

Component configuration for a reference that uses jmsText wire format for the response and a jmsCustom
format for the binding

OSOA
<component name="FrontEndWireFormatHandlerReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.CustomReqRespFrontEndComponent"/>
<reference name="frontEnd">

<binding.jms>
<destination name="jms/SCA_JMS_Request3"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<response>
<destination name="jms/SCA_JMS_Response3"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsText/>

</response>

782 Developing WebSphere applications

<ts:wireFormat.jmsCustom class="com.ibm.test.soa.sca.frontend.custom.FrontEndReqRespWireFormatHandler"/>
</binding.jms>

</reference>
</component>

OASIS
<component name="FrontEndWireFormatHandlerReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.frontend.CustomReqRespFrontEndComponent"/>
<reference name="frontEnd">

<binding.jms>
<ts:wireFormat.jmsCustom class="com.ibm.test.soa.sca.frontend.custom.FrontEndReqRespWireFormatHandler"/>
<destination jndiName="jms/SCA_JMS_Request3"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>
<response>
<ts:wireFormat.jmsText/>
<destination jndiName="jms/SCA_JMS_Response3"/>
<connectionFactory jndiName="jms/SCA_JMS_CF"/>

</response>
</binding.jms>

</reference>
</component>

Component configuration for a service that uses jmsText wire format for the response and a jmsCustom
format for the binding

OSOA
<component name="BackEndWireFormatHandlerReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.CustomReqRespBackEndComponent"/>
<service name="CustomReqResp">

<binding.jms>
<destination name="jms/SCA_JMS_Request3" type="queue" create="never"/>
<activationSpec name="jms/SCA_JMS_AS3"/>
<response>
<destination name="jms/SCA_JMS_Response3"/>
<connectionFactory name="jms/SCA_JMS_CF" create="never"/>
<ts:wireFormat.jmsText/>

</response>
<ts:wireFormat.jmsCustom class="com.ibm.test.soa.sca.backend.custom.BackendReqRespDBH"/>

</binding.jms>
</service>

</component>

OASIS
<component name="BackEndWireFormatHandlerReqRespWFComponent">
<implementation.java class="com.ibm.test.soa.sca.backend.CustomReqRespBackEndComponent"/>
<service name="CustomReqResp">

<binding.jms>
<ts:wireFormat.jmsCustom class="com.ibm.test.soa.sca.backend.custom.BackendReqRespDBH"/>
<destination jndiName="jms/SCA_JMS_Request3" type="queue" create="never"/>
<activationSpec jndiName="jms/SCA_JMS_AS3"/>
<response>
<ts:wireFormat.jmsText/>
<destination jndiName="jms/SCA_JMS_Response3"/>
<connectionFactory jndiName="jms/SCA_JMS_CF" create="never"/>

</response>
</binding.jms>

</service>
</component>

What to do next

Deploy and test the wire format configuration in your SCA application.

Configuring transactions for the SCA JMS binding
You can configure the Service Component Architecture (SCA) Java Message Service (JMS) binding for
services and references to take advantage of transaction quality of service behaviors.

Chapter 19. Developing SCA composites 783

Before you begin

The information in this topic applies for both OSOA and OASIS SCA applications.

About this task

SCA provides declarative mechanisms in the form of intents for describing the transactional environment
required by components.

The SCA JMS binding supports transacting message delivery with the global transaction of a component.
The SCA transaction policies are specified as intents that represent quality of service behavior offered by
the JMS binding on an SCA service or reference. However, the SCA JMS binding does not propagate
transaction context; therefore, the client and service cannot participate in the same global transaction.

To learn more about SCA global transactions, see the SCA transaction intents documentation.

SCA references can use the transactedOneWay intent to transact one-way requests. When the
transactedOneWay intent is used on an SCA reference, a one-way request on the reference is not sent until
the global transaction of the client is committed. If the global transaction of the client is rolled back, the
request is not sent.

SCA services can use the transactedOneWay intent to transact one-way requests only or the exactlyOnce
intent to transact both one-way and request-response message patterns. When the transactedOneWay
intent is used on an SCA service, a one-way request is received from the JMS binding as part of the
component's global transaction. When the exactlyOnce intent is used on a service, both one-way and
request-response message patterns are received from the JMS binding as part of the component's global
transaction. The receipt of the message, and the sending of the response for request-response
messaging, is not committed until the service transaction commits. If the service transaction is rolled back,
the message is again made available for delivery or the message is sent to an exception destination that
is based upon the configuration of the bus destination.

The SCA runtime environment typically performs a rollback of a global transaction only if the component
produces an unchecked exception error. An unchecked exception error is a subclass of
java.lang.RuntimeException or java.lang.Error class. A checked exception does not force a rollback. The
component can force a rollback by using the UOWSynchronizationRegistry interface. For example:
com.ibm.websphere.uow.UOWSynchronizationRegistry uowSyncRegistry =

com.ibm.wsspi.uow.UOWManagerFactory.getUOWManager();
uowSyncRegistry.setRollbackOnly();

If a reference does not require a transactedOneWay intent, then one-way requests are sent immediately. If
a service does not require the transactedOneWay or exactlyOnce intent, requests are removed from the
queue prior to the delivery of the request to the component. If the component processing fails, these
requests cannot be delivered again.

Procedure
1. Specify the transactedOneWay or exactlyOnce intents on your SCA service or reference enable

transacting message delivery with the global transaction of your component.

The following example illustrates the use of the transactedOneWay and exactlyOnce intents. In this
example, the component, TransactionalComponent, receives one-way and request-response messages
from the DataUpdate service and subsequently sends one-way requests to the loggingService
reference transactionally. If the component transaction rolls back, the active request is queued again
and any requests to the reference are not sent.
<component name="TransactionalComponent">

<implementation.java class="example.TransactedImpl"
requires="managedTransaction.global"/>

<service name="DataUpdate" requires="exactlyOnce">
<binding.jms>

784 Developing WebSphere applications

<destination name="jms/DataUpdate_Request" type="queue"/>
<activationSpec name="jms/SCA_JMS_AS"/>

</binding.jms>
</service>

<reference name="loggingService" requires="transactedOneWay">
<binding.jms>

<connectionFactory name="jms/SCA_JMS_CF"/>
</binding.jms>

</reference>
</component>

2. Using the administrative console, configure the bus destination to handle failed messages.

a. Start the administrative console.

b. In the navigation pane, click Service integration > Buses > bus_name > Destinations >
destination_queue_name or destination_topic_space_name .

c. Under Exception destination, enter a value for the Maximum failed deliveries per message . This
value specifies the maximum number of failed attempts to process a message, after which the
message is forwarded from its intended destination to the exception destination. This property
applies to individual messages.

Results

You have updated your SCA composite to use transacted message delivery.

Dynamic JMS resource creation during deployment
The product dynamically creates Java Message Service (JMS) resources necessary for a Service
Component Architecture (SCA) composite, if those resources do not exist and relate to the WebSphere
default messaging provider. The product creates the resources when adding the SCA composite to a
business-level application. The dynamically created resources are created in a WebSphere default
messaging provider service integration bus. The product does not create resources that relate to
WebSphere MQ; those resources must exist. A dynamically created service integration bus resource is
given a name that is specified in the JMS binding or, if the binding does not specify a resource name, is
given a default name. When an SCA composite uses a mixture of existing and non-existent resources, the
product dynamically creates the resources that do not exist.

Dynamic resource creation is supported for applications coded to both the OSOA and OASIS
specifications. Unless otherwise specified, the information in this topic pertains to both OSOA and OASIS
applications.

Restriction: Dynamic resource creation is not supported for multiple-server configurations. For
stand-alone application servers, dynamic resource creation is enabled by default. To disable
dynamic resource creation, set the admin.jms.DRC.disable system property to true.

v Default naming of resources

v Deployment validation error or warning messages

v Dynamic resource creation for JMS bindings

Default naming of resources

When a JMS binding does not specify a Java Naming and Directory Interface (JNDI) name for a resource,
the product dynamically creates a service integration bus resource and assigns the resource a default
name, DefaultSCABus.

Restriction: You must have SIBus service enabled for your application server. Before deploying your SCA
composite, enable the SIBus service of the server, and then stop and restart the server.

For an SCA service that uses a JMS binding, the product uses the following default names if JNDI name
values are not supplied in the composite definition.

Chapter 19. Developing SCA composites 785

Table 83. Default names for service resources. The product uses the default names when the composite definition
omits JNDI name values.

Resource Default name

Activation specification jms/DefaultSCAActivationSpec

Activation specification create OSOA: ifnotexist

OASIS: ifNotExist

Destination jms/<componentName>_<serviceName>_ServiceRequestDestination

Response connection factory name jms/DefaultSCAConnectionFactory

Response connection factory
create

OSOA: ifnotexist

OASIS: ifNotExist

The product assigns computed destination names for values that are not provided in the JMS binding
element based on the component name and service name, separated with underscores. For example, the
computed destination name for a JMS binding in the HelloService service of the HelloServiceComponent
component is jms/HelloServiceComponent_HelloService_ServiceRequestDestination.

The product assigns the destination a default value only when no JNDI name is supplied in the composite
definition and the default activation specification is being used. If the composite definition defines an
activation specification that exists already, the destination from the activation specification is used instead
of the default value.

For an SCA reference that uses a JMS Binding, the product uses the following default names if JNDI
name values are not supplied in the composite definition.

Table 84. Default names for reference resources. The product uses the default names when the composite definition
omits JNDI name values.

Resource Default name

Connection factory jms/DefaultSCAConnectionFactory

Connection factory create OSOA: ifnotexist

OASIS: ifNotExist

Response connection factory jms/DefaultSCAConnectionFactory

Response connection factory
create

OSOA: ifnotexist

OASIS: ifNotExist

The product assigns the response connection factory a default value only when no JNDI name is supplied
in the composite definition and the response destination has been defined.

Deployment validation error or warning messages

The product validates a composite definition when adding an SCA asset to a business-level application. If
the validation results in an error, the product does not add the asset to the application. If a warning results,
the product issues a warning but adds the asset to the application.

Errors or warnings from validation of service JMS bindings

When a composite definition sets a create attribute to always for any of the following service JMS
bindings, deployment stops with an error if the resource exists:
v Destination
v Activation specification

786 Developing WebSphere applications

v Response destination
v Response connection factory

When a composite definition sets a create attribute to never for any resource, and that resource
does not exist, the product issues a warning but the deployment continues and can complete
successfully.

Errors or warnings from validation of reference JMS bindings

When a composite definition does not define a callback service or destination attribute,
deployment stops with an error.

When a composite definition sets a create attribute to always for any of the following reference
JMS bindings, deployment stops with an error if the resource exists:
v Destination
v Connection factory
v Response destination
v Response connection factory

When a composite definition sets a create attribute to never for any resource, and that resource
does not exist, the product issues a warning but the deployment continues and can complete
successfully.

An error occurs when an activation specification or connection factory has a default value assigned, and a
non-default bus is used. This error can happen if the composite definition has an existing resource
defined, such as a destination, and it uses a non-default bus. If the activation specification or connection
factory has not been defined, the product supplies the default name.

Dynamic resource creation for JMS bindings

The product follows patterns for dynamic resource creation that are similar, although different, for services
and references.
v Service resource creation
v Reference resource creation

Service resource creation:

When a service JMS binding is deployed, the product attempts to create resources for the binding. The
composite definition might not specify JNDI names for the resources. The resources might not exist. There
are four typical patterns for dynamic service resource creation:

Composite definition does not define resources
A composite definition that does not define resources resembles:
<binding.jms>
</binding.jms>

If a composite definition does not define resources, the product does the following:

v Assigns default names to all resources using the default service integration bus.

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the default destination jms/
<componentName>_<serviceName>_ServiceRequestDestination on the default bus.

v Creates the default activation specification jms/DefaultSCAActivationSpec if it does not exist
and uses the default bus and default destination.

v Creates the default response connection factory jms/DefaultSCAConnectionFactory if it does not
exist and uses the default bus.

Chapter 19. Developing SCA composites 787

When the product creates a destination, a bus destination and a destination resource are created.
The bus destination name and the destination resource name are derived from the JNDI name,
with / replaced by _.

Composite definition defines destination and activation specification
A composite definition that defines both a destination and an activation specification resembles:

OSOA
<binding.jms>
<destination name="jms/myDestination_Request" type="queue"/>
<activationSpec name="jms/myActivationSpec"/>

</binding.jms>

OASIS
<binding.jms>
<destination jndiName="jms/myDestination_Request" type="queue"/>
<activationSpec jndiName="jms/myActivationSpec"/>

</binding.jms>

If a composite definition defines a destination and activation specification, the product performs
actions that depend on whether resources exist for the destination and activation specification.

Resources for both the destination and activation specification do not exist:

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the destination jms/myDestinationRequest on the default bus.

v Creates the activation specification jms/myActivationSpec if it does not exist and uses the
default bus and default destination.

The destination resource does not exist, but the activation specification resource exists:

v Creates the destination jms/myDestinationRequest on the bus that the activation specification
uses.

The destination resource exists, but the activation specification resource does not exist:

v Creates the activation specification jms/myActivationSpec with the bus that the destination
uses.

Composite definition defines the destination only
A composite definition that defines a destination resembles:

OSOA
<binding.jms>
<destination name="jms/myDestination_Request" type="queue"/>

</binding.jms>

OASIS
<binding.jms>
<destination jndiName="jms/myDestination_Request" type="queue"/>

</binding.jms>

If a composite definition defines a destination, the product performs actions that depend on
whether the resource exists for the destination.

Destination resource does not exist:

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the destination jms/myDestinationRequest on the default bus.

v Creates the default activation specification jms/DefaultSCAActivationSpec if it does not exist
and uses the default bus and the destination jms/myDestinationRequest.

Destination resource exists:

v The destination must use the default bus. Otherwise, the product returns an error and does not
add the asset to the business-level application.

788 Developing WebSphere applications

v Creates the default activation specification jms/DefaultSCAActivationSpec if it does not exist
and uses the default bus and the destination jms/myDestinationRequest.

Composite definition defines the activation specification only
A composite definition that defines an activation specification resembles:

OSOA
<binding.jms>
<activationSpec name="jms/myActivationSpec"/>

</binding.jms>

OASIS
<binding.jms>
<activationSpec jndiName="jms/myActivationSpec"/>

</binding.jms>

If a composite definition defines an activation specification, the product performs actions that
depend on whether a resource exists for the activation specification.

Activation specification resource does not exist:

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the default destination jms/
<componentName>_<serviceName>_ServiceRequestDestination on the default bus.

v Creates the activation specification jms/myActivationSpec and uses the default bus and default
destination.

Activation specification resource exists:

v Does not create a destination. The run time uses the destination from the existing activation
specification.

Response connection factory for JMS bindings that provide a two-way service

JMS bindings that provide a two-way service require a response connection factory. When an
asset with a two-way service is added to a business-level application, the product behaves in the
following manner:

Composite definition defines the response connection factory

v Creates the response connection factory if it does not exist.

v If any resources for the binding already exist, creates the response connection factory
using the bus that the existing resource uses. Otherwise, the product uses the default
bus.

v If other resources for the binding do not exist, creates the other resources using the bus
that an existing response connection factory uses.

Composite definition does not define the response connection factory

v Assigns the default name jms/DefaultSCAConnectionFactory and creates the response
connection factory if it does not exist.

v If the product creates a response connection factory using the default name, the
response connection factory can only be created on the default bus. Otherwise, the
product returns an error and does not add the asset to the business-level application.

If this error occurs, specify a JNDI name for the response connection factory in the
composite definition to correct the error.

Reference resource creation:

When a reference JMS binding is deployed, the product attempts to create resources for the binding. The
composite definition must define a destination. The connection factory, response destination, and response
connection factory might not be defined. The resources that are defined might not exist. There are four
typical patterns for dynamic reference resource creation:

Chapter 19. Developing SCA composites 789

Composite definition defines the destination only
A composite definition that defines a destination resembles:

OSOA
<binding.jms>
<destination name="jms/myDestination_Request" type="queue"/>

</binding.jms>

OASIS
<binding.jms>
<destination jndiName="jms/myDestination_Request" type="queue"/>

</binding.jms>

The destination resource might not exist.

Destination resource does not exist:

v Creates the default SIBus DefaultSCABus if it does not exist.

v Creates the destination jms/myDestination_Request on the default bus.

v Creates the default connection factory jms/DefaultSCAConnectionFactory if it does not exist and
uses the default bus.

Destination resource exists:

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the default connection factory jms/DefaultSCAConnectionFactory if it does not exist and
uses the default bus.

Composite definition defines destination and connection factory
A composite definition that defines both a destination and a connection factory resembles:

OSOA
<binding.jms>
<destination name="jms/myDestination_Request" type="queue"/>
<connectionFactory name="jms/myConnectionFactory"/>

</binding.jms>

OASIS
<binding.jms>
<destination jndiName="jms/myDestination_Request" type="queue"/>
<connectionFactory jndiName="jms/myConnectionFactory"/>

</binding.jms>

Each of these resources might not exist.

Resources for both the destination and connection factory do not exist:

v Creates the default service integration bus DefaultSCABus if it does not exist.

v Creates the destination jms/myDestination_Request on the default bus.

v Creates the connection factory jms/myConnectionFactory if it does not exist and uses the
default bus and default destination.

The destination resource exists, but the connection factory resource does not exist:

v Creates the connection factory jms/myConnectionFactory with the bus that the destination uses.

The destination resource does not exist, but the connection factory resource exists:

v Creates the destination jms/myDestination_Request on the bus that the connection factory
uses.

Invoking operations using JMS binding operation selection
You can invoke an operation using JMS binding operation selection. By default, a JMS binding uses the
JMS binding operation selection.

790 Developing WebSphere applications

Before you begin

Configure the JMS binding for your SCA application.

About this task

The JMS binding operation selection is the default binding selection. Thus, this operation selection applies
if no operation selection element is specified in the composite definition file. To specify the JMS binding
operation selection, add the following operation selection element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}operationSelector.jmsdefault

OASIS
{http://docs.oasis-open.org/ns/opencsa/sca/200912}operationSelector.jmsDefault

Specify a JMS binding operation selection on an SCA service interface and on an SCA reference.

Procedure
1. In a composite definition file, specify a JMS binding operation selection on an SCA service interface.

Because a given service can define multiple operations, the runtime environment must define
mechanisms and algorithms to take a message from a destination bound from an SCA service using
the SCA JMS binding, and invoke the correct operation on the SCA service implementation.

The JMS binding defines a String message property called scaOperationName. When receiving a
request at a service, or a callback at a reference, the JMS binding uses the following algorithm to
determine the operation name:

a. If there is only one operation on the service interface, it is assumed that this operation is the
operation name for the request.

b. Otherwise, if the JMS property scaOperationName is set, the value of this property is used as the
operation name.

c. Otherwise, if the message is a JMS text or bytes message containing XML, then the selected
operation name is taken from the local name of the root element of the XML payload. This
operation selection behavior is only supported over the jmsdefault and the jmsTextXML and
jmsBytesXML wire formats.

d. Otherwise, it is assumed that the operation name is onMessage.

2. In a composite definition file, specify a JMS user property operation selection on an SCA reference.

When using the JMS user operation selector on the service side, the reference side or service side
callback must set the matching JMS user property. In the service-side example, the operation selector
uses the value of the jmsTestUserProp to determine the target operation. You can set this property for
the reference or callback side by specifying one or more header properties in the operationProperties
element; for example:
<operationProperties name="proxyMethodName">
<headers>
<property name="jmsTestUserProp">remoteMethodName</property>
</headers>
</operationProperties>

In the example, a call to the proxyMethodName on the reference side sets the jmsTestUserProp user
property to remoteMethodName. The proxyMethodName target operation is set to remoteMethodName when
the service-side operation selector is configured as in the previous step.

Results

You have configured a JMS binding operation selection.

Chapter 19. Developing SCA composites 791

What to do next

Deploy and test the operation selection in your SCA application.

Invoking operations using JMS user property operation selection
You can invoke an operation using JMS user property operation selection.

Before you begin

Configure the JMS binding for your SCA application.

About this task

The JMS user property operation selection is a predefined operation selector that determines the target
operation from the value of a given JMS user property. You can define the name of the JMS user property
using the propertyName attribute of the operationSelector.jmsUserProp element. To specify the JMS user
property operation selection, add the following operation selection element to the composite definition file:

OSOA
{http://tuscany.apache.org/xmlns/sca/1.0}operationSelector.jmsUserProp

OASIS
{http://tuscany.apache.org/xmlns/sca/1.1}operationSelector.jmsUserProp

Specify a JMS user property operation selection on an SCA service interface and on an SCA reference.

Procedure
1. In a composite definition file, specify a JMS user property operation selection on an SCA service

interface.

On the service side, the jmsUserProp operation selection uses the value of the given JMS user
property to determine the target operation. For example:
<binding.jms>

...
<ts:operationSelector.jmsUserProp propertyName="jmsTestUserProp"/>

...
</binding.jms>

The operation selector requires that you set a JMS user property to the target operation name. If the
property is not set or there is no matching operation, the operation selector does not default to any
other value, unlike the default JMS binding operation selector.

2. In a composite definition file, specify a JMS user property operation selection on an SCA reference.

When using the JMS user operation selector on the service side, the reference side or service side
callback must set the matching JMS user property. In the service-side example, the operation selector
uses the value of the jmsTestUserProp to determine the target operation. You can set this property for
the reference or callback side by specifying one or more header properties in the operationProperties
element; for example:
<operationProperties name="proxyMethodName">
<headers>
<property name="jmsTestUserProp">remoteMethodName</property>

</headers>
</operationProperties>

In the example, a call to the proxyMethodName on the reference side sets the jmsTestUserProp user
property to remoteMethodName. The proxyMethodName target operation is set to remoteMethodName when
the service-side operation selector is configured as in the previous section.

792 Developing WebSphere applications

Results

You have configured a JMS user property operation selection.

What to do next

Deploy and test the operation selection in your SCA application.

Invoking operations using custom operation selectors
If your application cannot use a default JMS binding operation selection or JMS user property operation
selection to determine the target operation, you can use a JMS custom operation selector to invoke
operations.

Before you begin

Configure the JMS binding for your SCA application.

It is recommended that your SCA component implementations contain only business logic to improve their
portability, such as over other bindings. To improve portability, use the custom operation selector to hold
the JMS-specific logic that handles an incoming JMS Message, enabling the component implementation to
focus on binding-neutral business logic.

About this task

You can configure a JMS custom operation selector in an SCA composite definition without any changes
to the application. To specify the JMS custom operation selection, add the following operation selection
element to the composite definition file:

OSOA
{http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06}operationSelector.jmsCustom

OASIS
{http://www.ibm.com/xmlns/prod/websphere/sca/1.1}operationSelector.jmsCustom

The custom operation selector must implement the following interface:
package com.ibm.websphere.soa.sca.operationselector.jms.OperationSelector;
import javax.jms.Message;

public interface OperationSelector {
public String getOperationName(Message msg);
public WireFormatContext getWireFormatContext();
public void setWireFormatContext(WireFormatContext ctx);

The interface exposes an instance of javax.jms.Message and enables interaction with the JMS user
properties and message body. After doing operation selection, you do not need to use the reset() method
to reposition the byte stream cursor for a BytesMessage. The run time automatically resets the cursor in
all cases so that the wire format handler is not impacted by the operation selector reading the message
first.

If the message body of a BytesMessage is read using any of the read methods available on a
BytesMessage, reposition the byte stream to the beginning using the reset() method so that message
processors can read the data in the entire message body intended for the targeted operation.

The wire format context is held by an instance of the
com.ibm.websphere.soa.sca.wireformat.WireFormatContext class, which is passed with each invocation.
The WireFormatContext class provides a java.util.Map interface where you can set property key and value
pairs in the context. The WireFormatContext interface also provides several methods to extract useful

Chapter 19. Developing SCA composites 793

information about the current context such as component and service names, invocation types, and the
ability to mark exceptions. Refer to the Java documentation for the
com.ibm.websphere.soa.sca.wireformat.WireFormatContext interface for a complete list of methods.

Procedure
1. In a composite definition file, configure a custom operation selector.

Use the operationSelector.jmsCustom element and the class attribute to identify the customer
operation selection implementation class. The custom operation selector applies when receiving a
request at a service, or a callback at a reference.

OSOA
<component name="AccountComponent">
<implementation.java ...>
<service name="AccountService">
<binding.jms>
<destination ...>
<response>
...
</response>
<xmlns:fep="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"

fep:operationSelector.jmsCustom
class="com.ibm.test.soa.sca.opsel.SimpleCustomOpSel"/>

</binding.jms>
</service>

</component>

OASIS
<component name="AccountComponent">
<implementation.java ...>
<service name="AccountService">
<binding.jms>
<xmlns:fep="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"

fep:operationSelector.jmsCustom
class="com.ibm.test.soa.sca.opsel.SimpleCustomOpSel"/>

<destination ...>
<response>
...
</response>

</binding.jms>
</service>

</component>

2. Write code that implements the JMS custom operation selector class.

For the SimpleCustomOpSel example class, you can use code such as the following:
package com.ibm.test.soa.sca.opsel;

import com.ibm.websphere.soa.sca.operationselector.jms.OperationSelector.*;
import javax.jms.*;

public class SimpleCustomOpSel implements OperationSelector {

private WireFormatContext opSelContext;

@Override
public String getOperationName(Message msg) {

String retVal = computeOperationName(msg);
return retVal;

}

@Override
public WireFormatContext getWireFormatContext() {

return opSelContext;
}

@Override
public void setWireFormatContext(WireFormatContext ctx) {

this.opSelContext = ctx;
}

/*

794 Developing WebSphere applications

* There is a pre-packaged operationSelector that can do this,
* <ts:operationSelector.jmsUser>.
*/
private String computeOperationName(Message msg) {

String opName = null;
Integer val = null;
try {

val = msg.getIntProperty("MyPropertyName");
if (val.equals(Integer.valueOf("1"))) {

opName = "addOperation";
} else if (val.equals(Integer.valueOf("2"))) {

...

Results

You have configured a custom operation selector.

What to do next

Package the operation selection implementation class with your application. The class must be loadable by
an application-level class loader.

Deploy and test the operation selector in your SCA application.

Using Atom bindings in SCA applications
You can use an Atom binding in a Service Component Architecture (SCA) application to expose collections
of data as an Atom feed or to reference existing external Atom feeds.

Before you begin

If you are unfamiliar with the Atom protocol, refer to documentation on the Atom Syndication Format, an
XML-based document format that describes web feeds, and the Atom Publishing Protocol, a protocol for
publishing and updating web resources.

About this task

Use the Atom binding to work with services that provide or consume entries described in the Atom
Syndication Format and Atom Publishing Protocol. An SCA component can reference existing external web
feeds defined using the Atom protocol and work with them inside a Java implementation. Also, you can
use the Atom binding to compose new services and expose them as an Atom feed.

This topic describes the following procedures:

v Expose an Atom feed service using an Atom binding.

v Use an Atom binding reference to access services exposed by SCA applications using the Atom binding
or to access external Atom feeds.

Procedure
v Expose an Atom feed service using an Atom binding.

1. Configure the Atom feed service in an SCA composite definition.

Specify the uniform resource identifier (URI) of the Atom feed in a service in the composite definition
of an SCA composite. The following example of a composite definition has a service exposed over
the Atom binding:

<component name="NewsServiceComponent">
<implementation.java class="com.ibm.test.atom.NewsServiceImpl"/>
<service name="NewsService">
<t:binding.atom uri="http://localhost:9080/newsService"/>

</service>
</component>

Chapter 19. Developing SCA composites 795

The example Atom binding URI, http://localhost:9080/newsService, is an absolute URI. To run
applications that use an Atom binding in product clusters, specify a relative URI; for example:

<t:binding.atom uri="/newsService"/>

2. Access the service.

For example, to access the NewsService service, either use an SCA reference in another component
or directly access the URI http://localhost:9080/newsService from a web browser. If accessed
from a web browser, the browser handles the output as an Atom feed.

The following example shows XML tagging for an Atom feed returned from the NewsService service:
<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title type="text">Feed</title>
<id>Feed1329090360</id>
<entry>
<id>Item1</id>
<title type="text">item</title>
<content type="application/xml">
<ns2:root xmlns:ns2="http://tuscany.apache.org/xmlns/sca/databinding/jaxb/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="item">
<name xmlns="">First Item Name</name>
<title xmlns="">First Item Title</title>

</ns2:root>
</content>
<link href="Item1"></link>
</entry>
</feed>

3. Manipulate the Atom feed using HTTP actions.

You can manipulate the collections of items exposed by an Atom service by using the four basic
actions of the HTTP protocol:
– POST (create or add)
– GET (retrieve or query)
– PUT (update)
– DELETE (remove)

The Java implementation class for the component should implement the
org.apache.tuscany.sca.data.collection.Collection interface or an interface that extends the Collection
interface. The following methods are defined in the org.apache.tuscany.sca.data.collection.Collection
interface:
public abstract Entry[] getAll()

Returns every entry in the feed
public abstract Entry[] query(String s)

Queries the feed for entries based on some matching criteria
public abstract Object post(Object obj, Object obj1)

Adds a new entry to the feed
public abstract Object get(Object obj) throws NotFoundException

Returns a single entry identified by the provided key value.
public abstract void put(Object obj, Object obj1) throws NotFoundException

Updates an existing entry identified by the provided key value
public abstract void delete(Object obj) throws NotFoundException

Deletes an existing entry identified by the provided key value

v Use an Atom binding reference to access services exposed by SCA applications using the Atom binding
or to access external Atom feeds.

1. Configure an Atom binding reference to access an exposed service.

Specify a reference in the composite definition of an SCA composite that accesses an exposed
service. The following example is a reference definition that accesses the NewsService service:

<reference name="newsServiceRef" target="NewsServiceComponent/NewsService">
<t:binding.atom/>

</reference>

2. Configure an Atom binding reference to access an external Atom feed.

Specify a reference in the composite definition of an SCA composite that accesses an external Atom
feed, for example:

796 Developing WebSphere applications

<reference name="atomFeed">
<tuscany:binding.atom uri="http://feeds.feedburner.com/blogspot/Dcni?format=xml"/>

</reference>

3. Work with the Atom binding reference inside a Java implementation.

A Java implementation class for an SCA component that contains the two example references might
define them as follows:

@Reference(required = false)
public Collection newsServiceRef;

@Reference(required = false)
public Collection atomFeed;

4. Use the Collection API in the implementation to manipulate the feed.

For example, to add a new entry to the NewsService feed, the implementation might call:
MyEntry entry = new MyEntry("Title", "Content");
newsServiceRef.post("mykey-10-15", entry);

To retrieve an entry from the external feed, the implementation code might use the following
example code:

atomFeed.get("idtag-20090321");

What to do next

Deploy your SCA component in an application.

If the Atom feed service is deployed to a cluster and the target attribute, @target, is used to point to the
service, the target URI resolves to an HTTP port for an individual cluster member. To maintain failover and
load balancing in this situation, you can use an absolute URI on the binding.atom element that points to a
proxy server endpoint rather than the target attribute on the reference element. For more information, see
the topics on resolving SCA references and on routing HTTP requests to an SCA service when using an
external web server.

Securing data exposed by Atom bindings
You can secure collections of data that are exposed by an Atom binding in a Service Component
Architecture (SCA) application. An Atom binding can expose data as an Atom feed or reference existing
external Atom feeds.

Before you begin

If you are unfamiliar with the Atom protocol, refer to documentation on the Atom Syndication Format, an
XML-based document format that describes web feeds, and the Atom Publishing Protocol, a protocol for
publishing and updating web resources.

For information about using Atom bindings in this product, refer to “Using Atom bindings in SCA
applications” on page 795.

transition: In Version 8.5, the default value for the web authentication property webAuthReq is persisting,
which enables credential persistence that allows login information to be available to
unprotected web clients and enables additional access to user information. You must set the
webAuthReq property to lazy to prevent unprotected web clients additional access to user
information through persisting credentials. For more information, see Security hardening
features enablement and migration. You can set webAuthReq to lazy on the administrative
console Web security - General settings page:

1. Click Security > Global security > Authentication > web and SIP security > General
settings.

2. Select Authenticate only when the URI is protected, which enables lazy authentication.

3. Click Apply.

For more information, see Web authentication settings.

Chapter 19. Developing SCA composites 797

About this task

Use the Atom binding to work securely with services that provide or consume entries described in the
Atom Syndication Format and Atom Publishing Protocol.

Procedure
1. Configure the Atom feed service security in an SCA composite definition.

You can secure services that are exposed over an Atom binding using intents. Administrative and
application security must be enabled for the intents to be enforced. The following three intents are valid
options for the requires attribute on the binding.atom element:

authentication.transport
Requires any client invoking the service to provide valid authentication information

confidentiality.transport
Requires any client invoking the service to do so over a secure transport that provides
confidentiality of the transport

integrity.transport
Requires any client invoking the service to do so over a secure transport that provides integrity
of the transport

Edit a composite definition that exposes a Java service over the Atom binding so that the exposed
service requires a client to authenticate and communicate over a secure transport; for example:

<component name="NewsServiceComponent">
<implementation.java class="test.abdera.NewsServiceImpl"/>
<service name="NewsService">
<t:binding.atom uri="/NewsServiceComponent/newsService"

requires="authentication.transport confidentiality.transport"/>
</service>

</component>

For information about authorization policy, refer to documentation on SCA authorization and security
identity policies.

2. Invoke a secure service that is exposed over an Atom binding.

You can access the service directly from a browser or a client that supports Atom feeds. To access the
feed directly, you can use the uniform resource indicator (URI) that the service specifies.

If the service requires confidentiality or integrity, use the https protocol. If the service requires
authentication, the user is prompted by the browser to enter valid credentials. If a Java client is used to
access the service, include the authentication information in the HTTP header.

The following example invokes a service using a reference URI. If the service being referenced
requires confidentiality or integrity, use the https protocol.

<reference name="atomFeed">
<tuscany:binding.atom uri="https://localhost:9443/newsService"/>

</reference>

You can also invoke the service using a reference target:
<reference name="atomFeed" target="NewsServiceComponent/NewsService">

<tuscany:binding.atom/>
</reference>

For this example, the invocation is secure only if the service specifies the confidentiality.transport
or integrity.transport intent.

To authenticate when invoking a service over an Atom binding, you have two options:

v Use single sign-on (SSO) to authenticate.

If SSO is enabled and there has been a successful authentication before, the credentials are
propagated with the request. For information about enabling SSO, see the topic on implementing
single sign-on to minimize web user authentications.

v Configure an authentication-alias, and send a specific user name and password with the request.

You can use this option for references in implementation.java components. This option is not
supported for references in implementation.widget components.

798 Developing WebSphere applications

a. Create an authentication-alias using the administrative console Java 2 Connector (J2C)
authentication data entry page or wsadmin commands. See topics on J2C authentication data
entries.

b. In the composite definition, define the product SCA namespace and specify the alias name on
the binding.atom element using the authentication-alias attribute.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
...
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
...
<reference name="atomFeed" target="NewsServiceComponent/NewsService">

<tuscany:binding.atom qos:authentication-alias=”AtomAlias"/>
</reference>

What to do next

Test the service security.

Using Widget implementation in JavaScript with Atom bindings
The JavaScript code in an HTML file can use Service Component Architecture (SCA) references that are
defined in a Tuscany Widget implementation. Use Widget implementation to work with data in Atom
collections that an SCA service returns in JavaScript.

Before you begin

You can use an Atom binding in an SCA application to expose collections of data as an Atom feed or to
reference existing external Atom feeds. If you are unfamiliar with the Atom protocol, refer to documentation
on the Atom Syndication Format, an XML-based document format that describes web feeds, and the Atom
Publishing Protocol, a protocol for publishing and updating web resources.

About this task

An SCA component can define SCA references for use in JavaScript code. Use Tuscany Widget
implementation to define the references. The implementation supports references that use an Atom
binding, and does not support the definition of SCA services.

The SCA composite that uses the Widget implementation must be deployed inside a Web application
archive (WAR) file.

Procedure
1. Configure a Widget implementation in an SCA composite definition.

Create an SCA composite definition file for a component that uses Tuscany implementation.widget.
For example:
<composite>

<component name="Store">
<tuscany:implementation.widget location="ui/store.html"/>

<reference name="shoppingCart">
<tuscany:binding.atom uri="/ShoppingCart/Cart"/>
</reference>

</component>
</composite>

This example defines a Store component that uses Tuscany implementation.widget in an HTML file at
ui/store.html.

2. Enable the SCA reference in an HTML file.

In the HTML file, ui/store.html, define two required script elements that enable SCA references.
Specify the following for the first element:

Chapter 19. Developing SCA composites 799

<script type="text/javascript>>
dojo.registerModulePath("tuscany", "/Store/tuscany");
dojo.require("tuscany.AtomService");

</script>

This definition is required when using Atom binding references. The dojo.registerModulePath method
tells the dojo object where to find requirements in the Tuscany namespace. The first argument is
always "tuscany". The second argument is specified in the format /SCA_component_name/tuscany. The
dojo.require statement for "tuscany.AtomService" causes the browser to load the JavaScript file from
the /Store/tuscany/AtomService.js file. The product dynamically generates this file to connect the
Atom binding references to Atom services.

Specify the following for the second element:
<script type="text/javascript" src="/Store/store.js"></script>

This definition is required in any HTML file that is used as an implementation for a Widget
implementation component. For the script src attribute, specify the uniform resource identifier (URI) in
the format /SCA_component_name/modified_implementation.widget_location_attribute; for example,
/Store/store.js. The modified location attribute is the Widget implementation location attribute without
a leading path and with a file extension of .js.

3. Define the SCA reference in JavaScript in the HTML file.

An HTML file that contains the above example reference might resemble:
//@Reference
var catalog = new tuscany.sca.Reference("shoppingCart");

The //@Reference comment is required. The SCA run time interprets the comment in the same manner
that a Java class interprets an @Reference tag.

4. Use JavaScript to manipulate the feed reference.

For example, to retrieve an entire feed, the HTML file might use the following example code:
var items = shoppingCart.get("");

To retrieve a single entry, the implementation might call:
var item = shoppingCart.get("Item1");

To add a new entry to the feed, the HTML file might use the following example code:
var entry =

’<entry xmlns="http://www.w3.org/2005/Atom"><title>item</title><content type="text/xml">’
+ ’<Item xmlns="http://services/">’ + <name xmlns="">’ + itemName + ’</name>’
+ ’<price xmlns="">’ + itemPrice + ’</price>’ + ’</Item>’ + ’</content></entry>’;

shoppingCart.post(entry);

What to do next

Deploy your SCA component in an application.

For additional examples, see the topic on using Widget implementation in JavaScript with Atom or HTTP
bindings.

Using HTTP bindings in SCA applications
You can use an HTTP binding with a wire format of JSON-RPC in a Service Component Architecture
(SCA) application to expose services to remote web browser clients. JSON-RPC is a remote procedure
call (RPC) protocol encoded in the JavaScript Object Notation (JSON) format.

About this task

Use the HTTP binding to expose SCA services for consumption by remote web clients. This topic
describes how to expose a Java implementation as a service to be consumed by a browser client using
native Dojo interfaces and RPC libraries.

800 Developing WebSphere applications

To use native SCA references in JavaScript code, see the topic on using Widget implementation in
JavaScript with HTTP bindings.

Procedure
1. Configure the Java service in an SCA composite definition.

Expose a Java service over the HTTP binding in the composite definition; for example:
<composite>
<service name="EchoService" promote="EchoComponent">
<interface.java interface="echo.Echo"/>
<tuscany:binding.http uri="/EchoService"/>
<tuscany:wireFormat.jsonrpc/>

</tuscany:binding.http>
</service>

<component name="EchoComponent">
<implementation.java class="echo.EchoComponentImpl"/>

</component>
</composite>

This example exposes the methods defined in the echo.Echo interface to web browser clients. The
echo.EchoComponentImpl class implements the Echo interface and provides the implementation for the
component. The service is exposed on the "/EchoService" relative uniform resource identifier (URI).

The example HTTP binding URI, /EchoService, is a relative URI. To run applications that use an HTTP
binding in product clusters, specify a relative URI. You cannot run applications in product clusters if the
binding specifies an absolute URI, such as http://localhost:9080/newsService.

2. Access the service from a web browser.

For example, to access the EchoService service, use the Dojo toolkit application programming
interfaces in an HTML file or JavaServer Pages (JSP) file to access the service available at
/EchoService:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Echo...</title>
<script type="text/javascript" src="./dojo/dojo.js"></script>
<script>
dojo.require("dojo.io.script")
dojo.require("dojo.rpc.RpcService")
dojo.require("dojo.rpc.JsonService")
dojo.require("dojo.rpc.JsonpService")

function filladdr(){
var nameElement=document.getElementById("name");
var name=nameElement.value;
var echo = new dojo.rpc.JsonService("/EchoService?smd");
echo.echo(name).addCallback(fillmsg);

}

function fillmsg(result){
var line=document.getElementById("line1");
line.value=result;

}
</script>
</head>
<body>
Enter a string: <input id="name" type="text">
<input type="submit" value="Echo String" onClick="filladdr()">

<p>Echo </p><input id="line1" type="text" size="50">

</body>
</html>

The URI passed into the dojo.rpc.JsonService constructor "/EchoService?smd" contains the query
string "smd" on the end of the URI specified in the <binding.http> definition in the composite. The
query string "smd" on the end of the URI is required when using Dojo clients.

Results

The HTML output for the example output shows two text boxes and a "submit" button. When a user
enters text in the first box and clicks the submit button, the following steps take place:

1. The JavaScript code in the filladdr() method obtains the value that was entered in the first text box.

2. The filladdr() method instantiates a dojo.rpc.JsonService object pointed to the URI
"/EchoService?smd".

Chapter 19. Developing SCA composites 801

3. The JavaScript code runs the "echo(String)" method on the JsonService object, causing a
JSON-RPC request to be sent to "/EchoService?smd".

4. The SCA run time handles the URI request by running the EchoComponentImpl.echo(String) method.
The result is returned to the client as an HTTP response.

5. The web client runs the designated callback method, "fillmsg(result)", with the value returned from
the service.

6. The JavaScript code in the fillmsg(result) method updates the second text box to contain the text
returned from the service invocation.

Enter a string: Test string ABC Echo String

Echo

Test string ABC

What to do next

Consider the supported data types for the JSON conversion. Parameters for JSON-RPC requests are sent
to the server in JSON format, and must be transformed by the SCA run time for use in the Java
implementation. The response to the client is also in JSON format, so the SCA run time converts the value
returned from the EchoComponentImpl.echo() method back into JSON. For example, echo("Testing...")
might submit the following data to the server:
{"params":["Testing..."],"method":"echo","id":1}

The Java method EchoComponentImpl.echo(String message) is invoked with the String parameter
"Testing..." and returns the String object "echo: Testing...". The JSON response returned to the web
client might look like:
{"id":1,"result":"echo: Testing..."}

Table 85. Supported data types for JSON conversions. Conversion enables the Web client and Java implementation
to use the data.

Data type
Primitive Type <==> JSON <==> Primitive Type

Array of Primitive Type <==> JSON <==> Array of Primitive Type
Java bean <==> JSON <==> Java bean

List <==> JSON <==> List
Map <==> JSON <==> Map
Set <==> JSON <==> Set

Securing services exposed by HTTP bindings
You can use an HTTP binding with a wire format of JSON-RPC securely in a Service Component
Architecture (SCA) application. Use intents to secure services that are exposed by the HTTP binding to
remote web browser clients.

Before you begin

JSON-RPC is a remote procedure call (RPC) protocol encoded in the JavaScript Object Notation (JSON)
format.

For information about using HTTP bindings in this product, refer to “Using HTTP bindings in SCA
applications” on page 800.

802 Developing WebSphere applications

Enable administrative and application security, if not done so already. To enforce intents to secure services
that are exposed by an HTTP binding, administrative and application security must be enabled.

transition: In Version 8.0, the default value for the web authentication property webAuthReq is persisting,
which enables credential persistence that allows login information to be available to
unprotected web clients and enables additional access to user information. You must set the
webAuthReq property to lazy to prevent unprotected web clients additional access to user
information through persisting credentials. For more information, see Security hardening
features enablement and migration. You can set webAuthReq to lazy on the administrative
console Web security - General settings page:

1. Click Security > Global security > Authentication > web and SIP security > General
settings.

2. Select Authenticate only when the URI is protected, which enables lazy authentication.

3. Click Apply.

For more information, see Web authentication settings.

About this task

Use the HTTP binding to secure services. To secure services, configure the requires attributes on the
binding.http element.

Procedure
1. Configure security for the HTTP binding service in an SCA composite definition.

You can secure services that are exposed over an HTTP binding using intents. The following three
intents are valid options for the requires attribute on the binding.http element:

authentication.transport
Requires any client invoking the service to provide valid authentication information.

confidentiality.transport
Requires any client invoking the service to do so over a secure transport that provides
confidentiality of the transport.

integrity.transport
Requires any client invoking the service to do so over a secure transport that provides integrity
of the transport.

Edit a composite definition that exposes a Java service over the HTTP binding so that the exposed
service requires a client to authenticate and communicate over a secure transport; for example:

<composite>
<service name="EchoService" promote="EchoComponent">
<interface.java interface="echo.Echo"/>
<tuscany:binding.http uri="/EchoService" requires=“authentication.transport confidentiality.transport"/>
<tuscany:wireFormat.jsonrpc/>
</tuscany:binding.http>

</service>

<component name="EchoComponent">
<implementation.java class="echo.EchoComponentImpl"/>

</component>
</composite>

For information about authorization policy, refer to topics on SCA authorization and security identity
policies.

2. Invoke a secure service that is exposed over an HTTP binding from a web browser.

You can access the service directly from a JavaServer Pages (JSP) file or HTML page using the Dojo
toolkit application programming interfaces from a web browser.

If the service requires confidentiality or integrity, use the HTTPS protocol. If the service requires
authentication, configure the client application to prompt the user for valid user name and password. If
the default product settings enable single sign-on (SSO) and the user has authenticated previously,
these credentials are automatically propagated in the request to the service.

Chapter 19. Developing SCA composites 803

What to do next

Test the service security.

Using Widget implementation in JavaScript with HTTP bindings
The JavaScript code in an HTML file can use Service Component Architecture (SCA) references that are
defined in a Tuscany Widget implementation. Use Widget implementation to work with data in JavaScript
Object Notation (JSON) format that an SCA service returns in JavaScript.

Before you begin

You can use the HTTP binding with a wire format of JSON-RPC to expose SCA services for consumption
by remote web browser clients. JSON-RPC is a remote procedure call (RPC) protocol encoded in the
JSON format.

About this task

An SCA component can define SCA references for use in JavaScript code. Use Tuscany Widget
implementation to define the references. The implementation supports references that use an HTTP
binding with a wire format of JSON-RPC, and does not support the definition of SCA services.

The SCA composite that uses the Widget implementation must be deployed inside a web application
archive (WAR) file.

Procedure
1. Configure a Widget implementation in an SCA composite definition.

Create an SCA composite definition file for a component that uses Tuscany implementation.widget.
For example:

<composite>
<component name="Store">
<tuscany:implementation.widget location="ui/store.html"/>

<reference name="catalog">
<tuscany:binding.http uri="/Catalog"/>
<tuscany:wireFormat.jsonrpc/>

</tuscany:binding.http>
</reference>

</component>
</composite>

This example defines a Store component that uses Tuscany implementation.widget in an HTML file at
ui/store.html.

2. Create the HTML file specified in the SCA composite definition for the Widget implementation.

In the HTML file, define required script elements such as the following:
<script type="text/javascript" src="/Store/store.js"></script>

The script src attribute points to a JavaScript file that the product dynamically generates to connect the
SCA references to their associated services. Specify the uniform resource identifier (URI) in the format
/SCA_component_name/modified_implementation.widget_location_attribute; for example,
/Store/store.js. The modified location attribute is the location attribute without a leading path and
with a file extension of .js.

3. Define the SCA reference in JavaScript in the HTML file.

In the HTML file, define an SCA reference. For example:
//@Reference
var catalog = new tuscany.sca.Reference("catalog");

4. Add JavaScript code that uses the reference to the HTML file.

The code used for this example resembles:
<script>

function init() {
catalog.get().addCallback(catalog_getResponse);

}

804 Developing WebSphere applications

function catalog_getResponse(items,exception) {
if(exception){
alert(exception.message);
return;

}
var catalog = "";
for (var i=0; i < items.length; i++) {
var item = items[i].name + ’ - ’ + items[i].price;
catalog += ’<input name="items" type="checkbox" value="’ +
item + ’">’ + item + ’
’;

}
document.getElementById(’catalog’).innerHTML=catalog;

}

</script>

In this example code, the init method calls the get method on the catalog reference. The result is
sent to the callback method callback_getResponse(). The callback method adds check box elements
to the HTML for each item returned from the catalog get method.

5. Add the user interface to the HTML file, as needed.

The ui/store.html file used for this example might use the following user interface:
<html>
<body onload="init()">
<h1>Store</h1>

<h2>Catalog</h2>
<form name="catalogForm">

<div id="catalog"></div>

<input type="button" onClick="addToCart()" value="Add to Cart">

</form>
</body>
</html>

What to do next

Deploy your SCA component in an application.

When using the Widget implementation, HTTP binding references must be deployed on the same server
or cluster as the HTTP binding services that they reference. This limitation is a result of browser limitations
on cross-domain JavaScript invocation. If your application defines the reference and service in separate
servers or clusters, use a proxy server so that the Widget implementation resource that contains the
reference and the HTTP binding service are both accessed using the same HTTP domain.

To resolve HTTP binding references, either use a target attribute, @target, on the reference or specify the
URI attribute on the binding.http element. For more information, see the topic on resolving SCA
references.

For more examples, see the topic on using Widget implementation in JavaScript with Atom or HTTP
bindings.

Using Widget implementation in JavaScript with Atom or HTTP
bindings
You can use Tuscany Widget implementation to define Service Component Architecture (SCA) references
for use in JavaScript code. Use Widget implementation to work with data that an SCA service returns in
JavaScript. The data can be in Atom collections or in JavaScript Object Notation (JSON) format.

Before you begin

You can use an Atom binding in an SCA application to expose collections of data as an Atom feed or to
reference existing external Atom feeds. If you are unfamiliar with the Atom protocol, refer to documentation
on the Atom Syndication Format, an XML-based document format that describes web feeds, and the Atom
Publishing Protocol, a protocol for publishing and updating web resources.

Chapter 19. Developing SCA composites 805

You can use the HTTP binding with a wire format of JSON-RPC to expose SCA services for consumption
by remote web browser clients. JSON-RPC is a remote procedure call (RPC) protocol encoded in the
JSON format.

About this task

An SCA component can define SCA references for use in JavaScript code. Use Tuscany Widget
implementation to define the references. The implementation supports references that use an Atom binding
or an HTTP binding with a wire format of JSON-RPC, and does not support the definition of SCA services.
The implementation also supports the definition of SCA properties.

The SCA composite that uses the Widget implementation must be deployed inside a web application
archive (WAR) file.

Procedure
1. Configure a Widget implementation in an SCA composite definition.

Create an SCA composite definition file for a component that uses Tuscany implementation.widget.
For example:
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0"
targetNamespace="http://store" name="storeWidget">

<component name="Store">
<tuscany:implementation.widget location="ui/store.html"/>

</component>
</composite>

This example defines a Store component that uses Tuscany implementation.widget in an HTML file at
ui/store.html. The implementation.widget definition is located in the "http://tuscany.apache.org/
xmlns/sca/1.0" namespace, rather than the "http://www.osoa.org/xmlns/sca/1.0" namespace that
most SCA artifacts use.

2. Add SCA reference definitions to the SCA composite definition.

Define one or more references that use an Atom binding or an HTTP binding. An SCA reference that
uses an Atom binding resembles:
<reference name="shoppingCart">

<tuscany:binding.atom uri="/ShoppingCart/Cart"/>
</reference>

An SCA reference that uses the HTTP binding with a wire format of JSON-RPC resembles:
<reference name="catalog">

<tuscany:binding.http uri="/Catalog"/>
<tuscany:wireFormat.jsonrpc/>

</tuscany:binding.http>
</reference>

For more information on the Atom binding references, see the topics on using Atom bindings. For more
information on HTTP binding references, see the topics on using HTTP bindings.

3. Add SCA property definitions to the SCA composite definition.

You can define one or more properties in the SCA composite definition file. For example:
<property name="currency">USD</property>

4. Add the SCA composite definition to the WAR file.

Save the SCA composite definition in the META-INF/sca-deployables/default.composite file in the
WAR file.

For the example in this topic, the complete composite file is as follows:
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0"
targetNamespace="http://store" name="storeWidget">

<component name="Store">
<tuscany:implementation.widget location="ui/store.html"/>

806 Developing WebSphere applications

<reference name="shoppingCart">
<tuscany:binding.atom uri="/ShoppingCart/Cart"/>

</reference>
<reference name="shoppingTotal">

<tuscany:binding.http uri="/ShoppingCart/Total">
<tuscany:wireFormat.jsonrpc/>

</tuscany:binding.http>
</reference>
<reference name="catalog">

<tuscany:binding.http uri="/Catalog"/>
<tuscany:wireFormat.jsonrpc/>

</tuscany:binding.http>
</reference>

<property name="currency">USD</property>

</component>
</composite>

5. Create the HTML file specified in the SCA composite definition for the Widget implementation and add
it to the WAR file.

In the HTML file, define the SCA references and properties and define required script elements as
described in topics on using Atom bindings or HTTP bindings. The ui/store.html file used for this
example resembles:
<html>
<head>
<title>Store</title>

<script type="text/JavaScript" src="../dojo/dojo.js"></script>
<script type="text/javascript>>

dojo.registerModulePath("tuscany", "/Store/tuscany");
dojo.require("tuscany.AtomService");
dojo.require("dojo.rpc.JsonService");

</script>
<script type="text/JavaScript" src="/Store/store.js"></script>
<script language="JavaScript">

//@Reference
var catalog = new tuscany.sca.Reference("catalog");

//@Reference
var shoppingCart = new tuscany.sca.Reference("shoppingCart");

//@Property
var currency = new tuscany.sca.Property("currency");

var catalogItems;

function catalog_getResponse(items,exception) {
var catalog = "";
for (var i=0; i < items.length; i++) {

var item = items[i].name + ’ - ’ + items[i].price;
catalog += ’<input name="items" type="checkbox" value="’ +

item + ’">’ + item + ’
’;
}
document.getElementById(’catalog’).innerHTML=catalog;
catalogItems = items;

}

function shoppingCart_getResponse(feed) {
if (feed != null) {

var entries = feed.getElementsByTagName("entry");
var list = "";
for (var i=0; i < entries.length; i++) {

var content =

Chapter 19. Developing SCA composites 807

entries[i].getElementsByTagName("content")[0];
var name =

content.getElementsByTagName("name")[0].firstChild.nodeValue;
var price =

content.getElementsByTagName("price")[0].firstChild.nodeValue;
list += name + ’ - ’ + price + ’
’;

}
}
document.getElementById("shoppingCart").innerHTML = list;

}

function shoppingCart_postResponse(entry) {
shoppingCart.get("").addCallback(shoppingCart_getResponse);

}

function addToCart() {
var items = document.catalogForm.items;
var j = 0;
for (var i=0; i < items.length; i++) {

if (items[i].checked) {
var entry =

’<entry xmlns="http://www.w3.org/2005/Atom"><title>item<content
type="text/xml">’ + ’<Item xmlns="http://services/">’ + ’<name xmlns="">’
+ catalogItems[i].name + ’</name>’ + ’<price xmlns="">’ +
catalogItems[i].price + ’</price>’ + ’</item>’ + ’</content></entry>’;

shoppingCart.post(entry).addCallback(shoppingCart_postResponse);
items[i].checked = false;

}
}

}

function init() {
catalog.get().addCallback(catalog_getResponse);
shoppingCart.get("").addCallback(shoppingCart_getResponse);

}
</script>
</head>

<body onload="init()">
<h1>Store</h1>
<div id="store">

<h2>Catalog</h2>
<form name="catalogForm">

<div id="catalog"></div>

<input type="button" onClick="addToCart()" value="Add to Cart">

</form>

<h2>Your Shopping Cart</h2>
<form name="shoppingCartForm">

<div id="shoppingCart"></div>

<div id="total"></div>

</form>
</div>
</body>
</html>

What to do next

Deploy your SCA component in an application.

808 Developing WebSphere applications

Resolving SCA references
During application assembly or deployment, a reference (a service dependency) is typically resolved to an
actual deployed SCA service.

About this task

You can specify the target endpoint of a Service Component Architecture (SCA) reference in any of the
following ways:

v Using the @target attribute on the reference element in order to target a reference to a component
service within the domain

v For OASIS composites, using the @target attribute of the binding.ws element to target a web service
reference to an SCA web service within the domain

v Using the @uri attribute of the binding element to specify a binding-specific endpoint

Using the @target attribute on the reference element

Use this option when the target service is another SCA service that is in the same domain as the
client component, or rather, the component with the reference.

This @target attribute is supported for binding.sca for both OSOA and OASIS composites. In an
OSOA composite, you can optionally include a binding.sca element within a reference element
that uses the @target attribute. In an OASIS composite, you cannot include a binding.sca
element within a reference element that uses the @target attribute.

The @target attribute is supported for the following bindings for OSOA composites only:
v binding.ws
v binding.atom
v binding.http
v binding.json

When a reference uses the @target attribute, the client does not need to know the endpoint
address of a service. It is determined during run time. Also, the @target attribute does not need to
be updated when the target service is deployed to a new server with a different address.

If you use this approach, remember that you must use bindings of the same type, meaning that
the reference must share a common binding with the service it is targeting.

Using the @target attribute on the binding.ws element
Use this option to wire an SCA web service reference to an SCA web service within the same
domain.

This option is supported for OASIS composites only.

Using a binding-specific endpoint

You must resolve an SCA reference using a binding-specific endpoint if you invoke non-SCA
services over non-default bindings or if you have compatible SCA services that are hosted in
another domain.

In general, obtain the binding-specific endpoint from the service provider.

If your target service is another SCA service, see the documentation for configuring the particular
SCA binding to learn more about which binding-specific endpoint is used for a given service
deployment over a particular binding.

Procedure
1. Determine from the service provider whether the service that you are consuming is an SCA service

within the same domain as your client.

2. Determine the binding that your client uses to consume this service.

Chapter 19. Developing SCA composites 809

If the target service is an SCA service, the binding that you use is based on the bindings over which
the service is exposed. If the service is not an SCA service, the binding depends on the technology
over which the service is provided. For example, services offered over SOAP/HTTP use the SCA web
services binding.

3. If the SCA service is hosted in the same domain as your client, use the @target attribute to resolve a
reference to a component service within the domain.

The following examples demonstrate using the @target attribute. The syntax for the <reference>
element is the same for the different SCA binding types.

v SCA default binding

Target component
<component name="TargetComponent">
<service name="BankService"/>

</component>

Client component
<component name="ClientComponent">
<reference name="myReference" target="TargetComponent"/>

</component>

v SCA web service binding

Target component
<component name="TargetComponent">
<service name="BankService">
<interface.wsdl>
<binding.ws/>

</service>
</component>

Client component (OSOA example)
<component name="ClientComponent">
<reference name="myReference" target="TargetComponent">
<interface.wsdl>
<binding.ws/> <!-- The client does not have to specify endpoint details. -->

</reference>
</component>

Client component (OASIS example)
<component name="ClientComponent">
<reference name="myReference">
<interface.wsdl>
<binding.ws target="TargetComponent"/>

</reference>
</component>

v SCA Atom binding

Target component
<component name="NewsServiceComponent">
<service name="NewsService">
<t:binding.atom uri="/newsService"/>

</service>
</component>

Client component
<component name="NewsComponent">
<reference name="newsServiceRef" target="NewsServiceComponent/NewsService">
<t:binding.atom/> <!-- The client does not need to specify endpoint details -->

</reference>
</component>

v SCA HTTP binding

Target component
<component name="Catalog">
<service name="Catalog">
<t:binding.http>
<t:wireFormat.jsonrpc/>

</t:binding.http>
</service>

</component>

810 Developing WebSphere applications

Client component
<component name="Store">

<t:implementation.widget location="store.html"/>
<reference name="catalog" target="Catalog/Catalog">

<t:binding.http/> <!-- The client does not need to specify endpoint details -->
<t:wireFormat.jsonrpc/>

</t:binding.http>
</reference>

</component>

4. Resolve the SCA reference by using a binding-specific endpoint if you are invoking non-SCA services
over non-default binding or if you have compatible SCA services that are hosted in another domain.

The following examples demonstrate using the binding-specific endpoint for the client component:

v SCA web service client component
<component name="ClientComponent">
<reference name="myReference">

<!-- The exact URL is obtained from a service provider. -->
<binding.ws uri=”http://www.mybank.com:9080/MyBank/AccountService/services>

</reference>
</component>

v SCA binding.atom client component
<component name="Aggregator">
<reference name="atomFeed1">
<t:binding.atom
uri="http://www.ibm.com/developerworks/views/webservices/rss/libraryview.jsp"/>

</reference>
</component>

v SCA binding.http client component
<component name="Store">
<reference name="catalog">
<t:binding.http uri="/catalog">
<t:wireFormat.jsonrpc/>

</t:binding.http>
</reference>

</component>

See the documentation for configuring the particular SCA binding to learn more about binding-specific
endpoint resolution for these SCA binding types.

Results

You have identified your SCA client's reference to a target service that it will consume.

Routing HTTP requests to an SCA service when using an external web
server
If you are using an external web server to route requests to an SCA service that is exposed over the SCA
web services, Atom or HTTP binding, you must define the endpoints of the SCA service to the Web Server
HTTP plug-in.

About this task

Requests to services that are exposed over the SCA binding that use the proxy server type that is
provided with WebSphere Application Server are routed over the specified proxy by default.

However, if your configuration uses an external web server with the HTTP plug-in for WebSphere
Application Server and you want requests to services that are exposed over the SCA binding to route
through the external web server, you must define the endpoints for the SCA service by adding the service
URL patterns to the plugin-cfg.xml file for the Application Server.

Chapter 19. Developing SCA composites 811

Procedure
1. Obtain the URL patterns for each service.

You can obtain the URL patterns in one of the following ways:

v Use the message, which is located in the server log file, that indicates the web application is
successfully created.

During service startup, for each service that is exposed over an SCA binding, a dynamic web
application is created and configured with the URI of the service. This process is described as an
informational message within the server log file as shown in the following example.

In the following example message, the helloworldws composition unit contains the
AsyncTranslatorService service, which is exposed over the SCA web service binding. This message
provides the necessary context root and URL pattern for the service, which you must add to the
plugin-cfg.xml file.

/AsynchTranslatorComponent/AsynchTranslatorService/*

[[11/18/08 10:10:52:156 EST] 00000070 servlet I com.ibm.ws.webcontainer.servlet.ServletWrapper init
SRVE0242I: [helloworldws]
[/AsynchTranslatorComponent/AsynchTranslatorService]
[SCA_WS_BINDING_IMPL_CLASS_PLACEHOLDER]: Initialization successful.
[11/18/08 10:10:52:156 EST] 00000070 WASAxis2Exten I
WSWS7037I: The /* URL pattern was configured for the SCA_WS_BINDING_IMPL_CLASS_PLACEHOLDER servlet located
in the SCAWSBindSERV_AsynchTranslatorComponent_AsynchTranslatorService.war web module.

v Use the warinfo.props WebSphere configuration repository file.

For each composition unit that has at least one service or reference exposed over the binding, a
single warinfo.props file is generated during deployment. This file contains configuration information
for each dynamic web application that starts during the server startup process.

The warinfo.props file is located in, for example, the profile_root\SOAAppSrv01\config\cells\
cell1\cus\helloworldws\cver\BASE\meta\warinfo.props directory.

The file contains an entry for each dynamic web application. For example:
#
#Tue Nov 18 10:10:37 EST 2008
SCAWSBindSERV_AsynchTranslatorComponent_
AsynchTranslatorService.war=AsynchTranslatorComponent/
AsynchTranslatorService\:default_host\:false\:false\:false

The value immediately following the war= and ending prior to the \: is the context root for the web
application. In this example, the context root is AsynchTranslatorComponent/
AsynchTranslatorService.

2. Add the values for each dynamic web application to the plugin-cfg.xml file.

After obtaining all of the entries from each of the services that you want to define to the proxy server,
add the values to the plugin-cfg.xml file. It is important that you add the URI to the specific UriGroup
that contains a server and hosts the proxied service because multiple UriGroups might exist. If this
process is not done correctly, an HTTP 404 message results.

In the following example, see the AsynchTranslatorComponent/AsynchTranslatorService entry that
has been added to the list of URI patterns:

<UriGroup Name="default_host_Cluster2_URIs">
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsp" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsv" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsw" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/j_security_check" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/ibm_security_logout" />

812 Developing WebSphere applications

? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/AsynchTranslatorComponent/AsynchTranslatorService/*" /> </UriGroup>

Results

You have configured the endpoints for SCA services to route requests through an external web server
configured with the HTTP plug-in for WebSphere Application Server

Interoperability between Open SCA client services and WebSphere
Process Server SCA modules
Support for Service Component Architecture (SCA) provides a simple, yet powerful programming model for
constructing applications based on the Open SCA specifications. The SCA modules of WebSphere
Process Server use import and export bindings to interoperate with Open SCA services.

An Open SCA application invokes WebSphere Process Server SCA applications using an export binding.
An Open SCA application receives a call from a WebSphere Process Server SCA application using an
import binding.

When building an Open SCA service client which will invoke WebSphere Process Server SCA module
services, start with an existing WSDL file for all supported bindings except Enterprise JavaBeans (EJB)
bindings.

Generate Java interfaces from the Web Services Description Language (WSDL) file. Do not port modules
from WebSphere Process Server SCA to Open SCA and do not port modules from Open SCA to
WebSphere Process Server SCA.

In general, Java artifacts are not reusable across WebSphere Process Server SCA modules and Open
SCA applications, even when one artifact invokes the other over a common WSDL interface. You must use
appropriate tooling to separately generate, from the WSDL interface, the Java interfaces and classes that
are used in the Open SCA applications and the Java interfaces and classes that are used in the
WebSphere Process Server SCA modules. For Open SCA applications, use the wsimport command-line
tool or Rational Application Developer with SCA function. For WebSphere Process Server SCA modules,
use a tool such as WebSphere Integration Developer.

Bindings that support interoperability between Open SCA client services and
WebSphere Process Server SCA modules

Currently, four bindings support interoperability between Open SCA client services and WebSphere
Process Server SCA modules:
v SCA binding
v EJB binding
v Web service binding
v JMS binding

SCA binding
When configuring a reference to a WebSphere Process Server SCA module export over SCA
binding the following restrictions apply:

v Only synchronous invocations of request-response (two-way) operations are supported.

v All components or modules must be in the same WebSphere Application Server cell definition.
The SCA binding is not supported across the cell.

v Both the Open SCA component and the WebSphere Process Server SCA module must use a
WSDL interface that meets the following requirements:
– Web Services Description Language (WSDL) Version 1.1
– WS-I Basic Profile Version 1.1
– Simple SOAP Binding Profile 1.0 standards

Chapter 19. Developing SCA composites 813

– Document literal style

Constructing a URI for a WebSphere Process Server SCA module export over SCA binding

WebSphere Process Server SCA module export is exposed using a uniform resource indicator
(URI) that is constructed as follows:
module_name/export_name

The module_name and export_name variables are defined in the WebSphere Process Server
application. You can view the values from either WebSphere Integration Developer or from the
administrative console.

Specify this URI as the reference target URI or as the URI in the binding.sca element in the
.composite file. For example, for a WebSphere Process Server module named HelloWorldModule
and a WebSphere Process Server export named /test/sca/ClassicHelloWorld, the .composite
file resembles the following:

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" autowire="false"

name="HelloWorldClientComposite" targetNamespace="http://sca.test">
<component name="HelloWorldClientComponent">
<implementation.java class="test.sca.open.OpenHelloWorldClient"/>
<reference name="classicHWReference" target="HelloWorldModule/test/sca/ClassicHelloWorld">
<interface.wsdl interface="http://sca.test#wsdl.interface(HelloWorldInterface)"/>
<binding.sca/>

</reference>
</component>

</composite>

or:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" autowire="false"

name="HelloWorldClientComposite" targetNamespace="http://sca.test">
<component name="HelloWorldClientComponent">
<implementation.java class="test.sca.open.OpenHelloWorldClient"/>
<reference name="classicHWReference">
<interface.wsdl interface="http://sca.test#wsdl.interface(HelloWorldInterface)"/>
<binding.sca uri="HelloWorldModule/test/sca/ClassicHelloWorld"//>

</reference>
</component>

</composite>

EJB binding
When configuring a reference to a WebSphere Process Server SCA module export over an EJB
binding, the following restrictions apply:

v Only synchronous invocations are supported.

v Only EJB 3.x protocol is supported.

v Both the Open SCA component and WebSphere Process Server SCA module must use a Java
interface that conforms to the EJB 3.x programming model.

Web service (JAX-WS) binding
When configuring a reference to a WebSphere Process Server SCA module over a Web service
binding, the following features are supported:

v Asynchronous (one-way) and synchronous (request or response) invocations

v The SOAP1.1/HTTP or SOAP1.2/HTTP protocols

v Web Services Atomic Transaction and Web Services Security qualities of service

When configuring a reference to a WebSphere Process Server SCA module over a Web service
binding, the following restrictions apply:

v Callback is not supported for non-SCA services like WebSphere Process Server SCA export
modules.

v Both the Open SCA component and the WebSphere Process Server SCA module must use a
WSDL interface that meets the following requirements:
– Web Services Description Language (WSDL) Version 1.1
– WS-I Basic Profile Version 1.1

814 Developing WebSphere applications

– Simple SOAP Binding Profile 1.0 standards
– Document literal style

JMS binding
When configuring a reference to a WebSphere Process Server SCA module over a JMS binding,
the following features are supported:

v Asynchronous (one-way) and synchronous (request or response) invocations

v JMS provider platform messaging (JMS binding)

v JMS provider WebSphere MQ (WebSphere MQ JMS binding)

When configuring a reference to a WebSphere Process Server SCA module over a JMS binding,
the following restrictions apply:

v When using commonj.sdo.DataObject as a parameter type in Java, wireFormat.jmsObject is not
supported. Although both the SCA and WebSphere Process Server application Java
programming models support the use of the same Java-serializable type,
commonj.sdo.DataObject, and wireFormat.jmsObject results in Java serialization, the
commonj.sdo.DataObject interface is backed by different implementations in each of the two
environments. Thus, this wire format is not an interoperable option. Instead, use an XML wire
format, such as wireFormat.jmsTextXML or wireFormat.jmsBytesXML, or use
wireFormat.jmsdefault.

v Callback is not supported.

Data types

Business graphs are not interoperable across any SCA bindings and, therefore, are not supported in
interfaces used to interoperate with SCA.

Creating wire format handlers
You can use a wire format handler to transform data between a Service Component Architecture (SCA)
application and the application binding.

Before you begin

This topic assumes that you have an SCA application with a specified binding. The product supports wire
format handling for a Java Message Service (JMS) binding.

Unless otherwise specified, the information in this topic pertains to both OSOA and OASIS applications.

About this task

You can implement a wire format handler that converts data between an application wire format and a
JMS Message wire format that is used by the JMS destination of a JMS binding.

Creating a wire format handler consists of two main steps:

1. Implement a Java interface that defines the wire format handler.

2. Configure the wire format handler in the composite definition file of the SCA application.

Procedure
1. Implement the wire format handler interface.

The wire format handler provides function that transforms one form (source) to another. The result of a
transformation is mapped into either object source or JMS message source. The wire format handler
must implement the WireFormatHandler interface, which has methods that map into the two source
types.

Chapter 19. Developing SCA composites 815

See the following example wire format handler interface:
package com.ibm.websphere.soa.sca.wireformat;

public interface WireFormatHandler {

/**
* Transform.
*
* @param source
* the source
*
* @return the object
*
* @throws WireFormatHandlerException
* the wire format handler exception
*/
public Object transform(Object source)

throws WireFormatHandlerException;

/**
* Sets the wire format context.
*
* @param ctx
* the new wire format context
*/
public void setWireFormatContext(WireFormatContext ctx);

/**
* Gets the wire format context.
*
* @return the wire format context
*/
public WireFormatContext getWireFormatContext();}

In the public Object transform method implementation, the wire format handler transforms data from
the source object to a target object. If an error occurs during the transformation, the data handler
implementation throws a WireFormatHandlerException.

The public void setWireFormatContext method implementation sets the runtime context of the wire
format handler. The public WireFormatContext getWireFormatContext method implementation gets the
runtime context of the wire format handler. Even if you do not intend to use the context object, you
must implement these methods.

The wire format context contains runtime contextual information passed from the caller to the wire
format handler. The WireFormatContext interface specifies the runtime context of the wire format
handler. Each wire format handler implementation must implement the setWireFormatContext method
of the WireFormatContext interface.

The WireFormatContext class provides a java.util.Map interface where you can set property key and
value pairs in the context. The WireFormatContext interface also provides several methods to extract
useful information about the current context such as component and service names, invocation types,
and the ability to mark exceptions. Refer to the Java documentation for the
com.ibm.websphere.soa.sca.wireformat.WireFormatContext interface for a complete list of methods.

2. Configure the wire format handler in the SCA composite definition file.

Configuring a wire format handler consists of specifying the configuration properties at authoring time
and then accessing the configuration properties at run time. Update the composite definition file of your
SCA composite to instruct the component to use the wire format handler class; for example:

OSOA
xmlns:fep="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"

<component name="Account">
<implementation.java class="helloworld.AccountComponent"/>
<service name="Account">
<binding.jms>
<destination ...>
<response>
...

</response>

816 Developing WebSphere applications

<fep:wireFormat.jmsCustom class="helloworld.custom.FirstWFH"/>
</binding.jms>

</service>
</component>

OASIS
xmlns:fep="http://www.ibm.com/xmlns/prod/websphere/sca/1.1"

<component name="Account">
<implementation.java class="helloworld.AccountComponent"/>
<service name="Account">
<binding.jms>
<fep:wireFormat.jmsCustom class="helloworld.custom.FirstWFH"/>
<destination ...>
<response>
...

</response>
</binding.jms>

</service>
</component>

What to do next

Deploy your SCA application and test its behavior.

Wire format handler errors
A wire format handler can transform data between a Service Component Architecture (SCA) application
and the application binding. This topic discusses the different types of exceptions and errors that can
result at run time in an SCA application that uses wire format handlers. The product supports wire format
handling for a Java Message Service (JMS) binding.

The information in this topic pertains to both OSOA and OASIS applications.
v Business exceptions
v Runtime exceptions
v Service and reference exceptions
v Exception handling from a wire format handler

Business exceptions

Business exceptions are business errors or exceptions that occur during processing.

A business exception is a checked exception. It inherits from the Exception class. Client code must handle
a checked exception in a catch clause or with a throws clause.

When a business exception occurs, a checked exception object results from the service business
exception in the SCA application. The object calls the wire format handler that is configured on the service.

Runtime exceptions

Runtime exceptions are exceptions that occur in the SCA application from processing of a request.
Runtime exceptions do not correspond to business exceptions. Unlike business exceptions, runtime
exceptions are not defined on the interface.

You can propagate runtime exceptions to the client application so that the client application handles the
exceptions. For example, if a client sends a request to create a customer to an SCA application and an
authorization error occurs during processing of this request, the SCA component throws a runtime
exception. This runtime exception must be propagated back to the calling client so it can act on the
authorization request. You can use a wire format handler configured on the reference to propagate runtime
exceptions back to the calling client application.

Chapter 19. Developing SCA composites 817

Service and reference exceptions

To handle both business exceptions and runtime exceptions, you can set up exception handling on the
application bindings. Handling exceptions on either the reference or service on a binding is optional.

You likely create exception wire format handlers for the most common errors that occur at run time in your
application:

v When the exception thrown by the SCA application service must be transformed to a value the client
can understand.

v When the incoming exception received on a reference must be transformed to a value the client code
can understand.

Exception handling from a wire format handler

An exception handler is a wire format handler. Business and runtime exception handling is done from the
wire format handler An exception wire format handler transforms specific exceptions into objects that can
be understood by the client application.

Both service and reference bindings can use an exception wire format handler. You can configure an
exception wire format handler to do the following:

v Handle runtime exceptions that are received from external applications (reference)

v Send runtime exceptions that have occurred in your SCA application to the external applications
(service)

On the service implementation of a wire format handler, the implementation can examine the
WireFormatContext.INVOCATION value from the context to find that an exception was thrown. The wire
format handler might handle normal invocations and exceptions differently. See the following sample code:
public Message transformIntoJMSMessage(Session session, Object source)

throws JMSException, WireFormatHandlerException {

WireFormatContext.INVOCATION invocationType =
(WireFormatContext.INVOCATION) context.get(WireFormatContext.INVOCATION_TYPE);

if (invocationType == WireFormatContext.INVOCATION.TYPE_EXCEPTION) {
return handleException(session, source);

} else if (invocationType == WireFormatContext.INVOCATION.TYPE_RESPONSE) {
return handleResponse(session, source);

} else {
throw new WireFormatHandlerException(“Unexpected Invocation Type.”);

}
}

On the reference implementation of a wire format handler, the implementation must determine at run time
if the incoming response is of type fault. The WireFormatContext.INVOCATION value must be initially set
to TYPE_RESPONSE. The implementation examines incoming messages. When an incoming message is
an exception rather than a normal response, the implementation must set the invocation type to
TYPE_EXCEPTION and throw an appropriate exception. See the following code sample:
// On Reference-side, this is for an incoming response
public Object transformFromJMSMessage(Message source)
throws WireFormatHandlerException {

ObjectMessage msg = null;
Object payload = null;
Object[] payloadArray = null;
Integer payloadInt = null;
Object payloadItem = null;

try {
msg = (ObjectMessage)source;

} catch (ClassCastException cce) {

818 Developing WebSphere applications

throw new WireFormatHandlerException("Did not receive ObjectMessage", cce);
}
try {
payload = msg.getObject();

} catch (JMSException e) {
throw new WireFormatHandlerException("Cannot get Object from message using getObject()", e);

}

if (payload instanceof Integer) {
// Expected type returned
payloadInt = (Integer)payload;
Integer code = new Integer(0);
Integer one = new Integer(1);
code = payloadInt + one;
return code;

} else {
// Response is some type of exception...

// Change the response type to Exception
context.put(WireFormatContext.INVOCATION_TYPE, WireFormatContext.INVOCATION.TYPE_EXCEPTION);

if (payload instanceof Throwable) {
Throwable thw = (Throwable) payload;

//
// TO DO: Map to checked business exception and throw it
//

} else {
return new ServiceRuntimeException(((Throwable) payload).getMessage());
// Unchecked

}
} else {
throw new WireFormatHandlerException("Unexpected Object returned: " + payload);
// Unexpected or unknown object returned.
}

}
}

Interoperating between SCA OASIS and OSOA composites
Service Component Architecture (SCA) applications are based on either the Open SOA Collaboration
(OSOA) Version 1.0 SCA specifications or the OASIS SCA Version 1.1 specifications. You cannot mix
OSOA and OASIS SCA artifacts, such as .composite files or sca-contribution.xml files, within the same
asset. However, you can wire OASIS and OSOA SCA components together when both SCA composites
are running in a single product cell.

Before you begin

For information about the differences between OSOA and OASIS specifications and about the differences
between OSOA and OASIS in SCA applications, see the SCA overview topic.

About this task

This topic describes how you might wire OSOA and OASIS components together so that the components,
although in separate SCA applications, can interoperate while both applications are running in the same
product cell. The procedure provides a simple example that shows how to wire an OASIS component
reference to an OSOA component service.

When wiring components for interoperation between OSOA and OASIS in SCA applications, consider the
following restrictions:

v OSOA and OASIS components must interoperate over @Remotable interfaces. Local interfaces cannot
be used and result in an exception error.

v Interfaces must be annotated in a way consistent with the run time in which they are deployed.

Chapter 19. Developing SCA composites 819

– For an OASIS component to reference an OSOA component, the OASIS reference type must contain
OASIS annotations, such as org.oasisopen.sca.annotation.Remotable.

– For an OSOA component to reference an OASIS component, the OSOA reference type must contain
OSOA annotations, such as org.osoa.sca.annotations.Remotable.

v For a reference in an OASIS component to target an OSOA component, the uniform resource identifier
(URI) form must be component or component/service. The component/service/binding URI form is not
supported.

v OASIS interfaces marked with the asyncInvocation intent cannot interoperate with OSOA services.

v The product does not perform interface matching between OASIS and OSOA services. Incompatible
interfaces result in a runtime exception.

v The product does not perform policy matching between OASIS and OSOA services. Incompatible
policies result in a runtime exception.

Procedure
1. Create an OSOA SCA application.

a. Define an OSOA composite with a single component for the application.
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="InteropOSOARemote">

<component name="HelloWorldService">
<implementation.java class="interop.osoa.HelloWorldServiceImpl"/>
<service name="HelloWorld"/>

</component>
</composite>

b. Create a service interface that has a Java interface marked as remotable. The @Remotable
annotation comes from the OSOA annotations package.
package interop.osoa;

import org.osoa.sca.annotations.Remotable;

@Remotable
interface HelloWorld {

public String sayHello(String text);
}

c. Create a service implementation.

For this example, the service implementation adds the string "Hello " to the start of the text that it
is sent, and then returns the modified text:
package interop.osoa;

public class HelloWorldServiceImpl implements HelloWorld {
public String sayHello(String text) {

return "Hello " + text;
}

}

2. Create an OASIS SCA application and wire a component reference to the service that is defined in the
OSOA application.

a. Define an OASIS composite with a single component and with a reference to the service in the
OSOA application.
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" name="InteropOASIS">

<component name="HelloWorldClient">
<implementation.java class="interop.oasis.HelloWorldClientImpl"/>
<service name="HelloWorld"/>
<reference name="helloWorldOSOA" target="HelloWorldService"/>

</component>
</composite>

b. Create a reference interface that has a Java interface marked as remotable.

The reference interface is compatible with the HelloWorld service interface that is defined in the
OSOA application but it is a different Java interface. The reference interface is in a different Java
package; the @Remotable annotation comes from the OASIS annotations package.

820 Developing WebSphere applications

package interop.oasis;

import org.oasisopen.sca.annotation.Remotable;

@Remotable
interface HelloWorld {

public String sayHello(String text);
}

c. Create a service implementation that implements the HelloWorld interface and uses a reference to
the OSOA version of the component.

For this example, the reference determines the text to return to the caller.
package interop.oasis;

import org.oasisopen.sca.annotation.Reference;

public class HelloWorldClientImpl implements HelloWorld {

@Reference
protected HelloWorld helloWorldOSOA;

public String sayHello(String text) {
return helloWorldOSOA.sayHello(text);

}
}

3. Deploy the SCA applications into the same, or separate, business-level applications in the same cell.

For OSOA, an sca-contribution.xml file is not required if there is only one default.composite file in
the Java archive (JAR). An sca-contribution.xml file can reside in the META-INF/ directory or in a
subdirectory.

For OASIS, an sca-contribution.xml file is required and must reside in the META-INF/ directory, and
not in a subdirectory.

What to do next

To test the applications, you can call the HelloWorld service of the OASIS component (the
HelloWorldClient component in step 2) and have the service return the string that it retrieves from the
OSOA component (the HelloWorldService component in step 1).

Using existing Java EE modules and components as SCA
implementations
You can use the Service Component Architecture (SCA) programming model to invoke business services
in Java Platform, Enterprise Edition (Java EE) components.

About this task

The SCA programming model supports Java EE integration. You can expose Enterprise JavaBeans (EJB)
stateless session beans as SCA services. You can take advantage of SCA annotations to enable the Java
EE components, such as session beans, message driven beans, or web components to consume SCA
services. You also can rewire EJB references to SCA services. Thus, you can enable an existing Java EE
component so that it is recognized as an SCA component and so that the component can participate in an
SCA composite.

Procedure
1. Use non-SCA enhanced Java EE applications as SCA component implementations.

2. Use SCA enhanced Java EE applications as SCA component implementations.

For this step, create an application.composite file. Then, determine the Java EE component type that
you want to consume SCA services. Depending on the Java EE component type, use SCA
annotations:

v Use SCA annotations with web modules.

Chapter 19. Developing SCA composites 821

v Use SCA annotations with session beans.

v Use SCA annotations with message-driven beans.

If your application uses security, specify security roles and runAs identity in the Java EE application
implementation instead of in the composite. Authorization policy is enforced by the implementation.

3. Rewire EJB references to SCA references.

4. Deploy an SCA composite using a Java EE application as a component implementation.

You can deploy an SCA composite that uses an implementation.jee defining a Java EE application as
a component implementation. Deploy the SCA composite that uses the application as a component
implementation along with the enterprise archive (EAR) file. Add the SCA composite and Java EE
application as composition units of a business-level application.

a. Import the EAR file as an asset.

b. Import the SCA composite Java archive (JAR) file as an asset.

c. Create an empty business-level application.

d. Add the EAR file asset to the business-level application.

e. Add the SCA composite asset to the business-level application. Map the SCA composite to the
same target server as the EAR file.

f. If you are rewiring EJB references, set the starting weight of the EAR file to a greater value than
the starting weight of the SCA composite. The SCA composite then starts before the EAR file.

When deploying an SCA JAR contribution that has a deployable SCA composite with
implementation.jee for one or more of its SCA components, ensure that the following requirements
are met:

v Deploy the SCA deployable composite and all the Java EE applications used for the SCA
component implementation in the same business-level application.

v Add all the Java EE applications referenced by the archive attribute of the implementation.jee
directive to the business-level application before adding the SCA deployable composite.

v Map all the deployed components of an SCA business-level application to the same target server or
cluster.

v When using an SCA enhanced EAR file that requires injection of values for SCA references,
properties, context or component names in Java EE modules such as stateless session beans,
servlets, or JSP files, the deployed SCA asset must start before the Java EE asset. If necessary, set
the weights of the composition units so that the deployed SCA asset starts before the Java EE
asset.

v If you update Java EE composition units, deploy the SCA composition unit again to apply the
changes in the SCA component that uses Java EE implementation.

5. Start the business-level application.

Results

You now have defined and deployed Java EE components to take advantage of the SCA programming
model. The SCA composite and the EAR file are deployed and started, and the Java EE application is
able to participate in the SCA domain.

Invoke the EJB services exposed as SCA services using the SCA programming model.

Example

The product provides the HelloJee sample to show how to use SCA annotations within Java EE
components so that these components can consume SCA services.

This sample uses the HelloJeeEar.ear, HelloJeeEnhancedEar.ear, and HelloJeeSca.jar SCA sample files.
To download HelloJee sample files from a product website:

822 Developing WebSphere applications

1. Go to the Samples, Version 8.5 information center.

2. On the Downloads tab, click FTP or HTTP in the Service Component Architecture section.

3. In the authentication window, click OK.

4. From the SCA.zip compressed file, download prebuilt HelloJeeEar.ear, HelloJeeEnhancedEar.ear, and
HelloJeeSca.jar files in the SCA/installableApps directory.

If you want to build your own deployable files, download the SCA/HelloJee directory and follow
instructions in SCA/HelloJee/documentation/readme.html to build the files.

Briefly, to deploy the HelloJee sample, do the following:

1. Import as assets the HelloJeeEar.ear, HelloJeeEnhancedEar.ear, and HelloJeeSca.jar files.

2. Create a business-level application named HelloJeeBla.

3. Add the HelloJeeEar.ear and HelloJeeEnhancedEar.ear assets to the business-level application.

4. Add the HelloJeeSca.jar asset to the business-level application. When adding the asset, ensure that it
is targeted to the same server or node as the EAR files added in step 3. If you are adding the JAR file
using the administrative console, ensure that components HelloJeeEnhancedComponent and
HelloJeeComponent are listed on the Set Java EE composition unit relationships page. Also ensure
that HelloJeeEnhancedComponent associates with the HelloJeeEnhancedEar composition unit and
HelloJeeComponent associates with the HelloJeeEar composition unit.

5. Start the business-level application.

6. Run the sample application. Open a web browser on a URL that accesses a sample. The following
URLs use localhost for host name and 9080 for port number. Use the host name and WC_defaulthost
port number that is correct for your installation.
v Access the non-SCA enhanced EJB as is: http://localhost:9080/HelloJeeWeb/JeeEjbClient
v Access the non-SCA enhanced EJB as an SCA service: http://localhost:9080/HelloJeeWeb/

JeeScaClient
v Access the SCA enhanced EJB as is: http://localhost:9080/HelloJeeEnhancedWeb/JeeEEjbClient
v Access the SCA enhanced EJB service or reference as an SCA service or reference and

demonstrate SCA annotations: http://localhost:9080/HelloJeeEnhancedWeb/JeeEScaClient

Using non-SCA enhanced Java EE applications as SCA component
implementations
You can use an existing Java Platform, Enterprise Edition (Java EE) application as a Service Component
Architecture (SCA) component without requiring SCA annotations or composite files.

Before you begin

Identify the Java EE application that contains business logic in Enterprise JavaBeans (EJB) or web
modules to enable in the SCA environment.

A Java EE application is also called an enterprise application or enterprise archive (EAR) file.

About this task

The SCA programming model supports Java EE integration. You can expose EJB stateless session beans
as SCA services by enabling an existing enterprise application module to be recognized as an SCA
component and participate in an SCA composite.

You can use an enterprise application as an SCA component implementation, without requiring any SCA
annotations or composite files in the application. Such an application is denoted as a non-SCA enhanced
enterprise application.

Chapter 19. Developing SCA composites 823

The EJB business interfaces of stateless session beans configured in EJB modules are exposed as SCA
services. The EJB business interfaces of EJB references configured in EJB and web modules are exposed
as SCA references.

The component type of a non-SCA enhanced enterprise application is defined as follows:

v Each EJB 3.x session bean business interface with unqualified name intf of a session bean with
mapped name mname translates into a service by the name mname_intf.

v The service interface that is derived from the business interface of an EJB 3.x session bean consists of
all methods of the EJB business interface.

v The service interface is remotable if it is derived from a remote business interface. Each EJB 3.x remote
reference of each session bean within the enterprise application is exposed as an SCA reference. If the
remote reference has the name ref and the name of the session bean is beanname, the SCA reference
name is beanname_ref. Services thus derived can be invoked or wired to like an SCA service.

Procedure
1. Create a component in an SCA composite definition. Specify the implementation.jee component type

and set the archive attribute to the name of the asset object.

For example, the composite definition for a implementation.jee component named ImplJeeComponent
that uses the MyJEE.ear archive resembles the following:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"; autowire="false"

name="ImplJeeSCAComposite"
targetNamespace="’ class=’inlinelink’ target="_blank">http://jee">

<component name="ImplJeeComponent">
<implementation.jee archive="MyJEE.ear"/>

</component>
</composite>

2. Optional: Write client code that looks up and invokes a derived SCA service.

A client can look up and invoke a derived SCA service. For example, suppose the ImplJeeComponent
component has a stateless session bean named Bean1 with a remote interface Intf1 in an EJB module
in the enterprise application. Invoke the service with code such as the following:
CompositeContext compositeContext = CurrentCompositeContext.getContext();
Intf1 myEjb = compositeContext.getService(Intf1.class, "ImplJeeComponent/Bean1_Intf1");
retStr = ejb.myOperation();

3. Optional: Define a reference to a derived service in an SCA component composite. Use the injected
value of a matching @Reference SCA annotation to invoke an EJB service as an SCA service.

Instead of writing client code to look up and invoke the derived SCA server (step 2), you can define a
reference to the derived service in an SCA component composite. An SCA service in a component can
use the injected value of a matching @Reference SCA annotation to invoke the EJB service as a SCA
service.

For example, the ImplJeeComponent component might invoke an EJB service as a SCA service using
the following code. The SCA component reference code resembles:
<reference name="MyRef" target="ImplJeeComponent/Bean1_Intf1>

The SCA service code resembles:
@Reference public Intf1 MyRef;
.....
String retStr = MyRef.myOperation();
....

Results

The enterprise application is available as an SCA component type. Any SCA component can refer to the
derived services.

824 Developing WebSphere applications

What to do next

Deploy the enterprise application and the SCA composite that uses the application as composition units of
the same business-level application. You can use the administrative console or wsadmin commands to
create the business-level application and add the enterprise application and the SCA composite as
composition units.

The product provides the HelloJee sample. The sample has a non-SCA enhanced EJB. The Example
section in the Using existing Java EE modules and components as SCA implementations topic
summarizes how to deploy the HelloJee sample and access the non-SCA enhanced EJB.

Using SCA enhanced Java EE applications as SCA component
implementations
You can use an existing Java Platform, Enterprise Edition (Java EE) application as a Service Component
Architecture (SCA) component after enhancing the application. Define an SCA composite that has
components with implementation.ejb and implementation.web component types which refer to Enterprise
JavaBeans (EJB) and web modules within the Java EE application, and then promote services and
references.

Before you begin

Identify the Java EE application that contains business logic in EJB or web modules to enable in the SCA
environment.

A Java EE application is also called an enterprise application or enterprise archive (EAR) file.

About this task

The SCA programming model supports Java EE integration. You can expose EJB stateless session beans
as SCA services by enabling an existing enterprise application module to be recognized as an SCA
component and participate in an SCA composite. You can rewire the SCA services over different bindings.
You can rewire EJB references in EJB and web modules to SCA references. Also, you can use SCA
annotations to enable Java EE components such as stateless session beans, message driven beans,
servlets, listeners, filters, and JavaServer Pages (JSP) files to consume SCA services and properties.

Define a composite in a file named application.composite and place the file in the enterprise application
META-INF directory.

Procedure
1. Create a file named application.composite that defines components with component types of web

and EJB modules of the enterprise application. Save the file to the enterprise application META-INF
directory.

Use the implementation.web element to declare a service component that is implemented by the web
component. The component contains information for the annotations. To configure a web component
implementation, use the following schema:
<implementation.web web-uri="web_module_name"/>

Use the implementation.ejb element to declare a service component that is implemented by a session
bean component. To configure an EJB component implementation, use the following schema:
<implementation.ejb ejb-link="EJB_module_name"/>

The components can contain one or more supported elements, such as <service>, <reference>, and
<property> elements. In the composite definition, promote the services and references to be available
in the SCA component using the enterprise application as the component type.

Chapter 19. Developing SCA composites 825

An example application.composite file for an enterprise application named MyEAR.ear follows. The file
contains an EJB module named myEJB.jar with a bean named MyBean and a remote business interface
named MyRemoteIntf. The file also contains a Web module named myWeb.war.
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"; autowire="false" name="MyComposite"

targetNamespace="’ class=’inlinelink’ target="_blank">http://jee">

<service name="MyBean_MyRemoteIntf" promote="MyEJBComponent/MyBean_MyRemoteIntf"/>
<reference name="MySCAReference1" promote="MyEJBComponent/MySCAReference1"/>
<reference name="MySCAReference2" promote="MyWebComponent/MySCAReference2"/>

<component name="MyEJBComponent">
<implementation.ejb ejb-link="MyEJB.jar#MyBean"/>
<service name="MyBean_MyRemoteIntf">
<interface.java ... />

</service>
<reference name="MySCAReference1" target="MySCAComponent1">

</component>

<component name="MyWebComponent">
<implementation.web web-uri="MyWeb.war"/>
<reference name="MySCAReference2" target="MySCAComponent2">

</component>
</composite>

2. Create a component in an SCA composite definition that has the implementation.jee component type
and the archive attribute set to the name of the enterprise application asset object.

For the example enterprise application MyEAR.ear, create a component such as the following:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"; autowire="false" name="ImplJeeSCAComposite"

targetNamespace="’ class=’inlinelink’ target="_blank">http://jee">
<component name="ImplJeeComponent">
<implementation.jee archive="MyEAR.ear"/>

</component>
</composite>

3. Inject the promoted references into @Reference annotations in the EJB and web modules. Also, rewire
the promoted service, and reference the service from other SCA components.

For information about using a composite file to support annotations, refer to the following topics:
v Using SCA annotations with web modules
v Using SCA annotations with session beans
v Using SCA annotations with message-driven beans

4. Using a client or an SCA service, invoke the promoted EJB as an SCA service.

Results

The enterprise application is available as an SCA component type. Any SCA component can refer to the
promoted services. Java EE modules can access SCA services and properties using SCA annotations.
You can rewire the services and reference them like any other SCA service.

What to do next

Deploy the enterprise application and the SCA composite that uses the application as composition units of
the same business-level application. You can use the administrative console or wsadmin commands to
create the business-level application and add the enterprise application and the SCA composite as
composition units.

The product provides the HelloJee sample. The sample has an SCA enhanced EJB. The Example section
in the Using existing Java EE modules and components as SCA implementations topic summarizes how to
deploy the HelloJee sample and access the SCA enhanced EJB.

826 Developing WebSphere applications

Using SCA annotations with web modules
Use Java annotations for Service Component Architecture (SCA) to identify existing Java Platform,
Enterprise Edition (Java EE) components, such as web modules, as SCA components that are a part of an
SCA composite.

Before you begin

Identify and obtain the web module that represents your business logic that you want to enable within an
SCA environment.

About this task

The SCA programming model supports Java EE integration. As a result, you can take advantage of SCA
annotations to enable Java EE web components such as servlets, filters, and event listeners to consume
SCA services. By using Java annotations that apply to SCA, you can enable existing web modules to be
recognized as an SCA component and participate in an SCA composite.

Web modules can participate in SCA assembly as the implementation type of a component that does not
offer services, even though you can configure or wire the component to other services. You can configure
a web module with annotations to acquire references to services that are wired to the component by the
SCA assembly. You can also use annotations when you want to obtain the value of a property using the
@Property annotation, to inject a handle to the SCA component context using the @Context annotation or
to obtain the component name using the @ComponentName annotation.

For a list of supported annotations for web modules, see the SCA specifications and APIs documentation.

You can also obtain SCA references in JavaServer Pages (JSP) files by using SCA JSP tag libraries. The
following example illustrates how annotations are used within a JSP tag handler:
<%@ taglib uri="http://www.osoa.org/sca/sca_jsp.tld" prefix="sca" %>
<sca:reference name="service" type="test.MyService" />
<% service.sayHello(); %>

Procedure
1. Add SCA annotations to the components that you want within a web module. Based on your needs,

use the supported annotations to inject SCA information into your web module.

2. Define a component in the application.composite file in the META-INF directory.

The implementation.web element is used to declare a service component that is implemented by the
web component. The component contains information for the annotations. To configure this component
implementation, use the following schema:
<implementation.web web-uri="<module name>"/>

For example, you can define a component in the EAR META-INF/application.composite file as follows:
<component name="WebAnnotationTestServletComponent">

<implementation.web web-uri="SCA_JEE_InjectionWeb.war"/>
<reference name="getServerDateReference" target="GetServerDateServiceComponent">

<interface.java interface="sca.injection.test.GetServerDateService"/>
</reference>

</component>

The following example illustrates a servlet in the web application archive (WAR) module using SCA
annotations:

public class WebAnnotationTestServlet extends HttpServlet {
@Reference GetServerDateService getServerDateReference;

}

The following example illustrates a JSP using SCA annotations by importing the SCA tag library:
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ taglib uri="http://www.osoa.org/sca/sca_jsp.tld" prefix="sca" %>

Chapter 19. Developing SCA composites 827

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN
" "http://www.w3.org/TR/html4/loose.dtd">

<sca:reference name="getServerDateReference"
type="sca.injection.test.GetServerDateService" />
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>TESTING SCA ANNOTATION IN JSP</title>
</head>
<body>
<h2> Reference Annotation in JSP: </h2>
GetServerDateService.getString returns : <%=getServerDateReference.getString() %>

</body>
</html>

Results

You now have SCA-enabled Java EE web modules that take advantage of the SCA programming model.

What to do next

Deploy the components to a business-level application.

Using SCA annotations with session beans
Use Java annotations for Service Component Architecture (SCA) to identify existing Java Platform,
Enterprise Edition (Java EE) components, such as session beans, as SCA components that are a part of
an SCA composite.

Before you begin

Identify and obtain the session beans that represent your business logic that you want to enable within an
SCA environment.

About this task

The SCA programming model supports Java EE integration. As a result, you can take advantage of SCA
annotations to enable Java EE web components such as session beans to consume SCA services. By
using Java annotations that apply to SCA, you can enable existing session beans to be recognized as an
SCA component and participate in an SCA composite. Within Java EE environments, sessions beans
encapsulate business logic to manage security, transactions, and remotable interfaces. Because service
components within SCA environments play a similar role, you can take advantage of the capability to use
session beans as a service component implementation in a Java EE environment.

Any session bean that serves as the implementation type of an SCA service component can use
annotations to obtain an interface to the SCA services that are wired to the component by the SCA
assembly. You can also use annotations when you want to obtain the value of a property using the
@Property annotation, to inject a handle to the SCA component context using the @Context annotation or
to obtain the component name using the @ComponentName annotation. When using SCA annotations,
you must apply the injection using annotations after the session bean instance is created, but before
invoking business methods on the bean instance.

For a list of supported annotations for session beans, see the SCA specifications and APIs documentation.

Procedure
1. Add SCA annotations to the components that you want within your session beans to enable the

component to be recognized as an SCA component. Based on your needs, use the supported
annotations to inject SCA information such as context or component name into your session beans.

2. Edit the application.composite in the META-INF directory of the Java EE JAR file.

828 Developing WebSphere applications

Define a component within the application.composite file whose implementation is defined by an
implementation.ejb element and specifies a session bean within the module. You can define multiple
components, each with an implementation.ejb link that points to a session bean.

Because message-driven beans and session beans are enterprise beans, you can uniquely refer to
both bean types in an ejb-link element.

The implementation.ejb element is used to declare a service component that is implemented by the
session bean component. The component contains information for the annotations. To configure this
component implementation, use the following schema:
<implementation.ejb ejb-link="<ejb_link_name>"/>

The enterprise bean that serves as the component implementation is uniquely identified by the
<ejb_link_name> attribute. The format of the <ejb_link_name> attribute is identical to the format of the
ejb-link element in a Java EE deployment descriptor.

If the Java EE archive that contains the composite file is an application enterprise archive (EAR) file,
multiple session beans might have the same name. In this case, the value of the ejb-link element must
be composed of a path name. The path name specifies the ejb-jar that contains the referenced
enterprise bean with the value of the ejb-name of the referenced enterprise bean appended and
separated from the path name with the # symbol. The path name is relative to the root of the EAR file.
For the case where the Java EE archive is a JAR file for the Enterprise JavaBeans (EJB) module, omit
the path name.

For example, you can have a JAR module that has the following component defined in the
application.composite file:

<component name="AnnotationTest">
<implementation.ejb ejb-link="SCA_JEE_Injection.jar#AnnotationTest"/>

<property name="property" type="xsd:string">Right</property>

<reference name="getServerDateReference" target="GetServerDateServiceComponent">
<interface.java interface="sca.injection.test.GetServerDateService"/>
</reference>

</component>

In this example, the session bean, AnnotationTest, is consuming an SCA service exposed by the
GetServerDataServiceComponent reference.

The AnnotationTest session bean includes the @Property, @Reference, @ComponentName, and
@Context annotations:

import javax.ejb.Stateless;

import org.osoa.sca.ComponentContext;
import org.osoa.sca.annotations.ComponentName;
import org.osoa.sca.annotations.Context;
import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Reference;

import sca.injection.test.GetServerDateService;
/**
* Session Bean implementation class AnnotationTest
*/
@Stateless
public class AnnotationTest implements AnnotationTestRemote, AnnotationTestLocal {

@Context protected ComponentContext myContext;
@ComponentName String myCompName;
@Property protected String property;
@Reference GetServerDateService getServerDateReference;

@Reference
GetServerDateService referenceDefault;

/**
* Default constructor.

Chapter 19. Developing SCA composites 829

*/
public AnnotationTest() {
// TODO Auto-generated constructor stub
}

public String getServString(){
GetServerDateService svc = myContext.getService(GetServerDateService.class, "getServerDateReference");
return svc.getString();
}

public String getProperty(){
return property;
}
public String getComponentName(){
return myCompName;
}
public String getReferenceDefault() {
if (referenceDefault == null)
return null;
else
return referenceDefault.getString();
}

}

Results

You now have SCA-enabled Java EE session beans that take advantage of the SCA programming model.

What to do next

Deploy the components to a business-level application.

Using SCA annotations with message-driven beans
Use Java annotations for Service Component Architecture (SCA) to identify existing Java Platform,
Enterprise Edition (Java EE) components, such as message-driven beans, as SCA components that are a
part of an SCA composite.

Before you begin

Identify and obtain the message-driven beans that represent your business logic that you want to enable
within an SCA environment.

About this task

The SCA programming model supports Java EE integration. As a result, you can take advantage of SCA
annotations to enable Java EE web components such as message-driven beans to consume SCA
services. By using Java annotations that apply to SCA, you can enable existing message-driven beans to
be recognized as an SCA component and participate in an SCA composite.

Message-driven beans can only participate in SCA assembly as the implementation type of a component
that does not offer services, even though you can configure or wire the component to other services.
Because of the association with endpoints that are not controlled by SCA such as Java Message Service
(JMS), do not instantiate message-driven beans arbitrarily. You must not use a message-driven bean as a
service component implementation more than one time within the SCA assembly of the application
package.

You can configure a message-driven bean that is defined as an implementation type of an SCA
component with annotations in order to obtain references to services that are wired to the component by
the SCA assembly by using the @Reference annotation. You can also use annotations when you want to

830 Developing WebSphere applications

obtain the value of a property using the @Property annotation, to inject a handle to the SCA component
context using the @Context annotation or to obtain the component name using the @ComponentName
annotation.

For a list of supported annotations for message-driven beans, see the SCA specifications and APIs
documentation.

Procedure
1. Add SCA annotations to the components that you want within your message-driven beans. Based on

your needs, use the supported annotations to inject SCA information into your message-driven beans.

2. Edit the application.composite in the META-INF directory of the Java EE JAR file.

Define a component within the application.composite whose implementation is defined by an
implementation.ejb element and specifies a message-driven bean within the module. You can define
multiple components, each with an implementation.ejb link that points to a message-driven bean.

Because message-driven beans and session beans are enterprise beans, you can uniquely refer to
both bean types in an ejb-link element.

The implementation.ejb element is used to declare a service component that is implemented by the
message-driven bean component. The component contains information for the annotations. To
configure this component implementation, use the following schema:
<implementation.ejb ejb-link="<ejb_link_name>"/>

The enterprise bean that serves as the component implementation is uniquely identified by the
<ejb_link_name> attribute. The format of the <ejb_link_name> attribute is identical to the format of the
ejb-link element in a Java EE deployment descriptor.

If the Java EE archive that contains the composite file is an application enterprise archive (EAR) file, it
is possible that multiple message-driven beans have the same name. In this case, the value of the
ejb-link element must be composed of a path name specifying the ejb-jar that contains the referenced
enterprise bean with the ejb-name of the referenced enterprise bean appended and separated from the
path name with the # symbol. The path name is relative to the root of the EAR file. For the case where
the Java EE archive is a JAR file for the Enterprise JavaBeans (EJB) module, omit the path name.

For example, you can have a JAR module that has the following component defined in the
application.composite:

<component name="AnnotationTest">
<implementation.ejb ejb-link="SCA_JEE_Injection.jar#AnnotationTest"/>

<property name="property" type="xsd:string">Right</property>

<reference name="getServerDateReference" target="GetServerDateServiceComponent">
<interface.java interface="sca.injection.test.GetServerDateService"/>
</reference>

</component>

In the following example, the message-driven bean, AnnotationTestMDB, is consuming an SCA service
exposed by the GetServerDataServiceComponent reference. The AnnotationTestMDB message driven
bean includes the @Property and @Reference annotations.

@MessageDriven
public class AnnotationTestMDB implements MessageListener {

//Property Annotations
@Property protected String property;

//Reference Annotation
@Reference protected GetServerDateService getServerDateReference;

/**
* Default constructor.
*/
public AnnotationTestMDB() {
// TODO Auto-generated constructor stub
}

Chapter 19. Developing SCA composites 831

private static final String JMSCF_JNDI_NAME = "jms/AnnotationQueueFactory";
private static final String JMSResponseQ_JNDI_NAME = "jms/AnnotationResponseQueue";
/**
* @see MessageListener#onMessage(Message)
*/
public void onMessage(Message message) {
String strDefaultReference = null;

System.out.println("Inside onMessage()");
try {
System.out.println("onMessage: " + "Exercising annotations");
if (getServerDateReference != null)
strDefaultReference = getServerDateReference.getString();
}
catch (RuntimeException e) {
strError = "Error - Failed WebAnnotationTestServlet.service()!";
e.printStackTrace();
}

if (strError != null){
System.out.println("onMessage: " + "Encountered an error while annotation work");
outSB.append("@FINALERROR" + strError);
} else {
System.out.println("onMessage: " + "Annotations successful: now creating reply message");
outSB.append("@PropertyDefault:" + propertyDefault);
outSB.append("@ReferenceDefault:" + strDefaultReference);
}
}
}

Results

You now have SCA-enabled Java EE message-driven beans to take advantage of the SCA programming
model.

What to do next

Deploy the components to a business-level application.

SCA annotations
By using Java annotations that apply to Service Component Architecture (SCA), you can enable an
existing Java Platform, Enterprise Edition (Java EE) component to be recognized as an SCA component
and participate in an SCA composite.

The SCA programming model supports Java EE integration. As a result, you can take advantage of SCA
annotations to enable the Java EE components, such as session beans, message driven beans, or web
components to consume SCA services.

The target for annotations applies for these Java objects:

v Types such as a Java class, enum or interface

v Methods

v Fields representing local instance variables within a Java class

v Parameters within a Java method

Annotations supported by SCA are listed in the following table:

Table 86. SCA annotations. The annotations enable Java EE components.
Annotation class Annotation Properties

org.osoa.sca.
annotations.
ComponentName.class

The @ComponentName annotation specifies
the injection of a component name.

v Annotation target: Method or field

v There are no properties on the @ComponentName
annotation.

832 Developing WebSphere applications

Table 86. SCA annotations (continued). The annotations enable Java EE components.
Annotation class Annotation Properties

org.osoa.sca.
annotations.
Context.class

The @Context annotation specifies to inject SCA
context into a service component instance.

When you inject a composite context for the
component, the type of context is defined by the
type of the Java class field or type of the setter
method input argument. Specify the type as
either ComponentContext or RequestContext.

v Annotation target: Method or field

v There are no properties on the @Context annotation.

org.osoa.sca.
annotations.
Property.class

The @Property annotation specifies to inject
configuration properties from service component
configuration.

You can inject a simple Java type or a complex
Java type. The type of the property injected is
defined by the type of the Java class field or type
of the setter method input argument.

You can use this annotation on protected or
public fields, on setter methods, or on a
constructor method.

v Annotation target: Method or field

v Properties:

- name
The name of the property. The default is the name of
the field of the Java class. This property is optional.
(String)

- required
Specifies whether injection is required. The default
value is false. This property is optional. (Boolean)

org.osoa.sca.
annotations.
Reference.class

The @Reference annotation specifies the
injection of a service reference.

The interface of the service injected is defined by
the type of the Java class field or the type of the
setter method input parameter.

v Annotation target: Method or field

v Properties:

- name
The name of the property. The default is the name of
the field of the Java class. This property is optional.
(String)

- required
Specifies whether injection is required. The default
value is false. This property is optional. (Boolean)

Rewiring EJB references to SCA references
You can rewire an Enterprise JavaBeans (EJB) reference to a Service Component Architecture (SCA)
reference that provides the same named operations. The rewiring does not require a change to existing
code.

Before you begin

Identify the Java Platform, Enterprise Edition (Java EE) application that contains business logic in EJB or
web modules to enable in the SCA environment. A Java EE application is also called an enterprise
application or enterprise archive (EAR) file.

Identify the SCA components and services to replace the EJB references in EJB and web modules.

About this task

The SCA programming model supports Java EE integration. You can rewire EJB references to SCA
references without changing existing code that uses the EJB reference. Thus, you can use the SCA
programming model without changing the implementation code.

Procedure
1. Create a file named application.composite that defines components with component types of web

and EJB modules of the enterprise application. Save the file to the enterprise application META-INF
directory.

Chapter 19. Developing SCA composites 833

Use the implementation.web element to declare a service component that is implemented by the web
component. The component contains information for the annotations. To configure a web component
implementation, use the following schema:

<implementation.web web-uri="web_module_name"/>

Use the implementation.ejb element to declare a service component that is implemented by a session
bean component. To configure an EJB component implementation, use the following schema:

<implementation.ejb ejb-link="EJB_module_name"/>

To rewire an EJB reference to an SCA service in an SCA component, add a <reference> element to
the jee module component. For example, to rewire an EJB reference named MyEJBRef to an SCA
service named MySCASvc in an SCA component named MyComponent, the <reference> element
resembles the following:

<reference name="MyEJBRef" target="MyComponent/MySCASvc">
<interface.java />

</reference>

The reference names must match the name of the EJB reference. The contract of operations
supported must also match. Because references must be promoted in the composite, the names of the
references must be unique. After the EJB reference is promoted, all matching instances of the EJB
reference in the module are rewired to the SCA service.

2. Create a component in an SCA composite definition that has the implementation.jee component type
and the archive attribute set to the name of the enterprise application asset object.

For an enterprise application named MyEAR.ear, create a component such as the following:
<component name="ImplJeeComponent">
<implementation.jee archive="MyEAR.ear"/>

</component>

Results

The EJB references are rewired to SCA references enabling Java EE modules to use SCA features
without changing its implementation.

What to do next

Deploy the enterprise application and the SCA composite that uses the application as composition units of
the same business-level application. You can use the administrative console or wsadmin commands to
create the business-level application and add the enterprise application and the SCA composite as
composition units.

Using OSGi applications as SCA component implementations
You can use an OSGi application as a Service Component Architecture (SCA) component.

Before you begin

Identify the OSGi application to use as an SCA component. An OSGi application is a collection of OSGi
bundles that use the Blueprint component model to expose or consume services. An OSGi application
contains an application manifest that declares the following services:

v Services that the application provides that can be accessed from outside the application

v Services that the application wants to consume from outside the application

You can use SCA to provide service bindings for these services.

About this task

To provide service bindings using SCA, do the following:

1. Modify an OSGi application to provide or use remote services.

834 Developing WebSphere applications

2. Write an SCA composite definition that uses an OSGi application as a component implementation, and
provide bindings for its remote services.

An OSGi application declares external services in the Application-ImportService and Application-
ExportService statements of its application manifest, which is provided in the META-INF/APPLICATION.MF file
of the enterprise bundle archive (EBA). The Application-ExportService statement declares remote services
that are provided by the OSGi application. The Application-ImportService statement declares services on
which the OSGi application depends. All services specified in the application manifest are remotable.

Procedure
1. Create an implementation.osgiapp component in an SCA composite definition.

Specify the implementation.osgiapp component type and set applicationSymbolicName and
applicationVersion to values that match the Application-SymbolicName and Application-Version
attributes in the application manifest.

For example, suppose the OSGi application manifest, the META-INF/APPLICATION.MF file, contains the
following headers:
Application-SymbolicName: helloworldApp
Application-Version: 1.0.0

Configure a component that references these headers in an SCA composite definition; for example:
<?xml version="1.0" encoding="UTF-8"?>
<composite
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:scafp="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.example.com"
name="HelloWorldComposite">
<component name="HelloWorldComponent">

<scafp:implementation.osgiapp
applicationSymbolicName="helloworldApp"
applicationVersion="1.0.0"/>

</component></composite>

The implementation.osgiapp element requires the use of an XML namespace prefix that is associated
with the "http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06" namespace.

The applicationVersion attribute is optional. You can add it to ensure that a particular version of an
OSGi application is used.

2. Identify Blueprint services to be made available remotely.

a. Edit the Application-ExportService header in the OSGi application manifest so that it identifies one
or more service interfaces to be exported.

The following example header specifies that Blueprint services which implement and export the
example.HelloWorld interface are to be made available outside the application.
Application-ExportService: example.HelloWorld

An example of a Blueprint component with such a service follows:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="helloWorldComponent" class="example.HelloWorldImpl"

<service id="helloWorld" ref="helloWorldComponent"
interface="example.HelloWorld">

<service-properties>
<entry key="service.exported.interfaces" value="*"/>

</service-properties>
</service>

</blueprint>

The Blueprint service must specify the service.exported.interfaces property to identify which of
its interfaces are to be exposed remotely. The value can be an asterisk (*) to indicate that all of its
interfaces are available remotely, or it can be a particular interface name.

b. Configure an SCA service that corresponds to each remotable Blueprint service in the component.

Use the Blueprint service id value for the SCA service name. If a Blueprint service does not have
an id value, use the bean id value instead. If more than one interface is defined for the Blueprint
service, for the first service interface SCA Service name use the Blueprint id value. For the second

Chapter 19. Developing SCA composites 835

and later services, use the Blueprint id_ fully qualified interface name value for the SCA
service name in the order of interfaces defined in the blueprint.xml file.

For example, add the helloWorld service that is shown in the Blueprint component from step 2a to
the SCA composite definition from step 1:
<?xml version="1.0" encoding="UTF-8"?>
<composite
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:scafp="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.example.com"
name="HelloWorldComposite">

<component name="HelloWorldComponent">
<scafp:implementation.osgiapp

applicationSymbolicName="helloworldApp"
applicationVersion="1.0.0"/>

<service name="helloWorld">
<binding.sca>

</service>
</component>

</composite>

The example uses binding.sca for the service binding. The service can be made available over
one or more of the other bindings that SCA supports, except the EJB 2.x service binding.

The SCA service element is not required. If it is not specified, the service is made available over
binding.sca by default.

3. Identify services to be provided from outside the OSGi application.

a. Edit the Application-ImportService header in the OSGi application manifest so that it identifies one
or more service interfaces to be imported.

The following example header specifies that the example.Greeting service interface be imported:
Application-ImportService: example.Greeting

A Blueprint reference explicitly requests an imported service by filtering for the service.imported
property. Remote services use pass-by-value semantics instead of pass-by-reference semantics for
local services within the application. The following example shows a Blueprint component with such
a reference:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="helloWorldComponent" class="example.HelloWorldImpl"
<property name="greetingList" ref="greetingRef"/>

</bean>
<service id="helloWorld" ref="helloWorldComponent"

interface="example.HelloWorld">
<service-properties>

<entry key="service.exported.interfaces" value="*"/>
</service-properties>
</service>
<reference-list id="greetingRef" interface="example.Greeting"

filter="(&(service.imported=*))"/>
</blueprint>

b. Configure an SCA reference that corresponds to each imported service in the component.

Use the fully qualified interface name for the SCA reference name.

For example, add the example.Greeting reference that is shown in the Blueprint component from
step 3 to the SCA composite definition from step 2:
<?xml version="1.0" encoding="UTF-8"?>
<composite
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:scafp="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.example.com"
name="HelloWorldComposite">

<component name="HelloWorldComponent">
<scafp:implementation.osgiapp

applicationSymbolicName="helloworldApp"
applicationVersion="1.0.0"/>

<service name="helloWorld">
<binding.sca>

</service>
<reference name="example.Greeting">

836 Developing WebSphere applications

<binding.sca uri=”MyGreetingComponent”>
</reference>

</component>
</composite>

The example uses binding.sca for the reference binding. The reference can use one or more of
the other bindings that SCA supports.

An SCA reference for an implementation.osgiapp component implicitly has 0-to-many for the
multiplicity attribute (multiplicity=’0..n’). This means you can wire the reference to 0, 1, or
multiple services depending upon the requirements of the application. As to the multiplicity attribute:

v A blueprint reference-list element selects multiple services. The blueprint implementation
cannot make any assumptions about the order of the services in the reference list compared to
the order of bindings in the composite definition.

v A blueprint reference element selects a single service. If the SCA reference provides more than
one binding, the selection of which binding is used is unspecified. If the SCA reference does not
provide any bindings, the dependency is unsatisfied. If the reference is mandatory, the bean
might not start.

You can override the multiplicity attribute on the SCA reference, setting 1-to-many (’1..n’) or
1-to-1 (’1..1’), to ensure that a particular number of bindings is specified.

Results

The OSGi application is defined as an SCA component.

What to do next

Deploy the OSGi application and the SCA composite that uses the application as composition units of the
same business-level application. You can use the administrative console or wsadmin commands to create
a business-level application, import the EBA file and SCA composite as assets, and then add the EBA and
SCA assets as composition units to the business-level application.

SCA programming model support in OSGi applications
This topic describes the features of the Service Component Architecture (SCA) programming model that
can be used with OSGi applications.
v Annotations
v Authorization policy
v Mapping of Blueprint transaction metadata to SCA service and reference transaction intents
v Using intents in an OSGi application
v Interface definition
v Custom wire format and operation selector
v Service Data Objects (SDO) version 2.1.1 with OSGi applications

Annotations

The following annotations from the org.osoa.sca.annotations package are supported within the interface
classes in an OSGi application:

v @OneWay

v @Remotable

When an OSGi application is used as an SCA component, its service and reference interfaces are
automatically treated as remotable. The @Remotable annotation is not required. However, if you want
to use the same Java source interface in other contexts, it might need to contain the @Remotable
annotation:

– If you copy the interface to the SCA asset and specify it in an interface.java element for an
implementation.osgiapp service or reference, the interface must contain the @Remotable
annotation. Otherwise, an interface incompatibility error occurs.

Chapter 19. Developing SCA composites 837

– If you wire implementation.java and implementation.osgiapp components to each other, the
interface must contain the @Remotable annotation. Otherwise, the implementation.java component
considers the interface to be local and an interface incompatibility error occurs.

No annotations from the org.osoa.sca.annotations package are supported within the implementation
classes in an OSGi application.

Authorization policy

You can attach an SCA policy set containing authorization policy statements to an
implementation.osgiapp component. The policy set applies to all services of the component. It applies
only when the services are started through SCA service bindings, and not when the OSGi application
internally uses its services.

SCA does not support the use of the org.osoa.sca.annotations.PolicySet annotation or the annotations in
the javax.annotation.security package in Blueprint implementation classes.

The configuration of role-based security for SCA components is independent of the configuration of
role-based security for a Web application bundle (WAB). In other words, the roles and role mappings used
for SCA components and for WABs are separate.

Mapping of Blueprint transaction metadata to SCA service and reference
transaction intents

Use the transaction metadata in the Blueprint component definition to define the transactional environment
of an implementation.osgiapp component

You can use the propagatesTransaction, suspendsTransaction, transactedOneWay, and exactlyOnce
intents with the services and references of an implementation.osgiapp component. Use the correct intents
for the transaction metadata in the Blueprint component definition. SCA does not detect mismatches. The
following table shows valid combinations of Blueprint transaction metadata and transaction intents.

Table 87. Valid combinations of transaction intents in OSGi applications. Use valid transaction intents for services
and references of an implementation.osgiapp component.

Transaction definition in
Blueprint component Valid service intents Valid reference intents

Required v propagatesTransaction
v transactedOneWay
v exactlyOnce

v propagatesTransaction
v suspendsTransaction
v transactedOneWay

Mandatory v propagatesTransaction
v transactedOneWay
v exactlyOnce

v propagatesTransaction
v suspendsTransaction
v transactedOneWay

RequiresNew suspendsTransaction v propagatesTransaction
v suspendsTransaction
v transactedOneWay

Supports propagatesTransaction v propagatesTransaction
v suspendsTransaction

NotSupported suspendsTransaction

Never

The managedTransaction.global, managedTransaction.local, and noManagedTransaction intents do not
apply for implementation.osgiapp components.

838 Developing WebSphere applications

Not all service bindings support all intents. For information about each intent, consult the SCA Transaction
Policy specification.

The SCA run time does not effect the propagatesTransaction or suspendsTransaction behavior on an SCA
service. Use the correct transaction definition in the Blueprint component to achieve the wanted behavior.
The main purpose of using an intent is to document a requirement to use a binding that supports it.

Using intents in an OSGi application

A Blueprint service can require a policy intent by using the service.exported.intents service property as
shown in the following example:
<service ref="componentImplementation"

interface="example.MyTransactionalServiceInterface">
<service-properties>

<entry key="service.exported.intents" value="propagatesTransaction"/>
</service-properties>

</service>

Using the service.exported.intents property has the same effect as putting the intent in the SCA service
definition.

The Application-ImportService header in the OSGi application manifest can filter for a particular policy
intent on an imported service:
Application-ImportService: example.Greeting;filter="(&(service.intents=propagatesTransaction))"

If the SCA reference does not provide the intent, no services are imported.

Interface definition

It is not required to specify an interface element on a component service or component reference. You can
specify an interface to enforce a given contract with the implementation. In this case, the interface must be
compatible with the implementation as stated in the SCA specification. The SCA run time cannot validate
that the interfaces are compatible until the business-level application is started.

If you specify an interface.java or interface.wsdl element, it must refer to a Java class or WSDL file
that is packaged in the SCA asset, or that is imported from a shared asset.

Custom wire format and operation selector

The JMS binding enables you to provide classes that customize its function. The classes can provide:

v A wire format handler that transforms data between the application interface and a JMS Message

v A custom operation selector to determine the operation name from a JMS Message

You can package these classes in a bundle within the enterprise bundle archive (EBA). This is necessary
to have access to Java packages inside the EBA bundles. For example, if a wire format handler needs to
transform the content of a JMS Message into user-defined types defined within the EBA, the handler must
be packaged in the EBA. To indicate that the handler is packaged in the EBA, you must use the deferLoad
attribute; for example:
<composite
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:scafp="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://www.example.com"
name="MyOSGiComposite">
<component name="MyOSGiComponent">
<scafp:implementation.osgiapp ...>
<service name="MyOSGiService">
<binding.jms>
<activationSpec ...>

Chapter 19. Developing SCA composites 839

<scafp:wireFormat.jmsCustom
class="example.WireHandler" deferLoad="true"/>

<scafp:operationSelector.jmsCustom
class="example.OpSelector" deferLoad=="true"/>

</binding.jms>
</service>

</component>
</composite>

Service Data Objects (SDO) version 2.1.1 with OSGi applications

You can use Service Data Objects version 2.1.1 over SCA default, Web service, JMS and HTTP bindings
for an implementation.osgiapp component service. Package schema definition (XSD) files in an SCA
asset, or import XSD files from a shared asset.

The following limitations apply when you use SDO with an implementation.osgiapp component:

v You must invoke the OSGi application over a supported SCA service binding, such as an SCA default,
Web service, JMS or HTTP binding. In particular, you cannot use the SDO functionality in your OSGi
application when you access the OSGi application over HTTP using the Web container access path that
you typically use to access OSGi application code packaged in an OSGi Web application bundle (WAB).

v The product does not support the injection of the SCA-managed default HelperContext object using
annotation. However, you can implement an application programming interface (API), which uses the
commonj.sdo.helper.SDO class, to access the default HelperContext object. For more information about
the HelperContext object, see the documentation about accessing default HelperContext objects in SCA
applications

v You cannot use SDO in an OSGi application that is accessed over the SCA service bindings
binding.atom or binding.ejb.

Note: If your application previously used SDO version 1.0.0, change the Import-Package to:
Import-Package: commonj.sdo;version="[2.0.0,3.0.0)"

Using Spring 2.5.5 containers in SCA applications
You can use the Service Component Architecture (SCA) programming model to invoke beans that follow
the Java 2 Platform, Standard Edition (J2SE) programming model in a Spring 2.5.5 container. The product
supports components implemented with Spring Framework that use <implementation.spring> in
composite definitions.

Before you begin

Before you start the procedure in this topic, do the following:

1. Become familiar with the SCA Spring Component Implementation 1.0.0 specification and Spring 2.5.5
programming. You must use Spring 2.5.5 for the SCA composite component implementation. The
product does not support other levels of Spring.

The product only supports the Spring Framework using the J2SE programming model. Local Java
Naming and Directory Interface (JNDI) lookups are not supported, thus the product does not support
the Spring Framework using the Java Platform, Enterprise Edition (Java EE) 5 programming model.
Any attempts by a Spring container to perform a local JNDI lookup fail.

2. Decide whether to use implementation.spring or implementation.jee for your Spring application.

The procedure in this topic discusses using implementation.spring in an SCA component
implementation. If a Spring application is, in fact, a specialized Java EE application, instead of using
implementation.spring, you can use implementation.jee to define the SCA component
implementation and enable the Spring application to be part of an SCA component.

For example, if a Spring application is packaged in a web module (WAR), then you can use an
enterprise archive (EAR) that contains the WAR file as a component implementation using

840 Developing WebSphere applications

implementation.jee. The Spring application works like before and the Java EE context is not affected.
Spring beans are not available in an SCA domain; however, other modules that are compatible with
implementation.jee within the EAR file can participate in SCA.

For information on deploying a Spring application with implementation.jee, see the topic on using
existing Java EE modules and components as SCA implementations.

3. If you decide to use implementation.spring and you want beans in your Spring application to perform
JNDI lookups, set com.ibm.websphere.naming.WsnInitialContextFactory as a property for the beans.

You can use globally defined JNDI resources, such as databases and connection factories, in a Spring
bean definition with implementation.spring. However, you must set a Spring JNDI template bean that
has been configured to reference the WebSphere initial context factory,
com.ibm.websphere.naming.WsnInitialContextFactory, as a property for beans performing JNDI
lookups. For example, the following bean definitions specify that the myJndiResource bean use the
WebSphere initial context factory:
<bean id="myJndiResource" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/myJndiResource"/>
<property name="lookupOnStartup" value="true"/>
<property name="cache" value="true"/>
<property name="jndiTemplate" ref="wasJndiTemplate"/>

</bean>

<bean id="wasJndiTemplate" class="org.springframework.jndi.JndiTemplate">
<property name="environment">
<props>
<prop key="java.naming.factory.initial">com.ibm.websphere.naming.WsnInitialContextFactory</prop>

</props>
</property>

</bean>

The SCA container for implementation.spring does not run in a Java EE container, so it does not
have access to the Java EE local JNDI namespace. By specifying that your Spring beans use the
WebSphere initial context factory, you can prevent java:comp/ext from being prepended to the JNDI
name during lookup.

About this task

You can use a Spring application context as an implementation within an SCA composite component.
Define the implementation using Spring 2.5.5. A Spring application context provides a complete composite,
exposing services and using references using SCA.

A component that uses Spring for an implementation can wire SCA services and references without
introducing SCA metadata into the Spring configuration. Generally, the Spring context knows little about
the SCA environment.

Procedure
1. Define a component implementation that uses the Spring Framework in a composite definition.

The Spring component implementation in a composite definition has the following format:
<implementation.spring location="targetURI"/>

The location attribute of the element specifies the target uniform resource indicator (URI) of a
directory, or the fully qualified path that contains the Spring application context files.

There are two ways that you can specify the target URI in the location attribute:

v Specify a fully qualified path:
<implementation.spring location="./spring/application-context.xml"/>

v Specify a directory:
<implementation.spring location="./spring"/>

The target URI specifies the resource as a directory, here named spring, that has all the
Spring-related files. To point to one application context, a META-INF/MANIFEST.MF file in that directory

Chapter 19. Developing SCA composites 841

must contain a Spring-Context header of the format Spring-Context: path, where path is a relative
path with respect to the location URI. For example:
Spring-Context: META-INF/spring/application-context.xml

If the META-INF/MANIFEST.MF file does not exist or does not contain the Spring-Context header, then
the product builds an application context using the application-context.xml file in the
META-INF/spring directory. If the META-INF/spring/application-context.xml file does not exist, then
the application does not deploy.

2. Optional: Override implicit mapping of Spring resource to SCA resources.

By default, SCA implicitly maps Spring resources to SCA resources as follows:

v Each <bean/> becomes <sca:service/>.

v Each unresolved <property/> becomes <sca:reference/> if typed by an interface.

v Each unresolved <property/> becomes <sca:property/> if not typed by an interface.

You can override this default mapping by using the SCA XML extensions in the Spring context to
create explicit declarations. You typically do this to enable the Spring container to decorate the bean
using, for example, Spring Aspect-Oriented Programming (AOP). The SCA XML extensions are defined
as follows:

v <sca:service/> defines each service exposed by the context.

v <sca:reference/> defines each reference exposed by the context.

v <sca:property/> defines each property exposed by the context.<sca:property/> must be a bean
class and not a primitive type.

For example, the properties checkingAccountService, calculatorService, and stockQuoteService
defined in the following Spring configuration are declared explicitly as SCA beans in a Spring
application context using the <sca:reference> element:
<beans>
<bean id="AccountServiceBean" class="bigbank.account.AccountServiceImpl">
<property name="calculatorService" ref="calculatorService"/>
<property name="stockQuoteService" ref="stockQuoteService"/>
<property name="checkingAccountService" ref="checkingAccountService"/>
<!-- Some implicit references and properties follow. A property with a reference

not satisifed * within the Spring application context. -->
<property name="savingsAccountService" ref="savingsAccountService"/>
<property name="stockAccountService" ref="stockAccountService"/>
<property name="currency" value="EURO"/>

</bean>
<sca:reference name="checkingAccountService" type="bigbank.account.checking.CheckingAccountService"/>
<ca:reference name="calculatorService" type="bigbank.calculator.CalculatorService"/>
<sca:reference name="stockQuoteService" type="bigbank.stockquote.StockQuoteService"/>

</beans>

3. If you completed step 2, to use the SCA XML extensions you must add the SCA schema to the
application context.

Add the SCA schema, http://www.osoa.org/xmlns/sca/1.0/spring-sca.xsd , to the application
context. Specify a Spring application context that defines the SCA schema namespace and makes the
Spring application aware of the SCA-related beans; for example:
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sca="http://www.springframework.org/schema/sca"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/sca
http://www.osoa.org/xmlns/sca/1.0/spring-sca.xsd">

<sca:service name="StockQuoteService"
type="bigbank.stockquote.StockQuoteService" target="StockQuoteServiceBean"/>

<bean id="StockQuoteServiceBean" class="bigbank.stockquote.StockQuoteImpl">
</bean>

</beans>

For more information about defining an application context, see the reference documentation provided
by the Spring source community. For more information about the SCA schema, see the SCA Spring
Implementation specification.

842 Developing WebSphere applications

4. Package the SCA application context file in your service Java archive (JAR) file at the location
specified in your composite definition.

For example, package the SCA application context file in a Spring service JAR file is named
helloworld-spring.jar.

5. Create a Spring runtime JAR file that contains Spring and product SCA runtime files.

Because the Spring runtime binary files are not shipped with the product, you must create an asset
that contains three Spring framework JAR files and one product JAR file. Create the asset as follows:

a. If you do not have the Spring 2.5.5 framework binary files, go to Spring Community Downloads at
http://www.springsource.com/download/community?project= and download spring-framework-
2.5.5.zip.

After you download the compressed .zip file, extract it to a temporary directory.

b. Create an empty directory; for example, C:\SpringAsset.

c. Copy the Spring 2.5.5 framework binary files spring-beans.jar, spring-context.jar, and
spring-core.jar to the empty directory.

If the Spring application requires transaction support, copy all the Spring JAR files into the empty
directory. The AspectJ Weaver library files are also required for transaction support.

d. Copy the app_server_root/optionalLibraries/sca/SCA-implementation-spring-runtime-
1.0.1.jar file to the same directory in which you placed the three Spring JAR files.

Note: If you install a product maintenance package, update the SpringSharedLibAsset.jar with
the newer version of the app_server_root/optionalLibraries/sca/SCA-implementation-
spring-runtime-1.0.1.jar file.

e. Create a JAR file named SpringSharedLibAsset.jar that contains the four JAR files you placed in
the C:\SpringAsset directory.

For example, at a command prompt, enter the following commands:

1) cd C:\SpringAsset

2) jar –cvf SpringSharedLibAsset.jar *.jar

For performances reasons, the JAR file must be named SpringSharedLibAsset.jar.

f. Verify that the SpringSharedLibAsset.jar file contains all four JAR files in the root directory.

6. Import the Spring runtime JAR file as an asset.

To import SpringSharedLibAsset.jar as an asset using a wsadmin Jython command, enter the
following command:
AdminTask.importAsset(’-source SpringSharedLibAsset.jar -storageType FULL’)

You can also use the administrative console.

7. Import the Spring service JAR file as an asset with a dependency on the Spring runtime asset.

Suppose that your Spring service JAR file is named helloworld-spring.jar. Import your Spring
service JAR file, helloworld-spring.jar, and create a dependency on the Spring runtime asset,
SpringSharedLibAsset.jar. The dependency enables the product to access the necessary Spring
classes. You can import the Spring service JAR file using the following wsadmin Jython command:
AdminTask.importAsset(’-source helloworld-spring.jar -storageType FULL -AssetOptions
[[helloworld-spring.jar helloworld-spring.jar "" "" "" spec=zip assetname=SpringSharedLibAsset.jar
"" false]]]’)

Alternatively, you can use the administrative console to import the asset with a dependency:

a. On the administrative console, click Applications > Application Types > Assets.

b. On the Assets page, click Import.

c. On the Upload asset page, specify the full path name of the service JAR file and click Next.

d. On the Select options for importing an asset page, specify a dependency.

1) Click Manage Relationships. The button is near the bottom of the page. The product detects
asset relationships automatically by matching the dependencies defined in the JAR manifest
with the assets that are already imported into the administrative domain.

Chapter 19. Developing SCA composites 843

http://www.springsource.com/download/community?project=

2) Select your Spring runtime JAR file, such as SpringSharedLibAsset.jar, click >> to move the
JAR file to the Selected list.

3) Click OK.

Under Current asset relationships, the asset name is shown; for example:
WebSphere:assetname=SpringSharedLibAsset.jar

4) Click Next.

e. Click Finish.

f. After the product imports the asset, click Save.

Results

The Spring runtime JAR file and Spring service JAR file are imported assets available for use in a
business-level application. The Spring service JAR asset has a dependency on the Spring runtime asset.

What to do next

Add the JAR assets that you created to an SCA business-level application.

To learn about Spring implementation features that the product supports but which are not defined in the
SCA Spring Implementation specification, see "Additional Spring component implementation features."

Additional Spring component implementation features
The product supports Spring implementation features that are not defined in the Service Component
Architecture (SCA) Spring Implementation specification.

The product supports the following features:

v Constructor injection

The product supports the injection of SCA references and properties within Spring bean constructors.
Define <constructor-arg> elements that specify the appropriate type of the SCA references or
properties to use. If the elements do not specify the type attribute, then at least specify the index
attribute. The product only supports constructor injection when the Spring bean has a single constructor.

v Using the ClassPathXmlApplicationContext bean definition

When the ClassPathXMLApplicationContext bean definition is in an application context, only the beans
and properties defined in the top-level application context can be mapped, either explicitly or implicitly,
to SCA resources.

The product does not support using a FileSystemXMLApplicationContext definition to load an application
context file.

v <import> elements in application context files

The product supports use of <import> elements in application context files. Each <import> element
points to an application context XML file; for example:

<bean>
<import resource="services.xml"/>
<import resource="resources/messageSource.xml"/>
<import resource="/resources/themeSource.xml"/>
<bean id="bean1" class="..."/>
<bean id="bean2" class="..."/>

</beans>

844 Developing WebSphere applications

Chapter 20. Developing Scheduler service

This page provides a starting point for finding information about the scheduler service, a WebSphere
programming extension responsible for starting actions at specific times or intervals.

Schedulers are persistent and transactional timer services that run Enterprise JavaBeans methods or send
Java Message Service messages using any Java Message Service messages using any Java Platform,
Enterprise Edition (Java EE) server application.

The scheduler service helps minimize IT costs and increase application speed and responsiveness by
maximizing utilization of existing computing resources.

The scheduler service provides the ability to reliably process workloads using parallel processing and
schedule resource-intensive tasks to process during low traffic off-hours.

Developing and scheduling tasks
To develop and schedule tasks, use a configured scheduler.

Procedure
1. Look up a configured scheduler. Refer to the Accessing schedules topic. Each configured scheduler is

available from two different programming models:

v A Java Platform, Enterprise Edition (Java EE) server application, such as a servlet or Enterprise
JavaBeans (EJB) component, can use the Scheduler API. Schedulers are accessed by looking them
up using a Java Naming and Directory Interface (JNDI) name or resource reference.

v Java Management Extensions (JMX) applications, such as wsadmin scripts, can use the Scheduler
API using WASScheduler MBeans.

2. Develop the task.

The Scheduler API supports different implementations of the TaskInfo interface, each of which can be
used to schedule a particular type of work. Refer to the Developing a task that calls a session bean
topic and Develop a task that sends a Java Message Service (JMS) message topic for details. The
task object that is referenced in the Develop a task that sends a Java Message Service (JMS)
message topic can send a JMS message to either a queue or a topic.

Attention: Creating and manipulating scheduled tasks through the Scheduler interface is only
supported from within the EJB container or Web container (Enterprise beans or servlets). Looking up
and using a configured scheduler from a Java EE application client container is not supported.

3. Receive scheduler notifications. A notification sink is set on a task in order to receive the notification
events that are generated by a scheduler when it performs an operation on the task.

4. Use custom calendars. You can assign a UserCalendar session bean to a task that allows schedulers
to use custom and predefined date algorithms to determine when a task should run. Refer to the
UserCalendar interface topic for details.

5. Submit tasks to a scheduler. After a TaskInfo object has been created, it can be submitted to the
scheduler for task creation by calling the Scheduler.create() method.

6. Manage tasks with a scheduler.

7. Secure tasks with a scheduler.

Example

You can use the SIMPLE and CRON calendars from any Java EE application. This example illustrates the
process.

v Using default scheduler calendars

© Copyright IBM Corp. 2012 845

Using default scheduler calendars. The following code examples illustrates how to use connections
correctly and incorrectly.

Using default scheduler calendars involves looking up the default UserCalendarHome Enterprise
JavaBeans (EJB) home object, creating the UserCalendar bean and calling the applyDelta() method. For
details on the applyDelta method as well as the syntax for the SIMPLE and CRON calendars, see
UserCalendar interface topic.
import java.util.Date;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.ibm.websphere.scheduler.UserCalendar;
import com.ibm.websphere.scheduler.UserCalendarHome;

// Create an initial context
InitialContext ctx = new InitialContext();

// Lookup and narrow the default UserCalendar home.
UserCalendarHome defaultCalHome=(UserCalendarHome)
PortableRemoteObject.narrow(ctx.lookup(

UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME),
UserCalendarHome.class);

// Create the default UserCalendar instance.
UserCalendar defaultCal = defaultCalHome.create();

// Calculate a date using CRON based on the current
// date and time. Return the next date that is
// Saturday at 2AM
Date newDate =

defaultCal.applyDelta(new Date(),
"CRON", "0 0 2 ? * SAT");

Accessing schedulers
Each configured scheduler is available using the Scheduler API from a Java Platform, Enterprise Edition
(Java EE) server application, such as a servlet or Enterprise JavaBeans (EJB) module. Use a Java
Naming and Directory Interface (JNDI). name or resource reference to access schedulers. Each scheduler
is also available using the Java™ Management Extensions (JMX) API, using its associated WASScheduler
MBean.

About this task

Scheduler and WASScheduler interfaces are the starting point for all scheduler activities. Each scheduler
is independent and allows task life cycle operations, such as creating new tasks.

Procedure
1. Locate schedulers using the javax.naming.Context.lookup() method from a Java EE server application,

such as a servlet or EJB module like the following example:
//lookup the scheduler to be used
import com.ibm.websphere.scheduler.Scheduler;
import javax.naming.InitialContext;
Scheduler scheduler = (Scheduler)new InitialContext.lookup("java:comp/env/sched/MyScheduler");

2. Use wsadmin to locate a WASScheduler MBean using JACL scripting:
set jndiName sched/MyScheduler

Map the JNDI name to the mbean name. The mbean name is
formed by replacing the / in the JNDI namewith . and prepending
Scheduler_
regsub -all {/} $jndiName "." jndiName
set mbeanName Scheduler_$jndiName

846 Developing WebSphere applications

puts "Looking-up Scheduler MBean $mbeanName"
set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]
puts $sched

Results

The scheduler is now available to use from a Java EE server application or from a JMX API client. To
create a task see the topics, Developing a task that calls a session bean or Developing a task that sends
a JMS message.

Developing a task that calls a session bean
The Scheduler API and WASScheduler MBean API support different implementations of the TaskInfo
interface, each of which can be used to schedule a particular type of work. This topic describes how to
create a task to call a method on a TaskHandler session bean.

About this task

To create a task to call a method on a TaskHandler session bean, use these steps.

Procedure
1. Create a new enterprise application with an Enterprise JavaBeans (EJB) module. This application

hosts the TaskHandler EJB module.

2. Create a stateless session bean in the EJB Module that implements the process() method in the
com.ibm.websphere.scheduler.TaskHandler remote interface. Place the business logic you want
created in the process() method. The process() method is called when the task runs. The Home and
Remote interfaces must be set as follows in the deployment descriptor bean:

v com.ibm.websphere.scheduler.TaskHandlerHome

v com.ibm.websphere.scheduler.TaskHandler

3. Create an instance of the BeanTaskInfo interface by using the following example factory method. Using
a JavaServer Pages (JSP) file, servlet or EJB component, create the instance as shown in the
following code example. This code should coexist in the same application as the previously created
TaskHandler EJB module:
// Assume that a scheduler has already been looked-up in JNDI.
BeanTaskInfo taskInfo = (BeanTaskInfo) scheduler.createTaskInfo(BeanTaskInfo.class)

You can also use the wsadmin tool to create the instance as shown in the following JACL scripting
example:
set taskHandlerHomeJNDIName ejb/MyTaskHandler

Map the JNDI name to the mbean name. The mbean name is formed by replacing the / in the jndi name
with . and prepending Scheduler_
regsub -all {/} $jndiName "." jndiName
set mbeanName Scheduler_$jndiName

puts "Looking-up Scheduler MBean $mbeanName"
set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]
puts $sched

Get the ObjectName format of the Scheduler MBean
set schedO [$AdminControl makeObjectName $sched]

Create a BeanTaskInfo object using invoke_jmx
puts "Creating BeanTaskInfo"
set params [java::new {java.lang.Object[]} 1]
$params set 0 [java::field com.ibm.websphere.scheduler.BeanTaskInfo class]

set sigs [java::new {java.lang.String[]} 1]
$sigs set 0 java.lang.Class

Chapter 20. Developing Scheduler service 847

set ti [$AdminControl invoke_jmx $schedO createTaskInfo $params $sigs]
set bti [java::cast com.ibm.websphere.scheduler.BeanTaskInfo $ti]
puts "Created the BeanTaskInfo object: $bti"

Important: Creating a BeanTaskInfo object does not add the task to the persistent store. Rather, it
creates a placeholder for the necessary data. The task is not added to the persistent store
until the create() method is called on a Scheduler, as described in the Submitting tasks to
schedulers topic.

4. Set parameters on the BeanTaskInfo object. These parameters define which session bean is called
and when. The TaskInfo interface contains various set() methods that you can use to control execution
of the task, including when the task runs and what work the task does when it runs.

The BeanTaskInfo interface requires that the TaskHandler Java™ Naming and Directory Interface
(JNDI) name or TaskHandlerHome is set using the setTaskHandler method. If using the WASScheduler
MBean API to set the task handler, then the JNDI name must be the fully-qualified global JNDI name.

The TaskInfo interface specifies additional control points, as documented in the API documentation. Set
parameters using the TaskInfo interface API method as shown in the following code example:
//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//find the session bean to be called when the task starts
Object o = new InitialContext().lookup("java:comp/env/ejb/MyTaskHandlerHome");
TaskHandlerHome home = (TaskHandlerHome)javax.rmi.PortableRemoteObject.narrow(o,TaskHandlerHome.class);

//now set the start time and task handler to be called in the task info
taskInfo.setTaskHandler(home);
taskInfo.setStartTime(startDate);

You can also set parameters using the following JACL scripting example:
Setup the task
puts "Setting up the task..."
Set the startTime if you want the task to run at a specific time, for example:
$bti setStartTime [java::new {java.util.Date long} [java::call System currentTimeMillis]]

Set the StartTimeInterval so the task runs in 30 seconds from now
$bti setStartTimeInterval 30seconds

Set JNDI name of the EJB which will get called when the task runs. Since there is no
application J2EE Context when the task is created by the MBean, this must be a
global JNDI name.
$bti setTaskHandler $taskHandlerHomeJNDIName

Do not purge the task when it’s complete
$bti setAutoPurge false

Set the name of the task. This can be any string value.
$bti setName Created_by_MBean

If the task needs to run with specific authorization you can set the tasks Authentication Alias
Authentication aliases are created using the Admin Console.
$bti setAuthenticationAlias {myRealm/myAlias}

puts "Task setup completed."

Results

A BeanTaskInfo object has been created that contains all of the relevant data to call an EJB method.

What to do next

Submit the task to a scheduler for creation.

848 Developing WebSphere applications

Developing a task that sends a Java Message Service message
The Scheduler API and WASScheduler MBean API support different implementations of the TaskInfo
interface, each of which can be used to schedule a particular type of work. This topic describes how to
create a task that sends a Java Message Service (JMS) message to a queue or topic.

About this task

To create a task that sends a Java Message Service (JMS) message to a queue or topic, use these steps.

Procedure
1. Create an instance of the MessageTaskInfo interface using the Scheduler.createTaskInfo() factory

method. Using a JavaServer Pages (JSP) file, servlet or EJB container, create the instance as shown
in the following code example:
//lookup the scheduler to be used
Scheduler scheduler = (Scheduler)new InitialContext.lookup("java:comp/env/Scheduler");

MessageTaskInfo taskInfo = (MessageTaskInfo) scheduler.createTaskInfo(MessageTaskInfo.class);

You can also use the wsadmin tool, create the instance as shown in the following JACL scripting
example:
Sample create a task using MessageTaskInfo task type
Call this mbean with the following parameters:
<scheduler jndiName> = JNDI name of the scheduler resource,
for example scheduler/myScheduler
<JNDI name of the QCF> = The global JNDI name of the Queue Connection Factory.
<JNDI name of the Queue> = The global JNDI name of the Queue destination

set jndiName [lindex $argv 0]
set jndiName_QCF [lindex $argv 1]
set jndiName_Q [lindex $argv 2]

Map the JNDI name to the mbean name. The mbean name is formed by replacing the / in the jndi name
with . and prepending Scheduler_
regsub -all {/} $jndiName "." jndiName
set mbeanName Scheduler_$jndiName

puts "Looking-up Scheduler MBean $mbeanName"
set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]
puts $sched

Get the ObjectName format of the Scheduler MBean
set schedO [$AdminControl makeObjectName $sched]

Create a MessageTaskInfo object using invoke_jmx
puts "Creating MessageTaskInfo"
set params [java::new {java.lang.Object[]} 1]
$params set 0 [java::field com.ibm.websphere.scheduler.MessageTaskInfo class]

set sigs [java::new {java.lang.String[]} 1]
$sigs set 0 java.lang.Class

set ti [$AdminControl invoke_jmx $schedO createTaskInfo $params $sigs]
set mti [java::cast com.ibm.websphere.scheduler.MessageTaskInfo $ti]
puts "Created the MessageTaskInfo object: $mti"

Attention: Creating a MessageTaskInfo object does not add the task to the persistent store. Rather,
it creates a placeholder for the necessary data. The task is not added to the persistent store until the
create() method is called on a Scheduler, as described in the Submitting a task to a scheduler topic.

2. Set parameters on the MessageTaskInfo object. The TaskInfo interface contains various set() methods
that can be used to control execution of the task, including when the task runs and what work the task
does when it starts.

Chapter 20. Developing Scheduler service 849

The TaskInfo interface specifies additional behavior settings, as documented in the API documentation.
Using a JavaServer Pages (JSP) file, servlet or EJB container, create the instance as shown in the
following code example:
//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//now set the start time and the JNDI names for the queue connection factory and the queue
taskInfo.setConnectionFactoryJndiName("jms/MyQueueConnectionFactory");
taskInfo.setDestination("jms/MyQueue");
taskInfo.setStartTime(startDate);

You can also use the wsadmin tool, to create the instance as shown in the following JACL scripting
example:
Setup the task
puts "Setting up the task..."
Set the startTime if you want the task to run at a specific time, for example:
$mti setStartTime [java::new {java.util.Date long} [java::call System currentTimeMillis]]

Set the StartTimeInterval so the task runs in 30 seconds from now
$mti setStartTimeInterval 30seconds

Set the global JNDI name of the QCF & Queue to send the message to.
$mti setConnectionFactoryJndiName $jndiName_QCF
$mti setDestinationJndiName $jndiName_Q

Set the message
$mti setMessageData "Test Message"

Do not purge the task when it’s complete
$mti setAutoPurge false

Set the name of the task. This can be any string value.
$mti setName Created_by_MBean

If the task needs to run with specific authorization you can set the tasks Authentication Alias
Authentication aliases are created using the Admin Console.
$mti setAuthenticationAlias {myRealm/myAlias}

puts "Task setup completed."

Results

A MessageTaskInfo object has been created that contains all of the relevant data for a task that sends a
JMS message.

What to do next

Submit the task to a scheduler for creation, as described in the Submitting a task to a scheduler topic.

Scheduling long-running tasks
The default behavior of the scheduler is designed to run business logic that runs for a short period of time.
In version 6.0.2 and later, two API methods on the com.ibm.websphere.scheduler.TaskInfo interface help
avoid some of the problems that can occur when running tasks for an extended time.

About this task

The TaskInfo.setQOS method supports tasks with both a transactional and non-transactional quality of
service. When running tasks that run for long periods, you can use the TaskInfo.QOS_ATLEASTONCE
quality of service to run the task without a global transaction. This process prevents various timeout issues

850 Developing WebSphere applications

that can occur when resources are held by a long-running transaction. See the Transactions and
schedulers topic for details on the TaskInfo.setQOS method and how it can be used.

Using the TaskInfo.setExpectedDuration method, the scheduler can to adjust timeout values, as
appropriate, for a given task for all qualities of service. The application server attempts to adjust various
run-time parameters to accommodate the estimated run time of the task.

Procedure
1. When you assemble the TaskInfo object with the Scheduler API or the WASScheduler MBean, use the

following methods on the TaskInfo interface:

a. Set the quality of service.

1) If the task must be transactional, use the setQOS method with the QOS_ONLYONCE constant,
which is the default, if not set.

2) If the task does not need to be transactional, use the setQOS method with the
QOS_ATLEASTONCE constant.

b. Set the expected duration.

1) Use the setExpectedDuration method to set the expected duration of the task in seconds.

2. Schedule the task using the Scheduler.create method.

What to do next

View the Access schedulers topic.

Receiving scheduler notifications
Various notification events are generated by a scheduler when it performs an operation on a task. These
notifications events are described in this topic.

About this task

The notification events generated by a scheduler when it performs a task include:
Scheduled

A task has been scheduled.
Purged

A task has been permanently deleted from the persistent store.
Suspended

A task was suspended.
Resumed

A task was resumed.
Complete

A task has run completely. If it was a repeating task, all repeats have been performed.
Cancelled

A task has been cancelled. It will not run again.
Firing A task is prepared to run.
Fired A task completed successfully.
Fire failed

A task could not run successfully.

To receive notification events, call the setNotificationSink() method on the TaskInfo interface before
creating the task. The setNotificationSink() method enables you to specify the session bean that is to act
as the callback, and a mask that restricts which events are generated.

Chapter 20. Developing Scheduler service 851

Procedure
1. Create a NotificationSink session bean. Create a stateless session bean that implements the

handleEvent() method in the com.ibm.websphere.scheduler.NotificationSink remote interface.
The handleEvent() method is called when the notification is fired. The Home and Remote
interfaces can be set as follows in the bean's deployment descriptor:

com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The NotificationSink interface defines the following method:
public void handleEvent(TaskNotificationInfo task) throws java.rmi.RemoteException;

2. Specify the notification sink session bean prior to submitting the task to the Scheduler using the
TaskInfo interface API setNotificationSink() method.

If using the WASScheduler MBean API to set the notification sink, then the Java™ Naming and
Directory Interface (JNDI) name must be the fully-qualified global JNDI name. Using a JavaServer
Pages (JSP) file, servlet or Enterprise JavaBeans (EJB) component, look up and set the notification
sink on a task as shown in the following code example:
TaskInfo taskInfo = ...
Object o = new InitialContext().lookup("java:comp/env/ejb/NotificationSink");
NotificationSinkHome home = (NotificationSinkHome)javax.rmi.PortableRemoteObject.narrow
(o,NotificationSinkHome.class);
taskInfo.setNotificationSink(home,TaskNotificationInfo.ALL_EVENTS);

You can also use the wsadmin tool to set the notification sink callback session bean as shown in the
following JACL scripting example:
Use the NotificationSinkHome's Global JNDI name
Assume that a TaskInfo was already created...
$taskInfo setNotificationSink “ejb/MyNotificationSink”

3. Specify the event mask. The event mask is specified as an integer bitmap. You can either use an
individual mask such as TaskNotificationInfo.CREATED to receive specific events,
TaskNotificationInfo.ALL_EVENTS to receive all events or a combination of specific events. If you use
Java, your script might look like the following example:
int eventMask = TaskNotificationInfo.FIRED | TaskNotificationInfo.COMPLETE;
taskInfo.setNotificationSink(home,eventMask);

If you use JACL, your script might look like the following example:
Set the event mask based on two event constants.
set eventmask [expr [java::field com.ibm.websphere.scheduler.TaskNotificationInfo FIRED] +
[java::field com.ibm.websphere.scheduler.TaskNotificationInfo COMPLETE]]

Set our Notification Sink based on our global JNDI name AND event mask.
Note: We need to use the full method signature here since the
method resolver can't always detect the right method.
$taskInfo {setNotificationSink String int} "ejb/MyNotificationSink" $eventmask

Results

A notification sink bean is now set on a TaskInfo object and can now be submitted to a scheduler using
the create method.

Submitting a task to a scheduler
This topic describes the process of submitting a task to a configured scheduler.

Before you begin

This task assumes that you have already configured a scheduler and created and configured a TaskInfo
object that calls a session bean or sends a Java Messaging Service (JMS) message.

852 Developing WebSphere applications

About this task

Once you have developed a TaskInfo object that contains all relevant data for a task, submit the task to a
scheduler for creation. When the task is created, the scheduler runs it.

Procedure

Create the task. After you configure TaskInfo, submit it to the appropriate scheduler, using the Scheduler
API create method.
// Create the TaskInfo using the Scheduler that you already looked up and print out the Task ID
TaskStatus ts = scheduler.create(taskInfo);
System.out.println(“Task created with id: “ + ts.getTaskId()”

You can also create the task using the wsadmin tool as shown in the following JACL scripting example:
Create the TaskInfo using the WASScheduler MBean that you previously located and print out the Task ID
puts "Creating the task..."

set params [java::new {java.lang.Object[]} 1]
$params set 0 $taskInfo

set sigs [java::new {java.lang.String[]} 1]
$sigs set 0 com.ibm.websphere.scheduler.TaskInfo

set taskStatus [java::cast com.ibm.websphere.scheduler.TaskStatus [$AdminControl invoke_jmx $schedO
create $params $sigs]]

puts "Task Created. TaskID= [$taskStatus getTaskId]"

puts $taskStatus

When the call to the create() method is complete, the task exists in the persistent store and is run at the
time specified in the TaskInfo object. If a global transactional context is present on the thread, and the
create() transaction rolls back or is aborted, the task does not run.
The TaskStatus object, which has been returned by the call to the create() method, contains information
about the state of the task, as well as the task ID. The task ID is the unique identifier for this task, and is
required if the task is to be suspended, resumed, cancelled, and so on, at a later time.

Tip: The TaskStatus object is only a snapshot of the current state of the task. Use the
Scheduler.getStatus() method to receive the current state when needed.

Task management methods using a scheduler
The scheduler provides several task management methods.

When a task is created by calling the create() method on a scheduler, a TaskStatus object is returned to
the caller. The TaskStatus object contains the task ID, which is a unique identifier. The Scheduler API and
WASScheduler MBean define several additional methods that pertain to the management of tasks, each of
which accepts the task ID as a parameter. The following task management methods are defined:
suspend()

Suspends a task. The task does not run until it has been resumed.
resume()

Resumes a previously suspended task.
cancel()

Cancels a task. The task is not run and cannot be resumed.
purge()

Permanently deletes a cancelled task from the persistent store.
getStatus()

Returns the current status of the task.

Chapter 20. Developing Scheduler service 853

Use the following API example to create and cancel a task:
//Create the task.
TaskInfo taskInfo = ...
TaskStatus status = scheduler.create(taskInfo);

//Get the task ID
String taskId = status.getTaskId();

//Cancel the task. Specify the purgeAlso flag so that the task does not remain in the persistent store
scheduler.cancel(taskId,true);

Use the following example JACL script operations in the wsadmin tool to create and cancel a task:
set jndiName sched/MyScheduler

Map the JNDI name to the mbean name. The mbean name is
formed by replacing the / in the jndi name with . and prepending
Scheduler_
regsub -all {/} $jndiName "." jndiName
set mbeanName Scheduler_$jndiName

puts "Looking-up Scheduler MBean $mbeanName"
set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]
puts $sched

Get the ObjectName format of the Scheduler MBean
set schedO [$AdminControl makeObjectName $sched]

Create a TaskInfo object...
(Some code excluded...)
set params [java::new {java.lang.Object[]} 1]
$params set 0 $taskInfo

set sigs [java::new {java.lang.String[]} 1]
$sigs set 0 com.ibm.websphere.scheduler.TaskInfo

set taskStatus [java::cast com.ibm.websphere.scheduler.TaskStatus [$AdminControl invoke_jmx $schedO
create $params $sigs]]

set taskID [$taskStatus getTaskId]
puts "Task Created. TaskID= $taskID"

Cancel the task using the Task ID from the TaskStatus object returned during create.
set params [java::new {java.lang.Object[]} 1]
$params set 0 false

set sigs [java::new {java.lang.String[]} 1]
$sigs set 0 java.lang.boolean

set taskStatus [java::cast com.ibm.websphere.scheduler.TaskStatus [$AdminControl invoke_jmx $schedO
cancel $params $sigs]]

Transactionality. All methods of the Scheduler API are transactional. If a global transactional context is
present, it is used to perform the operation. If an unexpected exception is thrown, the transaction is
marked to roll back, and the caller must handle it appropriately. If an expected or declared exception is
thrown, the transaction remains intact and the caller must choose to roll back or to commit the transaction.
If the transaction is rolled back at some point, all scheduler operations performed within the transaction are
also rolled back.

If a local transactional context is present, it is suspended and a new global transactional context begins.
Likewise, if no transactional context is active, a global transactional context begins. In both cases, if an
unexpected exception is thrown, the transaction rolls back. If a declared exception is thrown, the
transaction is committed.

854 Developing WebSphere applications

If another thread is concurrently modifying the task in question, a TaskPending exception is thrown. This is
because schedulers lock the database optimistically. The calling application can then retry the operation.

Task management functions may block if the task is currently running. Because the scheduler guarantees
that each task will run only once, the task must be locked for the duration of a running task. Likewise, if a
task is changed using one of the management functions but the global transaction is not committed, any
other management functions issued from another transaction for that task will be blocked.

A stateless session bean task’s TaskHandler.process() method can change it’s own state. However, the
task must be running within the same transaction as the scheduler. Therefore, a running task can only
modify itself if it is using the Required or Mandatory container managed transaction types. If the Requires
New transaction type is specified on the process() method, all management functions will deadlock.

All methods defined by the Scheduler API are described in the API documentation.

Identifying tasks that are currently running
When a task runs, the task database record is locked until the task completes. This topic describes how to
determine whether or not a task is running.

About this task

Prior to version 6.0.2, all tasks ran in a single global transaction. This process not only prevented the task
from running more than once successfully, but it also blocked all attempts at reading the state of the task,
since each task used read-committed transaction isolation.

There are two methods for determining whether a task is running:

1. NotificationSink

A NotificationSink EJB can be set on the task using the setNotificationSink method on the TaskInfo
object. The NotificationSink bean can then log the life cycle of the task to a separate database record
in a custom table. This would result in a history log of the task that can be queried independently from
the scheduler. This solution works for all versions of the scheduler service. See the Receiving
Scheduler Notifications topic for details.

2. Delayed Execution and Uncommitted Read

In Version 6.0.2 and later, two behaviors enable the scheduler find and retrieve API methods, such as
getTask, getTaskStatus or findTasksByName, to see the current state of the task without blocking. To
see the current state of the task, including its uncommitted running state, complete the following steps:

Procedure
1. Enable read-uncommitted transaction isolation for the scheduler read methods to prevent these

methods from blocking while a task is running. To set the default transaction isolation for read
methods, see the Configuring scheduler default transaction isolation topic for read operation details.

Important: If the scheduler database does not support uncommitted reads, such as Oracle, it might
not be possible to determine if a task is running unless you use the QOS_ATLEASTONCE
quality of service.

2. Use the TaskInfo.EXECUTION_DELAYEDUPDATE option on the TaskInfo.setTaskExecutionOptions
method to force the scheduler to write the TaskStatus.RUNNING state to the task when that task starts
running.

Stopping tasks that are failing
The scheduler runs tasks in a global transactional context, by default. If a task is failing due to a
configuration problem or application error, the scheduler attempts to retry the task until the scheduler
failure threshold is reached. This topic describes how to stop the tasks that are failing.

Chapter 20. Developing Scheduler service 855

Before you begin

The default scheduler failure threshold is 10 and can be configured using the taskFailureThreshold
scheduler custom property. To configure this custom property, in the administrative console click
Resources > Schedulers > scheduler_name and click Custom Properties. Valid values are
non-negative integers, that is, integers greater than 0.

About this task

When the task reaches the failure threshold, the scheduler stops running the task until the scheduler
daemon is restarted using the WASScheduler MBean, the scheduler fails over to another server, or until
the scheduler is resumed using the resume method on the Scheduler API or WASScheduler MBean.

Procedure
1. Cancel or suspend a transactional (QOS_ONLYONCE) task that is continually failing. This action can

be difficult if the scheduler has not yet reached the failure threshold. The cancel and suspend
Scheduler API methods or WASScheduler MBean operations block until the task fails or the method
times out, while waiting for a database lock and throws a TaskPending exception. If this occurs, then
the application can retry the cancel or suspend operation until it completes.

2. Alternatively, stop the scheduler daemon using the stopDaemon operation on the WASScheduler
MBean to avoid running the task multiple times, and run the cancel or suspend operation while it is
stopped. While the daemon is stopped, the scheduler does not run tasks. However, all MBean
operations and API methods are still available.

Scheduler tasks and Java EE context
When a task is created using the Scheduler API create() method, the Java Platform, Enterprise Edition
(Java EE) thread context of the creator is stored with the scheduled task. When the task runs, the original
Java EE thread context is reapplied to the thread before calling the customer TaskInfo instance.

The scheduler service utilizes the asynchronous beans deferred start mechanism to propagate Java EE
service context information to a task when it runs. The amount of service context information that is
propagated is controlled by the Service Context settings on the WorkManager configuration object that
schedulers reference. For example, security and internationalization service contexts can be enabled. See
the Using asynchronous beans topic for details on how to configure the Application Server to propagate
these service contexts.

Transactions and schedulers
The scheduler runs a task in a single global transaction, by default. You can use the QOS_ONLYONCE or
QOS_ATLEASTONCE quality of service to specify whether the task runs as a single unit of work once or
as independent transactions.

Transaction behavior when running a task

Because the scheduler runs a task in a single global transaction, by default, the transaction is open until
the task completes or fails. The resources involved in that transaction are subject to various timeouts and
the thread of the task could be identified as hung if the task runs for a long period of time that can span
many minutes or hours.

QOS_ONLYONCE

Scheduled tasks execute only one time successfully when using the QOS_ONLYONCE quality of service.
This action is accomplished by grouping all of the work done in the task as a single unit of work. When
each task fires, the following events occur in a single global transactional context:
1. The context of the application that created the task is applied to the thread.
2. A global transactional context is started.

856 Developing WebSphere applications

3. The next fire time and start-by time are calculated using the UserCalendar bean or the
DefaultUserCalendar.

Important: If using the TaskInfo.setTaskExcecutionOptions method with the
TaskInfo.EXECUTION_DELAYEDUPDATE option, this step will occur after the record is
updated.

4. The task database task record is updated in the database with the state of the next task or deleted if
the task is complete and the task's auto-purge setting is true.

5. The task database record is updated in the database with the state of the next task or deleted if the
task is complete and the task's auto-purge setting is true. If the EXECUTION_DELAYEDUPDATE
option is used, the database will not reflect the next state of the task, but the current state with the
TaskStatus.RUNNING state set.

6. If the NotificationSink bean is set, a FIRING notification is fired.
7. The BeanTaskInfo or MessageTaskInfo object starts.
8. If the task fails and the NotificationSink bean is set, a FIRE_FAILED notification is fired on a separate

transaction.
9. If the task's NotificationSink bean is set, then the various notifications are fired as required.

10. If the EXECUTION_DELAYEDUPDATE option is used for the task, the database will be updated a
second time with the next state of the task.

11. The global transaction is committed.

Because all events belonging to a task are executed in a single global transactional context, consider the
following points in order to avoid transaction-related errors:
v Each resource participating in the task transaction must be two-phase XA capable.

This includes the Java Database Connectivity (JDBC) datasource that is configured for the scheduler,
any Java Messaging Service (JMS) services used by the MessageTaskInfo objects, and any resources
used within any of the UserCalendar, TaskHandler, or NotificationSink beans that have a transaction
setting of "Required".

v One resource can be single-phase, if last participant support is enabled for the application that created
the transaction. Enable last participant support using an assembly tool. You can also enable last
participant support through the administrative console. See the Last participant support extension
settings topic for details.

All unexpected exceptions are logged to the activity log and all events participating in the task global
transaction are rolled back. This includes changes to the task database record, which force the task to be
executed again when the scheduler daemon polls the database during the next poll cycle. The
UserCalendar, TaskHandler, and NotificationSink beans can choose not to participate in the global
transaction by configuring the bean transaction setting to "Requires new".

QOS_ATLEASTONCE

Scheduled tasks that use the QOS_ATLEASTONCE quality of service do not have a single transactional
context. In this case, each calendar calculation, event notification and database update occurs in an
independent transaction:

1. The context of the application that created the task is applied to the thread.

2. The task’s database record is updated with the RUNNING state of the task.

3. UserCalendar, NotificationSink beans are called.

4. The BeanTaskInfo or MessageTaskInfo is started.

5. Result notifications are sent.

6. The database is updated with the next state of the task, if the task has not been changed since the
RUNNING state was written.

If a failure happens after the RUNNING state is written to the database and before the result is written,
then the task may run more than one time.

Chapter 20. Developing Scheduler service 857

When using QOS_ATLEASTONCE, all NotificationSink, UserCalendar and TaskHandler beans must not
mandate a transaction (TX_MANDATORY), since there is no global transaction available when the task
runs. The EJB components use "Required" or "Requires new" container managed transaction or a bean
managed transaction.

Transaction behavior when using the Scheduler API methods or WASScheduler MBean
operations

All Scheduler interface methods participate in a single global transactional context. If a global transactional
context is already present on the thread when the create(), suspend(), resume(), cancel(), and purge()
methods are executed, then the existing global transaction is used. Otherwise, a new global transaction
begins.

If the method participates in the global transaction of the caller and an unexpected error occurs, then the
transaction is marked to roll back. If the exception is a declared exception, then the exception is
resubmitted to the caller, and the transaction is left alone for the caller to commit or roll back.

If the method starts its own global transaction and any exception occurs, then the transaction is rolled
back, and the exception is resubmitted to the caller.

Scheduler task user authorization
The scheduler service uses the asynchronous beans deferred start mechanism to propagate Java
Platform, Enterprise Edition (Java EE) service context information to a task when it runs. If you plan to
secure your application using the JAAS security context of the administrative security mechanism built into
WebSphere Application Server, create each task with the correct credentials on the thread.

Tasks run with specified security credentials using the following methods:

v Using the Java Authentication and Authorization Service (JAAS) security context on the thread at the
time the task was created. See the Deferred start and security topic in the Asynchronous beans section
of the information center.

v Using the setAuthenticationAlias method on the TaskInfo object.

v Using a specified security identity on a BeanTaskInfo task TaskHandler EJB method.

The scheduler service utilizes the asynchronous beans deferred start mechanism to propagate Java EE
service context information to a task when it runs. The amount of service context information that is
propagated is controlled by the Service Context settings on the WorkManager configuration object that
schedulers reference. For example, security and internationalization service contexts can be enabled. See
the Using asynchronous beans topic for details on how to configure the Application Server to propagate
these service contexts.

Java Authentication and Authorization Service Security context

If you intend to secure your application using the JAAS security context of the administrative security
mechanism built into WebSphere Application Server, create each task with the correct credentials on the
thread. Once each task has the correct credentials, you can disable and re-enable administrative security
without causing any security problems. If you do not set the security context when the scheduler task is
created and you later enable security in the target application, a security exception or error message might
display, such as SECJ0053E. You might also see this error if two or more schedulers on different servers
are accessing the same tables (a clustered or redundant scheduler) and the security settings are different.

The JAAS security context is not set if any of the follow conditions are true:

v Administrative security is disabled.

v Security context policies are disabled on the configured WorkManager for the associated scheduler
configuration.

858 Developing WebSphere applications

v A credential is not set on the thread. For example, the enterprise bean or servlet that is used to create
the scheduled task is not secured, or the task was created with a WASScheduler MBean.

If any of the previously mentioned conditions are true when you create your task and you need to enable
security on your application server or application, you must complete the following steps for each task:

1. Find the task using the Scheduler API find or get methods.

2. Cancel the task using the Scheduler.cancel() API.

3. Recreate the task using the Scheduler.create() method with security enabled. Submitting a task that
was retrieved from the scheduler using the find or get methods will automatically generate a new task
ID.

Security order of precedence

As previously noted, there are three ways of verifying that a task will run with the correct user credentials.
In addition, each TaskInfo implementation may have its own way of supplying user information, which may
override the standard mechanisms. If multiple methods are used, refer to the following lists to determine
which security mechanism is going to be employed.

BeanTaskInfo

1. TaskHandler security identity set on the process() method of the Enterprise Java Bean file

2. Authentication Alias set with the setAuthenticationAlias method on the TaskInfo interface

3. JAAS security context

MessageTaskInfo

1. Authentication Alias set with the setAuthenticationAlias method on the TaskInfo interface

2. The setUsername and setPassword methods on the MessageTaskInfo interface. See the Deprecated
features article for more information.

Securing scheduler tasks
Scheduled tasks are protected using application isolation and administrative roles. This topic describes
how to secure scheduler tasks.

About this task

If a task is created using a Java Platform, Enterprise Edition (Java EE) server application, only
applications with the same name can access those tasks. Tasks created with a WASScheduler MBean
using the AdminClient interface or scripting are not part of a J2EE application and have access to all tasks
regardless of the application with which they were created. Tasks created with a WASScheduler MBean
are only accessible from the WASScheduler MBean API and are not accessible from the Scheduler API.

If the Use Administration Roles attribute is enabled on a scheduler and administrative security is enabled
on the Application Server, all Scheduler API methods and WASScheduler MBean API operations enforce
access based on the WebSphere Administration Roles. If either of these attributes are disabled, then all
API methods are fully accessible by all users.

Procedure
1. Enable security for all application servers.

2. Manage schedulers.

Chapter 20. Developing Scheduler service 859

Scheduler configuration or topology
The scheduler uses a database to persist information concerning which tasks to run and when. Errors
might occur when changing the application server topology or when changing the application or server
configuration. When you change the configuration or topology, carefully consider how this action affects
the scheduler.

Restricting security

If you created tasks with an application server while security is disabled, and you later decide to enable
security, then the scheduler might have difficulty running tasks. When you create a task, the security
context of the application thread is automatically stored with the task. If security is not stored with the task
(see Scheduler task user authorization), and you later enable security on the server or application where
the task is to run, then the following errors might be logged:
SECJ0053E: Authorization failed for /UNAUTHENTICATED while invoking (Home)com/ibm/websphere/scheduler
/TaskHandler create:2 securityName: /UNAUTHENTICATED;accessID: UNAUTHENTICATED is not granted any of
the required roles: MySecurityRole

Before you enable security on the server or application, determine if any tasks might be adversely
affected. If so, use the Scheduler API or WASScheduler MBean to cancel the tasks and recreate them
after you configure security.

Application server topology changes

The scheduler stores javax.ejb.HomeHandle objects for TaskHandler, NotificationSink and UserCalendar
homes when the task is created. When you run the task later, these home handles are reinflated and used
to access the Enterprise JavaBeans (EJB) component home. When the home handle references an EJB
on a single-server environment, the home handles have affinity to that server. When the home handle
references an EJB component on a cluster, then the home handles have affinity to the cluster.

If the application server or the Workload Managed (WLM) cluster that a home handle is referencing is not
available, then the scheduler fails to run the task, and the following error is logged:
SCHD0063E: A task with ID 123 failed to run on Scheduler MyScheduler (sched/MyScheduler) because of
an exception: {cause of failure}

If you upgrade the application server to a cluster, or if the Object Request Broker (ORB)
ORB_LISTENER_ADDRESS is not set to a fixed port number (see Configuring Inbound Transports), then
the task might also fail, since the information stored within the home handle does not have the appropriate
information to find the desired server.

Upgrading to a scheduler cluster

A scheduler cluster (not to be confused with a WLM cluster) is a collection of scheduler configurations on
different application servers that share the same Java Naming and Directory Interface (JNDI) name, Java
Database Connectivity (JDBC) data source and table prefix. If you upgrade a stand-alone scheduler to a
clustered scheduler, then the application and any associated resources that the application requires must
be available. If this is not the case, the scheduled task fails to run and error messages might be logged:
SCHD0103W: The Scheduler MyScheduler (sched/MyScheduler) was unable to run task 123 because the
application or module is unavailable: MyTaskHandlerEJB

To avoid issues with application availability and achieve optimal results, use the same servers in a
scheduler cluster as those used in a WLM cluster.

Reusing scheduler tables

When changing any topology, moving from development to production environments, or making any
configuration changes that make the environment more restrictive, you might get optimal results if you use

860 Developing WebSphere applications

a different set of scheduler tables. Reusing scheduler tables that have scheduled tasks from previous
releases without careful planning might cause problems:

v EJB components running on unexpected application servers.

v Tasks failing to run due to invalid or missing security credentials.

v Tasks failing to run due to invalid or missing Java Platform, Enterprise Edition (Java EE) context
information.

Diagnosing such problems is challenging and requires analyzing logs on all servers that have a scheduler
installed and configured. When the problem tasks are located, the tasks can be cancelled using the
Scheduler APIs, or the tables can be dropped and recreated.

Scheduler interface
Use the com.ibm.websphere.scheduler.Scheduler Java object (in the Java™ Naming and Directory
Interface (JNDI) namespace for the scheduler configuration) to find a reference to a scheduler and work
with tasks.

A com.ibm.websphere.scheduler.Scheduler Java object exists in the JNDI namespace for each scheduler
configuration. A reference to a scheduler can be obtained by performing a lookup on the JNDI name;
however, the lookup is valid only from the server process where the scheduler instance exists. Once a
reference has been obtained, tasks can be created, suspended, cancelled, and so on, if the caller has
access to the scheduler instance.

For details, see Interface Scheduler in the API documentation.
Task creation

The task is created in the persistent store using the global transactional context of the caller, if
present. See the topic, “Transactions and schedulers” on page 856, for more details. Since this is
a transactional operation, the task cannot be run or modified from another thread until the current
transaction commits.

Task modification
Tasks that have been created can be modified with the suspend(), resume(), cancel(), and purge()
methods. These methods take a Task Identifier string as a parameter, which is generated by the
create() method and can be found in the TaskStatus object. If a task is currently running or being
modified by another thread, an operation that attempts to modify the state of the task might block
on the attempt. Tasks can only be modified by the same application (EAR file) that was used to
create the task.

Task execution
Tasks are run in the thread pool specified by the configuration's work manager. If multiple
schedulers are configured to share the same database tables, the scheduler is clustered and the
tasks found in the table can be run on any of the schedulers, whether or not they are in the same
server, node, or cell.

Task lookup
Tasks can be located using the Name property that was assigned at creation time. This is useful
when you need to modify a group of tasks and tracking individual task ID's is not convenient.

TaskInfo interface
TaskInfo objects contain the information to create a task. Several implementations of this class exist, one
for each type of task that can run.

Available TaskInfo implementations include:
BeanTaskInfo

Calls a stateless session bean.
MessageTaskInfo

Sends a Java™ Messaging Service (JMS) message to a queue or publishes a message to a topic.
For details, see the Interface TaskInfo in the API documentation.

Chapter 20. Developing Scheduler service 861

After a TaskInfo object is created, it can be submitted to the scheduler for task creation by calling
the Scheduler.create() method.

For details about the TaskInfo interface, see the API documentation .

TaskHandler interface
A task handler is a user-defined stateless session bean that is called by tasks created using a
BeanTaskInfo object.

A task handler bean uses the following home and remote interfaces, which are defined in the deployment
descriptor using an assembly tool, such as Rational Application Developer:
com.ibm.websphere.scheduler.TaskHandlerHome
com.ibm.websphere.scheduler.TaskHandler

The bean itself needs to implement the process() method defined in the remote interface. For details, see
the Interface TaskHandler in the API documentation.

Once an EJB is created and available within an enterprise application, it can be called by a BeanTaskInfo
task when it runs. See the Developing a task that calls a session bean topic for details.

When a task is created using a BeanTaskInfo object, the process() method on the TaskHandler session
bean is called whenever the task runs. Because the TaskStatus object for the task is passed as a
parameter to the process() method, the task handler determines different types of information about the
task, such as when it will fire next, the number of repeats remaining, its name and its ID.

The process() method can also change its own state. However, the task must be running within the same
transaction as the scheduler. Therefore, a running task can only modify itself if it is using the Required or
Mandatory container managed transaction types. If the Requires New transaction type is specified on the
process()method, all management functions deadlock.

NotificationSink interface
A notification sink is a user-defined stateless session bean that is called when the task changes state.

A notification sink bean uses the following home and remote interfaces, which are defined in the
deployment descriptor using an assembly tool, such as Rational Application Developer:
com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The bean itself needs to implement the handleEvent() method defined in the remote interface. For details,
see the Interface NotificationSink section of the API documentation and the Receiving scheduler
notifications topic.

A NotificationSink provides an event notification callback on a task-by-task basis. A notification sink is set
on the TaskInfo interface, using the setNotificationSink() method. If a notification sink is not specified on a
task, all notifications are lost; however, the status of a task can be determined by calling the getStatus()
method from the Scheduler interface. A notification callback is made for each of the following events:
v Scheduled
v Suspended
v Resumed
v Fired
v Firing
v Fire Failed
v Complete
v Purged

862 Developing WebSphere applications

UserCalendar interface
A user calendar is a user-defined stateless session bean that is called by tasks when they need to
calculate date-related values.

A user calendar bean uses the following home and remote interfaces, which are defined in the deployment
descriptor using an assembly tool, such as Rational Application Developer:
com.ibm.websphere.scheduler.UserCalendarHome
com.ibm.websphere.scheduler.UserCalendar

The bean itself needs to implement the applyDelta(), validate(), and getCalendarNames() methods defined
in the remote interface. For details, see the Interface UserCalendar in the API documentation.

User calendars are used to calculate time intervals, such as the time between task runs. A user calendar
takes a java.util.Date object, applies the interval string and returns the resulting java.util.Date.

User calendars are set with the setUserCalendar() method on the TaskInfo interface and called by the
scheduler run-time code when a delta calculation is necessary.

The following methods on the TaskInfo interface specify delta strings that use the user calendar for
calculation:
v setStartTimeInterval
v setStartByInterval
v setRepeatInterval
Default user calendar

If a user calendar has not been specified using the TaskInfo.setUserCalendar() method, a default
user calendar is used. The default calendar allows for simple delta specifications, such as
seconds, minutes, hours, days, and months. See the API documentation for details on the default
calendar. The default user calendar also provides a CRON-like syntax for calculating absolute
times versus time deltas.

Calendar identifiers
A single user calendar can contain logic for multiple calendars. A calendar specifier string
determines which calendar is used. For example, a calendar bean might be implemented to
recognize the interval day. However, the identifier also recognizes two calendar implementations:
standard (for a standard calendar day) and business (for a business day).

Internationalization and time zones
Scheduler makes use of the java.util.Date class when storing and processing dates. Internally, this
class saves the time as milliseconds since the Epoch, Greenwich Mean Time. Since the Date is
not converted to local time until converted to a string, the scheduler respects the time zone where
the date was created.

Writing user calendars
Because the user calendar is a stateless session bean, the same Java Platform, Enterprise Edition
(Java EE) programming model available to other session beans is available to the user calendar
as well.

Chapter 20. Developing Scheduler service 863

864 Developing WebSphere applications

Chapter 21. Developing security

Secure specific types of applications, such as applications that include portlets, SIP servlets, enterprise
beans, web services. Find security information that focuses on specific concerns, such as messaging,
transaction support, naming and directory, data access.

Developing extensions to the WebSphere security infrastructure
WebSphere Application Server provides various plug points so that you can extend the security
infrastructure. Extending this security infrastructure involves several activities including: Developing custom
user registries, developing applications that use programmatic security, and customizing web application
login forms.

About this task

The following topics are covered in this section:

Procedure
v Developing custom user registries

v Developing applications that use programmatic security

v Customizing web application login forms

v Customizing application login forms with Java Authentication and Authorization Service (JAAS)

v Securing transports with Java Secure Sockets Extension (JSSE) and Java Cryptography Extension
(JCE) programming interfaces

v Implementing tokens for security attribute propagation

v Implementing a custom authentication provider using JASPI

Developing stand-alone custom registries
This development provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some notion of a user registry, other than LDAP or Local OS, already exists
in the operational environment.

Before you begin

WebSphere Application Server security supports the use of stand-alone custom registries in addition to the
local operating system registry, stand-alone Lightweight Directory Access Protocol (LDAP) registries, and
federated repositories for authentication and authorization purposes. A stand-alone custom-implemented
registry uses the UserRegistry Java interface as provided by WebSphere Application Server. A stand-alone
custom-implemented registry can support virtually any type or notion of an accounts repository from a
relational database, flat file, and so on.

Implementing a stand-alone custom registry is a software development effort. Implement the methods that
are defined in the com.ibm.websphere.security.UserRegistry interface to make calls to the appropriate
registry to obtain user and group information. The interface defines a general set of methods for
encapsulating a wide variety of registries. You can configure a stand-alone custom registry as the selected
repository when configuring WebSphere Application Server security on the Global security panel.

In WebSphere Application Server Version 8.5, make sure that your implementation of the stand-alone
custom registry does not depend on any WebSphere Application Server components such as data
sources, Enterprise JavaBeans (EJB) and Java Naming and Directory Interface (JNDI). You can not have
this dependency because security is initialized and enabled prior to most of the other WebSphere
Application Server components during startup. If your previous implementation used these components,

© Copyright IBM Corp. 2012 865

make a change that eliminates the dependency. For example, if your previous implementation used data
sources to connect to a database, instead use the JDBC java.sql.DriverManager interface to connect to
the database.

If your previous implementation uses data sources to connect to a database, change the implementation to
use Java database connectivity (JDBC) connections.

Procedure
1. Implement all the methods in the interface except for the CreateCredential method, which is

implemented by WebSphere Application Server.

2. Build your implementation.

To compile your code, you need the app_server_root/plugins/com.ibm.ws.runtime.jar and the
app_server_root/plugins/com.ibm.ws.security.crypto.jar files in your class path. For example:

app_server_root/java/bin/javac -classpath
app_server_root/plugins/com.ibm.ws.runtime.jar;
app_server_root/plugins/com.ibm.ws.security.crypto.jar your_implementation_file.java

app_server_root\java\bin\javac -classpath
app_server_root\plugins\com.ibm.ws.runtime.jar:
app_server_root\plugins\com.ibm.ws.security.crypto.jar your_implementation_file.java

3. Copy the class files that are generated in the previous step to the product class path.

The preferred location is the following directory:

v %install_root%/lib/ext

v %install_root%\lib\ext

directory. Copy these class files to all of the product process class paths.

4. To configure your implementation using the administrative console, follow the steps in topics about
configuring stand-alone custom registries. This step is required to implement custom user registries.

Example

Viewing stand-alone custom registries.

Use these links to view registry examples.

A stand-alone custom registry is a customer-implemented registry that implements the UserRegistry Java
interface, as provided by WebSphere Application Server. A custom-implemented registry can support
virtually any type or form of an accounts repository from a relational database, flat file, and so on. The
custom registry provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some form of a registry, other than a federated repository, Lightweight
Directory Access Protocol (LDAP) registry, or local operating system registry, already exist in the
operational environment.

What to do next

If you enable security, make sure that you complete the remaining steps:

1. Save and synchronize the configuration and restart all of the servers.

2. Try accessing some J2EE resources to verify that the custom registry implementation is correct.

866 Developing WebSphere applications

Result.java file
This module is used by user registries in WebSphere Application Server when calling the getUsers and
getGroups methods. The user registries use this method to set the list of users and groups and to indicate
if more users and groups in the user registry exist than requested.
//
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
//
package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {
/**
Default constructor

*/
public Result() {
}

/**
Returns the list of users and groups
@return the list of users and groups

*/
public List getList() {
return list;

}

/**
indicates if there are more users and groups in the registry

*/
public boolean hasMore() {
return more;

}
/**

Set the flag to indicate that there are more users and groups
in the registry to true

*/
public void setHasMore() {
more = true;

}

/*
Set the list of users and groups
@param list list of users/groups

*/
public void setList(List list) {
this.list = list;

}

private boolean more = false;
private List list;

}

UserRegistry.java files
The following file is a custom property that is used with a custom user registry.

For more information, see Configuring stand-alone custom registries.
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
//
// DESCRIPTION:
//
// This file is the UserRegistry interface that custom registries in WebSphere
// Application Server implement to enable WebSphere security to use the custom
// registry.
//

package com.ibm.websphere.security;

import java.util.*;
import java.rmi.*;
import java.security.cert.X509Certificate;
import com.ibm.websphere.security.cred.WSCredential;

/**
* Implementing this interface enables WebSphere Application Server Security
* to use custom registries. This interface extends java.rmi.Remote because the
* registry can be in a remote process.
*
* Implementation of this interface must provide implementations for:
*

Chapter 21. Developing security 867

* initialize(java.util.Properties)
* checkPassword(String,String)
* mapCertificate(X509Certificate[])
* getRealm
* getUsers(String,int)
* getUserDisplayName(String)
* getUniqueUserId(String)
* getUserSecurityName(String)
* isValidUser(String)
* getGroups(String,int)
* getGroupDisplayName(String)
* getUniqueGroupId(String)
* getUniqueGroupIds(String)
* getGroupSecurityName(String)
* isValidGroup(String)
* getGroupsForUser(String)
* getUsersForGroup(String,int)
* createCredential(String)
**/

public interface UserRegistry extends java.rmi.Remote
{

/**
* Initializes the registry. This method is called when creating the
* registry.
*
* @param props the registry-specific properties with which to
* initialize the custom registry
* @exception CustomRegistryException
* if there is any registry specific problem
* @exception RemoteException
* as this extends java.rmi.Remote
**/
public void initialize(java.util.Properties props)

throws CustomRegistryException,
RemoteException;

/**
* Checks the password of the user. This method is called to authenticate a
* user when the user’s name and password are given.
*
* @param userSecurityName the name of the user
* @param password the password of the user
* @return a valid userSecurityName. Normally this is
* the name of same user whose password was checked but if the
* implementation wants to return any other valid
* userSecurityName in the registry it can do so
* @exception CheckPasswordFailedException if userSecurityName/
* password combination does not exist in the registry
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String checkPassword(String userSecurityName, String password)

throws PasswordCheckFailedException,
CustomRegistryException,
RemoteException;

/**
* Maps a certificate (of X509 format) to a valid user in the registry.
* This is used to map the name in the certificate supplied by a browser
* to a valid userSecurityName in the registry
*
* @param cert the X509 certificate chain
* @return the mapped name of the user userSecurityName
* @exception CertificateMapNotSupportedException if the particular
* certificate is not supported.
* @exception CertificateMapFailedException if the mapping of the
* certificate fails.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

/**
* Returns the realm of the registry.
*
* @return the realm. The realm is a registry-specific string indicating
* the realm or domain for which this registry
* applies. For example, for OS400 or AIX this would be the
* host name of the system whose user registry this object
* represents.
* If null is returned by this method realm defaults to the
* value of "customRealm". It is recommended that you use
* your own value for realm.

868 Developing WebSphere applications

* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getRealm()

throws CustomRegistryException,
RemoteException;

/**
* Gets a list of users that match a pattern in the registry.
* The maximum number of users returned is defined by the limit
* argument.
* This method is called by administrative console and by scripting (command
* line) to make available the users in the registry for adding them (users)
* to roles.
*
* @parameter pattern the pattern to match. (For example., a* will match all
* userSecurityNames starting with a)
* @parameter limit the maximum number of users that should be returned.
* This is very useful in situations where there are thousands of
* users in the registry and getting all of them at once is not
* practical. A value of 0 implies get all the users and hence
* must be used with care.
* @return a Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public Result getUsers(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

/**
* Returns the display name for the user specified by userSecurityName.
*
* This method is called only when the user information displays
* (information purposes only, for example, in the administrative console) and not used
* in the actual authentication or authorization purposes. If there are no
* display names in the registry return null or empty string.
*
* In WebSphere Application Server Version 4.0 custom registry, if you had a display
* name for the user and if it was different from the security name, the display name
* was returned for the EJB methods getCallerPrincipal() and the servlet methods
* getUserPrincipal() and getRemoteUser().
* In WebSphere Application Server Version 6.0 for the same methods the security
* name is returned by default. This is the recommended way as the display name
* is not unique and might create security holes.
*
* See the documentation for more information.
*
* @parameter userSecurityName the name of the user.
* @return the display name for the user. The display name
* is a registry-specific string that represents a descriptive, not
* necessarily unique, name for a user. If a display name does
* not exist return null or empty string.
* @exception EntryNotFoundException if userSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUserDisplayName(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the unique ID for a userSecurityName. This method is called when
* creating a credential for a user.
*
* @parameter userSecurityName the name of the user.
* @return the unique ID of the user. The unique ID for a user is
* the stringified form of some unique, registry-specific, data
* that serves to represent the user. For example, for the UNIX
* user registry, the unique ID for a user can be the UID.
* @exception EntryNotFoundException if userSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueUserId(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the name for a user given its unique ID.
*
* @parameter uniqueUserId the unique ID of the user.
* @return the userSecurityName of the user.

Chapter 21. Developing security 869

* @exception EntryNotFoundException if the uniqueUserID does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUserSecurityName(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Determines if the userSecurityName exists in the registry
*
* @parameter userSecurityName the name of the user
* @return true if the user is valid. false otherwise
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException,
RemoteException;

/**
* Gets a list of groups that match a pattern in the registry.
* The maximum number of groups returned is defined by the limit
* argument.
* This method is called by the administrative console and scripting
* (command line) to make available the groups in the registry for adding
* them (groups) to roles.
*
* @parameter pattern the pattern to match. (For e.g., a* will match all
* groupSecurityNames starting with a)
* @parameter limit the maximum number of groups to return.
* This is very useful in situations where there are thousands of
* groups in the registry and getting all of them at once is not
* practical. A value of 0 implies get all the groups and hence
* must be used with care.
* @return a Result object that contains the list of groups
* requested and a flag to indicate if more groups exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public Result getGroups(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

/**
* Returns the display name for the group specified by groupSecurityName.
*
* This method may be called only when the group information displayed
* (for example, the administrative console) and not used in the actual
* authentication or authorization purposes. If there are no display names
* in the registry return null or empty string.
*
* @parameter groupSecurityName the name of the group.
* @return the display name for the group. The display name
* is a registry-specific string that represents a descriptive, not
* necessarily unique, name for a group. If a display name does
* not exist return null or empty string.
* @exception EntryNotFoundException if groupSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getGroupDisplayName(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the unique ID for a group.

* @parameter groupSecurityName the name of the group.
* @return the unique ID of the group. The unique ID for
* a group is the stringified form of some unique,
* registry-specific, data that serves to represent the group.
* For example, for the UNIX user registry, the unique ID might
* be the GID.
* @exception EntryNotFoundException if groupSecurityName does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueGroupId(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

870 Developing WebSphere applications

/**
* Returns the unique IDs for all the groups that contain the unique ID of
* a user.
* Called during creation of a user’s credential.
*
* @parameter uniqueUserId the unique ID of the user.
* @return a list of all the group unique IDs that the unique user ID
* belongs to. The unique ID for an entry is the stringified
* form of some unique, registry-specific, data that serves
* to represent the entry. For example, for the
* UNIX user registry, the unique ID for a group could be the GID
* and the unique ID for the user could be the UID.
* @exception EntryNotFoundException if unique user ID does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public List getUniqueGroupIds(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Returns the name for a group given its unique ID.
*
* @parameter uniqueGroupId the unique ID of the group.
* @return the name of the group.
* @exception EntryNotFoundException if the uniqueGroupId does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getGroupSecurityName(String uniqueGroupId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Determines if the groupSecurityName exists in the registry
*
* @parameter groupSecurityName the name of the group
* @return true if the groups exists, false otherwise
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException,
RemoteException;

/**
* Returns the securityNames of all the groups that contain the user
*
* This method is called by administrative console and scripting
* (command line) to verify the user entered for RunAsRole mapping belongs
* to that role in the roles to user mapping. Initially, the check is done
* to see if the role contains the user. If the role does not contain the user
* explicitly, this method is called to get the groups that this user
* belongs to so that checks are made on the groups that the role contains.
*
* @parameter userSecurityName the name of the user
* @return a List of all the group securityNames that the user
* belongs to.
* @exception EntryNotFoundException if user does not exist.
* @exception CustomRegistryException if there is any registry specific
* problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public List getGroupsForUser(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* Gets a list of users in a group.
*
* The maximum number of users returned is defined by the limit
* argument.
*
* This method is used by the WebSphere Business Integration
* Server Foundation process choreographer when staff assignments
* are modeled using groups.
*

* In rare situations where you are working with a user registry and it is not
* practical to get all of the users from any of your groups (for example if
* a large number of users exist) you can create the NotImplementedException
* for those particular groups. Make sure that if the WebSphere Business
* Integration Server Foundation Process Choreographer is installed (or

Chapter 21. Developing security 871

* if installed later) that the users are not modeled using these particular groups.
* If no concern exists about the staff assignments returning the users from
* groups in the registry it is recommended that this method be implemented
* without throwing the NotImplemented exception.
*
* @parameter groupSecurityName that represents the name of the group
* @parameter limit the maximum number of users to return.
* This option is very useful in situations where lots of
* users are in the registry and getting all of them at
* once is not practical. A value of 0 means get all of
* the users and must be used with care.
* @return a Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @deprecated This method will be deprecated in the future.
* @exception NotImplementedException create this exception in rare situations
* if it is not practical to get this information for any of the
* groups from the registry.
* @exception EntryNotFoundException if the group does not exist in
* the registry
* @exception CustomRegistryException if any registry-specific
* problem occurs
* @exception RemoteException as this extends java.rmi.Remote interface
**/
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

/**
* This method is implemented internally by the WebSphere Application Server
* code in this release. This method is not called for the custom registry
* implementations for this release. Return null in the implementation.
*
* Note that because this method is not called you can also return the
* NotImplementedException as the previous documentation says.
*
**/
public com.ibm.websphere.security.cred.WSCredential

createCredential(String userSecurityName)
throws NotImplementedException,
EntryNotFoundException,

CustomRegistryException,
RemoteException;

}

Implementing custom password encryption
WebSphere Application Server supports the use of custom password encryption.

Before you begin

An installation can implement any password encryption algorithm it chooses.

About this task

Complete the following steps to implement custom password encryption:

Procedure
1. Build your custom password encryption class. An example of a custom password encryption class

follows.
// CustomPasswordEncryption
// Encryption and decryption functions
public interface CustomPasswordEncryption {

public EncryptedInfo encrypt(byte[] clearText) throws PasswordEncryptException;
public byte[] decrypt(EncryptedInfo cipherTextInfo) throws PasswordEncryptException;
public void initialize(HashMap initParameters);

};
// Encapsulation of cipher text and label
public class EncryptedInfo {

public EncryptedInfo(byte[] bytes, String keyAlias);
public byte[] getEncryptedBytes();
public String getKeyAlias();

};

872 Developing WebSphere applications

2. If you need to custom encode passwords in property files, manually edit the
PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file.

a. Use a file editor to open the PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file.

b. Locate the following lines near the end of the file:
"%JAVA_HOME%/bin/java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
"-Dwas.install.root=%WAS_HOME%" com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.security.util.PropFilePasswordEncoder %1 %2

c. Add following lines to the call.

These custom properties will be passed to the command so that PropFilePasswordEncoder will
look for custom encoding classes and utilize it.
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionClass=(customEncoding class file)

The updated lines should look like the following lines:
"%JAVA_HOME%/bin/java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true
-Dcom.ibm.wsspi.security.crypto.customPasswordEncryptionClass=(customEncoding class file)
"-Dwas.install.root=%WAS_HOME%" com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.security.util.PropFilePasswordEncoder %1 %2

3. Enable custom password encryption.

a. Set the custom property com.ibm.wsspi.security.crypto.customPasswordEncryptionClass to
the name of the class that is to be given control.

b. Enable the function. Set the custom property,
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled to true.

Results

Custom password encryption at the installation is complete.

Developing applications that use programmatic security
For some applications, declarative security is not sufficient to express the security model of the application.
Use this topic to develop applications that use programmatic security.

About this task

IBM WebSphere Application Server provides security components that provide or collaborate with other
services to provide authentication, authorization, delegation, and data protection. WebSphere Application
Server also supports the security features that are described in the Java Platform, Enterprise Edition (Java
EE) specification. An application goes through three stages before it is ready to run:
v Development
v Assembly
v Deployment

Most of the security for an application is configured during the assembly stage. The security that is
configured during the assembly stage is called declarative security because the security is declared or
defined in the deployment descriptors. The declarative security is enforced by the security runtime. For
some applications, declarative security is not sufficient to express the security model of the application. For
these applications, you can use programmatic security.

Procedure
1. Develop secure web applications. For more information, see “Developing with programmatic security

APIs for web applications” on page 895.

2. Develop servlet filters for form login processing. For more information, see “Developing servlet filters
for form login processing” on page 910.

3. Develop form login pages. For more information, see “Customizing web application login” on page 906.

Chapter 21. Developing security 873

4. Develop enterprise bean component applications. For more information, see “Developing with
programmatic APIs for EJB applications” on page 902.

5. Develop with Java Authentication and Authorization Service to log in programmatically.

For more information, see topics about developing programmatic logins with the Java Authentication
and Authorization Service.

6. Develop your own Java EE security mapping module.

For more information, see topics about configuring programmatic logins for Java Authentication and
Authorization Service.

7. Develop custom user registries. For more information, see “Developing stand-alone custom registries”
on page 865.

8. Develop a custom interceptor for trust associations.

Protecting system resources and APIs (Java 2 security) for developing
applications
Java 2 security is a programming model that is very pervasive and has a huge impact on application
development.

Before you begin

Java 2 security is orthogonal to Java Platform, Enterprise Edition (Java EE) role-based security; you can
disable or enable it independently of administrative security.

However, it does provide an extra level of access control protection on top of the Java EE role-based
authorization. It particularly addresses the protection of system resources and application programming
interfaces (API). Administrators need to consider the benefits against the risks of disabling Java 2 security.

The following recommendations are provided to help enable Java 2 security in a test or production
environment:
1. Make sure the application is developed with the Java 2 security programming model. Developers have

to know whether or not the APIs that are used in the applications are protected by Java 2 security. It is
very important that the required permissions for the APIs used are declared in the policy file
(was.policy), or the application fails to run when Java 2 security is enabled. Developers can reference
the website for Development Kit APIs that are protected by Java 2 security. See the Programming
model and decisions section of the Security: Resources for Learning topic to visit this website.

2. Make sure that migrated applications from previous releases are given the required permissions.
Because Java 2 security is not supported or partially supported in previous WebSphere Application
Server releases, applications developed prior to Version 5 most likely are not using the Java 2 security
programming model. No easy way to find out all the required permissions for the application is
available. The following are activities you can perform to determine the extra permissions that are
required by an application:
v Code review and code inspection
v Application documentation review
v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a preproduction

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing
permissions in the application policy file. The trace specification is:
com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debugging. Do not use
this property in a production environment.

The default permission set for applications is the recommended permission set that is defined in the J2EE
1.3 Specification. The default is declared in the app_server_root/profiles/profile_name/config/cells/
cell_name/nodes/node_name/app.policy policy file with permissions defined in the Development Kit
(JAVA_HOME/jre/lib/security/java.policy) policy file that grant permissions to everyone. However,

874 Developing WebSphere applications

applications are denied permissions that are declared in the profiles/profile_name/config/cells/
cell_name/filter.policy file. Permissions that are declared in the filter.policy file are filtered for
applications during the permission check.

Define the required permissions for an application in a was.policy file and embed the was.policy file in
the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy, see “Configuring Java
2 security policy files” on page 877 for details.

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application
Server, Network Deployment and the server level for WebSphere Application Server, Express

Procedure
1. Click Security > Global security. The Global security panel is displayed.

2. Select the Use Java 2 security to restrict application access to local resources option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Results

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a
Java 2 security protected API is called.

When to use Java 2 security
1. Enable protection on system resources, for example when opening or listening to a socket connection,

reading or writing to operating system file systems, reading or writing Java virtual machine system
properties, and so on.

2. Prevent application code from calling destructive APIs, for example, calling the System.exit method
brings down the application server.

3. Prevent application code from obtaining privileged information (passwords) or gaining extra privileges
(obtaining server credentials).

What to do next

The Java 2 security manager is enhanced to dump the Java 2 security permissions that are granted to all
classes on the call stack when an application is denied access to a resource. The
java.security.AccessControlException exception is created. However, this tracing capability is disabled by
default. You can enable this capability by specifying the server trace service with the
com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is
created, the trace dump provides hints to determine whether the application is missing permissions or the
product runtime code or the third-party libraries that are used are not properly marked as privileged when
accessing Java 2 security-protected resources.

Using PolicyTool to edit policy files for Java 2 security:

Use the PolicyTool utility to update policy files.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The
Java Development Kit provides the PolicyTool tool to edit these policy files. This tool is recommended for
editing any policy file to verify the syntax of its contents. Syntax errors in the policy file cause an
AccessControlException exception when the application runs, including the server start. Identifying the
cause of this exception is not easy because the user might not be familiar with the resource that has an
access violation. Be careful when you edit these policy files.

Chapter 21. Developing security 875

Procedure

1. Start the PolicyTool.

For example, you can enter the following command at a Windows command prompt:
%{was.install.root}/java/jre/bin/policytool

The PolicyTool window opens. The tool looks for the java.policy file in your home directory. If it does
not exist, an error message displays.

Click OK.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that you need to update. After
selecting the policy file, click Open. The code base entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or click the code base and
click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the
selected code base.

b. Create a new code base entry by clicking Add Policy Entry.

The Policy Entry window opens. At the code base column, enter the code base information as a
URL format.

For example, you can enter:
app_server_root/InstalledApps/testcase.ear

where the app_server_root variable represents your installation location.

5. Modify or add the permission specification.

a. Modify the permission specification by double-clicking the entry that you want to modify, or by
selecting the permission and clicking Edit Permission. The Permissions window opens with the
selected permission information.

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the
Permissions window are four rows for Permission, Target Name, Actions, and Signed By.

6. Select the permission from the Permission list. The selected permission displays. After a permission is
selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or they
enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Important: The Signed By keyword is not supported in the following policy files: app.policy,
spi.policy, library.policy, was.policy, and filter.policy files. However, the
Signed By keyword is supported in the following policy files: #java.policy,
server.policy, and client.policy files. The Java Authentication and Authorization
Service (JAAS) is not supported in the app.policy, spi.policy, library.policy,
was.policy, and filter.policy files. However, the JAAS principal keyword is
supported in a JAAS policy file when it is specified by the java.security.auth.policy Java
virtual machine (JVM) system property.

7. Click OK to close the Permissions window. Modified permission entries of the specified code base
display.

8. Click Done to close the window. Modified code base entries are listed. Repeat the previous steps until
you complete editing.

9. Click File > Save after you finish editing the file.

876 Developing WebSphere applications

Results

A policy file is updated. If any policy files need editing, use the PolicyTool utility. Do not edit the policy file
manually. Syntax errors in the policy files can potentially cause application servers or enterprise
applications to not start or function incorrectly. For the changes in the updated policy file to take effect,
restart the Java processes.

Configuring Java 2 security policy files:

Users can configure Java 2 security policy files so that the required permission is granted for the specified
WebSphere Application Server enterprise application.

Before you begin

Java 2 security uses several policy files to determine the permissions for each Java programs.

See the Java 2 security policy files topic for the list of available policy files that are supported by
WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static
policy files. Static policy files provide the default permissions. Dynamic policy files provide application
permissions. Six dynamic policy files are provided:

Table 88. Dynamic policy files. This table lists the dynamic policy files.

Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in the cell.
Note: Updates to the app.policy file only apply to the enterprise applications on the
node to which the app.policy file belongs.

was.policy Contains application-specific permissions for an WebSphere Application Server
enterprise application. This file is packaged in an enterprise archive (EAR) file.

ra.xml Contains connector application specific permissions for a WebSphere Application Server
enterprise application. This file is packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or third-party resources that
are embedded in WebSphere Application Server. The default contents grant everything.
Update this file carefully when the cell requires more protection against SPI in the cell.
This file is applied to all of the SPIs that are defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise applications.

filter.policy Contains the list of permissions that require filtering from the was.policy file and the
app.policy file in the cell. This filtering mechanism only applies to the was.policy and
app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in
the was.policy or app.policy file. Without the thread permissions specified, the application cannot
manipulate threads and WebSphere Application Server creates a java.security.AccessControlException
exception. The app.policy file applies to a specified node. If you change the permissions in one
app.policy file, you must incorporate the new thread policy in the same file on the remaining nodes. Also,
if you add the thread permissions to the app.policy file, you must restart WebSphere Application Server to
enforce the new permissions. However, if you add the permissions to the was.policy file for a specific
application, you do not need to restart WebSphere Application Server. An administrator must add the
following code to a was.policy or app.policy file for an application to manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

Chapter 21. Developing security 877

Important: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,
library.policy, was.policy, and filter.policy files. However, the Signed By keyword is
supported in the following policy files:java.policy, server.policy, and client.policy files.
The Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,
spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS
principal keyword is supported in a JAAS policy file when it is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically
set the authorization policy files in java.security.auth.policy with auth.policy.url.n=URL,
where URL is the location of the authorization policy.

Procedure

1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file. Refer to “Configuring
static policy files in Java 2 security” on page 889.

v If the permission is required by all of the WebSphere Application Server enterprise applications in
the node, refer to “spi.policy file permissions” on page 885.

v If the permission is required only by specific WebSphere Application Server enterprise applications
and the permission is required only by connector, update the ra.xml file. Refer to Refer to the
Assembling resource adapter (connector) modules article for more information. Otherwise, update
the was.policy file. Refer to “Configuring the was.policy file for Java 2 security” on page 883 and
“Adding the was.policy file to applications for Java 2 security” on page 887.

v If the permission is required by shared libraries, refer to “library.policy file permissions” on page 886.

v If the permission is required by SPI libraries, refer to “spi.policy file permissions” on page 885.

Tip: Pick up the policy file with the smallest scope. You can avoid giving an extra permission to the
Java programs and protect the resources. You can update the ra.xml file or the was.policy file
rather than the app.policy file. Use specific component symbols ($(ejbcomponent),
${webComponent},${connectorComponent} and ${jars}) than ${application} symbols. Update
dynamic policy files, rather than static policy files.

Add any permission that you never want granted to the WebSphere Application Server enterprise
application in the cell to the filter.policy file. Refer to “filter.policy file permissions” on page 881.

2. Restart the WebSphere Application Server enterprise application.

Results

The required permission is granted for the specified WebSphere Application Server enterprise application.

Example

If an WebSphere Application Server enterprise application in a cell requires permissions, some of the
dynamic policy files need updating. The symptom of the missing permission is the
java.security.AccessControlException exception. The missing permission is listed in the exception data,
which will appear as one line, but is split in sections below for readability.

When a Java program receives this exception and adding this permission is justified, add a permission to
an adequate dynamic policy file.

The previous permission information lines are split for the illustration. Enter the permission on one line.

To decide whether to add a permission, refer to the Access control exception for Java 2 security topic.

app.policy file permissions:

878 Developing WebSphere applications

Java 2 security uses several policy files to determine the granted permissions for each Java program. The
union of the permissions that are contained in these following files is applied to the WebSphere Application
Server enterprise application. This union determines the granted permissions.

For the list of available policy files that are supported by WebSphere Application Server, see the topic
about Java 2 security policy files. The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. The union of the permissions that are contained in
the following files is applied to the WebSphere Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread
permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the
application cannot manipulate threads and WebSphere Application Server creates a
java.security.AccessControlException exception. If an administrator adds thread permissions to the
app.policy file, the permission change requires a restart of the WebSphere Application Server. An
administrator must add the following code to a was.policy or app.policy file for an application to
manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal
keywords are not supported in the app.policy file. However, the Signed By keyword is
supported in the following files: java.policy, server.policy, and the client.policy files. The
JAAS principal keyword is supported in a JAAS policy file when it is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically
set the authorization policy files in the java.security.auth.policy property with
auth.policy.url.n=URL where URL is the location of the authorization policy.

If the default permissions for enterprise applications (the union of the permissions that is defined in the
java.policy file, the server.policy file and the app.policy file) are enough; no action is required. The
default app.policy file is used automatically. If a specific change is required to all of the enterprise
applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in
the application servers. Edit these policy files carefully.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

To extract the policy file, use a command prompt to enter the following command on one line using the
appropriate variable values for your environment:

wsadmin> set obj [$AdminConfig extract cells/cell_name/node/node_name/app.policy c:\temp\test\app.policy]

Edit the extracted app.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit
policy files for Java 2 security” on page 875. Changes to the app.policy file are local for the node.

Chapter 21. Developing security 879

To check in the policy file, use a command prompt to enter the following command on one line using the
appropriate variable values for your environment:

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/app.policy c:\temp\test\app.policy $obj

Table 89. Symbols used to associate permission lists to a specific type of resource. Several product-reserved
symbols are defined to associate the permission lists to a specific type of resource.
Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

file:${webComponent} Permissions apply to web resources within the application

file:${connectorComponent} Permissions apply to connector resources both within the application and within stand-alone connector
resources.

Table 90. Symbols provided to specify the path and name for the java.io.FilePermission permission. Five embedded
symbols are provided to specify the path and name for the java.io.FilePermission permission. These symbols enable
flexible permission specifications. The absolute file path is fixed after the installation of the application.
Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Tip: You cannot use the ${was.module.path} in the ${application} entry.

Attention: In the following code sample, the first two lines that are related to java.io.FilePermission
permission are split into two lines for illustrative purposes only.
grant codeBase "file:${application}" {
// The following are required by JavaMail
permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";
permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

};

grant codeBase "file:${jars}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${connectorComponent}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${webComponent}" {
permission java.io.FilePermission "${was.module.path}${/}-", "read, write";
permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${ejbComponent}" {
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not
defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the
app.policy file. The symptom of a missing permission is the java.security.AccessControlException
exception.

880 Developing WebSphere applications

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

The missing permission is listed in the exception data, for example,
java.security.AccessControlException: access denied
(java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to
the server.policy file, for example:

grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read";
};

The previous permission information lines are split for the illustration. You actually enter the permission on
one line.

To decide whether to add a permission, refer to the AccessControlException topic.

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy
file takes effect.

filter.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java
2 security policy filtering is only in effect when Java 2 security is enabled.

Before modifying the filter.policy file, you must start the wsadmin tool.

Refer to “Protecting system resources and APIs (Java 2 security) for developing applications” on page
874. The filtering policy defined in the filter.policy file is cell wide. The filter.policy file is the only
policy file that is used when restricting the permission instead of granting permission. The permissions that
are listed in the filter policy file are filtered out from the app.policy file and the was.policy file.
Permissions that are defined in the other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions that are
defined in the app.policy file and the was.policy file are compound permissions like the
java.security.AllPermission permission, for example, the permission is not removed. A warning message is
logged. If the Issue Permission Warning flag is enabled (default) and if the app.policy file and the
was.policy file contain custom permissions (non-Java API permission, the permission package name
begins with characters other than java or javax), a warning message is logged and the permission is not
removed. You can change the value of the Warn if applications are granted custom permissions option
on the Global security panel. It is not recommended that you use the AllPermission permission for the
enterprise application.

Some default permissions that are defined in the filter.policy file. These permissions are the minimal
ones that are recommended by the product. If more permissions are added to the filter.policy file,
certain operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

You cannot use the Policy Tool to edit the filter.policy file. Editing must be completed in a text editor.
Be careful and verify that no syntax errors exist in the filter.policy file. If any syntax errors exist in the
filter.policy file, the file is not loaded by the product security runtime, which implies that filtering is
disabled.

To extract the filter.policy file, enter the following command using information from your environment:

Chapter 21. Developing security 881

set obj [$AdminConfig extract cells/cell_name/filter.policy c:/temp/test/filter.policy]

To check in the policy file, enter the following command using information from your environment:

$AdminConfig checkin cells/cell_name/filter.policy c:/temp/test/filter.policy $obj

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise
applications after the servers are restarted. The filter.policy file is managed by configuration and file
replication services.

The filter.policy file that is supplied by WebSphere Application Server resides at: app_server_root/
profiles/profile_name/config/cells/cell_name/filter.policy.

This fill contains these permissions as defaults:

filterMask {
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "setSecurityManager";
permission java.security.SecurityPermission "setPolicy";
permission javax.security.auth.AuthPermission "setLoginConfiguration"; };
runtimeFilterMask {
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "setSecurityManager";
permission java.security.SecurityPermission "setPolicy";
permission javax.security.auth.AuthPermission "setLoginConfiguration"; };

The permissions that are defined in filterMask filter are for static policy filtering. The security runtime tries
to remove the permissions from applications during application startup. Compound permissions are not
removed, but are issued with a warning, and application deployment is stopped if applications contain
permissions that are defined in the filterMask filter, and if scripting is used. The runtimeFilterMask filter
defines permissions that are used by the security runtime to deny access to those permissions to
application thread. Do not add more permissions to the runtimeFilterMask filter. Application start failure or
incorrect functioning might result. Be careful when adding more permissions to the runtimeFilterMask filter.
Usually, you only need to add permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that
can compromise the integrity of the system. For instance, WebSphere Application Server considers the
exitVM and setSecurityManager permissions as those permissions that most applications never have. If
these permissions are granted, the following scenarios are possible:

exitVM
A servlet, JavaServer Pages (JSP) file, enterprise bean, or other library that is used by the
aforementioned might call the System.exit API and cause the entire WebSphere Application Server
process to terminate.

setSecurityManager
An application might install its own security manager and either grant more permissions or bypass
the default policy that the WebSphere Application Server security manager enforces.

Important: In application code, do not use the setSecurityManager permission to set a security manager.
When an application uses the setSecurityManager permission, a conflict exists with the
internal security manager within WebSphere Application Server. If you must set a security
manager in an application for Remote Method Invocation (RMI) purposes, you also must
select the Use Java 2 security to restrict application access to local resources option on the
Global security panel within the WebSphere Application Server administrative console.

882 Developing WebSphere applications

WebSphere Application Server then registers a security manager, which the application code
can verify is registered by using the System.getSecurityManager application programming
interface (API).

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file for Java 2 security:

You should update the was.policy file if the application has specific resources to access.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The
was.policy file is an application-specific policy file for WebSphere Application Server enterprise
applications. This file is embedded in the META-INF/was.policy enterprise archive (.EAR) file. The
was.policy file is located in:
profile_root/config/cells/cell_name/applications/
ear_file_name/deployments/application_name/META-INF/was.policy

See Java 2 security policy files for the list of available policy files that are supported by WebSphere
Application Server Version 6.1.

The union of the permissions that are contained in the following files is applied to the WebSphere
Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Table 91. Symbols defined to associate permission lists to a specific type of resource. Several product-reserved
symbols are defined to associate the permission lists to a specific type of resource.
Symbol Definition

file:${application} Permissions apply to all resources used within the application.

file:${jars} Permissions apply to all utility Java archive (JAR) files within the
application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

file:${webComponent} Permissions apply to web resources within the application

file:${connectorComponent} Permissions apply to connector resources within the application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread
permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the
application cannot manipulate threads and WebSphere Application Server creates a
java.security.AccessControlException exception. If you add the permissions to the was.policy file for a
specific application, you do not need to restart WebSphere Application Server. An administrator must add
the following code to a was.policy or app.policy file for an application to manipulate threads:
grant codeBase "file:${application}" {
permission java.lang.RuntimePermission "stopThread";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

};

An administrator can add the thread permissions to the app.policy file, but the permission change
requires a restart of WebSphere Application Server.

Chapter 21. Developing security 883

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal
keywords are not supported in the was.policy file. The Signed By keyword is supported in the
java.policy, server.policy, and client.policy policy file. The JAAS principal keyword is
supported in a JAAS policy file when it is specified by the java.security.auth.policy Java
virtual machine (JVM) system property. You can statically set the authorization policy files in
the java.security.auth.policy file with the auth.policy.url.n=URL, where URL is the
location of the authorization policy.

Other than these blocks, you can specify the module name for granular settings. For example,
grant codeBase "file:DefaultWebApplication.war" {
permission java.security.SecurityPermission "printIdentity";

};

grant codeBase "file:IncCMP11.jar" {
permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",
"read,write,delete";

};

Table 92. Embedded symbols provided to specify the path and name for the java.io.FilePermission permission. Five
embedded symbols are provided to specify the path and name for the java.io.FilePermission permission. These
symbols enable flexible permission specification. The absolute file path is fixed after the application is installed.
Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current® cell name

${current.node.name} Current node name

${current.server.name} Current server name

About this task

If the default permissions for the enterprise application are enough, an action is not required. The default
permissions are a union of the permissions that are defined in the java.policy file, the server.policy file,
and the app.policy file. If an application has specific resources to access, update the was.policy file. The
first two steps assume that you are creating a new policy file.

Tip: Syntax errors in the policy files cause the application server to fail. Use care when editing these
policy files.

Procedure

1. Create or edit a new was.policy file by using the PolicyTool. For more information, see “Using
PolicyTool to edit policy files for Java 2 security” on page 875.

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications for Java 2 security” on page
887.The following instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool.

b. Open the Project Navigator view.

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF
directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor
and by clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate
the file.

884 Developing WebSphere applications

h. Verify that the path directory that is listed in the Into directory field lists the correct META-INF
directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click
Run Validation.

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do
not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the
workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists. Modify the was.policy file with the Policy
Tool. For more information, see “Using PolicyTool to edit policy files for Java 2 security” on page 875.

Results

The updated was.policy file is applied to the application after the application restarts.

Example

When a Java program receives this exception and adding this permission is justified, add the following
permission to the was.policy file:

To determine whether to add a permission, see Access control exception for Java 2 security.

What to do next

Restart all applications for the updated app.policy file to take effect.

spi.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server Version 6.0.x, see
Java 2 security policy files.

Because the default permission for the Service Provider Interface (SPI) is the AllPermission permission,
the only reason to update the spi.policy file is a restricted SPI permission. When a change in the
spi.policy is required, complete the following steps.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the filterMask and
runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization
Service (JAAS) Principal keywords are not supported in the spi.policy file. The Signed By
keyword is supported in the java.policy, server.policy, and client.policy policy files. The
JAAS Principal keyword is supported in a JAAS policy file that is specified by the
java.security.auth.policy Java virtual machine (JVM) system property. You can statically set the
authorization policy files in java.security.auth.policy with auth.policy.url.n=URL, where URL
is the location of the authorization policy.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy
c:/temp/test/spi.policy]

Chapter 21. Developing security 885

Edit the file using the Policy Tool. For more information, see “Using PolicyTool to edit policy files for Java 2
security” on page 875.

To check in the policy file, enter the following command using information from your environment:

The updated spi.policy is applied to the Service Provider Interface (SPI) libraries after the Java process
is restarted.

$AdminConfig checkin profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy
c:/temp/test/spi.policy $obj

Examples

The spi.policy file is the template for SPIs or third-party resources embedded in the product. Examples
of SPIs are Java Message Services (JMS) (MQSeries) and Java database connectivity (JDBC) drivers.
They are specified in the resources.xml file. The dynamic policy grants the permissions that are defined in
the spi.policy file to the class paths defined in the resources.xml file. The union of the permission that is
contained in the java.policy file and the spi.policy file are applied to the SPI libraries. The spi.policy
files are managed by configuration and file replication services.

You can find the spi.policy file that is supplied by WebSphere Application Server in the following location:
app_server_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy. This file
contains the following default permission:

grant {
permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

library.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server, see Java 2
security policy files.

The library.policy file is the template for shared libraries (Java library classes). Multiple enterprise
applications can define and use shared libraries. Refer to Managing shared libraries for information on how
to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the
app.policy file and the library.policy file) are enough, no action is required. The default library policy is
picked up automatically. If a specific change is required to share a library in the cell, update the
library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed
By keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword
are not supported in the library.policy file. The Signed By keyword is supported in the
java.policy, the server.policy, and the client.policy policy files. The JAAS Principal
keyword is supported in a JAAS policy file when it is specified by the Java virtual machine
(JVM) system property, java.security.auth.policy. You can statically set the authorization
policy files in the java.security.auth.policy file with auth.policy.url.n=URL where URL is the
location of the authorization policy.

886 Developing WebSphere applications

To extract the policy file, use a command prompt to enter the following command using the appropriate
variable values for your environment:The previous two lines were split onto two lines for illustrative
purposes only.

wsadmin> set obj [$AdminConfig extract cells/cell_name/nodes/
node_name/library.policy c:/temp/test/library.policy]

Edit the extracted library.policy file with the Policy Tool. For more information, see “Using PolicyTool to
edit policy files for Java 2 security” on page 875.

To check in the policy file, use a command prompt to enter the following command using the appropriate
variable values for your environment:An updated library.policy is applied to shared libraries after the
servers restart.

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/library.policy
c:/temp/test/library.policy $obj

Example

The union of the permission that is contained in the java.policy file, the app.policy file, and the
library.policy file are applied to the shared libraries. The library.policy file is managed by
configuration and file replication services.

The library.policy file are supplied by WebSphere Application Server resides at: app_server_root/
config/cells/cell_name/nodes/node_name/ directory. The file contains an empty permission entry as a
default. For example:
grant {
};

If the shared library in a cell requires permissions that are not defined as defaults in thejava.policy file,
the app.policy file and the library.policy file, update the library.policy file. The missing permission
causes the java.security.AccessControlException exception. The missing permission is listed in the
exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
app_server_root/lib/mail-impl.jar read)

The previous lines are split into two lines for illustrative purposes only. The app_server_root variable
represents your installation directory.

When a Java program receives this exception and adding this permission is justified, add a permission to
the library.policy file.

For example:
grant { permission java.io.FilePermission "app_server_root/lib/mail-impl.jar", "read"; };

The previous lines are split into two lines for illustrative purposes only. The app_server_root variable
represents your installation directory.

To decide whether to add a permission, refer to Access control exception for Java 2 security.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications for Java 2 security:

Chapter 21. Developing security 887

An application might need a was.policy file if it accesses resources that require more permissions than
those granted in the default app.policy file.

About this task

When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on
WebSphere Application Server undergo a security check before accessing system resources. An
application might need a was.policy file if it accesses resources that require more permissions than those
granted in the default app.policy file. By default, the product security reads an app.policy file that is
located in each node and grants the permissions in the app.policy file to all the applications. Include any
additional required permissions in the was.policy file. The was.policy file is only required if an application
requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the
product security, is common to all applications, and you do not change this file. Add any new permissions
that are required for an application in the was.policy file.

The app.policy file supplied by WebSphere Application Server resides at app_server_root/config/cells/
profile/profile_name/config/cell_name/nodes/node_name/app.policy. The contents of the app.policy
file are presented in the following example:

Attention: In the following code sample, the two permissions that are required by JavaMail are split onto
two lines for illustration only. You actually enter the permission on one line.
// The following permissions apply to all the components under the application.

grant codeBase "file:${application}" {
// The following are required by JavaMail

permission java.io.FilePermission "
${was.install.root}${/}lib${/}activation-impl.jar",

"read";

permission java.io.FilePermission "
${was.install.root}${/}lib${/}mail-impl.jar","read";

};
// The following permissions apply to all utility .jar files (other
// than enterprise beans JAR files) in the application.

grant codeBase "file:${jars}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to connector resources within the application
grant codeBase "file:${connectorComponent}" {
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the web modules (.war files)
// within the application.
grant codeBase "file:${webComponent}" {
permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

// where "was.module.path" is the path where the web module is
// installed. Refer to Dynamic policy concepts for other symbols.

permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the EJB modules within the application.
grant codeBase "file:${ejbComponent}" {
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.util.PropertyPermission "*", "read";
};

If additional permissions are required for an application or for one or more modules of an application, use
the was.policy file for that application. For example, use codeBase of ${application} and add required
permissions to grant additional permissions to the entire application. Similarly, use codeBase of

888 Developing WebSphere applications

${webComponent} and ${ejbComponent} to grant additional permissions to all the web modules and all the
enterprise bean modules in the application. You can assign additional permissions to each module (.war
file or .jar file), as shown in the following example.

This example illustrates adding extra permissions for an application in the was.policy file:

Attention: In the following code sample, the permission for the EJB module was split onto two lines for
illustration only. You actually enter the permission on one line.
// grant additional permissions to a web module
grant codeBase " file:aWebModule.war" {
permission java.security.SecurityPermission "printIdentity";
};

// grant additional permission to an EJB module
grant codeBase "file:aEJBModule.jar" {

permission java.io.FilePermission "
${user.install.root}${/}bin${/}DefaultDB${/}-", "read,write,delete";

// where, ${user.install.root} is the system property whose value is
// located in the app_server_root directory.

};

To use a was.policy file for your application, perform the following steps:

Procedure

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using
PolicyTool to edit policy files for Java 2 security” on page 875.

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.
Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted and start an assembly tool.

5. Verify that the was.policy file in the application is syntactically correct. In an assembly tool, right-click
the enterprise application module and click Run Validation.

Results

An application EAR file is now ready to run when Java 2 security is enabled.

Example

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file
is not created and it does not contain required permissions, the application might not access system
resources.

The symptom of the missing permissions is the java.security.AccessControlException exception. The
missing permission is listed in the exception data, for example,

When an application program receives this exception and adding this permission is justified, include the
permission in the was.policy file, for example,

The previous permission information lines are split for the illustration. Enter the permission on one line.

What to do next

Install the application.

Configuring static policy files in Java 2 security:

By configuring the static policy files, the required permission will be granted for all of the Java programs.

Chapter 21. Developing security 889

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program.

See the topic about Java 2 security policy files for the list of available policy files that are supported by
WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static
policy files. Static policy files provide the default permissions. Dynamic policy files provide application
permissions.

Table 93. Policy Files. This table lists the policy files.
Policy file name Description

java.policy Contains default permissions for all of the Java programs on the node. This file seldom changes.

server.policy Contains default permissions for all of the WebSphere Application Server programs on the node. This file is rarely
updated.

client.policy Contains default permissions for all of the applets and client containers on the node.

The static policy file is not a configuration file that is managed by the repository and the file replication
service. Changes to this file are local and do not get replicated to the other machine.

Procedure

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic policy file. Refer to
“Configuring Java 2 security policy files” on page 877.

v If the permission is required only by applets and client containers, update the client.policy file.
Refer to “client.policy file permissions” on page 893.

v If the permission is required only by WebSphere Application Server (servers, agents, managers and
application servers), update the server.policy file. Refer to “server.policy file permissions” on page
892.

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),
update the java.policy file. Refer to “java.policy file permissions” on page 891.

2. Stop and restart WebSphere Application Server.

Results

The required permission is granted for all of the Java programs that run with the restarted JVM.

Example

If Java programs on a node require permissions, the policy file needs updating. If the Java program that
required the permission is not part of an enterprise application, update the static policy file. The missing
permission results in the creation of the java.security.AccessControlException exception. The missing
permission is listed in the exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:/WAS_HOME/lib/mail-impl.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to
an adequate policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:/WAS_HOME/lib/mail-impl.jar",
"read";

};

890 Developing WebSphere applications

To decide whether to add a permission, refer to Access control exception for Java 2 security.

java.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

See Java 2 security policy files for the list of available policy files that are supported by WebSphere
Application Server.

The java.policy file is a global default policy file that is shared by all of the Java programs that run in the
Java virtual machine (JVM) on the node. A change to the java.policy file is local for the node. The default
Java policy is picked up automatically. Syntax errors in the policy files cause the application server to fail.
An updated java.policy file is applied to all the Java programs that run in all the JVMs on the local node.
Restart the programs for the updates to take effect. Modifying this file is not recommended. If a specific
change is required to some of the Java programs on a node and the java.policy file requires updating,
carefully modify the java.policy file with the policy tool. For more information, see “Using PolicyTool to
edit policy files for Java 2 security” on page 875.

Default permissions for the java.policy file

The java.policy file is not a configuration file that is managed by the repository and the file replication
service. Changes to this file are local and do not get replicated to the other machine. The java.policy file
that is supplied by WebSphere Application Server is located at install_root/java/jre/lib/security/
java.policy. This file contains these default permissions.
// Standard extensions get all permissions by default
grant codeBase "file:${java.home}/lib/ext/*" {

permission java.security.AllPermission;
};
// default permissions granted to all domains
grant {

// Allows any thread to stop itself using the java.lang.Thread.stop()
// method that takes no argument.
// Note that this permission is granted by default only to remain
// backwards compatible.
// It is strongly recommended that you either remove this permission
// from this policy file or further restrict it to code sources
// that you specify, because Thread.stop() is potentially unsafe.
// See "http://java.sun.com/notes" for more information.
// permission java.lang.RuntimePermission "stopThread";

// allows anyone to listen on un-privileged ports
permission java.net.SocketPermission "localhost:1024-", "listen";

// "standard" properties that can be read by anyone

permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.vendor", "read";
permission java.util.PropertyPermission "java.vendor.url", "read";
permission java.util.PropertyPermission "java.class.version", "read";
permission java.util.PropertyPermission "os.name", "read";
permission java.util.PropertyPermission "os.version", "read";
permission java.util.PropertyPermission "os.arch", "read";
permission java.util.PropertyPermission "file.separator", "read";
permission java.util.PropertyPermission "path.separator", "read";
permission java.util.PropertyPermission "line.separator", "read";

permission java.util.PropertyPermission "java.specification.version", "read";
permission java.util.PropertyPermission "java.specification.vendor", "read";
permission java.util.PropertyPermission "java.specification.name", "read";

permission java.util.PropertyPermission "java.vm.specification.version","read";
permission java.util.PropertyPermission "java.vm.specification.vendor","read";
permission java.util.PropertyPermission "java.vm.specification.name", "read";
permission java.util.PropertyPermission "java.vm.version", "read";
permission java.util.PropertyPermission "java.vm.vendor", "read";
permission java.util.PropertyPermission "java.vm.name", "read";
};

If some Java programs on a node require permissions that are not defined as defaults in the java.policy
file, consider updating the java.policy file. Most of the time, other policy files are updated instead of the
java.policy file. The missing permission causes the creation of the , java.security.AccessControlException
exception. The missing permission is listed in the exception data.

Chapter 21. Developing security 891

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to
the java.policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to Access control exception for Java 2 security.

Restart all of the Java processes for the updated java.policy file to take effect.

server.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

See Java 2 security policy files for the list of available policy files that are supported by WebSphere
Application Server.

The server.policy file is a default policy file that is shared by all of the WebSphere Application Servers on
a node. The server.policy file is not a configuration file that is managed by the repository and the file
replication service. Changes to this file are local and do not replicate to the other machine.

If the default permissions for a server (the union of the permissions that is defined in the java.policy file
and the server.policy file) are enough, no action is required. The default server policy is picked up
automatically. If a specific change is required to some of the server programs on a node, update the
server.policy file with the Policy Tool. Refer to the “Using PolicyTool to edit policy files for Java 2
security” on page 875 topic to edit policy files. Changes to the server.policy file are local for the node.
Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully. An
updated server.policy file is applied to all the server programs on the local node. Restart the servers for
the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

When you do need to modify the server.policy file, locate this file at: profile_root/properties/
server.policy. This file contains these default permissions:
// Allow to use sun tools
grant codeBase "file:${java.home}/../lib/tools.jar" {
permission java.security.AllPermission;

};

// WebSphere system classes
grant codeBase "file:${was.install.root}/plugins/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/lib/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/classes/-" {
permission java.security.AllPermission;

};

892 Developing WebSphere applications

// Allow the WebSphere deploy tool all permissions
grant codeBase "file:${was.install.root}/deploytool/-" {
permission java.security.AllPermission;

};

// Allow Channel Framework classes all permission
grant codeBase "file:${was.install.root}/installedChannels/-" {
permission java.security.AllPermission;

};

// WebSphere optional runtime classes
grant codeBase "file:${was.install.root}/optionalLibraries/-" {
permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as defaults in the
server.policy file and the server.policy file, update the server.policy file. The missing permission
creates the java.security.AccessControlException exception. The missing permission is listed in the
exception data.

For example:
java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail-impl.jar read)

The previous two lines are split into two lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add a permission to
the server.policy file.

For example:
grant codeBase "file:user_client_installed_location" {
permission java.io.FilePermission
"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to Access control exception for Java 2 security.

Restart all of the Java processes for the updated server.policy file to take effect.

client.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

For the list of available policy files that are supported by WebSphere Application Server, see Java 2
security policy files.

v The client.policy file is a default policy file that is shared by all of the WebSphere Application Server
client containers and applets on a node.

v The union of the permissions that is contained in the java.policy file and the client.policy file are
given to all of the client containers for WebSphere Application Server and applets running on the node.

v The client.policy file is not a configuration file that is managed by the repository and the file
replication service. Changes to this file are local and do not replicate to the other machine.

v The client.policy file supplied by WebSphere Application Server is located in the
profile_root/properties/client.policy.

v If the default permissions for a client (union of the permissions defined in the java.policy file and the
client.policy file) are enough, no action is required. The default client policy is picked up
automatically.

v If a specific change is required to some of the client containers and applets on a node, modify the
client.policy file with the Policy Tool. Refer to “Using PolicyTool to edit policy files for Java 2 security”
on page 875, to edit policy files. Changes to the client.policy file are local for the node.

Chapter 21. Developing security 893

This file contains these default permissions:
grant codeBase "file:${was.install.root}/java/ext/*" {
permission java.security.AllPermission;

};

// JDK classes
grant codeBase "file:${was.install.root}/java/ext/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/java/tools/ibmtools.jar" {
permission java.security.AllPermission;

};
grant codeBase "file:/QIBM/ProdData/Java400/jdk14/lib/tools.jar" {
permission java.security.AllPermission;

};

// WebSphere system classes
grant codeBase "file:${was.install.root}/lib/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/plugins/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/classes/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${was.install.root}/installedConnectors/-" {
permission java.security.AllPermission;

};
grant codeBase "file:${user.install.root}/installedConnectors/-" {
permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedChannels/-" {
permission java.security.AllPermission;

};

// J2EE 1.4 permissions for client container applications
// in $WAS_HOME/installedApps
grant codeBase "file:${user.install.root}/installedApps/-" {
//Application client permissions
permission java.awt.AWTPermission "accessClipboard";
permission java.awt.AWTPermission "accessEventQueue";
permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "loadLibrary";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.net.SocketPermission "localhost:1024-", "accept,listen";
permission java.io.FilePermission "*", "read,write";
permission java.util.PropertyPermission "*", "read";

};

// J2EE 1.4 permissions for client container - expanded ear file code base
grant codeBase "file:${com.ibm.websphere.client.applicationclient.archivedir}/-" {
permission java.awt.AWTPermission "accessClipboard";
permission java.awt.AWTPermission "accessEventQueue";
permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
permission java.lang.RuntimePermission "exitVM";
permission java.lang.RuntimePermission "loadLibrary";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.net.SocketPermission "localhost:1024-", "accept,listen";
permission java.io.FilePermission "*", "read,write";
permission java.util.PropertyPermission "*", "read";

};

All of the client containers and applets on the local node are granted the updated permissions when they
start. If some client containers or applets on a node require permissions that are not defined as defaults in

894 Developing WebSphere applications

the java.policy file and the default client.policy file, update the client.policy file. The missing
permission creates the java.security.AccessControlException exception. The missing permission is listed in
the exception data, for example,
java.security.AccessControlException: access denied (java.io.FilePermission
C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines of the example are one continuous line, but presented as such for illustrative
purposes only.

When a client program receives this exception and adding this permission is justified, add a permission to
the client.policy file, for example:
grant codebase "file:user_client_installed_location" {permission
java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to Access control exception for Java 2 security.

If you update the policy file, you must restart the browser and any client applications.

Developing with programmatic security APIs for web applications
Use this information to programmatically secure APIs for web applications.

Before you begin

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application.

The authenticate, login, logout, getRemoteUser, isUserInRole and getAuthType servlet security methods
are methods of the javax.servlet.http.HttpServletRequest interface. For more detailed information about
these servlet security methods, read the Servlet security methods article.

Note:

The logout, login, and authenticate APIs are new for Java Servlet 3.0 in this release of WebSphere
Application Server.

You can configure several options for web authentication that determine how the web client interacts with
protected and unprotected Uniform Resource Identifiers (URI). Also, you can specify whether WebSphere
Application Server challenges the web client for basic authentication information if the certificate
authentication for the HTTPS client fails. For more information, see the Selecting an authentication
mechanism article.

When the isUserInRole method is used, declare a security-role-ref element in the deployment descriptor
with a role-name subelement containing the role name that is passed to this method, or use the
@DeclareRoles annotation. Because actual roles are created during the assembly stage of the application,
you can use a logical role as the role name and provide enough hints to the assembler in the description
of the security-role-ref element to link that role to the actual role. During assembly, the assembler creates
a role-link subelement to link the role name to the actual role. Creation of a security-role-ref element is
possible if an assembly tool, such as Rational Application Developer, is used. You also can create the
security-role-ref element during assembly stage using an assembly tool.

Procedure
1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created
during development, make sure it is created during the assembly stage.

Chapter 21. Developing security 895

Results

A programmatically secured servlet application.

Example

These steps are required to secure an application programmatically. This action is particularly useful when
a web application needs to access external resources and wants to control the access to external
resources using its own authorization table (external-resource to remote-user mapping). In this case, use
the getUserPrincipal or the getRemoteUser methods to get the remote user, then the application can
consult its own authorization table to perform authorization. The remote user information also can help
retrieve the corresponding user information from an external source such as a database or from an
enterprise bean. You can use the isUserInRole method in a similar way.

After development, you can create a security-role-ref element:
<security-role-ref>

<description>Provide hints to assembler for linking this role
name to an actual role here<\description>

<role-name>Mgr<\role-name>
</security-role-ref>

During assembly, the assembler creates a role-link element:
<security-role-ref>

<description>Hints provided by developer to map the role
name to the role-link</description>

<role-name>Mgr</role-name>
<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet, doPost, doPut, and
doDelete service methods. The following example depicts using a programmatic security API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logoff the current user
request.logout();

// to login with a new user
request.login(“bob”,”bobpwd”)

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// use the above information in any way as needed by
// the application
....

}

You can programmatic login with a user ID and password inside any servlet doGet, doPost, doPut, and
doDelete service methods. The following example depicts using a programmatic login/logout API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logout the current user. If you are not already authenticate, then no need to call the logout() method.
request.logout();

// to login with a new user
request.login(“utle”,”mypwd”)

896 Developing WebSphere applications

// the user utle subject now set on the thread and the LTPA SSO cookie is set in the response
....

}

You can programmatic authenticate with a different identity inside any servlet doGet, doPost, doPut, and
doDelete service methods. In this example, if the web servlet is configured to use basicAuth, the web
server returns a response code 401, the login prompt is displayed, and you can enter the user ID and
password to authenticate. The following example depicts using a programmatic login/logout API:
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....
// to logout the current user. If you are not already authenticate, then no need to call the logout() method.

// to login with a new user
request.authenticate(response);

// the new user subject now set on the thread and the LTPA SSO cookie is set in the response
....

}

When developing Servlet 3.0 modules, the value of the rolename argument in isCallerInRole method can
be defined using Java annotations instead of declaring a security-role-ref elements in the deployment
descriptor.
@javax.annotation.security.DeclareRoles("Mgr")
public void doGet(HttpServletRequest request,
HttpServletResponse response) {

....

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// use the above information in any way as needed by
// the application
....

}

The following example depicts a web application or servlet using the programmatic security model.

This example illustrates one use and not necessarily the only use of the programmatic security model. The
application can use the information that is returned by the getUserPrincipal, isUserInRole, and the
getRemoteUser methods in any other way that is meaningful to that application. Use the declarative
security model whenever possible.

File : HelloServlet.java
public class HelloServlet extends javax.servlet.http.HttpServlet {

public void doPost(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
}
public void doGet(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {

String s = "Hello";

// get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUserName = "";
if(principal != null)
remoteUserName = principal.getName();

// get remote user using getRemoteUser()

Chapter 21. Developing security 897

String remoteUser = request.getRemoteUser();

// check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// display Hello username for managers and bob.
if (isMgr || remoteUserName.equals("bob"))

s = "Hello " + remoteUserName;

String message = "<html> \n" +
"<head><title>Hello Servlet</title></head>\n" +

"<body> /n +"
"<h1> " +s+ </h1>/n " +

byte[] bytes = message.getBytes();

// displays "Hello" for ordinary users
// and displays "Hello username" for managers and "bob".
response.getOutputStream().write(bytes);

}

}

After developing the servlet, you can create a security role reference for the HelloServlet servlet as shown
in the following example:
<security-role-ref>

<description> </description>
<role-name>Mgr</role-name>

</security-role-ref>

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. See the information about securing web applications using an
assembly tool.

Servlet security methods:

The authenticate, login, logout, getRemoteUser, isUserInRole and getAuthType servlet security methods
are methods of the javax.servlet.http.HttpServletRequest interface.

authenticate

Note: The authenticate, login and logout servlet security methods are new for Java Servlet 3.0 in this
release of WebSphere Application Server.

The authenticate method authenticates a user by using the WebSphere Application Server container login
mechanism configured for the servlet context.

The syntax of the authenticate method is as follows:
boolean authenticate(HttpServletResponse response))

The previous example uses the following element:

response
The HttpServletResponse associated with the HttpServletRequest.

The authenticate method returns true when authentication has been established or authentication is
successful.

The authenticate method returns false if authentication is incomplete and the underlying login mechanism
has committed, in the response, the message and HTTP status code to be returned to the user.

A java.io.IOException occurs if an error occurs while writing the response.

898 Developing WebSphere applications

A ServletException occurs if the authentication failed, and the caller is responsible for handling the error
(for example, the underlying login mechanism did not establish the message and the HTTP status code to
be returned to the user).

Note: When the authenticate method is called, be aware of the following:

v WebSphere Application Server returns HTTP 401 code to a client.

v The method depends on the WebSphere Application Server container login mechanism that is
configured for the servlet context. For example, if you have a form login defined for this servlet, it
prompts for a user name and password. The client sends the user ID and password to
WebSphere Application Server for authentication.

Important: Make sure that the authenticate method returns true before using the new subject to
call another service. For example:

Boolean authResultTrue = req.authenticate(response);
if (!authResultTrue) {
return;
} else {
// Use the new invocation subject to call other services.

}

login

The login method authenticates a user to the WebSphere Application Server with a user ID and password.
If authentication is successful, it creates a user subject on the thread and Lightweight Third Party
Authentication (LTPA) cookies (if single sign-on (SSO) is enabled).

The syntax of the login method is as follows:
login(java.lang.String username, java.lang.String password)

The previous example uses the following elements:

username
The string value that corresponds to the login identifier of the user.

password
The password of the user.

A ServletException occurs if the configured login mechanism does not support username and password
authentication, if an identity had already been authenticated (prior to the call to login), or if validation of the
provided username and password fails.

Note: You can set the security custom property com.ibm.websphere.security.webAlwaysLogin to true and
it will authenticate to the WebSphere application with the username and password, even if it is
already authenticated.

For more information about modifying security custom properties, read the Modifying an existing
custom property in a global security configuration or in a security domain configuration article.

Note: The login method always uses the user ID and password to authenticate to the WebSphere
application server and even the SSO information that is present in the HttpServletRequest.

Note: The authenticate and login methods set the invocation subject to the new subject. If the caller
subject is null, it then sets the caller subject to the new subject. If the caller subject is not null, then
the caller subject is not set to the new subject.

Since the authenticate and login methods set the invocation subject to the new subject, the RunAs
defined by the run-As attribute in deployment descriptor, security annotation or dynamic annotation
is ignored.

Chapter 21. Developing security 899

logout

The logout method logs the user out of the WebSphere Application Server and invalidates the HTTP
session. During this process, WebSphere Application Server completes the following processes:

v Clears the LTPA cookies if SSO is enabled

v Invalidates the HTTP session

v Removes the user from the authentication cache

v Removes the user subject from the thread

v Clears the caller and invocation subjects

v Sets the authentication type to null

After logging out, access to a protected web resource requires re-authentication and the getUserPrincipal,
getRemoteUser and getAuthType methods return null.

The syntax of the logout method is as follows:
logout()

A ServletException occurs if the logout fails.

Audit event types for the authenticate, login and logout methods

To audit authenticate, login and logout methods, you must create or extend some audit event type files.
These event type are not part of the default event type files.

Table 94. Audit event types for the authenticate, login, and logout methods.

The audit event types required for the authenticate, login, and logout methods are:
Method Audit event name Audit outcome of the event

authenticate/login SECURITY_AUTHN SUCCESS and or FAILURE

logout SECURITY_AUTHN_TERMINATE SUCCESS

logout SECURITY_AUTHN_TERMINATE FAILURE

isUserInRole

(String role name): Returns true if the remote user is granted the specified security role. If the remote user
is not granted the specified role, or if no user is authenticated, it returns false.

getRemoteUser

The getRemoteUser method returns the login of the user that makes the request if the user has been
authenticated. If the user has not been authenticated, the getRemoteUser method returns null.

getAuthType

The getAuthType method returns the name of the authentication scheme that is used to protect the servlet.
If the servlet is not protected, the getAuthType method returns null.

The authentication schemes used are:

FORM when form-based authentication is used

BASIC
when basic authentication is used.

CLIENT_CERT
when client certificate authentication is used.

900 Developing WebSphere applications

Note:

For both the getRemoteUser and getAuthType methods, the data that is returned depends upon
whether security is enabled in the application server where the servlet is deployed. The following
possibilities exist:

v If application security is enabled and a servlet is protected, then the getRemoteUser method
returns the login and the getAuthType method returns the configured authentication scheme.

v If application security is not enabled, both methods return null.

Web authentication settings:

Use this page to specify the web authentication settings that are associated with a web client.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click General settings.

You can override the global Web authentication settings that you select on this panel by specifying one or
more of the following system properties on the server level. Complete the following steps to specify one of
these system properties:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties > New.

Table 95. Web authentication system property values. This table lists the web authentication system property values.
Property name Value Explanation

com.ibm.wsspi.security.web.webAuthReq lazy This value is equivalent to the Authenticate
only when the URI is protected option.

Note: You can set webAuthReq differently
through the administrative console or scripting
when using a global or a security domain, but
the global level always takes precedence.

com.ibm.wsspi.security.web.webAuthReq persisting This value is equivalent to the Use available
authentication data when an unprotected URI
is accessed option.

com.ibm.wsspi.security.web.webAuthReq always This value is equivalent to the Authenticate
when any URI is accessed option.

com.ibm.wsspi.security.web.failOverToBasicAuth true This value is equivalent to the Default to basic
authentication when certificate
authentication for the HTTPS client fails
option.

Authenticate only when the URI is protected:

The application server challenges the web client to provide authentication data when the web client
accesses a Uniform Resource Identifier (URI) that is protected by a Java 2 Platform, Enterprise Edition
(J2EE) role. The authenticated identity is available only when the web client accesses a protected URI.

This option is the default J2EE web authentication behavior that is also available in previous releases of
WebSphere Application Server.

Note: When you select this option, the administrative console login page is missing images. You might
encounter the following error in the administrative console: “CWLAA6003: Could not display the
portlet, the portlet may not be started. Check the error logs”.

Chapter 21. Developing security 901

The missing images and the error message are a side-effect of this option. The images do not
display because the URIs for the images now need authentication, which requires you to log in. You
can ignore this error message.

Information Value
Default: Enabled

Use available authentication data when an unprotected URI is accessed:

The web client can access validated authenticated data that it previously could not access. This option
enables the web client to call the getRemoteUser, isUserInRole, and getUserPrincipal methods to retrieve
an authenticated identity from an unprotected URI.

When you select this option with the Authenticate only when the URI is protected option, the web client
can use authenticated data when the URI is protected or not protected.

When this option is selected and Form-based authentication is being used, a WASPostParam cookie is
generated during the authentication procedure of the HTTP POST request even if the target URL is
unprotected. A WASPOSTParam cookie is a temporary cookie used to store HTTP POST parameters. This
results in the Web client being sent the unnecessary cookie with an HTTP response. This might cause
unexpected behavior when the size of the cookie is larger than the browser limit. To avoid this behavior, a
custom property, com.ibm.websphere.security.util.postParamMaxCookieSize can be set to cause the
security code to stop generating the cookie if the maximum size is reached.

Important: This option does not challenge the web client to provide authenticated data if the web client
accesses an unprotected URI without authenticated data.

Information Value
Default: Enabled

Authenticate when any URI is accessed:

The web client must provide authentication data regardless of whether the URI is protected.

Information Value
Default: Disabled

Default to basic authentication when certificate authentication for the HTTPS client fails:

When the required HTTPS client certificate authentication fails, the application server uses the basic
authentication method to challenge the web client to provide a user ID and password.

The HTTP client certification authentication that is performed by the application server security is different
from the client authentication that is performed by the web server plug-in. If you configure the web server
plug-in for mutual authentication and client authentication fails, the following situations will occur:

v The web server produces a error and the web request is not processed by application server security.

v The application server cannot fail over to basic authentication.

Information Value
Default: Disabled

Developing with programmatic APIs for EJB applications
Use this topic to programmatically secure your Enterprise JavaBeans (EJB) applications.

902 Developing WebSphere applications

About this task

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application. The javax.ejb.EJBContext application
programming interface (API) provides two methods whereby the bean provider can access security
information about the enterprise bean caller.
v IsCallerInRole(String rolename): Returns true if the bean caller is granted the security role that is

specified by role name. If the caller is not granted the specified role, or if the caller is not authenticated,
it returns false. If the specified role is granted Everyone access, it always returns true.

v getCallerPrincipal: Returns the java.security. Principal object that contains the bean caller name. If the
caller is not authenticated, it returns a principal that contains an unauthorized name.

You can enable a login module to indicate which principal class is returned by these calls.

When the isCallerInRole method is used, declare a security-role-ref element in the deployment descriptor
with a role-name that is subelement containing the role name that is passed to this method. Because
actual roles are created during the assembly stage of the application, you can use a logical role as the
role name and provide enough hints to the assembler in the description of the security-role-ref element to
link that role to an actual role. During assembly, the assembler creates a role-link subelement to link the
role-name to the actual role. Creation of a security-role-ref element is possible if an assembly tool such as
Rational Application Developer is used. You also can create the security-role-ref element during the
assembly stage using an assembly tool.

Procedure
1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the
isCallerInRole method. If a security-role-ref element is not created during development, make sure it is
created during the assembly stage.

Results

Performing the previous steps result in a programmatically secured EJB application.

Example

Hard coding security policies in applications is strongly discouraged. The Java Platform, Enterprise Edition
(Java EE) security model capabilities of declaratively specifying security policies is encouraged wherever
possible. Use these APIs to develop security-aware EJB applications.

Using Java EE security model capabilities to specify security policies declaratively is useful when an EJB
application wants to access external resources and wants to control the access to these external
resources using its own authorization table (external-resource to user mapping). In this case, use the
getCallerPrincipal method to get the caller identity and then the application can consult its own
authorization table to perform authorization. The caller identification also can help retrieve the
corresponding user information from an external source, such as database or from another enterprise
bean. You can use the isCallerInRole method in a similar way.

After development, you can create a security-role-ref element:
<security-role-ref>
<description>Provide hints to assembler for linking this role-name to
actual role here<\description>
<role-name>Mgr<\role-name>
</security-role-ref>

During assembly, the assembler creates a role-link element:

Chapter 21. Developing security 903

<security-role-ref>
<description>Hints provided by developer to map role-name to role-link</description>
<role-name>Mgr</role-name>
<role-link>Manager</role-link>
</security-role-ref>

You can add programmatic EJB component security methods for example isCallerInRole and
getCallerPrincipal, inside any business methods of an enterprise bean. The following example of
programmatic security APIs includes a session bean:

public class aSessionBean implements SessionBean {

.....

// SessionContext extends EJBContext. If it is entity bean use EntityContext
javax.ejb.SessionContext context;

// The following method will be called by the EJB container
// automatically
public void setSessionContext(javax.ejb.SessionContext ctx) {

context = ctx; // save the session bean’s context
}

....

private void aBusinessMethod() {
....

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerId= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");

// use the above information in any way as needed by the
//application

....
}

....
}

When developing EJB 3.x modules, the value of the rolename argument in isCallerInRole method can be
defined using Java annotations instead of declaring a security-role-ref elements in the deployment
descriptor.
@javax.annotation.security.DeclareRoles("Mgr")
@Stateless // annotation is used to indicate a session bean
public class aSessionBean implements MyBusinessInterface { //you don’t have to extend sessionbean interface

.....
// SessionContext extends EJBContext. In EJB 3.0 use Resource annotation to inject context

@Resource
javax.ejb.SessionContext context; }

....

private void aBusinessMethod() {
....

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerId= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");

// use the above information in any way as needed by the
//application

....

904 Developing WebSphere applications

}

....
}

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. See the information about securing web applications using an
assembly tool.

Example: Enterprise bean application code:

The following Enterprise JavaBeans (EJB) component example illustrates the use of the isCallerInRole and
the getCallerPrincipal methods in an EJB module.

Using declarative security is recommended. The following example is one way of using the isCallerInRole
and the getCallerPrincipal methods. The application can use this result in any way that is suitable.

A remote interface
File : Hello.java

package tests;
import java.rmi.RemoteException;
/**
* Remote interface for Enterprise Bean: Hello
*/
public interface Hello extends javax.ejb.EJBObject {

public abstract String getMessage()throws RemoteException;
public abstract void setMessage(String s)throws RemoteException;

}

A home interface
File : HelloHome.java
package tests;
/**
* Home interface for Enterprise Bean: Hello
*/
public interface HelloHome extends javax.ejb.EJBHome {
/**
* Creates a default instance of Session Bean: Hello
*/
public tests.Hello create() throws javax.ejb.CreateException,
java.rmi.RemoteException;

}

A bean implementation
File : HelloBean.java

package tests;
/**
* Bean implementation class for Enterprise Bean: Hello
*/
public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext mySessionCtx;
/**
* getSessionContext
*/
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
/**
* setSessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

Chapter 21. Developing security 905

}
/**
* ejbActivate
*/
public void ejbActivate() {
}
/**
* ejbCreate
*/
public void ejbCreate() throws javax.ejb.CreateException {
}
/**
* ejbPassivate
*/
public void ejbPassivate() {
}
/**
* ejbRemove
*/
public void ejbRemove() {
}

public java.lang.String message;

//business methods

// all users can call getMessage()
public String getMessage() {

return message;
}

// all users can call setMessage() but only few users can set new message.
public void setMessage(String s) {

// get bean’s caller using getCallerPrincipal()
java.security.Principal principal = mySessionCtx.getCallerPrincipal();
java.lang.String callerId= principal.getName();

// check if bean’s caller is granted Mgr role
boolean isMgr = mySessionCtx.isCallerInRole("Mgr");

// only set supplied message if caller is "bob" or caller is granted Mgr role
if (isMgr || callerId.equals("bob"))

message = s;
else

message = "Hello";
}

}

After the development of the entity bean, create a security role reference in the deployment descriptor
under the session bean, Hello:
<security-role-ref>

<description>Only Managers can call setMessage() on this bean (Hello)</description>
<role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see Securing enterprise bean
applications. Use the information under Map security-role-ref and role-name to role-link to create the
element.

Customizing web application login
You can create a form login page and an error page to authenticate a user.

906 Developing WebSphere applications

Before you begin

A web client or a browser can authenticate a user to a Web server using one of the following mechanisms:
v HTTP basic authentication: A web server requests the Web client to authenticate and the web client

passes a user ID and a password in the HTTP header.
v HTTPS client authentication: This mechanism requires a user (web client) to possess a public key

certificate. The web client sends the certificate to a web server that requests the client certificates. This
authentication mechanism is strong and uses the Hypertext Transfer Protocol with Secure Sockets
Layer (HTTPS) protocol.

v Form-based Authentication: A developer controls the look and feel of the login screens using this
authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the web
client to the web server in simple base64 encoding. Form-based authentication transmits a user password
from the browser to the web server in plain text. Therefore, both HTTP basic authentication and
form-based authentication are not very secure unless the HTTPS protocol is used.

The web application deployment descriptor contains information about which authentication mechanism to
use. When form-based authentication is used, the deployment descriptor also contains entries for login
and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login
page is displayed on the web client side when a secured resource (servlet, JSP file, HTML page) is
accessed from the application. On authentication failure, an error page is displayed. You can write login
and error pages to suit the application needs and control the look and feel of these pages. During
assembly of the application, an assembler can set the authentication mechanism for the application and
set the login and error pages in the deployment descriptor.

Form login uses the servlet sendRedirect method, which has several implications for the user. The
sendRedirect method is used twice during form login:
v The sendRedirect method initially displays the form login page in the web browser. It later redirects the

web browser back to the originally requested protected page. The sendRedirect(String URL) method
tells the web browser to use the HTTP GET request to get the page that is specified in the web
address. If HTTP POST is the first request to a protected servlet or JavaServer Pages (JSP) file, and
no previous authentication or login occurred, then HTTP POST is not delivered to the requested page.
However, HTTP GET is delivered because form login uses the sendRedirect method, which behaves as
an HTTP GET request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data
from users and then posts this data to protected servlets or JSP files for processing, but the users are
not logged in for the resource. To avoid this scenario, structure your web application or permissions so
that users are forced to use a form login page before the application performs any HTTP POST actions
to protected servlets or JSP files.

Procedure
1. Create a form login page with the required look and feel, including the required elements to perform

form-based authentication.

2. Create an error page. You can program error pages to retry authentication or to display an appropriate
error message.

3. Place the login page and error page in the web application archive (.war) file relative to the top
directory. For example, if the login page is configured as /login.html in the deployment descriptor,
place it in the top directory of the WAR file. An assembler can also perform this step using the
assembly tool.

4. Create a form logout page and insert it to the application only when the web application requires a
form-based authentication mechanism.

By default the URL to the logout page should point to the host to which the request was made or its
domain. Otherwise, a generic logout page is displayed. If you need to point this URL to a different
host, then you need to set the com.ibm.websphere.security.logoutExitPageDomainList property in the

Chapter 21. Developing security 907

security.xml file with a list of URLs that are allowed for the logout page. You can choose to allow any
logout exit page to be used by setting the com.ibm.websphere.security.allowAnyLogoutExitPageHost
property to a value of true. Setting this property to true might open your systems to a potential URL
redirect attacks.

Example: Form login

You can use the WebSphere Application Server login facilities to implement and configure form login
procedures. Use the following technologies for WebSphere Application Server and Java Platform,
Enterprise Edition (Java EE) login functionality:

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see Accessing the samples.

Form login usage

For the authentication to proceed appropriately, the action of the login form must always have the
j_security_check action. The following example shows how to code the form into the HTML page:
<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="text" name="j_password">
<\form>

Use the j_username input field to get the user name, and use the j_password input field to get the user
password.

On receiving a request from a web client, the web server sends the configured form page to the client and
preserves the original request. When the web server receives the completed form page from the web
client, the server extracts the user name and password from the form and authenticates the user. On
successful authentication, the web server redirects the call to the original request. If authentication fails,
the web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">
<title> Security FVT Login Page </title>
<body>
<h2>Form Login</h2>
<FORM METHOD=POST ACTION="j_security_check">
<p>
 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">
 Password <input type="password" size="20" name="j_password">

 And then click this button:
<input type="submit" name="login" value="Login">
</p>

</form>
</body>
</html>

The following example depicts an error page in a JSP file:
<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<head><title>A Form login authentication failure occurred</head></title>
<body>
<H1>A Form login authentication failure occurred</H1>
<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the

908 Developing WebSphere applications

wrong case was used.
The user-id or password does not exist, has expired, or has been disabled.

</P>
</body>
</html>

After an assembler configures the web application to use form-based authentication, the deployment
descriptor contains the login configuration as shown:
<login-config id="LoginConfig_1">
<auth-method>FORM<auth-method>
<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config id="FormLoginConfig_1">
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.jsp</form-error-page>
</form-login-config>
</login-config>

A sample web application archive (WAR) file directory structure that shows login and error pages for the
previous login configuration follows:
META-INF

META-INF/MANIFEST.MF
login.html
error.jsp
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out
of the form logout mechanism, access to a protected web resource requires re-authentication. This feature
is not required by J2EE specifications, but it is provided as an additional feature in WebSphere Application
Server security.

Suppose that you want to log out after logging into a web application and perform some actions. A form
logout works in the following manner:
1. The logout-form URI is specified in the web browser and loads the form.
2. The user clicks Submit on the form to log out.
3. The WebSphere Application Server security code logs the user out. During this process, the

Application Server completes the following processes:
a. Clears the Lightweight Third Party Authentication (LTPA) / single sign-on (SSO) cookies
b. Invalidates the HTTP session
c. Removes the user from the authentication cache

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. The form-logout page is an HTML
or a JavaServer Pages (JSP) file that is included with the web application. The form-logout page is like
most HTML forms except that like the form-login page, the form-logout page has a special post action.
This post action is recognized by the web container, which dispatches the post action to a special internal
form-logout servlet. The post action in the form-logout page must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or a JSP
file within the same web application to which the user is redirected after logging out. Additionally, the
logout-exit page permits a fully qualified URL in the form of http://hostname:port/URL. The logout-exit
page is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default
logout HTML message is returned to the user.

Here is a sample form logout HTML form. This form configures the logout-exit page to redirect the user
back to the login page after logout.
<!DOCTYPE HTML PUBliC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">
<title>Logout Page </title>
<body>

Chapter 21. Developing security 909

<h2>Sample Form Logout</h2>
<FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">
<p>

 Click this button to log out:
<input type="submit" name="logout" value="Logout">
<INPUT TYPE="HIDDEN" name="logoutExitPage" VALUE="/login.html">
</p>
</form>

</body>
</html>

What to do next

After developing login and error pages, add them to the Web application. Use the assembly tool to
configure an authentication mechanism and insert the developed login page and error page in the
deployment descriptor of the application.

Developing servlet filters for form login processing
You can control the look and feel of the login screen using the form-based login mechanism. In
form-based login, you specify a login page that is used to retrieve the user ID and password information.
You also can specify an error page that displays when authentication fails.

About this task

If additional authentication or additional processing is required before and after authentication, servlet
filters are an option. Servlet filters can dynamically intercept requests and responses to transform or to use
the information that is contained in the requests or responses. One or more servlet filters can be attached
to a servlet or to a group of servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and
HTML pages. All of the attached servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet Version 2.3 specification-complaint
web container. The form login servlet performs the authentication and servlet filters perform additional
authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login
page support or for the /j_security_check URL. The j_security_check is posted by a form login page with
the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use the user name parameter and password information to perform more
authentication or other special needs.

Procedure
1. A servlet filter implements the javax.servlet.Filter class. Implement three methods in the filter class:

v init(javax.servlet.FilterConfig cfg). This method is called by the container once, when the servlet
filter is placed into service. The FilterConfig passed to this method contains the init-parameters of
the servlet filter. Specify the init-parameters for a servlet filter during configuration using the
assembly tool.

v destroy. This method is called by the container when the servlet filter is taken out of a service.

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This method is called by
the container for every servlet request that maps to this filter before invoking the servlet. The
FilterChain chain that is passed to this method can be used to invoke the next filter in the chain of
filters. The original requested servlet runs when the last filter in the chain calls the chain.doFilter
method. Therefore, all filters call the chain.doFilter method for the original servlet to run after
filtering. If an additional authentication check is implemented in the filter code and results in failure,
the original servlet does not run. The chain.doFilter method is not called and can be redirected to
some other error page.

910 Developing WebSphere applications

2. If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the web.xml
deployment descriptor of the application. Place the servlet filter class file in the WEB-INF/classes
directory of the application.

Example

An example of a servlet filter.

This login filter can map to the /j_security_check URL to perform pre-login and post-login actions.
import javax.servlet.*;

public class LoginFilter implements Filter {
protected FilterConfig filterConfig;
// Called once when this filter is instantiated.
// If mapped to j_security_check, called
// very first time j_security_check is invoked.
public void init(FilterConfig filterConfig) throws ServletException {

this.filterConfig = filterConfig;
}

public void destroy() {
this.filterConfig = null;
}

// Called for every request that is mapped to this filter.
// If mapped to j_security_check,
// called for every j_security_check action
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)

throws java.io.IOException, ServletException {
// perform pre-login action here
chain.doFilter(request, response);
// calls the next filter in chain.
// j_security_check if this filter is
// mapped to j_security_check.
// perform post-login action here.

}
}

Using servlet filters to perform pre-login and post-login processing during form login

This example illustrates one way that the servlet filters can perform pre-login and post-login processing
during form login.
Servlet filter source code: LoginFilter.java
/**
* A servlet filter example: This example filters j_security_check and
* performs pre-login action to determine if the user trying to log in
* is in the revoked list. If the user is on the revoked list, an error is
* sent back to the browser.
*
* This filter reads the revoked list file name from the FilterConfig
* passed in the init() method. It reads the revoked user list file and
* creates a revokedUsers list.
*
* When the doFilter method is called, the user logging in is checked
* to make sure that the user is not on the revoked Users list.
*
*/

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class LoginFilter implements Filter {

protected FilterConfig filterConfig;

java.util.List revokeList;

/**
* init() : init() method called when the filter is instantiated.
* This filter is instantiated the first time j_security_check is
* invoked for the application (When a protected servlet in the
* application is accessed).
*/
public void init(FilterConfig filterConfig) throws ServletException {

this.filterConfig = filterConfig;

// read revoked user list
revokeList = new java.util.ArrayList();
readConfig();

}

Chapter 21. Developing security 911

/**
* destroy() : destroy() method called when the filter is taken
* out of service.
*/
public void destroy() {

this.filterConfig = null;
revokeList = null;

}

/**
* doFilter() : doFilter() method called before the servlet to
* which this filter is mapped is invoked. Since this filter is
* mapped to j_security_check,this method is called before
* j_security_check action is posted.
*/
public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse res = (HttpServletResponse)response;

// pre login action

// get username
String username = req.getParameter("j_username");

// if user is in revoked list send error
if (revokeList.contains(username)) {
res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
return;
}

// call next filter in the chain : let j_security_check authenticate
// user
chain.doFilter(request, response);

// post login action

}

/**
* readConfig() : Reads revoked user list file and creates a revoked
* user list.
*/
private void readConfig() {

if (filterConfig != null) {

// get the revoked user list file and open it.
BufferedReader in;
try {

String filename = filterConfig.getInitParameter("RevokedUsers");
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe) {
return;

}

// read all the revoked users and add to revokeList.
String userName;
try {

while ((userName = in.readLine()) != null)
revokeList.add(userName);

} catch (IOException ioe) {
}

}

}

}

Important: In the previous code sample, the line that begins public void doFilter(ServletRequest
request is broken into two lines for illustrative purposes only. The public void
doFilter(ServletRequest request line and the line after it are one continuous line.

An example of the web.xml file that shows the LoginFilter filter configured and mapped to the
j_security_check URL:
<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>

<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>RevokedUsers</param-name>

912 Developing WebSphere applications

<param-value>c:\WebSphere\AppServer\installedApps\
<app-name>\revokedUsers.lst</param-value>

</init-param>
</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>

<url-pattern>/j_security_check</url-pattern>
</filter-mapping>

An example of a revoked user list file:
user1
cn=user1,o=ibm,c=us
user99
cn=user99,o=ibm,c=us

Configuring servlet filters for form login processing:

IBM Rational Application Developer or an assembly tool can configure the servlet filters. Two steps are
involved in configuring a servlet filter.

Procedure

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init method of the servlet filter.After
configuring the servlet filter, the web.xml application deployment descriptor contains a servlet filter
configuration similar to the following example:

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
<init-param>// optional
<param-name>ParameterName</param-name>
<param-value>ParameterName</param-value>

</init-param>
</filter>

2. Map the servlet filter to a URL or a servlet.

After mapping the servlet filter to a URL or a servlet, the web.xml application deployment descriptor
contains servlet mapping similar to the following example:

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>

// can be servlet <servlet>servletName</servlet>
</filter-mapping>

Example

You can use servlet filters to replace the CustomLoginServlet servlet, and to perform additional
authentication, auditing, and logging.

The WebSphere Application Server Samples provide a form login sample that demonstrates how to use
the WebSphere Application Server login facilities to implement and configure form login procedures. The
sample integrates the following technologies to demonstrate the WebSphere Application Server and Java
Platform, Enterprise Edition (Java EE) login functionality:

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package.

Chapter 21. Developing security 913

Secure transports with JSSE and JCE programming interfaces
This topic provides detailed information about transport security using Java Secure Socket Extension
(JSSE) and Java Cryptography Extension (JCE) programming interfaces. Within this topic, there is a
description of the IBM version of the Java Cryptography Extension Federal Information Processing
Standard (IBMJCEFIPS).

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server.
JSSE provides the application programming interface (API) framework and the implementation of the APIs
for Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for
data encryption, message integrity, and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 5. The API package for
JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 6 API
documentation that is located at http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERefGuide.html.

Several JSSE providers ship with the Java 2 SDK Version 5 that comes with WebSphere Application
Server. The IBMJSSE provider is used in previous WebSphere Application Server releases. Associated
with the IBMJSSE provider is the IBMJSSEFIPS provider, which is used when FIPS is enabled on the
server. Both of these providers do not work with the Java Message Service (JMS) and HTTP transports in
WebSphere Application Server Version 8.5. These transports take advantage of the J2SDK Verison 5
network input/output (NIO) asynchronous channels.

For more information on the new IBMJSSE2 provider, please review the documentation located at
http://www.ibm.com/developerworks/java/jdk/security/60/.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography
Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key
manager factories, and trust manager factories. The following table summarizes which aspects can be
customized, what the defaults are, and which mechanisms are used to provide customization.

Table 96. Customizable items. You can customize the following key aspects:
Customizable item Default How to customize

X509Certificate X509Certificate implementation from
IBM

The cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM The java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE2 A security.provider.n= line in security properties file. See
description.

Default keystore None The * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists. Otherwise,
cacerts

The * javax.net.ssl.trustStore system property

Default key manager factory IbmX509 The ssl.KeyManagerFactory.algorithm security property

Default trust manager factory IbmX509 The ssl.TrustManagerFactory.algorithm security property

For aspects that you can customize by setting a system property, statically set the system property by
using the -D option of the Java command. You can set the system property using the administrative
console, or set the system property dynamically by calling the java.lang.System.setProperty method in
your code: System.setProperty(propertyName,"propertyValue").

914 Developing WebSphere applications

For aspects that you can customize by setting a Java security property, statically specify a security
property value in the java.security properties file. The security property is propertyName=propertyValue.
Dynamically set the Java security property by calling the java.security.Security.setProperty method in your
code.

The java.security properties file is located in the following directory:

app_server_root/java/jre/lib/security directory.

Application Programming Interface

The JSSE provides a standard application programming interface (API) that is available in packages of the
javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:
v Sockets and SSL sockets
v Factories to create the sockets and SSL sockets
v Secure socket context that acts as a factory for secure socket factories
v Key and trust manager interfaces
v Secure HTTP URL connection classes
v Public key certificate API

You can find more information documented for the JSSE APIs if you access the following information:

Version 1.6

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ website.

2. Click Java 1.6.

3. Click Javadoc HTML documentation in the Java Secure Socket Extension (JSSE) Guide
section.

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The
Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. You can
access the samples in the following location:

Version 1.6

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ website.

2. Click Java 1.6.

3. Click jssedocs_samples.zip in the Java Secure Socket Extension (JSSE) Guide section.

Table 97. Extracted files. This table lists the following extracted files:
Files Description

ClientJsse.java Demonstrates a simple client and server interaction using JSSE. All enabled cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the PKCS12 keystore file. All
enabled cipher suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the PKCS12 keystore file. All
enabled cipher suites are used.

UseHttps.java Demonstrates accessing an SSL or non-SSL web server using the Java protocol handler of the
com.ibm.net.ssl.www.protocol class. The URL is specified with the http or https prefix. The HTML
that is returned from this site is displayed.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: This list is for reference only.
v java.util.PropertyPermission "java.protocol.handler.pkgs", "write"

Chapter 21. Developing security 915

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/

v java.lang.RuntimePermission "writeFileDescriptor"
v java.lang.RuntimePermission "readFileDescriptor"
v java.lang.RuntimePermission "accessClassInPackage.sun.security.x509"
v java.io.FilePermission "${user.install.root}${/}etc${/}.keystore", "read"
v java.io.FilePermission "${user.install.root}${/}etc${/}.truststore", "read"

For the IBMJSSE provider:
v java.security.SecurityPermission "putProviderProperty.IBMJSSE"
v java.security.SecurityPermission "insertProvider.IBMJSSE"

For the SUNJSSE provider:
v java.security.SecurityPermission "putProviderProperty.SunJSSE"
v java.security.SecurityPermission "insertProvider.SunJSSE"

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug
tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE is installed.

Documentation

See the Security: Resources for learning topic for documentation references to JSSE.

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere
Application Server. JCE provides a framework and implementations for encryption, key generation, key
agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes
symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE
cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to
SunJCE, except that the IBMJCE offers more algorithms:
v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)
v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)
v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)
v Message authentication code (HmacSHA1, HmacMD5)
v Key agreement algorithm (DiffieHellman)
v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)
v Key store (JKS, JCEKS, PKCS12, JCERACFKS [z/OS only])

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the information on JCE on the following website: http://www.ibm.com/
developerworks/java/jdk/security/60/.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard
(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere
Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

916 Developing WebSphere applications

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the
JCE framework by implementing the APIs that are defined by the JCE. The JCE APIs cover:
v Symmetric bulk encryption, such as DES, RC2, and IDEA
v Symmetric stream encryption, such as RC4
v Asymmetric encryption, such as RSA
v Password-based encryption (PBE)
v Key agreement
v Message authentication codes

There is more information documented for the JCE APIs on the http://www.ibm.com/developerworks/
java/jdk/security/ website.

Samples using Java Cryptography Extension

There are samples located on the http://www.ibm.com/developerworks/java/jdk/security/ website in
the jceDocs_samples.zip file. Unzip the file and locate the following samples in the jceDocs/samples
directory:

Table 98. Samples using Java Cryptography Extension. This table describes samples using Java Cryptography
Extension.
File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a public key and a private key) and use the
key to digitally sign a message using the SHA1withDSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and how to do Mars encryption and
decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2 and MD5 algorithms

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how to do RSA encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a public key and a private key) and use the
key to digitally sign a message using the SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 certificates

Documentation

Refer to the Security: Resources for learning topic for documentation on JCE.

Configuring Federal Information Processing Standard Java Secure
Socket Extension files
Use this topic to configure Federal Information Processing Standard Java Secure Socket Extension files.

Chapter 21. Developing security 917

About this task

In WebSphere Application Server, the Java Secure Socket Extension (JSSE) provider used is the
IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java Cryptography
Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal Information Processing
Standard (FIPS)-approved because it does not perform cryptography. However, the JCE provider requires
FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can
utilize. The IBMJCEFIPS provider that is shipped in WebSphere Application Server Version 8.5 supports
the following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If
IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to
the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS. When enabling the Use the
United States Federal Information Processing Standard (FIPS) algorithms option on the server SSL
certificate and key management panel, the runtime always uses IBMJSSE2, despite the contextProvider
that you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS requires the SSL
protocol be TLS, the runtime always uses TLS when FIPS is enabled, regardless of the SSL protocol
setting in the SSL repertoire. This simplifies the FIPS configuration in Version 8.5 because an administrator
needs to enable only the Use the United States Federal Information Processing Standard (FIPS)
algorithms option on the server SSL certificate and key management panel to enable all transports using
SSL.

Procedure
1. Click Security > SSL certificate and key management > Manage FIPS.

2. Select the Enable FIPS 140-2 option and click Apply. This option makes IBMJSSE2 and IBMJCEFIPS
the active providers.

3. Accommodate Java clients that must access enterprise beans.

Change the com.ibm.security.useFIPS property value from false to true in the profile_root/
properties/ssl.client.props file.

4. Ensure that the com.ibm.ssl.protocol property within the profile_root/properties/ssl.client.props
file is set to TLS.

5. Ensure that the java.security file includes the provider.

What to do next

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption
capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer might not have TLS enabled. To enable TLS, open the Internet
Explorer browser and click Tools > Internet Options. On the Advanced tab, select the Use TLS 1.0
option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

918 Developing WebSphere applications

v If you have an administrative client that uses a SOAP connector and you enable FIPS, add the following
line to the profile_root/properties/soap.client.props file:
com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the SSL
certificate and key management panel, the Lightweight Third-Party Authentication (LTPA) token format is
not backwards-compatible with previous releases of WebSphere Application Server. However, you can
import the LTPA keys from a previous version of the application server.

Attention: The following error might occur when you attempt to stop WebSphere Application Server after
enabling the FIPS option:
ADMU3007E: Exception com.ibm.websphere.management.exception.ConnectorException

Uncomment the following entry in the java.security file if it was previously removed or commented out,
then restart the server:
security.provider.2=com.ibm.crypto.provider.IBMJCE

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.
IBMJSSE2 must use IBMJCEFIPS when utilizing cryptographic services for FIPS.

The following FIPS 140-2 approved cryptographic providers that are the only devices that are supported
with the FIPS option:

v IBMJCEFIPS (certificate 376)

v IBM Cryptography for C (ICC) (certificate 384)

The relevant certificates are listed on the NIST website: Cryptographic Module Validation Program FIPS
140-1 and FIPS 140-2 Pre-validation List

To unconfigure the FIPS provider, reverse the changes that you made in the previous steps. After you
reverse the changes, verify that you have made the following changes to the sas.client.props,
soap.client.props, and java.security files:

v In the ssl.client.props file, you must change the com.ibm.security.useFIPS value to false.

v In the java.security file, you must change the FIPS provider to a non-FIPS provider.

If you are using the IBM SDK java.security file, you must change the first provider to a non-FIPS
provider as shown in the following example:

#security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.1=com.ibm.crypto.provider.IBMJCE
security.provider.2=com.ibm.jsse.IBMJSSEProvider
security.provider.3=com.ibm.jsse2.IBMJSSEProvider2
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
#security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

If you are using the Sun JDK java.security file, you must change the third provider to a non-FIPS
provider as shown in the following example:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.security.jgss.IBMJGSSProvider
security.provider.3=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.4=com.ibm.crypto.provider.IBMJCE
security.provider.5=com.ibm.jsse.IBMJSSEProvider
security.provider.6=com.ibm.jsse2.IBMJSSEProvider2
security.provider.7=com.ibm.security.cert.IBMCertPath
#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

WebSphere Application Server security standards configurations
WebSphere Application Server can be configured to work with various security standards, which are
typically used to meet security requirements required by the government.

Note: WebSphere Application Server integrates cryptographic modules, which include Java Secure Socket
Extension (JSSE) and Java Cryptography Extension (JCE). Most of the requirements in the
standards are handled in the JSSE and JCE, which must undergo the certification process to meet

Chapter 21. Developing security 919

http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://csrc.nist.gov/cryptval/140-1/140val-all.htm

government standards. WebSphere Application Server must be configured to run with the JSSE and
JCE enabled for a particular standard, and now supports the FIPS 140-2, SP800-131 and Suite B
security standards.

v FIPS 140-2 are Federal Information Processing Standards (FIPS) that specify requirements on
cryptographic modules. WebSphere Application Server has been able to configure using this standard
the longest. Many users can be configured to use this level, but might be required to move up to the
newer SP800-131 or Suite B standard.

See The National Institute of Standards and Technology web site for more information about the 140-2
standard.

To configure FIPS 140-2, see the topic “Configuring Federal Information Processing Standard Java
Secure Socket Extension files”.

v SP800-131 is a requirement originated by the National Institute of Standards and Technology (NIST)
which requires longer key lengths and stronger cryptography. The specification also provides a transition
configuration to enable users to move to a strict enforcement of SP800-131. The transition configuration
also enables users to run with a mixture of settings from both FIPS140-2 and SP800-131. SP800-131
can be run in two modes, transition and strict.

Strict enforcement of SP800-131 requirements on WebSphere Application server includes the following:

– The use of the TLSv1.2 protocol for the Secure Sockets Layer (SSL) context.

– Certificates must have a minimum length of 2048. Elliptical Curve (EC) certificate require a minimum
size of 244-bit curves.

– Certificates must be signed with a signature algorithm of SHA256, SHA384, or SHA512. Valid
signatureAlgorithms include:

- SHA256withRSA

- SHA384withRSA

- SHA512withRSA

- SHA256withECDSA

- SHA384withECDSA

- SHA512withECDSA

– SP800-131 approved Cipher suites

See The National Institute of Standards and Technology web site for more details about the SP800-131
standard.

See the topic “Transitioning WebSphere Application Server to the SP800-131 security standard” for
information on how to transition WebSphere Application Server to the SP800-131 strict standard. See
the topic “Configuring WebSphere Application Server for SP800-131 standard strict mode” for
information on how to configure SP800-131.

v Suite B is a requirement originated by the National Security Agency (NSA) to specify a cryptographic
interoperability strategy. This standard is similar to SP800-131 with some tighter restrictions. Suite B can
run in 2 modes: 128-bit or 192-bit. If using 192-bit mode, users must apply the unrestricted policy file to
the JDK so that the stronger cipher required for the 192-bit mode can be used.

See the topic "Configuring WebSphere Application Server for the Suite B security standard" for
information on to configure Suite B.

Suite B requirements on WebSphere Application Server includes the following:

– The use of the TLSv1.2 protocol for the SSL Context

– Suite B approved Cipher suites

– Certificates:

- 128 bit mode certificates must be signed with SHA256withECDSA

- 192 bit mode certificates must be signed with SHA384withECDSA

– Ciphers:

- SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

920 Developing WebSphere applications

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

- SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.

Properties used to enable the Security Standards

The IBM virtual machine for Java (JVM) runs in a given security mode based on system properties.
WebSphere Application Server sets these system properties based on security configuration settings. The
security configuration can be set up through the administrative console or through scripting admin tasks. If
an application sets these properties directly it can affect WebSphere Application Server SSL
communication.

Table 99. JVM system properties to enable the security standard

Security standard System property to enable Valid values

FIPS 140-2 com.ibm.jsse2.usefipsprovider true or false

SP800-131 com.ibm.jsse2.sp800-131 transition or strict

Suite B com.ibm.jsse2.suiteB 128 or 192

WebSphere Application Server configuration clears out all of these properties if they are set, then sets
them to how the security configuration is specified. WebSphere Application Server enables the security
standard based on the custom properties set in the security configuration.

WebSphere Application Server security custom properties to enable the security
standard

Table 100. WebSphere Application Server security custom properties to enable the security standard
Security standard Security custom properties JVM system property

FIPS 140-2 com.ibm.security.useFips=true
com.ibm.websphere.security.FIPSLevel=FIPS140-2

com.ibm.jsse2.usefipsprovider=true

SP800-131- transition com.ibm.security.useFips=true
com.ibm.websphere.security.FIPSLevel=transition

com.ibm.jsse2.sp800-131=transition

SP800-131 – strict com.ibm.security.useFips=true
com.ibm.websphere.security.FIPSLevel=SP800-131

com.ibm.jsse2.sp800-131=strict

Suite B 128 com.ibm.security.useFips=true
com.ibm.websphere.security.suiteB=128

com.ibm.jsse2.suiteB=128

Suite B 192 com.ibm.security.useFips=true
com.ibm.websphere.security.suiteB=192

com.ibm.jsse2.suiteB=192

Convert certificates
Use this page to convert certificates to the selected security standard. All certificates in keystores
associated with an Secure Socket Layer (SSL) configuration are converted.

To view this administrative console page, click Security > SSL certificate and key management >
Manage FIPS > Convert certificates.

Algorithm: Specifies the signature algorithm used to convert the certificate to the selected security
standard.

The following choices are available:

Strict Select for the strict enforcement of the SP800-131 standard.

Strict enforcement of SP800-131 requirements on WebSphere Application Server includes the
following:

v The use of the TLSv1.2 protocol for the Secure Sockets Layer (SSL) context.

v Certificates must have a minimum length of 2048. Elliptical Curve (EC) certificate require a
minimum size of 244-bit curves.

Chapter 21. Developing security 921

v Certificates must be signed with a signature algorithm of SHA256, SHA384, or SHA512. Valid
signatureAlgorithms include:

– SHA256withRSA

– SHA384withRSA

– SHA512withRSA

– SHA256withECDSA

– SHA384withECDSA

– SHA512withECDSA

v SP800-131 approved Cipher suites

Suite B with 128 bit keys
This requirement places some tighter restrictions on the SP800-131 specification. 128-bit mode
certificates must be signed with SHA256withECDSA.

Suite B with 192 bit keys
192 bit mode certificates must be signed with SHA384withECDSA.

To run in 192-bit mode, the unrestricted policy files must be in place on the JDK.

New certificate key size: Specifies the key size to use when converting the certificates.

The valid values are 512, 1024, 2048, 4096 and 8192. The default value is 2048.

Note: Elliptical Curve signature algorithms require specific sizes, so you must provide a size.

Certificates that can not be converted: Lists the certificates that are not compliant with the specified
security standard and cannot be converted.

If certificates show up listed in this box, the server is unable to convert the certificates for you. You must
replace these certificates with ones that meet Suite B requirements. Reasons why the server cannot
convert the certificates might include:

v The certificate was created by a Certificate Authority (CA).

v The certificate is in a read-only keystore.

Manage FIPS
Use this page to disable Federal Information Processing Standards (FIPS) or to enable security standards
that are required by the government.

WebSphere Application Server integrates cryptographic modules, which include Java Secure Socket
Extension (JSSE) and Java Cryptography Extension (JCE). JSSE and JCE must undergo the certification
process to meet government standards, and WebSphere Application Server must be configured to use
them as specified by the standards.

To view this administrative console page, click Security > SSL certificate and key management >
Manage FIPS.

Disable FIPS: Select to disable FIPS, which is the default.

Data type: Default: Range:
Boolean Enabled Enabled or Disabled

Enable FIPS 140-2: Select to enable FIPS 140-2. This option makes IBMJSSE2 and IBMJCEFIPS the
active providers.

922 Developing WebSphere applications

Federal Information Processing Standards (FIPS) specifies requirements on cryptographic modules.
WebSphere Application Server has been able to configure using the FIPS 140-2 standard the longest.
Many users can be configured to use this level, but might be required to move up to the newer SP800-131
or Suite B standard.

Data type: Default: Range:
Boolean Enabled Enabled or Disabled

Enable SP800-131: Select to enable SP800-131.

SP800-131 is a requirement originated by the National Institute of Standards and Technology (NIST) which
requires longer key lengths and stronger cryptography. The specification also provides a transition
configuration to enable users to move to a strict enforcement of SP800-131. The transition configuration
also enables users to run with a mixture of settings from both FIPS140-2 and SP800-131. SP800-131 can
be run in two modes, transition and strict.

Data type: Default: Range:
Boolean Enabled Enabled or Disabled

Enable Suite B: Accept 128 bit keys: Select to specify that suite B cryptography is used, and is
configured to accept a 128-bit key size. Keystore certificate algorithms require Elliptical curve (EC)
cryptography.

Data type: Default: Range:
Boolean Enabled Enabled or Disabled

Enable Suite B: Accept 192-bit keys: Select to specify that suite B cryptography is used, and is
configured to accept a 192-bit key size. Keystore certificate algorithms require Elliptical curve (EC)
cryptography.

Suite B can run in 2 modes: 128-bit or 192-bit. If using 192-bit mode, you must apply the unrestricted
policy file to the JDK so that the stronger cipher required for the 192-bit mode can be used.

Data type: Default: Range:
Boolean Enabled Enabled or Disabled

Convert certificates: Select to convert certificates to the selected security standard. All certificates in
keystores associated with an Secure Socket Layer (SSL) configuration are converted.

Configuring WebSphere Application Server for the Suite B security
standard
You can configure WebSphere Application Server to use the new Suite B security standard.

Before you begin

Read the “WebSphere Application Server security standards configurations” topic for more background
information regarding security standards.

About this task

The National Security Agency (NSA) created a cryptographic interoperability strategy called Suite B. It
places specific requirements on the National Institute of Standards and Technology (NIST) SP800-131
standard.

Chapter 21. Developing security 923

Suite B requirements:

WebSphere Application Server must be compliant with the following Suite B requirements:

v SSL configuration must use the TLSv1.2 protocol.

v The com.ibm.jsse.suiteb system property must be set to 128 or 192.

v Certificates running in 128-bit mode must be created with the SHA256withECDSA signature algorithm.
Certificates running in 192-bit mode must be created with the SHA384withECDSA signature algorithm.

Note: To run in 192-bit mode, the unrestricted policy files must be in place on the JDK.

v Suite B approved cipher suites must be used.

To configure the server for the Suite B standard:

Procedure
1. Click Security > SSL certificate and key management > Manage FIPS To run in a Suite B mode, all

of the certificates used for SSL on the server must be converted to certificates that comply with Suite B
requirements.

2. To convert certificates, under Related Items click Convert Certificates.

3. Select the radio button labeled 128-bit or 192-bit in the Algorithm box.

Note: Elliptical Curve signature algorithms require specific sizes, so you must provide a size.

4. Click Apply/Save. If no certificates show up in the box labeled Certificates that can not be
converted, then you can enable the standard.

If certificates show up listed in the box labeled Certificates that can not be converted, the server is
unable to convert the certificates for you. You must replace these certificates with ones that meet Suite
B requirements. Reasons why the server cannot convert the certificates might include:

v The certificate was created by a Certificate Authority (CA).

v The certificate is in a read-only keystore.

After certificates are converted to meet the Suite B specifications, follow the remaining steps to enable
the Suite B standard.

5. Click SSL certificate and key management > Manage FIPS.

6. Select the Suite B: Accept 128 bit key for 128-bit mode or the Suite B: Accept 192 bit key for
192-bit mode.

7. Click Apply/Save.

8. Restart the servers and manually sync the nodes for the Suite B standard to take effect.

When these changes are applied and the server is restarted, the SSL configurations on the server is
modified to use the TLSv1.2 protocol, and the com.ibm.jsse.suiteb system property is set to the
desired Suite B mode. The SSL configuration uses the appropriate SSL ciphers for the standard.

There are wsadmin tasks also available that can enable the Suite B standard using scripting. :

v Check the status of certificates for the security standard by using the
listCertStatusForSecurityStandard task.

v Convert certificates for the security standard by using the convertCertForSecurityStandard task.

v Enable the security standard by using the enableFips task.

v To see the security standard setting, use the getFipsInfo task.

9. Once the server is configured for SP800-131 strict mode, the ssl.client.props file must be modified
so that administrative clients are running in SP800-131 strict mode. They are unable to make a SSL
connection to the server with the change. Edit the ssl.client.props file by doing the following:

a. Modify com.ibm.security.useFIPS to be set to true.

b. Add the com.ibm.jsse.suiteb property, and set it to 128 or 192.

924 Developing WebSphere applications

|
|

|
|
|

|

|

|
|

c. Change the com.ibm.ssl.protocol property to TLSv1.2.

What to do next

The Suite B standard requires that the SSL connection use the TLSv1.2 protocol. For a browser to access
the administrative console or an application, the browser must support and first be configured to use the
TLSv1.2 protocol.

Note: When enabling the security standards on a Network Deployed, the node and deployment manager
can be in an incompatible protocol state. Since configuring the security standard requires the server
to be restarted, it is recommended that all node agents and servers be stopped, leaving the
deployment manager running. Once the configuration changes are made through the console,
restart the deployment manager.

Manually sync the nodes with syncNode, and start the node agents and servers. To use syncNode, you
might need to update the ssl.client.props file to communicate with the deployment manager.

Transitioning WebSphere Application Server to the SP800-131 security
standard
The National Institute of Standards and Technology (NIST) Special Publications 800-131 standard
strengthens algorithms and increases the key lengths to improve security. The standard also provides for a
transition period to move to the new standard. You can configure WebSphere Application Server for
SP800-131 standard transition mode.

Before you begin

Read the "WebSphere Application Server security standards configurations" topic for more background
information regarding security standards.

About this task

The transition period enables a user to run in a mixed environment of settings not supported under the
standard along with those that are supported. The NIST SP800-131 standard requires that users be
configured for strict enforcement of the standard by a specific timeframe. See The National Institute of
Standards and Technology web site for more details.

The transition options can be very useful when trying to get to strict SP800-131. The servers can accept
a mixture old settings and new requirements. For example. they can convert certificates but continue to
use the TLS protocol.

WebSphere Application Server can be configured to run SP800-131 in a transition mode or a strict
mode. For information on how to configure strict mode. read the Configuring WebSphere Application
Server for strict mode SP800-131 security standard topic.

To run in the SP800-131 transition mode, the server must be in a specific configuration setting as well.
Other strict requirements can be include as wanted.

v The com.ibm.jsse2.sp800-131 system property must be set to transition for the JSSE to run in the
transition mode.

v The SSL configuration protocols must be one of the TLS settings. Valid values include TLS, TLSv1,
TLSv1.1, and TLSv1.2.

Procedure
1. Click Security > SSL certificate and key management > Manage FIPS.

2. Select the Enable SP800-131 radio button.

Chapter 21. Developing security 925

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

3. Select the Transition radio button.

4. You have the choice to change the protocols in SSL configuration to TLSv1.2 by optionally selecting
the Update the SSL configuration to require TLSv1.2 box. If you do not select this box, all SSL
configurations are set to TLS.

5. Click Apply/Save.

6. Restart the servers.

When these changes are applied, and the server is restarted, all of the SSL configuration on the
server are modified to use the TLS or TLSv1.2 protocol, and the com.ibm.jsse2.sp800-131 system
property is set to transition. The SSL configuration uses the appropriate SSL ciphers for the
standard.

Before you can move to the strict mode certificate, the protocol in the configuration must meet the
strict requirements.

You can go to directly to the SSL configuration and set protocols to TLSv1.2 by doing the following:

7. Click Security > SSL certificate and key management > SSL Configurations.

8. Select a SSL configuration from the collection panel.

9. Under Related Items, select Quality of protection (QoP).

10. Select TLSv1.2 from the pull-down box labeled Protocol

11. Click Apply/Save. To change the SSL protocol using scripting, the modifySSLConfig task can also be
used.

Certificates must have a minimum size of 2048 (244 if an Elliptical Curve certificate), and signed with
SHA256, SHA384, or SHA512. You can create new ones on the console and replace the old one, or
import certificates that meet the standards requirements.

There are a number of options you can use to replace certificates.

v Use the Convert Certificate panel. This panel converts all certificates to meet the standard
specified.

a. Click Security > SSL certificate and key management > Manage FIPS > Convert
Certificate

Note: If there are any certificates in the box labeled Certificates that can not be converted,
then a certificate can not be converted using this option.

b. Select the Strict radio button and choose which signatureAlgorithm to use when creating the
new certificates from the pull-down box.

c. Select the size of the certificate from the pull-down box labeled New Certificate Key Size.
Note that Elliptical Curve signature algorithms require a specific size, so there is no need to
provide a size.

d. Click Apply/Save.

The convertCertForSecurityStandard scripting task can also be used to convert all certificates
to meet a specified standard.

v Use the personal certificate panels to create new certificates and replace a certificate that does not
meet the requirements by doing the following:

a. Click Security > SSL certificate and key management > Key stores and certificates.

b. Select a keystore from the collection panel.

c. Select Personal Certificate.

1) From the pull-down list on the Create button, select Self-Signed Certificate.

2) Fill in an alias for the certificate. Select a signature algorithm for the certificate that is
signed with SHA256, SHA384, or SHA512. Choose a size that is 2048 or greater. Note that
Elliptical Curve signature algorithms require a specific size, so there is no need to specify a
size.

3) Click Apply/Save.

926 Developing WebSphere applications

4) Go back to the Personal certificate collection panel and select the certificate that does not
meet the standard. Click Replace.

5) On the Replace panel, select the certificate created that meets the standard from the
pull-down list in the box labeled Replace with.

6) Select Delete old certificate after replacement, and Delete old signer boxes.

7) Click Apply/Save.

Note: To replace chained certificates, a root certificate must be created that meets the
standard. Follow the previous navigation path to the root certificate in the
defaultRootStore, then create a chained certificate with that new root certificate.

The createSelfSigneCertificate scripting task can also be used to create self-signed
certificate. The replaceCertificate scripting task can also be used to replace the new
certificate for the old one.

v Use the personal certificate panels to import certificates and to replace the certificate that does not
meet the requirements. Some certificate come from external sources such as a Certificate Authority
(CA).

a. Click Security > SSL certificate and key management > Key stores and certificates.

b. Select a keystore from the collection panel.

c. Select Personal Certificate.

1) Select Import Certificate.

2) Fill in the information needed to access the certificate in an existing keystore file.

3) Click Apply/Save.

4) Go back to the Personal certificate collection panel and select the certificate that does not
meet the standard. Click the Replace button.

5) On the Replace panel, select the certificate created that meets the standard from the
pull-down list in the box labeled Replace with. Select Delete old certificate after
replacement and Delete old signer boxes.

6) Click Apply/Save.

The importCertificate scripting task can also be used to import a certificate. The
replaceCertificate scripting task can also be used to replace the new certificate for the old
one.

12. To enable strict SP800-131, click Security > SSL certificate and key management > Manage FIPS.

13. Click the Enable SP800-131.

14. Click the Strict.

15. Click Apply/Save.

16. Restart your servers and manually sync your nodes for the changes to take effect.

17. Configure the client ssl.client.props file for the transition mode SP800-131 standard. Once the
server is configured for SP800-131 transition mode, the ssl.client.props file might need to modified
so that the admin client can connect to the server.

Edit the ssl.client.props file. Change the com.ibm.ssl.protocol property to match the protocol the
server is using.

18. Configure the client ssl.client.props file for strict mode SP800-131 standard. Once the server is
configured for SP800-131 strict mode, the ssl.client.props file must be modified so that the admin
client is running in SP800-131 strict mode. It is not able to make a SSL connection to the server
without the change.

Edit the ssl.client.props file as follows:

a. Modify the com.ibm.security.useFIPS to be set totrue.

b. Add the com.ibm.websphere.security.FIPSLevel=SP800-131 just below the useFips property.

Chapter 21. Developing security 927

c. Change the com.ibm.ssl.protocol property to TLSv1.2

What to do next

The browser used to access the administrative console or an application must use a protocol that is
compatible with the server. If the server is running in a transition mode, the browser must be set to use the
protocol that matches the server. The SP800-131 standard requires that the SSL connection use the
TLSv1.2 protocol, so the browser must support TLSv1.2 and use it to access the administrative console.

Configuring WebSphere Application Server for SP800-131 standard
strict mode
You can configure WebSphere Application Server to use the SP800-131 standard strict mode.

Before you begin

Read the “WebSphere Application Server security standards configurations” topic for more background
information regarding security standards.

About this task

The National Institute of Standards and Technology (NIST) Special Publications (SP) 800-131 standard
strengthens algorithms and increases the key lengths to improve security. The standard also provides for a
transition period to move to the new standard. The transition period enables a user to run in a mixed
environment of settings not supported under the standard along with those that are supported. The NIST
SP800-131 standard requires that users be configured for strict enforcement of the standard by a specific
timeframe. See The National Institute of Standards and Technology web site for more details.

WebSphere Application Server can be configured to run SP800-131 in a transition mode or a strict
mode. For instructions on how to configure transition mode, read the topic “Transitioning WebSphere
Application Server to the SP800-131 Security Standard”.

To run in strict mode, there are several changes necessary to the server configuration:

v Secure Sockets Layer (SSL) configuration must use the TLSv1.2 protocol.

v The com.ibm.jsse2.sp800-131 system property must be set to strict for the JSSE to run in a strict
SP800-131 mode.

v Certificates used for SSL communication must have a minimum length of 2048, and for Elliptical Curve
(EC) certificates they must have a minimum length of 244.

v Certificates must be signed with a signature algorithm of SHA256, SHA384, or SHA512.

v SP800-131 approved cipher suites must be used.

.

Procedure
1. Click Security > SSL certificate and key management > Manage FIPS To run in a strict SP800-131

mode, all of the certificates used for SSL on the server must be converted to certificates that comply
with the SP800-131 requirements.

2. To convert certificates, under Related Items, click Convert Certificates.

3. Select the radio button marked Strict, and choose which signatureAlgorithm to use when creating the
new certificates from the pull-down box.

4. Select the size of the certificate from the pull-down box labeled New Certificate Key Size.

Note: If you choose an Elliptical Curve signature algorithm, they require specific sizes; you are not
able to fill in a size. The correct size is used instead.

928 Developing WebSphere applications

http://csrc.nist.gov/publications/PubsFIPS.html

5. If no certificates are displayed in the box labeled Certificates that can not be converted, click
Apply/Save.

6. If certificates are displayed in the box labeled Certificates that can not be converted, the server is
unable to convert the certificate for you. You must replace these certificates with ones that meet
SP800-131 requirements. Reasons why the server can not convert a certificate for you include:

v The certificate was created by a Certificate Authority (CA)

v The certificate is in a read only keystore

Once certificates are converted to meet the SP800-131 specification, perform the following steps to
enable SP800-131 strict mode.

7. Click SSL certificate and key management > Manage FIPS.

8. Enable the radio button labeled Enable SP800-131.

9. Enable the radio button labeled Strict.

10. Click Apply/Save.

11. Restart the servers and manually sync the nodes for the SP800-131 strict mode to take effect.

When these changes are applied, and the server is restarted, all of the SSL configuration on the
server are modified to use the TLSv1.2 protocol and the com.ibm.jsse2.sp800-131 system property is
set to strict. The SSL configuration uses the appropriate SSL ciphers for the standard.

There are several wsadmin tasks that can be used to enable strict SP800-131 using scripting

v Check the status of certificates for the security standard by using the
listCertStatusForSecurityStandard task.

v Convert certificates for the security standard by using the convertCertForSecurityStandard task.

v Enable the security standard by using the enableFips task.

v To see the security standard setting, use the getFipsInfo task.

12. Once the server is configured for SP800-131 strict mode, the ssl.client.props file must be modified
so that the admininstrative client is running in SP800-131 strict mode. They are not able to make a
SSL connection to the server without the change.

Edit the ssl.client.props file by doing the following:

a. Modify com.ibm.security.useFIPS to be set to true.

b. Add com.ibm.websphere.security.FIPSLevel=SP800-131 just below the useFips property.

c. Change the com.ibm.ssl.protocol property to TLSv1.2.

What to do next

The SP800-131 standard strict mode requires that the SSL connection use the TLSv1.2 protocol. For a
browser to access the administrative console or an application, the browser must support and first be
configured to use the TLSv1.2 protocol.

Manually sync the nodes with syncNode, and start the node agents and servers. To use syncNode, you
might need to update the ssl.client.props file to communicate with the deployment manager.

Implementing tokens for security attribute propagation
As part of an extensible architecture, WebSphere Application Server enables you to implement your own
tokens in which to propagate security attributes.

About this task

The following topics are covered in this section:

Chapter 21. Developing security 929

Procedure
v Implementing a custom propagation token

v Implementing a custom authorization token

v Implementing a custom a single sign-on token

v Implementing a custom authentication token

v Propagating a custom Java serializable object

Implementing a custom propagation token for security attribute propagation
This topic explains how you might create your own propagation token implementation, which is set on the
running thread and propagated downstream.

About this task

The default propagation token usually is sufficient for propagating attributes that are not user-specific.
Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread by plugging in a custom login module into the inbound system login
configurations. This task also might include encryption and decryption.

To implement a custom propagation token, you must complete the following steps:

Procedure
1. Write a custom implementation of the PropagationToken interface. Many different methods are

available for implementing the PropagationToken interface. However, make sure that the methods that
are required by the PropagationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the required permissions for the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
propagation token, might extend the abstract class and then most of the work is complete.

To see an implementation of the propagation token, see “Example:
com.ibm.wsspi.security.token.PropagationToken implementation” on page 931.

2. Add and receive the custom propagation token during WebSphere Application Server logins. This task
is typically accomplished by adding a custom login module to the various application and system login
configurations. You also can add the implementation from an application. However, to deserialize the
information, you need to plug in a custom login module, which is discussed in “Propagating a custom
Java serializable object for security attribute propagation” on page 958. The
WSSecurityPropagationHelper class has APIs that are used to set a propagation token on the thread
and to retrieve the token from the thread to make updates.

The code sample in “Example: Custom propagation token login module” on page 935 shows how to
determine if the login is an initial login or a propagation login. The difference between these login types
is whether the WSTokenHolderCallback callback contains propagation data. If the callback does not
contain propagation data, initialize a new custom propagation token implementation and set it on the
thread. If the callback contains propagation data, look for your specific custom propagation token

930 Developing WebSphere applications

TokenHolder instance, convert the byte array back into your custom PropagationToken object, and set
it back on the thread. The code sample shows both instances.

You can add attributes any time your custom propagation token is added to the thread. If you add
attributes between requests and the getUniqueId method changes, the Common Secure
Interoperability Version 2 (CSIv2) client session is invalidated so that it can send the new information
downstream. Adding attributes between requests can affect performance. In many cases, you want the
downstream requests to receive the new propagation token information.

To add the custom propagation token to the thread, call the
WSSecurityPropagationHelper.addPropagationToken method. This call requires the
WebSphereRuntimePerMission "setPropagationToken" Java 2 Security permission.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for
receiving serialized versions of your custom propagation token You can also add this login module to
any of the application logins where you might want to generate your custom propagation token on the
thread during the login. Alternatively, you can generate the custom PropagationToken implementation
from within your application. However, to deserialize it, you need to add the implementation to the
system login modules.

Results

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken implementation:

Use this file to see an example of a propagation token implementation. The following sample code does
not extend an abstract class, but implements the com.ibm.wsspi.security.token.PropagationToken interface
directly. You can implement the interface directly, but it might cause you to write duplicate code. However,
you might choose to implement the interface directly if considerable differences exist between how you
handle the various token implementations.

For information on how to implement a custom propagation token, see “Implementing a custom
propagation token for security attribute propagation” on page 930.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.
token.PropagationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default
private static long expire_period_in_millis = 2*60*60*1000;
private long counter = 0;

/**
* The constructor that is used to create initial PropagationToken instance
*/

public CustomAbstractTokenImpl ()
{
// set the token version
addAttribute("version", "1");
// set the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

Chapter 21. Developing security 931

/**
* The constructor that is used to deserialize the token bytes received
* during a propagation login.
*/
public CustomAbstractTokenImpl (byte[] token_bytes)
{
try
{

hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.
WSOpaqueTokenHelper.deserialize(token_bytes);

}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)
{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long type.
* @return long
*/
public long getExpiration()
{
// get the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// expiration is the first element (should only be one)
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{

// You can choose whether your token gets propagated. In some cases
// you might want the token to be local only.

return true;
}

/**
* Gets the principal that this token belongs to. If this token is an
* authorization token, this principal string must match the authentication
* token principal string or the message is rejected.
* @return String
*/
public String getPrincipal()
{
// It is not necessary for the PropagationToken to return a principal,

// because it is not user-centric.
return "";
}

/**
* Returns the unique identifier of the token based upon information that

932 Developing WebSphere applications

* the provider considers makes it a unique token. This identifier is used
* for caching purposes and might be used in combination with other token
* unique IDs that are part of the same Subject.
*
* This method should return null if you want the accessID of the user to
* represent its uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{

// If you want to propagate the changes to this token, change the
// value that this unique ID returns whenever the token is changed.
// Otherwise, CSIv2 uses an existing session when everything else is
// the same. This getUniqueID is checked by CSIv2 to determine the
// session lookup.

return counter;
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// Do this if the object is set to read-only during login commit
// because this guarantees that no new data is set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

// You can deserialize this in the downstream login module using
// WSOpaqueTokenHelper.deserialize()

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, which is used to identify the byte[] in the
* protocol message.
* @return String
*/
public String getName()
{
return this.getClass().getName();
}

/**
* Gets the version of the token as a short type. This code also is used
* to identify the byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any setter methods check that this read-only flag has
* been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is readonly
*/

Chapter 21. Developing security 933

private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name and value pair. Returns the previous values set
* for the key, or returns null if the value is not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Increments the counter to change the uniqueID
counter++;

// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all of the attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep clone of this token. This is typically used by the session
* logic of the CSIv2 server to create a copy of the token as it exists in the
* session.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =
new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

934 Developing WebSphere applications

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}
}

Example: Custom propagation token login module:

This example shows how to determine if the login is an initial login or a propagation login.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
// (For more information on what to do during initialization, see

// Developing custom login modules for a system login configuration for JAAS.)
}

public boolean login() throws LoginException
{
// (For more information on what to do during login, see

// Developing custom login modules for a system login configuration for JAAS.)

// Handles the WSTokenHolderCallback to see if this is an initial
// or propagation login.

Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// handle exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom PropagationToken implementation
if (tokenHolder.getName().equals("

com.ibm.websphere.security.token.CustomPropagationTokenImpl") &&
tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom PropagationToken constructor

// to deserialize
customPropToken = new
com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

getBytes());

}
}
}
else // This is not a propagation login. Create a new instance of

// your PropagationToken implementation
{
// Adds a new custom propagation token. This is an initial login
customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

// Adds any initial attributes
if (customPropToken != null)
{
customPropToken.addAttribute("key1", "value1");
customPropToken.addAttribute("key1", "value2");
customPropToken.addAttribute("key2", "value1");
customPropToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the thread during commit in case
// something happens during the login.

Chapter 21. Developing security 935

}

public boolean commit() throws LoginException
{
// For more information on what to do during commit, see

// Developing custom login modules for a system login configuration for JAAS.
if (customPropToken != null)
{
// Sets the propagation token on the thread
try
{

System.out.println(tc, "*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***");
// Prints out the values in the deserialized propagation token
java.util.Enumeration keys = customPropToken.getAttributeNames();
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
String[] list = (String[]) customPropToken.getAttributes(key);
for (int k=0; k<list.length; k++)
System.out.println("Key/Value: " + key + "/" + list[k]);
}

// This sets it on the thread using getName() + getVersion() as the key
com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

customPropToken);
}
catch (Exception e)
{
// Handles exception
}

// Now you can verify that you have set it properly by trying to get
// it back from the thread and print the values.

try
{
// This gets the PropagationToken from the thread using getName()

// and getVersion() parameters.
com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =
com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken
("com.ibm.websphere.security.token.CustomPropagationTokenImpl", 1);

if (tempPropagationToken != null)
{
System.out.println(tc, "*** RECEIVED MY CUSTOM PROPAGATION

TOKEN FROM THE THREAD ***");
// Prints out the values in the deserialized propagation token
java.util.Enumeration keys = tempPropagationToken.getAttributeNames();
while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();
String[] list = (String[]) tempPropagationToken.getAttributes(key);
for (int k=0; k<list.length; k++)
System.out.println("Key/Value: " + key + "/" + list[k]);
}
}
}
catch (Exception e)
{
// Handles exception
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

Implementing a custom authorization token for security attribute propagation
This task explains how you might create your own AuthorizationToken implementation, which is set in the
login Subject and propagated downstream.

About this task

The default AuthorizationToken usually is sufficient for propagating attributes that are user-specific.
Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread. This task also might include encryption and decryption.

936 Developing WebSphere applications

v Affect the overall uniqueness of the Subject using the getUniqueID() application programming interface
(API).

To implement a custom authorization token, you must complete the following steps:

Procedure
1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by
the AuthorizationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the necessary permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:
com.ibm.wsspi.security.token.AuthorizationToken implementation” on page 938

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins. This task
is typically accomplished by adding a custom login module to the various application and system login
configurations. However, in order to deserialize the information, you must plug in a custom login
module, which is discussed in “Propagating a custom Java serializable object for security attribute
propagation” on page 958. After the object is instantiated in the login module, you can add the object
to the Subject during the commit() method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java
serializable object for security attribute propagation” on page 958. If you want to ensure that the
information is propagated, want to do you own custom serialization, or want to specify the uniqueness
for Subject caching purposes, then consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 941 shows how to
determine if the login is an initial login or a propagation login. The difference between these login types
is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain
propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.
If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder
instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the
Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do
not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving
serialized versions of your custom authorization token.

Because this login module relies on information in the sharedState added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your
custom login module to the existing login configurations, see Developing custom login modules for a
system login configuration for JAAS.

Chapter 21. Developing security 937

Results

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation:

Use this file to see an example of a AuthorizationToken implementation. The following sample code does
not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken
interface directly. You can implement the interface directly, but it might cause you to write duplicate code.
However, you might choose to implement the interface directly if there are considerable differences
between how you handle the various token implementations.

For information on how to implement a custom AuthorizationToken, see “Implementing a custom
authorization token for security attribute propagation” on page 936.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.
token.AuthorizationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
private static long expire_period_in_millis = 2*60*60*1000;
// 2 hours in millis, by default

/**
* Constructor used to create initial AuthorizationToken instance
*/

public CustomAuthorizationTokenImpl (String principal)
{
// Sets the principal in the token
addAttribute("principal", principal);
// Sets the token version
addAttribute("version", "1");
// Sets the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a
* propagation login.
*/
public CustomAuthorizationTokenImpl (byte[] token_bytes)
{
try
{
hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

WSOpaqueTokenHelper.deserialize(token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)

938 Developing WebSphere applications

{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long.
* @return long
*/
public long getExpiration()
{
// Gets the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// The expiration is the first element. There should be only one expiration.
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{
// You can choose whether your token gets propagated. In some cases,

// you might want it to be local only.
return true;
}

/**
* Gets the principal that this Token belongs to. If this is an authorization token,
* this principal string must match the authentication token principal string or the
* message will be rejected.
* @return String
*/
public String getPrincipal()
{
// this might be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

/**
* Returns a unique identifier of the token based upon the information that provider
* considers makes this a unique token. This will be used for caching purposes
* and might be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the accessID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{
// if you don’t want to affect the cache lookup, just return NULL here.
// return null;

String cacheKeyForThisToken = "dynamic attributes";

// if you do want to affect the cache lookup, return a string of
// attributes that you want factored into the lookup.

return cacheKeyForThisToken;
}

/**

Chapter 21. Developing security 939

* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// Do this if the object is set to read-only during login commit,
// because this makes sure that no new data gets set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

// You can deserialize this in the downstream login module using
// WSOpaqueTokenHelper.deserialize()

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token used to identify the byte[] in the protocol message.
* @return String
*/
public String getName()
{
return this.getClass().getName();
}

/**
* Gets the version of the token as an short. This also is used to identify the
* byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any setter methods check that this flag has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is read-only
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{

940 Developing WebSphere applications

return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name and value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =
new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}
}

Example: custom AuthorizationToken login module:

This file shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see Developing custom login modules
for a system login configuration for JAAS.

Chapter 21. Developing security 941

public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// Handles the WSTokenHolderCallback to see if this is an initial or

// propagation login.
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation

if (tokenHolder.getName().equals("com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl") &&

tokenHolder.getVersion() == 1)
{

// Passes the bytes into your custom AuthorizationToken constructor
// to deserialize

customAuthzToken = new
com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

tokenHolder.getBytes());

}
}
}
else

// This is not a propagation login. Create a new instance of your
// AuthorizationToken implementation

{
// Gets the prinicpal from the default AuthenticationToken. This must match
// all tokens.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial login. Pass the
// principal into the constructor

customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes
if (customAuthzToken != null)
{
customAuthzToken.addAttribute("key1", "value1");
customAuthzToken.addAttribute("key1", "value2");
customAuthzToken.addAttribute("key2", "value1");
customAuthzToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case something
// happens during the login.

}

public boolean commit() throws LoginException
{
if (customAut // (hzToken != null)
{
// sSets the customAuthzToken token into the Subject
try
{
public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

942 Developing WebSphere applications

{
public Object run()
{
try
{

// Adds the custom authorization token if it is not null
// and not already in the Subject

if ((customAuthzTokenPriv != null) &&
(!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

{
subject.getPrivateCredentials().add(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Implementing a custom single sign-on token for security attribute propagation
You can create your own single sign-on token implementation. The single sign-on token implementation is
set in the login Subject and added to the HTTP response as an HTTP cookie.

About this task

The cookie name is the concatenation of the SingleSignonToken.getName application programming
interface (API) and the SingleSignonToken.getVersion API. There is no delimiter. When you add a single
sign-on token to the Subject, it also gets propagated horizontally and downstream in case the Subject is
used for other web requests. You must deserialize your custom single sign-on token when you receive it
from a propagation login. Consider writing your own implementation if you want to accomplish one of the
following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. Encrypt the information because it is out to the
HTTP response and is available on the Internet. You must deserialize or decrypt the bytes at the target
and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID API.

To implement a custom single sign-on token, complete the following steps:

Procedure
1. Write a custom implementation of the SingleSignonToken interface.

Many different methods are available for implementing the SingleSignonToken interface. However,
make sure the methods that are required by the SingleSignonToken interface and the token interface
are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.
Alternatively, you can place the class in any private directory. However, make sure that the WebSphere
Application Server class loader can locate the class and that it is granted the appropriate permissions.
You can add the Java archive (JAR) file or directory that contains this class into the server.policy file
so that it has the required permissions for the server code.

Chapter 21. Developing security 943

Tip: All of the token types that are defined by the propagation framework have similar interfaces.
Basically, the token types are marker interfaces that implement the
com.ibm.wsspi.security.token.Token interface. This interface defines most of the methods. If you
plan to implement more than one token type, consider creating an abstract class that implements
the com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
single sign-on token, might extend the abstract class and then most of the work is complete.

To see an implementation of the single sign-on token, see “Example: A
com.ibm.wsspi.security.token.SingleSignonToken implementation”

2. Add and receive the custom single sign-on token during WebSphere Application Server logins. This
task is typically accomplished by adding a custom login module to the various application and system
login configurations. However, to deserialize the information, you need to plug in a custom login
module, which is discussed in a subsequent step. After the object is instantiated in the login module,
you can add it to the Subject during the commit method.

The code sample in “Example: A custom single sign-on token login module” on page 948, shows how
to determine if the login is an initial login or a propagation login. The difference is whether the
WSTokenHolderCallback callback contains propagation data. If the callback does not contain
propagation data, initialize a new custom single sign-on token implementation and set it into the
Subject. Also, look for the HTTP cookie from the HTTP request if the HTTP request object is available
in the callback. You can get your custom single sign-on token both from a horizontal propagation login
and from the HTTP request. However, it is recommended that you make the token available in both
places because then the information arrives at any front-end application server, even if that server
does not support propagation.

You can make your single sign-on token read-only in the commit phase of the login module. If you
make the token read-only, additional attributes cannot be added within your applications.

Restriction:

v HTTP cookies have a size limitation. Size restrictions should be included in the
documentation for your specific browser.

v The WebSphere Application Server runtime does not handle cookies that it does not
generate, so this cookie is not used by the runtime.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of
the Subject if you return something in the getUniqueID method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample
code that is found in “Example: An HTTP cookie retrieval” on page 950 shows how you can retrieve
the HTTP cookie from the HTTP request, decode the cookie so that it is back to your original bytes,
and create your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving
serialized versions of your custom propagation token. Because this login module relies on information
in the sharedState state that is added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module
after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module.

For information on adding your custom login module into the existing login configurations, see
Developing custom login modules for a system login configuration for JAAS.

Results

After completing these steps, you have implemented a custom single sign-on token.

Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation:

Use this file to see an example of a single sign-on implementation. The following sample code does not
extend an abstract class, but implements the com.ibm.wsspi.security.token.SingleSignonToken interface

944 Developing WebSphere applications

directly. You can implement the interface directly, but it might cause you to write duplicate code. However,
you might choose to implement the interface directly if considerable differences exist between how you
handle the various token implementations.

For information on how to implement a custom single sign-on token, see “Implementing a custom single
sign-on token for security attribute propagation” on page 943.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.
token.SingleSignonToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default

private static long expire_period_in_millis = 2*60*60*1000;

/**
* Constructor used to create initial SingleSignonToken instance
*/

public CustomSingleSignonTokenImpl (String principal)
{
// set the principal in the token
addAttribute("principal", principal);
// set the token version
addAttribute("version", "1");
// set the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis() +

expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a propagation login.
*/
public CustomSingleSignonTokenImpl (byte[] token_bytes)
{
try
{
// you should implement a decryption algorithm to decrypt the cookie bytes
hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0)
{
// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

Chapter 21. Developing security 945

/**
* Gets the expiration as a long.
* @return long
*/
public long getExpiration()
{
// get the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// expiration will always be the first element (should only be one)
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{
// You can choose whether your token gets propagated or not, in some cases

// you might want it to be local only.
return true;
}

/**
* Gets the principal that this Token belongs to. If this is an authorization token,
* this principal string must match the authentication token principal string or the
* message will be rejected.
* @return String
*/
public String getPrincipal()
{
// this could be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

/**
* Returns a unique identifier of the token based upon information the provider
* considers makes this a unique token. This will be used for caching purposes
* and may be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the access ID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{
// this could be any combination of attributes
return getPrincipal();
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the Token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{
// do this if the object is set read-only during login commit,
// since this guarantees no new data gets set.
if (isReadOnly() && tokenBytes == null)
tokenBytes = some_encryption_algorithm (hashtable);

// you can deserialize the tokenBytes using a similiar decryption algorithm.
return tokenBytes;
}
catch (Exception e)
{

946 Developing WebSphere applications

e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, used to identify the byte[] in the protocol message.
* @return String
*/
public String getName()
{
return "myCookieName";
}

/**
* Gets the version of the token as a short. This is also used to identify the
* byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure any setter methods check that this has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is readonly
*/
private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name/value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// get the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// copy the ArrayList to a String[] as it currently exists
String[] old_array = null;

Chapter 21. Developing security 947

if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// allocate a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// add the String to the current array list
array.add(value);

// add the current ArrayList to the Hashtable
hashtable.put(key, array);

// return the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the List of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =
new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}
}

Example: A custom single sign-on token login module:

This file shows how to determine if the login is an initial login or a propagation login.

For information on initialization and on what to do during login and commit, see Developing custom login
modules for a system login configuration for JAAS.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{

// Handles the WSTokenHolderCallback to see if this is an initial or
// propagation login.

Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// handle exception
}

948 Developing WebSphere applications

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// iterate through the list looking for your custom token
for (int i=0; i
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom SingleSignonToken
// implementation

if (tokenHolder.getName().equals("myCookieName")
&& tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom SingleSignonToken constructor

// to deserialize
customSSOToken = new
com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

(tokenHolder.getBytes());

}
}
}
else

// This is not a propagation login. Create a new instance of your
// SingleSignonToken implementation

{
// Gets the principal from the default SingleSignonToken. This principal
// must match all tokens.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom single sign-on (SSO) token. This is an initial login.
// Pass the principal into the constructor

customSSOToken = new com.ibm.websphere.security.token.
CustomSingleSignonTokenImpl(principal);

// add any initial attributes
if (customSSOToken != null)
{
customSSOToken.addAttribute("key1", "value1");
customSSOToken.addAttribute("key1", "value2");
customSSOToken.addAttribute("key2", "value1");
customSSOToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case something
// happens during the login.

}

public boolean commit() throws LoginException
{
if (customSSOToken != null)
{
// Sets the customSSOToken token into the Subject
try
{
public final SingleSignonToken customSSOTokenPriv = customSSOToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Adds the custom SSO token if it is not null and

// not already in the Subject
if ((customSSOTokenPriv != null) &&

(!subject.getPrivateCredentials().
contains(customSSOTokenPriv)))

{
subject.getPrivateCredentials().

add(customSSOTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)

Chapter 21. Developing security 949

{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Example: An HTTP cookie retrieval:

The following example shows you how to retrieve a cookie from an HTTP request, decode the cookie so
that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.
This example shows how to complete these steps from a login module. However, you also can complete
these steps using a servlet.

For information on what to do during initialization, login and commit, see Developing custom login modules
for a system login configuration for JAAS.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{

// Handles the WSTokenHolderCallback to see if this is an
// initial or propagation login.

Callback callbacks[] = new Callback[2];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");
callbacks[1] = new WSServletRequestCallback("HttpServletRequest: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles the exception
}

// receive the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();
javax.servlet.http.HttpServletRequest request =

((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

if (request != null)
{

// Checks if the cookie is present
javax.servlet.http.Cookie[] cookies = request.getCookies();
String[] cookieStrings = getCookieValues (cookies, "myCookeName1");

if (cookieStrings != null)
{
String cookieVal = null;
for (int n=0;n<cookieStrings.length;n++)
{
cookieVal = cookieStrings[n];
if (cookieVal.length()>0)
{

// Removes the cookie encoding from the cookie to get
// your custom bytes

byte[] cookieBytes =
com.ibm.websphere.security.WSSecurityHelper.

convertCookieStringToBytes(cookieVal);
customSSOToken =
new com.ibm.websphere.security.token.

CustomSingleSignonTokenImpl(cookieBytes);

// Now that you have your cookie from the request,
// you can do something with it here, or add it
// to the Subject in the commit() method for use later.

if (debug || tc.isDebugEnabled())
{
System.out.println("*** GOT MY CUSTOM SSO TOKEN FROM

THE REQUEST ***");
}

950 Developing WebSphere applications

}
}
}
}

}

public boolean commit() throws LoginException
{
if (customSSOToken != null)
{
// Sets the customSSOToken token into the Subject
try
{
public final SingleSignonToken customSSOTokenPriv = customSSOToken;

// Do this in a doPrivileged code block so that application code does not
// need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{

// Add the custom SSO token if it is not null and not
// already in the Subject

if ((customSSOTokenPriv != null) &&
(!subject.getPrivateCredentials().

contains(customSSOTokenPriv)))
{
subject.getPrivateCredentials().add(customSSOTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Private method to get the specific cookie from the request
private String[] getCookieValues (Cookie[] cookies, String hdrName)
{
Vector retValues = new Vector();
int numMatches=0;
if (cookies != null)
{
for (int i = 0; i < cookies.length; ++i)
{
if (hdrName.equals(cookies[i].getName()))
{
retValues.add(cookies[i].getValue());
numMatches++;
System.out.println(cookies[i].getValue());
}
}
}

if (retValues.size()>0)
return (String[]) retValues.toArray(new String[numMatches]);
else
return null;

}

// Defines your login module variables
com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Implementing a custom authentication token for security attribute propagation
This topic explains how you might create your own authentication token implementation, which is set in the
login Subject and propagated downstream.

Chapter 21. Developing security 951

About this task

With this implementation you can specify an authentication token that can be used by a custom login
module or application. Consider writing your own implementation if you want to accomplish one of the
following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add
that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID application programming interface
(API).

Important: Custom authentication token implementations are not used by the security runtime in
WebSphere Application Server to enforce authentication. WebSphere Application Security
runtime uses this token in the following situations only:

v Call the getBytes method for serialization

v Call the getForwardable method to determine whether to serialize the authentication token.

v Call the getUniqueId method for uniqueness

v Call the getName and the getVersion methods for adding serialized bytes to the token
holder that is sent downstream

All of the other uses are custom implementations.

To implement a custom authentication token, you must complete the following steps:

Procedure
1. Write a custom implementation of the AuthenticationToken interface. Many different methods are

available for implementing the AuthenticationToken interface. However, make sure the methods that
are required by the AuthenticationToken interface and the token interface are fully implemented. After
you implement this interface, you can place it in the app_server_root/classes directory. Alternatively,
you can place the class in any private directory. However, make sure that the WebSphere Application
Server class loader can locate the class and that it is granted the appropriate permissions. You can
add the Java archive (JAR) file or directory that contains this class into the server.policy file so the
class has the necessary permissions required by the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The
token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token
interface. This interface defines most of the methods. If you plan to implement more than one
token type, consider creating an abstract class that implements the
com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the
authentication token, might extend the abstract class and then most of the work is complete.

To see an implementation of the AuthenticationToken interface, see “Example: A
com.ibm.wsspi.security.token.AuthenticationToken implementation” on page 953.

2. Add and receive the custom authentication token during WebSphere Application Server logins. This
task is typically accomplished by adding a custom login module to the various application and system
login configurations. However, to deserialize the information you must plug in a custom login module.
After the object is instantiated in the login module, you can add the object to the Subject during the
commit method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java
serializable object for security attribute propagation” on page 958. If you want to ensure that the
information is propagated, do your own custom serialization, or specify the uniqueness for Subject
caching purposes, consider writing your own authentication token implementation.

The code sample in “Example: A custom authentication token login module” on page 957, shows how
to determine if the login is an initial login or a propagation login. The difference between these login

952 Developing WebSphere applications

types is whether the WSTokenHolderCallback callback contains propagation data. If the callback does
not contain propagation data, initialize a new custom authentication token implementation and set it
into the Subject. If the callback contains propagation data, look for your specific custom authentication
token TokenHolder instance, convert the byte array back into your custom AuthenticationToken object,
and set it back into the Subject. The code sample shows both instances.

You can make your authentication token read-only in the commit phase of the login module. If you do
not make the token read-only, attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that
already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for
receiving serialized versions of your custom authorization token.

Because this login module relies on information in the shared state that is added by the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module
after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module. For
information on how to add your custom login module to the existing login configurations, see
Developing custom login modules for a system login configuration for JAAS.

Results

After completing these steps, you have implemented a custom authentication token.

Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation:

The following example illustrates an authentication token implementation. The following sample code does
not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthenticationToken
interface directly. You can implement the interface directly, but it might cause you to write duplicate code.
However, you might choose to implement the interface directly if considerable differences exist between
how you handle the various token implementations.
package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.*;
import com.ibm.websphere.security.WebSphereRuntimePermission;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.DataOutputStream;
import java.io.DataInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.util.ArrayList;

public class CustomAuthenticationTokenImpl implements com.ibm.wsspi.security.
token.AuthenticationToken

{
private java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default
private static long expire_period_in_millis = 2*60*60*1000;

private String oidName = "your_oid_name";
// This string can really be anything if you do not want to use an OID.

/**
* Constructor used to create initial AuthenticationToken instance
*/
public CustomAuthenticationTokenImpl (String principal)
{
// Sets the principal in the token
addAttribute("principal", principal);
// Sets the token version
addAttribute("version", "1");
// Sets the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis()

+ expire_period_in_millis).toString());
}

/**
* Constructor used to deserialize the token bytes received during a
* propagation login.
*/
public CustomAuthenticationTokenImpl (byte[] token_bytes)

Chapter 21. Developing security 953

{
try
{

// The data in token_bytes should be signed and encrypted if the
// hashtable is acting as an authentication token.

hashtable = (java.util.Hashtable) custom_decryption_algorithm (token_bytes);
}
catch (Exception e)
{
e.printStackTrace();
}
}

/**
* Validates the token including expiration, signature, and so on.
* @return boolean
*/

public boolean isValid ()
{
long expiration = getExpiration();

// If you set the expiration to 0, the token does not expire
if (expiration != 0)
{
// Returns a response that identifies whether this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;
}
else
{
System.out.println("isValid: returning true by default");
return true;
}
}

/**
* Gets the expiration as a long type.
* @return long
*/
public long getExpiration()
{
// Gets the expiration value from the hashtable
String[] expiration = getAttributes("expiration");

if (expiration != null && expiration[0] != null)
{
// The expiration is the first element and there should only be one expiration
System.out.println("getExpiration: returning " + expiration[0]);
return new Long(expiration[0]).longValue();
}

System.out.println("getExpiration: returning 0");
return 0;
}

/**
* Returns if this token should be forwarded/propagated downstream.
* @return boolean
*/
public boolean isForwardable()
{

// You can choose whether your token gets propagated. In some cases
// you might want it to be local only.

return true;
}

/**
* Gets the principal to which this token belongs. If this is an
* authorization token, this principal string must match the
* authentication token principal string or the message is rejected.
* @return String
*/
public String getPrincipal()
{
// This value might be any combination of attributes
String[] principal = getAttributes("principal");

if (principal != null && principal[0] != null)
{
return principal[0];
}

System.out.println("getExpiration: returning null");
return null;
}

954 Developing WebSphere applications

/**
* Returns a unique identifier of the token based upon information the provider
* considers makes this a unique token. This identifier is used for caching purposes
* and can be used in combination with other token unique IDs that are part of
* the same Subject.
*
* This method should return null if you want the accessID of the user to represent
* uniqueness. This is the typical scenario.
*
* @return String
*/
public String getUniqueID()
{

// If you do not want to affect the cache lookup, just return NULL here.
return null;

String cacheKeyForThisToken = "dynamic attributes";

// If you do want to affect the cache lookup, return a string of
// attributes that you want factored into the lookup.

return cacheKeyForThisToken;
}

/**
* Gets the bytes to be sent across the wire. The information in the byte[]
* needs to be enough to recreate the token object at the target server.
* @return byte[]
*/
public byte[] getBytes ()
{
if (hashtable != null)
{
try
{

// Do this if the object is set read-only during login commit
// because this ensures that new data is not set.

if (isReadOnly() && tokenBytes == null)
tokenBytes = custom_encryption_algorithm (hashtable);

return tokenBytes;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
}

System.out.println("getBytes: returning null");
return null;
}

/**
* Gets the name of the token, which is used to identify the byte[] in the
* protocol message.
* @return String
*/
public String getName()
{
return oidName;
}

/**
* Gets the version of the token as a short type. This also is used
* to identify the byte[] in the protocol message.
* @return short
*/
public short getVersion()
{
String[] version = getAttributes("version");

if (version != null && version[0] != null)
return new Short(version[0]).shortValue();

System.out.println("getVersion: returning default of 1");
return 1;
}

/**
* When called, the token becomes irreversibly read-only. The implementation
* needs to ensure that any set methods check that this state has been set.
*/
public void setReadOnly()
{
addAttribute("readonly", "true");
}

/**
* Called internally to see if the token is read-only
*/

Chapter 21. Developing security 955

private boolean isReadOnly()
{
String[] readonly = getAttributes("readonly");

if (readonly != null && readonly[0] != null)
return new Boolean(readonly[0]).booleanValue();

System.out.println("isReadOnly: returning default of false");
return false;
}

/**
* Gets the attribute value based on the named value.
* @param String key
* @return String[]
*/
public String[] getAttributes(String key)
{
ArrayList array = (ArrayList) hashtable.get(key);

if (array != null && array.size() > 0)
{
return (String[]) array.toArray(new String[0]);
}

return null;
}

/**
* Sets the attribute name/value pair. Returns the previous values set for key,
* or null if not previously set.
* @param String key
* @param String value
* @returns String[];
*/
public String[] addAttribute(String key, String value)
{
// Gets the current value for the key
ArrayList array = (ArrayList) hashtable.get(key);

if (!isReadOnly())
{
// Copies the ArrayList to a String[] as it currently exists
String[] old_array = null;
if (array != null && array.size() > 0)
old_array = (String[]) array.toArray(new String[0]);

// Allocates a new ArrayList if one was not found
if (array == null)
array = new ArrayList();

// Adds the String to the current array list
array.add(value);

// Adds the current ArrayList to the Hashtable
hashtable.put(key, array);

// Returns the old array
return old_array;
}

return (String[]) array.toArray(new String[0]);
}

/**
* Gets the list of all attribute names present in the token.
* @return java.util.Enumeration
*/
public java.util.Enumeration getAttributeNames()
{
return hashtable.keys();
}

/**
* Returns a deep copying of this token, if necessary.
* @return Object
*/
public Object clone()
{
com.ibm.wsspi.security.token.AuthenticationToken deep_clone =
new com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

java.util.Enumeration keys = getAttributeNames();

while (keys.hasMoreElements())
{
String key = (String) keys.nextElement();

String[] list = (String[]) getAttributes(key);

956 Developing WebSphere applications

for (int i=0; i<list.length; i++)
deep_clone.addAttribute(key, list[i]);

}

return deep_clone;
}

/**
* This method returns true if this token is storing a user ID and password
* instead of a token.
* @return boolean
*/
public boolean isBasicAuth()
{
return false;
}
}

Example: A custom authentication token login module:

This examples shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see Developing custom login modules
for a system login configuration for JAAS.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// Handles the WSTokenHolderCallback to see if this is an initial or

// propagation login.
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exception
}

// Receives the ArrayList of TokenHolder objects (the serialized tokens)
List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthenticationToken
// implementation

if (tokenHolder.getName().equals("your_oid_name") && tokenHolder.getVersion() == 1)
{

// Passes the bytes into your custom AuthenticationToken constructor
// to deserialize

customAuthzToken = new
com.ibm.websphere.security.token.

CustomAuthenticationTokenImpl(tokenHolder.getBytes());

}
}
}
else

// This is not a propagation login. Create a new instance of your
// AuthenticationToken implementation

{
// Gets the principal from the default AuthenticationToken. This principal
// should match all default tokens.
// Note: WebSphere Application Server runtime only enforces this for
// default tokens. Thus, you can choose
// to do this for custom tokens, but it is not required.

defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

Chapter 21. Developing security 957

// Adds a new custom authentication token. This is an initial login. Pass
// the principal into the constructor

customAuthToken = new com.ibm.websphere.security.token.
CustomAuthenticationTokenImpl(principal);

// Adds any initial attributes
if (customAuthToken != null)
{
customAuthToken.addAttribute("key1", "value1");
customAuthToken.addAttribute("key1", "value2");
customAuthToken.addAttribute("key2", "value1");
customAuthToken.addAttribute("key3", "something different");
}
}

// Note: You can add the token to the Subject during commit in case
// something happens during the login.

}

public boolean commit() throws LoginException
{
if (customAuthToken != null)
{
// Sets the customAuthToken token into the Subject
try
{
private final AuthenticationToken customAuthTokenPriv = customAuthToken;

// Do this in a doPrivileged code block so that application code does
// not need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{

// Adds the custom Authentication token if it is not
// null and not already in the Subject

if ((customAuthTokenPriv != null) &&
(!subject.getPrivateCredentials().

contains(customAuthTokenPriv)))
{
subject.getPrivateCredentials().add(customAuthTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Propagating a custom Java serializable object for security attribute propagation
This document describes how to add an object into the Subject from a login module and describes other
infrastructure considerations to make sure that the Java object gets propagated.

Before you begin

Prior to completing this task, verify that security propagation is enabled in the administrative console.

About this task

With security attribute propagation enabled, you can propagate data either horizontally with single sign-on
(SSO) enabled or downstream using Common Secure Interoperability Version 2 (CSIv2). When a login
occurs, either through an application login configuration or a system login configuration, a custom login
module can be plugged in to add Java serialized objects into the Subject during login. This document
describes how to add an object into the Subject from a login module and describes other infrastructure

958 Developing WebSphere applications

considerations to make sure that the Java object gets propagated.

Procedure
1. Add your custom Java object into the Subject from a custom login module. A two-phase process exists

for each Java Authentication and Authorization Service (JAAS) login module. WebSphere Application
Server completes the following processes for each login module present in the configuration:

login method
In this step, the login configuration callbacks are analyzed, if necessary, and the new objects
or credentials are created.

commit method
In this step, the objects or credentials that are created during login are added into the Subject.

After a custom Java object is added into the Subject, WebSphere Application Server serializes the
object on the sending server, deserializes the object on the receiving server, and adds the object back
into the Subject downstream. However, some requirements exist for this process to occur successfully.
For more information on the JAAS programming model, see the JAAS information provided in the
Security: Resources for learning article.

Important: Whenever you plug a custom login module into the login infrastructure of WebSphere
Application Server, make sure that the code is trusted. When you put the classes together
in a Java archive (JAR) file and add the file to the app_server_root/lib/ext/ directory, the
login module has Java 2 Security AllPermissions permissions . It is recommended that you
add your login module and other infrastructure classes into any private directory. However,
you must modify the profile_root/properties/server.policy file to make sure that your
private directory, Java archive (JAR) file, or both have the permissions required to run the
application programming interfaces (API) that are called from the login module. Because
the login module might be run after the application code on the call stack, you might add
doPrivileged code so that you do not need to add additional properties to your
applications.

The following code sample shows how to add doPrivileged code. For information on what to do during
initialization, login and commit, see Developing custom login modules for a system login configuration
for JAAS.

public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

}

public boolean login() throws LoginException
{

// Construct callback for the WSTokenHolderCallback so that you
// can determine if
// your custom object has propagated
Callback callbacks[] = new Callback[1];
callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

try
{

_callbackHandler.handle(callbacks);
}
catch (Exception e)
{
throw new LoginException (e.getLocalizedMessage());
}

// Checks to see if any information is propagated into this login
List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

getTokenHolderList();

if (authzTokenList != null)
{

for (int i = 0; i< authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Look for your custom object. Make sure you use
// "startsWith"because there is some data appended

Chapter 21. Developing security 959

// to the end of the name indicating in which Subject
// Set it belongs. Example from getName():
// "com.acme.CustomObject (1)". The class name is
// generated at the sending side by calling the
// object.getClass().getName() method. If this object
// is deserialized by WebSphere Application Server,
// then return it and you do not need to add it here.
// Otherwise, you can add it below.
// Note: If your class appears in this list and does
// not use custom serialization (for example, an
// implementation of the Token interface described in
// the Propagation Token Framework), then WebSphere
// Application Server automatically deserializes the
// Java object for you. You might just return here if
// it is found in the list.

if (tokenHolder.getName().startsWith("com.acme.CustomObject"))
return true;

}
}

// If you get to this point, then your custom object has not propagated
myCustomObject = new com.acme.CustomObject();
myCustomObject.put("mykey", "mydata");

}

public boolean commit() throws LoginException
{
try
{

// Assigns a reference to a final variable so it can be used in
// the doPrivileged block

final com.acme.CustomObject myCustomObjectFinal = myCustomObject;
// Prevents your applications from needing a JAAS getPrivateCredential

// permission.
java.security.AccessController.doPrivileged(new java.security.

PrivilegedExceptionAction()
{
public Object run() throws java.lang.Exception
{

// Try not to add a null object to the Subject or an object
// that already exists.

if (myCustomObjectFinal != null && !subject.getPrivateCredentials().
contains(myCustomObjectFinal))

{
// This call requires a special Java 2 Security permission,
// see the JAAS application programming interface (API)
// documentation.

subject.getPrivateCredentials().add(myCustomObjectFinal);
}
return null;
}
});
}
catch (java.security.PrivilegedActionException e)
{
// Wraps the exception in a WSLoginFailedException
java.lang.Throwable myException = e.getException();
throw new WSLoginFailedException (myException.getMessage(), myException);
}
}

// Defines your login module variables
com.acme.CustomObject myCustomObject = null;
}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is added
to the Subject must be serialized if you want the object to propagate. For example, the object must
implement the java.io.Serializable interface. If the object is not serialized, the request does not fail, but
the object does not propagate. To make sure an object that is added to the Subject is propagated,
implement one of the token interfaces that is defined in topics about security attribute propagation or
add attributes to one of the following existing default token implementations:

AuthorizationToken
Add attributes if they are user-specific.

PropagationToken
Add attributes that are specific to an invocation.

If you are careful adding custom objects and follow all the steps to make sure that WebSphere
Application Server can serialize and deserialize the object at each hop, then it is sufficient to use
custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request.

960 Developing WebSphere applications

When you add a custom object into the Subject and expect WebSphere Application Server to
propagate the object, put the class definitions together in a Java archive (JAR) file and add the file to
the app_server_root/lib/ext/ directory on all of the nodes where serialization or deserialization might
occur. Also, verify that the Java class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your
environment where you need to add your custom object during a login. Any login configuration that
interacts with WebSphere Application Server generates a Subject that might be propagated outbound
for an Enterprise JavaBeans (EJB) request. If you want WebSphere Application Server to propagate a
custom object in all cases, make sure that the custom login module is added to every login
configuration that is used in your environment. For more information, see Developing custom login
modules for a system login configuration for JAAS.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the
propagated information. When an EJB request is sent to a downstream server and security attribute
propagation is disabled on that server, only the authentication token is sent for backwards compatibility.
Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that
might receive requests. You must check several places in the administrative console to make sure
propagation is fully enabled.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can
configure a property to exclude the propagation of objects that match specific class names, package
names, or both. For example, you can have a custom object that is related to a specific process. If the
object is propagated, it does not contain valid information. You must tell WebSphere Application Server
not to propagate this object. Complete the following steps to specify the object in the propagation
exclude list, using the administrative console:

a. Click Security > Global security > Custom properties > New.

b. Add com.ibm.ws.security.propagationExcludeList in the Name field.

c. Add the name of the custom object in the Value field. You can add a list of custom objects to the
propagation exclude list, separated by a colon (:). For example, you might enter
com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as
com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,
WebSphere Application Server does not propagate any class that equals
com.acme.CustomLocalObject or begins with com.acme.private.

Although you can add custom objects to the propagation exclude list, you must be aware of a side
effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,
in a local cache for the life of the single sign-on (SSO) token. The life of the SSO token, which has
a default of two hours, is configured in the SSO properties on the administrative console. The
information that is added to the opaque token includes only the objects not in the exclude list.

Ensure that your SSO token timeout value is greater that the authentication cache timeout value.
To modify the authentication cache, see the documentation about the authentication cache settings.

Results

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For
more information on the differences between horizontal and downstream propagation, see topics about
security attribute propagation or add attributes to one of the following existing default token
implementations:.

Developing a custom interceptor for trust associations
You can define the interceptor class method that you want to use. WebSphere Application Server supports
two trust association interceptor interfaces: com.ibm.wsspi.security.TrustAssociationInterceptor and
com.ibm.wsspi.security.tai.TrustAssociationInterceptor.

Chapter 21. Developing security 961

Before you begin

If you are using a third party reverse proxy server other than Tivoli® WebSEAL, you must provide an
implementation class for the product interceptor interface for your proxy server. This article describes the
com.ibm.wsspi.security.TrustAssociationInterceptor.java interface that you must implement.

Note: The Trust Association Interceptor (TAI) interface
(com.ibm.wsspi.security.tai.TrustAssociationInterceptor) supports several new features and is
different from the existing com.ibm.wsspi.security.TrustAssociationInterceptor interface.

Procedure
1. Define the interceptor class method. WebSphere Application Server provides the interceptor Java

interface, com.ibm.wsspi.security.TrustAssociationInterceptor, which defines the following methods:
v public boolean isTargetInterceptor(HttpServletRequest req) creates

WebTrustAssociationException;.

The isTargetInterceptor method determines whether the request originated with the proxy server
associated with the interceptor. The implementation code must examine the incoming request object
and determine if the proxy server forwarding the request is a valid proxy server for this interceptor.
The result of this method determines whether the interceptor processes the request or not.

v public void validateEstablishedTrust (HttpServletRequest req) creates
WebTrustAssociationException;.

The validateEstablishedTrust method determines if the proxy server from which the request
originated is trusted or not. This method is called after the isTargetInterceptor method. The
implementation code must authenticate the proxy server. The authentication mechanism is
proxy-server specific. For example, in the product implementation for the WebSEAL server, this
method retrieves the basic authentication information from the HTTP header and validates the
information against the user registry used by WebSphere Application Server. If the credentials are
invalid, the code creates the WebTrustAssociationException, indicating that the proxy server is not
trusted and the request is to be denied.

v public String getAuthenticatedUsername(HttpServletRequest req) creates
WebTrustAssociationException;.

The getAuthenticatedUsername method is called after trust is established between the proxy server
and WebSphere Application Server. The product has accepted the proxy server authentication of the
request and must now authorize the request. To authorize the request, the name of the original
requestor must be subjected to an authorization policy to determine if the requestor has the
necessary privilege. The implementation code for this method must extract the user name from the
HTTP request header and determine if that user is entitled to the requested resource. For example,
in the product implementation for the WebSEAL server, the method looks for an iv-user attribute in
the HTTP request header and extracts the user ID associated with it for authorization.

2. Configuring the interceptor. To make an interceptor configurable, the interceptor must extend
com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor. Implement the following methods:
public int init (java.util.Properties props);

The init(Properties) method accepts a java.util.Properties object, which contains the set of
properties required to initialize the interceptor. All the properties set for an interceptor (by using
the Custom Properties link for that interceptor or using scripting) is sent to this method. The
interceptor then can use these properties to initialize itself. For example, in the product
implementation for the WebSEAL server, this method reads the hosts and ports so that a
request coming in can be verified to originate from trusted hosts and ports. A return value of 0
implies that the interceptor initialization is successful. Any other value implies that the
initialization is not successful and the interceptor is ignored.

Applicability of the following list

If a previous implementation of the trust association interceptor returns a different error status
you can either change your implementation to match the expectations or make one of the
following changes:

962 Developing WebSphere applications

v Add the com.ibm.wsspi.security.trustassociation.initStatus property in the trust association
interceptor custom properties. Set the property to the value that indicates that the interceptor
is successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.

v Add the com.ibm.wsspi.security.trustassociation.ignoreInitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property
to the custom properties, WebSphere Application Server does not check the return status,
which is similar to previous versions of WebSphere Application Server.

public void cleanup ();
This method is called when the application server is stopped. It is used to prepare the
interceptor for termination.

public void setVersion (String s);
This method is optional. The method is used to set the version and is for informational purpose
only. The default value is Unspecified.

You must configure the following methods implemented by the custom interceptor implementation. This
listing only shows the methods and does not include any implementation.
**
import java.util.*;
import javax.servlet.http.HttpServletRequest;
import com.ibm.websphere.security.*;

public class myTAIImpl extends WebSphereBaseTrustAssociationInterceptor
implements TrustAssociationInterceptor

{

public myTAIImpl ()
{
}

public boolean isTargetInterceptor (HttpServletRequest req)
throws WebTrustAssociationException

{

//return true if this is the target interceptor, else return false.
}

public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse res)
throws WebTrustAssociationFailedException

{
//validate the request and establish trust.
//create and return the TAIResult

public int initialize (Properties props)
{

//initialize the implementation. If successful return 0, else return 1.
}

public String getVersion()
{

//Return version
}

public String getType()
{

//Return type
}

public void cleanup ()
{

//Cleanup code.

}

}

Chapter 21. Developing security 963

Note: If the init(Properties) method is implemented as described previously in your custom interceptor,
this note does not apply to your implementation, and you can move on to the next step.
Previous versions of com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor include
the public int init (String propsfile) method. This method is no longer required since the
interceptor properties are not read from a file. The properties are now entered in the
administrative console Custom Properties link of the interceptor using the administrative
console or scripts. These properties then are made available to your implementation in the
init(Properties) method. However, for backward compatibility, the init(String) method still is
supported. The init(String) method is called by the default implementation of init(Properties) as
shown in the following example.

// Default implementation of init(Properties props) method. A Custom
// implementation should override this.
public int init (java.util.Properties props)
{

String type =
props.getProperty("com.ibm.wsspi.security.trustassociation.types");
String classfile=
props.getProperty("com.ibm.wsspi.security.trustassociation."
+type+".config");
if (classfile != null && classfile.length() > 0) {

return init(classfile);
} else {

return -1;
}

}

Change your implementation to implement the init(Properties) method instead of relying on init(String
propsfile) method. As shown in the previous example, this default implementation reads the properties
to load the property file. The com.ibm.wsspi.security.trustassociation.types property gets the file
containing the properties by concatenating .config to its value.

Note: The init(String) method still works if you want to use it instead of implementing the
init(Properties) method. The only requirement is that the file name containing the custom trust
association properties should now be entered using the Custom Properties link of the
interceptor in the administrative console or by using scripts. You can enter the property using
either of the following methods. The first method is used for backward compatibility with
previous versions of WebSphere Application Server.
Method 1:

The same property names used in the previous release are used to obtain the file
name. The file name is obtained by concatenating the .config to the
com.ibm.wsspi.security.trustassociation.types property value.

If the file name is called myTAI.properties and is located in the app_server_root/
properties directory, set the following properties:
v com.ibm.wsspi.security.trustassociation.types = myTAItype
v com.ibm.wsspi.security.trustassociation.myTAItype.config = app_server_root/

properties/myTAI.properties
Method 2:

You can set the com.ibm.wsspi.security.trustassociation.initPropsFile property in the
trust association custom properties to the location of the file. For example, set the
following property:
com.ibm.wsspi.security.trustassociation.initPropsFile=
app_server_root/properties/myTAI.properties

Type the previous code as one continuous line.

The location of the properties file is fully qualified (for example, app_server_root/properties/
myTAI.properties). Because the location can be different in a WebSphere Application Server, Network
Deployment environment, use variables such as ${USER_INSTALL_ROOT} to refer to the WebSphere
Application Server installation directory. For example, if the file name is called myTAI.properties and it
is located in the app_server_root/properties directory, then set the following properties:

964 Developing WebSphere applications

3. Compile the implementation once you have implemented it. For example, app_server_root/java/bin/
javac -classpath install_root/plugins/com.ibm.ws.runtime.jar;<install_root>/dev/JavaEE/
j2ee.jar myTAIImpl.java

a. Identify the trust association interceptor class file for use when the server is restarted. Place the file
either at theapp_server_root/classes directory OR use the Java Virtual Machine (JVM) system
property, -Dws.ext.dirs to specify where the file resides.

b. Restart all the servers.

4. Delete the default WebSEAL interceptor in the administrative console and click New to add your
custom interceptor. Verify that the class name is dot separated and appears in the class path.

5. Click the Custom Properties link to add additional properties that are required to initialize the custom
interceptor. These properties are passed to the init(Properties) method of your implementation when it
extends the com.ibm.wsspi.security.WebSphereBaseTrustAssociationInterceptor as described in the
previous step.

6. Save and synchronize (if applicable) the configuration.

7. Restart the servers for the custom interceptor to take effect.

Example

Refer to the Security: Resources for Learning article for a reference to an example of a custom interceptor.

Trust association interceptor support for Subject creation
The trust association interceptor (TAI) com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface
supports several features that are different from the existing
com.ibm.websphere.security.TrustAssociationInterceptor interface.

The TAI interface supports a multiphase, negotiated authentication process. For example, some systems
require a challenge response protocol back to the client. The two key methods in this interface are:

Key method name
public boolean isTargetInterceptor (HttpServletRequest req)

The isTargetInterceptor method determines whether the request originated with the proxy server
that is associated with the interceptor. The implementation code must examine the incoming
request object and determine if the proxy server that forwards the request is a valid proxy server
for this interceptor. The result of this method determines whether the interceptor processes the
request.

Method result

A true value tells WebSphere Application Server to have the TAI handle the request.

A false value, tells WebSphere Application Server to ignore the TAI.

Key method name
public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse
res)

The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from
which the request originated. The implementation code must authenticate the proxy server. The
authentication mechanism is proxy-server specific. For example, in the product implementation for
the WebSEAL server, this method retrieves the basic authentication information from the HTTP
header and validates the information against the user registry that WebSphere Application Serve
uses. If the credentials are not valid, the code creates the WebTrustAssociationException
exception, which indicates that the proxy server is not trusted and the request is denied. If the
credentials are valid, the code returns a TAIResult result, which indicates the status of the request
processing with the client identity (Subject and principal name) to use for authorizing the web
resource.

Chapter 21. Developing security 965

Method result
Returns a TAIResult result, which indicates the status of the request processing. You can query
the Request object and modify the Response object can be modified.

The TAIResult class has three static methods for creating a TAIResult result. The TAIResult create
methods take an int type as the first parameter. WebSphere Application Server expects the result to be a
valid HTTP request return code and is interpreted in one of the following ways:

v If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server that the
TAI completed its negotiation. The response also tells WebSphere Application Server to use the
information in the TAIResult result to create a user identity.

v Other values tell WebSphere Application Server to return the TAI output, which is placed into the
HttpServletResponse response, to the web client. Typically, the web client provides additional
information and then places another call to the TAI.

Table 101. TAIResults definitions. The created TAIResults results have the following meanings:
TAIResult Explanation

public static TAIResult create(int status); Indicates a status to WebSphere Application Server. The status cannot be SC_OK because the
identity information is provided.

public static TAIResult create(int status, String
principal);

Indicates a status to WebSphere Application Server and provides the user ID or the unique ID for
this user. WebSphere Application Server creates credentials by querying the user registry.

public static TAIResult create(int status, String
principal, Subject subject);

Indicates a status to WebSphere Application Server, the user ID or the unique ID for the user, and a
custom Subject. If the Subject contains a hashtable, the principal is ignored. The contents of the
Subject become part of the eventual user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust method of a TAI.

The following code sample indicates that additional negotiation is required:
// Modify the HttpServletResponse object
// The response code is meaningful only on the client
return TAIResult.create(HttpServletResponse.SC_CONTINUE);

The following code sample indicates that the TAI determined the user identity. WebSphere Application
Server receives the user ID only and queries the user registry for additional information:
// modify the HttpServletResponse object
return TAIResult.create(HttpServletResponse.SC_OK, userid);

The following code sample indicates that the TAI determined the user identity. WebSphere Application
Server receives the complete user information that is contained in the hashtable. In this code sample, the
hashtable is placed in the public credential portion of the Subject:
// create Subject and place Hashtable in it
Subject subject = new Subject;
subject.getPublicCredentials().add(hashtable);
// the response code is meaningful for only the client
return TAIResult.create(HttpServletResponse.SC_OK, "ignored", subject);

The following code sample indicates that an authentication failure occured. WebSphere Application Server
fails the authentication request:
//log error message
//
throw new WebTrustAssociationFailedException("TAI failed for this reason");

The following methods are additional methods on the TrustAssociationInterceptor interface. These methods
are used for initialization, for shutdown, and for identifying the TAI to WebSphere Application Server. For
more information, see the Java documentation.

Method name
public int initialize(Properties props)

966 Developing WebSphere applications

Method result
This method is called during TAI initialization and is called only if custom properties are configured
for the interceptor.

Method name
public String getVersion()

Method result
This method returns the version of the TAI.

Method name
public String getType()

Method result
This method returns the type of the TAI.

Method name
public void cleanup()

Method result
This method is called when stopping the WebSphere Application Server process. Stopping the
WebSphere Application Server process provides an opportunity for the TAI to perform any
necessary cleanup. This method is not necessary if cleanup is not required.

Enabling a plugpoint for custom password encryption
Two properties govern the protection of passwords. By configuring these two properties, you can enable a
plugpoint for custom password encryption.

Before you begin

To view an example code sample that illustrates the
com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface, see “Plug point for custom password
encryption” on page 968.

About this task

The encryption method is called for password processing whenever the custom class is configured and
custom encryption is enabled. The decryption method is called whenever the custom class is configured
and the password contains the {custom:alias} tag. The custom:alias tag is stripped prior to decryption.

Procedure
1. To enable custom password encryption, you must configure two properties:

v com.ibm.wsspi.security.crypto.customPasswordEncryptionClass - Defines the custom class
that implements the com.ibm.wsspi.security.crypto.CustomPasswordEncryption password encryption
interface.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled - Defines when the custom
class is used for default password processing. When the passwordEncryptionEnabled option is not
specified or set to false, and the passwordEncryptionClass class is specified, the decryption
method is called whenever a {custom:alias} tag still exists in the configuration repository.

2. To configure custom password encryption, configure both of these properties in the server.xml file.
How you perform this configuration is dependent on your existing directory structure. Choose one of
the following ways to perform this configuration:

v Place The custom encryption class (com.acme.myPasswordEncryptionClass) in a Java archive
(JAR) file that resides in the ${WAS_INSTALL_ROOT}/classes directory. In this case, you have created
the ${WAS_INSTALL_ROOT}/classes directory for this purpose.

Note: WebSphere Application Server does not create the ${WAS_INSTALL_ROOT}/classes directory.

Chapter 21. Developing security 967

v Place the custom encryption class (com.acme.myPasswordEncryptionClass) in a Java archive (JAR)
file that resides in the ${WAS_HOME}/lib/ext directory or another valid existing directory.

Every configuration document that contains a password (security.xml and any application bindings
that contain RunAs passwords), must be saved before all of the passwords become encrypted with the
custom encryption class.

3. If the custom implementation class defaults to the
com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl interface, and this class is present in
the class path, then encryption is enabled by default. This simplifies the enablement process for all
nodes. It is not necessary to define any other properties except for those that the custom
implementation requires. To disable encryption, but still use this class for decryption, specify the
following class.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

What to do next

Whenever a custom encryption class encryption operation is called, and it creates a run-time exception or
a defined PasswordEncryptException exception, the WebSphere Application Server runtime uses the {xor}
algorithm to encode the password. This encoding prevents the storage of the password in plain text. After
the problem with the custom class has been resolved, it automatically encrypts the password the next time
the configuration document is saved.

When a RunAs role is assigned a user ID and password, it currently is encoded using the WebSphere
Application Server encoding function. Therefore, after the custom plug point is configured to encrypt the
passwords, it encrypts the passwords for the RunAs bindings as well. If the deployed application is moved
to a cell that does not have the same encryption keys, or the custom encryption is not yet enabled, a login
failure results because the password is not readable.

One of the responsibilities of the custom password encryption implementation is to manage the encryption
keys. This class must decrypt any password that it encrypted. Any failure to decrypt a password renders
that password to be unusable, and the password must be changed in the configuration. All encryption keys
must be available for decryption there and no passwords are left using those keys. The master secret
must be maintained by the custom password encryption class to protect the encryption keys.

You can manage the master secret by using a stash file for the keystore, or by using a password locator
that enables the custom encryption class to locate the password so that it can be locked down.

Plug point for custom password encryption
A plug point for custom password encryption can be created to encrypt and decrypt all passwords in
WebSphere Application Server that are currently encoded or decoded using Base64-encoding.

The implementation class of this plug point has the responsibility for managing keys, determining the
encryption algorithm to use, and for protecting the master secret. The WebSphere Application Server
runtime stores the encrypted passwords in their existing locations, preceded with {custom:alias} tags
instead of {xor} tags. The custom part of the tag indicates that it is a custom algorithm. The alias part of
the tag is specified by the custom implementation, which helps to indicate how the password is encrypted.
The implementation can include the key alias, encryption algorithm, encryption mode, or encryption
padding.

A custom provider of this plug point must implement an interface that is designed to encrypt and decrypt
passwords. The interface is called by the WebSphere Application Server runtime whenever the custom
plug point is enabled. The custom algorithm becomes one of the supported algorithms when the plug point
is enabled. Other supported algorithms include {xor} (standard base64 encoding) and {os400} which is
used on the iSeries platform.

The following example illustrates the com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface:

968 Developing WebSphere applications

package com.ibm.wsspi.security.crypto;
public interface CustomPasswordEncryption
{

/**
* The encrypt operation takes a UTF-8 encoded String in the form of a byte[].
* The byte[] is generated from String.getBytes("UTF-8").
* An encrypted byte[] is returned from the implementation in the EncryptedInfo
* object. Additionally, a logical key alias is returned in the EncryptedInfo
* objectwhich is passed back into the decrypt method to determine which key was
* used to encrypt this password. The WebSphere Application Server runtime has
* no knowledge of the algorithm or the key used to encrypt the data.
*
* @param byte[]
* @return com.ibm.wsspi.security.crypto.EncryptedInfo
* @throws com.ibm.wsspi.security.crypto.PasswordEncryptException
**/
public EncryptedInfo encrypt (byte[] decrypted_bytes) throws PasswordEncryptException;

/**
* The decrypt operation takes the EncryptedInfo object containing a byte[]
* and the logical key alias and converts it to the decrypted byte[]. The
* WebSphere Application Server runtime converts the byte[] to a String
* using new String (byte[], "UTF-8");
*
* @param com.ibm.wsspi.security.crypto.EncryptedInfo
* @return byte[]
* @throws com.ibm.wsspi.security.crypto.PasswordDecryptException
**/
public byte[] decrypt (EncryptedInfo info) throws PasswordDecryptException;

/**
* The following is reserved for future use and is currently not
* called by the WebSphere Application Server runtime.
*
* @param java.util.HashMap
**/
public void initialize (java.util.HashMap initialization_data);

}

The com.ibm.wsspi.security.crypto.EncryptedInfo class contains the encrypted bytes with the user-defined
alias that is associated with the encrypted bytes. This information is passed back into the encryption
method to help determine how the password was originally encrypted.
package com.ibm.wsspi.security.crypto;
public class EncryptedInfo
{

private byte[] bytes;
private String alias;

/**
* This constructor takes the encrypted bytes and a keyAlias as parameters.
* This constructor is used to pass to or from the WebSphere Application Server
* runtime to enable the runtime to associate the bytes with a specific key that
* is used to encrypt the bytes.
*/

public EncryptedInfo (byte[] encryptedBytes, String keyAlias)
{

bytes = encryptedBytes;
alias = keyAlias;

}

/**
* This command returns the encrypted bytes.
*
* @return byte[]
*/

public byte[] getEncryptedBytes()
{

return bytes;
}

/**
* This command returns the key alias. The key alias is a logical string that is
* associated with the encrypted password in the model. The format is
* {custom:keyAlias}encrypted_password. Typically, just the key alias is placed
* here, but algorithm information can also be returned.
*
* @return String
*/

public String getKeyAlias()
{

return alias;
}

}

Chapter 21. Developing security 969

The encryption method is called for password processing whenever the custom class is configured and
custom encryption is enabled. The decryption method is called whenever the custom class is configured
and the password contains the {custom:alias} tag . The custom:alias tag is stripped prior to decryption.
For more information, see Enabling custom password encryption.

Implementing a custom authentication provider using JASPI
You can implement a custom authentication provider using Java Authentication SPI for Containers (JASPI,
or sometimes called JASPIC) to handle the Java Platform, Enterprise Edition (Java EE) authentication of
HTTP request and response messages destined for web applications.

Before you begin

For JASPI authentication processing to take place, application security must be enabled in the global or
domain security configuration and the server must be restarted for the configuration changes to take effect.
Read the Application security topic for more information.

About this task

This release of WebSphere Application Server supports the JSR 196: Java Authentication SPI for
Containers (JASPI, or sometimes called JASPIC) specification, which enables third-party security providers
to handle the Java Platform, Enterprise Edition (Java EE) authentication of HTTP request and response
messages destined for web applications. The JASPI specification extends the pluggable authentication
concepts of the Java Authentication and Authorization Service (JAAS) to the authentication of HTTP
request and response messages. When application security is enabled, and a protected web resource is
accessed, the web container and the security runtime collaborate to make an authentication decision for
the caller. When using a third-party JASPI provider, the authentication decision is delegated to that
provider.

The JASPI specification defines standard system programming interfaces that enable developers to write a
pluggable custom authentication provider that can handle Java EE web authentication mechanisms as well
as any extended authentication processing. The WebSphere Application Server runtime uses these
standard system programming interfaces to invoke the JASPI authentication provider. Read the Servlet
Container Profile section in the JSR 196: Java Authentication Service Provider Interface for Containers
specification for the requirements that third-party authentication providers must satisfy for more
information.

If application security is enabled with JASPI authentication, when the web resource (such as a servlet or a
JavaServer Pages (JSP) file) is accessed, the security runtime checks if the web resource is mapped to a
JASPI provider defined in the security configuration. If so, the runtime invokes the JASPI authentication
provider to perform authentication for the HTTP request and response messages.

To implement a custom authentication provider using JASPI you must do the following:

Procedure
1. Develop a custom JASPI authentication provider.

WebSphere Application Server provides support for the development of custom JASPI authentication
providers to be used to perform authentication for the HTTP request and response messages destined
for web applications. Read “Developing a custom JASPI authentication provider” on page 971 for more
information.

2. Configure a new JASPI authentication provider.

WebSphere Application Server allows an administrator to enable JASPI authentication and to define a
third-party JASPI authentication provider as part of the global or domain security configuration. Read
“Configuring a new JASPI authentication provider using the administrative console” on page 975 for
more information.

970 Developing WebSphere applications

3. Associate a JASPI authentication provider with an application or specific web modules.

During application deployment, the administrator or deployer can use the Map JASPI Provider option to
associate web applications and specific web modules with an existing JASPI authentication provider as
defined in the security configuration. This association can also be made when editing the options for
an existing installed application. By default, an application inherits the JASPI settings defined in the
WebSphere Application Server global or domain security configuration, and web modules inherit the
application setting. The Map JASPI Provider option can be used to override these defaults. Read
“Enabling JASPI authentication using the Map JASPI provider option during application deployment” on
page 977 for more information.

Developing a custom JASPI authentication provider
You can develop a custom Java Authentication SPI for Containers (JASPI) authentication provider by
creating classes that implement the required interfaces noted in the JSR 196: Java Authentication Service
Provider Interface for Containers specification.

Before you begin

Review the specific interface implementation requirements for JASPI authentication providers and modules
in the JSR 196: Java Authentication Service Provider Interface for Containers specification.

About this task

WebSphere Application Server supports the use of third-party authentication providers that are compliant
with the servlet container profile specified in Java Authentication SPI for Containers (JASPI) Version 1.0.

The servlet container profile defines interfaces that are used by the security runtime environment in
collaboration with the web container in WebSphere Application Server to invoke authentication modules
before and after a web request is processed by an application. Authentication using JASPI modules is
performed only when JASPI has been enabled in the security configuration and when a configured JASPI
provider has been associated with the web module that processes the received web request.

To develop a custom authentication provider, create classes that implement the required interfaces noted
in the JSR 196: Java Authentication Service Provider Interface for Containers specification. A provider can
use one or more authentication modules for authentication. Modules can use callbacks to perform
authentication, or they can manually add the necessary user identity information to the client subject.
Depending on the scope of the provider, the implementation classes can be stored in various locations on
the application server.

Procedure
1. Create a class that implements the javax.security.auth.message.config.AuthConfigProvider interface.

The AuthConfigProvider implementation class must define a public two-argument constructor and the
getServerAuthConfig public method:
import java.util.Map;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.config.AuthConfigFactory;
import javax.security.auth.message.config.AuthConfigProvider;
import javax.security.auth.message.config.ServerAuthConfig;

public class SampleAuthConfigProvider implements AuthConfigProvider {

public SampleAuthConfigProvider(Map<String, String> properties, AuthConfigFactory factory) {
...

}
public ServerAuthConfig getServerAuthConfig(String layer, String appContext, CallbackHandler handler)

throws AuthException {
...

}
}

Chapter 21. Developing security 971

An instance of the AuthConfigProvider implementation class is used by WebSphere Application Server
when a request arrives to be processed by the web module of the application. The
getServerAuthConfig method is used to obtain a ServerAuthConfig instance. The CallbackHandler
argument in the method call is used by the authentication module(s).

2. Create a class that implements the javax.security.auth.message.config.ServerAuthConfig interface.

The ServerAuthConfig implementation class must define the getAuthContextID and getAuthContext
public methods:
import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthConfig;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthConfig implements ServerAuthConfig {

public String getAuthContextID(MessageInfo messageInfo) throws IllegalArgumentException {
...

}
public ServerAuthContext getAuthContext(String authContextID, Subject serviceSubject, Map properties)

throws AuthException {
...

}
}

The getAuthContextID and getAuthContext methods in the ServerAuthConfig implementation class are
used to obtain a ServerAuthContext instance.

3. Create a class that implements the javax.security.auth.message.config.ServerAuthContext interface.

The ServerAuthContext implementation class must define the validateRequest and secureResponse
public methods:
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthContext implements ServerAuthContext {

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}
public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)

throws AuthException {
...

}
}

The validateRequest method in the ServerAuthContext implementation class is used to invoke the
module that authenticates the received web request message. If the authentication result is successful,
the web container dispatches the received web request message that the target web module
processes in the application. If the authentication result is not successful, the request is rejected with
the appropriate response status.

4. Create a class that implements the javax.security.auth.message.module.ServerAuthModule interface.

The ServerAuthModule implementation class must define the initialize, validateRequest, and
secureResponse public methods:
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.MessagePolicy;
import javax.security.auth.message.module.ServerAuthModule;

public class SampleAuthModule implements ServerAuthModule {

public void initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy, CallbackHandler handler, Map options)

972 Developing WebSphere applications

throws AuthException {
...

}

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}

public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)
throws AuthException {
...

}
}

The initialize method in the ServerAuthModule implementation class is called by the ServerAuthContext
implementation class to initialize the authentication module and to associate it with the
ServerAuthContext instance.

The validateRequest and secureResponse methods in this class are used respectively to authenticate
the javax.servlet.http.HttpServletRequest and javax.servlet.http.HttpServletResponse contained in the
javax.security.auth.message.MessageInfo that is received. These methods can use the
CallbackHandler instance received in the initialize method to interact with the WebSphere security
runtime to validate a user password, and the active user registry to retrieve a unique-id and
membership groups for a user. The retrieved data is placed in a Hashtable in the set of private
credentials in the client subject. The WebSphere Application Server implementation of CallbackHandler
supports three callbacks:

v CallerPrincipalCallback

v GroupPrincipalCallback

v PasswordValidationCallback

WebSphere Application Server expects the name values obtained with
PasswordValidationCallback.getUsername() and CallerPrincipalCallback.getName() to be identical. If
they are not, unpredictable results occur. The CallbackHandler's handle() method processes each
callback given in the argument array of the method sequentially. Therefore, the name value set in the
private credentials of the client subject is the one obtained from the last callback processed.

Note: Always use PasswordValidationCallback to validate a user password and to add the appropriate
credentials to the client subject during authentication:
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.callback.PasswordValidationCallback;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...
PasswordValidationCallback pvcb = new PasswordValidationCallback(clientSubject, username, password);
handler.handle(new Callback[] {pvcb});
...

}

If CallbackHandler is not used by the authentication module, and validateRequest returns a successful
status, WebSphere Application Server requires that a Hashtable instance be included in the
clientSubject with user identity information so that a custom login can be performed to obtain the
credentials for the user. This Hashtable can be added to the client subject as in the following example:
import java.util.Hashtable;
import java.util.String;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import com.ibm.wsspi.security.registry.RegistryHelper;
import com.ibm.wsspi.security.token.AttributeNameConstants.AttributeNameConstants;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {

Chapter 21. Developing security 973

...
UserRegistry reg = RegistryHelper.getUserRegistry(null);
String uniqueid = reg.getUniqueUserID(username);

Hashtable hashtable = new Hashtable();
hashtable.put(AttributeNameConstants.WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_SECURITYNAME, username);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_PASSWORD, password);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_GROUPS, groupList); //optional
clientSubject.getPrivateCredentials().add(hashtable);
...

}

For more information about the Hashtable requirements and custom login, read about Developing
custom login modules for a system login configuration for JAAS.

To support the login and authenticate methods of the Java Servlet 3.0 specification, the following logic
must be added to the validateRequest method in the ServerAuthModule implementation class:
import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.servlet.http.HttpServletRequest;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...
Map msgMap = messageInfo.getMap();

if ("login".equalsIgnoreCase(msgMap.get("com.ibm.websphere.jaspi.request"))) {
// This request is for the login method
String username = msgMap.get("com.ibm.websphere.jaspi.user");
String password = msgMap.get("com.ibm.websphere.jaspi.password");
// Authenticate using the user name and password set above.

}
else if ("authenticate".equalsIgnoreCase(msgMap.get("com.ibm.websphere.jaspi.request"))) {

// this request is for the authenticate method
String authHeader

= ((HttpServletRequest) messageInfo.getRequestMessage()).getHeader("Authorization");
if (authHeader == null) {

// The user has not provided a username and password yet, return
// AuthStatus.SEND_CONTINUE to challenge

}
else {

// Authenticate using the user name and password in the authentication header.
}

}
else {

// This is not a Servlet 3.0 login or authenticate request; handle as usual.
}
...

}

5. Compile all newly created classes.

The following JAR files in your WebSphere Application Server installation must be specified in the
class path to successfully compile the new classes:

v app_server_root/dev/JavaEE/j2ee.jar

v app_server_root/dev/was_public.jar (if any public WebSphere APIs were used)

6. Create a JAR file with the compiled classes.

Depending on the requirements, the JAR file can be placed in one of three locations:

v app_server_root/lib

This location is always on the classpath for the WebSphere Application Server classloader. Using
this location, the provider can be registered for a set of web modules or applications as the cell or
domain default provider for all web modules and applications, and it can be registered manually as a
persistent provider.

v Shared library

974 Developing WebSphere applications

Place the provider JAR file anywhere on the WebSphere Application Server system. Configure a
shared library that points to the JAR, and add that shared library to the application or server
classpath. In a shared library, the provider can be registered for a set of web modules or
applications, but the provider cannot be used as the cell or domain default provider. It also cannot
be registered as a persistent provider because the shared library is not in the classpath for provider
registration during server startup. For more information about configuring a shared library, read
about Creating shared libraries.

v Embedded in the application

Include the provider JAR file in the application's EAR file as a utility JAR, or embed the compiled
class files in the web module WAR. The embedded provider can be registered for the web modules
in the application as long as the classes are included in the classpath for the web module. This
provider cannot be used as a cell or domain default provider, nor can it be registered as a persistent
provider. The classes in the application are not available for provider registration during server
startup.

7. Configure the provider in the security configuration using the administrative console or an
administration script.

Read about “Configuring a new JASPI authentication provider using the administrative console” for
more information.

Configuring a new JASPI authentication provider using the administrative console
You can configure a new Java Authentication SPI (JASPI) authentication provider in the cell or in the given
security domain by using the administrative console.

About this task

This release of WebSphere Application Server supports integration of message authentication providers
that are compliant with the JASPI for Containers Version 1.0 specification.

When JASPI authentication providers are configured, and WebSphere Application Server receives an
HTTP request message, the security runtime environment determines if the target application is configured
to use JASPI authentication. If so, the runtime environment invokes the selected authentication provider to
validate the received message. Otherwise, authentication of the message request is done according to the
authentication mechanism provided by WebSphere Application Server for the appropriate messaging layer.

If you want to use JASPI message authentication services, you must supply an implementation of the
required interfaces as defined in the JASPI specification. Read “Developing a custom JASPI authentication
provider” on page 971 for more information on these interfaces.

Authentication of HTTP request and response messages destined for JASPI-enabled deployed
applications is performed according to the requirements of the Servlet Container Profile specified in the
new specification.

Note: JASPI is supported in a mixed-cell environment, but can only be used in nodes that are version 8
or higher. Back-level nodes use existing authentication mechanisms.

To configure a new JASPI authentication provider using the administrative console, do the following:

Procedure
1. Click Security > Global security.

2. Select Enable Java Authentication SPI (JASPI) to enable support for JASPI authentication.

3. Click Providers.

Note: It is not necessary to select Enable Java Authentication SPI (JASPI) until after you have
configured a new JASPI authentication provider.

Chapter 21. Developing security 975

Note: The Default provider option is used to specify a single JASPI authentication provider to perform
authentication for all web modules when JASPI authentication is enabled, and you do not
override the web module to JASPI provider mapping during application deployment. During
application deployment, you can override the default for every web module where it does not
apply by choosing not to use JASPI or by naming a different provider to use for authentication.
However, it is not recommended that you use this option unless you are certain that your default
provider is capable of handling all types of web authentication (basic authentication, form
authentication and client certificate authentication).

4. Click New.

5. Enter a name that uniquely identifies the JASPI authentication provider in the Provider name field.

6. Optional: Enter a textual description of the authentication provider in the Description field.

7. Enter the package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider) in the Class name field.

Note: In the Message layer field, WebSphere Application Server Version 8.5 supports only the
HttpServlet message layer profile as defined in the JASPI specification. You cannot change this
value.

8. Optional: Under Custom Properties, click New if you require more than one property. This parameter is
a list of key/value pairs.

9. Click OK or Apply.

What to do next

You can also configure a new JASPI authentication provider by using wsadmin commands. Read
JaspiManagement command group for the AdminTask object for more information.

Verify that your server has been restarted so that the changes to configure the JASPI provider will take
effect.

Modifying an existing JASPI authentication provider using the administrative
console
You can modify and configure an existing Java Authentication SPI (JASPI) authentication provider in the
cell or in the given security domain by using the administrative console.

About this task

To modify and configure an existing JASPI authentication provider using the administrative console, do the
following:

Procedure
1. Click Security > Global security.

2. Click Providers. You also have the option to change the Default provider from the drop-down list.

Note: You can modify the value of the Enable Java Authentication SPI (JASPI) checkbox to indicate
whether or not JASPI support is enabled at a later time.

3. Select an existing JASPI authentication provider to modify.

4. Optional: Enter a textual description of the authentication provider in the Description field.

5. Enter a new package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider) in the Class name field if you wish to change
it.

976 Developing WebSphere applications

Note: In the Message layer field, WebSphere Application Server Version 8.5 supports only the
HttpServlet message layer profile as defined in the JASPI specification. You cannot change this
value.

6. Optional: Under Custom Properties, select an existing custom configuration property. Click Delete to
remove the property, Edit to modify the property, or click New to create a new property. If you select
Edit to modify an existing property, you can enter new values for the Name field and Value field if you
wish to change them.

7. Click OK or Apply.

What to do next

You can also modify an existing JASPI authentication provider by using wsadmin commands. For more
information, read JaspiManagement command group for the AdminTask object.

Verify that your server has been restarted so that the changes to configure the JASPI provider will take
effect.

Deleting a JASPI authentication provider using the administrative console
You can delete an existing Java Authentication SPI (JASPI) authentication provider in the cell or in the
given security domain by using the administrative console.

About this task

To delete an existing JASPI authentication provider using the administrative console, do the following:

Procedure
1. Click Security > Global security.

2. Click Providers, You can optionally select or deselect the Enable Java Authentication SPI (JASPI)
check box.

Note: You can modify the value of the Enable Java Authentication SPI (JASPI) checkbox to indicate
whether or not JASPI support is enabled at a later time.

3. Select an existing JASPI authentication provider to delete.

4. Click Delete.

What to do next

You can also delete a JASPI authentication provider by using wsadmin commands. For more information,
read JaspiManagement command group for the AdminTask object.

Verify that your server has been restarted so that the changes to the JASPI provider configuration will take
effect.

Enabling JASPI authentication using the Map JASPI provider option during
application deployment
An administrator or deployer can use the Map JASPI Provider option during application deployment to
associate web applications and specific web modules with an existing Java Authentication SPI (JASPI)
authentication provider as defined in the security configuration. This association can also be made when
editing the options for a previously installed application.

Before you begin

Before you perform this task, verify that a JASPI authentication provider is defined as part of the global or
domain security configuration. Read about “Configuring a new JASPI authentication provider using the
administrative console” on page 975 for more information.

Chapter 21. Developing security 977

About this task

By default, an application inherits the JASPI settings defined in the WebSphere Application Server global
or domain security configuration, and web modules inherit the application setting. However, you can
override these default values by using the Map JASPI Provider option during application deployment. Use
this option to associate a specific JASPI provider from the global or domain security configuration with the
entire application or with specific web modules. You can also use this option to specify that JASPI
authentication not be used for an application or specific web module.

To associate a web application or specific web modules with an existing JASPI provider:

Procedure
1. From the administrative console, click Applications > New Application > New Enterprise

Application. Complete the required steps until you see the step for Map JASPI Provider, or click the
Map JASPI Provider step from the installation options. A list containing the application name and
associated web modules is displayed. To update a JASPI provider association after an application has
been deployed, click Applications > Application Types > WebSphere enterprise applications, and
then select the application to be modified. Click JASPI Provider under the Detail properties.

2. Select the application or specific web module for which the JASPI provider setting is to be modified.

3. Click the Select JASPI Provider menu and select one of the following options:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain
security configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for
the selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are
the settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider name is used to perform
authentication of web requests for the selected application or web module.

4. Complete the remaining steps to finish installing and deploying the application.

What to do next

Verify that your server has been restarted to ensure that the configuration changes to define the JASPI
provider take effect. Read about “Configuring a new JASPI authentication provider using the administrative
console” on page 975 for more information.

JASPI authentication providers collection
The Java Authentication Service Provider Interface (JASPI) for Containers Version 1.0 specification defines
standard system programming interfaces that enable developers to write a pluggable custom
authentication provider that can handle Java EE web authentication mechanisms as well as any extended
authentication processing. The WebSphere Application Server runtime uses these standard system
programming interfaces to invoke the JASPI authentication provider.

Read the Servlet Container Profile section in the JSR 196: Java Authentication Service Provider Interface
for Containers specification for the requirements that third-party authentication providers must satisfy for
more information.

If application security is enabled, and JASPI authentication is enabled with providers configured, when a
web resource (such as a servlet or a JavaServer Page (JSP) file) is accessed, the security runtime checks

978 Developing WebSphere applications

if the web resource is mapped to a JASPI provider defined in the security configuration. If so, the runtime
invokes the JASPI authentication provider to perform authentication for the HTTP request and response
messages.

Note: WebSphere Application Server Version 8.5 supports only the HttpServlet message layer profile as
defined in the JASPI specification.

To view this administrative console page, click Security > Global security. Under Authentication, click
Providers.

To configure a new custom JASPI authentication provider in the cell or in the given security domain, click
New and specify provider settings.

Provider name:

Specifies a name that uniquely identifies the authentication provider.

Select an existing custom JASPI authentication provider name to edit and configure it.

JASPI authentication provider details
Use this page to provide configuration details for your custom Java Authentication SPI (JASPI)
authentication service provider.

To view this administrative console page, click Security > Global security. Under Authentication, click
Providers. Select an existing authentication service provider name or click New to create a new one.

Provider name:

Specifies a name that uniquely identifies the authentication provider.

Description:

Specifies a textual description of the authentication provider.

Class name:

Specifies the package-qualified name of the class that implements the authentication provider interface
(javax.security.auth.message.config.AuthConfigProvider).

Message layer:

WebSphere Application Server Version 8.5 supports only the HttpServlet message layer profile as defined
in the JASPI specification.

Custom properties:

Specifies additional custom properties needed to initialize the authentication provider. This parameter is a
list of key/value pairs.

Click Delete to remove a custom property or Edit to modify a custom property.

JASPI authentication enablement for applications
Use this page to enable or disable Java Authentication SPI (JASPI) authentication for an application or
web module, and to specify the name of a JASPI authentication provider to be used for authenticating
messages for the application or web module.

Chapter 21. Developing security 979

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications. Select an application, and under Detail Properties, select JASPI provider.

Select JASPI provider:

Select to indicate the web modules in the application that you wish to specify or to override the default
JASPI authentication settings for.

Select one of the JASPI provider names to choose a provider to use to perform authentication of web
requests for the selected Web module or the application.

To specify how JASPI authentication is performed for the selected web module or the application, choose
one of the following:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain security
configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for the
selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are the
settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider is used to perform authentication of web
requests for the selected application or web module.

If JASPI authentication is enabled, and a specific provider name is not specified, then the default provider
name is used. For more information, read about configuring a new JASPI authentication provider using the
administrative console.

If JASPI authentication is disabled, or if no default provider is selected, JASPI authentication is not
performed. Web authentication is then performed according to another authentication mechanism as
selected in the cell or domain security configuration.

980 Developing WebSphere applications

Chapter 22. Developing Startup beans

This page provides a starting point for finding information about startup beans.

Startup beans allow business logic to run when an application starts or stops.

Using startup beans
There are two types of startup beans: application startup beans and Module startup beans.

About this task

Note: The capabilities provided with startup singleton session beans (EJB 3.1 specification) causes the
WebSphere Application Server proprietary startup beans function to be deprecated.

A module startup bean is a session bean that is loaded when an EJB Jar file starts. Module startup beans
enable Java Platform Enterprise Edition (Java EE) applications to run business logic automatically,
whenever an EJB module starts or stops normally. An application startup bean is a session bean that is
loaded when an application starts. Application startup beans enable Java EE applications to run business
logic automatically, whenever an application starts or stops normally.

Startup beans are especially useful when used with asynchronous bean features. For example, a startup
bean might create an alarm object that uses the Java Message Service (JMS) to periodically publish
heartbeat messages on a well-known topic. This enables clients or other server applications to determine
whether the application is available. Refer to the Enabling an application to wait for a messaging engine to
start article if you are using the default JMS provider.

Procedure
1. For Application startup beans, use the home interface,

com.ibm.websphere.startupservice.AppStartUpHome, to designate a bean as an Application startup
bean. For Module startup beans, use the home interface,
com.ibm.websphere.startupservice.ModStartUpHome, to designate a bean as a Module startup bean.

2. For Application startup beans, use the remote interface,
com.ibm.websphere.startupservice.AppStartUp, to define start() and stop() methods on the bean. For
Module startup beans, use the remote interface, com.ibm.websphere.startupservice.ModStartUp, to
define start() and stop() methods on the bean.

The startup bean start() method is called when the module or application starts and contains business
logic to be run at module or application start time.

The start() method returns a boolean value. True indicates that the business logic within the start()
method ran successfully. Conversely, False indicates that the business logic within the start() method
failed to run completely. A return value of False also indicates to the Application server that application
startup is aborted.

The startup bean stop() methods are called when the module or application stops and contains
business logic to be run at module or application stop time. Any exception thrown by a stop() method
is logged only. No other action is taken.

The start() and stop() methods must never use the TX_MANDATORY transaction attribute. A global
transaction does not exist on the thread when the start() or stop() methods are invoked. Any other
TX_* attribute can be used. If TX_MANDATORY is used, an exception is logged, and the application
start is aborted.

The start() and stop() methods on the remote interface use Run-As mode. Run-As mode specifies the
credential information to be used by the security service to determine the permissions that a principal
has on various resources. If security is on, the Run-As mode needs to be defined on all of the
methods called. The identity of the bean without this setting is undefined.

© IBM Corporation 2009 981

There are no restrictions on what code the start() and stop() methods can run, since the full Application
Server programming model is available to these methods.

3. Use an optional environment property integer, wasStartupPriority, to specify the start order of multiple
startup beans in the same Java Archive (JAR) file. If the environment property is found and is the
wrong type, application startup is aborted. If no priority value is specified, a default priority of 0 is used.
It is recommended that you specify the priority property. Beans that have specified a priority are sorted
using this property. Beans with numerically lower priorities are run first. Beans that have the same
priority are run in an undefined order. All priorities must be positive integers. Beans are stopped in the
opposite order to their start priority. The priority values for module startup beans and application
startup beans are mutually exclusive. All modules will be started prior to the application being declared
as "started" and therefore the start() methods for module startup beans within an application will be
invoked prior to the start() methods for any application startup beans. Likewise, all application startup
bean stop() methods for a specific Java Archive (JAR) file will be invoked prior to any module startup
bean stop() methods for that JAR.

Note: The wasStartupPriority environment property integer cannot be set through either a command
or the administrative console. This environment property integer is an EJB environment entry
that is to be set by an application developer not an administrator. You set the integer value in
the ejb-jar.xml file as shown in the example below:
<env-entry>

<env-entry-name>wasStartupPriority</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>3</env-entry-value>

</env-entry>

As with any other EJB environment entry, you set a separate wasStartupPriority value for
each EJB.

4. For module startup beans, the order in which EJB modules are started can be adjusted via the
"Starting weight" value associated with each module

5. To control who can invoke startup bean methods via WebSphere Security do the following:

a. Define the method permissions for the Start() and Stop() methods as you would for any EJB
module. (See "Defining method permissions for EJB modules".)

b. Ensure that the user that is mapped to the Security Role defined for the startup bean methods is
the same user that is defined as the Server user ID within the User Registry.

What to do next

View the startup beans service settings.

Enabling startup beans in the administrative console
Enabling startup beans in the administrative console enables Java 2 Platform Enterprise Edition (J2EE)
applications to run business logic automatically, whenever an application starts or stops normally.

About this task

Use the following steps to enable startup beans in the administrative console.

Procedure
1. Start the administrative console.

2. Select Servers > Application Servers > server_name > Container Services > Startup beans
service.

3. Select the Enable service at server startup check box.

4. Click Apply to save the configuration.

982 Developing WebSphere applications

What to do next

View the startup beans service settings.

Startup beans service settings
Use this page to enable startup beans that control whether application-defined startup beans function on
this server. Startup beans are session beans that run business logic through the invocation of start and
stop methods when applications start and stop. If the startup beans service is disabled, then the automatic
invocation of the start and stop methods does not occur for deployed startup beans when the parent
application starts or stops. This service is disabled by default. Enable this service only when you want to
use startup beans. Startup beans are especially useful when used with asynchronous beans.

Note: The capabilities provided with startup singleton session beans (EJB 3.1 specification) causes the
WebSphere Application Server proprietary startup beans function to be deprecated.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Container Settings, expand Container Services then click Startup
beans service.

Enable service at server startup
Specifies whether the server attempts to initiate the startup beans service.

Information Value
Default Cleared
Range Selected

When the application server starts, it attempts to
initiate the startup bean service automatically.

Cleared
The server does not try to initiate the startup
beans service. All startup beans do not start or
stop with the application. If you use startup beans
on this server, then the system administrator
must start the startup beans service manually or
select this property, and then restart the server.

Chapter 22. Developing Startup beans 983

984 Developing WebSphere applications

Chapter 23. Developing Service integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Programming mediations
Several distinct tasks are involved in programming a mediation. Typically, the mediation code is written by
a programmer, and is then deployed and administered by an integrator.

Before you begin

Code examples for writing a mediation are provided in the following topic: “Adding mediation function to
handler code” on page 987.

The following application programming interfaces are provided for you to work with messages:

v You can use the SIMessage API to manipulate the contents of the message.

v You can use the SIMediationSession API to access the service integration bus so that your mediation
can send and retrieve messages.

You can deploy mediations by using tooling such as the Rational Application Developer tools.

About this task

The tasks for programming a mediation are as follows:

Developing
Writing a mediation by adding functional code to a mediation handler.

Deploying
Adding a mediation to a mediation handler list, and deploying it.

Administering
Associating a mediation handler with a destination (optional), and configuring the parameters to be
used by the mediation handler at run time.

Take the following steps to program a mediation:

Procedure
1. Create a mediation handler. For more information, see “Writing a mediation handler” on page 986.

2. Add mediation function code to your mediation handler. For more information, see “Adding mediation
function to handler code” on page 987.

3. Optional: Working with the message payload, for example for logging messages within a mediation.
For more information, see “Working with the message payload” on page 994.

4. Use the Rational Application Developer tools to create a handler list, add your mediation handler to the
list, and deploy the handler list as an Enterprise Archive (EAR file). See the Rational Application
Developer information center for information about how to do this.

© Copyright IBM Corp. 2012 985

Serializing the content of SIMessage
Use this task to convert an SIMessage object to a byte array.

About this task

If you want to save an SIMessage object in your local file system or in a database, you must first convert
the object to a byte array and format string. You can reconstruct the message from the byte array and
format string. To do this, complete the following steps.

Procedure
1. In your application program, record the format string associated with the SIMessage instance. For

example:

String savedFormat=message.getFormat();

2. Call the getDataGraphAsBytes. For example:

Bytes newDataGraph = message.getNewDataGraph(newFormat);

This method returns a copy of the payload as a byte stream. You can store the bytes and the
associated format string, as you require.

3. Optional: To reconstruct the message, call the method createDataGraph provided by the
SIDataGraphFactory API. This method requires a byte array and a format string. For example:

DataGraph newDataGraph = SIDataGraphFactory.getInstance().createDataGraph(byteArray, newFormat);

This method creates a new data graph by parsing the bytes according to the format passed to the
method.

What to do next

You can use the newly created datagraph as the payload of an SIMessage instance by using the
SIMessage setDataGraph() method. For example:

newMessage.setDataGraph(newDataGraph, savedFormat);

Writing a mediation handler
You can write a mediation handler, add mediation function to it, and prepare it for installation on an
application server.

Before you begin

You should have access to a Java programming environment, and an assembly tool such as IBM Rational
Application Developer.

About this task

A mediation handler can be deployed. Each mediation handler executes some specific message
processing at run time, for example transforming a message format, or routing a message to a particular
destination. A mediation handler is a Java program framework, to which you add the code that performs
the mediation function.

You can define a mediation handler class either in a Java project or an EJB project (which is needed for
the deployment artifact). Your programming and deployment artifacts can be separated in different
projects. The steps below are for an EJB project, but the steps are very similar if you want to create a
Java project, because you define a target server for either a Java project or an EJB project and the server
runtime plug-in sets the class path correctly.

986 Developing WebSphere applications

Procedure
1. Create a new EJB project:

a. Switch to the Java EE perspective to work with Java EE projects. Click Window > Open
Perspective > Other > Java EE.

b. From the File menu, select New > Project.

c. Expand the Java EE folder, and select Enterprise Application Project. Click Next.

d. Optional: If you have created a Java project instead of an EJB project, right click on the Java
project folder icon for the context menu and select Properties. When the Properties panel appears,
select the Server properties and target the project to an appropriate server for your system, as in
the next step.

e. Enter a name for the project and target the project to an appropriate server for your system. (If this
is the first time you target this server, click New....) Click Next to take you to the EAR Module
Projects window.

f. Click New Module....

g. Create a new module project by selecting the check box against EJB project, and entering the
name of your mediation handler.

h. Click Finish. You are returned to the EAR Module Projects window.

i. Click Finish to create the new project.

2. Create a mediation handler class by implementing the
com.ibm.websphere.sib.mediation.handler.MediationHandler interface.

a. From the File menu, select New > Java Class.

b. Specify the source folder for your mediation EAR project.

c. Specify a name for your mediation handler.

d. Select Superclass java.lang.Object.

e. Select Interface com.ibm.websphere.sib.mediation.handler.MediationHandler.

f. Select the Inherited abstract methods check box.

g. Click Finish to create the new mediation handler class.

3. Add functional code that transforms or routes messages to your mediation handler by using the IBM
Rational Application Developer. For more information, see “Adding mediation function to handler code.”
Beware that the default return value for the handle method created by the toolkit is false, which
causes the message to be discarded. You must change the return value to true to preserve the
message.

4. Generate an EAR file from your mediation handler class. Follow the instructions in the IBM Rational
Application Developer documentation.

What to do next

Next, you are ready to install the EAR file containing your mediation handler into the application server.

Adding mediation function to handler code
A mediation handler is a wrapper for the mediation code that operates on the message. You can add
mediation function to an existing mediation handler by working with the message context, the message
properties, the message header or the message payload.

Before you begin

Create or open a mediation handler in an EJB project. For more information, see “Writing a mediation
handler” on page 986.

Chapter 23. Developing Service integration 987

About this task

There are four main aspects of the message through which you can change the behavior of the mediation
handler code, or influence the routing of a message. You can change the values in the message context
and message properties, and you can work with the contents of the message (called the message
payload), or with the message header:

v “Working with the message context”

v “Working with message properties” on page 989

v “Working with the message header” on page 990

v “Working with the message payload” on page 994

Example: Using mediations to trace, monitor and log messages
The most straightforward use of a mediation is for tracing, monitoring or logging messages that pass
through a destination or topics spaces. This type of mediation does not modify the message; it only
extracts information from the message and saves or displays the information elsewhere.

For example, the following mediation handler displays the API message and correlation IDs for each
message it is sent:

public boolean(MessageContext context)
{
SIMessageContext msgCtx = (SIMessageContext)context;
SIMediationSession session = msgCtx.getSession();
SIMessage msg = msgCtx.getMessage();
String msgId = msg.getApiMessageId();
String corrId = msg.getCorrelationId();
String dest = session.getDestinationName();

System.out.println(msgId+" (correlation id="+corrid) is passing through "+dest+".");

return true;
}

Working with the message context
You can work with the message properties to affect the way a message is mediated.

Before you begin

Before you start this task, you should read about how information is carried in the mediation context in
Mediation context information

About this task

Interface SIMessageContext has a superinterface MessageContext. Methods in MessageContext allow you
to manage a set of message properties, which enable handlers in a handler chain to share
processing-related state. Most importantly, you can get the value of a specific property from the
MessageContext by using the method getProperty, and you can set the name and value of a property
associated with the MessageContext by using the method setProperty. You can also view the names of the
properties in this MessageContext and remove a property (that is, a name-value pair) from the
MessageContext.

At mediation runtime, all of the user-defined properties that have been set during configuration for the
current mediation (see Configuring mediation context properties) are applied to the MediationContext
property set.

988 Developing WebSphere applications

Procedure
1. Locate the point in your mediation handler where you insert the functional mediation code, in the

method handle (MessageContext context). As you are working with the MessageContext methods that
give you access to message properties, you do not have to cast the interface to SIMessageContext
unless you are also interested in the methods provided by SIMessageContext.

2. Get the SIMessage from the MessageContext object. For example, SIMessage message =
((SIMessageContext)context).getSIMessage();

3. Retrieve or set properties, by using the MessageContext methods. For instance, if a property has been
defined during configuration with the name streetName, the type String, and the value "Main Street"
your code to retrieve and print the street name might look like this:

Example
public boolean handle(MessageContext context) throws MessageContextException {

........
{
/* Retrieve the street name property */
String myStreetName;
myStreetName = (String) getProperty(streetName);

/* Display property value */
System.out.println(myStreetName);

}
}

Working with message properties
You can work with the message properties to affect subsequent processing.

Before you begin

Before you start this task, you should read about the properties that are supported by the SIMessage
interface in Message properties support for mediations.

About this task

There are two different types of message properties:

v System properties (including JMS headers, JMSX properties, and JMS_IBM_properties)

v User properties.

You can work with message properties to affect which messages a later mediation should process, or to
affect processing by a downstream application or mediation. The rule set in the selector field during
mediation configuration tests values in the message properties.

You can access, modify and clear properties by using the SIMessage interface (see “SIMessage” on page
998.) There are three different sets of methods:

v These properties operate on system properties, plus user properties if the name is qualified with a prefix
user.:

– getMessageProperty

– setMessageProperty

– deleteMessageProperty

– clearMessageProperties

v These properties operate on user properties only, without the need for the prefix user.:

– getUserProperty

Chapter 23. Developing Service integration 989

– setUserProperty

– deletUserProperty

– clearUserProperties

v getUserPropertyNames returns a list of the names of the user properties in the message.

Typically, you can work with message properties in the following way, when programming a mediation:

Procedure
1. Locate the point in your mediation handler where you insert the functional mediation code, in the

method handle (MessageContext context). The interface is MessageContext, and you should cast this
to SIMessageContext unless you are only interested in the methods provided by MessageContext.

2. Get the SIMessage from the MessageContext object. For example, SIMessage message =
((SIMessageContext)context).getSIMessage();

3. Build your mediation header function in a similar way to these examples, by using the reference
information in Message properties support for mediations to help:

a. Get a user property of the message. For instance, String task =
(String)msg1.getUserProperty("task");. In this case, the task string might refer to an operation
that the mediation should perform.

b. Set a user property, where message Properties are stored as name-value pairs. The
setUserProperty method might only be used to set user properties, so the name passed into the
method should not include the "user." prefix. For example,
msg1.setUserProperty("background","green");

c. Delete a user property from the message. For instance, msg1.deleteUserProperty("task");

Example

Mediation function code to work with message properties might look similar to the code snippet in this
example:

String task = (String)msg1.getUserProperty("task");
if (task != null) {
if (task.equals("addColor")) {
msg1.setMessageProperty(SIProperties.JMS_IBM_Format, "colorful");
msg1.setUserProperty("background","green");
msg1.setUserProperty("foreground","purple");
msg1.setUserProperty("depth",new Integer(3));
msg1.deleteUserProperty("task");

}
else {
msg1.clearUserProperties();

}
}

Working with the message header
You can add function to a preexisting mediation handler to operate on the message header.

Before you begin

Create or open a basic mediation handler in an EJB project (see “Writing a mediation handler” on page
986. It is useful to have understood the elements of the task “Working with the message payload” on page
994, because some of those elements are used in this task

About this task

There are different types of field that you can set in message headers. Importantly, you can set the
forward and return routing addresses for messages after they have been mediated at the current

990 Developing WebSphere applications

destination. In addition there are other fields that you can set, such as priority and reliability for the
message and its reply, and the remaining time before the message (or the reply) expires.

Procedure
1. To set routing addresses in the message header, see “Setting routing addresses in a message

header.”

2. To set all other fields in the message header, see “Working with non-routing path fields in a message
header” on page 993.

Setting routing addresses in a message header:

You can add function to a pre-existing mediation handler to set routing addresses in the message header.

Before you begin

Before you start this task, you should have created the basic mediation handler in an EJB project (see
“Writing a mediation handler” on page 986.

About this task

To work with routing addresses, you will use the SIDestinationAddress and SIDestinationAddressFactory
APIs. The SIDestinationAddress is the public interface that represents an service integration bus, and
gives your mediation access to the name of the destination and the bus name.
SIDestinationAddressFactory enables you to create a new SIDestinationAddress to represent an service
integration bus destination. For reference information about these APIs, see “SIDestinationAddress” on
page 992 and “SIDestinationAddressFactory” on page 993.

Procedure

1. Locate the point in your mediation handler where you insert the functional mediation code, in the
method handle (MessageContext context). The interface is MessageContext, and you should cast this
to SIMessageContext unless you are only interested in the methods provided by MessageContext.

2. Get the SIMessage from the MessageContext object. For example:

SIMessage message = ((SIMessageContext)context).getSIMessage();

3. Build your mediation header function by using these basic steps:

a. Get a handle to the runtime environment. For example:
.... SIMediationSession mediationSession = mediationContext.getSession();

b. Create a forward routing path to set on the cloned object. For example, use the Vector class to
create a extendable array of objects.

c. Get the SIDestinationAddressFactory that is to be used for creating SIDestinationAddress
instances. For example:
SIDestinationAddressFactory destFactory = SIDestinationAddressFactory.getInstance();

d. Create a new SIDestinationAddress, representing a service integration bus destination. For
example:
SIDestinationAddress dest = destFactory.createSIDestinationAddress(remoteDestinationName(),false);

In this case, the second parameter, the Boolean “false”, indicates that the destination should not be
localized to the local messaging engine, but can be anywhere on the service integration bus.

e. Use the add method of the Vector class to add another destination name to the array.

f. Clone the message, and modify the forward routing path in the cloned message. For example:
clonedMessage.setForwardRoutingPath(forwardRoutingPath);

g. Send the cloned message by using the send method in the SIMediationSession interface to send
the message to the service integration bus. For example, if named "clonedMessage":

Chapter 23. Developing Service integration 991

mediationSession.send(clonedMessage, false);

4. Return true to ensure the message passed into the handle method of the MediationHandler interface
continues along the handler chain.

Example

The complete mediation function code to change the forward routing path might look like this example:

/* A sample mediation that clones a message
* and sends the clone off to another destination */

public class RoutingMediationHandler implements MediationHandler {

public String remoteDestinationName="newdest";

public boolean handle(MessageContext context) throws MessageContextException {
SIMessage clonedMessage = null;
SIMessageContext mediationContext = (SIMessageContext) context;
SIMessage message = mediationContext.getSIMessage();
SIMediationSession mediationSession = mediationContext.getSession();

// Create a forward routing path that will be set on the cloned message
Vector forwardRoutingPath = new Vector();
SIDestinationAddressFactory destFactory =

SIDestinationAddressFactory.getInstance();
SIDestinationAddress dest =

destFactory.createSIDestinationAddress(remoteDestinationName,false);
forwardRoutingPath.add(dest);

try {
// Clone the message
clonedMessage = (SIMessage) message.clone();
// Modify the forward routing path for the clone
clonedMessage.setForwardRoutingPath(forwardRoutingPath);
// Send the message to the next destination in the frp
mediationSession.send(clonedMessage, false);
} catch (SIMediationRoutingException e1) {
e1.printStackTrace();
} catch (SIDestinationNotFoundException e1) {
e1.printStackTrace();
} catch (SINotAuthorizedException e1) {
e1.printStackTrace();
} catch (CloneNotSupportedException e) {
// SIMessage should clone OK so you shouldn’t need to enter this block
e.printStackTrace();
}
// allow original message to continue on its path
return true;
}

SIDestinationAddress:

The SIDestinationAddress public interface represents a service integration bus destination.

The API has three methods:

v isTemporary: This method determines whether the SIDestinationAddress represents a temporary or
permanent Destination, returning a Boolean value.

v getDestinationName: Method to retrieve the name of the Destination represented by this
SIDestinationAddress.

992 Developing WebSphere applications

v getBusName: Method to retrieve the bus name of the Destination represented by this
SIDestinationAddress.

For more information about the SIDestinationAddress interface, see the SIDestinationAddress generated
API information.

SIDestinationAddressFactory:

The SIDestinationAddressFactory public interface extends java.lang.Object, and creates an
SIDestinationAddressFactory at static initialization that is subsequently used for the creation of all
instances of SIDestinationAddress.

The interface has three methods:

v getInstance: This method gets the singleton SIDestinationAddressFactory that is used for creating
SIDestinationAddress instances.

v createSIDestinationAddress: These two methods are used to create a SIDestinationAddress to
represent a service integration bus destination. The first will create a SIDestination that exists only on
the local service integration bus (and maybe localized to the "local" messaging engine depending on the
localOnly flag). The second method is used to create a SIDestination that exists on a remote service
integration bus.

v

For more information about the SIDestinationAddressFactory interface, see the
SIDestinationAddressFactory generated API information.

Working with non-routing path fields in a message header:

You can work with fields in a message header that identify and affect the behavior of messages.

About this task

In addition to the routing fields (see “Setting routing addresses in a message header” on page 991), there
are a number of fields in the message header that you can work with. These fields affect important
qualities and characteristics of the message, such as priority and reliability, identity, and so on. See
“Message header information” for information about the equivalence of the header fields to JMS message
header fields, and the methods available to work with them.

Procedure

1. Locate the point in your mediation handler where you insert the functional mediation code, in the
method handle (MessageContext context). The interface is MessageContext, and you should cast this
to SIMessageContext unless you are only interested in the methods provided by MessageContext.

2. Get the SIMessage from the MessageContext object. For example, SIMessage message =
((SIMessageContext)context).getSIMessage();

3. Build your mediation header function in a similar way to these examples, and using the reference
information in “Message header information” to help:

a. Set the reliability of the message. For instance,
siMessage.setReliability(Reliability.ASSURED_PERSISTENT);. In this case, the quality of service
is set to the highest level.

b. Set the time to live for a message - that is, the time, in milliseconds, that the message is allowed to
remain on a queue before it is removed if it is not processed. For example,
siMessage.setRemainingTimeToLive(1000000); will set the remaining time before the message
should expire to 1000 seconds.

Message header information:

Chapter 23. Developing Service integration 993

The non-routing SIMessage header fields, and the methods available to work with them, can be mapped
to JMS message header fields.

Header fields

Table 102. Mapping of SIMessage header fields to JMS message header fields. The first column of the table lists
the SIMessage header fields. The second column provides a brief description of the fields. The third column provides
the corresponding JMS message header fields. The fourth column lists the SIMessage methods.

SIMessage header field Field description Corresponding JMS message
header field

SIMessage methods

Priority (ReplyPriority) Integer value 0-9, higher
value is higher message
priority

JMSPriority (integer)
v getPriority

v setPriority

v getReplyPriority

v setReplyPriority

Reliability (ReplyReliability) Specifies the reliability of
message delivery. See
Message reliability levels -
JMS delivery mode and
service integration quality of
service for a description of
the allowed values.

JMSDeliveryMode (string)
supports two levels of reliability:
PERSISTENT and
NON_PERSISTENT

v getReliability

v setReliability

v getReplyReliebility

v setReplyReliability

TimeToLive
(ReplyTimeToLive,
RemainingTimeToLive)

An integer that represents
the time in milliseconds that
a message can remain on
the queue before it expires.

JMSExpiration (long) is the time
of expiry, calculated as "current
time" plus (+) "time-to-live".

v getTimeToLive

v getReplyTimeToLive

v getRemainingTimeToLive

v setTimeToLive

v setReplyTimeToLive

v setRemainingTimeToLive

Discriminator
(ReplyDiscriminator)

A string that contains a topic
name that is tested by a
selector rule to determine if
the message should be
mediated.

No corresponding JMS field
v getDiscriminator

v setDiscriminator

v getReplyDiscriminator

v setReplyDiscriminator

RedeliveredCount Read-only field (integer) that
holds that counts each time
a message is re-delivered.

JMSRedelivered (Boolean)
indicates that it is likely, but not
guaranteed, that the message
was delivered but
unacknowledged in the past.

getRedeliveredCount

ApiMessageId A string that uniquely
identifies each message
sent.

JMSMessageId (string)
v getApiMessageId

v setApiMessageId

CorrelationId A string that links two
messages, typically linking a
request message with its
response.

JMSCorrelationId (string)
v getCorrelationId

v setCorrelationId

UserId A string that represents the
identity of the user sending
the message.

JMSX Userid is a message
property not used by
WebSphere Application Server.

v getUserId

v setUserId

Working with the message payload
You can work with the message payload in a pre-existing mediation handler, and transcode the message
payload from one message format to another.

Before you begin

Create or open a mediation handler in an EJB project. For more information, see “Writing a mediation
handler” on page 986. You should also read the tips for successfully programming mediations in the topic
Coding tips for mediations programming.

994 Developing WebSphere applications

About this task

You can use this task to complete some or all of the following actions on the message payload:

v Locate the data objects within the message payload

v Convert the payload into another format

v Convert the payload into a byte array, for example if you want your mediation to log messages.

To work with the contents of a message, use the SIMessage and SIMessageContext APIs. Additionally,
use SIMediationSession to provide your mediation with access to the service integration bus, to send and
receive messages. For more information, see:

v Mediation programming

v “MediationHandler” on page 997

v “SIMessageContext” on page 997

To work with specific fields within a message, use Service Data Objects (SDO) Version 1 data graphs. For
more information, see SDO data graphs. For more information about the format of supported message
types, and examples of how to work with them, see “Mapping of SDO data graphs for web services
messages” on page 1004.

To work with the message payload, take the following steps:

Procedure
1. Locate the point in your mediation handler where you insert the functional mediation code, in the

method handle (MessageContext context). The interface is MessageContext, and you should cast this
to SIMessageContext unless you only want to work with the methods provided by MessageContext.

2. Retrieve the data graph of the message payload as follows:

a. Get the SIMessage from the MessageContext object. For example:
SIMessage message = ((SIMessageContext)context).getSIMessage();

b. Get the message format string to determine its type. For example:
String messageFormat = message.getFormat();

c. Retrieve the DataGraph object from the message. For example:
DataGraph dataGraph = message.getDataGraph();

For more information, see SDO data graphs.

3. Optional: Locate data objects within the payload:

a. Navigate within the graph to a named DataObject. For example, where DataObject has the name
"data":
DataObject dataObject = dataGraph.getRootObject().getDataObject("data");

b. Retrieve information contained in the data object. For example, if the message is a text message:
String textInfo = dataObject.getString("value");

4. Work with the fields within the message. For an example of how to do this, see “Example code for
message fields” on page 996.

5. Optional: Transcode the payload into another format:

a. Review the topic “Transcoding between message formats” on page 999 to understand the
implications of transcoding the payload.

b. Call the method getNewDataGraph, passing the new format as a parameter, which returns a copy
of the payload in the new format. For example:
DataGraph newDataGraph = message.getNewDataGraph(newFormat);

c. Write the data graph in the new format back to the message using the setDataGraph method. For
example:

Chapter 23. Developing Service integration 995

message.setDataGraph(newDataGraph, newFormat);

6. Optional: Convert the payload into a stream of bytes:

a. Review the topics “Transcoding a message payload into a byte array” on page 1001 and
“Transcoding a byte array into a message payload” on page 1002 to understand the implications of
converting between message format and byte stream, and back again.

b. Call the method getDataGraphAsBytes, which returns a copy of the payload as a byte stream. For
example:
byte[] newByteArray = message.getDataGraphAsBytes();

c. Call the method createDataGraph provided by the SIDataGraphFactory API, which creates a new
data graph by parsing the bytes according to the format passed to the method. For example:
DataGraph newDataGraph = SIDataGraphFactory.getInstance().createDataGraph(byteArray, format);

d. Work with the message as a stream of bytes. For an example of how to do this, see “Example
code for message fields”

7. Return True in your mediation code so that the MessageContext is passed to the next mediation
handler in the handler list. If the return value is False the MessageContext will be discarded and will
not be delivered to the destination.

Note: If your mediation handler is the last handler in the handler list, and the forward routing path is
empty, the message is made available to consuming applications on that destination. If the
forward routing path not empty, the message is not made available to any consumers on that
destination. Instead, the message is forwarded to the next destination in the routing path.

Example code for message fields

Below is an example of the code for a mediation for working with a field in a message:

public boolean handle(MessageContext context) throws MessageContextException {

/* Get the SIMessage from the MessageContext object */
SIMessage message = ((SIMessageContext)context).getSIMessage();

/* Get the message format string */
String messageFormat = message.getFormat();

/* If you have a JMS TextMessage then extract the text contained in the message. */
if(messageFormat.equals("JMS:text"))
{
/* Retrieve the DataGraph object from the message */
DataGraph dataGraph = message.getDataGraph();

/* Navigate down the DataGraph to the DataObject named ’data’. */
DataObject dataObject = dataGraph.getRootObject().getDataObject("data");

/* Retrieve the text information contained in the DataObject. */
String textInfo = dataObject.get("value");

/* Use the text information retrieved */
System.out.println(textInfo);
}

/* Return true so the MessageContext is passed to any other mediation handlers
* in the handler list */
return true;

}

996 Developing WebSphere applications

The complete mediation function code for working with the message payload as a stream of bytes might
look like this example:

public boolean handle(MessageContext context)throws MessageContextException {

/* Get the SIMessage from the MessageContext object */
SIMessage message = ((SIMessageContext)context).getSIMessage();

if (!SIApiConstants.JMS_FORMAT_MAP.equals(msg.getFormat()))
{
try
{
dumpBytes(msg.getDataGraphAsBytes());

}
catch(Exception e)
{
System.out.println("The message contents could not be retrieved due to a "+e);

}
}
else
{
System.out.println("The bytes for a JMS:map format message cannot be shown.");

}

return true;
}

private static void dumpBytes(byte[] bytes)
{
// Subroutine to dump the bytes in a readable form to System.out

}
}

MediationHandler:

The public interface MediationHandler has just one method: handle. This method is used by the runtime to
invoke a mediation.

The method handle is called by the runtime when a message is to be mediated. The method returns
Boolean True if the message passed into this method should continue along the handler list, otherwise
False.

At the end of the handler list, the message is sent to the next destination on the routing path, unless the
forward routing path is empty, when the message is made available to consuming applications on the
current destination.

For more information about the MediationHandler interface, see the MediationHandler generated API
information.

SIMessageContext:

Public interface SIMessageContext extends javax.xml.rpc.handler.MessageContext. This is the object that
is required on the interface of a mediation handler. In addition to the context information that might be
passed from one handler to another, it can return a reference to an SIMessage and an
SIMediationSession.

The SIMessage is the service integration technologies representation of the message being processed by
the MediationHandler. The SIMediationSession is a handle to the runtime resources.

Chapter 23. Developing Service integration 997

The interface MessageContext abstracts the message context that is processed by a handler in the handle
method. The MessageContext interface provides methods to manage a property set. MessageContext
properties enable handlers in a handler chain to share processing related state.

As well as defining the method that is invoked by the mediation runtime environment, the interface might
also specify properties following the Enterprise JavaBeans naming pattern, or by providing a BeanInfo
class. Each property of the bean will be initialized from a single environment entry with the same name as
the property. Bean properties of simple type are specified by using Java Platform, Enterprise Edition (Java
EE) env-entry. If the handler has properties that are of non-simple type, then other environment definitions
may be used.

The API has two methods:

v The getSIMessage method to get the service integration bus representation of the message being
mediated. Read more about the SIMessage API in “SIMessage.”

v The getSession method to get an SIMediationSession object that is a handle to the runtime
environment. Read more about the SIMediationSession API in “SIMediationSession” on page 999.

SIMessage:

The SIMessage interface is the public interface to a service integration bus message for use by mediations
and other service integration bus components. This interface extends java.lang.Cloneable and
java.lang.Serializable.

The version of Service Data Objects (SDO) supported by mediations is Version 1.

The SIMessage interface has many methods allowing you to work with message properties, header
contents, routing path, metadata, and others:

v The method getDataGraph returns the SDO data graph. This contains the SIMessage payload content
in a tree representation. Using the data graph, you can work directly with individual fields in the
message payload. For more information about SDO data graphs, see SDO data graphs.

v You can transcode a message payload by calling the method getNewDataGraph(format). It returns a
copy of the payload in the new format. You can write the new datagraph back to the message by using
setDataGraph(DataGraph, format). For more information, see “Transcoding between message formats”
on page 999.

v If you want to log a message as a simple byte stream, you can retrieve the message payload as a byte
array by using the method getDataGraphAsBytes. For more information about converting from data
graph to bytes, and back again, see “Transcoding a message payload into a byte array” on page 1001
and “Transcoding a byte array into a message payload” on page 1002.

v There are methods to get, set, delete and clear user properties and message properties. You can also
retrieve a list of user property names. For more information about working with properties, see “Working
with message properties” on page 989.

v Forward and reverse routing paths define a sequential list of intermediate bus destinations through
which messages pass to reach a target bus destination. You use a routing path to apply the mediations
configured on several destinations to the messages sent along the path. The following methods allow
you to get and set the contents of the ForwardRoutingPath and ReverseRoutingPath for an SIMessage:

– getForwardRoutingPath()

– setForwardRoutingPath()

– getReverseRoutingPath()

– setReverseRoutingPath()

For more information about routing paths, see Destination routing paths. For information about how to
work with routing addresses, see “Setting routing addresses in a message header” on page 991.

v If your mediation changes the content of the message, there is a risk that the message is no longer
valid. If the data graph is not valid, the message cannot be sent through the service integration bus or

998 Developing WebSphere applications

stored in the message store. In this case, the message is not well formed. A message is well formed
when all the values of the message properties might be serialized, and the data graph of the message
conforms to the format of the message. You can test your message by using the method isWellFormed.
It returns true when the message contains a well formed data graph. This test has implications for
performance. For more information, see Setting tuning properties for a mediation.

v You can work with the time for the message to live, measured in milliseconds from the time when the
message was originally sent:

– The methods getTimeToLive and setTimeToLive allow you to get and set the value of the TimeToLive
field in the message header. A value of 0 indicates that the message will never expire.

– The methods getRemainingTimeToLive and setRemainingTimeToLive allow you to get the remaining
time in milliseconds before the message expires, and set the remaining time in milliseconds before
the message should expire.

For more information about SIMessage, see the API documentation.

SIMediationSession:

The SIMediationSession public interface defines the methods for querying and interacting with the service
integration bus. As well as defining the methods for working with the service integration bus, this interface
also includes methods that provide information about where the mediation is invoked from, and the criteria
that are applied before the message is mediated.

Both selector and discriminator control which messages are sent to the mediation, through a rule specified
in a text string. The rule specified by the selector examines the header and properties of the message,
whereas the discriminator examines the topic of the message. If a message contains both selector and
discriminator, it must match both rules for the message to be mediated. If either the selector or the
discriminator rule does not match, the message is not mediated.

The API has these methods:

v getBusName returns the name of the bus upon which the mediation is associated.

v getDestinationName returns the name of the destination with which the mediation is associated.

v getDiscriminator returns the discriminator that is defined in the mediation definition.

v getMediationName returns the name of the mediation that is being executed.

v getMessageSelector returns the message selector that is defined in the mediation definition.

v getMessagingEngineName returns the name of the messaging engine from which the mediation was
invoked

v getSIDestinationConfiguration returns the SIDestinationConfiguration object associated with the
destination, specified by destinationName or destinationAddress.

v receive receives an SIMessage from the service integration bus. There are four variants.

v resetIdentity changes the identity of the given message to the current run-as identity.

v send sends a copy of an SIMessage to the service integration bus, in addition to the message returned
by the message interface.

See also the generated API information for SIMessageContext.

Transcoding between message formats:

A mediation can convert a message from one format to another without changing the semantic meaning of
the message. This operation is referred to as transcoding a message.

The following code is an example mediation handler that transcodes a message into a new message
format, providing that the message can be transcoded:

Chapter 23. Developing Service integration 999

private static final String NEW_FORMAT = "JMS:text";

public boolean(MessageContext context) throws MessageContextException
{
try
{
SIMessageContext msgCtx = (SIMessageContext)context;
SIMessage msg = msgCtx.getMessage();
DataGraph newDg = msg.getNewDataGraph(NEW_FORMAT);

msg.setDataGraph(newDg,NEW_FORMAT);
return true;

}
catch(Exception e)
{
// Reroute the original message to the exception destination
MessageContextException mce =
new MessageContextException("Unable to transcode to "+NEW_FORMAT",e);

throw mce;
}

}

The table below describes which messages can be transcoded, and gives the outcome for each format
pairing. Note that the abbreviation DG represents "data graph". The numbers within brackets in the table
are explained as follows:

v (1) A message with format JMS: cannot have a payload. It does not carry any message data other than
the message properties. If a mediation calls getDataGraph() on a message with format JMS:, null is
always returned. All other message formats must have a message payload. This means that a message
with format JMS: cannot be transcoded into another format. If a mediation needs to change a message
with format JMS: into a message with any other format, the mediation needs to call the methods
SIDataGraphFactory.getInstance().createDataGraph(newFormat) and setDataGraph on the SIMessage
object to change the message contents.

v (2) null is always returned if a mediation calls getDataGraph() on a message with format JMS:

v (3) A mediation can call the method getNewDataGraph() on a message to return a copy datagraph with
the same format as the message. The copy can be edited, leaving the original message unchanged.
For SOAP and Beans, you can change the message model by editing the format string to change the
value that follows the ":".

Table 103. Message transcoding. The table contains the different formats that can be used to convert the messages
from one format to another. The table shows the transcoding options that is possible between the different formats,
and it also provides the effect the conversion has on the messages.

To JMS: To JMS:text To JMS:bytes
To
JMS:stream

To
JMS:object To SOAP: To Bean:

From JMS: DG=null (1) DG=null (1) DG=null (1) DG=null (1) DG=null (1) DG=null (1) DG=null (1)

From
JMS:text

DG=null (2) Yes (3) Yes, bytes
contain UTF-8

Yes, if text
contains XML
that conforms
to the correct
schema.

No Yes, if
message
content is valid
SOAP.

Yes, if
message
content is valid
SOAP.

From
JMS:bytes

DG=null (2) Yes, but only
when the
bytes can
correctly be
interpreted as
a UTF-8
string.

Yes (3) Yes, if bytes
contain XML
that conforms
to the correct
schema.

Yes, assume
that bytes are
a serialized
object.

Yes, if
message
content is valid
SOAP.

Yes, if
message
content is valid
SOAP.

From
JMS:stream

DG=null (2) Yes, text is
XML
transcoding.

Yes, bytes
contain XML
transcoding.

Yes (3) No No No

1000 Developing WebSphere applications

Table 103. Message transcoding (continued). The table contains the different formats that can be used to convert
the messages from one format to another. The table shows the transcoding options that is possible between the
different formats, and it also provides the effect the conversion has on the messages.

To JMS: To JMS:text To JMS:bytes
To
JMS:stream

To
JMS:object To SOAP: To Bean:

From
JMS:object

DG=null (2) No Yes, bytes
contain the
object
serialization.

No Yes (3) No No

From SOAP: DG=null (2) Yes Yes No No Yes (3) - if
message
content
matches the
new WSDL.

Yes

From Bean: DG=null (2) Yes Yes No No Yes Yes (3) - if
message
content
matches the
new WSDL.

XML schema definition for JMS stream messages:

This is the XML schema definition for transcoding JMS stream messages to message types.

The following XML schema definition uses the target namespace http://www.ibm.com/xmlns/prod/
websphere/messaging/jms/ to express JMS stream messages in XML. Use this definition to transcode
between a byte array and a message payload.

<xsd:schema elementFormDefault="qualified" xml:lang="EN"
targetNamespace="http://www.ibm.com/xmlns/prod/websphere/messaging/jms"
xmlns="http://www.ibm.com/xmlns/prod/websphere/messaging/jms"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="data" type="StreamBody"/>

<xsd:complexType name="StreamBody">
<xsd:sequence>
<xsd:element name="value"
type="streamTypes"
minOccurs="0"
maxOccurs="unbounded"
nillable="true"/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="character">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="streamTypes">
<xsd:union memberTypes="xsd:long xsd:int xsd:short xsd:byte xsd:boolean

xsd:float xsd:double xsd:string xsd:hexBinary character"/>
</xsd:simpleType>

</xsd:schema>

Transcoding a message payload into a byte array:

You can transcode the message payload into a byte array.

Chapter 23. Developing Service integration 1001

For example, you might want to write a mediation handler that logs a message as a simple byte stream.
You can retrieve the message payload as a byte array by using the method getDataGraphAsBytes. The
table below describes the rules for transcoding an SIMessage data graph into a byte array.

Table 104. Rules for transcoding a message payload into a byte array. The first column of the table contains the
datagraph formats used for transcoding a message into a byte array. The second column provides the preconditions
for the datagraph format if available. The third column provides the result of the transcode. The fourth column
contains the character set encodings if they are applicable for the messages.

Datagraph format Pre-conditions Outcome Character set encoding

JMS: None Returns null. Not applicable.

JMS:text None Returns the result of
java.lang.String:getBytes(String
charSetName) when applied to the
data/value element of the graph, where
charSetName = "UTF-8"

UTF-8

JMS:bytes None Returns a copy of the value of the
data/value element of the data graph for
the message.

Not applicable.

JMS:stream None Returns a byte buffer containing an XML
serialization of the stream message
according to the XML schema for stream
messages.

UTF-8

JMS:object None Returns a copy of the value of the
data/value element of the data graph for
the message.

Not applicable.

SOAP: If the byte array must be
generated by this operation
(instead of using an existing byte
array available through lazy
parsing) then the data graph must
be valid with respect to the WSDL
model.

Returns a byte buffer containing a SOAP
serialization of the data graph. If the SOAP
message contains an attachment, the buffer
has the multipart MIME format.

Either UTF-8, or that of the
source message for the
graph, where logically
equivalent to the graph
state.

Bean: The data graph must be valid with
respect to the WSDL model. In the
absence of a SOAP binding the
serialization will be performed
using RPC/literal encoding.

Returns a byte buffer containing a SOAP
serialization of the data graph. If the Bean
contains attachments then the buffer will be
in multipart MIME format.

UTF-8

Transcoding a byte array into a message payload:

A mediation can transcode a byte array into a message payload without changing the meaning of the
message.

A mediation can reconstruct the message payload from a byte array, for example after logging a message.
To reconstruct the message, call the method createDataGraph provided by the SIDataGraphFactory API.
This method requires a byte array and a format string and creates a new data graph by parsing the bytes
according to the format passed to the method, as shown in the following example:
DataGraph newDataGraph = SIDataGraphFactory.getInstance().createDataGraph(byteArray, newFormat);

The table below describes the rules for transcoding a byte array into an SIMessage data graph.

1002 Developing WebSphere applications

Table 105. Rules for transcoding a byte array into an SIMessage data graph. The first column of the table contains
the format arguments used for transcoding a byte array into an SIMessage data graph. The second column provides
the preconditions if available for the format arguments. The third column provides the resultant SIMessage data
graphs for the specified format arguments.

Format
argument Pre-conditions Outcome

JMS: None Returns null

JMS:text java.lang.String(inputBytes, "UTF-8") does not
result in an exception.

Returns new data graph instance of format
JMS:text. Value of graph at path data/value
has value equal to
java.lang.String(inputBytes, "UTF-8").

JMS:bytes inputBytes is not null. Returns new data graph instance of format
JMS:bytes. Value of graph at path
data/value is a copy of the inputBytes byte
array.

JMS:stream Byte array is XML, and is valid with respect to the
JmsStreamBody type of the XML schema definition.

Returns new data graph instance of format
JMS:stream. Value of graph at path
data/value has type List, containing a
sequence of simple typed values according
to the types and values of each of the
elements in the XML document.

JMS:object Not null
Note: You must ensure that the byte array is a valid
serialized object.

Returns new data graph instance of format
JMS:object. Value of graph at path
data/value is a copy of the inputBytes byte
array.

SOAP: The byte buffer contains valid SOAP with respect to
the associated WSDL model.

Returns new data graph with type system
defined by the WSDL referenced by the byte
buffer, and values of the graph defined by
the SOAP payload.

Bean: The byte buffer contains valid Bean with respect to
the associated WSDL model.

Returns new data graph with type system
defined by the WSDL referenced by the byte
buffer, and values of the graph defined by
the Bean payload.

Web services messages overview:

To work with the data graph form of web services messages, you need to know the structure of the data
graph, and how to develop code that can navigate the data graph.

The format of web services messages

WebSphere Application Server (base) supports two formats for web services messages: SOAP and
enterprise beans. (These are similar to Java APIs for XML based RPC, or JAX-RPC.)

To work with web services messages, you need the following information:

v The structure of the Service Data Objects (SDO) Version 1 data graphs for web services messages.
See “Mapping of SDO data graphs for web services messages” on page 1004 for more information
about the data elements and the shape of the data graph.

v Reference information to help you develop code to navigate the data graphs of the messages that your
program mediates. See “Mapping XML schema definitions to the SDO type system” on page 1008.

v For XML representations of the shape of each part of web services messages, sample code snippets
and further information about the data graph format, see:“Web Services code example” on page 1011.

Chapter 23. Developing Service integration 1003

Format types

The web services message type is defined by a message format string within the message. The format
string is prefixed with a domain identifier, which is either SOAP or Bean, followed by four
comma-separated fields as follows:

SOAP:<wsdlLocation>,<serviceNameSpace>,<serviceName>,<portName>
Bean:<wsdlLocation>,<serviceNameSpace>,<serviceName>,<portName>

The fields are described in the following table:

Field name Message format string Field description

WSDL location <wsdlLocation> The URI where the WSDL for this
message is located. The WSDL is
deployed to the SDO repository, by using
this location as the key.

Service namespace <serviceNamespace> Service namespace and Service name
uniquely identify the Service definition
within the WSDL.

Service name <serviceName> Service name and Service namespace
uniquely identify the correct Service
definition within the WSDL.

Port name <portName> Locates the Port definition within the
Service, giving the PortType and Binding
information that is required for message
processing.

Mapping of SDO data graphs for web services messages:

The structure of web services messages is described by the Service Data Objects (SDO) Version 1 data
graphs for web services messages.

Overall layout of a web services message

A web services message is described by a format string and three metadata fields: operationName,
messageName, and messageType. The payload of the message is split across three other sections:
headers, attachments and the body.

The Info node is the top-level of the SDO data graph for all web services messages. The following table
describes the Info node properties and associated types.

Property name Property type Property description
operationName java.lang.String Identifies the WSDL operation that is

associated with the message. If the
data access service cannot identify
the message, this field is null. See
“Identifying web services messages”
on page 1005.

messageName java.lang.String Identifies the WSDL message that is
associated with the message. If the
data access service cannot identify
the message, this field is null. See
“Identifying web services messages”
on page 1005.

1004 Developing WebSphere applications

Property name Property type Property description
messageType java.lang.String Identifies WebService type of

message instance. This field can have
the values: input, output, fault,
ambiguous. If the data access service
cannot identify the message, this field
is null. See “Identifying web services
messages.”

headers java.util.List of data objects. Contains a list of header entry data
objects. Each SOAP header in the
message results in a header entry in
this list. See “Message header layout ”
on page 1006.

attachments java.util.List of data objects. Contains a list of attachment entry
data objects. For SOAP messages
with attachments, each MIME part in
the message (except the MIME part
containing the SOAP envelope) is
mapped to an entry in this list. See
“Message attachment layout” on page
1006.

body commonj.sdo.DataObject A nested data object, which
represents the body of the SOAP
envelope. See “Message body layout”
on page 1007.

Identifying web services messages

Processing of messages depends on whether the messages have WSDL definitions. The minimum amount
of information required for processing without WSDL is “SOAP:”. The minimum amount of information
required for processing with WSDL is: “SOAP:location,namespace,service,port”. If the format string does
not include all five of these fields, the SOAP data access service attempts to process the message without
WSDL.

v Processing messages without WSDL definitions: If the format string does not include full WSDL
information, the SOAP data access service processes the message without attempting to match the
message against definitions in WSDL. As a result, operationName and messageName are set to null,
and messageType is set only when processing a fault message.

v Processing messages with WSDL definitions: If the format string includes <WSDL location>,<Service
namespace>,<Service name>, and <Port name>, the SOAP and Beans data access services process
the message by using the WSDL definitions of the service.

Note: In either of the following circumstances, SOAP message processing fails once it has supplied all
the required WSDL information:

– the SOAP data access service fails to locate the WSDL

– the WSDL fails to corroborate the message

When the SOAP data access service processes a SOAP request or reply message, it tries to match it
against the message definitions in the WSDL. Usually there is one matching definition, and the
operationName, messageName, and messageType are filled in appropriately. If there is more than one
matching definition, the data access service selects a message definition, fills in the operationName and
messageName. and sets the messageType to ambiguous.

When processing fault messages, identification is slightly different. In all cases the messageType is set to
fault. If the message matches a unique fault definition in the WSDL, the operationName and
messageName properties are also set.

Chapter 23. Developing Service integration 1005

Message header layout

The list of headers has two types of entry, header entry or bound header entry, depending on whether the
header is based on part of the message or not.

The header entry type is used to handle headers that meet either of the following criteria:

v the header is part of the message that is modeled in WSDL

v the header is part of the message that is not modeled in WSDL, but is based on a part of the message

For a model of this header, see “Header entry.”

The bound header entry type is used when the SOAP binding for the message has bound a part of the
body into a MIME attachment. (This occurs when you use a <MIME:content> element to bind a part of the
message to an attachment.) For consistent mediation programming, all of the body data is stored in the
body node in the graph. Unlike the normal attachment entry, a bound attachment entry is placed into the
attachments list. The bound attachment entry contains the MIME meta-data for the attachment and the
name of the message part that contains the data taken from this attachment. This allows mediations
designed to process attachments to locate the data in the body part of the data graph. For a model of this
attachment see “Bound header entry.”

Header entry

Property name Property type Property description
mustUnderstand java.lang.Boolean Carries the value from the

mustUnderstand attribute on the
SOAP header, if present.

actor java.lang.String Carries the value from the actor
attribute on the SOAP header, if
present.

any commonj.sdo.Sequence Container for the contents of the
SOAP header.

Bound header entry

Property name Property type Property description
mustUnderstand java.lang.Boolean Carries the value from the

mustUnderstand attribute on the
SOAP header, if present.

actor java.lang.String Carries the value from the actor
attribute on the SOAP header, if
present.

messagePart java.lang.String Contains the name of the message
part that carries the data from this
message header.

Message attachment layout

Message attachments are handled in a similar way to headers, and instances of them populate the
attachments list in the Info node.

There are two types of attachment entry to handle MIME attachments: attachment entry and bound
attachment entry.

Attachment entry is for general attachments: see “Attachment entry” on page 1007.

1006 Developing WebSphere applications

Bound attachment entry includes <MIME:content> elements that bind a part of the body into a MIME
attachment. If you are programming a mediation, you must know how to locate the data within the graph.
For consistent mediation programming, the attachment data is placed in the message body, referred to by
the part name in the header entry, which includes the other MIME metadata. For a model of this
attachment, see “Bound attachment entry.”

Attachment entry

Property name Property type Property description
contentType java.lang.String Carries the contentType from the

MIME part that is represented by the
attachment entry.

contentTransferEncoding java.lang.String Carries the contentTransferEncoding
from the MIME part that is
represented by the attachment entry.

contentId java.lang.String Carries the contentId from the MIME
part that is represented by the
attachment entry.

data byte[] Carries the content of the MIME
element as a byte array.

Bound attachment entry

Property name Property type Property description
contentType java.lang.String Carries the contentType from the

MIME part that is represented by the
attachment entry.

contentTransferEncoding java.lang.String Carries the contentTransferEncoding
from the MIME part that is
represented by the attachment entry.

contentId java.lang.String Carries the contentId from the MIME
part that is represented by the
attachment entry.

messagePart java.lang.String Contains the name of the message
part that carries the data from this
attachment.

Message body layout

The layout of the data object in the body is defined by the service WSDL. The type of the data object is
derived from the message definition in the WSDL. The data object has one property for each part in the
message definition. The layout of each message part follows the convention for mapping XML Schema
into SDO. See “Web Services code example” on page 1011 for more information.

Web services fault message

If the message is a fault message, the messageType field in the Info node of the graph is set to “fault”,
and the message body has the following properties:

Property name Property type Property description
faultcode javax.xml.namespace.QName Carries the faultcode value from the

SOAP Fault element
faultstring java.lang.String Carries the faultstring value from the

SOAP Fault element
faultactor java.lang.String Carries the faultactor value from the

SOAP Fault element

Chapter 23. Developing Service integration 1007

Property name Property type Property description
detail commonj.sdo.DataObject Carries the content within the detail

child of the SOAP Fault element

Note: The detail element definition uses element and attribute wildcards, so the content of the detail data
object contains a Sequence. See “Web Services code example” on page 1011 for more information.

Mapping XML schema definitions to the SDO type system:

Each XML schema type is mapped to an SDO type. Use this mapping to help you develop code to
navigate the data graphs of the messages that your program mediates.

The version of Service Data Objects (SDO) supported by mediations is Version 1.

XML schemas can be embedded in the WSDL sections that describe the message parts and SOAP
headers. However the SOAP header description is more likely to be available as a separate schema, in
which case you should load it into the SDO repository where it can be used at run time to process any
message with a matching header.

Schema to Java class mapping

Each XML schema complex type is mapped to an SDO type. This means that an element with a complex
type is represented by an instance of an SDO data object. The type has a property for each element,
attribute, or wildcard that is contained in the schema type definition.

The instance contains a value for each property that has been set. If the property is mapped from a
schema complex type, the value is another SDO data object. If the property is mapped from a schema
simple type, the value is an instance of a Java class, as shown in the following table.

Table 106. Schema types and corresponding Java classes. The first column of the table lists the schema types. The
second column lists the corresponding Java classes. The third column refers you to one of the two notes that is
given at the end of the table for your reference.

Schema type Java class Notes

anyURI java.lang.String

base64Binary byte[] See Note 2

boolean java.lang.Boolean/ boolean See Note 1

byte java.lang.Byte / byte See Note 1

date java.lang.String

dateTime java.lang.String

decimal java.math.BigDecimal

double java.lang.Double / double See Note 1

duration java.lang.String

ENTITIES java.util.List

ENTITY java.lang.String

float ava.lang.Float / float See Note 1

gDay java.lang.String

gMonth java.lang.String

gMonthDay java.lang.String

gYear java.lang.String

gYearMonth java.lang.String

hexBinary byte[] See Note 2

1008 Developing WebSphere applications

Table 106. Schema types and corresponding Java classes (continued). The first column of the table lists the
schema types. The second column lists the corresponding Java classes. The third column refers you to one of the
two notes that is given at the end of the table for your reference.

Schema type Java class Notes

ID java.lang.String

IDREF java.lang.String

IDREFS java.util.List

int java.lang.Integer / int See Note 1

integer java.math.BigInteger

language java.lang.String

long java.lang.Long / long See Note 1

Name java.lang.String

NCName java.lang.String

negativeInteger java.math.BigInteger

NKTOKENS java.util.List

NMTOKEN java.lang.String

nonNegativeInteger java.math.BigInteger

nonPositiveInteger java.math.BigInteger

normalisedString java.lang.String

NOTATION javax.xml.namespace.QName

positiveInteger java.math.BigInteger

QName javax.xml.namespace.QName

short java.lang.Short / short See Note 1

string java.lang.String

time java.lang.String

token java.lang.String

unsignedByte java.lang.Short / short See Note 1

unsignedInt java.lang.Long / long See Note 1

unsignedLong java.math.BigInteger

unsignedShort java.lang.Integer / int See Note 1

Notes:

1. SDO automatically converts primitives (int, long and so on) into objects, as needed. This
means that you can use a mixture of the specialized methods (getInt, setInt, getLong, setLong)
as well as the generic get and set methods.

2. As byte arrays are mutable, you can update the value without setting it back onto the data
object. However, when this occurs, the data object may not be aware of implicit update. When
working with byte array values, always use the setBytes() method to explicitly update the data
object.

Working with global elements and attributes

When a schema is mapped to SDO, a special SDO type - typically called 'DocumentRoot' - is defined.
This type is a container for all the global elements and attributes in the schema. Whenever you have to
locate an SDO property for a global element or attribute, you should locate the ‘DocumentRoot' type and
then locate the appropriate property within it.

The following schema defines the layout of web services messages. By comparing this schema with the
information in “Mapping of SDO data graphs for web services messages” on page 1004 you can see the
schema to SDO mapping in action.

Chapter 23. Developing Service integration 1009

<?xml version="1.0"?>
<xsd:schema

targetNamespace="http://www.ibm.com/ns/2004/05/webservices/messagemodel"
xmlns:tns="http://www.ibm.com/ns/2004/05/webservices/messagemodel"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<xsd:import namespace="http://schemas.xmlsoap.org/soap/envelope/"/>

<xsd:element name="Info">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="operationName" nillable="true" type="xsd:string"/>
<xsd:element name="messageName" nillable="true" type="xsd:string"/>
<xsd:element name="messageType" nillable="true" type="xsd:string"/>
<xsd:element name="headers" type="tns:HeaderEntryType" maxOccurs="unbounded"/>
<xsd:element name="attachments" type="tns:AttachmentEntryType" maxOccurs="unbounded"/>
<xsd:element name="body" type="tns:BodyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="BodyType" abstract="true"/>

<xsd:complexType name="HeaderEntryType" abstract="true"/>

<xsd:complexType name="AttachmentEntryType" abstract="true"/>

<xsd:complexType name="SOAPFaultBody">
<xsd:complexContent>
<xsd:extension base="tns:BodyType">
<xsd:sequence>
<xsd:element name="faultcode" type="xsd:QName"/>
<xsd:element name="faultstring" type="xsd:string"/>
<xsd:element name="faultactor" type="xsd:anyURI" minOccurs="0"/>
<xsd:element name="detail" type="soap:detail" minOccurs="0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="SOAP_1_1_HeaderEntryType">
<xsd:complexContent>
<xsd:extension base="tns:HeaderEntryType">
<xsd:sequence>
<xsd:element name="mustUnderstand" nillable="true" type="xsd:boolean"/>
<xsd:element name="actor" nillable="true" type="xsd:anyURI"/>
<xsd:any/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="SOAP_1_1_BoundHeaderEntryType">
<xsd:complexContent>
<xsd:extension base="tns:HeaderEntryType">
<xsd:sequence>
<xsd:element name="mustUnderstand" nillable="true" type="xsd:boolean"/>
<xsd:element name="actor" nillable="true" type="xsd:anyURI"/>
<xsd:element name="messagePart" type="xsd:string"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>

1010 Developing WebSphere applications

</xsd:complexType>

<xsd:complexType name="MIMEAttachmentEntryType">
<xsd:complexContent>
<xsd:extension base="tns:AttachmentEntryType">
<xsd:sequence>
<xsd:element name="contentType" type="xsd:string"/>
<xsd:element name="contentTransferEncoding" type="xsd:string"/>
<xsd:element name="contentId" type="xsd:string"/>
<xsd:element name="data" type="xsd:base64Binary"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BoundMIMEAttachmentEntryType">
<xsd:complexContent>
<xsd:extension base="tns:AttachmentEntryType">
<xsd:sequence>
<xsd:element name="contentType" type="xsd:string"/>
<xsd:element name="contentTransferEncoding" type="xsd:string"/>
<xsd:element name="contentId" type="xsd:string"/>
<xsd:element name="messagePart" type="xsd:string"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="UnknownBodyType">
<xsd:complexContent>
<xsd:extension base="tns:BodyType">
<xsd:sequence>
<xsd:any/>

</xsd:sequence>
<xsd:attribute name="encodingStyle" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Web Services code example:

This Web Services Description Language (WSDL) example and code snippets show how to access fields
within a Web services message for programming a mediation.

Web services message definition

This topic contains an example of a web services message. The example is characterized in WSDL, an
XML-based language that is used to describe the services a business offers and how those services might
be accessed.

This topic shows how to program mediations to work with different parts of a web services message,
which are described with the Service Data Objects (SDO) Version 1 representation in “Mapping of SDO
data graphs for web services messages” on page 1004. For each part of the message, there is an XML
description of the message, representing its SDO data graph. Each XML description is accompanied by
code snippets that illustrate how to work with that part of the message.

Note: In the following example, the SOAP header schema is included in the WSDL. Alternatively, it can be
included as a separate schema in the SDO repository.

Chapter 23. Developing Service integration 1011

This is a WSDL description of the message that is used as an example for subsequent code snippets:

companyInfo web service message description
<wsdl:definitions targetNamespace="http://example.companyInfo"
xmlns:tns="http://example.companyInfo"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdlmime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<xsd:schema elementFormDefault="qualified"
targetNamespace="http://example.header">

<xsd:element name="sampleHeader">
<xsd:complexType>
<xsd:all>
<xsd:element name="priority" type="xsd:int"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

<xsd:schema elementFormDefault="qualified"
targetNamespace="http://example.companyInfo">

<xsd:element name="getCompanyInfo">
<xsd:complexType>
<xsd:all>
<xsd:element name="tickerSymbol" type="xsd:string"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="getCompanyInfoResult">
<xsd:complexType>
<xsd:all>
<xsd:element name="result" type="xsd:float"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

</wsdl:types>

<wsdl:message name="getCompanyInfoRequest">
<wsdl:part name="part1" element="tns:getCompanyInfo"/>

</wsdl:message>

<wsdl:message name="getCompanyInfoResponse">
<wsdl:part name="part1" element="tns:getCompanyInfoResult"/>
<wsdl:part name="part2" type="xsd:string"/>
<wsdl:part name="part3" type="xsd:base64Binary"/>
</wsdl:message>

<wsdl:portType name="CompanyInfo">
<wsdl:operation name="GetCompanyInfo">
<wsdl:input message="tns:getCompanyInfoRequest"

name="getCompanyInfoRequest"/>
<wsdl:output message="tns:getCompanyInfoResponse"

1012 Developing WebSphere applications

name="getCompanyInfoResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="CompanyInfoBinding" type="tns:CompanyInfo">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="GetCompanyInfo">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getCompanyInfoRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getCompanyInfoResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="CompanyInfoService">
<wsdl:port binding="tns:CompanyInfoBinding" name="SOAPPort">
<wsdlsoap:address location="http://somewhere/services/CompanyInfoService"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Working with the info node

This is an example of a simple SOAP request:
<env:Envelope

xmlns:env=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:ns1=’http://example.companyInfo’>

<env:Body>
<ns1:getCompanyInfo>

<ns1:tickerSymbol>IBM</ns1:tickerSymbol>
</ns1:getCompanyInfo>

</env:Body>
</env:Envelope>

You can access the properties of the info node (see “Overall layout of a web services message” on page
1004) using code snippets such as this:
// Get the info node (a child of the graph root object)
DataObject rootNode = graph.getRootObject();
DataObject infoNode = rootNode.getDataObject("Info");

// Query the operationName, and messageType.
String opName = infoNode.getString("operationName");
String type = infoNode.getString("messageType");

Working with a header

This is an example of a SOAP request including a header:
<env:Envelope

xmlns:env=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:ns1=’http://example.companyInfo’>

<env:Header>
<example:sampleHeader

env:mustUnderstand=’1’
xmlns:example=’http://example.header’>

<example:priority>4</example:priority>
</example:sampleHeader>

</env:Header>

Chapter 23. Developing Service integration 1013

<env:Body>
<ns1:getCompanyInfo>

<ns1:tickerSymbol>IBM</ns1:tickerSymbol>
</ns1:getCompanyInfo>

</env:Body>
</env:Envelope>

For a description of the properties of the header entry with a list of headers, see “Header entry” on page
1006. To work with a header entry and its properties, use code such as this:

// Get the info node (a child of the graph root object)
DataObject rootNode = graph.getRootObject();
DataObject infoNode = rootNode.getDataObject("Info");

// Access the list of headers
List headerEntries = infoNode.getList("headers");

// Get the first entry from the list
DataObject headerEntry = (DataObject) headerEntries.get(0);

// Query the mustUnderstand property of the header entry
boolean mustUnderstand = headerEntry.getBoolean("mustUnderstand");

// Get the Sequence that holds the content of the header entry
Sequence headerContent = headerEntry.getSequence("any");

// Get the first piece of content from the Sequence
DataObject header = (DataObject) headerContent.getValue(0);

// Read the priority from the header
int priority = header.getInt("priority");

// Shorthand for the above, using SDO path expressions that start
// from the info node.
mustUnderstand = infoNode.getBoolean("headers[1]/mustUnderstand");
priority = infoNode.getInt("headers[1]/any[1]/priority");

Working with an attachment

This is an example of a SOAP request including an XML attachment:
Content-Type: multipart/related; start="<start>"; boundary="boundary"

--boundary
Content-Type: text/xml
Content-Transfer-Encoding: 7bit
Content-ID: <start>

<env:Envelope
xmlns:env=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:ns1=’http://example.companyInfo’>

<env:Body>
<ns1:getCompanyInfo>

<ns1:tickerSymbol>IBM</ns1:tickerSymbol>
</ns1:getCompanyInfo>

</env:Body>
</env:Envelope>
--boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: binary
Content-ID: <myAttachment>

<info>Some attached information</info>
--boundary--

1014 Developing WebSphere applications

For a description of the properties of the attachment entry with byte array, see “Attachment entry” on page
1007. To work with a header entry and its properties, use code such as this:

// Get the info node (a child of the graph root object)
DataObject rootNode = graph.getRootObject();
DataObject infoNode = rootNode.getDataObject("Info");

// Access the list of attachments
List attachmentEntries = infoNode.getList("attachments");

// Get the first entry from the list
DataObject attachmentEntry = (DataObject) attachmentEntries.get(0);

// Query the contentId property of the header entry
String contentId = attachmentEntry.getString("contentId");

// Get the data contained in the attachment
byte[] data = attachmentEntry.getBytes("data");

Working with the message body

This is an example of a simple SOAP request:
<env:Envelope

xmlns:env=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:ns1=’http://example.companyInfo’>

<env:Body>
<ns1:getCompanyInfo>

<ns1:tickerSymbol>IBM</ns1:tickerSymbol>
</ns1:getCompanyInfo>

</env:Body>
</env:Envelope>

To see the properties of the body, see “Message body layout” on page 1007. To work with the contents of
the body, use code such as this:

// Get the info node (a child of the graph root object)
DataObject rootNode = graph.getRootObject();
DataObject infoNode = rootNode.getDataObject("Info");

// Get hold of the body node
DataObject bodyNode = infoNode.getDataObject("body");

// Get hold of the data object for the first part of the body
DataObject part1Node = bodyNode.getDataObject("part1");

// Query the tickerSymbol
String ticker = part1Node.getString("tickerSymbol");

// Shorthand for the above, using a SDO path expression that
// starts from the info node.
ticker = infoNode.getString("body/part1/tickerSymbol");

JMS formats:

To write code that can access the different JMS message types, you need to know how each message
type is mapped to SDO, and how to retrieve the message format string from the message.

Format types

Each JMS message type is defined by a message format string within the message. You can retrieve the
format string by using the code snippet in the following example . The table shows the mapping of
message format strings to Service Data Objects (SDO):

Chapter 23. Developing Service integration 1015

JMS Message type Message format string Mapping to SDO1

JMS Bytes message JMS:bytes See “JMS Formats - bytes”
JMS Text message JMS:text See “JMS Formats - text”
JMS Stream message JMS:stream See “JMS formats - Stream” on page

1017
JMS Object message JMS:object See “JMS Formats - object” on page

1017
JMS Map message JMS:map The retrieval or construction of SDO

data graphs for JMS map messages
is not supported.

1 The version of SDO supported by mediations is Version 1.

This code snippet is an example of how to retrieve the message format string from the message:

String format = siMsg.getFormat();
if (format.equals

JMS Formats - bytes:

Your program can retrieve the payload of a JMS bytes message by mapping the body of the message to
an SDO data graph representing the message.

Bytes body

You can retrieve the payload of a JMS bytes message as a Java byte array (byte[]). First, you must
retrieve a data graph representing the message from the SIMessage instance. As is common to all data
graphs representing JMS messages, the root data object of the graph contains a property named "data",
and that data object in turn contains a property named "value". In JMS bytes messages, the value property
might be accessed as a Java byte array.

You can access the data within the data graph with code such as this:

SIMessage siMsg;
String format = siMsg.getFormat();
if (format.equals("JMS:bytes")) {
DataGraph graph = siMsg.getDataGraph();
byte[] payload = graph.getRootObject().getBytes("data/value");

}

JMS Formats - text:

Your program can retrieve the payload of a JMS text message by mapping the body of the message to an
SDO data graph representing the message.

Text body

You can retrieve the payload of a JMS text message as a Java string value (java.lang.String). First, you
must retrieve a data graph representing the message from the SIMessage instance. As is common to all
data graphs representing JMS messages, the root data object of the graph contains a property named
"data", and that data object in turn contains a property named "value". In JMS text messages the value
property may be accessed as a Java string value.

You can access the data within the data graph with code such as this:

1016 Developing WebSphere applications

SIMessage siMsg;
String format = siMsg.getFormat();
if (format.equals("JMS:text")) {
DataGraph graph = siMsg.getDataGraph();
String payload = graph.getRootObject().getString("data/value");

}

JMS formats - Stream:

Your program can retrieve the payload of a JMS stream message by mapping the body of the message to
an SDO data graph representing the message.

Stream body

You can retrieve the payload of a JMS Stream message as a Java list value (java.util.List). First, you must
retrieve a data graph representing the message from the SIMessage instance. As is common to all data
graphs representing JMS messages, the root data object of the graph contains a property named "data",
and that data object in turn contains a property named "value". For a JMS Stream message the value
property might be accessed as a List value. The member functions of the List interface can be used to
access the individual objects within the JMS Stream message instance. (Note that the JMS standard
places constraints on the kinds of objects that might be placed in a Stream message.)

You can access the data within the data graph with code such as this:

}SIMessage siMsg;
String format = siMessage.getFormat();
if (format.equals("JMS:stream")) {
DataGraph graph = siMsg.getDataGraph();
List payload = graph.getRootObject().getList("data/value");
int streamLength = payload.size();
if (streamLength > 0) {
Object item1 = payload.get(0);
// You can also access items directly, for example: (for the_same_ value)
item1 = graph.getRootObject().get("data/value[1]");

}
}

JMS Formats - object:

Your program can retrieve the payload of a JMS object message by mapping the body of the message to
an SDO data graph representing the message.

Object body

You can retrieve the payload of a JMS object message as a Java byte array (byte[]). First, you must
retrieve a data graph representing the message from the SIMessage instance. As is common to all data
graphs representing JMS messages, the root data object of the graph contains a property named "data",
and that data object in turn contains a property named "value". For a JMS object message the value
property might be accessed as a Java byte array. The original Object instance that the payload represents
might be reconstructed from the byte array.

You can access the data within the data graph with code such as this:

SIMessage siMsg;
String format = siMsg.getFormat();
if (format.equals("JMS:object")) {
DataGraph graph = siMsg.getDataGraph();
byte[] payload = graph.getRootObject().getBytes("data/value");
if(payload != null) {
// Need to deserialize to recover original object

Chapter 23. Developing Service integration 1017

ObjectInputStream in =
new ObjectInputStream(new ByteArrayInputStream(payload));

Object obj = in.readObject();
}

}

Writing a routing mediation
Use this topic to create a mediation that chooses a particular forward route for a message.

Before you begin

For an introduction to using mediations with the service integration bus, see Learning about mediations.
For details of how to install a mediation into WebSphere Application Server and associate it with a bus
destination, see Working with mediations.

This topic assumes that you are familiar with using a Java Platform, Enterprise Edition (Java EE) session
bean development environment such as the assembly tools or IBM Rational Application Developer.

About this task

A routing mediation is a mediation application that contains a routing handler. You associate a routing
mediation with a service integration bus destination, and use the mediation to choose a particular route
from a range of available routes. For example when you create a new outbound service configuration or
modify an existing outbound service configuration you can apply a port selection mediation to choose a
particular outbound port from the range of ports that are available to the outbound service.

To create a routing mediation, use a Java Platform, Enterprise Edition (Java EE) session bean
development environment to complete the following steps:

Procedure
1. Create an empty mediation handler project. This creates the project, and creates the handler class that

implements the handler interface. For detailed instructions on how to do this, see Writing the mediation
handler.

2. Use the mediation pane on the EJB descriptor to define the handler class as a mediation handler.

Note: When you do this, you specify a name by which the mediation handler list is known. Make a
note of this name, for later reference when you create the mediation in the bus.

3. Add the routing function to the handler. Before you begin, review Adding mediation function to handler
code, in particular its subtopic Working with message context. Add import statements to your handler
class, and modify the handle method by adding your routing code. Specify the routing destination by
adding that destination to the front of the forward routing path list. The forward routing path list is
available from the message context. For example:

import javax.xml.rpc.handler.MessageContext;
import com.ibm.websphere.sib.mediation.handler.MediationHandler;
import com.ibm.websphere.sib.mediation.handler.MessageContextException;
import com.ibm.websphere.sib.mediation.messagecontext.SIMessageContext;
import com.ibm.websphere.sib.SIMessage;
import com.ibm.websphere.sib.SIDestinationAddress;
import com.ibm.websphere.sib.SIDestinationAddressFactory;
import java.util.List;
public class RouteMediationHandler implements MediationHandler {

public boolean handle(MessageContext ctx) throws MessageContextException {
SIMessageContext siCtx = (SIMessageContext) ctx;
SIMessage msg = siCtx.getSIMessage();
List frp = msg.getForwardRoutingPath();
try {

1018 Developing WebSphere applications

SIDestinationAddress destination =
SIDestinationAddressFactory
.getInstance()
.createSIDestinationAddress(
"RoutingDestination", //this is the name of the target destination
false);

frp.add(0, destination);
} catch (Exception e) {
return false;
}
msg.setForwardRoutingPath(frp);
return true;
}

}

For more information about the service integration technologies classes, including the mediation
handler and message context classes, see the Generated API documentation - Application
programming interfaces .

4. Export the routing mediation enterprise application.

What to do next

You are now ready to install your mediation into WebSphere Application Server and associate it with a bus
destination, as described in Working with mediations.

Writing a mediation that maps between attachment encoding styles
Use this topic to create a mediation that maps from SOAP Messages with Attachments encoding style to
WS-I Attachments Profile Version 1.0 encoding style.

Before you begin

For an introduction to using mediations with the service integration bus, see Learning about mediations.
For details of how to install a mediation into WebSphere Application Server and associate it with a bus
destination, see Working with mediations.

This topic assumes that you are familiar with using a Java Platform, Enterprise Edition (Java EE) session
bean development environment such as the assembly tools or IBM Rational Application Developer.

The example mediation given in this topic is based upon the WSDL examples that are given in Supporting
bound attachments: WSDL examples

About this task

You can use a mediation to map from a SOAP Messages with Attachments encoding of a message to
WS-I Attachments Profile Version 1.0 encoding. The WSDL definition is the same in both cases, so if you
create a mediation that rewrites the Content ID values to match the Version 1.0 conventions then the
message is encoded by service integration technologies according to Version 1.0 rules.

To create a mapping mediation, use a Java Platform, Enterprise Edition (Java EE) session bean
development environment to complete the following steps:

Procedure
1. Create an empty mediation handler project. This creates the project, and creates the handler class that

implements the handler interface. For detailed instructions on how to do this, see Writing the mediation
handler.

2. Use the mediation pane on the EJB descriptor to define the handler class as a mediation handler.

Chapter 23. Developing Service integration 1019

Note: When you do this, you specify a name by which the mediation handler list is known. Make a
note of this name, for later reference when you create the mediation in the bus.

3. Add the mapping function to the handler. Before you begin, review Adding mediation function to
handler code. Here is an example of mediation handler code that rewrites the Content ID values to
match the Version 1.0 conventions:

int uuidBase = 0;
DataObject root = SIMessage.getDataGraph().getRootObject();
List attachments = root.getList("info/attachments");
Iterator entries = attachments.iterator();
while(entries.hasNext()) {

DataObject entry = (DataObject) entries.next();
if(entry.getType().equals("BoundMIMEAttachmentEntryType")) {

String newContentId = entry.getString("messagePart") + "=" +
Integer.toString(uuidBase++) +
"@some.domain";

}
}

Note: For messages that use a SOAP with attachments reference (swaref) or some other URI
mechanism to refer to the attachments, the URI values might also have to be updated to match
the new Content ID values. However such mechanisms are usually used to refer to unbound
attachments.

For more information about the service integration technologies classes, including the mediation
handler classes, see the Generated API documentation - Application programming interfaces .

4. Export the mapping mediation enterprise application.

What to do next

You are now ready to install your mediation into WebSphere Application Server and associate it with a bus
destination, as described in Working with mediations.

Using durable subscriptions
You use durable subscriptions for publish/subscribe messaging. A durable subscription can be used to
preserve messages published on a topic while the subscriber is not active.

About this task

If there is no active subscriber for a durable subscription, JMS retains the subscription messages until they
are received by the subscriber, or until they expire, or until the durable subscription is deleted. This
enables subscriber applications to operate disconnected from the JMS provider for periods of time, and
then reconnect to the provider and process messages that were published during their absence.

Each JMS durable subscription is identified by a subscription name (subName), which is defined when the
durable subscription is created. A JMS connection also has an associated client identifier (clientID), which
is used to associate a connection and its objects with the list of messages (on the durable subscription)
that is maintained by the JMS provider for the client. The subName assigned to a durable subscription
must be unique within a given client ID.

If an application needs to receive messages published on a topic while the subscriber is inactive, it uses a
durable subscriber.

In normal operation there can be at most one active (connected) subscriber for a durable subscription at a
time. However, when running inside an application server it is possible to clone the application server for
failover and load-balancing purposes. In this case, a cloned durable subscription can have multiple
simultaneous consumers.

1020 Developing WebSphere applications

For information about durable subscriptions, see the JMS 1.1 Specification (for example, section 9.3.3
“Using Durable Subscriptions”).

The following operations for durable subscriptions are in addition to the usual JMS operations, such as to
first look up a connection factory and a JMS destination, and to create a connection and session.

The following are the main operations for using durable subscriptions:

v Creating a new durable subscription

v Reconnecting to an existing durable subscription

v Unsubscribing (deleting) a durable subscription

Procedure
v Define the Durable Subscription Home This property must be set on the JMS connection factory if

durable subscriptions are to be created using connections created from this connection factory. The
value is the name of the messaging engine where all durable subscriptions accessed through this
connection are managed.

You can also set the Durable Subscription Home on the JMS topic destination, which enables a single
connection to access durable subscriptions on more than one messaging engine.

To be able to create durable subscriptions, the property on the connection factory must not be null (the
default). Setting a value of null or empty string on the property of a destination indicates that the value
specified on the connection factory should be inherited.

v Creating a new durable subscription A durable TopicSubscriber can be created by a Session or by a
TopicSession.

Having performed the normal setup, an application can create a durable subscriber to a destination. To
do this, the client program creates a durable TopicSubscriber, by using
session.createDurableSubscriber. The name subName is used as an identifier of the durable
subscription.

session.createDurableSubscriber(Topic topic,
java.lang.String subName,
java.lang.String messageSelector,
boolean noLocal);

Alternatively, you can use the two-argument form of this operation, which takes only a topic and name
(subName) as parameters. This alternative form invokes the four-argument operation with null as the
messageSelector and false as the noLocal parameters.

session.createDurableSubscriber(Topic topic, java.lang.String subName);

A JMS durable subscription is created with a unique identifier of the form clientID+"##"+subName. The
characters ## should not be used in the clientID or subName if the JMS connection is to use a durable
subscription.

Handling exceptions. The following JMS exceptions can be thrown for the reasons listed in the
exception messages:

– InvalidDestination - The name of this durable subscription (clientID+"##"+subName) clashes with an
existing destination.

– IllegalState - The method was invoked on a closed connection.

– IllegalState - This destination is not accepting consumers. This probably means that there is already
an active subscriber for this durable subscription.

– InvalidDestination - The mediation named in the parameters cannot be found.

– InvalidDestination - The destination cannot be found.

– JMSSecurity - The user does not have authorization to perform this operation.

– JMSException - Errors occurred in the MsgStore, Comms or Core layers.

Chapter 23. Developing Service integration 1021

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/index.html

v Reconnecting to an existing durable subscription To reconnect to a topic that has an existing durable
subscription, the subscriber application calls session.CreateDurableSubscriber again, using the same
parameters that it used to originally create the durable subscription. However, consider the following
important restrictions:

– The subscriber must be attached to the same connection.

– The destination and subscription name must be the same as in the original method call.

– If a message selector was specified, it must be the same as in the original method call.

By calling createDurableSubscriber again, the subscriber application reconnects to the topic, and
receives any messages that arrived while the subscriber was disconnected.

v Unsubscribing (deleting) a durable subscription To unsubscribe (delete) a durable subscription to a
topic, the subscriber application calls session.unsubscribe(java.lang.String name).

Do not call the unsubscribe method to delete a durable subscription if there is a TopicConsumer
currently consuming messages from the topic.

Sending web service messages directly over the bus from a JAX-RPC
client
Use this task to send web service messages over a bus by retargeting the JAX-RPC client.

About this task

Java API for XML-based remote procedure calls (JAX-RPC) client applications send and receive web
service request and response messages. JAX-RPC client applications that use the IBM JAX-RPC run-time
environment can do this in a number of different ways, depending on the bindings in the WSDL document
that they are developed against, and the configuration data that is used at run time.

For an introduction to basic JAX-RPC programming concepts, including the JAX-RPC client and server
programming models, see Getting Started with JAX-RPC.

If you want to use a JAX-RPC client to send messages over the service integration bus, you have two
choices:

v Use a SOAP binding (SOAP over HTTP or SOAP over JMS), and pass messages indirectly through an
endpoint listener to an inbound service. You would do this if you had SOAP-specific JAX-RPC handlers
that must run in the client application context.

v Pass messages directly into the service integration bus at a destination by “retargeting” the JAX-RPC
client application as described in this topic.

Note: There are currently limitations regarding the Java types used by services that are retargeted
through a JAX-RPC client application.

Retargeting involves setting the following two values into the client application deployment descriptor, or
specifying them dynamically at run time from within the client application:

v The binding namespace is set to indicate that the client uses the messaging bus directly.

v The endpoint address is set to include the particular destination and (optionally) the format of messages
that the client uses.

The destination also needs to be configured so that it knows the port type of messages that the JAX-RPC
client is using. There are two ways to achieve this:

v Create an outbound service. An outbound service represents an externally-provided web service. In this
case, requests from the JAX-RPC client pass through the service destination and are then sent on to
the service provider defined by the outbound service configuration.

1022 Developing WebSphere applications

http://developer.java.sun.com/developer/technicalArticles/WebServices/getstartjaxrpc/

v Create an inbound service. An inbound service represents a service provided somewhere within or
beyond the messaging bus. You can create an inbound service on any existing destination. The creation
of an inbound service associates a WSDL port type with the destination. When retargeting to a
destination with an inbound service, the client application needs to specify both the destination name
and inbound service name, because it is possible to configure more than one inbound service against a
single destination. In this case, requests from the JAX-RPC client pass through the destination and then
onwards through the service integration bus depending on routing that is done at the initial destination.

To have web service messages sent directly to a destination using a JAX-RPC client, complete the
following steps:

Procedure
1. Create the JAX-RPC client application.

2. Create the outbound service or inbound service with which you want the JAX-RPC client application to
exchange messages.

3. Use the administrative console to access the port information for your JAX-RPC client application, as
described in “Configuring web services client bindings” on page 2206 and Web services client port
information.

4. Override the default SOAP binding for your JAX-RPC client application. Change the binding
namespace to http://www.ibm.com/ns/2004/02/wsdl/mp/sib

5. Override the endpoint that your JAX-RPC client application uses to send web service requests. The
new endpoint should use the sib: URL syntax and include either the outbound service destination
name, or both the inbound service name and its corresponding destination name.

What to do next

After you change the binding namespace, any JAX-RPC handler lists that were configured for the
retargeted port are ignored. For clients that are developed against WSDL with a SOAP binding, retargeting
directly to the bus causes the handlers to be ignored. However if the client is developed against the
non-bound WSDL for the service, retargeting to the bus is not considered to be changing the binding
namespace, and so the handler information is retained. In this case the JAX-RPC handlers are called with
the SDOMessageContext subclass.

Associated reference information:

v “sib: URL syntax”

sib: URL syntax

The sib: URL has the following syntax:
sib:/[destination|path]?property_1=value_1&property_2=value_2&...

where:

v Square brackets (“[]”) indicate that a parameter is optional.

v Transport type is sib:, followed by either /destination to specify destination type or /path to specify a
forward routing path, followed by a “query string” that contains one or more properties. The permitted
properties are described in the subsequent sections of this topic.

Required properties

The following properties are required. They are used to specify the destination for the request.

Note: All destination names must be fully-qualified. That is, they must include the name of the service
integration bus as well as the destination name itself. Use the syntax bus:destination. If a bus or

Chapter 23. Developing Service integration 1023

destination name contains a colon or comma, wrap the name in double quotation marks (“”). If it
contains a double quotation mark, repeat the quotation mark.

destinationName
The destination name.

path The forward routing path, in the form of a sequence of destination names separated by commas.

replyDestinationName
The name of the destination to be used for the reply.

inboundService
The name of the inbound service that identifies the specific attachment that the requester
application uses. You can omit this value if the destination is a service destination with an
associated outbound service configuration, because in that case the requester is attaching to the
outbound service through the service destination.

timeout
The time the requester waits for a response. The default value is 60 seconds. A zero value
indicates an unlimited wait.

Service integration technologies-related properties

The following properties are optional. If you do not specify a value for a property, then the default value is
used. For more information regarding the permitted values for these properties, see the generated API
information for the SIMessage interface.

reliability
The reliability of the request message.

timeToLive
The amount of time (in milliseconds) before the request times out. A zero value indicates that the
request never times out.

Note: The timeout property (see the required properties) is the time delay after which the
requester application blocks the application thread that is waiting for a response to a
request and response operation. The time to live and replyTimeToLive optional properties
indicate how long the request and reply messages should be processed by the messaging
engines. This does not include the processing time at the service implementation. You
would therefore usually set the timeout to be the sum of the request and response times to
live, plus some amount for the service processing time.

priority
The priority of the request message.

user
The user ID required to access the request destination.

password
The password required to access the request destination.

replyReliability
The reliability of the reply message.

replyTimeToLive
The amount of time (in milliseconds) before the reply times out. A zero value indicates that the
reply never times out.

replyPriority
The priority of the reply message.

1024 Developing WebSphere applications

Other properties

You can also include user-defined properties in the URL. These properties must be named with a user.
prefix. For example:
sib:/destination?destinationName=myBus:myDestination & reliability=assured & user.customData=XYZ

After the request is sent, the URL itself is available within the message properties, named inbound.url.

Chapter 23. Developing Service integration 1025

1026 Developing WebSphere applications

Chapter 24. Developing Session Initiation Protocol (SIP)
applications

This page provides a starting point for finding information about SIP applications, which are Java programs
that use at least one Session Initiation Protocol (SIP) servlet written to the JSR 116 specification.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging.

Developing SIP applications
A SIP application is a set of SIP servlets packaged in a SIP application archive file (SAR).

About this task

A SIP servlet is an application component managed by the SIP container that performs SIP signaling. The
programming and deployment models are analogous to web servlets and therefore will be mapped to the
WebSphere administrative model accordingly. It is possible to include web servlets in a SAR file (along
with the required web.xml deployment descriptor) to create what is known as a converged application. See
JSR 116 for details on SIP applications, servlets, converged applications, and status codes.

Developing SIP applications that support PRACK
A SIP response to an INVITE request can be final or provisional. Final responses are always sent reliably,
but provisional responses typically are not. For cases where you need to send a provisional response
reliably, you can use the PRACK (Provisional response acknowledgement) method.

Before you begin

For you to be able to develop applications that support PRACK, the following criteria must be met:

v The client that sends the INVITE request must put a 100rel tag in the Supported or the Require header
to indicate that the client supports PRACK.

v The SIP servlet must respond by invoking the sendReliably() method instead of the send() method to
send the response.

About this task

PRACK is described in the following standards:

v RFC 3262 (“Reliability of Provisional Responses in the Session Initiation Protocol (SIP)”), which extends
RFC 3261 (“SIP: Session Initiation Protocol”), adding PRACK and the option tag 100rel.

v Section 6.7.1 (“Reliable Provisional Responses”) of JSR 116 (“SIP Servlet API Version 1.0”).

Procedure
v For an application acting as a proxy, do this:

– Make your application generate and send a reliable provisional response for any INVITE request that
has no tag in the To field.

v For an application acting as a user agent client (UAC), do this:

– Make your application add the 100rel tag to outgoing INVITE requests. The option tag must appear
in either the Supported header or the Require header.

– Within your application's doProvisionalResponse(...) method, prepare the application to create and
send PRACK requests for incoming reliable provisional responses. The application must create the
PRACK request on the response's dialog through a SipSession.createRequest(...) method, and it
must set the RAck header according to RFC 3262 Section 7.2 (“RAck”).

© IBM Corporation 2009 1027

http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.jcp.org/aboutJava/communityprocess/final/jsr116

– The application that acts as an UAC will not receive doPrack() methods. The UAC sends INVITE
and receives Reliable responses. When the UAC receives the Reliable response, it sends PRACK a
request to the UAS and receives a 200 OK on the PRACK so it should next implement doResponse(
) in order to receive it.

v For an application acting as a user agent server (UAS), do this:

– If an incoming INVITE request requires the 100rel tag, trying to send a 101-199 response unreliably
by using the send() method causes an Exception.

– Make the application declare a SipErrorListener to receive noPrackReceived() events when a reliable
provisional response is not acknowledged within 64*T1 seconds, where T1 is a SIP timer. Within the
noPrackReceived() event processing, the application should generate and send a 5xx error response
for the associated INVITE request per JSR 116 Section 6.7.1.

– Make the application have at most one outstanding, unacknowledged reliable provisional response.
Trying to send another one before the first's acknowledgement results in an Exception.

– Make sure that the application enforces the RFC 3262 offer/answer semantics surrounding PRACK
requests containing session descriptions. Specifically, a servlet must not send a 2xx final response if
any unacknowledged provisional responses contained a session description.

Setting up SIP application composition
The JSR 116 standard for SIP applications states in section 2.4 that multiple applications may be invoked
for the same SIP request. The process of setting up applications to comply with this standard is called
application composition.

About this task

Application composition requires that implementations use a cascaded services model. The cascaded
services model requires that service applications triggered on the same host are triggered in sequence, as
if the triggering occurred on different hosts. Therefore responses flow upstream and hit applications in the
reverse order of the corresponding requests.

The JSR 116 standard does not specify how to implement application composition, thus there are many
ways to comply with this standard. For WebSphere Application Server, composition of the application
depends on the deployed application order, and on the order of mapping rules within the deployment
descriptor of each application.

v For an initial incoming request, the SIP container tries each potential rule in order. When the container
finds the nth match, the container invokes the corresponding servlet.

v If the servlet must proxy the request, the container scans the rules again to search for additional
matches. When the container finds the (n+1)th match, the container invokes the corresponding servlet.

v Any servlet in the same application as the previously invoked servlet is excluded from the matching
process. No servlet can be invoked twice for the same SIP request.

You can specify load on start-up priority. The <load-on-startup> in the sip.xml defines the order in which
servlets are initialized on startup. If this value is lower than zero, the servlets are initialized when the first
request is matched to them according to matching rule and composition order. Zero is a legitimate weight
for startup initialization order. If this tag does not exist or if it contains a negative value, the servlet does
not initialize at startup.

You should also add <load-on-startup> to the same tag in the web.xml if you are changing it manually. It
is the WebContainer that loads servlets (and siplets), and it looks only at the web.xml. When deploying a
SAR, only the sip.xml needs to be changed. The web.xml is automatically constructed correctly after
deployment.

1028 Developing WebSphere applications

The load-on-startup tag embedded in the SIP deployment descriptor tag for a servlet dictates the order
that the application is loaded on start up of the server. It does not dictate the order that an application gets
called when the application is a member of an application composition chain that matches rules to process
a new message coming in.

The starting weight for applications and their modules is specified in the deployment.xml file. The order in
which modules pickup requests on composition is evaluated by applications weight first and then modules
weight. The following steps can be completed in any order to specify applications weight or modules
weight from the administrative console.

Procedure
1. To specify the applications (EARs) weight, expand Enterprise Applications > applicationName >

Startup Behavior and set the startup order.

2. To specify the modules (WARs) weight, expand Enterprise Applications > applicationName >
Manage Modules and set the starting weight.

3. Restart the changed applications.

Example

Specifying load-on-startup priority example:
sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
"http://www.jcp.org/dtd/sip-app_1_0.dtd">
<sip-app>
<display-name>SIPSampleProxy</display-name>

<servlet>
<servlet-name>SIPSampleProxy</servlet-name>
<servlet-class>sipes.test.container.proxy.SIPSampleProxy</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>SIPSampleProxy</servlet-name>
<pattern>
<equal>
<var>request.uri.user</var>
<value>SIPSampleProxy</value>
</equal>
</pattern>
</servlet-mapping>

<proxy-config>
<sequential-search-timeout>1000</sequential-search-timeout>
</proxy-config>
<session-config>
<session-timeout>12</session-timeout>
</session-config>
</sip-app>

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp">
<display-name>SIPSampleProxy</display-name>
<servlet>
<servlet-name>SIPSampleProxy</servlet-name>
<display-name>SIPSampleProxy</display-name>
<servlet-class>sipes.test.container.proxy.SIPSampleProxy</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>SIPSampleProxy</servlet-name>
<url-pattern>/SIPSampleProxy</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1029

<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
</web-app>

Specifying starting weight example:

The following example is for a stand-alone server.
deployment.xml

<?xml version="1.0" encoding="UTF-8" ?>
- <appdeployment:Deployment xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:appdeployment="http://www.ibm.com/websphere/appserver/schemas/5.0/appdeployment.xmi"
xmi:id="Deployment_1137951186883">
- <deployedObject xmi:type="appdeployment:ApplicationDeployment" xmi:id="ApplicationDeployment_1137951186883"
deploymentId="0" startingWeight="1" binariesURL="$(APP_INSTALL_ROOT)/OrangeNode08Cell/SipContainerTestSuite.ear"
useMetadataFromBinaries="false" enableDistribution="true" createMBeansForResources="true" reloadEnabled="false"
appContextIDForSecurity="href:OrangeNode08Cell/SipContainerTestSuite"
filePermission=".*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755" allowDispatchRemoteInclude="false"
allowServiceRemoteInclude="false">
<targetMappings xmi:id="DeploymentTargetMapping_1137951186883" enable="true" target="ServerTarget_1137951186883" />
<classloader xmi:id="Classloader_1137951186883" mode="PARENT_FIRST" />

- <modules xmi:type="appdeployment:WebModuleDeployment" xmi:id="WebModuleDeployment_1137951186883"
deploymentId="1" startingWeight="10000" uri="sipunit.war">
<targetMappings xmi:id="DeploymentTargetMapping_1137951186884" target="ServerTarget_1137951186883" />
<classloader xmi:id="Classloader_1137951186884" /> </modules>
<properties xmi:id="Property_1137951186883" name="validateinstall" value="warn" /> </deployedObject>
<deploymentTargets xmi:type="appdeployment:ServerTarget" xmi:id="ServerTarget_1137951186883"

name="server1" nodeName="OrangeNode10" /> </appdeployment:Deployment>

SIP servlets
This topic describes SIP servlets.

The SIP Servlet 1.0 specification (JSR 116) is standardized through Java Specification Request (JSR) 116.
The idea behind the specification is to provide a Java application programming interface (API) similar to
HTTP servlets, which provides an easy-to-use SIP programming model. Like the popular HTTP servlet
programming model, some flexibility is limited to optimize ease-of-use and time-to-value.

However, the SIP Servlet API is different in many ways from HTTP servlets because the protocol is so
different. While SIP is a request-response protocol, there is not necessarily only one response to every
one request. This complexity and a need for a high performing solution meant that it was easier to make
the SIP servlets natively asynchronous. Also, unlike HTTP servlets, the programming model for SIP
servlets sought to make client requests easy to create alongside the other logic being written because
many applications act as a client or proxy to other servers or proxies.

SipServlet requests

Like HTTP servlets, each SIP servlet extends a base javax.servlet.sip.SipServlet class. All messages come
in through the service method, which you can extend. However, because there is not a one-to-one
mapping of requests to responses in SIP, the suggested practice is to extend the doRequest or
doResponse methods instead. When extending the doRequest or doResponse methods, it is important to
call the extended method for the processing to complete.

Each request method, which the specification must support, has a doxxx method just like HTTP. In HTTP,
methods such as doGet and doPost exist for GET and POST requests. In SIP, doInvite, doAck, doOptions,
doBye, doCancel, doRegister, doSubscribe, doNotify, doMessage, doInfo, and doPrack methods exist for
each SIP request method.

Unlike an HTTP servlet, SIP servlets have methods for each of the response types that are supported. So,
SIP servlets include the doProvisionalResponse, doSuccessResponse, doRedirectResponse, and
doErrorResponse responses. Specifically, the provisional responses (1xx responses) are used to indicate
status, the success responses (2xx responses) are used to indicate a successful completion of the
transaction, the redirect responses (3xx responses) are used to redirect the client to a moved resource or
entity, and the error responses (4xx, 5xx, and 6xx responses) are used to indicate a failure or a specific

1030 Developing WebSphere applications

http://www.jcp.org/aboutJava/communityprocess/final/jsr116

error condition. These types of response messages are similar to HTTP, but because the SIP Servlet
programming model includes a client programming model, it is necessary to have responses handled
programmatically as well.

Clarifications of JSR 116

JSR 289 has made some clarifications to JSR 116, as follows:

v JSR 289 Section 4.1.3: Contact Header Field

v JSR 289 Section 5.2: Implicit Transaction State

v JSR 289 Section 5.8: Accessibility of SIP Servlet Messages

SIP SipServletRequest and SipServletResponse classes
The SipServletRequest and SipServletResponse classes are similar to the HttpServletRequest and
HttpServletResponse classes.

SipServletRequest and SipServletResponse classes

Each class gives you the capability to access the headers in the SIP message and manipulate them.
Because of the asynchronous nature of the requests and responses, this class is also the place to create
new responses for the requests. When you extend the doInvite method, only the SipServletRequest class
is passed to the method. To send a response to the client, you must call the createResponse method on
the Request object to create a response. For example:
protected void doInvite(SipServletRequest req) throws
javax.servlet.ServletException, java.io.IOException {

//send back a provisional Trying response
SipServletResponse resp = req.createResponse(100);
resp.send();

Because of their asynchronous nature, SIP servlets can seem complicated. However, something as simple
as the previous code sample sends a response to a client.

Here is a more complex example of a SIP servlet. With the following method included in a SIP servlet, the
servlet blocks all of the calls that do not come from the example.com domain.
protected void doInvite(SipServletRequest req) throws
javax.servlet.ServletException, java.io.IOException {

//check to make sure that the URI is a SIP URI
if (req.getFrom().getURI().isSipURI()){

SipURI uri = (SipURI)req.getFrom.getURI();
if (!uri.getHost().equals("example.com")) {

//send forbidden response for calls outside domain
req.createResponse(SipServletResponse.SC_FORBIDDEN).send();
return;

}
}
//proxy all other requests on to their original destination
req.getProxy().proxyTo(req.getRequestURI);

}

SIP SipSession and SipApplicationSession classes
Possibly the most complex portions of the SIP Servlet 1.0 specification are the SipSession and
SipApplicationSession classes.

SIP SipSession and SipApplicationSession classes

Both of these classes have some useful purposes and can act as the primary place to store data in
applications that are designed for distributed or highly available environments.

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1031

The SipSession class is the best representative of a specific point-to-point communication between two
entities and is the closest to the HttpSession object. Because historically no proxying or forking existed for
the HTTP request in HTTP servlets, the need for something higher than a single point-to-point session did
not exist. However, even HTTP users can see the growing need for this type of function since portlets
began essentially forking HTTP requests. The SIP users expect the proxying and forking activities that
require multiple layers of SIP session management. The SipSession class is the lowest point-to-point layer.

The SipApplicationSession class represents the higher layer of SIP session management. One
SipApplicationSession class can own one or more SipSession objects. However, each SipSession class
can be related to one SipSession object only. The SipApplicationSession class also supports the
attachment of any number of other protocol sessions. Currently, only HTTP sessions are supported by any
implementations. The SipApplicationSession class has a getSessions method, which takes the requested
protocol type as an argument.

You might find it useful for many applications to combine HTTP and SIP. For example, you might use this
approach to tie together HTTP and SIP sessions to monitor a phone call or to start a phone call through a
rich HTTP graphical user interface.

Example: SIP servlet simple proxy
This is a servlet example of a simple proxy.

Simple proxy
import java.io.IOException;

import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.sip.Proxy;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import javax.servlet.sip.SipSession;
import javax.servlet.sip.SipURI;
import javax.servlet.sip.URI;

public class SimpleProxy extends SipServlet implements Servlet {

final static private String SHUTDOWN_KEY = new String("shutdown");
final static private String STATE_KEY = new String("state");
final static private int INVITE_RECEIVED = 1;

/* (non-Java-doc)
* @see javax.servlet.sip.SipServlet#SipServlet()
*/
public SimpleProxy() {
super();
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doInvite(javax.servlet.sip.SipServletRequest)
*/
protected void doInvite(SipServletRequest request) throws ServletException,

IOException {

//log("SimpleProxy: doInvite: TOP");

try {
if (request.isInitial() == true)
{
// This should cause the sip session to be created. This sample only uses the session on receiving
// a BYE but the Tivoli performance viewer can be used to track the creation of calls by viewing the

1032 Developing WebSphere applications

// active session count.
Integer state = new Integer(INVITE_RECEIVED);
SipSession session = request.getSession();
session.setAttribute(STATE_KEY, state);

log("SimpleProxy: doInvite: setting attribute");

Proxy proxy = request.getProxy();

SipFactory sipFactory = (SipFactory) getServletContext().getAttribute(SIP_FACTORY);
if (sipFactory == null) {

throw new ServletException("No SipFactory in context");
}

String callingNumber = request.getTo().toString();
if (callingNumber != null)
{

String destStr = format_lookup(callingNumber);
URI dest = sipFactory.createURI(destStr);

//log("SimpleProxy: doInvite: Proxying to dest URI =" + dest.toString());

if (((SipURI)request.getRequestURI()).getTransportParam() != null)
((SipURI)dest).setTransportParam(((SipURI)request.getRequestURI()).getTransportParam());

proxy.setRecordRoute(true);
proxy.proxyTo(dest);

}
else
{

//log("SimpleProxy: doInvite: Request is invalid. Did not contain a To: field.");
SipServletResponse sipresponse = request.createResponse(400);
sipresponse.send();
}
}
else
{

//log("SimpleProxy: doInvite: target refresh, let container handle invite");
super.doInvite(request);
}
}
catch (Exception e){
e.printStackTrace();
}
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doResponse(javax.servlet.sip.SipServletResponse)
*/
protected void doResponse(SipServletResponse response) throws ServletException,

IOException {
super.doResponse(response);

// Example of using the session object to store session state.
SipSession session = response.getSession();
if (session.getAttribute(SHUTDOWN_KEY) != null)
{
//log("SimpleProxy: doResponse: invalidating session");
session.invalidate();
}
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doBye(javax.servlet.sip.SipServletRequest)
*/
protected void doBye(SipServletRequest request) throws ServletException,

IOException {

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1033

SipSession session = request.getSession();
session.setAttribute(SHUTDOWN_KEY, new Boolean(true));

//log("SimpleProxy: doBye: invalidate session when responses is received.");
super.doBye(request);
}

protected String format_lookup(String toFormat){
int start_index = toFormat.indexOf(’<’) + 1;
int end_index = toFormat.indexOf(’>’);

if(start_index == 0){
//don’t worry about it
}
if(end_index == -1){
end_index = toFormat.length();
}

return toFormat.substring(start_index, end_index);
}

}

Example: SIP servlet SendOnServlet class
The SendOnServlet class is a simple SIP servlet that would perform the basic function of being called on
each INVITE and sending the request on from there.

SendOnServlet class

Function could easily be inserted to log this invite request or reject the INVITE based on some specific
criteria.
package com.example;
import java.io.IOException;
import javax.servlet.sip.*;
import java.servlet.ServletException;
public class SendOnServlet extends SipServlet {

public void doInvite(SipServletRequest req)
throws ServletException, java.io.IOException {

//send on the request
req.getProxy().proxyTo(req.getRequestURI);

}
}

The doInvite method could be altered to do something such as reject the invite for some specific criteria
simply. In the following example, all requests from domains outside of example.com will be rejected with a
Forbidden response.

public void doInvite(SipServletRequest req)
throws ServletException, java.io.IOException {
if (req.getFrom().getURI().isSipURI()){

SipURI uri = (SipURI)req.getFrom.getURI();
if (!uri.getHost().equals(“example.com”)) {

//send forbidden response for calls outside domain
req.createResponse(SipServletResponse.SC_FORBIDDEN, “Calls outside example.com not accepted”).send();
return;

}
}
//proxy all other requests on to their original destination
req.getProxy().proxyTo(req.getRequestURI());

}

SendOnServlet deployment descriptor:
<sip-app>

<display-name>Send-on Servlet</display-name>
<servlet>

1034 Developing WebSphere applications

<servlet-name>SendOnServlet</servlet-name>
<servlet-class>com.example.SendOnServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>SendOnServlet</servlet-name>
<pattern>

<equal>
<var>request.method</var>
<value>INVITE</value>

</equal>
</pattern>

</servlet-mapping>
</sip-app>

Example: SIP servlet Proxy servlet class

Proxy servlet class

After the initial INVITE, this application will be called on every subsequent SIP message. For each
Request and Response, this class will simply print out the action and who it is to or from.
package com.example;
import java.io.IOException;
import javax.servlet.sip.*;
import java.servlet.ServletException;
public class ProxyServlet extends SipServlet {

public void doInvite(SipServletRequest req)
throws ServletException, java.io.IOException {

//get the Proxy
Proxy p=req.getProxy();
//turn on supervised mode so that all events come through us
//The default on this is true but it is set to emphasize the function.
p.setSupervised(true);
//set record route so we see the ACK, BYE, and OK
p.setRecordRoute(true);
//proxy on the request
p.proxyTo(req.getRequestURI());

}
public void doRequest(SipServletRequest req)

throws ServletException, java.io.IOException {
System.out.println(req.getMethod()+” Request from “+req.getFrom().getDisplayName());
super.doRequest(req);

}
public void doResponse(SipServletResponse resp)

throws ServletException, java.io.IOException {
System.out.println(resp.getReasonPhrase()+” Response from “+resp.getTo().getDisplayName());
super.doResponse(resp);

}
}

Proxy deployment descriptor
<sip-app>

<display-name>ProxyServlet</display-name>
<servlet>

<servlet-name>ProxyServlet</servlet-name>
<servlet-class>com.example.ProxyServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<pattern>

<equal>
<var>request.method</var>
<value>INVITE</value>

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1035

</equal>
</pattern>

</servlet-mapping>
</sip-app>

JSR 289 overview
Version 8.5 includes support for SIP Servlet Specification 1.1, also referred to as Java Specification
Request (JSR) 289.

The SIP Servlet Specification provides the Java API standards for Session Initiation Protocol (SIP). JSR
289 is an update to the existing SIP Servlet specification that addresses new requirements determined by
industry users.

SIP is a signaling protocol used for creating, modifying, and terminating IP communication sessions such
as telephony and presence applications. SIP is not limited to voice communication and can mediate any
type of communication session, such as multimedia.

The following is a brief description of new features available in the JSR 289 specification.

v Application router for application selection

Application routing enables developers to build complex services out of smaller applications. On initial
requests the container calls the application router to determine which application to invoke based on the
type of request. The application router is the central hub for selecting application order. See the topic on
configuring a SIP application router for more information.

v Annotation-based programming

Annotations provide a fast way to develop applications by embedding metadata directly in applications.
For example, you can use the @SipServlet annotation to indicate that a class is a SIP servlet. The
@SipApplication is a package level annotation. All servlets in the package belong to the same
application unless the servlet uses @SipServlet(applicationName). For more information on
annotations, see section 18 of the JSR 289.

v Converged applications

JSR 289 provides a new, standardized mechanism for building converged applications. A converged
application contains SIP servlet components and other Java EE components, like HTTP servlets and
enterprise beans. The specification includes two new classes to support convergence.

– ConvergedHttpSession is an extension to HttpSession for converged applications.

– SipSessionUtil handles session management for converged applications.

For more information on converged applications, see section 13 of the JSR 289.

v Back-to-back user agent (B2BUA) APIs

JSR 289 simplifies the B2BUA pattern in applications with the use of the B2BUA helper class. The
B2BUA is a frequently used application pattern. The B2BUA acts as an endpoint for two or more dialogs
and forwards requests and responses between those dialogs. The B2BUA helper has the ability to
create a copy of an incoming request. It also automatically maintains links between sessions on both
sides of the B2BUA. For more information on B2BUAs, see section 12 of the JSR 289.

Note: Support for the Session Initiation Protocol (SIP) session key-based targeting mechanism that is
described in JSR 289 section 15.11.2 is only supported in stand-alone environments. The session
key-based targeting mechanism is not supported in clustered environments. Alternatively, you can
use one of the other targeting mechanisms that are described in JSR 289 within a clustered
environment:

v Encode the URI mechanism that is described in section 15.11.3.

v Join and replace the targeting mechanism that is described in section 15.11.4.

SIP application router:

1036 Developing WebSphere applications

The SIP application router is used by the SIP container to select the order in which applications are run
within the container.

The SIP container can invoke multiple applications in order to deploy a complete service or function. This
modular and compositional approach makes it easier for application developers to develop new
applications. The modular applications can be more easily combined and managed, while individual
application implementations remain independent.

The application router is responsible for selecting the correct applications in the correct order to service an
incoming message. An application router is required for a container to function, but it is a separate logical
entity from the container. The application router is based on the JSR 289 specification. See the
specification for more details about the application router function.

The default application router (DAR) can be configured with a standard configuration file, which is supplied
to the container through a SIP container custom property, as defined in JSR 289. The DAR configuration
file can also be uploaded in the administrative console for each target of the DAR.

Application routing, also referred to as application composition, can be handled in a number of ways:

v Specify the order in which the applications should run using the administrative console.

v Upload a custom application router implementation class either by specifying the path of the Java
archive (JAR) file containing the application router implementation and provider through the console or
adding it to the class path. A specific provider can be defined with a SIP container custom property.

v Configure the DAR by uploading its properties file and providing its location through a system property.

v Use an interactive wizard to generate a DAR configuration file.

Restriction: WebSphere Application Server has a default way of sorting the order of SIP applications
invocation using the Startup behavior settings. The sorting order is based on the application
weight. This weighting policy only applies if you do not specify a DAR property file and no
custom application router has been associated with the server or cluster.

Note: If CEA features are used, the CEA system application requires special consideration when enabled
on the same server or cluster as a custom application router. To deploy an application router and
still maintain the capabilities of the CEA system application, use one of the following two options:

v Only enable CEA on an isolated server or cluster that includes no custom application router.

v Make sure the custom application router routes all CEA specific messages to the CEA system
application. To do this, the developer of the application router must check the mappings that are
defined in the sip.xml file associated with the CEA system application. The sip.xml file associated
with the CEA system application can be found in the directory path at app_server_root/
systemApps.

The following information explains how to configure a custom application router to route to the
commsvc system application. The examples show a custom application router configuration with
and without the commsvc application.

First, here is an example configuration without commsvc:
INVITE: ("TestB2bua", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0")

The first element after the INVITE is the display name of the test application, and this one-line
application router routes b2bua calls to the application successfully. With the preceding
application router configured on the SIP container, however, CEA Web collaboration attempts fail.

To enable routing to the CEA system application, just clone the routing element and change the
application name in the second element instance:

INVITE: ("TestB2bua", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0"),("commsvc", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0")

This action ensures that CEA messages are routed correctly.

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1037

Tuning considerations using the JSR 289 Application Router with multiple applications:

This topic describes performance adjustments and considerations using the JSR 289 Application Router™

with multiple applications.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

When you deploy more than one application, you might see the following errors in the log files when heavy
SIP protocol traffic exists for a single application server or cluster of servers:

v Unexpected and excessive SIP application 503 Server Unavailable error messages

v Proxy and Server overload errors

Note: These error messages do not occur when you deploy one application.
The proxy server and Session Initiation Protocol (SIP) containers are not synchronized when they are
tracking the amount of messages that are flowing through the system. Using the application router,
multiple messages might be routed between applications. These messages cause container message
counters to increment even though the messages do not flow through the proxy server.

You can diagnose this problem when you have the following conditions:

v Heavy SIP protocol traffic exists.

v Multiple applications are deployed on a single node or cluster.

Check the proxy server, the application server SystemOut.log log files, or both for an unexpected overload
condition that is detected at the proxy server, the application server, or both. Also, look for 503 Server
unavailable messages that are logged from the SIP application.

Resolving the problem

Messages are shared between applications at the SIP container before they are sent to the proxy server.
To avoid these error messages and a decrease in SIP performance, tune the SIP containers to consider
the additional SIP messages that are generated when using the application router with multiple
applications. Complete the following steps in the administrative console to tune the SIP containers:

1. Expand Servers > Server Types and click WebSphere application servers > server_name

2. Under Container Settings, expand SIP Container Settings and click SIP container.

3. Increase the Maximum messages per averaging period value to compensate for the anticipated
increase in messages that are generated by the SIP application router.

4. Increase the Maximum application sessions value to compensate for the increased Maximum
messages per averaging period value.

The proxy server cannot detect the amount of messages that are generated at the server. However,
modifications to the following settings might increase the messaging capacity at the containers for the
number of applications that are deployed per container.

1038 Developing WebSphere applications

Table 107. DAR and CAR SIP container tuning values.

This table lists the DAR and CAR SIP container tuning values for the number of applications that are deployed per
container.
SIP Container Single Deployed SIP Application Three Deployed SIP Applications

Maximum messages per averaging period value = 26640 value = 79920

Maximum application sessions value = 36000 value = 96000

Note: The values for the Maximum messages per averaging period and Maximum application
sessions fields depend on the processing power, memory, and the deployed application. Use the
values for these fields as listed in the SIP container settings topic and adjust them to meet the
needs of your environment.

Developing applications that use the Asynchronous Invocation API
You can use the Asynchronous Invocation API to transfer events that require processing in the context of a
Session Initiation Protocol (SIP) application session to any server in a cluster based on the related
application session ID. The Asynchronous Invocation API transfers the event task to the correct server.

Before you begin

Read the API documentation for information on the following asynchronous work classes:

v com.ibm.websphere.sip.AsynchronousWork

v com.ibm.websphere.sip.AsynchronousWorkListener

For more information about the API classes, see the Reference section in the information center and click
APIs - Application Programming Interfaces to view a list of the product API specifications.

About this task

When running code outside of a SIP thread, application developers can use the Asynchronous Invocation
API to create an object, and configure the server to run that object either on a different thread in the same
container, or on a different server, if that is where the session exists.

The following example shows the class structure for the AsynchronousWork class, which is the abstract
base class that is extended when using the API.
public abstract class AsynchronousWork implements Serializable
{
private String sessionId;
public AsynchronousWork(String sessionId)
{
this.sessionId = sessionId;
....
}
public void dispatch (AsynchronousWorkListener listener)
{
....
}
public abstract Serializable doAsyncTask();
}

Procedure
1. Extend the abstract class AsynchronousWork with the SIP related code. The extended implementation

of the doAsyncTask() method is invoked on the target server that contains the SipApplicationSession,
and whose ID was set in the constructor that implements the AsynchronousWork class. The
implementation class must pass the session ID to the base class by calling super in the constructor.

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1039

public class MyClass extends AsynchronousWork
{
String _sessionId;

public MyClass(String sessionId) {
super(sessionId);
_sessionId = sessionId;
}

// This code is invoked on the target machine or thread
public Serializable doAsyncTask() {
// Application code goes here; for instance:
appSession = sessionUtils.getApplicationSession(_sessionId);
appSession.createRequest().....

Serializable myResponse = new MyResponse();
myResponse.setStatus(200);
return (myResponse);
}
}

2. To receive information about the task completion, implement the AsynchronousWorkListener class, as
in the following example. The code in these methods are invoked on the source server.
public class MyListener implements AsynchronousWorkListener
{
public void workCompleted(Serializeable myResponse)
{
....
}
public void workFailed(int reasonCode, String reason)
{
}
}

3. To invoke the asynchronous call; for example, when you receive the proprietary message, use this
sample code as an example.
public void onMyMessage()
{
// Obtain the session ID from the message or
// somewhere else
String sessionId = obtainIdFromMessage();

// Create the runnable
MyClass myClass = new MyClass(sessionId);

// Create the listener
MyListener myListener = new MyListener();

// Dispatch it
myClass.dispatch(myListener);
}

Results

The SIP container ensures the task is invoked in the correct server and on the correct thread, so that the
application can avoid synchronization on the session level.

Asynchronous Invocation API
Use the Asynchronous Invocation API to transfer events that require processing in a Session Initiation
Protocol (SIP) application session to any server in a cluster based on an application session ID.

The Asynchronous Invocation API, also referred to as the asynchronous work dispatcher, can transfer
events that require processing in the context of a SIP application session to any server in a cluster, using

1040 Developing WebSphere applications

the related application session ID. These transfers are usually triggered by events that cause a state
change to SIP sessions that reside on another server. The asynchronous work dispatcher transfers the
event task to the correct server to be run.

In Websphere Application Server, all related SIP messages are delivered to the same server in the cluster,
and sessions always reside in the same SIP container. To prevent synchronicity issues and locking, tasks
in the same application session cannot be processed simultaneously (that is, on different threads or
processes), which limits handling of certain types of events.

For more in-depth information about SIP sessions and SIP application sessions and their relationship, see
Section 6 of Java Specification Request (JSR) 289.

The following two scenarios are resolved by implementing the Asynchronous Invocation API.

1. Two requests related to the same SIP application session are simultaneously run on two different
threads. For example, a Java EE (J2EE) applications working with a message-driven bean (MDB) can
retrieve an event to send a SIP message on a certain SIP application session. At the same time, the
SIP container receives an incoming SIP message on another session that is connected to the same
application session and handles that on a different thread. It would be necessary to synchronize the
session access to avoid race conditions and to ensure that all session attributes are synchronized. To
employ the locking mechanism in this case would not be effective, because the SIP application session
might contain multiple SIP sessions.

2. A server that does not own a certain SIP application session receives a request, through non-SIP
protocol, to send a message in the context of that session. For example, a Web service that is
initiating SIP dialogs can reside in a server different from the server that owns the SIP application
session it must use.

The Asynchronous Invocation API ensures that the specific application code is run on the correct server
and correct thread according to the SIP application session ID.

The Asynchronous Invocation API provides the following benefits:

1. No more than two servers are involved in the asynchronous invocation process: one is the server that
retrieves the work task, and the other is the target server that handles the SIP application session for
that task and to which the task will be transferred.

2. The asynchronous invocation allows working in a thread-safe manner. This approach ensures that only
one thread processes the messages related to the SIP application session. Thus, there is no need to
synchronize access to the session.

3. The asynchronous invocation provides a scalable solution. There is no performance impact when more
servers are added to the cluster.

4. Cross-server invocation is used only when required, which results in better performance.

Chapter 24. Developing Session Initiation Protocol (SIP) applications 1041

1042 Developing WebSphere applications

Chapter 25. Developing Spring applications

This page provides a starting point for finding information about how to develop Spring applications that
can run successfully in a WebSphere Application Server environment.

The Spring Framework is an open source project that provides a framework for simple Java objects that
enables them to use the Java EE container through wrapper classes and XML configuration.

Configuring access to a Spring application data source
You can use WebSphere Application Server to manage access to a data source for a Spring application.

About this task

For a Spring application to access a data source, such as a Java Database Connectivity (JDBC) data
source, the application must use a resource provider that is managed by the WebSphere Application
Server. For more information about Spring applications and the Spring Framework see the following topics:

v Spring Framework

v Data access and the Spring Framework

Procedure
1. During development, configure the WAR module with a resource reference. For example:

<resource-ref>
<res-ref-name>jdbc/springdbres-ref-name>jdbc/springdb>
<res-type>javax.sql.DataSourceres-type>javax.sql.DataSource>
<res-auth>Containerres-auth>Container>
<res-sharing-scope>Shareableres-sharing-scope>Shareable>

</resource-ref>

2. For Enterprise JavaBeans (EJB) Java archive (JAR) files, declare the same resource reference in each
EJB that needs to access the data source. Use one of the following steps:

v Declare a data source proxy bean. In the Spring application configuration, declare a proxy bean that
references a resource provider that the application server manages. Set the value of the jndiName
property to java:comp/env/ followed by the value of res-ref-name property that you declared in the
resource reference. For example:
<bean id="wasDataSource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="java:comp/env/jdbc/springdb"/>
<property name="lookupOnStartup" value="false"/>
<property name="cache" value="true"/>
<property name="proxyInterface" value="javax.sql.DataSource"/>

</bean>

v Alternatively, for Spring Framework Version 2.5 or later, use the <j2ee:jndi-lookup/> approach. Set
the value of the jndi-name property to the value of the res-ref-name property that you declared in
the resource reference, and the value of the resource-ref property to true. For example:
<jee:jndi-lookup id=" wasDataSource "

jndi-name="jdbc/springdb"
cache="true"
resource-ref="true"
lookup-on-startup="false"
proxy-interface="javax.sql.DataSource"/>

The Spring application can then use the data source proxy bean as appropriate.

3. When the application is deployed to an application server, configure a resource provider and resource
data source that the Spring application resource reference can use.

© Copyright IBM Corp. 2012 1043

Results

The resource reference that is declared in the deployment descriptor of the module will be bound to the
configured data source of the application server during deployment.

1044 Developing WebSphere applications

Chapter 26. Developing Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment.

More introduction...

Developing components to use transactions
These topics provide information about developing WebSphere application components to use transactions

About this task

The way that applications use transactions depends on the type of application component, as follows:
v A session bean can either use container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) and application client components use component-managed transactions.

Use the following tasks to develop WebSphere application components that use transactions:

Procedure
v Configure transactional deployment attributes. This task determines whether EJB components use

container- or bean-managed transactions by setting an appropriate value on the Transaction type
deployment attribute. You can also configure other transactional deployment descriptor attributes.

v Use component-managed transactions. If you want a session bean, web component, or application
client component to manage its own transactions, you must write the code that explicitly demarcates the
boundaries of a transaction. There are some limitations to the transaction support available to
application client components, as described in the topic about client support for transactions.

Configuring transactional deployment attributes
You can configure the transactional deployment descriptor attributes associated with an EJB or web
module, to enable an enterprise application to use transactions.

Before you begin

You must have an enterprise archive (EAR) file for an application component that can be deployed in the
application server.

About this task

You can configure the deployment attributes of an application by using an assembly tool.

You can use Rational Application Developer, or an equivalent tool, to configure the deployment attributes
of an application.

To use Rational Application Developer to set transactional attributes in the deployment descriptor for an
application component (enterprise bean or servlet), complete the following steps.

© IBM Corporation 2009 1045

Procedure
1. Start the assembly tool. For more information, refer to the Rational Application Developer information.

2. Create or edit the application EAR file. For example, to change attributes of an existing application,
use the Import wizard to import the EAR file into the assembly tool. To start the Import wizard:

a. Click File > Import > EAR file.

b. Click Next, then select the EAR file.

c. Click Finish.

3. In the Project Explorer view of the Java EE perspective, right-click the component instance, then click
Open With > Deployment Descriptor Editor. To locate the component instance, use the appropriate
step:
v For a session bean, expand EJB Modules > ejb_module_instance > Deployment Descriptor >

Session Beans, then select the bean instance.
v For a servlet, expand Web Modules > web_application > Deployment Descriptor > web

component, then select the servlet instance.

A property dialog notebook for the deployment descriptor of the component is displayed in the
property pane.

4. Optional: For session beans only, set the “Transaction type” attribute, which defines the transactional
manner in which the container invokes a method. You can set this attribute to Container or Bean, as
follows:
v To use container-managed transactions, set the attribute to Container.
v To use bean-managed transactions, set the attribute to Bean.

5. In the deployment descriptor notebook, select the Bean tab. Optionally, in the WebSphere Extensions
section, configure the Local Transaction attributes. To enable management of local transaction
containments, configure the following component extensions attributes. These attributes configure, for
the component, the behavior of the local transaction containment (LTC) environment that the
container establishes whenever a global transaction is not present.
Boundary

This setting specifies the containment boundary at which all contained resource manager
local transactions (RMLTs) must be completed. Possible values are BeanMethod or
ActivitySession.
v BeanMethod: This is the default value. If you select this option, RMLTs must be resolved

within the same bean method in which they were started.
v [For EJB components only] ActivitySession: RMLTs must be resolved within the scope of

any ActivitySession in which they were started or, if no ActivitySession context is present,
within the same bean method in which they were started.

Note: The ActivitySession option is not supported in the web container.
Resolver

This setting specifies the component responsible for initiating and ending RMLTs. Possible
values are Application or ContainerAtBoundary.
v Application: This is the default value. The application is responsible for starting RMLTs and

for completing them within the local transaction containment (LTC) boundary. Any RMLTs
that are not completed by the end of the LTC boundary are cleaned up by the container
according to the value of the Unresolved action attribute.

v ContainerAtBoundary: The container is responsible for starting RMLTs and for completing
them within the LTC boundary. The container begins an RMLT when a connection is first
used within the LTC scope, and completes it automatically at the end of the LTC scope. If
Boundary is set to ActivitySession, the RMLTs are enlisted as ActivitySession resources
and directed to complete by the ActivitySession. If Boundary is set to BeanMethod, the
RMLTs are committed at the end of the method by the container.

Unresolved action

1046 Developing WebSphere applications

Specifies the direction that the container requests RMLTs to take, if those transactions are
unresolved at the end of the LTC boundary scope and the Resolver is set to Application.
Possible values are Rollback or Commit.
v Rollback: This is the default value. At end of the LTC boundary scope, the container

instructs all unresolved RMLTs to roll back.
v Commit: At the end of the LTC boundary scope, the container instructs all unresolved

RMLTs to commit. The container instructs the RMLTs to commit only in the absence of an
un-handled exception. If the application method that is running in the local transaction
context ends with an exception, any unresolved RMLTs are rolled back by the container.
This is the same behavior as for global transactions.

Shareable
Specifies whether the component can share an LTC. A new LTC is started only if a shareable
LTC does not already exist. Applications that use shareable LTCs cannot explicitly commit or
roll back resource manager connections that are used in a shareable LTC (although they can
use connections that have an autoCommit capability).

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is
set to Application, and the Shareable attribute is set to true, an exception is thrown at run
time. For example, on a JDBC Connection, non-autocommit work is work that the application
performs after using the setAutoCommit(false) method to switch off the autocommit option on
the connection. Enterprise beans that use bean managed transactions (BMT) cannot be
assembled with the Shareable attribute set on the LTC configuration.

You must specify the Shareable attribute for all components that share the LTC. The
component that creates the shareable LTC determines the other properties of the shared
LTC, for example the value of the Resolver attribute.

6. In the WebSphere Extensions section, configure the Global Transaction attributes. These attributes
configure, for the component, behavior in the presence of a global transaction.

Component Transaction Timeout
For enterprise beans that use container-managed transactions only, specifies the transaction
timeout, in seconds, for any new global transaction that the container starts on behalf of the
enterprise bean. For transactions started on behalf of the component, the Component
Transaction Timeout setting overrides the default total transaction lifetime timeout that is
configured in the transaction service settings for the application server.

The following attributes enable WS-AtomicTransaction and WS-BusinessActivity support for JAX-RPC
applications only:

Use Web Services Atomic Transaction
For enterprise beans only, when this attribute is selected, if the application component makes
any web service requests, any transaction context is propagated with the web service
requests in accordance with the WebSphere WS-AtomicTransaction support described in
Web Services Atomic Transaction support in the application server. When this attribute is not
selected, web service requests do not carry transaction context.

Send Web Services Atomic Transaction on requests
For web components only, when this attribute is selected, if the application component makes
any web service requests, any transaction context is propagated with the web service
requests in accordance with the WebSphere WS-AtomicTransaction support described in
Web Services Atomic Transaction support in the application server. When this attribute is not
selected, web service requests do not carry transaction context.

Execute using Web Services Atomic Transaction on incoming requests
For web components only, when this attribute is selected, Web application components are
prepared to run under a received WS-AtomicTransaction context. A web application
component can run under a received WS-AtomicTransaction context in a similar way to an
enterprise bean deployed with a container transaction type of Supports. When this attribute is
not selected, the container of the web application component suspends any received

Chapter 26. Developing Transactions 1047

transaction context, in a similar way to the behavior of an EJB container for an enterprise
bean deployed with a container transaction type of NotSupported.

If your application uses JAX-WS, enable support for WS-AtomicTransaction or WS-BusinessActivity
by creating a policy set, adding the WS-Transaction policy type to the policy set, and attaching the
policy set to the service or client.

If a policy set that is attached to a client includes the WS-Transaction policy type, any active global
transaction context is propagated with a Web service request, in a similar way to the deployment
descriptors Use Web Services Atomic Transaction and Send Web Services Atomic Transaction on
requests, described earlier in this topic. Also, when the WS-Transaction policy type is included, the
service runs under any received WS-AtomicTransaction context, in a similar way to the deployment
descriptor Execute using Web Services Atomic Transaction on incoming requests, described earlier in
this topic.

7. For EJB components only, for container-managed transactions, configure how the container manages
the transaction boundaries when delegating a method invocation to the business method of an
enterprise bean:

a. In the deployment descriptor notebook, select the Assembly tab. The Container Transactions
section displays a table of the methods for enterprise beans.

b. For each method of the enterprise bean, set the container transaction type to an appropriate
value. The default value for the container transaction type is Required, meaning that the method
invocation occurs in the context of a transaction. This transaction is either the (local or remote)
client component transaction or, if the client component does not run in a transaction, a new
transaction started by the component container.

If the application uses ActivitySessions, how the container manages transaction boundaries when
delegating a method invocation depends on both the container transaction type that you set in this
task, and the ActivitySession kind attribute, which is described in “Setting EJB module ActivitySession
deployment attributes” on page 4. For more detail about the relationship between these two
properties, see ActivitySession and transaction container policies in combination.

8. For web services applications that use a SOAP/JMS binding and participates in WS-
AtomicTransactions, set the container transaction type of the message-driven bean named “JMS
router MDB” to a value of NotSupported, as described in the previous step. Web service applications
that use a SOAP/JMS binding include a router message-driven bean named “JMS router MDB” in the
assembled EAR. If a web service uses a SOAP/JMS binding and participates in WS-
AtomicTransactions, as described in Web Services Atomic Transaction support in the application
server, set the container transaction type of the “JMS router MDB” to a value of NotSupported.

For web services applications that use a SOAP/HTTP binding and participate in WS-
AtomicTransactions, you do not have to do this.

9. For client application components only, if required, enable support for transaction demarcation by the
client. In the deployment descriptor notebook, select the Allow JTA demarcation check box. This
option directs the client container to bind the Java Transaction API (JTA) UserTransaction interface
into JNDI at java:comp/UserTransaction for the client component. There are constraints on transaction
support in the client container, which are described in Client support for transactions.

10. Save your changes to the deployment descriptor.

a. Close the deployment descriptor editor.

b. When prompted, click Yes to save changes to the deployment descriptor.

11. Verify the archive files. For more information about verifying files by using Rational Application
Developer, refer to the Rational Application Developer information.

12. From the menu of the project, click Deploy to generate EJB deployment code.

13. Optional: Test your completed module on an application server installation. Right-click a module, click
Run on Server, and follow the instructions in the resulting wizard.

1048 Developing WebSphere applications

Important: Use the Run On Server option for unit testing only. The assembly tool controls the
application server installation, and when an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use the Run
On Server option on production servers.

What to do next

After assembling your application, use a systems management tool, for example the administrative
console, to deploy the EAR file onto the application server that is to run the application.

Using component-managed transactions
You can enable a session bean, servlet, or application client component to use component-managed
transactions, to manage its own transactions directly instead of letting the container manage the
transactions.

About this task

Note: Entity beans cannot manage transactions (so cannot use bean-managed transactions).

To enable a session bean, servlet, or application client component to use component-managed
transactions, complete the following steps:

Procedure
1. For session beans, set the Transaction type attribute in the component deployment descriptor to Bean,

as described in “Configuring transactional deployment attributes” on page 1045.

2. For application client components, enable support for transaction demarcation by setting the Allow JTA
Demarcation attribute in the component deployment descriptor, as described in “Configuring
transactional deployment attributes” on page 1045.

3. Write the component code to actively manage transactions.

For stateful session beans, a transaction started in a given method does not have to be completed
(that is, committed or rolled back) before completing that method. The transaction can be completed at
a later time, for example on a subsequent call to the same method, or even within a different method.
However, it is usually preferable to construct the application so that a transaction is begun and
completed within the same method call, because it simplifies application debugging and maintenance.

The following code extract shows the standard code required to obtain an object encapsulating the
transaction context, and involves the following steps:
v Create a javax.transaction.UserTransaction object by calling a lookup on java:comp/

UserTransaction.
v Use the UserTransaction object to demarcate the boundary of a transaction by using transaction

methods such as begin and commit, as needed. If an application component begins a transaction, it
must also complete that transaction by invoking either the commit method or the rollback method.

...
import javax.transaction.*;
import javax.naming.InitialContext;
import javax.naming.NamingException;
...

public float doSomething(long arg1)throws NamingException {
InitialContext initCtx = new InitialContext();
UserTransaction userTran = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");
...
//Use userTran object to call transaction methods
userTran.begin ();
//Do transactional work
...
userTran.commit ();

Chapter 26. Developing Transactions 1049

...
}
...

}

Using one-phase and two-phase commit resources in the same
transaction
Use these topics to help you coordinate the use of a single one-phase commit capable resource with any
number of two-phase commit capable resources in the same global transaction.

About this task

You can coordinate the use of a single one-phase commit capable resource with any number of two-phase
commit capable resources in the same global transaction. You can have multiple interactions that involve
the one-phase commit resource in the same transaction, but only one such resource can be involved. This
coordination is enabled by the last participant support.

At transaction commit, the two-phase commit resources are prepared first using the two-phase commit
protocol, and if this is successful the one-phase commit-resource is then called to commit. The two-phase
commit resources are then committed or rolled back depending on the response of the one-phase commit
resource.

For more information about using one-phase and two-phase commit resources within the same
transaction, see the following topics:

Procedure
v “Coordination of access to one-phase commit and two-phase commit capable resources in the same

transaction” on page 1052

v “Assembling an application to use one-phase and two-phase commit resources in the same transaction”

v Configuring an application server to log heuristic reporting

Assembling an application to use one-phase and two-phase commit resources in
the same transaction
Use this task to assemble an application to use one-phase and two-phase commit resources in the same
transaction.

Before you begin

This task description assumes that you have an EAR file for an application component that can be
deployed in WebSphere Application Server. For more details about assembling applications, see the topic
about assembling applications.

About this task

To enable an application to use one-phase and two-phase commit capable resources in the same
transaction, you must configure the deployment attributes of the application to accept the heuristic hazard,
that is, the increased risk of an heuristic outcome. You can configure the deployment attributes of an
application by using an assembly tool.

You can also configure an application to accept the heuristic hazard after deployment, by using the
administrative console and the Last participant support extension settings. Alternatively, you can configure
the transaction service for an application server to accept the heuristic hazard.

This topic describes the use of Rational Application Developer to configure the deployment attributes of an
application.

1050 Developing WebSphere applications

To configure an application to indicate that you accept the increased risk of an heuristic outcome, complete
the following steps:

Procedure
1. Start the assembly tool. For more information, refer to the Rational Application Developer information.

2. Create or edit the application EAR file.

Note: Ensure that you set the target server as WebSphere Application Server Version 7.0.

For example, to change attributes of an existing application, use the Import wizard to import the EAR
file into the assembly tool. To start the Import wizard:

a. Click File > Import > EAR file.

b. Click Next, then select the EAR file.

c. In the Target server field, select WebSphere Application Server v7.0.

d. Click Finish.

3. In the Project Explorer view of the Java EE perspective, complete the following steps:

a. Expand the Enterprise Application instance.

b. Right click on the Deployment Descriptor.

c. Click Open With > Deployment Descriptor Editor.

A property dialog notebook for the component is displayed in the property pane.

4. Complete the following steps to display the Extended Services tab.

a. Close the Enterprise Application Deployment Descriptor editor.

b. In the toolbar, select Windows > Preferences.

c. In the left pane, select Capabilities.

d. In the right pane, expand Advanced Java EE and select the WebSphere PME Development
option.

e. Click Apply.

f. Open the Enterprise Application Deployment Descriptor editor.

5. On the Extended Services tab, in the Last Participant Support section, select the Last participant
support check box.

6. Save your changes to the deployment descriptor.

a. Close the Deployment Descriptor Editor.

b. When prompted, click Yes to save changes to the deployment descriptor.

7. Verify the archive files. For more information about verifying files using Rational Application Developer,
refer to the Rational Application Developer information.

8. From the popup menu of the project, click Deploy to generate EJB deployment code.

9. Optional: Test your completed module on a WebSphere Application Server installation. Right-click a
module, click Run on Server, and follow the instructions in the displayed wizard.

Important: Use Run On Server only for unit testing. The assembly tool controls the WebSphere
Application Server installation and, when an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use the Run
On Server option on production servers.

What to do next

After assembling your application, use a systems management tool to deploy the EAR file onto the
application server that is to run the application; for example, using the administrative console, as described
in the topic about deploying and administering enterprise applications.

Chapter 26. Developing Transactions 1051

Last participant support extension settings:

Use this page to configure settings for last participant support. Last participant support is an extension to
the transaction service that enables a single one-phase resource to participate in a two-phase transaction
with one or more two-phase resources. Values on this panel are ignored if you select Use configuration
information in binary on the Application binaries panel.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name. Under Detailed Properties, click Last participant support
extension.

Accept heuristic hazard:

Specifies whether an application accepts the possibility of a heuristic hazard occurring in a two-phase
transaction that contains a one-phase resource.

Information Value
Default Cleared
Range Selected

The application accepts the increased risk of an
heuristic outcome.

Cleared
The application does not accept the increased
risk of an heuristic outcome.

Coordination of access to one-phase commit and two-phase commit capable
resources in the same transaction
Last participant support enables the use of a single one-phase commit capable resource with any number
of two-phase commit capable resources in the same global transaction. You can have multiple interactions
that involve the one-phase commit resource in the same transaction, but only one such resource can be
involved.

At transaction commit, the two-phase commit resources are prepared first using the two-phase commit
protocol, and if this is successful, the one-phase commit-resource is then called to commit. The two-phase
commit resources are then committed or rolled back, depending on the response of the one-phase commit
resource.

Last participant support introduces an increased risk of an heuristic outcome to the transaction. That is,
the transaction manager cannot be sure that all resources were completed in the same direction (either
committed or rolled back). For this reason, to enable an application to coordinate access to one-phase and
two-phase commit capable resources in the same transaction, you configure the application to accept the
heuristic hazard, that is, accept the increased risk of an heuristic outcome.

An heuristic outcome occurs if the transaction service (JTS) receives no response from the commit
one-phase flow on the one-phase commit resource. In this situation, the transaction service cannot
determine whether changes for the one-phase commit resource were committed or rolled back, so cannot
drive reliably the correct outcome of the global transaction on the other two-phase commit resources.

You can configure the transaction service for an application server to accept the heuristic hazard, or you
can configure applications individually to accept the heuristic hazard. You can configure applications
individually either when they are assembled, or after they are deployed.

You can configure the transaction service for an application server to indicate whether or not to log that it
is about to commit the one-phase commit resource. This does not reduce the heuristic hazard, but ensures
that any failure, and subsequent recovery, of the application server during the one-phase commit phase
occurs with knowledge of whether or not the one-phase commit resource was asked to commit:

1052 Developing WebSphere applications

v If the one-phase commit resource was asked to commit, a heuristic outcome is reported to the activity
log.

v If the one-phase commit resource was not asked to commit, then the transaction is rolled back
consistently.

Transaction exceptions that involve both one-phase and two-phase commit resources

The exceptions that can be thrown by transactions that involve one-phase and two-phase commit
resources are the same as those that can be thrown by transactions involving only two-phase commit
resources.

The exceptions that can occur are listed in the application programming interface (API) reference
information in the WebSphere Application Server information center.

Last Participant Support: Resources for learning:

Use the links in this topic to find relevant supplemental information about Last Participant Support. The
information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of
the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming specifications
v J2EE Activity Service for Extended Transactions
v Java Transaction API (JTA) 1.0.1

Other
v WebSphere Business Integration Server Foundation
v List of IBM WebSphere Redbooks
v WebSphere technical library, including links to white papers

Chapter 26. Developing Transactions 1053

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www.ibm.com/software/webservers/appserv/enterprise/
http://www.redbooks.ibm.com/websphere
http://www.ibm.com/software/websphere/sw-library/

1054 Developing WebSphere applications

Chapter 27. Developing web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. More introduction...

Developing web applications
Learn about selecting tools for developing web applications.

Before you begin

Design a web application and the required components.

About this task

There are two basic approaches to selecting tools for developing web applications:
v You can use one of the available integrated development environments (IDEs). IDE tools automatically

generate significant parts of the servlet and JavaServer Pages (JSP) code, and Hypertext Markup
Language (HTML) files. They also contain integrated tools for packaging and testing the web application
components.

v If you decide to develop web components without an IDE, you need at least an ASCII text editor. You
can also use tools available in the Java SE Development Kit 6 and in this product to assemble, test,
and deploy the Web application components.

The following steps support the second approach, development without an IDE.

Procedure
1. If necessary, migrate any pre-existing code to the required version of the servlet and JSP specification.

2. Write and compile the components of the web application. To access classes that were extended,
compile your code using the -classpath option on the javac compiler. This option allows you to
reference the j2ee.jar file in the product directory:

v <install_root>\dev\JavaEE

For example, to compile a servlet for WebSphere Application Server on Windows, specify:
javac -classpath D:\Program Files\WebSphere\AppServer\dev\JavaEE\j2ee.jar MyServlet.java

3. Optionally disable JavaServer Pages (JSP) runtime compilation, if necessary.

What to do next

Assemble the application components in one or more web modules.

© Copyright IBM Corp. 2012 1055

Developing servlets

Developing servlets with WebSphere Application Server extensions
Use this task to provide a summary of the WebSphere Application Server extensions that you can use to
develop servlets.

About this task

Several WebSphere Application Server extensions are provided for enhancing your servlets. This task
provides a summary of the extensions that you can utilize.

Procedure
1. Review the supported specifications.

Create Java components, referring to the Servlet specifications.

The application server includes its own packages that extend and add to the Java Servlet Application
Programming Interface (API). These extensions and additions make it easier to manage session
states, create personalized Web pages, generate better servlet error reports, and access databases.
Locate the API documentation for the application server APIs in the install_root\web\apidocs
directory for the default installation. All of the public Application Server APIs are located in the
com.ibm.websphere packages, however, com.ibm.websphere.servlet package is specific to the product
servlet APIs.

2. Use your favorite integrated development environment (IDE), or a text editor, to develop or migrate
code artifacts that meet the specifications.

3. Test the code artifacts.

What to do next

Assemble your code artifacts into a web module using assembly tools as a prerequisite to deploying the
code to the application server.

Configuring page list servlet client configurations:

You can define PageListServlet configuration information in the IBM Web Extensions file. The IBM Web
Extensions file is created and stored in the web applications archive (WAR) file by an assembly tool.

About this task

Attention: The PageList Servlet custom extension is deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. Re-architect your legacy applications to
use javax.servlet.filter classes instead of com.ibm.servlet classes. Starting from the Servlet 2.3
specification, javax.servlet.filter classes you can intercept requests and examine responses.
You can also use javax.servlet.filter classes to achieve chaining functionality, as well as
embellishing or truncating responses.

To configure and implement page lists:

Procedure

1. To configure page list information, use the Add Markup Language entry dialog of an assembly tool. On
the Servlets tab of a web deployment descriptor editor, select a servlet and click Add under
WebSphere Extensions.

2. Add the callPage() method to your servlet to invoke a JavaServer Page (JSP) file in response to a
client request.

The PageListServlet has a callPage() method that invokes a JSP file in response to the HTTP request
for a page in a page list. The callPage() method can be invoked in one of the following ways:

1056 Developing WebSphere applications

v callPage(String pageName, HttpServletRequest request, HttpServletResponse response)

where the method arguments are:
pageName

A page name defined in the PageListServlet configuration
request

The HttpServletRequest object
response

The HttpServletResponse object
v callPage(String mlName, String pageName, HttpServletRequest request, HttpServletResponse

response)

where the method arguments are:
mlName A markup language type
pageName

A page name defined in the PageListServlet configuration
request

The HttpServletRequest object
response

The HttpServletResponse object

3. Use the PageList Servlet client type detection support to determine the markup language type a calling
client requires for the response.

Extending PageListServlet

The following example shows how a servlet extends the PageListServlet class and determines the
markup-language type required by the client. The servlet then uses the callPage method to call an
appropriate JavaServer Pages (JSP) file. In this example, the JSP file that provides the correct
markup-language for the response is Hello.page.
public class HelloPervasiveServlet extends PageListServlet implements Serializable
{

/*
* doGet -- Process incoming HTTP GET requests
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{

// This is the name of the page to be called:
String pageName = "Hello.page";

// First check if the servlet was invoked with a queryString that contains
// a markup-language value.

// For example, if this is how the servlet is invoked:
// http://localhost/servlets/HeloPervasive?mlname=VXML
// then use the following method:
String mlname= getMLNameFromRequest(request);

// If no markup language type is provided in the queryString,
// then try to determine the client
// Type from the request, and use the markup-language name configured in
// the client_types.xml file.
if (mlName == null)
{

mlName = getMLTypeFromRequest(request);
}
try
{

// Serve the request page.
callPage(mlName, pageName, request, response);
}
catch (Exception e)
{

Chapter 27. Developing web applications 1057

handleError(mlName, request, response, e);
}

}
}

Page lists:

Page lists allow you to avoid hard-coding Uniform Resource Locators (URLs) in servlets and JSP files. A
page list specifies the location where a request is to be forwarded, but automatically customizes that
location depending on the MIME type of the servlet. Use these properties to specify a markup language
and an associated MIME type. For the given MIME type, you also specify a set of pages to invoke.

Note: The PageList Servlet custom extension is deprecated in WebSphere Application Server Version 8.5
and will be removed in a future release. Re-architect your legacy applications to use
javax.servlet.filter classes instead of com.ibm.servlet classes. Starting from the Servlet 2.3
specification, javax.servlet.filter classes you can intercept requests and examine responses. You
can also use javax.servlet.filter classes to achieve chaining functionality, as well as embellishing or
truncating responses.

The following list of classes are deprecated:

v com.ibm.servlet.ClientList

v com.ibm.servlet.ClientListElement

v com.ibm.servlet.MLNotFoundException

v com.ibm.servlet.PageListServlet

v com.ibm.servlet.PageNotFoundException

WebSphere Application Server supplies the PageListServlet servlet, which you can use to call a
JavaServer Pages (JSP) file by name based on the configuration data in the client_types.xml file. This
file maps a JSP file to a Uniform Resource Identifier (URI). When the URI is invoked, it specifies another
JSP file in a web module. This support allows you to access multiple URLs without hard-coding them in
your servlets.

You can also logically group page lists according to the markup language type, such as, Hypertext Markup
Language (HTML) or Wireless Markup Language (WML). This allows applications that use servlets to
extend the PageListServlet servlet, to call JSP files which return the proper markup-language type for the
client request. For example, a request that originates from a PDA device requires WML data. The
application server sends the request to a servlet that extends the PageListServlet servlet, and the servlet
calls a JSP file that returns a WML response.

Client type detection support:

In addition to providing the page list mapping capability, the PageListServlet also provides Client Type
Detection support. A servlet determines the markup language type that a calling client needs in the
response, using the configuration information in the client_types.xml file.

Client type detection support allows a servlet, extending the PageListServlet, to call an appropriate
JavaServer Pages (JSP) file. The servlet invokes the callPage method, which calls a JSP file based on
the markup-language type of the request.

The PageList Servlet custom extension is deprecated in WebSphere Application Server Version 8.5 and
will be removed in a future release. Re-architect your legacy applications to use javax.servlet.filter classes
instead of com.ibm.servlet classes.

The client_types.xml file:

1058 Developing WebSphere applications

The client_types.xml file provides client type detection support for servlets extending PageListServlet.
Using the configuration data in the client_types.xml file, servlets can determine the language type that
calling clients require for the response.

Attention: The PageList Servlet custom extension is deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. Re-architect your legacy applications to use
javax.servlet.filter classes instead of com.ibm.servlet classes.

The client type detection support allows servlets to call appropriate JavaServer Pages (JSP) files with the
callPage method. Servlets select JSP files based on the markup-language type of the request.

Servlets must use the following version of the callPage method to determine the markup language type
required by the client:

callPage(String mlName, String pageName, HttpServletRequest request,
HttpServletResponse response)

where the arguments are:
v mlName - a markup language type
v pageName - a page name defined in the PageListServlet configuration
v request - the HttpServletRequest object
v response - the HttpServletResponse object

Review the Extending the PageListServlet code example in the Extending the PageListServlet topic, to see
how the callPage method is invoked by a servlet.

In the example, the client type detection method, getMLTypeFromRequest(HttpServletRequestrequest),
provided by the PageListServlet, inspects the HttpServletRequest object request headers, and searches
for a match in the client_types.xml file.

The client type detection method does the following:
v Uses the input HttpServletRequest and the client_types.xml file, to check for a matching HTTP

request name and value.
v Returns the markup-language value configured for the <client-type> element, if a match is found.
v If multiple matches are found, this method returns the markup-language for the first <client-type>

element for which a match is found.
v If no match is found, returns the value of the markup-language for the default page defined in the

PageListServlet configuration.

Location

The client_types.xml file is located in the install_root/properties directory.

Usage notes

Review the answers to the following usage questions:
v Is this file read-only?

No
v Is this file updated by a product component?

No
v If so, what triggers its update?

This file is created and updated manually by users.
v How and when are the contents of this file used?

Servlets that extending the PageListServlet servlet use this file to determine the language type that
calling clients require for the response.

Chapter 27. Developing web applications 1059

Sample file entry
<?xml version="1.0" >
<!DOCTYPE clients [
<!ELEMENT client-type (description, markup-language,request-header+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT markup-language (#PCDATA)>
<!ELEMENT request-header (name, value)>
<!ELEMENT clients (client-type+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>]>
<clients>

<client-type>
<description>IBM Speech Client</description>
<markup-language>VXML</markup-language>
<request-header>

<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vxml</value>

</request-header>
</client-type>
<client-type>

<description>WML Browser</description>
<markup-language>WML</markup-language>

<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vnd.wap.xml</value>

</request-header>
</client-type>

</clients>

The client_types.xml file:

The client_types.xml file provides client type detection support for servlets extending PageListServlet.
Using the configuration data in the client_types.xml file, servlets can determine the language type that
calling clients require for the response.

Attention: The PageList Servlet custom extension is deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. Re-architect your legacy applications to use
javax.servlet.filter classes instead of com.ibm.servlet classes.

The client type detection support allows servlets to call appropriate JavaServer Pages (JSP) files with the
callPage method. Servlets select JSP files based on the markup-language type of the request.

Servlets must use the following version of the callPage method to determine the markup language type
required by the client:

callPage(String mlName, String pageName, HttpServletRequest request,
HttpServletResponse response)

where the arguments are:
v mlName - a markup language type
v pageName - a page name defined in the PageListServlet configuration
v request - the HttpServletRequest object

1060 Developing WebSphere applications

v response - the HttpServletResponse object

Review the Extending the PageListServlet code example in the Extending the PageListServlet topic, to see
how the callPage method is invoked by a servlet.

In the example, the client type detection method, getMLTypeFromRequest(HttpServletRequestrequest),
provided by the PageListServlet, inspects the HttpServletRequest object request headers, and searches
for a match in the client_types.xml file.

The client type detection method does the following:
v Uses the input HttpServletRequest and the client_types.xml file, to check for a matching HTTP

request name and value.
v Returns the markup-language value configured for the <client-type> element, if a match is found.
v If multiple matches are found, this method returns the markup-language for the first <client-type>

element for which a match is found.
v If no match is found, returns the value of the markup-language for the default page defined in the

PageListServlet configuration.

Location

The client_types.xml file is located in the install_root/properties directory.

Usage notes

Review the answers to the following usage questions:
v Is this file read-only?

No
v Is this file updated by a product component?

No
v If so, what triggers its update?

This file is created and updated manually by users.
v How and when are the contents of this file used?

Servlets that extending the PageListServlet servlet use this file to determine the language type that
calling clients require for the response.

Sample file entry
<?xml version="1.0" >
<!DOCTYPE clients [
<!ELEMENT client-type (description, markup-language,request-header+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT markup-language (#PCDATA)>
<!ELEMENT request-header (name, value)>
<!ELEMENT clients (client-type+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>]>
<clients>

<client-type>
<description>IBM Speech Client</description>
<markup-language>VXML</markup-language>
<request-header>

<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vxml</value>

</request-header>

Chapter 27. Developing web applications 1061

</client-type>
<client-type>

<description>WML Browser</description>
<markup-language>WML</markup-language>

<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vnd.wap.xml</value>

</request-header>
</client-type>

</clients>

Java Servlet 3.0 considerations:

When using Servlet 3.0 web modules, keep in mind the following features.

Java Servlet 3.0 has many, new powerful features. Some of these features are not fully documented in the
Servlet 3.0 specification or they entail trade-offs. Consider the following topics to make best use of the
new features.

Annotations

Java Servlet 3.0 annotations are picked up in Servlet 2.5 web modules, which can include exposing a
servlet on the web. Use caution when upgrading prerequisites of an older application, because the new
annotations are processed and the prerequisites JAR file might include annotations that you do not want
applied.

File upload

When using the file upload (multipart forms) support that is new to Servlet 3.0, the default location for
writing files is the same as the value of the javax.servlet.context.tempdir servlet context attribute. For
example, C:\opt\WAS\profiles\node1\temp\node1\server1\fragmentTest\fragmentTest24.war is produced
for a configuration with the following attributes:

v profile home=C:\opt\WAS\profiles\node1

v server name=server1

v enterprise application name=fragmentTest

v web module name=fragmentTest24.war

Relative paths are also relative to this default location.

You can change the value of the javax.servlet.context.tempdir servlet context attribute to be relative to a
different directory by setting the com.ibm.websphere.servlet.temp.dir system property. This system property
affects all applications on a server-wide basis. For example, if you set com.ibm.websphere.servlet.temp.dir
to /foo, the application temp directory is /foo/node1/server1/fragmentTest/fragmentTest24.war. If you
want to change the value at an application level, use the scratchdir JavaServer Pages (JSP) attribute.
View the JSP engine configuration parameters topic for more information about the scratchdir attribute.

Programmatic or dynamic HTTP session configuration

Programmatic HTTP session configuration enables an application to modify the session configuration in
use, either through web.xml file configuration or through API method calls. After the application starts, a
dynamically modified cookie name cannot be changed. For security purposes, administrators can disable
programmatic session configuration for particular cookies that can be shared between applications.

1062 Developing WebSphere applications

Generally, it is safe to modify the cookie configuration, if the application uses a unique cookie name or
path. You can change the default cookie path for each application to use the context root through the
session management.

Important: Changing the path can affect certain IBM extensions, such as session sharing or the
IBMSessionExt.invalidateAll method that rely on using one cookie for multiple applications.

Dynamic cookies have the following impact on intermediary services:

v An enterprise proxy automatically retrieves a dynamic cookie when an application starts and uses the
cookie for session affinity.

v A DMZ proxy in low or medium secure mode also automatically retrieves a dynamic cookie when an
application starts. For a DMZ proxy in high secure mode, the retrieval is not automatic; the application
must be running before the target routing information is exported.

v A web server plug-in cannot obtain the dynamic cookie automatically because it does not communicate
with application servers for configuration information. You must start the application, generate the plug-in
configuration, propagate the configuration to the plug-in, and then reload the configuration for the plug-in
to obtain the cookie.

Servlet 3.0 programmatic configuration:

The configuration methods, addListener, addFilter, and addServlet are introduced in the Servlet 3.0
specification.

The methods for Servlet 3.0 are part of the ServletContext interface. You can call these methods from
either a ServletContainerInitializer or a ServletContextListener.

addListener

The addGlobalListener method is deprecated in WebSphere Application Server Version 8.5. It is replaced
with the addListener method.

v Use the following method to add the listener with the given class name to this servlet context:
void addListener(java.lang.String className)

v Use the following method to add the given listener to this servlet context:
<T extends java.util.EventListener> void addListener(T t)

v Use the following method to add a listener of the given class type to this servlet context:
void addListener(java.lang.Class<? extends java.util.EventListener> listenerClass)

The given listener class must implement one or more of the following interfaces:

v ServletContextAttributeListener

v ServletRequestListener

v ServletRequestAttributeListener

v HttpSessionListener

v HttpSessionAttributeListener

addFilter

The addMappingFilter method is deprecated in WebSphere Application Server Version 8.5. It is replaced
with the addFilter method. This method adds the filter with the given name, description, and class name to
the Web application context. The registered filter might be further configured using the returned
FilterRegistration object.

v Use the following method to add the filter with the given name and class type to this servlet context:
addFilter(java.lang.String filterName, java.lang.Class<? extends Filter> filterClass)

Chapter 27. Developing web applications 1063

v Use the following method to register the given filter instance with this servlet context under the given
filterName:
addFilter(java.lang.String filterName, Filter filter)

v Use the following method to add the filter with the given name and class name to this servlet context:
addFilter(java.lang.String filterName, java.lang.String className)

addServlet

The addServlet methods dynamically adds servlets to a servletContext. These methods will add the servlet
with the given parameters to the web application context. The registered servlet might be further
configured using the returned ServletRegistration object.

v Use the following method to add the filter with the given name and class type to this servlet context:
addFilter(java.lang.String filterName, java.lang.Class<? extends Filter> filterClass)

v Use the following method to register the given filter instance with this servlet context under the given
filterName:
addFilter(java.lang.String filterName, Filter filter)

v Use the following method to add the filter with the given name and class name to this servlet context:
addFilter(java.lang.String filterName, java.lang.String className)

ServletContainerInitializer

When you configure a JAR file for a shared library and a ServletContainerInitializer is discovered within the
JAR, the ServletContainerInitializer is invoked for every application that the shared library associates with.

Deprecated classes in Servlet 3.0

The following classes are deprecated from com.ibm.websphere.servlet.context.IBMServletContext:

v public void addDynamicServlet(String servletName, String servletClass, String mappingURI, Properties
initParameters) throws ServletException, java.lang.SecurityException;

v public void removeDynamicServlet(String servletName) throws java.lang.SecurityException

There is no replacement for the removeDynamicServlet method because removing a servlet can lead to
timing issues if a request was servicing that servlet at the same time. The addServlet and createServlet
methods replace the addDynamicServlet method.

Initial parameters for servlets settings:

Use this page to specify initial parameters that are passed to the init method of web module servlet filters.
You can specify initial parameter values for servlets in web modules during or after installation of an
application onto a WebSphere Application Server deployment target. The <param-value> values specified
in <init-param> statements in the web.xml file of web modules are used by default.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Init parameters for servlets. This page is the same as
the Init parameters for servlets in each web module panel on the application installation and update
wizards.

Module:

Specifies the name of a module in the application that you are installing or that you are viewing after
installation.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

1064 Developing WebSphere applications

Servlet:

Specifies a unique name for the servlet within the application.

A servlet is a Java program that uses the Java Servlet Application Programming Interface (API). You must
package servlets in a Web archive (WAR) file or web module for deployment to an application server.
Servlets run on a Java-enabled web server and extend the capabilities of a web server, similar to the way
applets run on a browser and extend the capabilities of a browser.

Name:

Specifies the name of the initial parameter passed to the init method of the web module servlet filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter name of
attribute:
<init-param>

<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>

Value:

Specifies the value assigned to an initial parameter passed to the init method of the web module servlet
filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter value of
tests.Filter.DoFilter_Filter.SERVLET_MAPPED for the init parameter attribute:
<init-param>

<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>

Description:

Specifies information on the initial parameter.

Servlet filtering:

Servlet filtering provides a new type of object called a filter that can transform a request or modify a
response.

You can chain filters together so that a group of filters can act on the input and output of a specified
resource or group of resources.

Filters typically include logging filters, image conversion filters, encryption filters, and Multipurpose Internet
Mail Extensions (MIME) type filters (functionally equivalent to the servlet chaining). Although filters are not
servlets, their life cycle is very similar.

Filters are handled in the following manner:

1. The web container determines whether it needs to construct a FilterChain containing the
LoggingFilter for the requested resource.

The FilterChain begins with the invocation of the LoggingFilter and ends with the invocation of the
requested resource.

2. If other filters need to go in the chain, the web container places them after theLoggingFilter and
before the requested resource.

Chapter 27. Developing web applications 1065

3. The web container then instantiates and initializes the LoggingFilter (if it was not done previously)
and invokes its doFilter(FilterConfig) method to start the chain.

4. The LoggingFilter preprocesses the request and response objects and then invokes the filter chain
doFilter(ServletRequest, ServletResponse) method.

This method passes the processing to the next resource in the chain, the requested resource.

5. Upon return from the filter chain doFilter(ServletRequest, ServletResponse) method, the
LoggingFilter performs post-processing on the request and response object before sending the
response back to the client.

Java Servlet Specification 2.4 enables you to define a new <dispatcher> element in the deployment
descriptor with possible values such as REQUEST, FORWARD, INCLUDE, ERROR, instead of invoking
filters with RequestDispatcher.

Java Servlet Specification 3.0 enables you to define a new <dispatcher> element in the deployment
descriptor with possible values such as ASYNC, REQUEST, FORWARD, INCLUDE, ERROR, instead of
invoking filters with RequestDispatcher.

For example:
<filter-mapping>
<filter-name>Logging Filter</filter-name>
<url-pattern>/products/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>

This indicates that the filter should be applied to requests directly from the client as well as forward
requests. Adding the INCLUDE and ERROR values also indicates that the filter should additionally be
applied for included requests and <error-page> requests. If you do not specify any <dispatcher> elements,
then the default is REQUEST.

Filter, FilterChain, FilterConfig classes for servlet filtering

The following interfaces are defined as part of the javax.servlet package:
v Filter interface - methods: doFilter, getFilterConfig, setFilterConfig
v FilterChain interface - methods: doFilter
v FilterConfig interface - methods: getFilterName, getInitParameter, getInitParameterNames,

getServletContext

The following classes are defined as part of the javax.servlet.http package:
v HttpServletRequestWrapper - methods: See the Servlet 2.4 Specification
v HttpServletResponseWrapper - methods: See the Servlet 2.4 Specification

autoRequestEncoding and autoResponseEncoding:

Starting with WebSphere Application Server Version 5, the web container no longer automatically sets
request and response encodings, and response content types. Programmers are expected to set these
values using available methods in the Servlet 2.3 specification or later. If programmers choose not to use
the character encoding methods, they can specify the autoRequestEncoding and autoResponseEncoding
extensions, which enable the application server to set the encoding values and content type.

The values of the autoRequestEncoding and autoResponseEncoding extensions are either true or false.
The default value for both extensions is false. If the value is false for both autoRequestEncoding and
autoResponseEncoding, then the request and response character encoding is set to the Servlet
Specification default, which is ISO-8859-1. Also, if the value is set to false for a response, the web

1066 Developing WebSphere applications

container cannot set a response content type. Different character encodings are possible if the client
defines character encoding in the request header, or if the code includes the
setCharacterEncoding(String encoding) method.

If the autoRequestEncoding value is set to true, and the client did not specify character encoding in the
request header, and the code does not include the setCharacterEncoding(String encoding) method, the
web container tries to determine the correct character encoding for the request parameters and data.

Use an assembly tool to change the default values for the autoRequestEncoding and
autoResponseEncoding extensions.

The web container performs each step in the following list until a match is found:
v Looks at the character set (charset) in the Content-Type header.
v Attempts to map the servers locale to a character set using defined properties.
v Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one is set.
v Uses the ISO-8859-1 character encoding as the default.

If the autoResponseEncoding value is set to true, and the client did not specify character encoding in the
request header, and the code does not include the setCharacterEncoding(String encoding) method, the
web container does the following:
v Attempts to determine the response content type and character encoding from information in the

request header.
v Uses the ISO-8859-1 character encoding as the default.

Application life cycle listeners and events:

With application life cycle listeners and events, which are now part of the Servlet API, you can notify
interested listeners when servlet contexts and sessions change. For example, you can notify users when
attributes change and if sessions or servlet contexts are created or destroyed.

The life cycle listeners give the application developer greater control over interactions with ServletContext
and HttpSession objects. Servlet context listeners manage resources at an application level. Session
listeners manage resources that are associated with a series of requests from a single client. Listeners are
available for life cycle events and for attribute modification events. The listener developer creates a class
that implements the javax listener interface, corresponding to the listener functionality that you want.

At application startup time, the container uses introspection to create an instance of your listener class and
registers it with the appropriate event generator.

When a servlet context is created, the contextInitialized method of your listener class is invoked, which
creates the database connection for the servlets in your application to use if this context is for your
application. All servlet context listeners are notified of context initialization before any servlet in the web
application is initialized.

When the servlet context is destroyed, your contextDestroyed method is invoked, which releases the
database connection, if this context is for your application. You must destroy all servlets before any servlet
context listeners are notified of context destruction.

Notifications to session listeners precede notifications to context listeners.

Listener classes for servlet context and session changes

The following methods are defined as part of the javax.servlet.ServletContextListener interface:
v void contextInitialized(ServletContextEvent)

Chapter 27. Developing web applications 1067

Notification that the web application is ready to process requests. Place code in this method to see if
the created context is for your web application and if it is, allocate a database connection and store the
connection in the servlet context.

v void contextDestroyed(ServletContextEvent)

Notification that the servlet context is about to shut down. Place code in this method to see if the
created context is for your web application and if it is, close the database connection stored in the
servlet context.

The following methods are defined as part of the javax.servlet.ServletRequestListener interface:
v public void requestInitialized(ServletRequestEvent re)

– Notification that the request is about to come into scope

A request is defined as coming into scope when it is about to enter the first filter in the filter chain
that processes the request.

v public void requestDestroyed(ServletRequestEvent re)
– Notification that the request is about to go out of scope

A request is defined as going out of scope when it exits the last filter in its filter chain.

The following listener interfaces are defined as part of the javax.servlet package:
v ServletContextListener
v ServletContextAttributeListener

The following filter interface is defined as part of the javax.servlet package:
v FilterChain interface - methods: doFilter()

The following event classes are defined as part of the javax.servlet package:
v ServletContextEvent
v ServletContextAttributeEvent

The following interfaces are defined as part of the javax.servlet.http package:
v HttpSessionListener
v HttpSessionAttributeListener
v HttpSessionActivationListener

The following event class is defined as part of the javax.servlet.http package:
v HttpSessionEvent

Example: Creating a servlet context listener with com.ibm.websphere.DBConnectionListener.java

The following example shows how to create a servlet context listener:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.*;

public class DBConnectionListener implements ServletContextListener
{

// implement the required context init method
void contextInitialized(ServletContextEvent sce)
{
}

// implement the required context destroy method
void contextDestroyed(ServletContextEvent sce)
{
}

}

1068 Developing WebSphere applications

Developing JSP files
Learn about JSP files.

JSP class file generation
At runtime, the WebSphere Application Server JavaServer Pages (JSP) engine loads JSP class files from
either the WebSphere Application Server temp directory or a web module's WEB-INF/classes directory. The
JSP engine first searches for a class file in the temp directory and then it searches in the web module's
WEB-INF/classes directory.

In a default installation, the WebSphere Application Server temp directory is typically profile_root/temp.
Figure 1 shows the processing logic of the JSP engine at runtime.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp
directory and a web module's WEB-INF/classes directory, depending on the type of batch compiler target.
In addition, the batch compiler enables the generation of class files into any directory on the filesystem,
outside of the target application. Generating class files into a web module's WEB-INF/classes directory

Chapter 27. Developing web applications 1069

enables you to deploy the web module as a self-contained web application archive (WAR) file, or a WAR
file inside an enterprise archive (EAR) file. The following table shows the batch compiler's behavior when
compiling class files.

Table 108. Batch compiler behavior. Batch compiler behavior when compiling class files

ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;
compileToWebInf not
supplied, or is true

The class files are compiled into the
web module's WEB-INF/classes
directory.

The class files are compiled into the web
module's WEB-INF/classes directory.

compileToDir not supplied;
compileToWebInf is false

The class files are compiled into the
web module's WEB-INF/classes
directory.

The class files are compiled into the
WebSphere Application Server temp directory,
usually profile_root/temp.

compileToDir is supplied;
compileToWebInf not
supplied, or is either true or
false

The class files are compiled into the
directory indicated by compileToDir.

The class files are compiled into the directory
indicated by compileToDir.

Web container configuration for JavaServer Pages static file access
The web container searches for static files and JavaServer Pages (JSP) files in up to four different
locations, depending on application configuration. This search is relevant to finding the appropriate
resource to serve an inbound request and for results returned from the following APIs:

URL ServletContext.getResource(String path)
Set ServletContext.getResourcePaths(String path)

Attention: Static files are only searched when the fileServing property is enabled and the application
does not include a /* servlet mapping. Also, JSP files include files with the following
extensions, in addition to any other patterns that are defined in the web.xml file

v .jsp

v .jspx

v .jsw

v .jsv

The four locations, in priority order, are as follows:

Application WAR directory
The web container first searches the application WAR directory for a requested resource.
However, you cannot serve resources under the WEB-INF or META-INF directories for inbound
requests, although they are accessible using the getResource() and getResourcePaths() methods.

Pre-fragment document roots
The web container searches any application defined pre-fragment document roots second. Define
a pre-fragment document root in the ibm-web-ext.xmi file, located in the WEB-INF directory for the
application. Define a pre-fragment document root for static files or JSP files, as follows:

Static files:
<fileServingAttributes xmi:id="<user-provided name>"
name="preFragmentExtendedDocumentRoot"
value="<user provided value>"/>

JSP files:
<jspAttributes xmi:id="<user provided name>" name="preFragmentExtendedDocumentRoot"
value=<user provided value>"/>

1070 Developing WebSphere applications

The <user provided name> is a comma-separated list of directories that can include JAR or ZIP
files from which static files or JSP files can be accessed. The list can be fully qualified or relative
to the application ear directory. The attributes can be specified with identical values. Further, you
can specify the same values by different applications.

Attention: Pre-fragment document roots is a new function in WebSphere Application Server
Version 8.5.

META-INF/resources directories of fragments under the WEB-INF/Lib directory in the application
WAR file

After searching pre-fragment document roots, the web container searches web fragments. A web
fragment comprises a JAR file in an application WEB-INF/lib directory. The JAR might include
static resources in a META-INF/resources directory that are defined within the JAR file. To prevent
the web container from searching META-INF/resources directories, set the
com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing web container custom property to
true. The default value for the custom property is false.

com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing = true

Attention: META-INF/resources directories of fragments under the WEB-INF/Lib directory in the
application WAR file is a new function in WebSphere Application Server Version 8.5.

Extended document roots
Finally, the web container searches any application defined as extended document roots.
Extended document roots were available in previous releases and are defined in the
ibm-web-ext.xmi file, which is located in the application WEB-INF directory. Define extended
document root for static files or JSP files, as follows:

Static files:
<fileServingAttributes xmi:id="<user provided name>" name="extendedDocumentRoot"
value="<user provided value>"/>

JSP files:
<jspAttributes xmi:id="<user provided name>" name="extendedDocumentRoot"
value=<user provide value>"/>

com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing = true

The <user provided name> is a comma-separated list of directories that can include JAR or ZIP
files from which static files or JSP files can be accessed. The list can be fully qualified, or relative
to the application EAR directory. You can specify both attributes with identical values. Also,
different applications can specify the same values.

Attention: You might set the
com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot custom property to true
to enable serving static welcome pages from a static file extended document root. The default
value for the custom property is false.

com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot = true

When the com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot property is
set to true, the web container searches in a static file extended document root for a static
welcome file to serve for a request comprising a valid partial URL. For example, if a request
specifies only the application context, and a welcome file is specified as index.html, the property
must be set if index.html is to be served from a static file extended document.

Chapter 27. Developing web applications 1071

com.ibm.ws.webcontainer.enablepartialurltoextendeddocumentroot = true

The default value is false.

If this property is set to true, the web container includes the contents of a static file extended
document root when determining whether an inbound request is for a valid partial URL. For
example, if a request specifies a URL that ends with /<application context>/<text> and <text>
does not map to a servlet or static file, the web container considers this URL a valid partial URL
only if <text> is a valid directory of the application. As a result if directory <text> exists only in a
static file extended document root, this property must be set for the URI to be considered a valid
partial URI.

Important: These properties are not required for static file pre-fragment document roots. Also,
when determining a valid partial URL, the web container does not consider JSP
pre-fragment and extended document roots.

Packages and directories for generated .java and .class files
By default, the .java files for all JavaServer Pages (JSP) files are generated with the package statement,
package com.ibm._jsp;. The JSP engine's class loader knows how to load JSP classes when they are all
in the same package. The .java files are located in the filesystem within a directory structure mirroring the
JSP source directory structure.

If the JSP engine configuration parameter useFullPackageNames is set to true, the .java files are
generated with the package statement
Package _ibmjsp.<directory structure in which the jsp is located>;

The usage of full package names enables the configuration of a JSP as a servlet in the web.xml file. Refer
to the JSP class loading settings topic for more information. The table later in this section gives examples
of packages and directory structures for generated .java and .class files.

Table 109. Packages and directory structures for generated .java and .class files. Examples of packages and
directory structures for generated .java and .class files.

Directory File name
Location of .java or .class
files in file system

JSP file default useFullPackageNames=true default useFullPackageNames=true

/myJsp.jsp com.ibm._jsp _ibmjsp / /_ibmjsp

/jspFiles/
jspOne.jsp

com.ibm._jsp _ibmjsp.jspFiles /jspFiles /_ibmjsp/jspFiles

/dir with
spaces/jspTwo.jsp

com.ibm._jsp _ibmjsp.dir_20_with_20_spaces /dir with
spaces

/_ibmjsp/
dir_20_with_20_spaces

Generated .java files:

When the JSP engine’s keepgenerated configuration parameter is set to true, the .java file that is
generated for JavaServer Pages (JSP) is retained. The .java file contains information that is useful in
debugging.

Dependency information

In the .java file, immediately following the class declaration, an array of dependent files is defined, if the
source JSP has any dependencies. There are three types of files that are tracked as dependencies:

1. Files that are statically included in the JSP

1072 Developing WebSphere applications

2. Tag files that are used by the JSP, but only tag files that are not in Java Archive (JAR) files

3. TLD files that are used by the JSP, but only TLDs that are not in JAR files

This array is always generated, but the JSP engine uses it, in determining whether a JSP needs to be
recompiled, only when the trackDependencies parameter is set to true.

In the example below, three JSP fragments, one TLD and one tag file are dependencies of the JSP
jsp1.jsp. There are three parts to each array entry:

1. The path to the dependency, relative to the web module’s context root. For example: /dir1/frag1.jspf

2. The long value representing the time the file was last modified. For example: 1082407108000

3. The String representation of the long value. For example: Mon Apr 19 16:38:28 EDT 2004
public final class _jsp1 extends com.ibm.ws.jsp.runtime.HttpJspBase

implements com.ibm.ws.jsp.runtime.JspClassInformation {

private static String[] _jspx_dependants;
static {
_jspx_dependants = new String[5];
_jspx_dependants[0] = "/Banner.jspf^1082407108000^Mon Apr 19 16:38:28 EDT 2004";
_jspx_dependants[1] = "/Footer.jspf^1077657462000^Tue Feb 24 16:17:42 EST 2004";
_jspx_dependants[2] = "/dir1/frag1.jspf^1035396680000^Wed Oct 23 14:11:20 EDT 2002";
_jspx_dependants[3] = "/utility.tld^1080069938000^Tue Mar 23 14:25:38 EST 2004";
_jspx_dependants[4] = "/WEB-INF/tags/top.tag^1065440490000^Mon Oct 06 07:41:30 EDT 2003";
}

Version, JSP engine options, and WEB.XML information

The generated .java source contains a comment that lists information about the file which is located at the
bottom of the generated file. This information includes:

v The date and time the .java file was generated

v The version, build number and build date of the WebSphere Application Server on which the .java file
was generated

v The values of the JSP engine configuration parameters that were in effect when the file was generated

v The values of any <jsp-config> elements in the web.xml file that pertained to the source JSP file.
/*
profile_root/AppSrv01/installedApps/MyCell/sampleApp.ear/examples.war/WEB-INF/classes/_ibmjsp/_jsp1.java
was generated @ Wed May 03 10:05:56 EDT 2006IBM WebSphere Application Server - ND, 6.1.0.0

Build Number: o0441.04
Build Date: 05/01/06**

The JSP engine configuration parameters were set as follows:

classDebugInfo = [false]
debugEnabled = [false]
deprecation = [false]
compileWithAssert = [false]
jdkSourceLevel = [13]disableJspRuntimeCompilation =[false]
extendedDocumentRoot = [null]
ieClassId = [clsid:8AD9C840-044E-11D1-B3E9-00805F499D93]
keepGenerated = [true]

outputDir = [C:/WebSphere_6.0/AppServer/profiles/AppSrv01/installedApps/MyCell/
sampleApp.ear/examples.war/WEB-INF/classes]

reloadEnabled = [true]
reloadEnabledSet = [true]
reloadInterval = [5000]
trackDependencies = [false]
usePageTagPool = [false]
useThreadTagPool = [true]

Chapter 27. Developing web applications 1073

useImplicitTagLibs = [true]
verbose = [false]
looseLibMap = [null]
useJikes = [false]
useFullPackageNames = [true]
translationContextClass = [null]
extensionProcessorClass = [null]
javaEncoding = [UTF-8]
autoResponseEncoding = [false]

**
The following JSP Configuration Parameters were obtained from web.xml:

prelude list = [[]]
coda list = [[]]
elIgnored = [false]
pageEncoding = [null]
isXML = [false]
scriptingInvalid = [false]
*/

JSP batch compilation
As an IBM enhancement to JavaServer Pages (JSP) support, IBM WebSphere Application Server provides
a batch JSP compiler that allows JSP page compilation before application deployment. The batch compiler
validates the syntax of JSP pages, translates the JSP pages into Java source files, and compiles the Java
source files into Java servlet class files. The batch compiler also validates tag files and generates their
Java implementation classes.

Batch compilation of JSP pages in a predeployed application simplifies the deployment process and
improves the runtime performance of JSP page by eliminating first-request compilations. The batch
compiler also operates on enterprise applications that have been deployed into WebSphere Application
Server.

The JSP batch compiler works on web modules that support Servlet 2.2 and later. The batch compiler
works on JSP pages written to the JSP 2.1 specification or previous specifications back to JSP 1.0. It
recognizes a Servlet 2.5 or later deployment descriptor, web.xml, and can use any jsp-config elements that
it may contain. In a Servlet 2.3 (JSP 1.2) or Servlet 2.2 (JSP 1.1) deployment descriptor the batch
compiler recognizes and uses any taglib elements that the descriptor may contain.

Batch compiling makes the first request for a JSP page much faster because the JSP page is already
translated and compiled into a servlet. Batch compiling is also useful as a fast way to resynchronize all of
the JSP pages for an application.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp
directory and a web module's WEB-INF/classes directory, depending on the type of batch compiler target.
In addition, the batch compiler enables generation of class files into any directory on the filesystem,
outside the target application. Generating class files into a web module's WEB-INF/classes directory
enables the web module to be deployed as a self-contained WAR file, or a WAR inside an EAR.

Also, you can use shared libraries with the JSP batch complier. When you use the JSP batch compiler,
you must either add the JAR to the WAR in the <WEB-INF>/lib directory, or add the JAR to the JVM class
path to use shared libraries.

JSPBatchCompiler command:

The batch compiler validates the syntax of JavaServer Pages, translates the JSP pages into Java source
files, and compiles the Java source files into Java Servlet class files. The batch compiler also validates tag

1074 Developing WebSphere applications

files and generates their Java implementation classes. Use this function to batch compile your JSP files
and thereby enable faster responses to the initial client requests for the JSP files on your production web
server.

The batch compiler can be executed against compressed or expanded enterprise archive (EAR) files and
web application archive (WAR) files, as well as enterprise applications and web modules that have been
deployed into WebSphere Application Server. When the target is a deployed enterprise application, the
server does not need to be running to execute the batch compiler. If the batch compiler is executed while
the target sever is running, the server is not aware of an updated class file and does not load that class
file unless the enterprise application is restarted. When the target is a compressed EAR file or WAR file,
the batch compiler must expand it before executing.

Processing of web modules

The batch compiler operates on one web module at a time. If the target is either an EAR file or an
installed enterprise application that contains more than one web module, the batch compiler operates on
each web module individually. This is done because JSP pages are configured on a web module basis,
through the web module's web.xml deployment descriptor file. Within a web module, the batch compiler
processes one directory at a time. It validates and translates each JSP page individually, and then invokes
the Java compiler for the entire group of generated Java sources files in that directory. If one JSP page
fails during the Java compilation phase, the Java compiler might not create class files for most or all of the
JSP pages that successfully compiled in that directory.

JSP file extensions

The batch compiler uses four things to determine what file extensions it should process:

1. Standard JSP file extensions

v *.jsp

v *.jspx

v *.jsw

v *.jsv

2. The url-pattern property of the jsp-property-group elements in the deployment descriptor file in Servlet
2.4 web modules

3. The jsp.file.extensions JSP engine configuration parameter (for pre-Servlet 2.4 web modules)

4. The batch compiler configuration parameter jsp.file.extensions

The standard extensions are always used by the batch compiler. If the web module contains a Servlet 2.4
deployment descriptor, the batch compiler also processes any url-patterns found within the jsp-config
element. If the batch compiler target contains the JSP engine configuration parameter
jsp.file.extensions, then those extensions are also processed. If the batch compiler configuration
parameter jsp.file.extensions is present, the extensions given are also processed and will override the
JSP engine configuration parameter jsp.file.extensions.

It is a good idea to give JSP 'fragments' an extension that is not processed by the batch compiler.
Statically-included fragments that do not stand alone generate translation or compilation errors if
processed. The JSP 2.0 Specification suggests that you use the extension .jspf for such files.

Batch compiler command

Both a Windows batch file, JspBatchCompiler.bat and UNIX shell script JspBatchCompiler.sh for running
the batch compiler from the command line are found in the {WAS_ROOT}/bin directory. An Ant task is also
available for executing the batch compiler using Ant. See the topic, Batch Compiler Ant Task for additional
information.

Chapter 27. Developing web applications 1075

The batch compiler target is the only required parameter. The target is one of -ear.path, -war.path or
-enterpriseapp.name.
JspBatchCompiler -ear.path | -war.path | -enterpriseapp.name <name>

[-response.file <filename>]
[-webmodule.name <name>]
[-filename <jsp name | directory name>
[-recurse <true | false>]
[-config.root <path>]
[-cell.name <name>]
[-cluster.name <name>] [-node.name <name>]
[-server.name <name>]
[-profileName <name>]
[-extractToDir <path>]
[-compileToDir <path>]
[-compileToWebInf <true | false>]

[-compileToWebInf <true | false>]
[-compileAfterFailure <true | false>]

[-translate <true | false>]
[-compile <true | false>]
[-removeTempDir <true | false>]
[-forceCompilation <true | false>]
[-useFullPackageNames <true | false>]
[-trackDependencies <true | false>]
[-createDebugClassfiles <true | false>]
[-keepgenerated <true | false>]
[-keepGeneratedclassfiles <true | false>]
[-usePageTagPool <true | false>]
[-useThreadTagPool <true | false>]
[-classloader.parentFirst <true | false>]
[-classloader.singleWarClassloader <true | false>]
[-additional.classpath <classpath to additional JAR files and classes>]

[-verbose <true | false>]
[-deprecation <true | false>]
[-javaEncoding <encoding>
[-jdkSourceLevel <13 | 14 | 15 | 16 | 17>]
[-compilerOptions <space-separated list of java compiler options>]
[-useJikes <true | false>]
[-jsp.file.extensions <file extensions to process>]
[-log.level <SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF>]

*** See batchcompiler.properties.default in WAS_ROOT/bin for more information. ***
*** See JspCBuild.xml in WAS_ROOT/bin for information about the public WebSphere Ant task JspC. ***

The batch compiler is aware of three groups of configuration parameters:

1. JSP engine configuration parameters for a web module.

Refer to the JSP engine configuration parameters topic.

2. Batch compiler response file configuration parameters.

These are the parameters that are found in a batch compiler response file. See -response.file, below.

3. Batch compiler command line configuration parameters.

These are the parameters entered on the command line when running the batch compiler.

The batch compiler looks at all three groups of configuration parameters in order to determine which value
for a parameter is used when compiling JSP pages. When resolving the value for a given parameter, the
precedence is:

1. If the parameter is found on the command line, its value is used.

2. If the parameter is not found on the command line, the batch compiler looks for the parameter in a
response file named on the command line.

3. If no response file is named, or if the parameter is not found therein, the batch compiler looks for the
parameter in the web module's JSP engine configuration parameters.

1076 Developing WebSphere applications

If a configuration parameter is not found among these three groups, then a default value is used. The
default values for the configuration parameters are given below along with the description of the
parameters.

With one exception, these parameters are not case sensitive; -profileName is case sensitive. If the values
specified for these arguments are comprised of two or more words separated by spaces, you must add
quotation marks around the values.

The batch compiler does not create, or set the values of, equivalent JSP engine parameters. This means
that if a JSP page in a deployed Web module is modified and is recompiled by the JSP engine at run time,
the JSP engine's configuration parameters will determine the engine's behavior. For example, if you use
the batch compiler to compile a web module and you use the -useFullPackageNames true option, the JSP
files will be compiled to support that option. But the JSP engine parameter useFullPackageNames must
also be set to true in order for the JSP runtime to be able to load the compiled JSP pages. If JSP pages
are modified in a deployed web module, then the engine's parameters should be set to the same values
used in batch compilation.

To use the JSP batch compiler, enter one of the following commands on a single line at an operating
system command prompt.:
v ear.path | war.path | enterpriseapp.name

Represents the full path to a single compressed or expanded enterprise application archive (EAR) file or
web application archive (WAR) file, or the name of the deployed enterprise application that you want to
compile. For example:
– JspBatchCompiler -ear.path c:\myproject\sampleApp.ear
– JspBatchCompiler -war.path c:\myWars\examples.war
– JspBatchCompiler -enterpriseapp.name myEnterpriseApp -webmodule.name my.war -filename

aDir/main.jsp
v response.file

Specifies the path to a file that contains configuration parameters used by the batch compiler. The
response.file is used only if it is given on the command line; it is ignored if it is present in a response
file.

In a default installation, the template response file, batchcompiler.properties.default, is found in the
{WAS_ROOT}/bin directory. Copy this template to create your own response files containing defaults for
the parameters in which you are interested. All the required and optional parameters (except
response.file) can be configured in a response file. For example: JspBatchCompiler -response.file
c:\myproject\batchc.props

Default : null
v webmodule.name

Represents the name of the specific web module that you want to batch compile. If this argument is not
set, all web modules in the enterprise application are compiled. This parameter is used only when
ear.path or enterpriseapp.name is given. This parameter is useful when JSP pages in a specific web
module within a deployed enterprise application need to be regenerated, because all shared library
dependencies are picked up.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -webmodule.name myWebModule.war

Default: All web modules in an EAR file or enterprise application are compiled if this parameter is not
given.

v filename

Represents the name of a single JSP file that you want to compile. If this argument is not set, all files in
the web module are compiled. Alternatively, if filename is set to the name of a directory, only the JSP
files in that directory and that directory's child directories are complied. The name is relative to the
context root of the web module.

Example 1: If you want to compile the file, myTest.jsp, and it is found in /subdir/myJSPs, you would
enter -filename /subdir/myJSPs/myTest.jsp.

Chapter 27. Developing web applications 1077

Example 2: If you want to compile all JSP files in /subdir/myJSPs and its child directories, you would
enter -filename subdir/myJSPs.

Default: All JSP files in the web module are compiled. Entering -filename / is equivalent to the default.
v recurse

Determines whether subdirectories beneath the target directory are processed. This parameter is used
only when the filename parameter is given. Set value to false to process only the directory named
filename parameter; and not its subdirectories.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -filename /subdir1 -recurse false.

Default: true; All directories beneath the target directory are processed.
v config.root

Specifies the location of the WebSpehere Application Server configuration directory. This parameter is
used only when enterpriseapp.name is given.

Default: {WAS_ROOT}/profiles/profilename/config
v cell.name

Specifies the name of the cell in which the application is deployed. This parameter is used only when
enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable is
WAS_CELL.

v cluster.name

Specifies the name of the cluster in which the application is deployed. This parameter provides the
batch compiler with access to cluster scoped shared libraries, and is used only when
enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable is
WAS_CLUSTER.

v node.name

Specifies the name of the node in which the application is deployed. This parameter is used only when
enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable is
WAS_NODE.

v server.name

Represents the name of the server in which the application is deployed. This parameter is used only
when enterpriseapp.name is given.

Default: server1
v profileName

Specifies the name of the profile you want to use. This parameter is used only when the
enterpriseapp.name or -ear. path is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -profileName AppServer-3

Default: The default profile is used. This is obtained from the file setupCmdLine script in the
install_root/bin directory. The symbolic name is DEFAULT_PROFILE_SCRIPT.

v extractToDir

Specifies the directory into which predeployed enterprise archive (EAR) files and web application
archive (WAR) files will be extracted before the batch compiler operates on them. This parameter is
ignored when enterpriseapp.name is given. The extractToDir parameter is used as described in the
table below.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -extractToDir c:\myTempDir.

Use-case: You must extract a compressed archive before it is batch compiled. You can also extract an
expanded archive to a new directory as well. In both cases, extraction leaves the original archive
untouched, which may be useful while development is underway.

1078 Developing WebSphere applications

Table 110. extractToDir. Default values

Expanded archive Compressed archive

extractToDir supplied The batch compiler extracts the archive to extractToDir before operating on it.
If a file or directory of the same name as the archive already exists in the
extractToDir, the batch compiler removes the archive completely before
extracting that archive. If the batch compiler exits with no errors, it
compresses the archive in place in the extractToDir, even if the original EAR
file or WAR file was expanded. If errors are encountered during compilation,
the EAR file or WAR file is left in the expanded state even if the original EAR
file or WAR file was compressed.

extractToDir not supplied The batch compiler operates on the
EAR file or WAR file in place (does
not extract it to another directory) and
the archive remains expanded after
the batch compiler finishes.

The batch compiler extracts the
archive to the directory returned by
the JVM property “java.io.tmpdir”. The
rest of the behavior described above,
when extractToDir is supplied, is the
same in this case.

The default is server1.
v compileToDir

Specifies the directory into which JSP pages are translated into Java source files and compiled into
class files. This directory can be anywhere on the filesystem, but the batch compiler's default behavior
is usually adequate. The batch compiler's behavior when compiling class files is described in the table
below

Example:: JspBatchCompiler -enterpriseApp.name sampleApp -compileToDir c:\myTargetDir

Use-case: This parameter enables you to generate the Java and class files into a directory outside of
the target, which may be useful if you want to compare the newly generated files with their previous
versions which remain untouched within the target.

Table 111. compileToDir. Default values

ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;
compileToWebInf not supplied, or is
true

The class files are compiled into the
web module's WEB-INF/classes
directory

The class files are compiled into the
web module's WEB-INF/classes
directory.

compileToDir not supplied;
compileToWebInf is false

The class files are compiled into the
web module's WEB-INF/classes
directory.

The class files are compiled into the
WebSphere Application Server temp
directory (usually
{WAS_ROOT}/temp).

compileToDir is supplied;
compileToWebInf not supplied, or is
either true or false

The class files are compiled into the
directory indicated by compileToDir.

The class files are compiled into the
directory indicated by compileToDir.

v compileToWebInf

Specifies whether the target directory for the compiled JSP class files should be the web module's
WEB-INF/classes directory. This parameter is used only when enterpriseApp.name is given, and it is
overridden by compileToDir if compileToDir is given.

The batch compiler's default behavior is to compile to the web module's WEB-INF/classes directory. The
batch compiler's behavior when compiling class files is described in the table above.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compileToWebInf false.

Use-case: Set this parameter to false when enterpriseApp.name is supplied and you want the class files
to be compiled to the WebSphere Application Server temp directory instead of the web module's
WEB-INF/classes directory. Recommendation: if this parameter is set to false, set forceCompilation to
true if there are any JSP class files in the WEB-INF/classes directory.

Default: true; see the table above.
v compileAfterFailure

Chapter 27. Developing web applications 1079

Specifies whether the JDK JSP batch compiler continues to compile the other JavaServer Pages (JSP)
files in the current directory if one or more of the JavaServer Pages (JSP) files in that directory cannot
be complied. Typically when one of the files cannot be compiled, the JSP batch complier skips all of the
remaining JSPs in that directory, and starts to compile the files in the next directory.

If you set this parameter to true, you must also specify the useJDKCompiler parameter and set that
parameter to true.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -useJDKCompiler true
–compileAfterFailure false.

Use-case: Set this parameter to true if you want the JSP batch compiler compile the other JavaServer
Pages (JSP) files in the current directory even if one or more of the JSP files in that directory cannot be
complied.

Default: false
v forceCompilation

Specifies whether the batch compiler is forced to recompile all JSP resources regardless or whether the
JSP page is outdated.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -forceCompilation true.

Use-case: Especially useful when creating an archive for deployment, to make sure all JSP classes are
up to date.

Default: false
v useFullPackageNames

Specifies whether the batch compiler generates full package names for JSP classes. The default is to
generate all JSP classes in the same package. The JSP engine's class loader knows how to load JSP
classes when they are all in the same package. The default has the benefit of generating smaller
file-system paths. Full package names have the benefit of enabling the configuration of precompiled
JSP class files as servlets in the web.xml file without use of the jsp-file attribute, resulting in a single
class loader (the web application's class loader) being used to load all such JSP classes. Similarly,
when the JSP engine's configuration attributes useFullPackageNames and
disableJspRuntimeCompilation are both true, a single class loader is used to load all JSP classes, even
if the JSP pages are not configured as servlets in the web.xml file.

When useFullPackageNames is set to true, the batch compiler generates a file called generated_web.xml
in the web module's WEB-INF directory. This file contains servlet configuration information for each JSP
page that is successfully translated and compiled. The information can optionally be copied into the web
module's web.xml file so that the JSP pages are loaded as servlets by the web container. Note that if a
JSP page is configured as a servlet in this way, no reloading of the JSP page is done at run time if the
JSP page is modified. This is because the JSP page is treated as a regular servlet and requests for it
do not pass through the JSP engine.

Example: JspBatchCompiler –enterpriseApp.name sampleApp –useFullPackageNames true

Use-case: Enables JSP classes to be loaded by a single class loader.

Default: false
v removeTempDir

Specifies whether the web module's temp directory is removed. The batch compiler by default generates
JSP class files into a web module's WEB-INF/classes directory. JSP class files are generated into the
temp directory at run time if a JSP page is modified and JSP reloading is enabled. By batch compiling
all the JSP pages in a web module and also removing the temp directory, disk resources are preserved.
You can only use the removeTempDir parameter when -enterpriseApp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -removeTempDir true.

Use-case: Free up disk space by clearing out a web application's temp directory.

Default: false
v translate

1080 Developing WebSphere applications

Specifies whether JSP pages are translated and compiled. Set translate to false if you do not want JSP
pages to be translated and compiled. You must use this option in conjunction with -removeTempDir to tell
the batch compiler to remove only the temp directory and to do no further processing.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -translate false -removeTempDir true.

Use-case: Free up disk space by clearing out a web application's temp directory, without invoking JSP
processing.

Default: true
v compile

Specifies whether JSP pages go through the Java compilation phase. Set compile to false if you do not
want JSP pages to go through the Java compilation phase.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compile false

Use-case: If you only want JSP pages to be syntax-checked, set -compile to false. You can set
-keepgenerated to true if you want to see the .java files that are generated during the translation
phase.

Default: true
v trackDependencies

Specifies whether the batch compiler recompiles a JSP page when any of its dependencies have
changed, even if the JSP page itself has not changed. Tracking dependencies incurs a significant
runtime performance penalty because the JSP Engine checks the filesystem on every request to a JSP
page to see if any of its dependencies have changed. The dependencies tracked by WebSphere
Application Server are :
1. Files statically included in the JSP page
2. Tag files used by the JSP page (excluding tag files that are in JAR files)
3. TLD files used by the JSP page (excluding TLD files that are in JAR files)

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -trackDependencies true.

Use-case: Useful in a development environment.

Default: false
v createDebugClassfiles

Specifies whether the batch compiler generates class files that contain SMAP information, as per JSR
45, Debugging support for Other Languages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -createDebugClassfiles true

Use-case: Use this parameter when you want to be able to debug JSP pages in your JSR 45-compliant
IDE.

Default: false
v keepgenerated

Specifies whether the batch compiler saves or erases the generated Java source files created during
the translation phase.

If set to true, WebSphere Application Server saves the generated .java files used for compilation on
your server. By default, this argument is set to false and the .java files are erased after the class files
have compiled.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepgenerated true

Use-case: Use this parameter when you want to review the Java code generated by the batch compiler.

Default: false
v keepGeneratedclassfiles

Specifies whether the batch compiler saves or erases the class files generated during the compilation of
Java source files.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepGeneratedclassfiles false
-keepgenerated false

Chapter 27. Developing web applications 1081

Use-case: Set this parameter to false if you only want to see if there are any translation or compilation
errors in your JSP pages. If paired with -keepgenerated false, this parameter results in all generated
files being removed before the batch compiler completes.

Default: true
v usePageTagPool

Enables or disables the reuse of custom tag handlers on an individual JSP page basis.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -usePageTagPool true

Use-case: Use this parameter to enable JSP-page-based reuse of tag handlers.

Default: false
v useThreadTagPool

Enables or disables the reuse of custom tag handlers on a per request thread basis per web module.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useThreadTagPool true

Use-case: Use this parameter to enable web module-based reuse of tag handlers.

Default: false

v classloader.parentFirst

Specifies the search order for loading classes by instructing the batch compiler to search the parent
class loader prior to application class loader. This parameter is only used when ear.path or
enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.parentFirst false

Use-case: Set this parameter to false when your web module contains a JAR file that is also found in
the server lib directory, and you want your web module's JAR file to be picked up first.

Default: true

v classloader.singleWarClassloader

Specifies whether to use one class loader per enterprise archive (EAR) file or one class loader per web
application archive (WAR) file. Used only when ear.path or enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.singleWarClassloader
true

Use-case: Set this parameter to true when a Web module depends on JAR files and classes in another
web module in the same enterprise application.

Default: false; One class loader is created per WAR file with no visibility of classes in other web
modules.

v additional.classpath

Specifies additional class path entries to be used when parsing and compiling JSP pages. This
parameter is used only when war.path is given. When war.path is the target, WebSphere Shared
Libraries are not picked up by the batch compiler. Therefore, if your WAR file relies on, for example, a
JAR file that is configured in WebSphere Application Server as a shared library, then use this option to
point to that JAR file. In addition, if you give war.path and also use the -extractToDir parameter, then
any JAR files that are in the WAR file's manifest class-path is not added to the class path (since the
WAR file has now been extracted by itself outside the EAR file in which it resides). Use
-additional.classpath in this case to point to the necessary JAR files. Add the full path to needed
resources, separated by your system-dependent path separator.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -additional.classpath
c:\myJars\someJar.jar;c:\myClasses

Use-case: Use this parameter to add to the class path JAR files and classes outside of your WAR file.
At run time, these same JAR files and classes have to be made available through the standard
WebSphere Application Server configuration mechanisms.

Default: null

v verbose

1082 Developing WebSphere applications

Specifies whether the batch compiler should generate verbose output while compiling the generated
sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -verbose true

Use-case: Set this parameter to true when you want to see Java compiler class loading and other
messages.

Default: false

v deprecation

Indicates the compiler should generate deprecation warnings while compiling the generated sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -deprecation true

Use-case: Set this parameter to true when you want to see Java compiler deprecation messages.

Default: false

v javaEncoding

Specifies the encoding that will be used when the .java file is generated, and when it is compiled by the
Java compiler. When -javaEncoding is set, that encoding is passed to the java compiler via the
-encoding argument. Note that encoding is not supported by Jikes.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -javaEncoding Shift-JIS

Use-case: Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible.

Default value: UTF-8.

v jdkSourceLevel

This JSP engine parameter was introduced in WebSphere Application Server version 6.1 to support
JDK 5. Use this parameter instead of the compileWithAssert parameter, although compile WithAssert
still works in version 6.1.

The default value for this parameter is 16. This parameter requires regeneration of Java source. The
following are jdkSourceLevel paramater values:

– 13 - This value will disable all new language features of JDK 1.4, JDK 5.0, JDK 6.0, and JDK 7.0.

– 14 - This value will enable the use of the assertion facility and will disable all new language features
of JDK 5.0, JDK 6.0, and JDK 7.0.

– 15 - This value will enable the use of the assertion facility and will disable all new language features
of JDK 6.0 and JDK 7.0.

– 16 - This value will enable the use of the assertion facility and will disable all new language features
of JDK 7.0.

– 17 - This value will enable the use of the new features of JDK 7.0.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -jdkSourceLevel 14

Use-case: Set this parameter when you want to enable or disable the language features of JDK 1.4 ,
JDK 5.0, JDK 6.0, and JDK 7.0

Default value: 16

v compilerOptions

Specifies a list of strings to be passed on the Java compiler command. This is a space-separated list of
the form “arg1 arg2 argn”.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -compilerOptions “-bootclasspath
<path>”

Use-case: Use this parameter if you need Java compiler arguments other than verbose, deprecation
and Assert facility support.

Default: null

v useJikes

Specifies whether Jikes should be used for compiling Java sources. NOTE: Jikes is not shipped with
WebSphere Application Server.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useJikes true

Chapter 27. Developing web applications 1083

Use-case: Set this parameter to true in order for the batch compiler to use Jikes as the Java compiler.

Default value: false

v jsp.file.extensions

Specifies the file extensions to be processed by the batch compiler. This is a semicolon- or
colon-separated list of the form “*.ext1;*.ext2:*.extn”. Note that this parameter is not necessary for
Servlet 2.4 web applications because the url-pattern property of the jsp-property-group elements in the
deployment descriptor can be used to identify extensions that should be treated as JSP pages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -jsp.file.extensions *jspz;*.jspt

Use-case: Use this parameter to add additional extensions to the be processed by the batch compiler.

Default: null. See section, “JSP file extensions”, in this topic for additional information.

v log.level

Specifies the level of logging that is directed to the console during batch compilation. Values are
SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF

Example: JspBatchCompiler -enterpriseApp.name sampleApp -log.level FINEST

Use-case: Set this parameter higher or lower to control logging output. FINEST generates the most
output useful for debugging.

Default: CONFIG

Batch compiler ant task:

The ant task JspC exposes all the batch compiler configuration options. It runs the batch compiler under
the covers. It is backward compatible with the WebSphere Application Server 5.x version of the JspC ant
task. The following table lists all of the ant task attributes and their batch compiler equivalents.

Table 112. Ant task attributes and their batch compiler equivalents. JspC attributes and the equivalent batch
compiler parameters.
JspC attribute Equivalent batch compiler parameter

earPath -ear.path

warPath -war.path

src

Same as warPath, for backward compatiblity

-war.path

enterpriseAppName -enterpriseapp.name

responseFile -response.file

webmoduleName -webmodule.name

fileName -filename -config.root

configRoot -config.root

cellName -cell.name

nodeName -node.name

serverName -server.name

profileName -profileName

extractToDir -extractToDir

compileToDir

same as compileToDir, for backward compatibility

-compileToDir -compileToDir

compileToWebInf -compileToWebInf

compilerOptions -compilerOptions

recurse -recurse

removeTempDir -removeTempDir

translate -translate

compile -compile

forceCompilation -forceCompilation

useFullPackageNames -useFullPackageNames

1084 Developing WebSphere applications

Table 112. Ant task attributes and their batch compiler equivalents (continued). JspC attributes and the equivalent
batch compiler parameters.
JspC attribute Equivalent batch compiler parameter

trackDependencies -trackDependencies

createDebugClassfiles -createDebugClassfiles

keepgenerated -keepgenerated

keepGeneratedclassfiles -keepGeneratedclassfiles

usePageTagPool -usePageTagPool

useThreadTagPool -useThreadTagPool

classloaderParentFirst -classloader.parentFirst

classloaderSingleWarClassloader -classloader.singleWarClassloader

additionalClasspath -additional.classpath

classpath

same as additionalClasspath, for backward compatibility

-additional.classpath

verbose -verbose

deprecation -deprecation

javaEncoding -javaEncoding

compileWithAssert -compileWithAssert

useJikes -useJikes

jspFileExtensions -jsp.file.extensions

logLevel -log.level

wasHome none

Classpathref none

jdkSourceLevel -jdkSourceLevel

Below is an example of a build script with multiple targets, each with different attributes. The following
commands are used to launch the script:

On Windows:
ws_ant -Dwas.home=%WAS_HOME% -Dear.path=%EAR_PATH% -Dextract.dir=%EXTRACT_DIR%
ws_ant jspc2 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME%
ws_ant jspc3 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME% -Ddir.name=%DIR_NAME%

On UNIX or i5/OS:
ws_ant -Dwas.home=$WAS_HOME -Dear.path=$EAR_PATH -Dextract.dir=$EXTRACT_DIR
ws_ant jspc2 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME
ws_ant jspc3 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME -Ddir.name=$DIR_NAME

Example build.xml file using the JspC task
<project name="JSP Precompile" default="jspc1" basedir=".">
<taskdef name="wsjspc" classname="com.ibm.websphere.ant.tasks.JspC"/>
<target name="jspc1" description="example using a path to an EAR, and extracting the EAR to a directory">
<wsjspc wasHome="${was.home}"

earpath="${ear.path}"
forcecompilation="true"
extractToDir="${extract.dir}"
useThreadTagPool="true"
keepgenerated="true"

/>
</target>
<target name="jspc2" description="example using an enterprise app and webmodule">
<wsjspc wasHome="${was.home}"

enterpriseAppName="${app.name}"
webmoduleName="${webmodule.name}"
removeTempDir="true"
forcecompilation="true"
keepgenerated="true"

Chapter 27. Developing web applications 1085

/>
</target>
<target name="jspc3" description="example using an enterprise app, webmodule and specific directory">
<wsjspc wasHome="${was.home}"

enterpriseAppName="${app.name}"
webmoduleName="${webmodule.name}"
fileName="${dir.name}"
recurse="false"
forcecompilation="true"
keepgenerated="true"

/>
</target>
</project>

Pre-touch tool for compiling and loading JSP files:

When enabled, the pre-touch mechanism causes all JavaServer Pages (JSP) files to be compiled within
the web module for which they are configured. You can also configure some or all JSP files to be class
loaded and JIT-compiled.

To enable the pre-touch mechanism, use Rational Application Developer to specify the following JSP
attributes, which are Assembly Property Extensions for your web module:

v prepareJSPs (Required)

When this attribute is present, all JSP files are compiled at application server startup. This activity runs
in a separate thread, allowing the application server to finish other startup actions in parallel. The
numeric attribute value represents the minimum size in kilobytes that a JSP file must be in order to also
be class loaded and JIT-compiled. The default is 0, which causes all JSP files to be class loaded and
JIT-compiled.

Note: JSP file compilation is different from JIT compilation. JSP compilation generates bytecodes,
whereas JIT translates the bytecodes into machine code at run time.

v prepareJSPAttribute (Optional)

The pre-touch mechanism compiles and JIT-compiles JSP files by directly invoking the JSP service
method, thus making the JSP file susceptible to incurring exceptions because it is called out of context.
Such exceptions are avoided by immediately checking the value of this attribute, causing a quick exit
from the service method when the JSP was prepared by this tool. This attribute value is added as a
request parameter and is composed of alphanumeric characters that your JSP files do not expect to use
during normal initiation.

v prepareJSPThreadCount (Optional)

Set this numeric attribute to the number of threads that you would like this mechanism to start up to
compile your JSP files. Since a thread makes use of just one processor, multi-processor systems may
better utilize this pre-touch mechanism by specifying a value greater than 1. The default setting for this
attribute is 1, representing the number of threads that are created to perform pre-touch processing for
this web module.

v prepareJSPClassload (Optional)

Set this attribute to either a whole number or the word changed. By entering changed, only those JSP
filess that have been updated or not previously touched, for example, those JSP files that need to be
converted from a .jsp file to a .java file, are class loaded. By entering a numerical value, for example,
1000, the pre-touch tool starts class loading at the 1000th JSP that it processes and all subsequent JSP
files. This is convenient in the event that the application server is stopped when starting the pre-touch
tool. You can then check the server logs to see how many JSP files have been processed and update
the prepareJSPClassload value accordingly to avoid duplicating work. If a JSP file is not class loaded, it
cannot be JIT compiled. As a result, if a JSP file does not satisfy the requirements of the
prepareJSPClassload attribute, but satisfies the requirements of the prepareJSPs attribute, the JSP file
is compiled if it has been updated, but is not class loaded or JIT compiled.

1086 Developing WebSphere applications

Batch compiler class path:

The batch compiler builds its class path as shown in the table later in this topic. When the batch compiler
target is a web application archive (WAR) file and war.path is supplied, the configuration
additional.classpath parameter is used to give extra class path information.

Table 113. Batch compiler. Batch compiler target.

Location added to class path enterpriseapp.name ear.path war.path

WebSphere Application Server
JAR files and classes

yes yes yes

JAR files listed in manifest class
path for a web module

yes yes yes, when the target WAR is inside
an EAR and –extractToDir is not
used; otherwise, no.

Shared libraries yes no no

Web module JAR files and classes yes yes yes

additional.classpath parameter to
batch compiler

no no yes

Global tag libraries (deprecated)
JavaServer Pages (JSP) tag libraries contain classes for common tasks such as processing forms and
accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many web applications. The Java
Standard Tag Library (JSTL) supports common programming tasks such as iteration and conditional
processing, and provides tags for:
v manipulating XML documents
v supporting internationalization
v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page development, and
include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a Java archive (JAR) file.

tsx:dbconnect tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbconnect> tag to specify information needed to make a connection to a database through
Java DataBase Connectivity (JDBC) or Open Database Connectivity (ODBC) technology.

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application
Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer
Pages Standard Tag Library (JSTL).

The <tsx:dbconnect> syntax does not establish the connection. Use the <tsx:dbquery> and <tsx:dbmodify>
syntax instead to reference a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file to establish
the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding for the
<tsx:dbconnect> syntax to the servlet service() method, which means a new database connection is
created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

Chapter 27. Developing web applications 1087

<tsx:dbconnect id="connection_id"
userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database"
driver="database_driver_name"
jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:
v id

Represents a required identifier. The scope is the JSP file. This identifier is referenced by the
connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database that you want to access.
Specify this attribute to add the attribute and its value to the request object.

Although the userid attribute is optional, you must provide the user ID. See <tsx:userid> and
<tsx:passwd> for an alternative to hard coding this information in the JSP file.

v passwd

Represents an optional attribute that specifies the user password for the userid attribute. (This attribute
is not optional if the userid attribute is specified.) If you specify this attribute, the attribute and its value
are added to the request object.

Although the passwd attribute is optional, you must provide the password. See <tsx:userid> and
<tsx:passwd> for an alternative to hard coding this attribute in the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection. You must provide the
URL and driver.

The application server supports connection to JDBC databases and ODBC databases.
– For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the

subprotocol name, and the name of the database to access. An example for a connection to the
Sample database included with IBM DB2 is:
url="jdbc:db2:sample"
driver="com.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in their Java2 Software
Developers Kit (SDK) or another vendor's ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the
driver to use in establishing the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC
bridge. If you want to use an ODBC driver, refer to the driver documentation for instructions on
specifying the database location with the url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:database. An example follows:
url="jdbc:odbc:autos"
driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the ODBC Data Source
Administrator to add the ODBC data source to the System DSN configuration. To access the ODBC
Administrator, click the ODBC icon on the Windows NT Control Panel.

v jndiname

Represents an optional attribute that identifies a valid context in the application server Java Naming and
Directory Interface (JNDI) naming context and the logical name of the data source in that context. The
web administrator configures the context using an administrative client such as the WebSphere
Administrative Console.

If you specify the jndiname attribute, the JSP processor ignores the driver and url attributes on the
<tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

1088 Developing WebSphere applications

dbquery tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbquery> tag to establish a connection to a database, submit database queries, and return
the results set.

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application
Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer
Pages Standard Tag Library (JSTL).

The <tsx:dbquery> tag does the following:
1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

the tag provides to determine the database URL and driver. You can also obtain the user ID and
password from the <tsx:dbconnect> tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection
3. Retrieves and caches data in the results object.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.
<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%>
<%-- Any other syntax, including HTML comments, are not valid. --%>
<tsx:dbquery id="query_id" connection="connection_id" limit="value" >
</tsx:dbquery>

where:
v id

Represents the identifier of this query. The scope is the JSP file. Use id to reference the query. For
example, from the <tsx:getProperty> tag, use id to display the query results.

The id is a tsx reference to the bean and can be used to retrieve the bean from the page contect. For
example, if id is named mySingleDBBean, instead of using:
– if (mySingleDBBean.getValue("UISEAM",0).startsWith("N"))

use:
– com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults bean =

(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext. findAttribute("mySingleDBBean"); if
(bean.getValue("UISEAM",0).startsWith("N")). . .

The bean properties are dynamic and the property names are the names of the columns in the results
set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME,
but the SELECT statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the
database URL, driver name, and optionally, the user ID and password for the connection.

v limit

Represents an optional attribute that constrains the maximum number of records returned by a query. If
this attribute is not specified, no limit is used. In such a case, the effective limit is determined by the
number of records and the system caching capability.

v SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must return a results set.
Refer to your database documentation for information about the SELECT command. See other articles
in this section for a description of JSP syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax (deprecated):

Chapter 27. Developing web applications 1089

The <tsx:dbmodify> tag establishes a connection to a database and then adds records to a database
table.

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application
Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer
Pages Standard Tag Library (JSTL).

The <tsx:dbmodify> tag does the following:
1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

provided by that tag to determine the database URL and driver.

Note: You can also obtain the user ID and password from the <tsx:dbconnect> tag if those values are
provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.
3. Updates a table in the database.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.
<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->
<%-- Any other syntax, including HTML comments, are not valid. -->
<tsx:dbmodify connection=“connection_id”>
</tsx:dbmodify>

where:
v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the
database URL, driver name, and (optionally) the user ID and password for the connection.

v Database commands

Represents valid database commands. Refer to your database documentation for details

In the following example, a new employee record is added to a database. The values of the fields are
based on user input from this JavaServer Pages (JSP) file and referenced in the database commands
using the <tsx:getProperty> tag.
<tsx:dbmodify connection=“conn” >
insert into EMPLOYEE

(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)
values
(’<tsx:getProperty name=“request” property=request.getParameter(“EMPNO”) />’,
’<tsx:getProperty name=“request” property=request.getParameter(“FIRSTNME”) />’,
’<tsx:getProperty name=“request” property=request.getParameter(“MIDINIT”) />’,
’<tsx:getProperty name=“request” property=request.getParameter(“LASTNAME”) />’,
’<tsx:getProperty name=“request” property=request.getParameter(“WORKDEPT”) />’,
<tsx:getProperty name=“request” property=request.getParameter(“EDLEVEL”) />)
</tsx:dbmodify>

tsx:getProperty tag JavaServer Pages syntax and examples (deprecated):

The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer Pages (JSP) file.

Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere
Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from
the JavaServer Pages Standard Tag Library (JSTL).

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the <jsp:getProperty> function
and adds the ability to introspect a database bean created using the IBM extension <tsx:dbquery> or
<tsx:dbmodify>.

1090 Developing WebSphere applications

Note: You cannot assign the value from this tag to a variable. The value, generated as output from this
tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:
<tsx:getProperty name="bean_name"

property="property_name" />

where:
v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery> syntax within the JSP
file. Refer to the <tsx:dbquery> article for an explanation. The value of this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the attribute is
case-sensitive and is the locale-independent name of the property.

Tag example:
<tsx:getProperty name="userProfile" property="username" />

tsx:userid and tsx:passwd tag JavaServer Pages syntax (deprecated):

With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user ID and password in the
<tsx:dbconnect> tag.

Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere
Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from
the JavaServer Pages Standard Tag Library (JSTL).

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and then add that data to
the request object. You can access the request object with a JavaServer Pages (JSP) file, such as the
JSPEmployee.jsp example that requests the database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.
<tsx:dbconnect id=“connection_id”

<userid>
<tsx:getProperty name=“request” property=request.getParameter(“userid”) />
</userid>
<passwd>
<tsx:getProperty name=“request” property=request.getParameter(“passwd”) />
</passwd>
url=“protocol:database_name:database_table”
driver=“JDBC_driver_name”>

</tsx:dbconnect>

where:
v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.
v userid

Represents a reference to the request parameter that contains the user ID. You must add the parameter
to the request object that passes to this JSP file. You can set the attribute and its value in the request
object, using an HTML form or a URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add the parameter to the
request object that passes to this JSP file. You can set the attribute and its value in the request object,
using an HTML form or a URL query string, to pass user-specified values.

Chapter 27. Developing web applications 1091

tsx:repeat tag JavaServer Pages syntax (deprecated):

The <tsx:repeat> tag repeats a block of HTML tagging.

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application
Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer
Pages Standard Tag Library (JSTL).

Use the <tsx:repeat> syntax to iterate over a database query results set. The <tsx:repeat> syntax iterates
from the start value to the end value until one of the following conditions is met:
v The end value is reached.
v An exception is thrown.

If an exception of the types ArrayIndexOutOfBoundsException or NoSuchElementException is created
before a block completes, output is written only for the iterations up to and not including the iteration
during which the exception was created. All other exceptions results in no output being written for that tag
instance.

This section describes the syntax of the <tsx:repeat> tag:
<tsx:repeat index="name" start="starting_index" end="ending_index">
</tsx:repeat>

where:
v index

Represents an optional name used to identify the index of this repeat block. The scope of the index is
NESTED. Its type must be integer.

v start

Represents an optional starting index value for this repeat block. The default is 0.
v end

Represents an optional ending index value for this repeat block. The maximum value is 2,147,483,647.

If the value of the end attribute is less than the value of the start attribute, the end attribute is ignored.

Combining tsx:repeat and tsx:getProperty JavaServer Pages tags (deprecated)

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application
Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer
Pages Standard Tag Library (JSTL).

The following code snippet shows you how to code these tags:
<tsx:repeat>
<tr>

<td><tsx:getProperty name="empqs" property="EMPNO" />
<tsx:getProperty name="empqs" property="FIRSTNME" />
<tsx:getProperty name="empqs" property="WORKDEPT" />
<tsx:getProperty name="empqs" property="EDLEVEL" />
</td>

</tr>
</tsx:repeat>

Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set (deprecated):

The <tsx:repeat> tag iterates over a results set. The results set is contained within a bean. The bean can
be a static bean, for example, a bean created by using the IBM WebSphere Studio database wizard, or a
dynamically generated bean, for example, a bean generated by the <tsx:dbquery> syntax.

1092 Developing WebSphere applications

Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere
Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from
the JavaServer Pages Standard Tag Library (JSTL).

The following table is a graphic representation of the contents of a bean called, myBean:

Table 114. Graphic representation of myBean.. myBean contents.

Column col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:
v The column names in the database table become the property names of the bean. The <tsx:dbquery>

section describes a technique for mapping the column names to different property names.
v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.
v The query results are in the rows. The <tsx:repeat> tag iterates over the rows, beginning at the start

row.

The following table compares using the <tsx:repeat> tag to iterate over a static bean, versus a dynamically
generated bean:

Table 115. Static Bean and <tsc:repeat> Bean example. Use this table to compare the two beans.

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data
Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getProperty name="myBean"

property="col1(abc)" />
</tsx:repeat>

Note:
v The bean (myBean.class) is a static bean.
v The method to access the bean properties is

myBean.get(property(index)).
v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You
can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean properties
row by row, beginning with the start row.

JSP file

<tsx:dbconnect id="conn"
userid="alice"passwd="test"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect >

<tsx:dbquery id="dynamic"
connection="conn" >
Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>
<tsx:getProperty name="dynamic"

property="col1(abc)" />
</tsx:repeat>

Note:
v The bean (dynamic) is generated by the <tsx:dbquery>

tag and does not exist until the syntax executes.
v The method to access the bean properties is

dynamic.getValue("property", index).
v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You
can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over the bean
properties row by row, beginning with the start row.

Chapter 27. Developing web applications 1093

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce the same output if all
indexed properties have 300 or fewer elements. If there are more than 300 elements, Examples 1 and 2
display all elements, while Example 3 shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The bean with the smallest
number of indexed properties restricts the number of times the loop repeats.
<table>
<tsx:repeat>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address" />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone" />
</tr></td>

</tsx:repeat>
</table>

Example 2 shows indexing, starting index, and ending index:
<table>
<tsx:repeat index=myIndex start=0 end=2147483647>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property=city(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) />

</tr></td>
</tsx:repeat>
</table>

Example 3 shows explicit indexing and ending index with implicit starting index. Although the index
attribute is specified, you can still implicitly index the indexed property city because the (myIndex) tag is
not required.
<table>
<tsx:repeat index=myIndex end=299>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t>
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone(myIndex)" />
</tr></td>

</tsx:repeat>
</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability is useful for
interleaving properties on two beans, or properties that have subproperties. In the example, two
<tsx:repeat> blocks are nested to display the list of songs on each compact disc in the user's shopping
cart.
<tsx:repeat index=cdindex>

<h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>
<table>
<tsx:repeat>

<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />
</td></tr>

</tsx:repeat>
</table>
</tsx:repeat>

1094 Developing WebSphere applications

Developing JSF files
Learn about JSF files.

JavaServer Faces
JavaServer Faces (JSF) is a user interface framework or application programming interface (API) that
eases the development of Java-based web applications.

WebSphere Application Server supports JavaServer Faces 2.0 at a runtime level. The JSF runtime also:

v Makes it easy to construct a user interface from a set of reusable user interface components

v Simplifies migration of application data to and from the user interface

v Helps manage user interface state across server requests

v Provides a simple model for wiring client-generated events to server-side application code

v Supports custom user interface components to be easily build and reused

Both the Sun Reference Implementation and Apache MyFaces implementation are shipped with the
product.

The Apache MyFaces JSF Implementation provides the foundation of the code used for the JSF support in
WebSphere Application Server. The version of the JSF runtime provided by the Application Server resides
in the normal runtime library location and is available to all web applications that use JSF APIs. Loading
the JSF servlet works in the same manner as if the run time was packaged with the web application. The
bundled version includes enhancements for better integration with the built-in annotation scanning and
other runtime components of WebSphere Application Server.

The specification-related classes (javax.faces.*) for JSF and the IBM modified version of the Apache
MyFaces JSF Implementation and the JSF Sun reference implementation are packaged in the Application
Server run time.

Typically, web applications that use this API/Framework embed the JSF API and implementation Java
archive (JAR) files within their web application archive (WAR) file. This practice is not required when these
web applications are deployed and run within WebSphere Application Server. Only the removal of these
JAR files along with any JSTL JAR files from the WAR file is required. However, because JavaServer
Faces 2.0 is a part of the Java Platform, Enterprise Edition (Java EE) platform, a web application does not
need to bundle a JavaServer Faces implementation when it runs on a web container that is Java EE
technology compliant. If a JavaServer Faces implementation is bundled with a web application, it is
ignored as the JavaServer Faces implementation provided by the platform always takes precedence.

The JSF run time for WebSphere Application Server does not support the use of a single class loader for
the entire application. This support is not available when the application contains multiple web modules
and one of those modules is a JSF module. A single class loader for the entire application is not supported
because the FacesConfig initialization requires a single class loader for each JSF module to perform the
initialization. Therefore, you must use multiple class loaders when the application contains multiple web
modules and at least one JSF module.

For using different implementations of JSF, the WebSphere Application Server JSF engine determines if
the SUN RI or Apache MyFaces is used from the application server run time. After the JSF engine
determines the implementation that is used, the correct listener class is registered with the web container.
You do not need to add the com.sun.faces.ConfigureListener or the
org.apache.myfaces.StartupConfigureListener to the web.xml file.

If you want to use a third party JSF implementation that is not shipped with the product, leave the
configuration set to MyFaces, add the third party listener to the web.xml file that is required and add the
third party implementation JAR files to the web module as an isolated shared library. Using an isolated
shared library, the web application version of the JSF or JSTL classes load before the Application Server.

Chapter 27. Developing web applications 1095

JavaServer Faces widget library (JWL)
JavaServer Faces widget library (JWL) is an IBM JSF-based web widget library that integrates widgets
from a number of sources. The IBM JSF-based web widget library is deprecated, however, you can obtain
the latest version from Rational Application Developer version 6 to work with JSF 1.2.

JWL includes the JSF components from Rational Application Developer except for the base JSF
components, which are included in the Application Server run time. This includes the IBM extended JSF
components and the extended FacesClient Component. JWL also extends JSF with client-side features for
rich browser-based experiences in the form of the FacesClient Component.

Important: JWL is not supported in pages using the JSF 2.0 Facelets format.

Note: You must update the JavaServer Faces widget library (JWL) libraries in JavaServer Faces Web
projects that are developed using Rational® Application Developer, Version 7.x with the latest
updates from Rational Application Developer before deploying WebSphere® Application Server.
Update Rational Application Developer with the latest updates, and update the JWL libraries in the
WEB_PROJECT/WEB-INF/lib folder.

JWL Java archive files

JWL is packaged into two Java archive (JAR) files, odc-jsf.jar and jsf-ibm.jar, which are located in the
${WAS_HOME}\optionalLibraries\IBM\jwl\2.0 directory.

To include JWL in your application, you can use the JWL shared library named JWLLib, which is created
at installation time. To assign the library to an application, see the topic, Using installed optional packages.

Configuring Portlet Bridge for JavaServer Faces
Use this task to configure IBM Portlet Bridge for JavaServer Faces (JSF) 2.0.

About this task

Portlet Bridge for JavaServer Faces is available as Version 8.0.0.2.

Procedure
1. Open the portlet.xml file and modify the portlet class for JSF 2.0 portlet bridge, as follows:
<portlet-class>com.ibm.faces20.portlet.FacesPortlet</portlet-class>
<init-param>
<name>com.ibm.faces.portlet.page.view</name>
<value>/TestProjectView.xhtml</value>

<init-param>

2. Open the faces-config.xml file and add the JSF 2.0 portlet bridge variable resolver, view handler, and
resource handler entry

<application>
<variable-resolver>com.ibm.faces20.portlet.PortletVariableResolver</variable-resolver>
<view-handler>com.ibm.faces20.portlet.FaceletPortletViewHandler</view-handler>
<resource-handler>com.ibm.faces20.portlet.httpbridge.PortletResourceHandler</resource-handler>

</application>

What to do next

If the portlet project has a custom portlet class, these changes are also necessary:

v Point the portlet-class entry in the portlet.xml file to the particular custom portlet class used.

v Modify the portlet class to extend the com.ibm.faces20.portlet.FacesPortlet class from the IBM Portlet
Bridge for JSF 2.0.

Configuring JavaServer Faces implementation
Use this task to specify which JavaServer Faces implementation to use. You can use Apache MyFaces 2.0
or the SUN Reference Implementation 1.2 of JSF, or your own implementation.

1096 Developing WebSphere applications

Before you begin

Ensure that your application is configured for JavaServer Faces (JSF) using the specific web.xml context
parameters for the implementation that you have chosen.

Attention: The JSF implementation is a server-wide configuration setting. Thus, if you have multiple
applications which require different JSF implementations, you must separate the applications into different
application servers or clusters, and specify the implementation by following the steps in this topic for each
application server or cluster. Alternatively, you can use an isolated shared library, as described for
third-party JSF implementations, as follows.

About this task

Note: The Application Server JSF engine determines if the SUN Reference Implementation (RI) 1.2 or
Apache MyFaces 2.0 is used from the Application Server run time. If either is used, the correct
listener class is registered with the web container. You do not need to add the
com.sun.faces.ConfigureListener or the org.apache.myfaces.StartupConfigureListener to your
web.xml file.

Be Aware: If you want to use a third-party JSF implementation that is not shipped with the product, then:

v Keep the configuration set to MyFaces.

v Add the third-party listener to the web.xml file that is required.

v Add the third-party implementation Java archive (JAR) files to the application as an isolated
shared library and associate it with your application.

You can also configure the JSF implementation on the Provide JSP reloading options for web modules
panel for application installation and update wizards.

Procedure

Configure the server or cluster to use the JSF implementation that you want. You can do this task using
the administrative console or the wsadmin tool.

v In the administrative console panel, click Applications > Application Types > WebSphere enterprise
applications > application_name > JSP and JSF options

Select one of the following implementations:

– Sun Reference Implementation 1.2 - Select this option to use the Sun Reference Implementation 1.2
JSF implementation.

– MyFaces 2.0 - Select this option to use the MyFaces 2.0 JSF implementation. This option is the
default JSF implementation.

v Using the wsadmin tool:

– An example of setting a single server to use the Sun RI 1.2 JSF implementation:
wsadmin>set server [$AdminConfig list ApplicationServer *server1*]
server1(cells/myNode01Cell/nodes/myNode01/servers/server1|server.xml#ApplicationServer_1183122130078)
wsadmin>$AdminConfig modify $server {{jsfProvider SunRi1.2}}

wsadmin>$AdminConfig save

– An example of setting a cluster to use the MyFaces 2.0 JSF implementation:
wsadmin>set cluster [$AdminConfig list ServerCluster]
cluster1(cells/myNode01Cell/nodes/myNode01/clusters/cluster1|cluster.xml#ServerCluster_1173916133721)
wsadmin>$AdminConfig modify $cluster {{jsfProvider MyFaces}}

wsadmin>$AdminConfig save

Chapter 27. Developing web applications 1097

Results

What to do next

Configure JSF engine parameters as necessary.

Configuring JSF engine parameters:
About this task

WebSphere Application Server does not support the modification of deployment descriptor extension
parameters through the administrative console or through administrative scripting.

To add, change or delete JSF engine configuration parameters, complete the following steps:

Procedure

1. Open the WEB-INF/web.xml file.

JSP engine configuration parameters are stored in a web module's configuration directory or in a web
modules's binaries directory in the WEB-INF/web.xml file. Open the WEB-INF/web.xml file from:

v The configuration directory, as in the following example: {WAS_ROOT}/profiles/profilename/config/
cells/cellname/applications/enterpriseappname/ deployments/deployedname/webmodulename

v The binaries directory if an application was deployed into WebSphere Application Server with the
flag "Use Binary Configuration" set to true. An example of a binaries directory is:
{WAS_ROOT}/profiles/profilename/installedApps/nodename/EnterpriseAppName/WebModuleName/

2. Edit the WEB-INF/web.xml file.

v To add configuration parameters, use the following format:
<context-param>

<description>descriptive text</description>
<param-name>parameter name</param-name>
<param-value>parameter value</param-value>

</context-param>

v To delete configuration parameters, either delete the line from the file, or enclose the statement with
<!-- --> tags.

3. Save the file.

4. Restart the Enterprise Application. It is not necessary to restart the server for parameter changes to
take effect. However, some JSP engine configuration parameters affect the Java source code that is
generated for a JSP. If such a parameter is changed, then you must retranslate the JSP files in the
web module to regenerate Java source. You can use the batch compiler to retranslate all JSP files in a
web module. The batch compiler uses the JSP engine configuration parameters that you have set in
the web.xml file, unless you specifically override them. The JSP engine configuration topic identifies the
parameters that affect the generated Java source.

Example

The following is a sample of the WEB-INF/web.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
id="WebApp_ID" version="2.5">
<display-name>Servlet 2.5 example</display-name>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>

1098 Developing WebSphere applications

<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
<context-param>

<param-name>javax.faces.CONFIG_FILES</param-name>
<param-value>/WEB-INF/faces-config.xml</param-value>

</context-param>
<context-param>

<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>
<context-param>

<param-name>com.ibm.ws.jsf.LOAD_FACES_CONFIG_AT_STARTUP</param-name>
<param-value>true</param-value>

</context-param>
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>
</web-app>

JSF engine configuration parameters:

In WebSphere Application Server, you can configure the JavaServer Faces (JSF) engine configuration
parameters for optimal performance in a production server environment and for the needs of developers in
a development environment.

The JSF engine parameters are case-sensitive. If the value specified for a parameter is composed of two
or more words separated by spaces, you must add quotation marks around the value.

JSF options using SUN RI

Table 116. JSF options using SUN RI. The table shows SUN RI parameter names, descriptions and default values.
SUN RI parameter name Description Default value

com.sun.faces.numberOfViewsInSession Specifies the number of views that are stored in the session when
Server-Side State Saving is used. If set to true while client-side state
saving is being used, reduces the number of bytes sent to the client
by compressing the state before it is encoded and written as a hidden
field.

15

com.sun.faces.numberOfLogicalViews Specifies the number of logical views that are stored in the session
when Server-Side State Saving is used.

15

com.sun.faces.enableHighAvailability If set to true while server-side state saving is used, a serialized
representation of the view is stored on the server. This provides
failover and server clustering support.

false

com.sun.faces.injectionProvider Defines an injection provider that is used for JSF annotations.

com.sun.faces.serializationProvider Defines a serialization provider that is used for serializing JSF objects
into session.

com.sun.faces.responseBufferSize Define the size of the response buffer for a JSF response. 1048

com.sun.faces.clientStateWriteBufferSize 8192

com.sun.faces.expressionFactory Specifies the default EL Expression Factory to use. org.apache.el.ExpressionFactoryImpl

com.sun.faces.clientStateTimeout The timeout value used for client side state saving. When the value
set has been reached then the state is lost.

infinite

com.sun.faces.displayConfiguration false

com.sun.faces.validateXml When set to true, tag library XML files and faces configuration XML
files using schema are validated during application start.

false

com.sun.faces.verifyObjects false

com.sun.faces.forceLoadConfiguration false

com.sun.faces.disableVersionTracking false

com.sun.faces.enableHtmTagLibValidator false

Chapter 27. Developing web applications 1099

Table 116. JSF options using SUN RI (continued). The table shows SUN RI parameter names, descriptions and
default values.
SUN RI parameter name Description Default value

com.sun.faces.prerefXHTML false

com.sun.faces.compressViewState true

com.sun.faces.compressJavaScript true

com.sun.faces.sendPoweredByHeader true

com.sun.faces.enableJSStyleHiding false

com.sun.faces.writeStateAtFormEnd true

com.sun.faces.enableLazyBeanValidation true

com.sun.faces.enableLoadBundle11Compatibility false

com.sun.faces.enableRestoreView11Compatibilty false

com.sun.face.serializeServerState false

com.ibm.ws.jsf.JSP_UPDATE_CHECK This parameter monitors Faces JavaServer Pages (JSP) files for
modifications and synchronizes a running server with the changes
without restarting the server. If this parameter is set to false or
removed from the deployment descriptor, any changes made to Faces
JSP files might not be seen by the server until it is restarted. Set this
parameter to true while developing and debugging the Faces JSP files
to improve the performance of the development environment.

com.ibm.ws.jsf.JSF_IMPL_CHECK Set the com.ibm.ws.jsf.JSF_IMPL_CHECK parameter to true to check
at application restart if the SUN RI and MyFaces implementations
were switched. If the implementation has switched, then the runtime
removes any generated JSP files from the temp directory and the JSP
file is retranslated the next time it is requested.

com.ibm.ws.jsf.associateLabelWithId The com.ibm.ws.jsf.associateLabelWithId custom property changes the
rendering behavior for both the <h:selectOneRadio> and
<h:selectManyCheckbox> components. The label no longer wraps the
input element. Instead, each input element has a unique ID and the
label is associated with that ID used for that attribute. Define and set
the com.ibm.ws.jsf.associateLabelWithId context parameter to true in
the web.xml file.

Use the following code as an example.

<context-param>
<description>
Set to true to explicitly associate labels
with their input elements for select one
radio buttons and select many check box lists.
</description>
<param-name>com.ibm.ws.jsf.associateLabelWithId
</param-name>
<param-value>true</param-value>
</context-param>

com.ibm.ws.jsf.disableEnqueuedMessagesWarning The com.ibm.ws.jsf.disableEnqueuedMessagesWarning custom
property disables the FacesMessage(s) have been enqueued, but may
not have been displayed warning message. When this property is set
to true in the web.xml file, this warning message is not included in the
SystemOut.log file .
gotcha: This context parameter only applies to JSF applications that
use the Sun Reference Implementation (RI) for JSF implementation.
Note: This topic references one or more of the application server log
files. As a recommended alternative, you can configure the server to
use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log,
trace.log, and activity.log files on distributed and IBM i systems.
You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and
trace information using the LogViewer command-line tool from your
server profile bin directory. See the information about using HPEL to
troubleshoot applications for more information on using HPEL.

Use the following code as an example of how to define and set the
com.ibm.ws.jsf.disableEnqueuedMessagesWarning context parameter
to true in the web.xml file.

<context-param>
<description>
Set to true to disable the following warning
message:
FacesMessage(s) have been enqueued, but might
not have been displayed
</description>
<param-name>
com.ibm.ws.jsf.disableEnqueuedMessagesWarning
</param-name>
<param-value>true</param-value>
</context-param>

1100 Developing WebSphere applications

Table 116. JSF options using SUN RI (continued). The table shows SUN RI parameter names, descriptions and
default values.
SUN RI parameter name Description Default value

com.ibm.ws.jsf.disableStylePassthroughForCheckboxList This custom property prevents passing the style information into the
items in the check box list. This property defaults to false to maintain
the current behavior. Define and set the
com.ibm.ws.jsf.disableStylePassthroughForCheckboxList context
parameter to true in the web.xml file prevent passing style information
into items in the check box list. Use the following code as an example.

<context-param>
<description>
Set to true if style information should not
be passed into items of check box list
</description>
<param-name>
com.ibm.ws.jsf.disableStylePassthroughForCheckboxList
</param-name>
<param-value>true</param-value>
</context-param>

com.ibm.ws.jsf.DISABLE_UIDATA_NESTED_CHECK The com.ibm.ws.jsf.DISABLE_UIDATA_NESTED_CHECK custom
property determines whether unique IDs are generated for UIData
components that are nested inside iterator components that are not
UIData components. When this property is set to true in the web.xml
file, unique IDs are generated for UIData components even if they are
nested inside iterator components that are not UIData components.

When this property is set to false, if a JSF dataTable component is
nested within a component that does not extend UIData, such as the
Java Widget Library (JWL) dataIterator component, the IDs that are
generated for the rows do not increment properly. This situation can
result in duplicate IDs being assigned to multiple JSF components.

Use the following code as an example of how to define and set the
com.ibm.ws.jsf.DISABLE_UIDATA_NESTED_CHECK context
parameter to true in the web.xmlfile.

<context-param>
<description>
Set to true to enable unique IDs to be
generated for UIData components evenif they
are nested inside iterator components that are
not UIData components.
</description>
<param-name>
com.ibm.ws.jsf.DISABLE_UIDATA_NESTED_CHECK
</param-name>
<param-value>true</param-value>
</context-param>

com.ibm.ws.jsf.loadExternalDtd When parsing the faces-config.xml file from included libraries, the
Faces configuration parser attempts to load the DTD even when
validation is disabled. The Faces configuration parser uses a
SAXParser to read the faces-config.xml. The default behavior of the
SAXParser parser is to always load the DTD even if validation is
disabled. This behavior can lead to errors initializing the Faces Servlet
on systems isolated from the internet.

In your web.xml file, set the com.ibm.ws.jsf.loadExternalDtd context
paramater to false to have the Faces configuration parser set the
"http://apache.org/xml/features/nonvalidating/load-external-dtd" feature
to false.

<context-param>
<description>
When set to false, this property sets a
feature on the SAX parser to prevent loading
the external DTD.
</description>
<param-name>com.ibm.ws.jsf.loadExternalDtd</param-name>
<param-value>false</param-value>
</context-param>

enableRestoreView11Compatibility A JSF 1.2 application might create the ViewExpiredException
exception under load when using the Sun Reference Implementation.
If your view is not found in session, you can use a compatibility mode
in JSF to create a new view. This can have adverse behaviors
because it is a new view and items that are usually in the view, such
as state, will no longer be available. Use the following code as an
example to set the com.sun.faces.enableRestoreView11Compatibility
context parameter to true in the web.xml file. This is only applicable
when the Sun Reference Implementation is in use.

<context-param>
<param-name>
com.sun.faces.enableRestoreView11Compatibility
</param-name>
<param-value>true</param-value>
</context-param>

Chapter 27. Developing web applications 1101

Table 116. JSF options using SUN RI (continued). The table shows SUN RI parameter names, descriptions and
default values.
SUN RI parameter name Description Default value

enableViewStateIdRendering The com.sun.faces.enableViewStateIdRendering custom property
controls the rendering of the id attribute of the javax.faces.ViewState
hidden field. Use the following code as an example to set the
com.sun.faces.enableViewStateIdRendering context parameter to true
in the web.xml file.

<context-param>
<param-name>com.sun.faces.enableViewStateIdRendering
</param-name>
<param-value>true</param-value>
</context-param>

JSF options for MyFaces

Table 117. JSF options for MyFaces. The table shows JSF parameter names, descriptions and default values.
JSF parameter name Description Default value

org.apache.myfaces.RESOURCE_VIRTUAL_PATH /faces/myFacesExtensionResource

org.apache.myfaces.PRETTY_HTML If this value is true, rendered HTML code is formatted
so that it is human-readable. Additional line separators
and white space are written that do not influence the
HTML code.

true

org.apache.myfaces.ALLOW_JAVASCRIPT This parameter tells MyFaces if javascript code is
allowed in the rendered HTML output. If javascript is
allowed, command_link anchors have javascript code
that submits the corresponding form. If javascript is not
allowed, the state saving information and nested
parameters are added as URL parameters.

true

org.apache.myfaces.DETECT_JAVASCRIPT false

org.apache.myfaces.AUTO_SCROLL If true, a javascript function is rendered that can restore
the former vertical scroll on every request. This feature
is convenient if you have pages with long lists and you
do not want the browser page to jump to the top of the
page if you trigger a link or button action that stays on
the same page.

false

org.apache.myfaces.ADD_RESOURCE_CLASS org.apache.myfaces.renderkit.html.util.DefaultAddResource

org.apache.myfaces.CHECK_EXTENSIONS_FILTER This parameter checks for a properly-configured
Extensions-Filter if it is needed by the web application.

true

org.apache.myfaces.COMPRESS_STATE_IN_SESSION Set this option to true to compress the serialized state
before it is written to the session. If this option is set to
false, the state is not compressed. This option is only
applicable if the state saving method is set to server
and if org.apache.myfaces.SERIALIZE_STATE_IN
_SESSION is set to true.

true

org.apache.myfaces.NUMBER_OF_VIEWS_IN_SESSION Defines the number of the latest views that are stored
in session. This option is only applicable if the state
saving method is set to server.

20

org.apache.myfaces.READONLY_AS_DISABLED_FOR
_SELECTS

true

org.apache.myfaces.SERIALIZE_STATE_IN_SESSION Set this option to true to serialize the state to a byte
stream before it is written to the session. If this option
is set to false, the state is not serialized to a byte
stream. This option is only applicable if the state saving
method is set to server.

true

org.apache.myfaces.STRICT_JSF_2_CC_EL_RESOLVER Ensures that, when a getType() is called over the
source EL expression, components working with
chained EL expressions can use the metadata
information that composite:attribute added. Setting this
property to true disables this function.

false

com.ibm.ws.jsf.disablealternatefacesconfigsearch Disables MyFaces searching for META-INF/*.faces-
config.xml for only the web application that this context
parameter is set on. If the context parameter and the
web container custom property are set, the context
parameter takes precedence.

false

1102 Developing WebSphere applications

Table 117. JSF options for MyFaces (continued). The table shows JSF parameter names, descriptions and default
values.
JSF parameter name Description Default value

org.apache.el.parser.COERCE_TO_ZERO Allows for the expression language (EL) that
WebSphere Application Server uses to coerce null and
empty string integer values to a 0 value or for NOT
allowing a coerce to a 0 value and retaining the null or
empty string integer. The default is true and permits a
null or empty string integer value to be coerced to a 0
value.
Important: In order to keep a null value from being
coerced to a 0 value in a MyFaces application, the
following context parameter in the web.xml of the
application: should be set to ensure that all possible
instances of an empty or null value are inhibited from
being coerced to zero.

<context-param>
<param-name>javax.faces.
INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL
</param-name>
<param-value>true</param-value>
</context-param>

You set the org.apache.el.parser.COERCE_TO_ZERO
property using the administrative console.

1. Expand Servers > Select WebSphere Application
Servers > Click on the appropriate server from the
list.

2. Under Server Infrastructure, expand Java and
Process Management > Click on Process definition.

3. Under Additional Properties, click Java virtual
Machine.

4. Under Additional Properties, click Custom
properties.

5. Click New and add the
org.apache.el.parser.COERCE_TO_ZERO property
with the value of false if you do NOT want a null
value coerced to zero.

6. Click Save to save the change and restart the
WebSphere Application Server to ensure the
change takes place.

true

org.apache.myfaces.DEBUG_PHASE_LISTENER Enables the DebugPhaseListener in the Development
Project Stage.

true

JSF options using SUN RI or MyFaces

The following options are valid for both the SUN RI and the MyFaces implementations.

Table 118. JSF options using SUN RI or MyFaces. The table shows JSF parameter names, descriptions and default
values.
JSF parameter name Description Default value

javax.faces.STATE_SAVING_METHOD Specifies the location where state information is
saved. Valid values are 'server', which is saved
in HttpSession, and 'client', which is saved as a
hidden field in the form.

server

javax.faces.CONFIG_FILES Use this parameter to specify a comma-delimited
list of context-relative resource paths under
which the JSF implementation looks for
application configuration resources before
loading a configuration resource named
/WEB-INF/facesconfig.xml, if a resource exists.

n/a

javax.faces.DEFAULT_SUFFIX Specifies the default suffix for extension-mapped
resources that contain JSF components.

.jsp

javax.faces.LIFECYCLE_ID Use this parameter to configure an alternate life
cycle ID.

n/a

Chapter 27. Developing web applications 1103

Table 118. JSF options using SUN RI or MyFaces (continued). The table shows JSF parameter names, descriptions
and default values.
JSF parameter name Description Default value

com.ibm.ws.jsf.JSF_IMPL_CHECK Specifies that the JSP files in a web module
must be recompiled when the application is
restarted because the implementation of JSF
that is used has changed. After the application is
restarted, the next time a JSP file is accessed
for this module the JSP file is recompiled against
the selected implementation of JSF specified in
the administration console. Subsequent calls to
the JSP file do not recompile. The default setting
for this option is false. Use this option for
development and not in a production
environment.

n/a

Sun RI context parameters that have an equivalent behavior in MyFaces

Table 119. Sun RI context parameters and equivalent MyFaces behavior. The table shows SUN RI parameters
names and MyFaces equivalent.

SUN RI parameter name Description
RI
default MyFaces equivalent

MyFaces
default

com.sun.faces.numberOfViewsInSession Defines the maximum number of
serialized views stored in the
session. Works with server state
saving.

15 org.apache.myfaces.NUMBER_OF_VIEWS_IN_SESSION 20

com.sun.faces.compressViewState When true the view is
compressed after it is serialized
and before base64 encoded.
Works with client state saving. As
of 1.2_09, this option also affects
server-side state saving when
com.sun.faces.serializeServerState
is set to true (this has a large
impact of the size of the state in
the session when using this
option, at the expense of more
CPU.)

true org.apache.myfaces.COMPRESS_STATE_IN_CLIENT for client-side
state saving or
org.apache.myfaces.COMPRESS_STATE_IN_SESSION for
server-side state saving

false for
client-side
state
saving, true
for
server-side
state saving

com.sun.faces.validateXml When true JSF validates the
configuration files.

false org.apache.myfaces.VALIDATE false

com.sun.faces.injectionProvider This parameter specifies a class
that implements the
InjectionProvider.

n/a injection provider is provided by the WebSphere Application Server run
time

n/a

com.sun.faces.serializationProvider This parameter specifies a class
that implements the
SerializationProvider SPI. This
implementation represents a hook
the JSF implementation uses to
enable using alternate
Serialization implementations.

n/a org.apache.myfaces.SERIAL_FACTORY - class must implement
org.apache.myfaces.shared_impl.util.serial.SerialFactory SPI instead
of com.sun.faces.spi.SerializationProvider

n/a

com.sun.faces.enabledJSStyleHiding If true, inline JavaScript rendered
by the HTML ResponseWriter
implementation is rendered so
that the script is hidden from older
browser implementations.

false org.apache.myfaces.WRAP_SCRIPT_CONTENT_WITH_XML
_COMMENT_TAG

true

com.sun.faces.serializeServerState If enabled the component state
(not the tree) is serialized before
being stored in the session. This
might be desirable for applications
that have issues with view state
being sensitive to model changes.

false org.apache.myfaces.SERIALIZE_STATE_IN_SESSION true

Defining an extension for the registry filter
The registry filter specifies if an extensions is applicable to all registry instances or to specified instances.

Before you begin

You must have an extensible application to define an extension for the registry filter.

1104 Developing WebSphere applications

About this task

Complete the following steps to filter out extensions for an application.

Procedure
1. Define an extension for the registry filter extension point for a named registry instance in the

plugin.xml file.
<extension point=“org.eclipse.extensionregistry.RegistryFilter”>
<filter name=“AdminConsole*”

class=“com.ibm.ws.admin.AdminConsoleExtensionFilter”/>
</extension>

2. Add the filter implementation to the application by creating a class to implement the
com.ibm.workplace.extension.IExtensionRegistryFilter interface.
package com.ibm.ws.admin;
import com.ibm.workplace.extension.IExtensionRegistryFilter;
public class AdminConsoleExtensionFilter implements IExtensionRegistryFilter {

:
}

3. The extensible application declares the registry name by defining an extension for the RegistryInstance
extension point. This way, the registry can prepare an IExtensionRegistry instance and put it in JNDI in
advance.
<extension point=“org.eclipse.extensionregistry.RegistryInstance”>

<registry name=“AdminConsole”/>

</extension>

4. The extensible application obtains a named instance of the registry to activate any associated filters:
InitialContext ic = new InitialContext();
String lookupName = “services/extensionregistry/AdminConsole”;
IExtensionRegistry reg = (IExtensionRegistry)ic.lookup(lookupName);

Application extension registry
WebSphere Application Server has enabled the Eclipse extension framework for applications to use.
Applications are extensible when they contain a defined extension point and provide the extension
processing code for the extensible area of the application.

An application can be plugged in to another extensible application by defining an extension that adheres to
what the target extension point requires. The extension point can find the newly added extension
dynamically and the new function is seamlessly integrated in the existing application. It works on a cross
Java Platform, Enterprise Edition (Java EE) module basis. The application extension registry uses the
Eclipse plug-in descriptor format and application programming interfaces (APIs) as the standard
extensibility mechanism for WebSphere applications. Developers that build WebSphere application
modules can use WebSphere Application Server extensions to implement their functionality to an
extensible application, which defines an extension point. This is done through the application extension
registry mechanism.

The architecture of extensible Java EE applications follow a modular design to add new functional
modules or to replace an existing module, particularly by those outside of its core development team. Each
module is a pluggable unit, or plug-in that is either deployed into the portal or removed from the Java EE
application using a deployment tool that is based upon standard Java EE and portal web module
deployment tooling. A plug-in module describes where it is extensible and what capability it provides to
other plug-ins in the plugin.xml file. The plugin.xml manifest file can be created with a simple text editor
or in Eclipse's Plug-in Development Environment (PDE), which provides a simplified view of the same
underlying XML data.

Chapter 27. Developing web applications 1105

WebSphere Application Server implementations to the Eclipse model

Some minor differences exist in the WebSphere Application Server implementation of this architecture
because of platforms, specifically, Eclipse Workbench or Java 2 Platform, Enterprise Edition (Java EE).
The highlights of the WebSphere Application Server implementation include:

v Implementing all of the extension registry-related interfaces from Eclipse 3.6 and later.

v The identical plugin.xml syntax, however, some attributes are not used, for example, <runtime>.

v The discovery and addition of plug-ins to the registry, when the containing Java EE module starts, and
plug-ins are dismissed and removed from the registry when the containing Java EE module stops.

v Access to an IExtensionRegistry object is through the Java Naming and Directory Interface (JNDI),
instead of by using the Platform.getExtensionRegistry method in the Eclipse Workbench.

v Filtering capability is available by providing a filter implementation and using a named registry instance
that finds and invokes the filter as necessary. See the developer API documentation for the
IExtensionRegistryFilter interface for more details.

Available Eclipse 3.6 interfaces

The following Eclipse 3.6 and later interfaces are available on WebSphere Application Server:

v Extension registry API

v Extension point API

v Extension API

v Configuration element API

v Registry change listener API

v Registry change event API

v Extension delta API

v Status API

The following interfaces are recognized and processed the same as in Eclipse:

v Executable extension API

v Executable extension factory API

Application extension registry filtering
The extension registry exposes the registry filter extension point. The registry filter removes elements
within the extension registry for client applications. Extensions that are attached to the registry filter
extension point and that also implement this interface are called as necessary when a client operates on a
named registry instance that matches the target specification.

You can create a filter extension for all registry instances or for named instances that are specified by the
extension. In the first case, the filter is applied to all instances of the extension registry, and all client
applications use the filter without requesting the filter. In the latter case, a client application must predefine
the registry name by defining an extension, called RegistryInstance, which is another extension point that
is exposed by the extension registry. After the registry name is defined, the client can obtain the named
registry instance and use that registry instance. The filter extension is invoked by the named registry
instance as necessary.

Registry filter API

Supported arguments include:

org.eclipse.core.runtime.IExtension[]
doFilter(org.eclipse.core.runtime.IExtension[] extensions)

This code returns an array of IExtension objects that are included in the valid extension list.

1106 Developing WebSphere applications

Registry instance extension point

The extension registry exposes the RegistryInstance . The instance name is declared in the application's
plugin.xml file, and the application requests an registry instance for that name at runtime.

plugin.xml file
A plug-in is described in an XML manifest file, called plugin.xml, which is part of the plug-in deployment
files. The manifest file tells the portal application’s runtime what it needs to know to register and activate
the plug-in. The manifest file essentially serves as the contract between the pluggable component and the
portal application’s runtime. Although the WebSphere Application Server plugin.xml closely follows the
one provided for the Eclipse workbench, it does diverge from the Eclipse workbench in several places as
outlined below.

Location

The plugin.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories
that exist for a web application or when included in the Web application archive file.. The plugin.xml file
must reside in the root directory when theplugin.xml file is placed in an Enterprise JavaBeans Java
archive (JAR) file or shared library JAR file. The extension registry service includes the plugin.xml file as
the participating components are loaded and started on the application server.

Usage notes
v Is this file read-only?

No
v Is this file updated by a product component?

???
v If so, what triggers its update?

Rational Application Developer updates the web.xml file when you assemble web components into a
web module, or when you modify the properties of the web components or the web module.

v How and when are the contents of this file used?

WebSphere Application Server functions use information in this file during the configuration and
deployment phases of web application development.

v The manifest markup definitions below make use of various naming tokens and identifiers. To eliminate
ambiguity, the following are productions rules for these naming conventions. In general, all identifiers
are case-sensitive.
SimpleToken := sequence of characters from (’a-z’,’A-Z’,’0-9’)
ComposedToken := SimpleToken | (SimpleToken ’.’ ComposedToken)
PlugInId := ComposedToken
PlugInPrereq := PlugInId
ExtensionId := SimpleToken
ExtensionPointId := SimpleToken
ExtensionPointReference := ExtensionPointId | (PlugInId ’.’ ExtensionPointId)

Sample file entry

The entire plug-in manifest DTD is as follows. XML Schema is not used to define the manifest since the
current Eclipse tooling for plug-in’s requires a DTD. The XML DTD construction rule element* means zero
or more occurrences of the element; element? means zero or one occurrence of the element; and
element+ means one or more occurrences of the element.
<?xml encoding="US-ASCII"?>

<!ELEMENT plugin (requires?, extension-point*, extension*)>
<!ATTLIST plugin

name CDATA #IMPLIED
id CDATA #REQUIRED
version CDATA #REQUIRED
provider-name CDATA #IMPLIED

Chapter 27. Developing web applications 1107

>
<!ELEMENT requires (import+)>
<!ELEMENT import EMPTY>
<!ATTLIST import

plugin CDATA #REQUIRED
version CDATA #IMPLIED
match (exact | compatible | greaterOrEqual) #IMPLIED

>
<!ELEMENT extension-point EMPTY>
<!ATTLIST extension-point

name CDATA #IMPLIED
id CDATA #REQUIRED
schema CDATA #IMPLIED

>
<!ELEMENT extension ANY>
<!ATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED

>

WebSphere Application Server differences

The plugin.xml file closely follows the plugin.xml file provided for the Eclipse workbench. However it
diverges within the following elements.

The plugin element
The plugin element provided in this manifest does not contain class attributes. The class attribute
is unnecessary since the plug-in mechanism does not require the plug-in developer to extend or
use any specific classes as is required by the Eclipse workbench. Also, the plugin element does
not contain a runtime element since standards such as J2EE that already define the location of
runtime libraries for the applications.

The import element
The requires element does not contain export attribute since J2EE modules are encouraged to be
self-contained to improve manageability. In addition to eliminating the export attribute, the match
attribute has an option for a greater than or equal to match for versions (greaterOrEqual).

The extension-point element
The extension-point element has the name attribute as optional since it has no real use in this
J2EE implementation.

you can find details regarding the plug-in manifest in the Eclipse documentation, under Platform Plug-In
Developer Guide>Other reference information>Plug-in manifest.

The following is an example of how adding a link to an existing page can be accomplished by an
extension point. The plug-in manifest of this plug-in declares an extension point (linkExtensionPoint) and
an extension to this extension point (linkExtension). The plug-in declaring the extension point does not
need to be the plug-in that implements the extension point. Another plug-in can also define an extension to
the link extension point in its plug-in manifest by including the contents of the <extension> and
</extension> tags in its manifest.
<?xml version="1.0"?>
<!--the plugin id is derived from the vendor domain name -->
<plugin

id=”com.ibm.ws.console.core”
version=”1.0.0”
provider-name=”IBM WebSphere”>

<!--declaration of prerequisite plugins-->
<requires>

<import plugin=”com.ibm.data” version=”2.0.1” match=”compatible”/>
<import plugin=”com.ibm.resources” version=”3.0” match=”exact”/>

1108 Developing WebSphere applications

</requires>

<!--declaration of link extension point -->
<extension-point

id=”linkExtensionPoint”
schema=”/schemas/linkSchema.xsd”/>

<!--declaration of an extension to the link extension point -->
<extension

point=”com.ibm.ws.console.core.linkExtensionPoint”
id=”linkExtension”>

<link
label=”Example.displayName”
actionView=”com.ibm.ws.console.servermanagement.forwardCmd.do?

forwardName=example.config.view&
lastPage=ApplicationServer.config.view”>

</link>
</extension>
</plugin>

Contexts and Dependency Injection (CDI)
Learn about Contexts and Dependency Injection (CDI).

Developing applications that use Contexts and Dependency Injection (CDI)
Use this task to provide a summary of the WebSphere Application Server extensions that you can use to
develop servlets.

About this task

Several WebSphere Application Server extensions are provided for enhancing your servlets. This task
provides a summary of the extensions that you can use.

Procedure
1. Review the supported specifications.

Create Java™ components, referring to the CDI specifications. Place a beans.xml file in the WEB-INF
directory of the WAR module, or META-INF directory of a JAR file, so the container identifies it as a
bean deployment archive.

2. Use your favorite integrated development environment (IDE), or a text editor, to develop or migrate
code artifacts that meet the specifications.

3. Test the code artifacts.

What to do next

Assemble your code artifacts into a web module using assembly tools as a prerequisite to deploying the
code to the application server.

Contexts and Dependency Injection (CDI)
Contexts and Dependency Injection for the Java EE platform (CDI) is a JSR 299 implementation that is
based on Apache OpenWebBeans.

CDI is activated in an application by the presence of a beans.xml file inside that module, as defined by the
JSR 299 specification. You can find the beans.xml file in the WEB-INF directory of a web archive (WAR) or
META-INF directory of other types of archives. When activated, the container provides services such as:

v Context management

v Type-safe dependency injection: A CDI-managed bean is instantiated and injected as needed.

Chapter 27. Developing web applications 1109

v Decorators, which implement one or more bean interfaces and can contain business logic. Decorators
are disabled by default. You can have multiple decorators per bean and order is defined by the
beans.xml file.

v Interceptor bindings. Interceptors, which are enabled manually in the beans.xml file, are bound using an
interceptor binding type.

v Event model

v Integration into JavaServer Faces (JSF) and JavaServer Pages (JSP) files using the Expression
Language (EL)

The specification-related API classes for JSR 299 and JSR 330 and IBM modified implementation classes
that are based on Apache OpenWebBeans are packaged with the application server runtime environment.

Although the WebSphere Application Server CDI implementation is based on Apache OpenWebBeans,
there are some changes and additions on top of OpenWebBeans to support integration with the server run
time:

v Integration with other Java Platform, Enterprise Edition (Java EE) containers in WebSphere Application
Server that support injectable components.

v ScannerService implementation that uses the WebSphere Application Server byte code scanner.

v Direct use of WebSphere Application Server Enterprise JavaBeans (EJB) metadata for determining EJB
types.

v Automatic registration of Servlet Listeners, Filters, Interceptors for CDI applications so these no longer
must be added by each application.

v WebSphere Application Server-specific implementations of many OpenWebBeans Service Programming
Interfaces (SPI), such as ResourceInjectionService, TransactionService, failover service, and so on.

Important: Container-managed transactions and security are not provided by CDI.

Contexts and Dependency Injection custom properties:

WebSphere Application Server Contexts and Dependency Injection (CDI) implementation is based on
OpenWebBeans, which is configurable through the openwebbeans.properties file.

To specify CDI custom properties, place the openwebbeans.properties file inside the META-INF/
openwebbeans directory of your application. Properties that are not listed below, such as those that control
the lifecycle and services, should remain at the default value for the application server. See the following
list of some of the available CDI custom properties:

org.apache.webbeans.conversation.Conversation.periodicDelay:

Specifies a delay in milliseconds. Use the conversation periodic delay custom property to search for and
delete unused conversations.

Value Default

integer 15000

org.apache.webbeans.application.jsp:

Specifies that an application is a full JavaServer Pages (JSP) application. Specify true if you want to add
the JSP ELResolver class to the application.

Value Default

true true

1110 Developing WebSphere applications

org.apache.webbeans.useOwbSpecificXmlConfig:

Specify true if you want to use OpenWebBeans-specific beans.xml files for the application. The default
value is false, which is the portable specification beans.xml format.

Value Default

true false

org.apache.webbeans.fieldInjection.useOwbSpecificInjection:

Specify true if you want to use OpenWebBeans-specific injection for the application. The default value is
false, which is the portable specification behavior.

Value Default

true false

org.apache.webbeans.application.useJSF2Extensions:

Specify true to enable JavaServerFaces (JSF) 2.0-based CDI extensions.

Value Default

true false

org.apache.webbeans.application.supportsConversation:

Specify true to support conversation scopes in the application.

Value Default

true true

CDI integration with JavaServer Faces:

Contexts and Dependency Injection (CDI) primarily integrates with JavaServer Faces (JSF) through the
Expression Language (EL). It enables CDI beans to be exposed through the unified EL-to-JSF
components. It also provides a built-in context for conversation scope that is active during standard JSF
life cycle phases.

As part of the WebSphere Application Server integration with CDI containers, several JSF components are
automatically registered for CDI applications, including:

v EL Resolver

v Phase Listener

v View Handler

v Application Factory

Only the default JSF implementation (based on MyFaces) is supported for use with CDI.

Contexts and Dependency Injection (CDI) integration with EJB container:

The CDI specification enhances the EJB component model with contextual life cycle management.

Chapter 27. Developing web applications 1111

Relationship of the CDI to the EJB specification

The EJB specification defines a programming model for application components that access transactional
resources in a multi-user environment. Concerns, such as role-based security, transaction demarcation,
concurrency, and scalability are specified declaratively using annotations and XML deployment descriptors
that are enforced by the EJB container at run time. EJB components might be stateful, but are not by
nature, contextual.

The following session bean instances are obtained using dependency injection:

v Contextual

v Bound to a life cycle context

v Available to other instances that launch in that context

v Container creates an instance when needed

v Container destroys an instance when context ends

The WebSphere Application Server CDI container performs dependency injection on all session and
message-driven bean instances, even instances that are not contextual instances. WebSphere Application
Server CDI supports injection of CDI beans inside enterprise beans and vice versa.

Usage

Note: Use the following best practices when injecting enterprise beans:

v Use the @Inject method for contextual injection of local session beans.

v Use the @EJB method for remote session beans

See the following examples of using the @EJB method in CDI:

Define producers making the EJB available for non-contextual injection:
@Produces @EJB PaymentService paymentService;

Consume the injected types in other CDI beans:
@Inject PaymentService myPaymentService

Practical considerations

You can define CDI-style interceptors with interceptor bindings and decorators enterprise beans.
Interceptors are declared using @Interceptors methods or in ejb-jar.xml files, which are called before
interceptors and are declared using interceptor bindings. Interceptors are called before decorators.

WebSphere Application Server supports failover (activation and passivation) of CDI beans and enterprise
beans, along with their interceptors and decorators. EJB failover support with CDI only works for stateful
session beans and requires the same configuration as stateful session bean failover. See the stateful
session bean failover for the EJB container topic for more information. Configure EJB failover with web
HTTP session failover. See the “Configuring for database session persistence” and the “Configuring
memory-to-memory replication for the peer-to-peer mode (default memory-to-memory replication)” topics
for more information. Except for abstract decorators, failover services are based on currentWebSphere
Application Server failover providers. Web session failover and EJB stateful session bean failover and
configured separately.

When a contextual (@Injected) instance of an EJB container is destroyed as a result of going out of
scope, and if the underlying EJB container was not already removed by direct invocation of a remove
method by the application, the WebSphere Application Server CDI container removes the stateful session
bean.

1112 Developing WebSphere applications

The WebSphere Application Server CDI container removes the stateful session bean when:

v You use the @Inject method to create a contextual injection instance and that instance in an EJB
container is destroyed as a result of going out of scope.

v The underlying EJB container was not already removed by direct invocation of a remove method by the
application.

You must also consider the scope and state propagation of CDI beans. The request and application scope
CDI beans maintain state in their respective contexts across the web and EJB containers. For instance, a
request-scoped CDI bean injected in a servlet holds its state when a business method on stateful session
enterprise bean accesses the same request-scoped bean.

Developing servlet applications using asyncrhonous request
dispatcher

Developing servlet applications using asynchronous request dispatcher
Web modules can dispatch requests concurrently on separate threads. Requests can be dispatched by the
server or client.

Before you begin

For additional information about the AsyncRequestDispatcherConfig and the AsyncRequestDispatcher
interfaces, review the com.ibm.websphere.webcontainer.async package in the application programming
interfaces (API) documentation. The generated API documentation is available in the information center
table of contents from the path Reference > APIs - Application Programming Interfaces.

Review the asynchronous request dispatcher application (ARD) design considerations topic before
completing the following steps.

About this task

Concurrent dispatching can improve servlet response time. If operations are dependant on each other, do
not enable asynchronous request dispatching, therefore, select Disabled. Concurrent dispatching might
result in errors when operations are dependant. Select Server side to enable the server to aggregate
requests dispatched concurrently. Select Client side to enable the client to aggregate requests dispatched
concurrently.

Procedure
1. Logically separate resource intensive operations.

2. Develop servlets that use an asynchronous request dispatcher to include these operations.

3. Enable asynchronous request dispatching on an application server.

4. Deploy the application in an application server that has asynchronous request dispatching enabled.

5. Select an aggregation type for the application that needs ARD.

6. Optional: Configure the AsyncRequestDispatcherWorkManager work manager that is used for the
request dispatch threads.

7. Restart the application server.

What to do next

Restart the modified applications if already installed or start newly installed applications to enable ARD on
each application.

Chapter 27. Developing web applications 1113

Assembling web applications

Assembling web applications
Assemble a web module to contain servlets, JavaServer Pages (JSP) files, and related code artifacts.
(Group enterprise beans, client code, and resource adapter code in separate modules). After assembling a
web module, you can install it as a stand-alone application or combine it with other modules into an
enterprise application.

Before you begin

This topic assumes that you have created and unit tested Servlets and JavaServer Pages (JSP) files and
other web components that you want to assemble in an enterprise application and deploy onto an
application server.

About this task

Use an assembly tool to assemble a web module in any of the following ways:
v Import an existing web module (WAR file).
v Create a new web module.
v Copy code artifacts (such as servlets) from one web module into a new web module.

Although you can input various properties for web archives, available properties are specific to the Servlet,
JSP, and Java Platform, Enterprise Edition (Java EE) specification level.

Procedure
1. Start an assembly tool.

2. If you have not done so already, configure the assembly tool for work on Java EE modules. Ensure
that J2EE and Web capabilities are enabled.

3. Migrate WAR files created with the Assembly Toolkit, Application Assembly Tool (AAT) or a different
tool to an assembly tool. To migrate files, import your WAR files to the assembly tool.

4. Create a new web module.

5. Copy code artifacts (such as servlets) from one web module into a new web module.

Results

A web project is migrated or created. Files for the Web project are shown in the Project Explorer view
under Enterprise Applications and Web Projects.

What to do next

You can now deploy your web project to an application server.

web.xml file
The web.xml file provides configuration and deployment information for the web components that comprise
a web application.

The Java Servlet specification defines the web.xml deployment descriptor file in terms of an XML schema
document. For backwards compatibility, any web.xml file that is written to Servlet 2.2 or above that worked
in previous versions of WebSphere Application Server are supported by the web container.

If you use Rational Application Developer Version 6 to create your portlets, you must remove the following
reference to the std-portlet.tld from the web.xml file:

1114 Developing WebSphere applications

<taglib id="PortletTLD">
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

</taglib>

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that
exist for a web application.

For example, if the application is client.war, then the web.xml file is placed in the install_root/client
war/WEB-INF directory.

Usage notes
v Is this file read-only?

No
v Is this file updated by a product component?

This file is updated by the assembly tool.
v If so, what triggers its update?

The assembly tool updates the web.xml file when you assemble web components into a web module, or
when you modify the properties of the web components or the web module.

v How and when are the contents of this file used?

WebSphere Application Server functions use information in this file during the configuration and
deployment phases of web application development.

Sample file entry

Note: The web.xml file does not represent the entire configuration that is available for the web application.
There are other servlets filters, and listeners that can be defined using programmatic configurations,
annotations, and web fragments.

Note: Marking the web application metadata complete will prevent annotations and web fragments from
being able to configure components.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<display-name>Servlet 3.0 application</display-name>
<filter>

<filter-name>ServletMappedDoFilter_Filter</filter-name>
<filter-class>tests.Filter.DoFilter_Filter</filter-class>
<init-param>
<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>
</filter>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>/DoFilterTest</url-pattern>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>/IncludedServlet</url-pattern>
<dispatcher>INCLUDE</dispatcher>
</filter-mapping>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>ForwardedServlet</url-pattern>
<dispatcher>FORWARD</dispatcher>
</filter-mapping>

Chapter 27. Developing web applications 1115

<listener>
<listener-class>tests.ContextListener</listener-class>
</listener>
<listener>
<listener-class>tests.ServletRequestListener.RequestListener</listener-class>
</listener>
<servlet>
<servlet-name>welcome</servlet-name>
<servlet-class>WelcomeServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>ServletErrorPage</servlet-name>
<servlet-class>tests.Error.ServletErrorPage</servlet-class>
</servlet>
<servlet>
<servlet-name>IncludedServlet</servlet-name>
<servlet-class>tests.Filter.IncludedServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>ForwardedServlet</servlet-name>
<servlet-class>tests.Filter.ForwardedServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>welcome</servlet-name>
<url-pattern>/hello.welcome</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ServletErrorPage</servlet-name>
<url-pattern>/ServletErrorPage</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>IncludedServlet</servlet-name>
<url-pattern>/IncludedServlet</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ForwardedServlet</servlet-name>
<url-pattern>/ForwardedServlet</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file>hello.welcome</welcome-file>
</welcome-file-list>
<error-page>
<exception-type>java.lang.ArrayIndexOutOfBoundsException</exception-type>
<location>/ServletErrorPage</location>
</error-page>
<error-page>
<error-code>404</error-code>
<location>/error404.html</location>
</error-page>

</web-app>

Note: For each <error-page> declaration, select either <exception-type> or <error-code>, but not both.
The <location> tag is required.

File serving
In file serving, web applications can serve static file types, such as HTML. File-serving attributes are used
by the servlet that implements file-serving behavior.

The file-serving behavior is implemented by setting the fileservingenabled property to true when
configuring the web module.

Example attributes:

bufferSize
Sets buffer size that is used for serving static files.

extendedDocumentRoot
Enables you to configure an application with one or more directory paths from which you can

1116 Developing WebSphere applications

serve static files and Java ServerPages (JSP) files. You can use this attribute when an application
requires access to files that exist outside of the application web application archive (WAR)
directory. For example, if several applications require access to a set of common files, you can
place the common files in a directory to which you can link each application as an extended
document root directory.

Use this attribute in addition to the contextRoot attribute.

You can also use this attribute to define a WebSphere variable on multiple nodes to the
appropriate directory.

Example:
<fileServingEnabled="true">

<fileServingAttributes xmi:id="FileServingAttribute_1" name="extendedDocumentRoot"
value="${MY_CUSTOM_VARIABLE}"/>

where MY_CUSTOM_VARIABLE is the WebSphere variable that you want to define on multiple
nodes.

For more information, see JSP engine configuration parameters.

file.serving.patterns.allow
Specifies that only files matching the specified pattern are served.

file.serving.patterns.deny
Specifies that files that match the specified file pattern are denied

Configuring JavaServer Faces implementation

Configuring JavaServer Faces implementation
Use this task to specify which JavaServer Faces implementation to use. You can use Apache MyFaces 2.0
or the SUN Reference Implementation 1.2 of JSF, or your own implementation.

Before you begin

Ensure that your application is configured for JavaServer Faces (JSF) using the specific web.xml context
parameters for the implementation that you have chosen.

Attention: The JSF implementation is a server-wide configuration setting. Thus, if you have multiple
applications which require different JSF implementations, you must separate the applications into different
application servers or clusters, and specify the implementation by following the steps in this topic for each
application server or cluster. Alternatively, you can use an isolated shared library, as described for
third-party JSF implementations, as follows.

About this task

Note: The Application Server JSF engine determines if the SUN Reference Implementation (RI) 1.2 or
Apache MyFaces 2.0 is used from the Application Server run time. If either is used, the correct
listener class is registered with the web container. You do not need to add the
com.sun.faces.ConfigureListener or the org.apache.myfaces.StartupConfigureListener to your
web.xml file.

Be Aware: If you want to use a third-party JSF implementation that is not shipped with the product, then:

v Keep the configuration set to MyFaces.

v Add the third-party listener to the web.xml file that is required.

v Add the third-party implementation Java archive (JAR) files to the application as an isolated
shared library and associate it with your application.

Chapter 27. Developing web applications 1117

You can also configure the JSF implementation on the Provide JSP reloading options for web modules
panel for application installation and update wizards.

Procedure

Configure the server or cluster to use the JSF implementation that you want. You can do this task using
the administrative console or the wsadmin tool.

v In the administrative console panel, click Applications > Application Types > WebSphere enterprise
applications > application_name > JSP and JSF options

Select one of the following implementations:

– Sun Reference Implementation 1.2 - Select this option to use the Sun Reference Implementation 1.2
JSF implementation.

– MyFaces 2.0 - Select this option to use the MyFaces 2.0 JSF implementation. This option is the
default JSF implementation.

v Using the wsadmin tool:

– An example of setting a single server to use the Sun RI 1.2 JSF implementation:
wsadmin>set server [$AdminConfig list ApplicationServer *server1*]
server1(cells/myNode01Cell/nodes/myNode01/servers/server1|server.xml#ApplicationServer_1183122130078)
wsadmin>$AdminConfig modify $server {{jsfProvider SunRi1.2}}

wsadmin>$AdminConfig save

– An example of setting a cluster to use the MyFaces 2.0 JSF implementation:
wsadmin>set cluster [$AdminConfig list ServerCluster]
cluster1(cells/myNode01Cell/nodes/myNode01/clusters/cluster1|cluster.xml#ServerCluster_1173916133721)
wsadmin>$AdminConfig modify $cluster {{jsfProvider MyFaces}}

wsadmin>$AdminConfig save

Results

What to do next

Configure JSF engine parameters as necessary.

Developing session management in servlets
About this task

This information, combined with the coding example SessionSample.java, provides a programming model
for implementing sessions in your own servlets.

Procedure
1. Get the HttpSession object.

To obtain a session, use the getSession method of the javax.servlet.http.HttpServletRequest object in
the Java Servlet 3.0 API.

When you first obtain the HttpSession object, the Session Management facility uses one of three ways
to establish tracking of the session: cookies, URL rewriting, or Secure Sockets Layer (SSL)
information.

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0.
You can configure session tracking to use cookies or modify the application to use URL
rewriting

Assume the Session Management facility uses cookies. In such a case, the Session Management
facility creates a unique session ID and typically sends it back to the browser as a cookie. Each
subsequent request from this user (at the same browser) passes the cookie containing the session ID,
and the Session Management facility uses this ID to find the user's existing HttpSession object.

1118 Developing WebSphere applications

In Step 1 of the code sample, the Boolean(create) is set to true so that the HttpSession object is
created if it does not already exist. (With the Servlet 2.3 API and later, the
javax.servlet.http.HttpServletRequest.getSession() method with no boolean defaults to true and
creates a session if one does not already exist for this user.)

2. Store and retrieve user-defined data in the session.

After a session is established, you can add and retrieve user-defined data to the session. The
HttpSession object has methods similar to those in java.util.Dictionary for adding, retrieving, and
removing arbitrary Java objects.

In Step 2 of the code sample, the servlet reads an integer object from the HttpSession, increments it,
and writes it back. You can use any name to identify values in the HttpSession object. The code
sample uses the name sessiontest.counter.

Because the HttpSession object is shared among servlets that the user might access, consider
adopting a site-wide naming convention to avoid conflicts.

3. (Optional) Output an HTML response page containing data from the HttpSession object.

4. Provide feedback to the user that an action has taken place during the session. You may want to pass
HTML code to the client browser indicating that an action has occurred. For example, in step 3 of the
code sample, the servlet generates a web page that is returned to the user and displays the value of
the sessiontest.counter each time the user visits that web page during the session.

5. (Optional) Notify Listeners. Objects stored in a session that implement the
javax.servlet.http.HttpSessionBindingListener interface are notified when the session is preparing to
end and become invalidated. This notice enables you to perform post-session processing, including
permanently saving the data changes made during the session to a database.

6. End the session. You can end a session:
v Automatically with the Session Management facility if a session is inactive for a specified time. The

administrators provide a way to specify the amount of time after which to invalidate a session.
v By coding the servlet to call the invalidate() method on the session object.

Example
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionSample extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Step 1: Get the Session object

boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value

Integer ival = (Integer)
session.getAttribute ("sessiontest.counter");
if (ival == null) ival = new Integer (1);
else ival = new Integer (ival.intValue () + 1);
session.setAttribute ("sessiontest.counter", ival);

// Step 3: Output the page

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>Session Tracking Test</title></head>");

Chapter 27. Developing web applications 1119

out.println("<body>");
out.println("<h1>Session Tracking Test</h1>");
out.println ("You have hit this page " + ival + " times" + "
");
out.println ("Your " + request.getHeader("Cookie"));
out.println("</body></html>");

}
}

Assembling so that session data can be shared
By default, the session management facility supports session scoping by web module in accordance with
the Servlet 2.3 and later API specification. Only servlets in the same web module can access the data
associated with a particular session. However, you can use the IBMApplicationSession object or the IBM
extension, shared session context, to share data outside of the web module scope.

About this task

The IBMApplicationSession object is a parent session object that can be retrieved by a web module’s
session and can share session attributes across all of the web modules in a business-level application.
The default scope of the business-level application is the enterprise application. The shared session
context option extends the scope of the session attributes as well. Using the shared session context
extension, there is only one session object for the entire business-level application or for the default
enterprise application.

If you are using a shared session for a business-level application, then the class files for all objects placed
in the session must exist in an isolated shared library and be common among all applications.

The benefit to using the IBMApplicationSession method is that each web module can maintain its own
session as well as have a reference to the shared session.

If you’re migrating an application from a previous version of the product, the IBMApplicationSession
method requires a change to the application logic of the application.

Restriction: To use a shared session, you must install all applications within a business-level application
on a given server. You cannot split up the enterprise application by servers. For example,
you cannot use this option when one enterprise application in “BLA1” is installed on one
server and a second enterprise application also in “BLA1” is installed on a different server. In
such split installations, applications might share session attributes across web modules using
distributed sessions, but session data integrity is lost when concurrent access to a session is
made in different web modules. It also severely restricts use of some session management
features, like TIME_BASED_WRITES.

For enterprise applications on which this shared session context extension is enabled, the session
management configuration on the web module inside the enterprise application is ignored. Then session
management configuration defined on enterprise application is used if session management is overwritten
at the enterprise application level. Otherwise, the session management configuration on the web container
is used. If using multiple enterprise applications within a business-level application, the session
management configuration must be common among all applications and web modules within this
business-level application.

HttpSession listeners that are defined in all the web modules inside the business-level application or
enterprise application are invoked for session events. The order of listener invocation is not guaranteed.

Complete the following to share session data across the business-level application.

1120 Developing WebSphere applications

Procedure
1. Complete the following to share session data using the IBMApplicationSession object within the

application code.

a. Retrieve the session object
HttpSession session = request.getSession();

b. Cast this object to an IBMSession object and call the getIBMApplicationSession method.
IBMApplicationSession appSession = ((IBMSession)session).getIBMApplicationSession();

c. Use the appSession like a normal session object.

2. Do the following to share session data using the Shared session context extension.

a. Start an assembly tool.

b. In the assembly tool, right-click the application (EAR file) that you want to share and click Open
With > Deployment Descriptor Editor.

c. In the application deployment descriptor editor of the assembly tool, select Shared session
context under WebSphere Extensions. Make sure the class definition of attributes put into session
are available to all web modules in the enterprise application. The shared session context does not
fully meet the requirements of the specifications.

d. Save the application (EAR) file. In the assembly tool, after you close the application deployment
descriptor editor, confirm that you want to save changes made to the application.

Chapter 27. Developing web applications 1121

1122 Developing WebSphere applications

Chapter 28. Developing web services

This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Using JAXB for XML data binding
Java Architecture for XML Binding (JAXB) is a Java technology that provides an easy and convenient way
to map Java classes and XML schema for simplified web services development. JAXB provides the xjc
schema compiler, the schemagen schema generator and a runtime framework to support marshalling and
unmarshalling of XML documents to and from Java objects.

About this task

JAXB is an XML-to-Java binding technology that enables transformation between schema and Java
objects and between XML instance documents and Java object instances. JAXB technology consists of a
runtime API and accompanying tools that simplify access to XML documents. You can use JAXB APIs and
tools to establish mappings between Java classes and XML schema. An XML schema defines the data
elements and structure of an XML document. JAXB technology provides tooling to enable you to convert
your XML documents to and from Java objects. Data stored in an XML document is accessible without the
need to understand the XML data structure.

JAXB is the default data binding technology used by the Java API for XML Web Services (JAX-WS) tooling
and implementation within this product. You can develop JAXB objects to use within your JAX-WS
applications. You can also use JAXB independently of the JAX-WS programming model as a convenient
way to leverage the XML data binding technology to manipulate XML within your Java applications.

JAXB is also the default data binding technology used by Service Component Architecture (SCA)
applications. JAXB enables the SCA service implementation side and the SCA client reference side to
interact with Java objects without worrying about how the data is transformed into and from XML.

Note: This version of the application server supports the JAXB 2.2 specification. JAX-WS 2.2 requires
JAXB 2.2 for data binding. JAXB 2.2 provides minor enhancements to its annotations for improved
schema generation and better integration with JAX-WS.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

JAXB provides the xjc schema compiler tool, the schemagen schema generator tool, and a runtime
framework. The xjc schema compiler tool enables you to start with an XML schema definition (XSD) to
create a set of JavaBeans that map to the elements and types defined in the XSD schema. You can also
start with a set of JavaBeans and use the schemagen schema generator tool to create the XML schema.
After using either the schema compiler or the schema generator command-line tools, you can convert your
XML documents both to and from Java objects and use the resulting Java classes to assemble a web
services application.

In addition to using the tools from the command-line, you can invoke these JAXB tools from within the Ant
build environments. Use the com.sun.tools.xjc.XJCTask Ant task from within the Ant build environment to
invoke the xjc schema compiler tool. Use the com.sun.tools.jxc.SchemaGenTask Ant task from within the

© Copyright IBM Corp. 2012 1123

Ant build environment to invoke the schemagen schema generator tool. These Ant tasks require that the
com.ibm.jaxb.tools.jar and the com.ibm.jaxws.tools.jar files be in the classpath.

JAXB annotated classes and artifacts contain all the information that the JAXB runtime API needs to
process XML instance documents. The JAXB runtime API enables marshaling of JAXB objects to XML
files and unmarshaling the XML document back to JAXB class instances. The JAXB binding package,
javax.xml.bind, defines the abstract classes and interfaces that are used directly with content classes. In
addition the package defines the marshal and unmarshal APIs.

You can optionally use JAXB binding customizations to override the default generated type mappings. You
can customize JAXB bindings using inline annotations in the source schema, or by using an external
bindings customization file to pass your customizations to the JAXB binding compiler, xjc, to control the
Java type mappings. Alternatively, you can add Java annotations to existing Java classes to pass to the
schema generator, schemagen, to control the schema or XML type mappings. See the JAXB specification
for information regarding binding customization options and Java annotations.

Using JAXB, you can manipulate data objects in the following ways:

Procedure
v Generate an XML schema from a Java class. Use the schema generator schemagen command to

generate an XML schema from Java classes.

v Generate Java classes from an XML schema. Use the schema compiler xjc command to create a set
of JAXB-annotated Java classes from an XML schema.

v Marshal and unmarshal XML documents. After the mapping between XML schema and Java classes
exists, use the JAXB binding runtime to convert XML instance documents to and from Java objects.

Results

You now have JAXB objects that your Java application can use to manipulate XML data.

Using JAXB schemagen tooling to generate an XML schema file from a
Java class
Use Java Architecture for XML Binding (JAXB) schemagen tooling to generate an XML schema file from
Java classes.

Before you begin

Identify the Java classes or a set of Java objects to map to an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between Java classes and XML schema. XML schema
documents describe the data elements and relationships in an XML document. After a data mapping or
binding exists, you can convert XML documents to and from Java objects. You can now access data
stored in an XML document without the need to understand the data structure.

To develop web services using a bottom-up development approach starting from existing JavaBeans or
enterprise beans, use the wsgen tool to generate the artifacts for Java API for XML-Based Web Services
(JAX-WS) applications. After the Java artifacts for your application are generated, you can create an XML
schema document from an existing Java application that represents the data elements of a Java
application by using the JAXB schema generator, schemagen command-line tool. The JAXB schema
generator processes either Java source files or class files. Java class annotations provide the capability to
customize the default mappings from existing Java classes to the generated schema components. The

1124 Developing WebSphere applications

XML schema file along with the annotated Java class files contain all the necessary information that the
JAXB runtime requires to parse the XML documents for marshaling and unmarshaling.

You can create an XML schema document from an existing Java application that represents the data
elements of a Java application by using the JAXB schema generator, schemagen command-line tool. The
JAXB schema generator processes either Java source files or class files. Java class annotations provide
the capability to customize the default mappings from existing Java classes to the generated schema
components. The XML schema file along with the annotated Java class files contain all the necessary
information that the JAXB runtime requires to parse the XML documents for marshaling and unmarshaling.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

Note: This product supports the JAXB 2.2 specification. JAX-WS 2.2 requires JAXB 2.2 for data binding.

JAXB provides compilation support to enable you to configure the schemagen schema generator so that it
does not automatically generate a new schema. This is helpful if you are using a common schema such
as the World Wide Web Consortium (W3C), XML Schema, Web Services Description Language (WSDL),
or WS-Addressing and you do not want a new schema generated for a particular package that is
referenced. The location attribute on the @XmlSchema annotation causes the schemagen generator to
refer to the URI of the existing schema instead of generating a new one.

In addition to using the schemagen tool from the command-line, you can invoke this JAXB tool from within
the Ant build environments. Use the com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build
environment to invoke the schemagen schema generator tool. To function properly, this Ant task requires
that you invoke Ant using the ws_ant script.

Note: When running the schemagen tool, the schema generator does not correctly read the @XmlSchema
annotations from the package-info class file to derive targetNamespaces. Instead of using the
@XMLSchema annotation, use one of the following methods:

v Provide a package-info.java file with the @XmlSchema; for example:
schemagen sample.Address sample\package-info.java

v Use the @XmlType annotation namespace attribute to specify a namespace; for example:
@XmlType(namespace="http://myNameSpace")

Procedure
1. Locate the Java source files or Java class files to use in generating an XML schema file. Ensure that

all classes referenced by your Java class files are contained in the classpath or are provided to the
tool using the-classpath/-cp options.

2. Use the JAXB schema generator, schemagen command to generate an XML schema. The schema
generator is located in the app_server_root\bin\ directory.

Chapter 28. Developing web services 1125

app_server_root\bin\schemagen.bat myObj1.java myObj2.java

app_server_root/bin/schemagen.sh myObj1.java myObj2.java

The parameters, myObj1.java and myObj2.java, are the names of the Java files containing the data
objects. If myObj1.java or myObj2.java refer to Java classes that are not passed into the schemagen
command, you must use the -cp option to provide the classpath location for these Java classes.Read
about the schemagen command to learn more about this command and additional options that you can
specify.

3. (Optional) Use JAXB program annotations defined in the javax.xml.bind.annotations package to
customize the JAXB XML schema mappings.

4. (Optional) Configure the location property on the @XmlSchema annotation to indicate to the schema
compiler to use an existing schema rather than generating a new one. For example,

@XmlSchema(namespace="foo")
package foo;
@XmlType
class Foo {
@XmlElement Bar zot;
}
@XmlSchema(namespace="bar",
location="http://example.org/test.xsd")
package bar;
@XmlType
class Bar {
...
}
<xs:schema targetNamespace="foo">
<xs:import namespace="bar"
schemaLocation="http://example.org/test.xsd"/>
<xs:complexType name="foo">
<xs:sequence>
<xs:element name="zot" type="bar:Bar" xmlns:bar="bar"/>
</xs:sequence>
</xs:complex

the location="http://example.org/test.xsd" indicates the location on the existing schema to the
schemagen tool and a new schema is not generated.

Results

Now that you have generated an XML schema file from Java classes, you are ready to marshal and
unmarshal the Java objects as XML instance documents.

Note: The schemagen command does not differentiate the XML namespace between multiple @XMLType
annotations that have the same @XMLType name defined within different Java packages. When
this scenario occurs, the following error is produced:

Error: Two classes have the same XML type name
Use @XmlType.name and @XmlType.namespace to assign different names to them...

This error indicates you have class names or @XMLType.name values that have the same name,
but exist within different Java packages. To prevent this error, add the @XML.Type.namespace
class to the existing @XMLType annotation to differentiate between the XML types.

Example

The following example illustrates how JAXB tooling can generate an XML schema file from an existing
Java class, Bookdata.java.

1. Copy the following Bookdata.java file to a temporary directory.
package generated;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;

1126 Developing WebSphere applications

import javax.xml.bind.annotation.XmlType;
import javax.xml.datatype.XMLGregorianCalendar;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "bookdata", propOrder = {

"author",
"title",
"genre",
"price",
"publishDate",
"description"

})
public class Bookdata {

@XmlElement(required = true)
protected String author;
@XmlElement(required = true)
protected String title;
@XmlElement(required = true)
protected String genre;
protected float price;
@XmlElement(name = "publish_date", required = true)
protected XMLGregorianCalendar publishDate;
@XmlElement(required = true)
protected String description;
@XmlAttribute
protected String id;

public String getAuthor() {
return author;

}
public void setAuthor(String value) {

this.author = value;
}
public String getTitle() {

return title;
}

public void setTitle(String value) {
this.title = value;

}

public String getGenre() {
return genre;

}

public void setGenre(String value) {
this.genre = value;

}

public float getPrice() {
return price;

}

public void setPrice(float value) {
this.price = value;

}

public XMLGregorianCalendar getPublishDate() {
return publishDate;

}

public void setPublishDate(XMLGregorianCalendar value) {
this.publishDate = value;

}

public String getDescription() {
return description;

}

public void setDescription(String value) {
this.description = value;

}

public String getId() {
return id;

}

public void setId(String value) {

Chapter 28. Developing web services 1127

this.id = value;
}

}

2. Open a command prompt.

3. Run the schemagen schema generator tool from the directory where you copied the Bookdata.java
file.

app_server_root\bin\schemagen.bat Bookdata.java

app_server_root/bin/schemagen.sh Bookdata.java

4. The XML schema file, schema1.xsd is generated:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="bookdata">
<xs:sequence>
<xs:element name="author" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="genre" type="xs:string"/>
<xs:element name="price" type="xs:float"/>
<xs:element name="publish_date" type="xs:anySimpleType"/>
<xs:element name="description" type="xs:string"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:schema>

Refer to the JAXB Reference implementation documentation for additional information about the
schemagen command.

Using JAXB xjc tooling to generate JAXB classes from an XML
schema file
Use Java Architecture for XML Binding (JAXB) xjc tooling to compile an XML schema file into fully
annotated Java classes.

Before you begin

Develop or obtain an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between an XML schema and Java classes. XML
schemas describe the data elements and relationships in an XML document. After a data mapping or
binding exists, you can convert XML documents to and from Java objects. You can now access data
stored in an XML document without the need to understand the data structure.

To develop web services using a top-down development approach starting with an existing Web Services
Description Language (WSDL) file, use the wsimport tool to generate the artifacts for your Java API for
XML-Based Web Services (JAX-WS) applications when starting with a WSDL file. After the Java artifacts
for your application are generated, you can generate fully annotated Java classes from an XML schema
file by using the JAXB schema compiler, xjc command-line tool. The resulting annotated Java classes
contain all the necessary information that the JAXB runtime requires to parse the XML for marshaling and
unmarshaling. You can use the resulting JAXB classes within Java API for XML Web Services (JAX-WS)
applications or other Java applications for processing XML data.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the

1128 Developing WebSphere applications

tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

Note: This product supports the JAXB 2.2 specification. JAX-WS 2.2 requires JAXB 2.2 for data binding.

In addition to using the xjc tool from the command-line, you can invoke this JAXB tool from within the Ant
build environments. Use the com.sun.tools.xjc.XJCTask Ant task from within the Ant build environment to
invoke the xjc schema compiler tool. To function properly, this Ant task requires that you invoke Ant using
the ws_ant script.

Note: If you are using the xjc Ant task, you must use the destdir parameter to specify the destination
directory instead of the target option. Specifying the target option when using the xjc Ant task
causes an error.

Procedure
1. Use the JAXB schema compiler, xjc command to generate JAXB-annotated Java classes. The

schema compiler is located in the app_server_root\bin\ directory. The schema compiler produces a set
of packages containing Java source files and JAXB property files depending on the binding options
used for compilation.

2. (Optional) Use custom binding declarations to change the default JAXB mappings. Define binding
declarations either in the XML schema file or in a separate bindings file. You can pass custom binding
files by using the -b option with the xjc command.

3. Compile the generated JAXB objects. To compile generated artifacts, add the Thin Client for JAX-WS
with WebSphere Application Server to the classpath.

Results

Now that you have generated JAXB objects, you can write Java applications using the generated JAXB
objects and manipulate the XML content through the generated JAXB classes.

Example

The following example illustrates how JAXB tooling can generate Java classes when starting with an
existing XML schema file.

1. Copy the following bookSchema.xsd schema file to a temporary directory.
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CatalogData">
<xsd:complexType >
<xsd:sequence>
<xsd:element name="books" type="bookdata" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="bookdata">
<xsd:sequence>
<xsd:element name="author" type="xsd:string"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="genre" type="xsd:string"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="publish_date" type="xsd:dateTime"/>
<xsd:element name="description" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>
</xsd:schema>

2. Open a command prompt.

Chapter 28. Developing web services 1129

3. Run the JAXB schema compiler, xjc command from the directory where the schema file is located.
The xjc schema compiler tool is located in the app_server_root\bin\ directory.

app_server_root\bin\xjc.bat bookSchema.xsd

app_server_root/bin/xjc.sh bookSchema.xsd

Running the xjc command generates the following JAXB Java files:
generated\Bookdata.java
generated\CatalogdData.java
generated\ObjectFactory.java

4. Use the generated JAXB objects within a Java application to manipulate XML content through the
generated JAXB classes.

Refer to the JAXB Reference implementation documentation for additional information about the xjc
command.

Using the JAXB runtime to marshal and unmarshal XML documents
Use the Java Architecture for XML Binding (JAXB) run time to manipulate XML instance documents.

Before you begin

Use JAXB to generate Java classes from an XML schema with the schema compiler, xjc command or to
generate an XML schema from a Java class with the schema generator, schemagen command.

About this task

Use JAXB APIs and tools to establish mappings between an XML schema and Java classes. After data
bindings exist, use the JAXB binding runtime API to convert XML instance documents to and from Java
objects. Data stored in an XML document is accessible without the need to understand the data structure.
JAXB annotated classes and artifacts contains all the information that the JAXB runtime API needs to
process XML instance documents. The JAXB runtime API enables marshaling of JAXB objects to XML and
unmarshaling the XML document back to JAXB class instances.

Procedure
v Marshal JAXB objects to XML instance documents.

Use the JAXB runtime API to marshal or convert JAXB object instances into an XML instance
document.

1. Instantiate your JAXB classes.

2. Invoke the JAXB marshaller.

This example demonstrates how to instantiate the generated JAXB objects within an application and
use the JAXBContext class and the JAXB runtime marshaller APIs to marshal the JAXB objects into
XML instances.

JAXBContext jc = JAXBContext.newInstance("myPackageName");
//Create marshaller
Marshaller m = jc.createMarshaller();
//Marshal object into file.
m.marshal(myJAXBObject, myOutputStream);

The JAXB Reference Implementation introduces additional vendor specific marshaller properties such
as namespace prefix mapping, indentation, and character escaping control that are not defined by the
JAXB specification. Use these properties to specify additional controls of the marshaling process. These
properties operate with the JAXB Reference Implementation only and might not with other JAXB
providers. Additional information regarding the vendor specific properties is located in the Java
Architecture for XML Binding JAXB RI Vendor Extensions Runtime Properties specification.

v Unmarshal XML files to JAXB objects.

1130 Developing WebSphere applications

Use the JAXB runtime API to unmarshal or convert an XML instance document to JAXB object
instances.

1. Obtain an existing XML instance document.

2. Invoke the JAXB unmarshaller.

This example demonstrates a program that reads an XML document and unmarshals or converts the
XML document into JAXB object instances. Use the JAXBContext class and JAXB runtime
Unmarshaller APIs to unmarshal the XML document.

JAXBContext jc = JAXBContext.newInstance("myPackageName");
//Create unmarshaller
Unmarshaller um = jc.createUnmarshaller();
//Unmarshal XML contents of the file myDoc.xml into your Java
object instance.

MyJAXBObject myJAXBObject = (MyJAXBObject)
um.unmarshal(new java.io.FileInputStream("myDoc.xml"));

Results

You can now marshal JAXB Java classes, and unmarshal XML data using the JAXB binding framework.
Refer to the JAXB Reference implementation documentation for additional information about the marshal
and unmarshal runtime APIs

Note: If Java 2 Security is enabled, wrap your JAXBContext.newInstance(), Unmarshaller.unmarshal()
and, Marshaller.marshal() method calls within a AccessController.doPrivileged method to avoid a
security exception.

.

xjc command for JAXB applications
Use the Java Architecture for XML Binding (JAXB) tools to generate Java classes from an XML schema
with the xjc schema compiler tool.

JAXB is an XML-to-Java binding technology that enables transformation between schema and Java
objects and between XML instance documents and Java object instances. JAXB technology consists of a
runtime API and accompanying tools that simplify access to XML documents. You can use JAXB APIs and
tools to establish mappings between Java classes and XML schema. An XML schema defines the data
elements and structure of an XML document. JAXB technology provides a runtime environment to enable
you to convert your XML documents to and from Java objects. Data stored in an XML document is
accessible without the need to understand the XML data structure.

You can generate fully annotated Java classes from an XML schema file by using the JAXB schema
compiler, xjc command-line tool. Use the xjc schema compiler tool to start with an XML schema definition
(XSD) to create a set of JavaBeans that map to the elements and types defined in the XSD schema. Once
the mapping between XML schema and Java classes exists, XML instance documents can be converted
to and from Java objects through the use of the JAXB binding runtime API. The resulting annotated Java
classes contains all the necessary information that the JAXB runtime requires to parse the XML for
marshaling and unmarshaling. You can use the resulting JAXB classes within Java API for XML Web
Services (JAX-WS) applications or in your non-JAX-WS Java applications for processing XML data.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the

Chapter 28. Developing web services 1131

tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

In addition to using the xjc tool from the command line, you can invoke this JAXB tool from within the Ant
build environments. Use the com.sun.tools.xjc.XJCTask Ant task from within the Ant build environment to
invoke the xjc schema compiler tool. To function properly, this Ant task requires that you invoke Ant using
the ws_ant script.

Note: If you are using the xjc Ant task, you must use the destdir parameter to specify the destination
directory instead of the target option. Specifying the target option when using the xjc Ant task
causes an error.

Syntax

The command-line syntax is:

app_server_root\bin\xjc.bat [options] <schema_file/URL/directory_or_jar> ...[-b<binding_information>] ...

app_server_root/bin/xjc.sh [options] <schema_file/URL/directory_or_jar> ...[-b<binding_information>] ...

If a directory is specified, all schema files in the directory are compiled.

Parameters

The schema file/URL JAR file name or location of the directory is the only parameter that is required. The
following parameters are optional for the xjc command:

-b <file_name or directory>
Specifies the external JAX-WS or JAXB binding files. You can specify multiple JAX-WS and JAXB
binding files by using the -b option; however, each file must be specified with its own -b option. If a
directory is specified, **/*.xjb is searched.

-catalog <file_name>
Specifies the catalog file to resolve external entity references. It supports the TR9401, XCatalog, and
the OASIS XML Catalog formats.

-classpath <path>
Specifies the location of the class files.

-d <directory>
Specifies where to place the generated output files.

-dtd
Specifies to treat the input as XML Document Type Definition (DTD). This option is unsupported and
experimental.

-extension
Specifies whether to enable custom extensions for functionality not specified by the JAXB
specification. Use of the extensions can result in applications that are not portable or do not
interoperate with other implementations.

1132 Developing WebSphere applications

-help
Displays the help menu.

-httpproxy <[user[:password]@]<proxyhost>:<proxyport>>
Specifies an HTTP or HTTPs proxy.

-httpproxyfile <file_name>
This parameter is similar to the -httpproxy parameter, but takes the argument in a file to protect the
password.

-no-header
Specifies to suppress the generation of a file header with a timestamp.

-npa
Specifies to suppress the generation of the **/package-info.java package level annotation.

-nv
Specifies to not perform a strict validation of the input schemas.

-p <package_name>
Specifies a target package.

-quiet
Specifies to suppress the output from the xjc tool.

-relaxng
Specifies to treat the input as REgular LAnguage for XML Next Generation (RELAX NG). This option
is unsupported and experimental.

-readOnly
Specifies that the generated files are in read-only mode.

-relaxng-compact
Specifies to treat the input as REgular LAnguage for XML Next Generation (RELAX NG) compact
syntax. This option is unsupported and experimental.

-target <version>
Specifies to generate output to conform to the specified level of the JAX-WS specification. Specify 2.0
or 2.1 for the tool to generate compliant code for the JAXB 2.0 or JAX-WS 2.1 specification
respectively. Specify 2.1 for the tool to generate compliant code for the JAXB 2.1 specification. The
default target version is 2.2 and generates compliant code for the JAXB 2.2 specification.

-verbose
Specifies to output messages about what the compiler is doing.

-version
Prints the version information. If you specify this option, only the version information is output and
typical command processing does not occur.

-wsdl
Specifies to treat the input as a Web Services Description Language (WSDL) file and compile
schemas inside the WSDL. This option is unsupported and experimental.

-xmlschema
Specifies to treat the input as a World Wide Web Consortium (W3C) XML schema. This value is the
default.

schemagen command for JAXB applications
Use the schema generator tool, schemagen, to generate an XML schema using Java Architecture for XML
Binding (JAXB).

Use JAXB APIs and tools to establish mappings between an XML schema and Java classes. XML
schemas describe the data elements and relationships in an XML document. After a data mapping or

Chapter 28. Developing web services 1133

binding exists, you can convert XML documents to and from Java objects. You can now access data
stored in an XML document without the need to understand the data structure.

You can generate a schema file from Java classes using the schemagen schema generator tool to create
the XML schema. After the mapping between XML schema and Java classes exists, XML instance
documents can be converted to and from Java objects through the use of the JAXB binding runtime API.
The resulting Java classes contain all the necessary information that the JAXB run time requires to parse
the XML for marshaling and unmarshaling. You can use the JAXB classes within Java API for XML Web
Services (JAX-WS) applications or in your non-JAX-WS Java applications for processing XML data.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

Note: When running the schemagen tool to process JavaBeans, the schema generator will not
automatically process the @XmlSchema annotations from existing package-info.class files to derive
targetNamespaces. To assure that the schemagen tool processes namespace values correctly, use
one of the following methods:

v Explicitly specify the package-info.java source file in the schemagen invocation; for example:
schemagen sample.Address sample\package-info.java

v Use the @XmlType annotation namespace attribute within your JavaBeans to specify a
namespace; for example:

@XmlType(namespace="http://myNameSpace")
public class Address {...}

In addition to using the schemagen tool from the command line, you can invoke this JAXB tool from within
the Ant build environments. Use the com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build
environment to invoke the schemagen schema generator tool. To function properly, this Ant task requires
that you invoke Ant using the ws_ant script.

Syntax

The command-line syntax is:

app_server_root\bin\schemagen.bat [options] <java_files>

app_server_root/bin/schemagen.sh [options] <java_files>

Parameters

The following parameters are optional for the schemagen command:

1134 Developing WebSphere applications

-classpath <path>
Specifies the location of the Java source or class files.

-cp <path>
Specifies the location of the Java source or class files.

-d <path>
Specifies where to place the processor and the generated Java class files.

-episode<file_name>
Specifies to generate an episode file for separate compilation.

-encoding <encoding>
Specifies to use encoding when invoking the -apt or -javac tool. This property is applicable for JAXB
2.2 and later.

-help
Displays the help menu.

-version
Prints the version information. If you specify this option, only the version information is output and
typical command processing does not occur.

Developing JAX-WS web services (bottom-up)

Setting up a development environment for web services
The application server provides command-line tools to develop web services clients and implementations
that are based on the Web Services for Java Platform, Enterprise Edition (Java EE) specification. You
must set up your development environment before you start developing web services.

Before you begin

Before you can set up a web services development environment within WebSphere Application Server, you
must install WebSphere Application Server. For detailed information on installing the application server,
read about installing your application server environment.

About this task

Set up a web services development environment by completing the following actions.

Procedure
1. Set up the environment.

Run the setupCmdLine.bat command from the /profile_root/<application_server>/bin
directory.

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running this command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /profile_root/<application_server>/bin directory.

You can set WAS_USER_SCRIPT to profile_root\<application_server>\bin\setupCmdLine.bat, which
has the same effect as running the setupCmdLine command.

2. Configure the path. You can add the WebSphere and Java bin directories to your path by typing:

set PATH=%WAS_PATH%;%PATH%

export PATH=$WAS_PATH:$PATH

Chapter 28. Developing web services 1135

Results

You have set up an environment so that you can develop Web services.

What to do next

Implement web services applications. See the task overview for implementing web services applications
information to learn about how to develop and implement a Java EE web service.

Developing JAX-WS web services with annotations
Java API for XML-Based Web Services (JAX-WS) supports two different service endpoint implementations
types, the standard web service endpoint interface and a new Provider interface to enable services to work
at the XML message level. By using annotations on the service endpoint implementation or client, you can
define the service endpoint as a web service.

Before you begin

Set up a development environment for web services.

About this task

This task is a required step to develop JAX-WS web services.

JAX-WS technology supports the implementation of web services based on both the standard service
endpoint interface and a new Provider interface. JAX-WS endpoints are like the endpoint implementations
in the Java API for XML-based RPC (JAX-RPC) specification. Unlike JAX-RPC, the requirement for a
service endpoint interface (SEI) is optional for JAX-WS web services. JAX-WS services that do not have
an associated SEI are regarded as having an implicit SEI; whereas services that have an associated SEI
are regarded as having an explicit SEI. The service endpoint interfaces required by JAX-WS are also more
generic than the service endpoint interfaces required by JAX-RPC. With JAX-WS, the SEI is not required
to extend the java.rmi.Remote interface as required by the JAX-RPC specification.

The JAX-WS programming model also uses support for annotating Java classes with metadata to define a
service endpoint implementation as a web service and define how a client can access the web service.
JAX-WS supports annotations based on the Metadata Facility for the Java Programming Language (JSR
175) specification, the Web Services Metadata for the Java Platform (JSR 181) specification and
annotations defined by the JAX-WS 2.0 (JSR 224) specification, which includes Java Architecture for XML
Binding (JAXB) annotations. Using annotations, the service endpoint implementation can independently
describe the web service without requiring a WSDL file. Annotations can provide all the WSDL information
necessary to configure your service endpoint implementation or web services client. You can specify
annotations on the service endpoint interface used by the client and the server, or on the server-side
service implementation class.

For details regarding the supported standards and specifications, see the web services specifications and
API documentation.

When developing a JAX-WS web service starting from existing Java classes, known as the bottom-up
approach, you must annotate the class with either the @WebService (javax.jws.WebService) annotation or
@WebServiceProvider (javax.xml.ws.Provider) annotation to initially define the class as a web service.
The @WebService annotation defines the service as an SEI-based endpoint, while the @WebServiceProvider
annotation defines the service as a Provider-based endpoint.

Develop SEI-based JAX-WS web services

1136 Developing WebSphere applications

For an SEI-based endpoint, the service endpoint interface (SEI), whether it is a Java class or a
Java interface, declares the business methods provided by a particular web service. The only
methods that a web services client can invoke on a JAX-WS endpoint are the business methods
that are defined in the explicit or implicit SEI.

All SEI-based endpoints are required to have the @WebService annotation included on the
implementation class. If the service implementation uses an explicit SEI, then that interface must
be referenced by the endpointInterface attribute on the @WebService annotation. If the service
implementation does not use an explicit SEI, then the service is described implicitly by the
implementation class and is an implicit SEI.

Develop JAX-WS web services using the Provider interface

The JAX-WS programming model introduces the Provider interface for Provider endpoints,
javax.xml.ws.Provider, as the dynamic alternative to SEI-based endpoints. The Provider interface
supports a more messaging-oriented approach to web services. With the Provider interface, you
can create a Java class that implements a simple interface to produce a generic service
implementation class. The Provider interface defines one method, the invoke method, which uses
generics to control both the input and output types when working with various messages or
message payloads. All Provider endpoints must be annotated with the @WebServiceProvider
(javax.xml.ws.WebServiceProvider) annotation. A service implementation cannot specify the
@WebService annotation if it implements the javax.xml.ws.Provider interface.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations. In the Version 6.1 Feature Pack for Web
Services, the default behavior is to scan pre-Java EE 5 web application modules to identify JAX-WS
services and to scan pre-Java EE 5 web application modules and EJB modules for service clients during
application installation. Because the default behavior for WebSphere Application Server Version 7.0 and
later is to not scan pre-Java EE 5 modules for annotations during application installation or server startup,
to preserve backward compatability with the feature pack from previous releases, you must configure
either the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a web application archive
(WAR) file or EJB module or define the Java virtual machine custom property,
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during
application installation and server startup. To learn more about annotations scanning, see the JAX-WS
annotations information.

Procedure
1. Determine if you want to define your web services using SEI endpoints or the Provider interface. If you

prefer a high-level Java-centric abstraction that hide the details of converting between Java objects
and their XML representation, consider using SEI-based endpoints to develop your web services.
However, if you prefer that your web service operate more at the XML message level, consider using
Provider-based endpoints.

2. Annotate the service endpoints.

a. Annotate the SEI-based endpoint with the javax.jws.WebService annotation.

v For an SEI-based endpoint, annotate the implementation class with the javax.jws.WebService
annotation. You can choose to explicitly reference a service endpoint interface by defining the
@WebService.endpointInterface attribute, which specifies this endpoint is an explicit SEI. In this
case, the Java interface that is referenced must also contain the javax.jws.WebService
annotation. If the endpointInterface attribute is not defined or is empty, the implementation
bean is considered an implicit SEI. You can add the @WebMethod annotation to methods of a
service endpoint interface to customize the Java-to-WSDL mappings. All public methods are

Chapter 28. Developing web services 1137

considered exposed methods regardless of whether the @WebMethod annotation is specified. It is
incorrect to have an @WebMethod annotation on a service endpoint interface that contains the
exclude attribute.

v If you use an implicit SEI, you can apply more granular control on how the methods are exposed
through selective use of the @WebMethod annotation. For a more detailed explanation, see the
exposing methods in SEI-based JAX-WS web services information.

b. Annotate the Provider-based endpoint with the javax.xml.ws.WebServiceProvider annotation.

v For a Provider-based endpoint, annotate the implementation class with the
javax.xml.ws.WebServiceProvider annotation. This annotation must be specified only on a class
that implements a strongly typed javax.xml.ws.Provider.interface class such as
Provider<Source> or Provider<SOAPMessage>, in contrast to a class that is unbounded, such as
Provider<T>. A strongly typed class is one that is associated with a specific input and output
Java type, such as Source or SOAPMessage, for example.

@WebServiceProvider(
serviceName="StringProviderService",
wsdlLocation="META-INF/echostring.wsdl",
targetNamespace="http://stringprovider.sample.test.org")

v (optional) According the JAX-WS 2.2 specification, if you are defining a Provider-based endpoint
so that the Provider implementation returns a null value, no response is needed. If the
javax.xml.ws.WebServiceProvider annotation does not specify a WSDL, and the Provider
invoke() method returns a null value, the default behavior of the JAX-WS runtime environment
is to return a response that consists of a SOAPEnvelope that contains an empty SOAPBody. You
can set the JVM property, jaxws.provider.interpretNullAsOneway, to true if you want the
JAX-WS runtime environment to interpret this scenario as a request-only operation and not
return a response.

3. Understand and apply best practices for exposing methods as operations in SEI-based JAX-WS web
services.

Because of ambiguity across multiple web services specifications regarding which methods are
exposed as web services operations for SEI-based endpoints, you can ensure consistent behavior by
following best practices, regardless of the JAX-WS implementation that you use.

Results

You have defined the service endpoint implementation that represents the web services application. See
the JAX-WS annotations documentation to learn more about the supported JAX-WS annotations.

Sample JavaBeans service endpoint implementation and interface

The following example illustrates a simple explicit JavaBeans service endpoint implementation and the
associated service endpoint interface:
/** This is an excerpt from the service implementation file, EchoServicePortTypeImpl.java.
package com.ibm.was.wssample.echo;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.transform.stream.StreamSource;

@javax.jws.WebService(serviceName = "EchoService", endpointInterface =
"com.ibm.was.wssample.echo.EchoServicePortType", targetNamespace="http://com/ibm/was/wssample/echo/",
portName="EchoServicePort")
public class EchoServicePortTypeImpl implements EchoServicePortType {

public EchoServicePortTypeImpl() {
}

public String echo(String obj) {
String str;
....

1138 Developing WebSphere applications

str = obj;
....

return str;

}

}

/** This is a sample EchoServicePortType.java service interface. */

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.*;

@WebService(name = "EchoServicePortType", targetNamespace = "http://com/ibm/was/wssample/echo/",
wsdlLocation="WEB-INF/wsdl/Echo.wsdl")
public interface EchoServicePortType {

/** ...the method process ...*/
@WebMethod

}

The following example illustrates a simple Provider service endpoint interface for a Java class:
package jaxws.provider.source;

import javax.xml.ws.Provider;
import javax.xml.ws.WebServiceProvider;
import javax.xml.transform.Source;

@WebServiceProvider()
public class SourceProvider implements Provider<Source> {

public Source echo(Source data) {
return data;

}
}

In the Provider implementation example, the javax.xml.transform.Source type is specified in the generic
<Source> method. The generic <Source> method specifies that both the input and output types are Source
objects.

What to do next

Develop Java artifacts for JAX-WS applications from JavaBeans. To learn more, see the generating Java
artifacts for JAX-WS applications information.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Chapter 28. Developing web services 1139

Table 120. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 121. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 122. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

1140 Developing WebSphere applications

Table 123. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 124. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 125. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 126. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Chapter 28. Developing web services 1141

Table 126. Default installation root directories for the IBM HTTP Server (continued).

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Exposing methods in SEI-based JAX-WS web services
You can use the @WebService and @WebMethod annotations on a service endpoint implementation to
specify Java methods that you want to expose as Java API for XML-Based Web Services (JAX-WS) web
services.

Before you begin

JAX-WS technology enables the implementation of web services based on both the standard service
endpoint interface and a Provider interface. When developing a JAX-WS web service starting from existing
Java classes, known as the bottom-up approach, you must annotate the class with either the
@WebService or @WebServiceProvider annotation to initially define the class as a web service.

Using the Provider interface is the dynamic approach to defining your JAX-WS services. To use the
Provider interface, your class must implement the javax.xml.ws.Provider interface, and contain the
@WebServiceProvider annotation. The Provider interface has one method, the invoke method, which uses
generics in the Java programming language to control both the input and output types when working with
various messages or message payloads.

In contrast, this topic describes how you can use Java annotations to describe your web services using
the service endpoint interface (SEI) approach.

About this task

To initially define a web service, annotate the Java class with the @WebService annotation. You can also
selectively annotate individual methods with the @WebMethod annotation to control their exposure as web
services operations.

Because of ambiguities across multiple web services specifications regarding how methods are exposed
as operations, use the following guidelines to help ensure consistent behavior regardless of the JAX-WS
implementation that you use.

v To define a basic web service, annotate the implementation class with the @WebService annotation.

v To define your web services using an explicit SEI, explicitly reference a Java interface class using the
endpointInterface attribute of the @WebService annotation.

v Provide a reference to a WSDL file in the wsdlLocation attribute of the @WebService annotation. By
specifying a pre-defined WSDL file, performance is improved. Also, discrepancies between the WSDL
file and the annotations are reported to you by the runtime environment.

v When you use an explicit SEI, all public methods in the SEI and inherited classes are always exposed.
You only need to add @WebMethod annotations if you want to further customize the methods that are
already exposed.

v Providing a reference in the @WebService annotation to an explicit SEI or to an existing WSDL file
helps to remove possible ambiguities when exposing methods.

v If you do not use an explicit SEI, follow these rules to ensure that your methods are exposed
consistently:

1142 Developing WebSphere applications

– Add an @WebService annotation to your implementation class and all its superclasses that contain
methods that you want to expose. Adding an @WebService annotation to a class exposes all public
methods in that class that are not static or final.

– If you want more granular control to expose only certain methods, use the @WebMethod annotation
on selected methods. To ensure that a method is exposed, annotate it with the @WebMethod
annotation. If you want to make sure that a method is not exposed, annotate it with the
@WebMethod(exclude=true) annotation.

Note:

Behavior change for exposing methods that are not annotated:

The behavior of JAX-WS has changed regarding exposing methods as web services operations.
This complies with recent clarifications to JAX-WS specifications.

Applications without an explicit SEI or WSDL that are migrated from prior versions might have
additional operations exposed as shown below. You can set a property so the JAX-WS runtime
environment uses the legacy behavior. You might need this when migrating applications without a
WSDL or an SEI so that additional methods are not exposed.

@WebService
public class Foo {
@WebMethod
public void a() {} // exposed now, exposed before
public void b() {} // exposed now, not exposed before
}

Using the new interpretation, public methods in an implementation class and its superclasses are
only exposed under the following conditions:

v The containing class has an @WebService annotation.

v The method does not have an @WebMethod(exclude=true) annotation.

Using the legacy interpretation, a method in an implementation class and its superclasses are only
exposed under the following conditions:

v The containing class has an @WebService annotation.

v The method has no @WebMethod annotations AND no other methods have @WebMethod
annotations.

v The method has an @WebMethod or @WebMethod(exclude=false) annotation.

To specify that the JAX-WS runtime environment use the legacy @WebMethod behavior, configure
the jaxws.runtime.legacyWebMethod=true property. You can configure this property as a Java
Virtual Machine (JVM) system property or as a property in the META-INF/MANIFEST.MF file of a web
application archive (WAR) file. By default, this property is set to false and the application server
uses the new behavior.

You might encounter a WSWS7054E error message if all of the following conditions are true:

v Your web service application consists of unannotated methods.

v The methods are not meant to be mapped to a web service operation.

v Your application does not reference an SEI nor package a WSDL file.

The error message contains information that is similar to the following text:
javax.xml.ws.WebServiceException: WSWS7054E:
The Web Services Description Language (WSDL) file could not be generated for the XXXX Web service implementation
class because of the following error: javax.xml.ws.WebServiceException: Unable to create JAXBContext

The JAX-WS tooling complies with the JAX-WS specification with respect to @WebMethod
mapping principles. This change might affect applications that have been dependent on previously
non-compliant default behavior. If your applications package and reference WSDL or an SEI and
have ALL methods correctly annotated with the @WebMethod exclude flag in the SEI
implementation, then this change does not affect you. However, if you are affected, add explicit
annotations to your methods to ensure that they are excluded in WSDL generation. For example:

Chapter 28. Developing web services 1143

@WebMethod(exclude=true) Also, you can package a WSDL with your application to eliminate the
need for the run time to generate a WSDL on your behalf.

Behavior change for exposing static and final methods:

Static or final methods in a service without an explicit SEI are no longer exposed as web services
operations. To expose them, package the WSDL with the application and set
jaxws.runtime.legacyWebMethod=true.

Procedure
1. Identify the methods that you want to expose as web services operations.

2. Review the rules for exposing methods as operations on classes annotated with the @WebService
annotation.

3. Use the best practices for applying the @WebMethod and @WebService annotations in applications
without SEIs to appropriately expose methods as operations within your web services.

Results

You have used the @WebMethod annotation to specify which methods to expose as web services
operations.

Note:

If you have upgraded your application server environment and you are experiencing problems,
review the following troubleshooting information.

Client errors indicate a mismatch between the WSDL file and portType when using a JAX-WS
tooling version 2.1.6 or higher environment

You might receive a client-side error message like the following message:
javax.xml.ws.WebServiceException: The Endpoint validation failed to validate due to the following errors:
:: Invalid Endpoint Interface ::
:: The number of operations in the WSDL portType does not match the number of methods in the SEI or web service
implementation class. wsdl operations = [...] dispatch operations = [....]

To correct this problem, you must regenerate client artifacts to match the WSDL file.

Note: Be sure to regenerate your client side artifacts any time you receive an updated
WSDL file.

Clients that perform a ?WSDL operation on web services have non-dispatchable operations

After performing a ?WSDL operation, you might receive a WSDL file that contains more
operations than the JAX-WS runtime environment can dispatch. If the client tries to invoke
any of the non-dispatchable operations, the client receives an error like the following
message:

The endpoint reference (EPR) for the Operation not found is http://localhost:9086/example/BeanImpl2Service and the WSA
Action = <WSA_action_from_server>. If this EPR was previously reachable, contact the server administrator.

Clients must only access the operations that the web service intends to expose. You can
correct this problem in one of the following ways:

v Modify the @WebMethod annotations in the web services application so that the
resulting WSDL file exposes the correct set of operations.

v Set the jaxws.runtime.legacyWebMethod property to false to ensure that all operations in
the WSDL are dispatched.

What to do next

Develop Java artifacts for JAX-WS applications from JavaBeans.

1144 Developing WebSphere applications

JAX-WS annotations
Java API for XML-Based Web Services (JAX-WS) relies on the use of annotations to specify metadata
associated with web services implementations and to simplify the development of web services.
Annotations describe how a server-side service implementation is accessed as a web service or how a
client-side Java class accesses web services.

The JAX-WS programming standard introduces support for annotating Java classes with metadata that is
used to define a service endpoint application as a web service and how a client can access the web
service. JAX-WS supports the use of annotations based on the Metadata Facility for the Java
Programming Language (Java Specification Request (JSR) 175) specification, the Web Services Metadata
for the Java Platform (JSR 181) specification and annotations defined by the JAX-WS 2.0 and later (JSR
224) specification which includes JAXB annotations. Using annotations from the JSR 181 standard, you
can simply annotate the service implementation class or the service interface and now the application is
enabled as a web service. Using annotations within the Java source simplifies development and
deployment of web services by defining some of the additional information that is typically obtained from
deployment descriptor files, WSDL files, or mapping metadata from XML and WSDL into the source
artifacts.

Use annotations to configure bindings, handler chains, set names of portType, service and other WSDL
parameters. Annotations are used in mapping Java to WSDL and schema, and at runtime to control how
the JAX-WS runtime processes and responds to web service invocations.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because you
can use annotations to specify all of the information that is contained within the deployment descriptor file.
You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (Web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations.

In the Version 6.1 Feature Pack for Web Services, the default behavior is to scan pre- Java Platform,
Enterprise Edition (Java EE) 5 web application modules to identify JAX-WS services and to scan pre-Java
EE 5 web application modules and EJB modules for service clients during application installation. Because
the default behavior for WebSphere Application Server Version 7.0 and later is to not scan pre-Java EE 5
modules for annotations during application installation or server startup, to preserve backward
compatability with the feature pack from previous releases, you must configure one of the following
properties:

v You can set the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a WAR file or EJB
module to true. For example:

Manifest-Version: 1.0
UseWSFEP61ScanPolicy: true

When this property is set to true in the META-INF/MANIFEST.MF file of the module, the module is
scanned for JAX-WS annotations regardless of the Java EE version of the module. The default value is
false and when the default value is in effect, JAX-WS annotations are only supported in modules
whose version is Java EE 5 or later.

v You can set the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy custom Java virtual machine
(JVM) property using the administrative console. See the JVM custom properties documentation for the
correct navigation path to use. To request annotation scanning in all modules regardless of their Java
EE version, set the custom property com.ibm.websphere.webservices.UseWSFEP61ScanPolicy to true.
You must change the setting on each server that requires a change in the default behavior.

Chapter 28. Developing web services 1145

If the property is set within the META-INF/MANIFEST.MF file of the module, this setting takes precedence
over the server's custom JVM property. When using either property, you must establish the desired
annotation scanning behavior before the application is installed. You cannot dynamically change the
scanning behavior once an application is installed. If changes to the behavior are required after your
application is installed, you must first uninstall the application, specify the desired scanning behavior using
the appropriate property and then install the application again. When federating nodes that have the
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy set to true in the configuration of the servers
contained within the node, this property does not affect the deployment manager. You must set the
property to true on the deployment manager before the node is federated to preserve the behavior as it
was on the node before federation.

Annotations supported by JAX-WS are listed in the table below. The target for annotations is applicable for
these Java objects:

v types such as a Java class, enum or interface

v methods

v fields representing local instance variables within a Java class

v parameters within a Java method

1146 Developing WebSphere applications

Ta
bl

e
12

7.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

w
eb

se
rv

ic
es

m
et

ad
at

a
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
jw
s.

We
bS
er
vi
ce

T
he

@
W

eb
S

er
vi

ce
an

no
ta

tio
n

m
ar

ks
a

Ja
va

cl
as

s
as

im
pl

em
en

tin
g

a
W

eb
se

rv
ic

e
or

m
ar

ks
a

se
rv

ic
e

en
dp

oi
nt

in
te

rf
ac

e
(S

E
I)

as
im

pl
em

en
tin

g
a

w
eb

se
rv

ic
e

in
te

rf
ac

e.
Im

p
o

rt
an

t:

v
A

Ja
va

cl
as

s
th

at
im

pl
em

en
ts

a
w

eb
se

rv
ic

e
m

us
t

sp
ec

ify
ei

th
er

th
e

@
W

eb
S

er
vi

ce
or

@
W

eb
S

er
vi

ce
P

ro
vi

de
r

an
no

ta
tio

n.
B

ot
h

an
no

ta
tio

ns
ca

nn
ot

be
pr

es
en

t.
T

hi
s

an
no

ta
tio

n
is

ap
pl

ic
ab

le
on

a
cl

ie
nt

or
se

rv
er

S
E

I
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
If

th
e

an
no

ta
tio

n
re

fe
re

nc
es

an
S

E
I

th
ro

ug
h

th
e
en
dp
oi
nt
In
te
rf
ac
e

at
tr

ib
ut

e,
th

e
S

E
I

m
us

t
al

so
be

an
no

ta
te

d
w

ith
th

e
@

W
eb

S
er

vi
ce

an
no

ta
tio

n.

v
S

ee
th

e
ex

po
si

ng
m

et
ho

ds
in

S
E

I-
ba

se
d

JA
X

-W
S

w
eb

se
rv

ic
es

in
fo

rm
at

io
n

to
le

ar
n

ab
ou

t
be

st
pr

ac
tic

es
fo

r
us

in
g

th
e

@
W

eb
S

er
vi

ce
an

d
@

W
eb

M
et

ho
d

an
no

ta
tio

ns
on

a
se

rv
ic

e
en

dp
oi

nt
im

pl
em

en
ta

tio
n

to
sp

ec
ify

Ja
va

m
et

ho
ds

th
at

yo
u

w
an

t
to

ex
po

se
as

JA
X

-W
S

w
eb

se
rv

ic
es

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
na
me

T
he

na
m

e
of

th
e
ws
dl
:p
or
tT
yp
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

un
qu

al
ifi

ed
na

m
e

of
th

e
Ja

va
cl

as
s

or
in

te
rf

ac
e.

(S
tr

in
g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

W
S

D
L

an
d

X
M

L
el

em
en

ts
ge

ne
ra

te
d

fr
om

th
e

w
eb

se
rv

ic
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

es
pa

ce
m

ap
pe

d
fr

om
th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng
th

e
w

eb
se

rv
ic

e.
(S

tr
in

g)

-
se
rv
ic
eN
am
e

S
pe

ci
fie

s
th

e
se

rv
ic

e
na

m
e

of
th

e
w

eb
se

rv
ic

e:
ws
dl
:s
er
vi
ce

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
si

m
pl

e
na

m
e

of
th

e
Ja

va
cl

as
s

+
S

er
vi

ce
.

(S
tr

in
g)

-
en
dp
oi
nt
In
te
rf
ac
e

S
pe

ci
fie

s
th

e
qu

al
ifi

ed
na

m
e

of
th

e
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e

th
at

de
fin

es
th

e
se

rv
ic

es
'a

bs
tr

ac
t

w
eb

se
rv

ic
e

co
nt

ra
ct

.
If

sp
ec

ifi
ed

,
th

e
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e

is
us

ed
to

de
te

rm
in

e
th

e
ab

st
ra

ct
W

S
D

L
co

nt
ra

ct
.

(S
tr

in
g)

-
po
rt
Na
me

T
he

ws
dl
:p
or
tN
am
e.

T
he

de
fa

ul
t

va
lu

e
is

W
eb

S
er

vi
ce

.n
am

e
+

P
or

t
.

(S
tr

in
g)

-
ws
dl
Lo
ca
ti
on

S
pe

ci
fie

s
th

e
w

eb
ad

dr
es

s
of

th
e

W
S

D
L

do
cu

m
en

t
de

fin
in

g
th

e
w

eb
se

rv
ic

e.
T

he
w

eb
ad

dr
es

s
is

ei
th

er
re

la
tiv

e
or

ab
so

lu
te

.
(S

tr
in

g)

ja
va
x.
jw
s.

We
bM
et
ho
d

T
he

@
W

eb
M

et
h

o
d

an
no

ta
tio

n
de

no
te

s
a

m
et

ho
d

th
at

is
a

w
eb

se
rv

ic
e

op
er

at
io

n.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

N
o

te
:

B
eg

in
ni

ng
w

ith
S

un
an

d
H

P
JD

K
V

er
si

on
1.

6
co

nt
ai

ni
ng

JA
X

-W
S

to
ol

in
g

V
er

si
on

2.
1.

6,
th

e
be

ha
vi

or
of

th
e

JA
X

-W
S

ru
nt

im
e

en
vi

ro
nm

en
ts

an
d

to
ol

in
g

ha
s

ch
an

ge
d

in
ho

w
it

de
te

rm
in

es
w

hi
ch

m
et

ho
ds

ar
e

ex
po

se
d

as
w

eb
se

rv
ic

es
op

er
at

io
ns

in
an

ef
fo

rt
to

be
tte

r
ad

he
re

to
th

e
JA

X
-W

S
sp

ec
ifi

ca
tio

ns
.A

pp
lic

at
io

ns
th

at
m

ig
ht

be
af

fe
ct

ed
by

th
is

ch
an

ge
in

cl
ud

e
w

eb
se

rv
ic

es
ap

pl
ic

at
io

ns
th

at
do

no
t

sp
ec

ify
a

W
S

D
L

fil
e

or
an

ex
pl

ic
it

se
rv

ic
e

en
dp

oi
nt

in
te

rf
ac

e
(S

E
I)

.
To

le
ar

n
m

or
e,

se
e

th
e

ex
po

si
ng

m
et

ho
ds

in
S

E
I-

ba
se

d
JA

X
-W

S
w

eb
se

rv
ic

es
in

fo
rm

at
io

n.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
op
er
at
io
nN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ws
dl
:o
pe
ra
ti
on

m
at

ch
in

g
th

is
m

et
ho

d.
T

he
de

fa
ul

t
va

lu
e

is
th

e
na

m
e

of
Ja

va
m

et
ho

d.
(S

tr
in

g)

-
ac
ti
on D
ef

in
es

th
e

ac
tio

n
fo

r
th

is
op

er
at

io
n.

F
or

S
O

A
P

bi
nd

in
gs

,
th

is
va

lu
e

de
te

rm
in

es
th

e
va

lu
e

of
th

e
S

O
A

P
A

ct
io

n
he

ad
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
na

m
e

of
Ja

va
m

et
ho

d.
(S

tr
in

g)

-
ex
cl
ud
e

S
pe

ci
fie

s
w

he
th

er
to

ex
cl

ud
e

a
m

et
ho

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

Chapter 28. Developing web services 1147

Ta
bl

e
12

7.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

On
ew
ay

T
he

@
O

n
ew

ay
an

no
ta

tio
n

de
no

te
s

a
m

et
ho

d
as

a
w

eb
se

rv
ic

e
on

e-
w

ay
op

er
at

io
n

th
at

on
ly

ha
s

an
in

pu
t

m
es

sa
ge

an
d

no
ou

tp
ut

m
es

sa
ge

.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
T

he
re

ar
e

no
pr

op
er

tie
s

on
th

e
O

ne
w

ay
an

no
ta

tio
n.

ja
va
x.
jw
s.

We
bP
ar
am

T
he

@
W

eb
P

ar
am

an
no

ta
tio

n
cu

st
om

iz
es

th
e

m
ap

pi
ng

of
an

in
di

vi
du

al
pa

ra
m

et
er

to
a

w
eb

se
rv

ic
e

m
es

sa
ge

pa
rt

an
d

X
M

L
el

em
en

t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
P

ar
am

et
er

v
P

ro
pe

rt
ie

s:

-
na
me

T
he

na
m

e
of

th
e

pa
ra

m
et

er
.

If
th

e
op

er
at

io
n

is
re

m
ot

e
pr

oc
ed

ur
e

ca
ll

(R
P

C
)

st
yl

e
an

d
th

e
pa
rt
Na
me

at
tr

ib
ut

e
is

no
t

sp
ec

ifi
ed

,
th

en
th

is
is

th
e

na
m

e
of

th
e
ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
pa

ra
m

et
er

.
If

th
e

op
er

at
io

n
is

do
cu

m
en

t
st

yl
e

or
th

e
pa

ra
m

et
er

m
ap

s
to

a
he

ad
er

,
th

en
-n
am
e

is
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

el
em

en
t

re
pr

es
en

tin
g

th
e

pa
ra

m
et

er
.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d
if

th
e

op
er

at
io

n
is

do
cu

m
en

t
st

yl
e,

th
e

pa
ra

m
et

er
st

yl
e

is
BA
RE

,
an

d
th

e
m

od
e

is
OU
T

or
IN
OU
T.

(S
tr

in
g)

-
pa
rt
Na
me

D
ef

in
es

th
e

na
m

e
of

ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

is
pa

ra
m

et
er

.
T

hi
s

is
on

ly
us

ed
if

th
e

op
er

at
io

n
is

R
P

C
st

yl
e,

or
th

e
op

er
at

io
n

is
do

cu
m

en
t

st
yl

e
an

d
th

e
pa

ra
m

et
er

st
yl

e
is

BA
RE

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

X
M

L
el

em
en

t
fo

r
th

e
pa

ra
m

et
er

.
A

pp
lie

s
on

ly
fo

r
do

cu
m

en
t

bi
nd

in
gs

w
he

n
th

e
at

tr
ib

ut
e

m
ap

s
to

an
X

M
L

el
em

en
t.

T
he

de
fa

ul
t

va
lu

e
is

th
e
ta
rg
et
Na
me
sp
ac
e

fo
r

th
e

w
eb

se
rv

ic
e.

(S
tr

in
g)

-
mo
de

T
he

va
lu

e
re

pr
es

en
ts

th
e

di
re

ct
io

n
th

e
pa

ra
m

et
er

flo
w

s
fo

r
th

is
m

et
ho

d.
V

al
id

va
lu

es
ar

e
IN

,
IN
OU
T,

an
d
OU
T.

(S
tr

in
g)

-
he
ad
er S
pe

ci
fie

s
w

he
th

er
th

e
pa

ra
m

et
er

is
in

a
m

es
sa

ge
he

ad
er

ra
th

er
th

an
a

m
es

sa
ge

bo
dy

.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

1148 Developing WebSphere applications

Ta
bl

e
12

7.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

We
bR
es
ul
t

T
he

@
W

eb
R

es
u

lt
an

no
ta

tio
n

cu
st

om
iz

es
th

e
m

ap
pi

ng
of

a
re

tu
rn

va
lu

e
to

a
W

S
D

L
pa

rt
or

X
M

L
el

em
en

t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
re

tu
rn

va
lu

e
as

it
is

lis
te

d
in

th
e

W
S

D
L

fil
e

an
d

fo
un

d
in

m
es

sa
ge

s
on

th
e

w
ire

.
F

or
R

P
C

bi
nd

in
gs

,
th

is
is

th
e

na
m

e
of

th
e
ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
re

tu
rn

va
lu

e.
F

or
do

cu
m

en
t

bi
nd

in
gs

,
th

e
-n
am
e

pa
ra

m
et

er
is

th
e

lo
ca

ln
am

e
of

th
e

X
M

L
el

em
en

t
re

pr
es

en
tin

g
th

e
re

tu
rn

va
lu

e.
T

he
de

fa
ul

t
va

lu
e

is
re
tu
rn

fo
r

R
P

C
an

d
D

O
C

U
M

E
N

T
/W

R
A

P
P

E
D

bi
nd

in
gs

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
m

et
ho

d
na

m
e

+
Re
sp
on
se

fo
r

D
O

C
U

M
E

N
T

/B
A

R
E

bi
nd

in
gs

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
fo

r
th

e
re

tu
rn

va
lu

e.
T

hi
s

pa
ra

m
et

er
is

on
ly

us
ed

if
th

e
op

er
at

io
n

is
R

P
C

st
yl

e
or

if
th

e
op

er
at

io
n

is
D

O
C

U
M

E
N

T
st

yl
e

an
d

th
e

pa
ra

m
et

er
st

yl
e

is
B

A
R

E
.

(S
tr

in
g)

-
he
ad
er S
pe

ci
fie

s
w

he
th

er
th

e
re

su
lt

is
ca

rr
ie

d
in

a
he

ad
er

.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
pa

rt
na

m
e

fo
r

th
e

re
su

lt
w

ith
R

P
C

or
D

O
C

U
M

E
N

T
/B

A
R

E
op

er
at

io
ns

.
T

he
de

fa
ul

t
va

lu
e

is
@W
eb
Re
su
lt
.n
am
e.

(S
tr

in
g)

ja
va
x.
jw
s.

Ha
nd
le
rC
ha
in

T
he

@
H

an
d

le
rC

h
ai

n
an

no
ta

tio
n

as
so

ci
at

es
th

e
w

eb
se

rv
ic

e
w

ith
an

ex
te

rn
al

ly
de

fin
ed

ha
nd

le
r

ch
ai

n.

Yo
u

ca
n

on
ly

co
nf

ig
ur

e
th

e
se

rv
er

si
de

ha
nd

le
r

by
us

in
g

th
e

@
H

an
dl

er
C

ha
in

an
no

ta
tio

n
on

th
e

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

th
e

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.

U
se

on
e

of
se

ve
ra

lw
ay

s
to

co
nf

ig
ur

e
a

cl
ie

nt
si

de
ha

nd
le

r.
Yo

u
ca

n
co

nf
ig

ur
e

a
cl

ie
nt

si
de

ha
nd

le
r

by
us

in
g

th
e

@
H

an
dl

er
C

ha
in

an
no

ta
tio

n
on

th
e

ge
ne

ra
te

d
se

rv
ic

e
cl

as
s

or
S

E
I.

A
dd

iti
on

al
ly

,
yo

u
ca

n
pr

og
ra

m
m

at
ic

al
ly

re
gi

st
er

yo
ur

ow
n

im
pl

em
en

ta
tio

n
of

th
e

H
an

dl
er

R
es

ol
ve

r
in

te
rf

ac
e

on
th

e
S

er
vi

ce
,

or
pr

og
ra

m
m

at
ic

al
ly

se
t

th
e

ha
nd

le
r

ch
ai

n
on

th
e

B
in

di
ng

ob
je

ct
.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
fi
le

S
pe

ci
fie

s
th

e
lo

ca
tio

n
of

th
e

ha
nd

le
r

ch
ai

n
fil

e.
T

he
fil

e
lo

ca
tio

n
is

ei
th

er
an

ab
so

lu
te

ja
va

.n
et

.U
R

L
in

ex
te

rn
al

fo
rm

or
a

re
la

tiv
e

pa
th

fr
om

th
e

cl
as

s
fil

e.
(S

tr
in

g)

-
na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ha

nd
le

r
ch

ai
n

in
th

e
co

nf
ig

ur
at

io
n

fil
e.

(S
tr

in
g)

Chapter 28. Developing web services 1149

Ta
bl

e
12

7.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

SO
AP
Bi
nd
in
g

T
he

@
S

O
A

P
B

in
d

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

e
m

ap
pi

ng
of

th
e

w
eb

se
rv

ic
e

on
to

th
e

S
O

A
P

m
es

sa
ge

pr
ot

oc
ol

.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

ty
pe

or
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

T
he

m
et

ho
d

le
ve

la
nn

ot
at

io
n

is
lim

ite
d

in
w

ha
t

it
ca

n
sp

ec
ify

an
d

is
on

ly
us

ed
if

th
e
st
yl
e

pr
op

er
ty

is
DO
CU
ME
NT

.
If

th
e

m
et

ho
d

le
ve

la
nn

ot
at

io
n

is
no

t
sp

ec
ifi

ed
,

th
e

@
S

O
A

P
B

in
d

in
g

be
ha

vi
or

fr
om

th
e

ty
pe

is
us

ed
.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
st
yl
e D
ef

in
es

en
co

di
ng

st
yl

e
fo

r
m

es
sa

ge
s

se
nt

to
an

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
va

lid
va

lu
es

ar
e
DO
CU
ME
NT

an
d
RP
C.

T
he

de
fa

ul
t

va
lu

e
is

DO
CU
ME
NT

.
(S

tr
in

g)

-
us
e

D
ef

in
es

th
e

fo
rm

at
tin

g
us

ed
fo

r
m

es
sa

ge
s

se
nt

to
an

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
de

fa
ul

t
va

lu
e

is
LI
TE
RA
L.

EN
CO
DE
D

is
no

t
su

pp
or

te
d.

(S
tr

in
g)

-
pa
ra
me
te
rS
ty
le

D
et

er
m

in
es

w
he

th
er

th
e

m
et

ho
d'

s
pa

ra
m

et
er

s
re

pr
es

en
t

th
e

en
tir

e
m

es
sa

ge
bo

dy
or

w
he

th
er

pa
ra

m
et

er
s

ar
e

el
em

en
ts

w
ra

pp
ed

in
si

de
a

to
p-

le
ve

le
le

m
en

t
na

m
ed

af
te

r
th

e
op

er
at

io
n.

V
al

id
va

lu
es

ar
e
WR
AP
PE
D

or
BA
RE

.
Yo

u
ca

n
on

ly
us

e
th

e
BA
RE

va
lu

e
w

ith
DO
CU
ME
NT

st
yl

e
bi

nd
in

gs
.

T
he

de
fa

ul
t

va
lu

e
is

WR
AP
PE
D.

(S
tr

in
g)

1150 Developing WebSphere applications

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
JA

X
-W

S
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
xm
l.
ws
.
Ac
ti
on

T
he

@
A

ct
io

n
an

no
ta

tio
n

sp
ec

ifi
es

th
e

W
S

-A
dd

re
ss

in
g

ac
tio

n
th

at
is

as
so

ci
at

ed
w

ith
a

w
eb

se
rv

ic
e

op
er

at
io

n.

W
he

n
yo

u
us

e
th

is
an

no
ta

tio
n

w
ith

a
pa

rt
ic

ul
ar

m
et

ho
d,

an
d

ge
ne

ra
te

th
e

co
rr

es
po

nd
in

g
W

S
D

L
do

cu
m

en
t,

th
e

W
S

-A
dd

re
ss

in
g

A
ct

io
n

ex
te

ns
io

n
at

tr
ib

ut
e

is
ad

de
d

to
th

e
in

pu
t

an
d

ou
tp

ut
el

em
en

ts
of

th
e

W
S

D
L

op
er

at
io

n
th

at
co

rr
es

po
nd

s
to

th
at

m
et

ho
d.

To
ad

d
th

is
at

tr
ib

ut
e

to
th

e
W

S
D

L
op

er
at

io
n,

yo
u

m
us

t
al

so
sp

ec
ify

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

If
yo

u
do

no
t

w
an

t
to

us
e

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

yo
u

ca
n

su
pp

ly
yo

ur
ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th
e

A
ct

io
n

at
tr

ib
ut

e
al

re
ad

y
de

fin
ed

.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
fa
ul
t S
pe

ci
fie

s
th

e
ar

ra
y

of
Fa
ul
tA
ct
io
n

fo
r

th
e
ws
dl
:f
au
lt

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
in
pu
t S
pe

ci
fie

s
th

e
ac

tio
n

fo
r

th
ew

sd
l:
in
pu
t

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
ou
tp
ut S
pe

ci
fie

s
th

e
ac

tio
n

fo
r

th
ew

sd
l:
ou
tp
ut

of
th

e
op

er
at

io
n.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
Bi
nd
in
gT
yp
e

T
he

@
B

in
d

in
g

Ty
p

e
an

no
ta

tio
n

sp
ec

ifi
es

th
e

bi
nd

in
g

to
us

e
w

he
n

pu
bl

is
hi

ng
an

en
dp

oi
nt

of
th

is
ty

pe
.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.
Im

p
o

rt
an

t:
Yo

u
ca

n
us

e
th

e
@

B
in

di
ng

Ty
pe

an
no

ta
tio

n
on

th
e

Ja
va

B
ea

ns
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s
to

en
ab

le
M

T
O

M
by

sp
ec

ify
in

g
ei

th
er

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_M
TO
M_
BI
ND
IN
G

or
ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
12
HT
TP
_M
TO
M_
BI
ND
IN
G

as
th

e
va

lu
e

fo
r

th
e

an
no

ta
tio

n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e In
di

ca
te

s
th

e
bi

nd
in

g
id

en
tif

ie
r

w
eb

ad
dr

es
s.

V
al

id
va

lu
es

ar
e

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_B
IN
DI
NG

,
ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
12
HT
TP
_B
IN
DI
NG

,
an

d
ja
va
x.
xm
l.
ws
.h
tt
p.
HT
TP
Bi
nd
in
g.
HT
TP
2H
TT
P_
BI
ND
IN
G.

T
he

de
fa

ul
t

va
lu

e
is

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_B
IN
DI
NG

.
(S

tr
in

g)

ja
va
x.
xm
l.
ws
.
Fa
ul
tA
ct
io
n

T
he

@
F

au
lt

A
ct

io
n

an
no

ta
tio

n
sp

ec
ifi

es
th

e
W

S
-A

dd
re

ss
in

g
ac

tio
n

th
at

is
ad

de
d

to
a

fa
ul

t
re

sp
on

se
.

T
hi

s
an

no
ta

tio
n

m
us

t
be

co
nt

ai
ne

d
w

ith
in

an
@

A
ct

io
n

an
no

ta
tio

n.

W
he

n
yo

u
us

e
th

is
an

no
ta

tio
n

w
ith

a
pa

rt
ic

ul
ar

m
et

ho
d,

th
e

W
S

-A
dd

re
ss

in
g

F
au

ltA
ct

io
n

ex
te

ns
io

n
at

tr
ib

ut
e

is
ad

de
d

to
th

e
fa

ul
t

el
em

en
t

of
th

e
W

S
D

L
op

er
at

io
n

th
at

co
rr

es
po

nd
s

to
th

at
m

et
ho

d.

To
ad

d
th

is
at

tr
ib

ut
e

to
th

e
W

S
D

L
op

er
at

io
n,

yo
u

m
us

t
al

so
sp

ec
ify

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

If
yo

u
do

no
t

w
an

t
to

us
e

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

yo
u

ca
n

su
pp

ly
yo

ur
ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th
e

A
ct

io
n

at
tr

ib
ut

e
al

re
ad

y
de

fin
ed

.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
th

e
ac

tio
n

of
th

e
ws
dl
:f
au
lt

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
ou
tp
ut S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ex

ce
pt

io
n

cl
as

s.
(S

tr
in

g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

Chapter 28. Developing web services 1151

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
Re
qu
es
tW
ra
pp
er

T
he

@
R

eq
u

es
tW

ra
p

p
er

an
no

ta
tio

n
su

pp
lie

s
th

e
JA

X
B

ge
ne

ra
te

d
re

qu
es

t
w

ra
pp

er
be

an
,

th
e

el
em

en
t

na
m

e,
an

d
th

e
na

m
es

pa
ce

fo
r

se
ria

liz
at

io
n

an
d

de
se

ria
liz

at
io

n
w

ith
th

e
re

qu
es

t
w

ra
pp

er
be

an
th

at
is

us
ed

at
ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith
a

Ja
va

ob
je

ct
,

th
is

el
em

en
t

is
us

ed
to

re
so

lv
e

ov
er

lo
ad

in
g

co
nf

lic
ts

in
do

cu
m

en
t

lit
er

al
m

od
e.

O
nl

y
th

e
cl
as
sN
am
e

at
tr

ib
ut

e
is

re
qu

ire
d

in
th

is
ca

se
.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo
ca
lN
am
e

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
op
er
at
io
nN
am
e

as
de

fin
ed

in
ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

re
qu

es
t

w
ra

pp
er

m
et

ho
d.

T
he

de
fa

ul
t

va
lu

e
is

th
e

ta
rg

et
na

m
es

pa
ce

of
th

e
S

E
I.

(S
tr

in
g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:p

ar
t

at
tr

ib
ut

e
th

at
re

pr
es

en
ts

th
e

X
M

L
sc

he
m

a
el

em
en

t
fo

r
th

e
R

eq
ue

st
W

ra
pp

er
cl

as
s.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
Re
sp
on
se
Wr
ap
pe
r

T
he

@
R

es
p

o
n

se
W

ra
p

p
er

an
no

ta
tio

n
su

pp
lie

s
th

e
JA

X
B

ge
ne

ra
te

d
re

sp
on

se
w

ra
pp

er
be

an
,

th
e

el
em

en
t

na
m

e,
an

d
th

e
na

m
es

pa
ce

fo
r

se
ria

liz
at

io
n

an
d

de
se

ria
liz

at
io

n
w

ith
th

e
re

sp
on

se
w

ra
pp

er
be

an
th

at
is

us
ed

at
ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith
a

Ja
va

ob
je

ct
,

th
is

el
em

en
t

is
us

ed
to

re
so

lv
e

ov
er

lo
ad

in
g

co
nf

lic
ts

in
do

cu
m

en
t

lit
er

al
m

od
e.

O
nl

y
th

e
cl
as
sN
am
e

at
tr

ib
ut

e
is

re
qu

ire
d

in
th

is
ca

se
.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo
ca
lN
am
e

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
op
er
at
io
nN
am
e

+
R

es
po

ns
e.

op
er
at
io
nN
am
e

is
de

fin
ed

in
ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

re
qu

es
t

w
ra

pp
er

m
et

ho
d.

T
he

de
fa

ul
t

va
lu

e
is

th
e

ta
rg

et
na

m
es

pa
ce

of
th

e
S

E
I.

(S
tr

in
g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
sp

on
se

w
ra

pp
er

.
(S

tr
in

g)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:p

ar
t

at
tr

ib
ut

e
th

at
re

pr
es

en
ts

th
e

X
M

L
sc

he
m

a
el

em
en

t
fo

r
th

e
R

es
po

ns
eW

ra
pp

er
cl

as
s.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

1152 Developing WebSphere applications

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
Re
sp
ec
tB
in
di
ng

T
he

@
R

es
p

ec
tB

in
d

in
g

an
no

ta
tio

n
sp

ec
ifi

es
w

he
th

er
th

e
JA

X
-W

S
im

pl
em

en
ta

tio
n

m
us

t
us

e
th

e
co

nt
en

ts
of

th
e
ws
dl
:b
in
di
ng

fo
r

an
en

dp
oi

nt
.

W
he

n
th

is
an

no
ta

tio
n

is
sp

ec
ifi

ed
,

a
ch

ec
k

is
pe

rf
or

m
ed

to
en

su
re

al
lr

eq
ui

re
d

W
S

D
L

ex
te

ns
ib

ili
ty

el
em

en
ts

w
ith

th
e

en
ab

le
d

at
tr

ib
ut

e
se

t
to

tr
ue

ar
e

su
pp

or
te

d.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
w

he
th

er
th

e
ws
dl
:b
in
di
ng

m
us

t
be

us
ed

or
no

t.
T

he
de

fa
ul

t
va

lu
e

is
tr
ue

.
(B

oo
le

an
)

ja
va
x.
xm
l.
ws
.
Se
rv
ic
eM
od
e

T
he

@
S

er
vi

ce
M

o
d

e
an

no
ta

tio
n

sp
ec

ifi
es

w
he

th
er

a
se

rv
ic

e
pr

ov
id

er
ne

ed
s

to
ha

ve
ac

ce
ss

to
an

en
tir

e
pr

ot
oc

ol
m

es
sa

ge
or

ju
st

th
e

m
es

sa
ge

pa
yl

oa
d.

Im
p

o
rt

an
t:

T
he

@
S

er
vi

ce
M

od
e

an
no

ta
tio

n
is

on
ly

su
pp

or
te

d
on

cl
as

se
s

th
at

ar
e

an
no

ta
te

d
w

ith
th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e In
di

ca
te

s
w

he
th

er
th

e
pr

ov
id

er
cl

as
s

ac
ce

pt
s

th
e

pa
yl

oa
d

of
th

e
m

es
sa

ge
,
PA
YL
OA
D

or
th

e
en

tir
e

m
es

sa
ge

ME
SS
AG
E.

T
he

de
fa

ul
t

va
lu

e
is

PA
YL
OA
D.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
so
ap
.A
dd
re
ss
in
g

T
he

@
A

d
d

re
ss

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

at
th

is
se

rv
ic

e
w

an
ts

to
en

ab
le

W
S

-A
dd

re
ss

in
g

su
pp

or
t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

W
S

-A
dd

re
ss

in
g

is
en

ab
le

d
or

no
t.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
re
qu
ir
ed

S
pe

ci
fie

s
th

at
W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be
pr

es
en

t
on

in
co

m
in

g
m

es
sa

ge
s.

T
he

de
fa

ul
t

va
lu

e
is

fa
ls
e.

(B
oo

le
an

)

-
re
sp
on
se
s

S
pe

ci
fie

s
th

e
m

es
sa

ge
ex

ch
an

ge
pa

tte
rn

to
us

e.
T

he
de

fa
ul

t
va

lu
e

is
Re
sp
on
se
s.
AL
L.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

Chapter 28. Developing web services 1153

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
so
ap
.M
TO
M

T
he

@
M

TO
M

an
no

ta
tio

n
sp

ec
ifi

es
w

he
th

er
bi

na
ry

co
nt

en
t

in
th

e
bo

dy
of

a
S

O
A

P
m

es
sa

ge
is

se
nt

us
in

g
M

T
O

M
.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

se
rv

ic
e

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
C

la
ss

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

M
T

O
M

is
en

ab
le

d
fo

r
th

e
JA

X
-W

S
en

dp
oi

nt
.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
th
re
sh
ol
d

S
pe

ci
fie

s
th

e
m

in
im

um
si

ze
fo

r
m

es
sa

ge
s

th
at

ar
e

se
nt

us
in

g
M

T
O

M
.

W
he

n
th

e
m

es
sa

ge
si

ze
is

le
ss

th
an

th
is

sp
ec

ifi
ed

in
te

ge
r,

th
e

m
es

sa
ge

is
in

lin
ed

in
th

e
X

M
L

do
cu

m
en

t
as

ba
se

64
or

he
xB

in
ar

y
da

ta
.

(in
te

ge
r)

ja
va
x.
xm
l.
ws
.
We
bF
au
lt

T
he

@
W

eb
F

au
lt

an
no

ta
tio

n
m

ap
s

W
S

D
L

fa
ul

ts
to

Ja
va

ex
ce

pt
io

ns
.

It
is

us
ed

to
ca

pt
ur

e
th

e
na

m
e

of
th

e
fa

ul
t

du
rin

g
th

e
se

ria
liz

at
io

n
of

th
e

JA
X

B
ty

pe
th

at
is

ge
ne

ra
te

d
fr

om
a

gl
ob

al
el

em
en

t
re

fe
re

nc
ed

by
a

W
S

D
L

fa
ul

t
m

es
sa

ge
.

It
ca

n
al

so
be

us
ed

to
cu

st
om

iz
e

th
e

m
ap

pi
ng

of
se

rv
ic

e
sp

ec
ifi

c
ex

ce
pt

io
ns

to
W

S
D

L
fa

ul
ts

.

T
hi

s
an

no
ta

tio
n

ca
n

on
ly

be
ap

pl
ie

d
to

a
fa

ul
t

im
pl

em
en

ta
tio

n
cl

as
s

on
th

e
cl

ie
nt

or
se

rv
er

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

T
he

ac
tu

al
va

lu
e

m
us

t
be

sp
ec

ifi
ed

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
na

m
es

pa
ce

of
th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

(S
tr

in
g)

-
fa
ul
tB
ea
n

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
fa

ul
t

be
an

cl
as

s.
(S

tr
in

g)

-
me
ss
ag
eN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:m

es
sa

ge
at

tr
ib

ut
e

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

1154 Developing WebSphere applications

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Pr
ov
id
er

T
he

@
W

eb
S

er
vi

ce
P

ro
vi

d
er

an
no

ta
tio

n
de

no
te

s
th

at
a

cl
as

s
sa

tis
fie

s
re

qu
ire

m
en

ts
fo

r
a

JA
X

-W
S

P
ro

vi
de

r
im

pl
em

en
ta

tio
n

cl
as

s.
Im

p
o

rt
an

t:

v
A

Ja
va

cl
as

s
th

at
im

pl
em

en
ts

a
w

eb
se

rv
ic

e
m

us
t

sp
ec

ify
ei

th
er

th
e

@
W

eb
S

er
vi

ce
or

@
W

eb
S

er
vi

ce
P

ro
vi

de
r

an
no

ta
tio

n.
B

ot
h

an
no

ta
tio

ns
ca

nn
ot

be
pr

es
en

t.

v
T

he
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

is
on

ly
su

pp
or

te
d

on
th

e
se

rv
ic

e
im

pl
em

en
ta

tio
n

cl
as

s.

A
ny

cl
as

s
w

ith
th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

m
us

t
im

pl
em

en
t

th
e

ja
va

x.
xm

l.w
s.

P
ro

vi
de

r
in

te
rf

ac
e.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

W
S

D
L

an
d

X
M

L
el

em
en

ts
ge

ne
ra

te
d

fr
om

th
e

w
eb

se
rv

ic
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

es
pa

ce
m

ap
pe

d
fr

om
th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng
th

e
w

eb
se

rv
ic

e.
(S

tr
in

g)

-
se
rv
ic
eN
am
e

S
pe

ci
fie

s
th

e
se

rv
ic

e
na

m
e

of
th

e
w

eb
se

rv
ic

e:
ws
dl
:s
er
vi
ce

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
si

m
pl

e
na

m
e

of
th

e
Ja

va
cl

as
s

+
S

er
vi

ce
.

(S
tr

in
g)

-
po
rt
Na
me

T
he

ws
dl
:p
or
tN
am
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

e
of

th
e

cl
as

s
+

P
or

t.
(S

tr
in

g)

-
ws
dl
Lo
ca
ti
on

T
he

w
eb

ad
dr

es
s

of
th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

w
eb

se
rv

ic
e.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d.
(S

tr
in

g)

Chapter 28. Developing web services 1155

Ta
bl

e
12

8.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Re
f

T
he

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n

de
fin

es
a

re
fe

re
nc

e
to

a
w

eb
se

rv
ic

e
in

vo
ke

d
by

th
e

cl
ie

nt
.

N
o

te
:

v
T

he
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
ca

n
be

us
ed

to
in

je
ct

in
st

an
ce

s
of

JA
X

-W
S

se
rv

ic
es

an
d

po
rt

s.

v
T

he
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
is

on
ly

su
pp

or
te

d
in

ce
rt

ai
n

cl
as

s
ty

pe
s.

E
xa

m
pl

es
ar

e
JA

X
-W

S
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

se
s,

JA
X

-W
S

ha
nd

le
r

cl
as

se
s,

E
nt

er
pr

is
e

Ja
va

B
ea

ns
cl

as
se

s,
an

d
se

rv
le

t
cl

as
se

s.
T

hi
s

an
no

ta
tio

n
is

su
pp

or
te

d
in

th
e

sa
m

e
cl

as
s

ty
pe

s
as

th
e

@
R

es
ou

rc
e

an
no

ta
tio

n.
S

ee
th

e
Ja

va
P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

5
sp

ec
ifi

ca
tio

n
fo

r
a

co
m

pl
et

e
lis

t
of

su
pp

or
te

d
cl

as
s

ty
pe

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe
,

F
ie

ld
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
JN

D
I

na
m

e
of

th
e

re
so

ur
ce

.
T

he
fie

ld
na

m
e

is
th

e
de

fa
ul

t
fo

r
fie

ld
an

no
ta

tio
ns

.
T

he
Ja

va
B

ea
ns

pr
op

er
ty

na
m

e
th

at
co

rr
es

po
nd

s
to

th
e

m
et

ho
d

is
th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify
a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns
as

th
er

e
is

no
de

fa
ul

t.
(S

tr
in

g)

-
ty
pe

In
di

ca
te

s
th

e
Ja

va
ty

pe
of

th
e

re
so

ur
ce

.
T

he
fie

ld
ty

pe
is

th
e

de
fa

ul
t

fo
r

fie
ld

an
no

ta
tio

ns
.

T
he

ty
pe

of
th

e
Ja

va
B

ea
ns

pr
op

er
ty

is
th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify
a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns
as

th
er

e
is

no
de

fa
ul

t.
(C

la
ss

)

-
ma
pp
ed
Na
me

S
pe

ci
fie

s
th

e
na

m
e

to
m

ap
th

is
re

so
ur

ce
to

.
(S

tr
in

g)

-
va
lu
e In
di

ca
te

s
th

e
va

lu
e

of
th

e
se

rv
ic

e
cl

as
s

an
d

it
is

a
ty

pe
th

at
ex

te
nd

s
ja
va
x.
xm
l.
ws
.S
er
vi
ce

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d

w
he

n
th

e
ty

pe
of

th
e

re
fe

re
nc

e
is

a
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e.

(C
la

ss
)

-
ws
dl
Lo
ca
ti
on

T
he

w
eb

ad
dr

es
s

of
th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

w
eb

se
rv

ic
e.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d.
(S

tr
in

g)

-
lo
ok
up S
pe

ci
fie

s
th

e
JN

D
I

lo
ok

up
na

m
e

fo
r

th
e

ta
rg

et
w

eb
se

rv
ic

e.
T

hi
s

pr
op

er
ty

is
ap

pl
ic

ab
le

fo
r

JA
X

-W
S

2.
2

an
d

la
te

r.
(S

tr
in

g)

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Re
fs

T
he

@
W

eb
S

er
vi

ce
R

ef
s

an
no

ta
tio

n
as

so
ci

at
es

m
ul

tip
le

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
ns

w
ith

a
sp

ec
ifi

c
cl

as
s.

N
o

te
:

T
he

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n

is
on

ly
su

pp
or

te
d

in
ce

rt
ai

n
cl

as
s

ty
pe

s.
E

xa
m

pl
es

ar
e

JA
X

-W
S

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
se

s,
JA

X
-W

S
ha

nd
le

r
cl

as
se

s,
E

nt
er

pr
is

e
Ja

va
B

ea
ns

cl
as

se
s,

an
d

se
rv

le
t

cl
as

se
s.

T
hi

s
an

no
ta

tio
n

is
su

pp
or

te
d

in
th

e
sa

m
e

cl
as

s
ty

pe
s

as
th

e
@

R
es

ou
rc

e
an

no
ta

tio
n.

S
ee

th
e

Ja
va

P
la

tfo
rm

,
E

nt
er

pr
is

e
E

di
tio

n
(J

av
a

E
E

)
5

sp
ec

ifi
ca

tio
n

fo
r

a
co

m
pl

et
e

lis
t

of
su

pp
or

te
d

cl
as

s
ty

pe
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
an

ar
ra

y
fo

r
m

ul
tip

le
w

eb
se

rv
ic

e
re

fe
re

nc
e

de
cl

ar
at

io
ns

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d.

1156 Developing WebSphere applications

Ta
bl

e
12

9.
JA

X
-W

S
C

om
m

on
A

nn
ot

at
io

ns
(J

S
R

25
0)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
JA

X
-W

S
co

m
m

on
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
an
no
ta
ti
on
.
Re
so
ur
ce

T
he

@
R

es
o

u
rc

e
an

no
ta

tio
n

m
ar

ks
a

W
eb

S
er

vi
ce

C
on

te
xt

re
so

ur
ce

ne
ed

ed
by

th
e

ap
pl

ic
at

io
n.

N
o

te
:

A
pp

ly
in

g
th

is
an

no
ta

tio
n

to
a

W
eb

S
er

vi
ce

C
on

te
xt

ty
pe

fie
ld

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s

fo
r

a
Ja

va
B

ea
ns

en
dp

oi
nt

or
a

P
ro

vi
de

r
en

dp
oi

nt
re

su
lts

in
th

e
co

nt
ai

ne
r

in
je

ct
in

g
an

in
st

an
ce

of
th

e
W

eb
S

er
vi

ce
C

on
te

xt
in

to
th

e
sp

ec
ifi

ed
fie

ld
.

W
he

n
th

is
an

no
ta

tio
n

is
us

ed
in

pl
ac

e
of

th
e

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n,

th
e

ru
le

s
de

sc
rib

ed
fo

r
th

e
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
ap

pl
y.

v
A

nn
ot

at
io

n
ta

rg
et

:
F

ie
ld

or
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
ty
pe

In
di

ca
te

s
th

e
Ja

va
ty

pe
of

th
e

re
so

ur
ce

.
Yo

u
ar

e
re

qu
ire

d
to

us
e

th
e

de
fa

ul
t,
ja
va
.l
an
g.
Ob
je
ct

or
ja
va
x.
xm
l.
ws
.W
eb

Se
rv
ic
eC
on
te
xt

va
lu

e.
If

th
e

ty
pe

is
th

e
de

fa
ul

t,
th

e
re

so
ur

ce
m

us
t

be
in

je
ct

ed
in

to
a

fie
ld

or
a

m
et

ho
d.

In
th

is
ca

se
,

th
e

ty
pe

of
th

e
fie

ld
or

th
e

ty
pe

of
th

e
Ja

va
B

ea
ns

pr
op

er
ty

de
fin

ed
by

th
e

m
et

ho
d

m
us

t
be

ja
va
x.
xm
l.
ws
.W
eb
Se
rv
ic
eC
on
te
xt

.
(C

la
ss

)

If
yo

u
ar

e
us

in
g

th
is

an
no

ta
tio

n
to

in
je

ct
a

w
eb

se
rv

ic
e,

se
e

th
e

de
sc

rip
tio

n
of

th
e

@
W

eb
S

er
vi

ce
R

ef
ty
pe

at
tr

ib
ut

e.

ja
va
x.
an
no
ta
ti
on
.
Re
so
ur
ce
s

T
he

@
R

es
o

u
rc

es
an

no
ta

tio
n

as
so

ci
at

es
m

ul
tip

le
@

R
es

ou
rc

e
an

no
ta

tio
ns

w
ith

a
sp

ec
ifi

c
cl

as
s

an
d

se
rv

es
as

a
co

nt
ai

ne
r

fo
r

m
ul

tip
le

re
so

ur
ce

de
cl

ar
at

io
ns

.
v

A
nn

ot
at

io
n

ta
rg

et
:

F
ie

ld
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
an

ar
ra

y
fo

r
m

ul
tip

le
@

R
es

ou
rc

e
an

no
ta

tio
ns

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d.

ja
va
x.
an
no
ta
ti
on
.
Po
st
Co
ns
tr
uc
t

T
he

@
P

o
st

C
o

n
st

ru
ct

an
no

ta
tio

n
m

ar
ks

a
m

et
ho

d
th

at
ne

ed
s

to
ru

n
af

te
r

de
pe

nd
en

cy
in

je
ct

io
n

is
pe

rf
or

m
ed

on
th

e
cl

as
s.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

JA
X

-W
S

ap
pl

ic
at

io
n

ha
nd

le
r,

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

ja
va
x.
an
no
ta
ti
on
.
Pr
eD
es
tr
oy

T
he

@
P

re
D

es
tr

o
y

an
no

ta
tio

n
m

ar
ks

a
m

et
ho

d
th

at
m

us
t

be
ru

n
w

he
n

th
e

in
st

an
ce

is
in

th
e

pr
oc

es
s

of
be

in
g

re
m

ov
ed

by
th

e
co

nt
ai

ne
r.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

JA
X

-W
S

ap
pl

ic
at

io
n

ha
nd

le
r

or
a

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

Chapter 28. Developing web services 1157

Ta
bl

e
13

0.
IB

M
pr

op
rie

ta
ry

an
no

ta
tio

ns
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

IB
M

pr
op

rie
ta

ry
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

co
m.
ib
m.
we
bs
ph
er
e.

ws
ad
dr
es
si
ng
.

ja
xw
s2
1.

Su
bm
is
si
on
Ad
dr
es
si
ng

T
he

@
S

u
b

m
is

si
o

n
A

d
d

re
ss

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

at
th

is
se

rv
ic

e
w

an
ts

to
en

ab
le

W
S

-A
dd

re
ss

in
g

su
pp

or
t

fo
r

th
e

20
04

/0
8

W
S

-A
dd

re
ss

in
g

sp
ec

ifi
ca

tio
n.

T
hi

s
an

no
ta

tio
n

is
pa

rt
of

th
e

IB
M

im
pl

em
en

ta
tio

n
of

th
e

JA
X

-W
S

2.
1

sp
ec

ifi
ca

tio
n.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

W
S

-A
dd

re
ss

in
g

is
en

ab
le

d
or

no
t.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
re
qu
ir
ed

S
pe

ci
fie

s
th

at
W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be
pr

es
en

t
on

in
co

m
in

g
m

es
sa

ge
s.

T
he

de
fa

ul
t

va
lu

e
is

fa
ls
e.

(B
oo

le
an

)

1158 Developing WebSphere applications

Generating Java artifacts for JAX-WS applications
Use Java API for XML-Based Web Services (JAX-WS) tools to generate the necessary JAX-WS and Java
Architecture for XML Binding (JAXB) Java artifacts that are needed for JAX-WS web services applications
when starting from JavaBeans or enterprise beans components.

Before you begin

To develop a Java API for XML-Based Web Services (JAX-WS) web service application, you must first
develop a service endpoint interface (SEI) implementation that explicitly or implicitly describes the SEI.

About this task

When using a bottom-up approach to develop JAX-WS web services, use the wsgen command-line tool on
the existing service endpoint implementation. The wsgen tool processes a compiled service endpoint
implementation class as input and generates the following portable artifacts:

v Java Architecture for XML Binding (JAXB) classes that are required to marshal and unmarshal the
message contents.

v a Web Services Description Language (WSDL) file if the optional -wsdl argument is specified.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

You are not required to develop a WSDL file when developing JAX-WS Web services using the bottom-up
approach of starting with JavaBeans. The use of annotations provides all of the WSDL information
necessary to configure the service endpoint or the client. The application server supports WSDL 1.1
documents that comply with Web Services-Interoperability (WS-I) Basic Profile 1.1 specifications and are
either Document/Literal style documents or RPC/Literal style documents. Additionally, WSDL documents
with bindings that declare a USE attribute of value LITERAL are supported while the value, ENCODED, is not
supported. For WSDL documents that implement a Document/Literal wrapped pattern, a root element is
declared in the XML schema and is used as an operation wrapper for a message flow. Separate wrapper
element definitions exist for both the request and the response.

To ensure the wsgen command does not miss inherited methods on a service endpoint implementation
bean, you must either add the @WebService annotation to the desired superclass or you can override the
inherited method in the implementation class with a call to the superclass method.

Although a WSDL file is typically optional when developing a JAX-WS service implementation bean, it is
required if your JAX-WS endpoints are exposed using the SOAP over JMS transport and you are
publishing your WSDL file. If you are developing an enterprise JavaBeans service implementation bean
that is invoked using the SOAP over JMS transport, and you want to publish the WSDL so that the

Chapter 28. Developing web services 1159

published WSDL file contains the fully resolved JMS endpoint URL, then have wsgen tool generate the
WSDL file by specifying the -wsdl argument. In this scenario, you must package the WSDL file with your
web service application.

In addition to using the tools from the command-line, you can invoke these JAX-WS tools from within the
Ant build environments. Use the com.sun.tools.ws.ant.WsGen Ant task from within the Ant build
environment to invoke the wsgen tool. To function properly, this Ant task requires that you invoke Ant using
the ws_ant script.

Procedure
1. Locate your service endpoint implementation class file.

2. Run the wsgen command to generate the portable artifacts. The wsgen tool is located in the
app_server_root/bin/ directory.

app_server_root\bin\wsgen.bat [options] service_implementation_class

app_server_root/bin/ wsgen.sh [options] service_implementation_class

(Optional) Use the following options with the wsgen command:

v Use the -verbose option to see a list of generated files along with additional informational
messages.

v Use the -keep option to keep generated Java files.

v Use the -wsdl option to generate a WSDL file. If you are developing a service implementation bean
that will be invoked using the HTTP transport, then the WSDL file generated by the wsgen
command-line tool during this step is optional. However, if you are developing a service
implementation bean that will be invoked using the SOAP over JMS transport, then the WSDL file
generated by the wsgen tool during this step is required in subsequent developing JAX-WS
applications steps, so it is not optional.

Read about wsgen to learn more about this command and additional options that you can specify.

Results

You have the required Java artifacts to create a JAX-WS web service.

Note: The wsgen command does not differentiate the XML namespace between multiple XMLType
annotations that have the same @XMLType name defined within different Java packages. When
this scenario occurs, the following error is produced:

Error: Two classes have the same XML type name
Use @XmlType.name and @XmlType.namespace to assign different names to them...

This error indicates that you have classes or @XMLType.name values that have the same name,
but exist within different Java packages. To prevent this error, add the @XML.Type.namespace
class to the existing @XMLType annotation to differentiate between the XML types.

Note: Beginning with Sun and HP JDK Version 1.6 containing JAX-WS tooling Version 2.1.6, the behavior
of the JAX-WS runtime environments and tooling has changed in how it determines which methods
are exposed as web services operations in an effort to better adhere to the JAX-WS specifications.
Applications that might be affected by this change include web services applications that do not
specify a WSDL file or an explicit service endpoint interface (SEI). To learn more, see the exposing
methods in SEI-based JAX-WS web services information.

1160 Developing WebSphere applications

With JAX-WS applications, the wsgen command-line tool might not locate shared class files. You can
specify the location of these class files using the
com.ibm.websphere.webservices.wsdl_generation_extra_classpath custom property. For more information,
see the documentation about the Java virtual machine custom properties.

Example

The following example demonstrates how to use the wsgen command to process the service endpoint
implementation class to generate JAX-WS artifacts. This example EchoService service implementation
class uses an explicit JavaBeans service endpoint.

1. Copy the sample EchoServicePortTypeImpl service implementation class file and the associated
EchoServicePortType service interface class file into a directory. The directory must contain a directory
tree structure that corresponds to the com.ibm.was.wssample.echo package name for the class file.

/* This is a sample EchoServicePortTypeImpl.java file. */
package com.ibm.was.wssample.echo;

@javax.jws.WebService(serviceName = "EchoService", endpointInterface =
"com.ibm.was.wssample.echo.EchoServicePortType",
targetNamespace="http://com/ibm/was/wssample/echo/",
portName="EchoServicePort")

public class EchoServicePortTypeImpl implements EchoServicePortType {

public EchoServicePortTypeImpl() {
}

public String invoke(String obj) {
System.out.println(">> JAXB Provider Service:

Request received.\n");
String str = "Failed";
if (obj != null) {
try {
str = obj;
} catch (Exception e) {
e.printStackTrace();
}
}
return str;

}

}

/* This is a sample EchoServicePortType.java file. */
package com.ibm.was.wssample.echo;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;

@WebService(name = "EchoServicePortType", targetNamespace =
"http://com/ibm/was/wssample/echo/",
wsdlLocation="WEB-INF/wsdl/Echo.wsdl")

public interface EchoServicePortType {

/**
*
* @param arg0
* @return
* returns java.lang.String
*/
@WebMethod
@WebResult(name = "response", targetNamespace =
"http://com/ibm/was/wssample/echo/")
@RequestWrapper(localName = "invoke", targetNamespace =
"http://com/ibm/was/wssample/echo/",
className = "com.ibm.was.wssample.echo.Invoke")
@ResponseWrapper(localName = "echoStringResponse",
targetNamespace = "http://com/ibm/was/wssample/echo/",
className = "com.ibm.was.wssample.echo.EchoStringResponse")
public String invoke(

@WebParam(name = "arg0", targetNamespace =

Chapter 28. Developing web services 1161

"http://com/ibm/was/wssample/echo/")
String arg0);

}

2. Run the wsgen command from the app_server_root\bin\ directory. The -cp option specifies the location
of the service implementation class file. The -s option specifies the directory for the generated source
files. The -d option specifies the directory for the generated output files. When using the -s or -d
options, you must first create the directory for the generated output files.

app_server_root\bin\wsgen.bat -wsdl -s c:\generated_source\ -cp c:\my_application\classes\
com.ibm.was.wssample.echo.EchoServicePortTypeImpl -verbose -d c:\generated_artifacts\

Run the wsgen command; for example:
app_server_root/bin/wsgen.sh -wsdl -s c:/generated_source/ -cp c:/my_application/classes/
com.ibm.was.wssample.echo.EchoServicePortTypeImpl -verbose -d c:/generated_artifacts/

After generating the Java artifacts using the wsgen command, the following files are generated:
/generated_source/com/ibm/was/wssample/echo/EchoStringResponse.java
/generated_source/com/ibm/was/wssample/echo/Invoke.java
/generated_artifacts/EchoService.wsdl
/generated_artifacts/EchoService_schema1.xsd
/generated_artifacts/com/ibm/was/wssample/echo/EchoStringResponse.class
/generated_artifacts/com/ibm/was/wssample/echo/Invoke.class

The EchoStringResponse.java and Invoke.java files are the generated Java class files. The compiled
versions of the generated Java files are EchoStringResponse.class and Invoke.class files. The
EchoService.wsdl and EchoService_schema1.xsd files are generated because the -wsdl option was
specified.

What to do next

Complete the implementation of your JAX-WS web service application.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 131. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

1162 Developing WebSphere applications

app_server_root

Table 132. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 133. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 134. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Chapter 28. Developing web services 1163

Table 135. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 136. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 137. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

wsgen command for JAX-WS applications
The wsgen command-line tool generates the necessary artifacts required for Java API for XML Web
Services (JAX-WS) applications when starting from Java code. The generated artifacts are Java 5
compliant, making them portable across different Java versions and platforms.

When using a bottoms-up approach to develop JAX-WS web services and you are starting from a service
endpoint implementation, use the wsgen tool to generate the required JAX-WS artifacts.

1164 Developing WebSphere applications

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

The wsgen tool accepts a properly annotated service endpoint implementation using the @WebService
annotation as input and generates the following artifacts:

v any additional Java Architecture for XML Binding (JAXB) classes that are required to marshal and
unmarshal the message contents.

v a WSDL file if the optional -wsdl argument is specified. The wsgen tool does not automatically generate
the WSDL file.

When using JAX-WS V2.2 tools, java.lang.RuntimeException and java.rmi.RemoteException references
and their subclasses are no longer mapped in the WSDL file. This behavior change complies with the
JAX-WS V2.1 specification conformance rule that is described in section 3.7 of the specification. This
conformance rule specifies that the java.lang.RuntimeException and java.rmi.RemoteException classes
and their subclasses cannot be treated as service-specific exceptions and mapped in the WSDL file.

In addition to using the tools from the command line, you can invoke these JAX-WS tools from within the
Ant build environments. Use the com.sun.tools.ws.ant.WsGen Ant task from within the Ant build
environment to invoke the wsgen tool. To function properly, this Ant task requires that you invoke Ant using
the ws_ant script.

Note: The wsgen command does not differentiate the XML namespace between multiple XMLType
annotations that have the same @XMLType name defined within different Java packages. When
this scenario occurs, the following error is produced:

Error: Two classes have the same XML type name
Use @XmlType.name and @XmlType.namespace to assign different names to them...

This error indicates you have class names or @XMLType.name values that have the same name,
but exist within different Java packages. To prevent this error, add the @XML.Type.namespace
class to the existing @XMLType annotation to differentiate between the XML types.

Note: Beginning with Sun and HP JDK Version 1.6 containing JAX-WS tooling Version 2.1.6, the behavior
of the JAX-WS runtime environments and tooling has changed in how it determines which methods
are exposed as web services operations in an effort to better adhere to the JAX-WS specifications.
Applications that might be affected by this change include web services applications that do not
specify a WSDL file or an explicit service endpoint interface (SEI). To learn more, see the exposing
methods in SEI-based JAX-WS web services information.

With JAX-WS applications, the wsgen command-line tool might not locate shared class files. You can
specify the location of these class files using the

Chapter 28. Developing web services 1165

com.ibm.websphere.webservices.wsdl_generation_extra_classpath custom property. For more information,
see the documentation about the Java virtual machine custom properties.

Syntax

The command-line syntax is:

app_server_root\bin\wsgen.bat [options] service_implementation_class

app_server_root/bin/wsgen.sh [options] service_implementation_class

Parameters

The service_implementation_class name is the only parameter that is required. The following parameters
are optional for the wsgen command:

-classpath <path>
Specifies the location of the service implementation class.

-cp <path>
Specifies the location of the service implementation class. This parameter is the same as -classpath
<path>.

-d <directory>
Specifies where to place the generated output files.

-extension
Specifies whether to enable custom extensions for functionality not specified by the JAX-WS
specification. Use of the extensions can result in applications that are not portable or do not
interoperate with other implementations.

-help
Displays the help menu.

-keep
Specifies whether to keep the generated source files.

-r <directory>
This parameter is only used with the -wsdl parameter. Specifies where to place the generated WSDL
file.

-s <directory>
Specifies the directory to place the generated source files.

-verbose
Specifies to output messages about what the compiler is doing.

-version
Prints the version information. If you specify this option, only the version information is output and
normal command processing does not occur.

-wsdl [:protocol]
By default, the wsgen tool does not generate a WSDL file. This optional parameter causes wsgen to
generate a WSDL file and is typically only used to enable a developer to review a WSDL file before
the endpoint is deployed. The protocol is optional and specifies the protocol used in the
wsdl:binding. Valid values for protocol are soap 1.1 and Xsoap 1.2. The default value is soap 1.1.
The Xsoap 1.2 value is not standard and is only used with the -extension option.

1166 Developing WebSphere applications

-servicename <name>
This parameter is only used with the -wsdl option. Specifies a wsdl:service name to be generated in
the WSDL file. For example,

-service name "{http://mynamespace/}MyService"

-portname
This parameter is only used with the -wsdl option. Specifies a wsdl:port name to be generated in the
WSDL file. For example,

-portname "{http://mynamespace/}MyPort"

Mapping between Java language, WSDL and XML for JAX-WS applications
Data for Java API for XML Web Services (JAX-WS) applications flows as extensible Markup Language
(XML). JAX-WS applications use mappings to describe the data conversion between the Java language
and extensible Markup Language (XML) technologies, including XML Schema, Web Services Description
Language (WSDL) and SOAP that are supported by the application server.

For web services based on the JAX-WS programming model, mappings between the Java language and
XML are specified by the JAX-WS specification and the Java Architecture for XML Binding (JAXB)
specification for data bindings. JAX-WS leverages the JAXB API and tools as the binding technology for
mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB tooling for default
data binding for two-way mappings between Java objects and XML documents.

The JAX-WS specification describes the mapping between Web Services Description Language (WSDL)
files and the Java language. The supported mappings include WSDL-to-Java mappings and Java-to-WSDL
mappings. WSDL 1.1 is required by the JAX-WS 2.0 specification. You can use annotations to customize
the mapping from Java artifacts to their associated WSDL components. Refer to the JAX-WS specification
for details describing the WSDL-to-Java mappings and Java-to-WSDL mappings.

Data binding mappings used by the JAX-WS programming model are described by the JAXB specification.
Refer to the JAXB specification for details that describe the JAXB mappings for the Java representation of
XML content, including the default and custom bindings between XML schema to Java representations.

Enabling MTOM for JAX-WS web services
With Java API for XML-Based Web Services (JAX-WS), you can send binary attachments such as images
or files along with web services requests. JAX-WS adds support for optimized transmission of binary data
as specified by the SOAP Message Transmission Optimization Mechanism (MTOM) specification.

About this task

JAX-WS supports the use of SOAP Message Transmission Optimized Mechanism (MTOM) for sending
binary attachment data. By enabling MTOM, you can send and receive binary data optimally without
incurring the cost of data encoding needed to embed the binary data in an XML document.

The application server supports sending attachments using MTOM only for JAX-WS applications. This
product also provides the ability to provide attachments with Web Services Security SOAP messages by
using the new MTOM and XOP standards.

JAX-WS applications can send binary data as base64 or hexBinary encoded data contained within the
XML document. However, to take advantage of the optimizations provided by MTOM, enable MTOM to
send binary base64 data as attachments contained outside the XML document. MTOM optimization is not
enabled by default. JAX-WS applications require separate configuration of both the client and the server
artifacts to enable MTOM support.

Chapter 28. Developing web services 1167

Procedure
1. Develop Java artifacts for your JAX-WS application that includes an XML schema or Web Services

Description Language (WSDL) file that represents your web services application data that includes a
binary attachment.

a. If you are starting with a WSDL file, develop Java artifacts from a WSDL file by using the wsimport
command to generate the required JAX-WS portable artifacts.

b. If you are starting with JavaBeans components, develop Java artifacts for JAX-WS applications and
optionally generate a WSDL file using the wsgen command. The XML schema or WSDL file
includes a xsd:base64Binary or xsd:hexBinary element definition for the binary data.

c. You can also include the xmime:expectedContentTypes attribute on the element to affect the
mapping by JAXB.

2. Enable MTOM on your endpoint implementation class using one of the following methods:

v Use the @MTOM annotation on the endpoint.

To enable MTOM on an endpoint, use the @MTOM (javax.xml.ws.soap.MTOM) annotation on the
endpoint. The @MTOM annotation has two parameters, enabled and threshold. The enabled
parameter has a boolean value and indicates if MTOM is enabled for the JAX-WS endpoint. The
threshold parameter has an integer value, that must be greater than or equal to zero. When MTOM
is enabled, any binary data whose size, in bytes, exceeds the threshold value is XML-binary
Optimized Packaging (XOP) encoded or sent as an attachment. When the message size is less
than the threshold value, the message is inlined in the XML document as either base64 or
hexBinary data.

The following example snippet illustrates adding the @MTOM annotation so that MTOM is enabled
for the JAX-WS MyServiceImpl endpoint and specifies a threshold value of 2048 bytes:

@MTOM(enabled=true, threshold=2048)
@WebService
public class MyServiceImpl {
...
}

Additionally, you can use the @BindingType (javax.xml.ws.BindingType) annotation on an endpoint
implementation class to specify that the endpoint supports one of the MTOM binding types so that
the response messages are MTOM-enabled. The javax.xml.ws.SOAPBinding class defines two
different constants, SOAP11HTTP_MTOM_BINDING and SOAP12HTTP_MTOM_BINDING that you can use for
the value of the @BindingType annotation; for example:

// This example is for SOAP version 1.1.
@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING)
@WebService
public class MyServiceImpl {
...
}

// This example is for SOAP version 1.2.
@BindingType(value = SOAPBinding.SOAP12HTTP_MTOM_BINDING)
@WebService
public class MyServiceImpl {
...
}

The presence and value of an @MTOM annotation overrides the value of the @BindingType
annotation. For example, if the @BindingType indicates MTOM is enabled, but an @MTOM
annotation is present with an enabled value of false, then MTOM is not enabled.

v Use the <enable-mtom> and <mtom-threshold> deployment descriptor elements.

You can use the <enable-mtom> and <mtom-threshold> elements within the <port-component>
element in the webservices.xml deployment descriptor as an alternative to using the @MTOM
annotation on the service endpoint implementation class; for example:

<port-component>
<port-component-name>MyPort1</port-component-name>
<enable-mtom>true</enable-mtom>
<mtom-threshold>2048</mtom-threshold>
<service-impl-bean>
<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

1168 Developing WebSphere applications

Note: The deployment descriptor elements take precedence over the corresponding attributes in the
MTOM annotation. For example, if the enabled attribute is set to true in the annotation, but
the <enable-mtom> element is set to false in the webservices.xml file, MTOM is not enabled
for the corresponding endpoint.

3. Enable MTOM on your client to optimize the binary messages that are sent from the client to the
server. Use one of the following methods to enable MTOM on your client:

v Enable MTOM on a Dispatch client.

The following examples use SOAP version 1.1.

The first method uses SOAPBinding.setMTOMEnabled(); for example:
SOAPBinding binding = (SOAPBinding)dispatch.getBinding();

binding.setMTOMEnabled(true);

The second method uses Service.addPort; for example:
Service svc = Service.create(serviceName);
svc.addPort(portName,SOAPBinding.SOAP11HTTP_MTOM_BINDING,endpointUrl);

The third method uses MTOMFeature; for example:
MTOMFeature mtom = new MTOMFeature(true, 2048);
Service svc = Service.create(serviceName);
svc.addPort(portName, SOAPBinding.SOAP11_HTTP_BINDING, endpointUrl);
Dispatch<Source> dsp = svc.createDispatch(portName, Source.class, Service.Mode.PAYLOAD, mtom);

v Enable MTOM on a Dynamic Proxy client.
// Create a BindingProvider bp from a proxy port.
Service svc = Service.create(serviceName);
MtomSample proxy = svc.getPort(portName, MtomSample.class);
BindingProvider bp = (BindingProvider) proxy;

//Enable MTOM using the SOAPBinding.
MtomSample proxy = svc.getPort(portName, MtomSample.class);
BindingProvider bp = (BindingProvider) proxy;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true);

//Or, you can enable MTOM with the MTOMFeature.
MTOMFeature mtom = new MTOMFeature();
MtomSample proxy = svc.getPort(portName, MtomSample.class, mtom);

v Enable MTOM on your client using the @MTOM annotation; for example:
public class MyClientApplication {

// Enable MTOM for a port-comonent-ref resource injection.
@MTOM(enabled=true, threshold=1024)
@WebServiceRef(MyService.class)
private MyPortType myPort;
...

}

v Enable MTOM on your client using deployment descriptor elements within a port-component-ref
element; for example:

<service-ref>
<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<enable-mtom>true</enable-mtom>
<mtom-threshold>1024</mtom-threshold>

</port-component-ref>
</service-ref>

Note: The deployment descriptor elements take precedence over the corresponding attributes in the
MTOM annotation. For example, if the enabled attribute is set to true in the annotation, but
the <enable-mtom> element is set to false in the deployment descriptor entry for the
service-ref of the client, MTOM is not enabled for that service reference.

Results

You have developed a JAX-WS web services server and client application that optimally sends and
receives binary data using MTOM.

Chapter 28. Developing web services 1169

Example

The following example illustrates enabling MTOM support on both the web services client and server
endpoint when starting with an WSDL file.

1. Locate the WSDL file containing an xsd:base64Binary element. The following example is a portion of a
WSDL file that contains an xsd:base64Binary element.

<types>
........
<xs:complexType name="ImageDepot">

<xs:sequence>
<xs:element name="imageData"

type="xs:base64Binary"
xmime:expectedContentTypes="image/jpeg"/>

</xs:sequence>
</xs:complexType>
........

</types>

2. Run the wsimport command from the app_server_root\bin\ directory against the WSDL file to generate
a set of JAX-WS portable artifacts.

app_server_root\bin\wsimport.bat <wsdl_url>

app_server_root/bin/wsimport.sh <wsdl_url>

Depending on the expectedContentTypes value contained in the WSDL file, the JAXB artifacts
generated are in the Java type as described in the following table:

Table 138. Mapping of MIME type and Java type. Describes the mapping between MIME types and Java types.
MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

/ javax.activation.DataHandler

3. Use the JAXB artifacts in the same manner as in any other JAX-WS application. Use these beans to
send binary data from both the Dispatch and the Dynamic Proxy client APIs.

4. Enable MTOM on a Dispatch client.
//Create the Dispatch instance.

JAXBContext jbc = JAXBContext.newInstance("org.apache.axis2.jaxws.sample.mtom");
Dispatch<Object> dispatch = svc.createDispatch(portName, jbc, Service.Mode.PAYLOAD);

//Enable MTOM.
SOAPBinding binding = (SOAPBinding) dispatch.getBinding();
binding.setMTOMEnabled(true);

5. Enable MTOM on a Dynamic Proxy client.
//Create the Dynamic Proxy instance.

Service svc = Service.create(serviceName);
MtomSample proxy = svc.getPort(portName, MtomSample.class);

//Enable MTOM.
BindingProvider bp = (BindingProvider) proxy;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true);

Now that you have enabled the JAX-WS client for MTOM, messages sent to the server have MTOM
enabled. However, for the server to respond back to the client using MTOM, you must enable MTOM
on the endpoint.

6. Enable MTOM on the endpoint implementation class.

1170 Developing WebSphere applications

@MTOM(enabled, threshold=4096)
@WebService (endpointInterface="org.apache.axis2.jaxws.sample.mtom.MtomSample")

public class MtomSampleService implements MtomSample {
....

}

The jaxax.xml.ws.SOAPBinding class has a static member for each of the supported binding types.
Include either the SOAP11HTTP_MTOM_BINDING or the SOAP12HTTP_MTOM_BINDING as the value for the
@BindingType annotation. This value enables all server responses to have MTOM enabled.

When you enable MTOM on the server and the client, the binary data that represents the attachment is
included as a Multipurpose Internet Mail Extensions (MIME) attachment to the SOAP message. Without
MTOM, the same data is encoded in the format that describes the XML schema, either base64 or
hexadecimal encoding, and included inline in the XML document.

This example illustrates an MTOM enabled SOAP version 1.1 message with an attachment. The type and
content-type attributes both have the value, application/xop+xml, which indicates that the message was
successfully optimized using XML-binary Optimized packaging (XOP) when MTOM was enabled. This
example demonstrates how the optimized message looks on the wire with MTOM enabled.
... other transport headers ...
Content-Type: multipart/related; boundary=MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812;
type="application/xop+xml"; start="
<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>"; start-info="text/xml"; charset=UTF-8

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: application/xop+xml; charset=UTF-8; type="text/xml";
content-transfer-encoding: binary
content-id:

<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>

<imageData>
<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"

href="cid:1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org"/>
</imageData>

</input>
</sendImage>

</soapenv:Body>
</soapenv:Envelope>

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: text/plain
content-transfer-encoding: binary
content-id:

<1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org>

... binary data goes here ...
--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812--

In contrast, this example demonstrates a SOAP version 1.1 message on the wire without MTOM enabled.
The binary data is included in the body of the SOAP message, and the SOAP message is not optimized.
... other transport headers ...
Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>

<imageData>R0lGADl ... more base64 encoded data ... KTJk8giAAA7</imageData>
</input>

</sendImage>
</soapenv:Body>

</soapenv:Envelope>

For additional information, refer to the Samples section of the Information Center which includes a sample
that demonstrates the use of MTOM with JAX-WS web services.

Chapter 28. Developing web services 1171

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 139. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 140. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

1172 Developing WebSphere applications

Table 141. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 142. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 143. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 144. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 28. Developing web services 1173

Table 145. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Enforcing adherence to WSDL bindings in JAX-WS web services
Java API for XML-Based Web Services (JAX-WS) Version 2.1 introduced the concept of features as a way
to programmatically control specific functions and behaviors. The RespectBindingFeature is one of the
supported standard features. You can use the RespectBindingFeature to control whether a JAX-WS
implementation is required to respect the contents of a Web Services Description Language (WSDL)
binding that is associated with an endpoint.

About this task

While WSDL documents are often used during the development process, the actual enforcement of the
use of the WSDL document specifications, when they are provided, at run time has not been well defined
in versions of the JAX-WS specification previous to Version 2.1. The JAX-WS Version 2.1 specification
added the feature, RespectBindingFeature, to clarify the impact of the wsdl:binding in a JAX-WS runtime
environment.

Enabling the feature, RespectBindingFeature, causes the JAX-WS runtime environment to inspect the
wsdl:binding for an endpoint at run time to ensure that the binding of service endpoint interface (SEI)
parameters and return values is respected. Additionally, this feature ensures that all required wsdl:binding
extensions are either understood and used by the runtime environment, or the extensions have been
explicitly disabled by the application. Your JAX-WS application can disable a specific wsdl:binding
extension that has a defined WebServiceFeature interface by using the appropriate annotation that is
associated with that feature, using an API that accepts the javax.xml.ws.WebServiceFeature interface, or
configuring the deployment descriptors.

When the RespectBindingFeature feature is not enabled, which is the default, the runtime environment can
choose whether any part of the wsdl:binding is enforced.

Procedure
1. Develop Java artifacts for your JAX-WS application that includes a Web Services Description

Language (WSDL) file that represents your web services application.

a. If you are starting with a WSDL file, develop Java artifacts from a WSDL file by using the wsimport
command to generate the required JAX-WS portable artifacts.

b. If you are starting with JavaBeans components, develop Java artifacts for JAX-WS applications and
generate a WSDL file using the wsgen command.

2. If you want to enable RespectBindingFeature on your endpoint implementation class, use one of the
following methods:

v Use the @RespectBinding annotation on the endpoint.

To enable RespectBinding on an endpoint, use the @RespectBinding (javax.xml.ws.RespectBinding)
annotation on the endpoint. The @RespectBinding annotation has only one parameter, enabled.

1174 Developing WebSphere applications

This parameter is optional. The enabled parameter has a Boolean value and indicates if
RespectBindingFeature is enabled for the JAX-WS endpoint.

The following example snippet illustrates adding the @RespectBinding annotation for the JAX-WS
MyServiceImpl endpoint:

@RespectBinding(enabled=true))
@WebService
public class MyServiceImpl {
...
}

v Use the <respect-binding> deployment descriptor element.

You can use the <respect-binding> element within the <port-component> element in the
webservices.xml deployment descriptor as an alternative to using the @RespectBinding annotation
on the service endpoint implementation class; for example:

<port-component>
<port-component-name>MyPort1</port-component-name>
<respect-binding>

<enabled>true</enabled>
</respect-binding>
<service-impl-bean>

<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

3. If you want to enable RespectBindingFeature on your client, use one of the following methods:

v Enable RespectBindingFeature on a dispatch client; for example:
RespectBindingFeature respectBinding = new RespectBindingFeature();
Service svc = Service.create(serviceName);
svc.addPort(portName, SOAPBinding.SOAP11_HTTP_BINDING, endpointUrl);
Dispatch<Source> dsp = svc.createDispatch(portName, Source.class, Service.Mode.PAYLOAD, respectBinding);

v Enable RespectBindingFeature on a dynamic proxy client; for example:
// Create a dynamic proxy with RespectBinding enabled.
Service svc = Service.create(serviceName);
RespectBindingFeature respectBinding = new RespectBindingFeature();
RespectBindingSample proxy = svc.getPort(portName, RespectBindingSample.class, respectBinding);

v Enable RespectBindingFeature on your client using the @RespectBinding annotation; for example:
public class MyClientApplication {

// Enable RespectBinding for a port-component-ref resource injection.
@RespectBinding(enabled=true)
@WebServiceRef(MyService.class)
private MyPortType myPort;

...
}

v Enable RespectBindingFeature on your client using deployment descriptor elements within a
port-component-ref element; for example:

<service-ref>
<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<respect-binding>

<enabled>true</enabled>
</respect-binding>

</port-component-ref>
</service-ref>

Results

By implementing the feature, RespectBindingFeature, you have specified to enforce adherence of the
contents of a WSDL binding that is associated with an endpoint for your JAX-WS application.

Developing a webservices.xml deployment descriptor for JAX-WS
applications
Deployment descriptors are standard text files, formatted using XML and packaged in a web services
application. You can optionally use the webservices.xml deployment descriptor to augment or override
application metadata specified in annotations within Java API for XML-Based Web Services (JAX-WS) web
services.

Chapter 28. Developing web services 1175

About this task

Similar to Java API for XML-based RPC (JAX-RPC) Web services, you can use deployment descriptors to
describe JAX-WS web services. For JAX-WS web services, the use of the webservices.xml deployment
descriptor is optional because you can use annotations to specify all of the information that is contained
within the deployment descriptor file. You can use the deployment descriptor file to augment or override
existing JAX-WS annotations. Any information that you define in the webservices.xml deployment
descriptor overrides any corresponding information that is specified by annotations.

A JAX-WS web service requires that you annotate your Java class with the javax.jws.WebService
annotation or the javax.jws.WebServiceProvider annotation for Provider endpoints. You can use
server-side deployment descriptors to override corresponding attributes of the annotation or to enhance
information in annotations. There is a defined relationship between the deployment descriptor elements
and the @WebService and @WebServiceProvider annotations. Refer to section 5.3 in the Web Services
for Java Platform, Enterprise Edition (Java EE) specification, Version 1.2 for detailed information regarding
the deployment descriptor elements and the mapping to the @WebService and @WebServiceProvider
annotation attributes. There are also elements in the webservice.xml deployment descriptor that map to
other annotations. For example, the deployment descriptor element <protocol-binding> maps to the
@BindingType annotation, and the deployment descriptor element <enable-mtom> maps to the @MTOM
annotation. For more information regarding the web services deployment descriptor elements, see section
7.1 in the Web Services for Java Platform, Enterprise Edition (Java EE) specification.

Procedure

Use assembly tools to generate the webservice.xml deployment descriptor.

Results

You have deployment descriptor templates that you can use to override JAX-WS annotation attributes or
specify attributes that are not defined by the annotation.

Example

In the following example, the service implementation class for a JAX-WS web service includes the
@WebService annotation:
@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

The associated webservices.xml deployment descriptor specifies a different filename for the WSDL
document as follows:
<webservices>
<webservice-description>
<webservice-description-name>ExampleService</webservice-description-name>
<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>
...
</webservice-description>
</webservices>

The value that is specified in the deployment descriptor, META-INF/wsdl/ExampleService.wsdl, overrides
the annotation value.

What to do next

Configure the webservice.xml deployment descriptor. After you configure the deployment descriptors, you
must assemble the Web services application for deployment.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

1176 Developing WebSphere applications

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 146. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 147. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Chapter 28. Developing web services 1177

Table 148. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 149. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 150. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 151. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

1178 Developing WebSphere applications

Table 152. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Completing the JavaBeans implementation for JAX-WS applications
After you have developed the Java artifacts necessary to develop a Java API for XML-Based Web
Services (JAX-WS) web service, you must complete the JavaBeans implementation to assemble a web
application archive (WAR) file. The resulting WAR file contains the JavaBeans implementation and the
supported classes created from the tooling.

Before you begin

Generate Java artifacts for JAX-WS applications and optionally generate a WSDL file using the wsgen
command-line tool. You can also optionally use deployment descriptors to augment or override binding
information contained in annotations for JAX-WS web services.

About this task

For JAX-WS applications, complete the JavaBeans implementation by writing your business application.

Procedure
1. Write the JavaBeans implementation. The JavaBeans implementation is not generated by JAX-WS

tooling.

2. Compile all the Java classes.

Results

You have now written your JavaBeans implementation to complete your web service application.

What to do next

After completing the JavaBeans implementation, assemble your web services application.

Completing the EJB implementation for JAX-WS applications
After you have developed the Java artifacts necessary to develop a Java API for XML-Based Web
Services (JAX-WS) web service, you must complete the Enterprise JavaBeans (EJB) implementation to
assemble a Java archive (JAR) file. The resulting JAR file contains the Enterprise JavaBeans
implementation and the supported classes created from the tooling.

Before you begin

Generate Java artifacts for JAX-WS applications and optionally generate a WSDL file using the wsgen
command-line tool. You can also optionally use deployment descriptors to augment or override binding
information contained in annotations for JAX-WS web services.

Chapter 28. Developing web services 1179

About this task

For JAX-WS applications, complete the enterprise beans implementation by writing your business
application.

Procedure
1. Write the enterprise beans implementation. The enterprise beans implementation is not generated by

JAX-WS tooling.

2. Compile all the Java classes.

Results

You have now written your enterprise beans implementation to complete your web service application.

What to do next

After completing the enterprise beans implementation, assemble your web services application.

Developing JAX-WS web services with WSDL files (top-down)

Setting up a development environment for web services
The application server provides command-line tools to develop web services clients and implementations
that are based on the Web Services for Java Platform, Enterprise Edition (Java EE) specification. You
must set up your development environment before you start developing web services.

Before you begin

Before you can set up a web services development environment within WebSphere Application Server, you
must install WebSphere Application Server. For detailed information on installing the application server,
read about installing your application server environment.

About this task

Set up a web services development environment by completing the following actions.

Procedure
1. Set up the environment.

Run the setupCmdLine.bat command from the /profile_root/<application_server>/bin
directory.

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running this command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /profile_root/<application_server>/bin directory.

You can set WAS_USER_SCRIPT to profile_root\<application_server>\bin\setupCmdLine.bat, which
has the same effect as running the setupCmdLine command.

2. Configure the path. You can add the WebSphere and Java bin directories to your path by typing:

set PATH=%WAS_PATH%;%PATH%

export PATH=$WAS_PATH:$PATH

1180 Developing WebSphere applications

Results

You have set up an environment so that you can develop Web services.

What to do next

Implement web services applications. See the task overview for implementing web services applications
information to learn about how to develop and implement a Java EE web service.

Generating Java artifacts for JAX-WS applications from a WSDL file
Use JAX-WS tools to generate the Java artifacts that are needed to develop JAX-WS web services when
starting with a Web Services Description Language (WSDL) file.

Before you begin

When using a top-down development approach to developing Java API for XML-Based Web Services
(JAX-WS) web services by starting with a Web Services Description Language (WSDL) file, you must
obtain the Uniform Resource Locator (URL) of the WSDL file.

If the WSDL file is a local file, the URL looks like this example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like this
example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

About this task

You can use the JAX-WS tool, wsimport, to process a WSDL file and generate portable Java artifacts that
are used to create a web service. The portable Java artifacts created using the wsimport tool are:

v Service endpoint interface (SEI)

v Service class

v Exception class that is mapped from the wsdl:fault class (if any)

v Java Architecture for XML Binding (JAXB) generated type values which are Java classes mapped from
XML schema types

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

Chapter 28. Developing web services 1181

In addition to using the tools from the command-line, you can invoke these JAX-WS tools from within the
Ant build environments. Use the com.sun.tools.ws.ant.WsImport Ant task from within the Ant build
environment to invoke the wsimport tool. To function properly, this Ant task requires that you invoke Ant
using the ws_ant script.

Procedure

Run the wsimport command to generate the portable client artifacts. The wsimport tool is located in the
app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat wsdl_URL

app_server_root/bin/wsimport.sh wsdl_URL

(Optional) Use the following options with the wsimport command:

v Use the -verbose option to see a list of generated files when you run the command.

v Use the -keep option to keep generated Java files.

v Use the -wsdlLocation option to specify the location of the WSDL file.

Note: A best practice for ensuring that you produce a JAX-WS web services client enterprise archive
(EAR) file that is portable to other systems is to package the WSDL document within the
application module such as a web services client Java archive (JAR) file or a web application
archive (WAR) file. You can specify a relative URI for the location of your WSDL file by using the
-wsdllocation annotation attribute. For example, if your MyService.wsdl file is located in the
META-INF/wsdl/ directory, then run the wsimport tool and use the -wsdllocation option to specify
the value to be used for the location of the WSDL file. This ensures that the generated artifacts
contain the correct -wsdllocation information needed when the application is loaded into the
administrative console; for example:

wsimport -keep -wsdllocation=META-INF/wsdl/MyService.wsdl

v Use the -b option if you are using WSDL or schema customizations to specify external binding files that
contain your customizations.

You can customize the bindings in your WSDL file to enable asynchronous mappings or attachments. To
generate asynchronous interfaces, add the client-side only customization enableAsyncMapping binding
declaration to the wsdl:definitions element or in an external binding file that is defined in the WSDL
file. Use the enableMIMEContent binding declaration in your custom client or server binding file to enable
or disable the default mime:content mapping rules. For additional information on custom binding
declarations, see chapter 8 the JAX-WS specification.

Read about the wsimport command to learn more about this command and additional options that you can
specify.

Results

You have the required Java artifacts to create a JAX-WS web service. To learn more about the usage,
syntax, and parameters for the wsimport command, see the wsimport command for JAX-WS applications
documentation.

Example

The following example illustrates how the wsimport command is used to process the sample Ping WSDL
file to generate portable artifacts.

1. Copy the following ping.wsdl WSDL file to a temporary directory.

1182 Developing WebSphere applications

<?xml version="1.0" encoding="UTF-8"?>
<!--
* This program can be used, run, copied, modified and distributed
* without royalty for the purpose of developing, using, marketing, or distributing.
-->
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://com/ibm/was/wssample/sei/ping/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="PingService"
targetNamespace="http://com/ibm/was/wssample/sei/ping/">
<wsdl:types>
<xsd:schema
targetNamespace="http://com/ibm/was/wssample/sei/ping/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="pingStringInput">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="pingInput" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="pingOperationRequest">
<wsdl:part element="tns:pingStringInput" name="parameter" />
</wsdl:message>
<wsdl:portType name="PingServicePortType">
<wsdl:operation name="pingOperation">
<wsdl:input message="tns:pingOperationRequest" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="PingSOAP" type="tns:PingServicePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="pingOperation">
<soap:operation soapAction="pingOperation" style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="PingService">
<wsdl:port binding="tns:PingSOAP" name="PingServicePort">
<soap:address
location="http://localhost:9080/WSSampleSei/PingService" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

2. Run the wsimport command from the app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat -keep -verbose ping.wsdl

Operating systems such as AIX® or Linux source the
script to the parent shell to inherit the exported variables by running the following command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /app_server_root>/bin directory. Run the wsimport command,
app_server_root/bin/wsimport.sh -keep -verbose ping.wsdl

After generating the template files using the wsimport command, the following files are generated:
com\ibm\was\wssample\sei\ping\ObjectFactory.java
com\ibm\was\wssample\sei\ping\package-info.java
com\ibm\was\wssample\sei\ping\PingServicePortType.java
com\ibm\was\wssample\sei\ping\PingStringInput.java
com\ibm\was\wssample\sei\ping\PingService.java

The ObjectFactory.java file contains factory methods for each Java content interface and Java element
interface generated in the associated ping package. The package-info.java file takes the
targetNamespace value and creates the directory structure. The PingServicePortType.java file is the

Chapter 28. Developing web services 1183

generated service endpoint interface (SEI) class that contains the ping method definition. The
PinStringInput.java file contains the JAXB generated type values which are Java classes mapped from
XML schema types. The PingService.java file is the generated service provider class file that is used by
the JAX-WS client.

What to do next

Complete the implementation of your web service application by completing the JavaBeans or enterprise
beans implementation.

wsimport command for JAX-WS applications
The wsimport command-line tool processes an existing Web Services Description Language (WSDL) file
and generates the required artifacts for developing Java API for XML-Based Web Services (JAX-WS) web
service applications. The generated artifacts are Java 5 compliant, making them portable across different
Java versions and platforms.

The wsimport command-line tool supports the top-down approach to developing JAX-WS web services.
When you start with an existing WSDL file, use the wsimport command-line tool to generate the required
JAX-WS artifacts.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

The wsimport tool reads an existing WSDL file and generates the following artifacts:

v Service Endpoint Interface (SEI) - The SEI is the annotated Java representation of the WSDL file for the
web service. This interface is used for implementing JavaBeans endpoints or creating dynamic proxy
client instances.

v javax.xml.ws.Service extension class - This is a generated class that extends the
javax.xml.ws.Service class. This class is used to configure and create both dynamic proxy and
dispatch instances.

v required data beans, including any Java Architecture for XML Binding (JAXB) beans that are required to
model the web service data.

You can package the generated artifacts in a web application archive (WAR) file with the WSDL file and
schema documents along with the endpoint implementation to be deployed.

Note: To correctly use the wsimport tool, you must adhere to the following requirements:

v You must define all your services within the main WSDL file. Services that are defined within an
imported WSDL file are not processed by the wsimport tool.

1184 Developing WebSphere applications

v If you run the wsimport tool on a WSDL file that implements a Document or Literal style pattern,
the complexTypes elements that define the input and output types must be composed of unique
names to prevent naming conflicts in the parameter list for the operation..

v If you run the wsimport tool and pass a ?wsdl Uniform Resource Identifier (URI) as a parameter
for a WSDL file, ensure that you are using the actual resolved WSDL URI. The wsimport tool
correctly resolves the ?wsdl URI, but other relative URIs that are referenced might not resolve
correctly.

In addition to using the tools from the command line, you can invoke these JAX-WS tools from within the
Ant build environments. Use the com.sun.tools.ws.ant.WsImport Ant task from within the Ant build
environment to invoke the wsimport tool. To function properly, this Ant task requires that you invoke Ant
using the ws_ant script.

Syntax

The command-line syntax is:

app_server_root\bin\wsimport.bat [options] WSDL_URI

app_server_root/bin/wsimport.sh [options] WSDL_URI

Parameters

The WSDL_URI is the only parameter that is required. The following parameters are optional for the
wsimport command:

-b <path>
Specifies the external JAX-WS or JAXB binding files. You can specify multiple JAX-WS and JAXB
binding files by using the -b option; however, each file must be specified with its own -b option.

-B <jaxbOption>
Specifies to pass this option to the JAXB schema compiler.

-catalog
Specifies the catalog file to resolve external entity references. It supports the TR9401, XCatalog, and
the OASIS XML Catalog formats

-d <directory>
Specifies where to place the generated output files.

-extension
Specifies whether to accept custom extensions for functionality that are not specified by the JAX-WS
specification. The use of custom extensions can result in applications that are not portable or do not
interoperate with other implementations.

-help
Displays the help menu.

-httpproxy:<host>:<port>
Specifies an HTTP proxy. The default port value is 8080.

-keep
Specifies whether to keep the generated source files.

-p <package_name>
Specifies a target package with this command-line option and overrides any WSDL file and schema
binding customization for the package name and the default package name algorithm defined in the
JAX-WS specification.

Chapter 28. Developing web services 1185

-quiet
Specifies to suppress the wsimport output.

-s <directory>
Specifies the directory to place the generated source files.

-target <version>>
Specifies to generate code that is compliant with a specific JAX-WS specification level. Specify version
2.0 or 2.1 to generate code that is compliant with the JAX-WS 2.0 or JAX-WS 2.1 specification
respectively. Specifying version 2.1 indicates to generate code that is compliant with the JAX-WS 2.1
specification. The default value is version 2.2 and generates compliant code for the JAXB 2.2
specification.

-verbose
Specifies to output messages about what the compiler is doing.

-version
Prints the version information. If you specify this option, only the version information is included in the
output and normal command processing does not occur.

-wsdlLocation
Specifies the @WebServiceClient.wsdlLocation value.

Note: The wsimport tool does not set the @WebService.wsdlLocation value either by default or when
the -wsdlLocation attribute is specified. The wsimport command-line tool updates the
@WebServiceClient.wsdlLocation annotation only. You can manually update the
@WebService.wsdlLocation annotation with a relative URL that specifies the location of the
Web Services Description Language (WSDL) file. If the @WebService.wsdlLocation annotation
is present on an endpoint implementation class, then the value must be a relative URL and the
WSDL document that it references must be packaged with the application.

Note: If you specify an HTTPS URL for the -wsdlLocation parameter, the wsimport tool generates a
service class with a no-argument constructor that is not valid. Avoid using the no-argument
service constructor to instantiate your service. Instead, pass the HTTPS URL to one of the
service class constructors that takes a WSDL URL for an argument; for example:

MyService("https://example.ibm.com/My?wsdl");

Enabling MTOM for JAX-WS web services
With Java API for XML-Based Web Services (JAX-WS), you can send binary attachments such as images
or files along with web services requests. JAX-WS adds support for optimized transmission of binary data
as specified by the SOAP Message Transmission Optimization Mechanism (MTOM) specification.

About this task

JAX-WS supports the use of SOAP Message Transmission Optimized Mechanism (MTOM) for sending
binary attachment data. By enabling MTOM, you can send and receive binary data optimally without
incurring the cost of data encoding needed to embed the binary data in an XML document.

The application server supports sending attachments using MTOM only for JAX-WS applications. This
product also provides the ability to provide attachments with Web Services Security SOAP messages by
using the new MTOM and XOP standards.

JAX-WS applications can send binary data as base64 or hexBinary encoded data contained within the
XML document. However, to take advantage of the optimizations provided by MTOM, enable MTOM to
send binary base64 data as attachments contained outside the XML document. MTOM optimization is not
enabled by default. JAX-WS applications require separate configuration of both the client and the server
artifacts to enable MTOM support.

1186 Developing WebSphere applications

Procedure
1. Develop Java artifacts for your JAX-WS application that includes an XML schema or Web Services

Description Language (WSDL) file that represents your web services application data that includes a
binary attachment.

a. If you are starting with a WSDL file, develop Java artifacts from a WSDL file by using the wsimport
command to generate the required JAX-WS portable artifacts.

b. If you are starting with JavaBeans components, develop Java artifacts for JAX-WS applications and
optionally generate a WSDL file using the wsgen command. The XML schema or WSDL file
includes a xsd:base64Binary or xsd:hexBinary element definition for the binary data.

c. You can also include the xmime:expectedContentTypes attribute on the element to affect the
mapping by JAXB.

2. Enable MTOM on your endpoint implementation class using one of the following methods:

v Use the @MTOM annotation on the endpoint.

To enable MTOM on an endpoint, use the @MTOM (javax.xml.ws.soap.MTOM) annotation on the
endpoint. The @MTOM annotation has two parameters, enabled and threshold. The enabled
parameter has a boolean value and indicates if MTOM is enabled for the JAX-WS endpoint. The
threshold parameter has an integer value, that must be greater than or equal to zero. When MTOM
is enabled, any binary data whose size, in bytes, exceeds the threshold value is XML-binary
Optimized Packaging (XOP) encoded or sent as an attachment. When the message size is less
than the threshold value, the message is inlined in the XML document as either base64 or
hexBinary data.

The following example snippet illustrates adding the @MTOM annotation so that MTOM is enabled
for the JAX-WS MyServiceImpl endpoint and specifies a threshold value of 2048 bytes:

@MTOM(enabled=true, threshold=2048)
@WebService
public class MyServiceImpl {
...
}

Additionally, you can use the @BindingType (javax.xml.ws.BindingType) annotation on an endpoint
implementation class to specify that the endpoint supports one of the MTOM binding types so that
the response messages are MTOM-enabled. The javax.xml.ws.SOAPBinding class defines two
different constants, SOAP11HTTP_MTOM_BINDING and SOAP12HTTP_MTOM_BINDING that you can use for
the value of the @BindingType annotation; for example:

// This example is for SOAP version 1.1.
@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING)
@WebService
public class MyServiceImpl {
...
}

// This example is for SOAP version 1.2.
@BindingType(value = SOAPBinding.SOAP12HTTP_MTOM_BINDING)
@WebService
public class MyServiceImpl {
...
}

The presence and value of an @MTOM annotation overrides the value of the @BindingType
annotation. For example, if the @BindingType indicates MTOM is enabled, but an @MTOM
annotation is present with an enabled value of false, then MTOM is not enabled.

v Use the <enable-mtom> and <mtom-threshold> deployment descriptor elements.

You can use the <enable-mtom> and <mtom-threshold> elements within the <port-component>
element in the webservices.xml deployment descriptor as an alternative to using the @MTOM
annotation on the service endpoint implementation class; for example:

<port-component>
<port-component-name>MyPort1</port-component-name>
<enable-mtom>true</enable-mtom>
<mtom-threshold>2048</mtom-threshold>
<service-impl-bean>
<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

Chapter 28. Developing web services 1187

Note: The deployment descriptor elements take precedence over the corresponding attributes in the
MTOM annotation. For example, if the enabled attribute is set to true in the annotation, but
the <enable-mtom> element is set to false in the webservices.xml file, MTOM is not enabled
for the corresponding endpoint.

3. Enable MTOM on your client to optimize the binary messages that are sent from the client to the
server. Use one of the following methods to enable MTOM on your client:

v Enable MTOM on a Dispatch client.

The following examples use SOAP version 1.1.

The first method uses SOAPBinding.setMTOMEnabled(); for example:
SOAPBinding binding = (SOAPBinding)dispatch.getBinding();

binding.setMTOMEnabled(true);

The second method uses Service.addPort; for example:
Service svc = Service.create(serviceName);
svc.addPort(portName,SOAPBinding.SOAP11HTTP_MTOM_BINDING,endpointUrl);

The third method uses MTOMFeature; for example:
MTOMFeature mtom = new MTOMFeature(true, 2048);
Service svc = Service.create(serviceName);
svc.addPort(portName, SOAPBinding.SOAP11_HTTP_BINDING, endpointUrl);
Dispatch<Source> dsp = svc.createDispatch(portName, Source.class, Service.Mode.PAYLOAD, mtom);

v Enable MTOM on a Dynamic Proxy client.
// Create a BindingProvider bp from a proxy port.
Service svc = Service.create(serviceName);
MtomSample proxy = svc.getPort(portName, MtomSample.class);
BindingProvider bp = (BindingProvider) proxy;

//Enable MTOM using the SOAPBinding.
MtomSample proxy = svc.getPort(portName, MtomSample.class);
BindingProvider bp = (BindingProvider) proxy;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true);

//Or, you can enable MTOM with the MTOMFeature.
MTOMFeature mtom = new MTOMFeature();
MtomSample proxy = svc.getPort(portName, MtomSample.class, mtom);

v Enable MTOM on your client using the @MTOM annotation; for example:
public class MyClientApplication {

// Enable MTOM for a port-comonent-ref resource injection.
@MTOM(enabled=true, threshold=1024)
@WebServiceRef(MyService.class)
private MyPortType myPort;
...

}

v Enable MTOM on your client using deployment descriptor elements within a port-component-ref
element; for example:

<service-ref>
<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<enable-mtom>true</enable-mtom>
<mtom-threshold>1024</mtom-threshold>

</port-component-ref>
</service-ref>

Note: The deployment descriptor elements take precedence over the corresponding attributes in the
MTOM annotation. For example, if the enabled attribute is set to true in the annotation, but
the <enable-mtom> element is set to false in the deployment descriptor entry for the
service-ref of the client, MTOM is not enabled for that service reference.

Results

You have developed a JAX-WS web services server and client application that optimally sends and
receives binary data using MTOM.

1188 Developing WebSphere applications

Example

The following example illustrates enabling MTOM support on both the web services client and server
endpoint when starting with an WSDL file.

1. Locate the WSDL file containing an xsd:base64Binary element. The following example is a portion of a
WSDL file that contains an xsd:base64Binary element.

<types>
........
<xs:complexType name="ImageDepot">

<xs:sequence>
<xs:element name="imageData"

type="xs:base64Binary"
xmime:expectedContentTypes="image/jpeg"/>

</xs:sequence>
</xs:complexType>
........

</types>

2. Run the wsimport command from the app_server_root\bin\ directory against the WSDL file to generate
a set of JAX-WS portable artifacts.

app_server_root\bin\wsimport.bat <wsdl_url>

app_server_root/bin/wsimport.sh <wsdl_url>

Depending on the expectedContentTypes value contained in the WSDL file, the JAXB artifacts
generated are in the Java type as described in the following table:

Table 153. Mapping of MIME type and Java type. Describes the mapping between MIME types and Java types.
MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

/ javax.activation.DataHandler

3. Use the JAXB artifacts in the same manner as in any other JAX-WS application. Use these beans to
send binary data from both the Dispatch and the Dynamic Proxy client APIs.

4. Enable MTOM on a Dispatch client.
//Create the Dispatch instance.

JAXBContext jbc = JAXBContext.newInstance("org.apache.axis2.jaxws.sample.mtom");
Dispatch<Object> dispatch = svc.createDispatch(portName, jbc, Service.Mode.PAYLOAD);

//Enable MTOM.
SOAPBinding binding = (SOAPBinding) dispatch.getBinding();
binding.setMTOMEnabled(true);

5. Enable MTOM on a Dynamic Proxy client.
//Create the Dynamic Proxy instance.

Service svc = Service.create(serviceName);
MtomSample proxy = svc.getPort(portName, MtomSample.class);

//Enable MTOM.
BindingProvider bp = (BindingProvider) proxy;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true);

Now that you have enabled the JAX-WS client for MTOM, messages sent to the server have MTOM
enabled. However, for the server to respond back to the client using MTOM, you must enable MTOM
on the endpoint.

6. Enable MTOM on the endpoint implementation class.

Chapter 28. Developing web services 1189

@MTOM(enabled, threshold=4096)
@WebService (endpointInterface="org.apache.axis2.jaxws.sample.mtom.MtomSample")

public class MtomSampleService implements MtomSample {
....

}

The jaxax.xml.ws.SOAPBinding class has a static member for each of the supported binding types.
Include either the SOAP11HTTP_MTOM_BINDING or the SOAP12HTTP_MTOM_BINDING as the value for the
@BindingType annotation. This value enables all server responses to have MTOM enabled.

When you enable MTOM on the server and the client, the binary data that represents the attachment is
included as a Multipurpose Internet Mail Extensions (MIME) attachment to the SOAP message. Without
MTOM, the same data is encoded in the format that describes the XML schema, either base64 or
hexadecimal encoding, and included inline in the XML document.

This example illustrates an MTOM enabled SOAP version 1.1 message with an attachment. The type and
content-type attributes both have the value, application/xop+xml, which indicates that the message was
successfully optimized using XML-binary Optimized packaging (XOP) when MTOM was enabled. This
example demonstrates how the optimized message looks on the wire with MTOM enabled.
... other transport headers ...
Content-Type: multipart/related; boundary=MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812;
type="application/xop+xml"; start="
<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>"; start-info="text/xml"; charset=UTF-8

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: application/xop+xml; charset=UTF-8; type="text/xml";
content-transfer-encoding: binary
content-id:

<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>

<imageData>
<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"

href="cid:1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org"/>
</imageData>

</input>
</sendImage>

</soapenv:Body>
</soapenv:Envelope>

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: text/plain
content-transfer-encoding: binary
content-id:

<1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org>

... binary data goes here ...
--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812--

In contrast, this example demonstrates a SOAP version 1.1 message on the wire without MTOM enabled.
The binary data is included in the body of the SOAP message, and the SOAP message is not optimized.
... other transport headers ...
Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>
<soapenv:Body>

<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>

<imageData>R0lGADl ... more base64 encoded data ... KTJk8giAAA7</imageData>
</input>

</sendImage>
</soapenv:Body>

</soapenv:Envelope>

For additional information, refer to the Samples section of the Information Center which includes a sample
that demonstrates the use of MTOM with JAX-WS web services.

1190 Developing WebSphere applications

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 154. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 155. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Chapter 28. Developing web services 1191

Table 156. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 157. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 158. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 159. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

1192 Developing WebSphere applications

Table 160. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Enforcing adherence to WSDL bindings in JAX-WS web services
Java API for XML-Based Web Services (JAX-WS) Version 2.1 introduced the concept of features as a way
to programmatically control specific functions and behaviors. The RespectBindingFeature is one of the
supported standard features. You can use the RespectBindingFeature to control whether a JAX-WS
implementation is required to respect the contents of a Web Services Description Language (WSDL)
binding that is associated with an endpoint.

About this task

While WSDL documents are often used during the development process, the actual enforcement of the
use of the WSDL document specifications, when they are provided, at run time has not been well defined
in versions of the JAX-WS specification previous to Version 2.1. The JAX-WS Version 2.1 specification
added the feature, RespectBindingFeature, to clarify the impact of the wsdl:binding in a JAX-WS runtime
environment.

Enabling the feature, RespectBindingFeature, causes the JAX-WS runtime environment to inspect the
wsdl:binding for an endpoint at run time to ensure that the binding of service endpoint interface (SEI)
parameters and return values is respected. Additionally, this feature ensures that all required wsdl:binding
extensions are either understood and used by the runtime environment, or the extensions have been
explicitly disabled by the application. Your JAX-WS application can disable a specific wsdl:binding
extension that has a defined WebServiceFeature interface by using the appropriate annotation that is
associated with that feature, using an API that accepts the javax.xml.ws.WebServiceFeature interface, or
configuring the deployment descriptors.

When the RespectBindingFeature feature is not enabled, which is the default, the runtime environment can
choose whether any part of the wsdl:binding is enforced.

Procedure
1. Develop Java artifacts for your JAX-WS application that includes a Web Services Description

Language (WSDL) file that represents your web services application.

a. If you are starting with a WSDL file, develop Java artifacts from a WSDL file by using the wsimport
command to generate the required JAX-WS portable artifacts.

b. If you are starting with JavaBeans components, develop Java artifacts for JAX-WS applications and
generate a WSDL file using the wsgen command.

2. If you want to enable RespectBindingFeature on your endpoint implementation class, use one of the
following methods:

v Use the @RespectBinding annotation on the endpoint.

To enable RespectBinding on an endpoint, use the @RespectBinding (javax.xml.ws.RespectBinding)
annotation on the endpoint. The @RespectBinding annotation has only one parameter, enabled.

Chapter 28. Developing web services 1193

This parameter is optional. The enabled parameter has a Boolean value and indicates if
RespectBindingFeature is enabled for the JAX-WS endpoint.

The following example snippet illustrates adding the @RespectBinding annotation for the JAX-WS
MyServiceImpl endpoint:

@RespectBinding(enabled=true))
@WebService
public class MyServiceImpl {
...
}

v Use the <respect-binding> deployment descriptor element.

You can use the <respect-binding> element within the <port-component> element in the
webservices.xml deployment descriptor as an alternative to using the @RespectBinding annotation
on the service endpoint implementation class; for example:

<port-component>
<port-component-name>MyPort1</port-component-name>
<respect-binding>

<enabled>true</enabled>
</respect-binding>
<service-impl-bean>

<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

3. If you want to enable RespectBindingFeature on your client, use one of the following methods:

v Enable RespectBindingFeature on a dispatch client; for example:
RespectBindingFeature respectBinding = new RespectBindingFeature();
Service svc = Service.create(serviceName);
svc.addPort(portName, SOAPBinding.SOAP11_HTTP_BINDING, endpointUrl);
Dispatch<Source> dsp = svc.createDispatch(portName, Source.class, Service.Mode.PAYLOAD, respectBinding);

v Enable RespectBindingFeature on a dynamic proxy client; for example:
// Create a dynamic proxy with RespectBinding enabled.
Service svc = Service.create(serviceName);
RespectBindingFeature respectBinding = new RespectBindingFeature();
RespectBindingSample proxy = svc.getPort(portName, RespectBindingSample.class, respectBinding);

v Enable RespectBindingFeature on your client using the @RespectBinding annotation; for example:
public class MyClientApplication {

// Enable RespectBinding for a port-component-ref resource injection.
@RespectBinding(enabled=true)
@WebServiceRef(MyService.class)
private MyPortType myPort;

...
}

v Enable RespectBindingFeature on your client using deployment descriptor elements within a
port-component-ref element; for example:

<service-ref>
<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<respect-binding>

<enabled>true</enabled>
</respect-binding>

</port-component-ref>
</service-ref>

Results

By implementing the feature, RespectBindingFeature, you have specified to enforce adherence of the
contents of a WSDL binding that is associated with an endpoint for your JAX-WS application.

Developing a webservices.xml deployment descriptor for JAX-WS
applications
Deployment descriptors are standard text files, formatted using XML and packaged in a web services
application. You can optionally use the webservices.xml deployment descriptor to augment or override
application metadata specified in annotations within Java API for XML-Based Web Services (JAX-WS) web
services.

1194 Developing WebSphere applications

About this task

Similar to Java API for XML-based RPC (JAX-RPC) Web services, you can use deployment descriptors to
describe JAX-WS web services. For JAX-WS web services, the use of the webservices.xml deployment
descriptor is optional because you can use annotations to specify all of the information that is contained
within the deployment descriptor file. You can use the deployment descriptor file to augment or override
existing JAX-WS annotations. Any information that you define in the webservices.xml deployment
descriptor overrides any corresponding information that is specified by annotations.

A JAX-WS web service requires that you annotate your Java class with the javax.jws.WebService
annotation or the javax.jws.WebServiceProvider annotation for Provider endpoints. You can use
server-side deployment descriptors to override corresponding attributes of the annotation or to enhance
information in annotations. There is a defined relationship between the deployment descriptor elements
and the @WebService and @WebServiceProvider annotations. Refer to section 5.3 in the Web Services
for Java Platform, Enterprise Edition (Java EE) specification, Version 1.2 for detailed information regarding
the deployment descriptor elements and the mapping to the @WebService and @WebServiceProvider
annotation attributes. There are also elements in the webservice.xml deployment descriptor that map to
other annotations. For example, the deployment descriptor element <protocol-binding> maps to the
@BindingType annotation, and the deployment descriptor element <enable-mtom> maps to the @MTOM
annotation. For more information regarding the web services deployment descriptor elements, see section
7.1 in the Web Services for Java Platform, Enterprise Edition (Java EE) specification.

Procedure

Use assembly tools to generate the webservice.xml deployment descriptor.

Results

You have deployment descriptor templates that you can use to override JAX-WS annotation attributes or
specify attributes that are not defined by the annotation.

Example

In the following example, the service implementation class for a JAX-WS web service includes the
@WebService annotation:
@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

The associated webservices.xml deployment descriptor specifies a different filename for the WSDL
document as follows:
<webservices>
<webservice-description>
<webservice-description-name>ExampleService</webservice-description-name>
<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>
...
</webservice-description>
</webservices>

The value that is specified in the deployment descriptor, META-INF/wsdl/ExampleService.wsdl, overrides
the annotation value.

What to do next

Configure the webservice.xml deployment descriptor. After you configure the deployment descriptors, you
must assemble the Web services application for deployment.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Chapter 28. Developing web services 1195

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 161. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 162. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

1196 Developing WebSphere applications

Table 163. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 164. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 165. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 166. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 28. Developing web services 1197

Table 167. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Completing the JavaBeans implementation for JAX-WS applications
After you have developed the Java artifacts necessary to develop a Java API for XML-Based Web
Services (JAX-WS) web service, you must complete the JavaBeans implementation to assemble a web
application archive (WAR) file. The resulting WAR file contains the JavaBeans implementation and the
supported classes created from the tooling.

Before you begin

Generate Java artifacts for JAX-WS applications and optionally generate a WSDL file using the wsgen
command-line tool. You can also optionally use deployment descriptors to augment or override binding
information contained in annotations for JAX-WS web services.

About this task

For JAX-WS applications, complete the JavaBeans implementation by writing your business application.

Procedure
1. Write the JavaBeans implementation. The JavaBeans implementation is not generated by JAX-WS

tooling.

2. Compile all the Java classes.

Results

You have now written your JavaBeans implementation to complete your web service application.

What to do next

After completing the JavaBeans implementation, assemble your web services application.

Completing the EJB implementation for JAX-WS applications
After you have developed the Java artifacts necessary to develop a Java API for XML-Based Web
Services (JAX-WS) web service, you must complete the Enterprise JavaBeans (EJB) implementation to
assemble a Java archive (JAR) file. The resulting JAR file contains the Enterprise JavaBeans
implementation and the supported classes created from the tooling.

Before you begin

Generate Java artifacts for JAX-WS applications and optionally generate a WSDL file using the wsgen
command-line tool. You can also optionally use deployment descriptors to augment or override binding
information contained in annotations for JAX-WS web services.

1198 Developing WebSphere applications

About this task

For JAX-WS applications, complete the enterprise beans implementation by writing your business
application.

Procedure
1. Write the enterprise beans implementation. The enterprise beans implementation is not generated by

JAX-WS tooling.

2. Compile all the Java classes.

Results

You have now written your enterprise beans implementation to complete your web service application.

What to do next

After completing the enterprise beans implementation, assemble your web services application.

Developing JAX-WS clients

Developing a JAX-WS client from a WSDL file
Java API for XML-Based Web Services (JAX-WS) tooling supports generating Java artifacts you need to
develop static JAX-WS web services clients when starting with a Web Services Description Language
(WSDL) file.

Before you begin

When you use a top-down development approach to developing JAX-WS web services by starting with a
WSDL file, you must obtain the Uniform Resource Locator (URL) for the WSDL file.

If the WSDL file is a local file, the URL looks like this example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like this
example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

About this task

The static client programming model for JAX-WS is the called the dynamic proxy client. The dynamic
proxy client invokes a web service based on a service endpoint interface that is provided. After you create
the proxy, the client application can invoke methods on the proxy just like a standard implementation of
those interfaces. For JAX-WS web service clients using the dynamic proxy programming model, use the
JAX-WS tool, wsimport, to process a WSDL file and generate portable Java artifacts that are used to
create a web service client. Create the following portable Java artifacts using the wsimport tool:

v Service endpoint interface (SEI)

v Service class

v Exception class that is mapped from the wsdl:fault class (if any)

v Java Architecture for XML Binding (JAXB) generated type values which are Java classes mapped from
XML schema types

Chapter 28. Developing web services 1199

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not supported on the z/OS
platform. This functionality is provided by the assembly tools provided with WebSphere Application
Server running on the z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere Application Server provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen, schemagen and xjc
command-line tools are located in the app_server_root\bin\ directory. Similar tooling is provided by
the Java SE Development Kit (JDK) 6. On some occasions, the artifacts generated by both the
tooling provided by WebSphere Application Server and the JDK support the same levels of the
specifications. In general, the artifacts generated by the JDK tools are portable across other
compliant runtime environments. However, it is a best practice to use the tools provided with this
product to achieve seamless integration within the WebSphere Application Server environment and
to take advantage of the features that may be only supported in WebSphere Application Server. To
take advantage of JAX-WS and JAXB V2.2 tooling, use the tools provided with the application
server that are located in the app_server_root\bin\ directory.

In addition to using the tools from the command-line, you can invoke these JAX-WS tools from within the
Ant build environments. Use the com.sun.tools.ws.ant.WsImport Ant task from within the Ant build
environment to invoke the wsimport tool. To function properly, this Ant task requires that you invoke Ant
using the ws_ant script.

Procedure

Run the wsimport command to generate the portable client artifacts. The wsimport tool is located in the
app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat wsdl_URL

app_server_root/bin/wsimport.sh wsdl_URL

(Optional) Use the following options with the wsimport command:

v Use the -verbose option to see a list of generated files when you run the command.

v Use the -keep option to keep generated Java files.

v Use the -wsdlLocation option to specify the location of the WSDL file.

Note: A best practice for ensuring that you produce a JAX-WS web services client enterprise archive
(EAR) file that is portable to other systems is to package the WSDL document within the
application module such as a web services client Java archive (JAR) file or a web application
archive (WAR) file. You can specify a relative URI for the location of your WSDL file by using the
-wsdllocation annotation attribute. For example, if your MyService.wsdl file is located in the
META-INF/wsdl/ directory, then run the wsimport tool and use the -wsdllocation option to
specify the value to be used for the location of the WSDL file. This ensures that the generated
artifacts contain the correct -wsdllocation information needed when the application is loaded
into the administrative console; for example:

wsimport -keep -wsdllocation /META-INF/wsdl/MyService.wsdl

v Use the -b option if you are using WSDL or schema customizations to specify external binding files that
contain your customizations.

You can customize the bindings in your WSDL file to enable asynchronous mappings or attachment
files. To generate asynchronous interfaces, add the client-side only customization enableAsyncMapping
binding declaration to the wsdl:definitions element or in an external binding file that is defined in the
WSDL file. Use the enableMIMEContent binding declaration in your custom client or server binding file to
enable or disable the default mime:content mapping rules. For additional information on custom binding
declarations, see chapter 8 the JAX-WS specification.

1200 Developing WebSphere applications

Read about the wsimport command to learn more about this command and additional options that you can
specify.

Results

You have the generated Java artifacts to create a JAX-WS client that can invoke JAX-WS web services.
To learn more about the usage, syntax, and parameters for the wsimport command, see the wsimport
command for JAX-WS applications documentation.

Example

The following example illustrates how the wsimport command is used to process the sample ping.wsdl file
to generate portable artifacts.

1. Copy the following ping.wsdl file to a temporary directory.
<?xml version="1.0" encoding="UTF-8"?>
<!--
* This program can be used, run, copied, modified and distributed
* without royalty for the purpose of developing, using, marketing, or distributing.
-->
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://com/ibm/was/wssample/sei/ping/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="PingService"
targetNamespace="http://com/ibm/was/wssample/sei/ping/">
<wsdl:types>
<xsd:schema
targetNamespace="http://com/ibm/was/wssample/sei/ping/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="pingStringInput">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="pingInput" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="pingOperationRequest">
<wsdl:part element="tns:pingStringInput" name="parameter" />
</wsdl:message>
<wsdl:portType name="PingServicePortType">
<wsdl:operation name="pingOperation">
<wsdl:input message="tns:pingOperationRequest" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="PingSOAP" type="tns:PingServicePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="pingOperation">
<soap:operation soapAction="pingOperation" style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="PingService">
<wsdl:port binding="tns:PingSOAP" name="PingServicePort">
<soap:address
location="http://localhost:9080/WSSampleSei/PingService" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

2. Run the wsimport command from the app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat -keep -verbose ping.wsdl

Chapter 28. Developing web services 1201

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running the following command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /app_server_root>/bin directory. Run the following wsimport command:
app_server_root/bin/wsimport.sh -keep -verbose ping.wsdl

After generating the template files from the wsimport command, the following files are generated:
com\ibm\was\wssample\sei\ping\ObjectFactory.java
com\ibm\was\wssample\sei\ping\package-info.java
com\ibm\was\wssample\sei\ping\PingServicePortType.java
com\ibm\was\wssample\sei\ping\PingService.java
com\ibm\was\wssample\sei\ping\PingStringInput.java

The ObjectFactory.java, PingService.java, and PingServicePortType.java files are the generated Java
class files to use when you package the Java artifacts with your client implementation inside a Java
archive (JAR) or a web application archive (WAR) file.

What to do next

Complete the client implementation.

Developing deployment descriptors for a JAX-WS client
Deployment descriptors are standard text files, formatted using XML and packaged in a web services
application. You can optionally use the Web Services for Java Platform, Enterprise Edition (Java EE)
specification (JSR 109) service reference deployment descriptor to augment or override application
metadata specified in annotations within Java API for XML-Based Web Services (JAX-WS) web services
client.

Before you begin

You must first generate the web services client artifacts from a Web Services Description Language
(WSDL) file using the wsimport command.

About this task

You can add service-ref entries within the application-client.xml, web.xml, or ejb-jar.xml Java EE
deployment descriptors. A service-ref entry represents a reference to a web service that is used by a
Java EE component in Web, Enterprise JavaBeans (EJB) or application client containers. A service-ref
entry has a JNDI name that is used to lookup the service. Specifying the service-ref entry enables the
client applications to locate the service using a JNDI lookup and you can also use these service
references for resource injection.

For each service-ref entry found in one of the deployment descriptors, the corresponding service object
is bound into the JNDI namespace and the port information is included, if specified. The JAX-WS client
can now perform a JNDI lookup to retrieve either a JAX-WS service or port instance.

When defining a service-ref that represents a JAX-WS service, use the javax.xml.ws.Service subclass
that is generated by the wsimport tool as the service-interface value. This is the class that contains the
@WebServiceClient annotation. When defining a service-ref that represents a JAX-WS port, the
service-interface value is still the javax.xml.ws.Service subclass generated by the wsimport tool, and the
service-ref-type value specifies the service endpoint interface (SEI) class used by the port. The SEI
class is also generated by wsimport, and it is annotated with the @WebService annotation.

Procedure
1. Define the service-ref entry in your application-client.xml, web.xml, or ejb-jar.xml deployment

descriptors.

1202 Developing WebSphere applications

For example, suppose a web application archive (WAR) file contains a WEB-INF/web.xml deployment
descriptor that includes the following service-ref entries:

<service-ref>
<service-ref-name>service/ExampleService</service-ref-name>
<service-interface>com.ibm.sample.ExampleService</service-interface>

</service-ref>

<service-ref>
<service-ref-name>service/ExamplePort</service-ref-name>
<service-interface>com.ibm.sample.ExampleService</service-interface>
<service-ref-type>com.ibm.sample.ExamplePort</service-ref-type>

</service-ref>

<service-ref>
<service-ref-name>service/ExamplePortInjected</service-ref-name>
<service-interface>com.ibm.sample.ExampleService</service-interface>
<service-ref-type>com.ibm.sample.ExamplePort</service-ref-type>

<injection-target>
<injection-target-class>com.ibm.sample.J2EEClient</injection-target-class>
<injection-target-name>injectedPort</injection-target-name>

</injection-target>
</service-ref>

In this example, com.ibm.sample.ExampleService is a generated JAX-WS service class and this class
must be a subclass of javax.xml.ws.Service. Additionally, the ExampleService.getPort() method
returns an instance of com.ibm.sample.ExamplePort.

2. Use the deployment descriptors within your web services client application to customize your
application. The following code fragments are examples of how your client application can use the
service-ref entries within the WAR module:

import javax.xml.ws.Service;
import com.ibm.sample.ExampleService;
import com.ibm.sample.ExamplePort;

// Create an InitialContext object for doing JNDI lookups.
InitialContext ic = new InitialContext();

// Client obtains an instance of the generic service class using JNDI.
Service genericService =
(Service) ic.lookup(“java:comp/env/service/ExampleService”);

// Client obtains an instance of the generated service class using JNDI.
ExampleService exampleService =
(ExampleService) ic.lookup(“java:comp/env/service/ExampleService”);

// Client obtains an instance of the port using JNDI.
ExamplePort ExamplePort =
(ExamplePort) ic.lookup(“java:comp/env/service/ExamplePort”);

// The container injects an instance of ExamplePort based on the client deployment descriptor
private ExamplePort injectedPort;

Results

You can now use the service references that were defined in the deployment descriptor within your client
application. Additionally, you can use deployment descriptors to augment or override information specified
by @WebServiceRef or @Resource annotations.

The <lookup-name> deployment descriptor element is new in Java EE 6, and is used to indirectly refer to
an already-defined service reference. When the <lookup-name> element is used, only the
<service-ref-name> element may also be specified, and no other child elements of <service-ref> may be
defined.

The following example shows a service-ref entry within a WEB-INF/web.xml file which defines a reference
to a JAX-WS service, as well as a service-ref entry within the same web.xml file which defines an indirect
reference to the first service-ref:
<service-ref>
<service-ref-name>service/ExampleService</service-ref-name>
<service-interface>com.ibm.sample.ExampleService</service-interface>
<service-ref-type>com.ibm.sample.ExampleServicePortType</service-ref-type>
<wsdl-file>WEB-INF/wsdl/ExampleService.wsdl</wsdl-file>

</service-ref>

Chapter 28. Developing web services 1203

<service-ref>
<service-ref-name>service/ExampleService2</service-ref>
<lookup-name>java:comp/env/service/ExampleService</lookup-name>

</service-ref>

Assuming the above service-refs are defined in the WEB-INF/web.xml file, the client application could
perform a JNDI lookup using the name java:comp/env/service/ExampleService2, and the result would be
a reference to the ExampleService service defined in the WSDL document WEB-INF/wsdl/
ExampleService.wsdl, as defined in the first service-ref.

What to do next

Complete the client implementation by writing your client application code that is used to invoke the web
service.

Developing a dynamic client using JAX-WS APIs
Java API for XML-Based Web Services (JAX-WS) provides support for the dynamic invocation of service
endpoint operations.

About this task

JAX-WS provides a new dynamic Dispatch client API that is more generic and offers more flexibility than
the existing Java API for XML-based RPC (JAX-RPC)-based Dynamic Invocation Interface (DII). The
Dispatch client interface, javax.xml.ws.Dispatch, is an XML messaging oriented client that is intended for
advanced XML developers who prefer to work at the XML level using XML constructs. To write a Dispatch
client, you must have expertise with the Dispatch client APIs, the supported object types, and knowledge
of the message representations for the associated Web Services Description Language (WSDL) file.

The Dispatch API can send data in either PAYLOAD or MESSAGE mode. When using the PAYLOAD mode, the
Dispatch client is only responsible for providing the contents of the <soap:Body> and JAX-WS includes the
input payload in a <soap:Envelope> element. When using the MESSAGE mode, the Dispatch client is
responsible for providing the entire SOAP envelope.

The Dispatch client API requires application clients to construct messages or payloads as XML and
requires a detailed knowledge of the message or message payload. The Dispatch client can use HTTP
bindings when using Source objects, Java Architecture for XML Binding (JAXB) objects, or data source
objects. The Dispatch client supports the following types of objects:

v javax.xml.transform.Source: Use Source objects to enable clients to use XML APIs directly. You can use
Source objects with SOAP and HTTP bindings.

v JAXB objects: Use JAXB objects so that clients can use JAXB objects that are generated from an XML
schema to create and manipulate XML with JAX-WS applications. JAXB objects can only be used with
SOAP and HTTP bindings.

v javax.xml.soap.SOAPMessage: Use SOAPMessage objects so that clients can work with SOAP
messages. You can only use SOAPMessage objects with SOAP version 1.1 or SOAP version 1.2
bindings.

v javax.activation.DataSource: Use DataSource objects so that clients can work with Multipurpose Internet
Mail Extension (MIME) messages. Use DataSource only with HTTP bindings.

The Dispatch API uses the concept of generics that are introduced in Java SE Runtime Environment (JRE)
6. For each of the invoke() methods on the Dispatch interface, generics are used to determine the return
type.

Procedure
1. Determine if you want your dynamic client to send data in PAYLOAD or MESSAGE mode.

2. Create a service instance and add at least one port to it. The port carries the protocol binding and
service endpoint address information.

1204 Developing WebSphere applications

3. Create a Dispatch<T> object using either the Service.Mode.PAYLOAD method or the
Service.Mode.MESSAGE method.

4. Configure the request context properties on the javax.xml.ws.BindingProvider interface. Use the
request context to specify additional properties such as enabling HTTP authentication or specifying the
endpoint address.

5. Optional: Set the jaxws.response.throwExceptionIfSOAPFault property on the RequestContext option
for the Dispatch API to Boolean.TRUE if you do not want the JAX-WS runtime to throw a
SOAPFaultException.

The following example illustrates how to specify this property on the RequestContext option for the
Dispatch API

Dispatch<OMElement> dispatch = service.createDispatch(
portName, OMElement.class, Mode.MESSAGE);
BindingProvider bp = (BindingProvider)dispatch;
bp.getRequestContext().put(
"jaxws.response.throwExceptionIfSOAPFault", Boolean.FALSE);

6. Compose the client request message for the dynamic client.

7. Invoke the service endpoint with the Dispatch client either synchronously or asynchronously.

8. Process the response message from the service.

Results

You have developed a dynamic JAX-WS client using the Dispatch API. Refer to Chapter 4, section 3 of the
JAX-WS 2.0 specification for more information on using a Dispatch client.

JAX-WS dynamic ports, which are those added using the service method addPort, might have additional
memory requirements starting in WebSphere Application Server Version 8.0. In previous releases, a single
instance of a dynamic port could be shared across multiple service instances. In version 8.x, dynamic
ports are now scoped to the instance of the service that added them. If a JAX-WS client has multiple
service instances which refer to a dynamic port of the same name, those instances are no longer shared.
This can potentially increase the memory requirements for that client. The memory used by dynamic ports
is released when the service instance goes out of scope. However, if you encounter issues related to
increased memory usage, it is possible to revert the behavior so that dynamic ports are again shared
across service instances. To do this, set the system property jaxws.share.dynamic.ports.enable to the
value true. However, note that doing so can cause some other issues, such as having policy set
attachments incorrectly applied across shared dynamic ports. If you set this flag to true and encounter
some of these issues, then you should remove the flag setting. In previous releases, if a SOAP Action was
not provided by the Dispatch client application, the correct SOAP Action was not sent on the outbound
message. Instead, the SOAP action was set to an anonymous operation. Starting in WebSphere
Application Server Version 8, if the SOAP Action is not provided by the Dispatch client application, the
JAX-WS runtime environment parses the outgoing message. It determines the operation being invoked
and uses that information to determine the appropriate value for the SOAP Action. The operation
resolution of the outbound message is based on the SOAP Body and the message encoding, for example,
Doc/Lit/Bare, Doc/Lit/Wrapped. Since this parsing can be expensive, a property can be set. To always
disable the parsing, set the property at the System level. To disable parsing on a per-message basis, set
the property on the JAX-WS Request Message Context. The property is defined as a constant
org.apache.axis2.jaxws.Constants.DISPATCH_CLIENT_OUTBOUND_RESOLUTION with a String value of
jaxws.dispatch.outbound.operation.resolution.enable. The default value of the property is null which is
interpreted as the String true, which enables the outbound operation resolution. Setting the property to
false disables the outbound operation resolution. If parsing is disabled, then the SOAP Action in the
outbound message is set to an anonymous operation as in previous releases. If the client provides a
SOAP Action through the JAX-WS javax.xml.ws.BindingProvider properties, SOAPACTION_USE_PROPERTY
and SOAPACTION_URI_PROPERTY, then that SOAP Action is used. Therefore, parsing of the outbound
message does not occur regardless of the setting of the property. Setting a SOAP Action explicitly by the
client is considered a best practice, particularly for performance on the service-provider. This practice
prevents the inbound message from being parsed, to be routed to the correct endpoint operation.

Chapter 28. Developing web services 1205

Example

The following example illustrates the steps to create a Dispatch client and invoke a sample EchoService
service endpoint.
String endpointUrl = ...;

QName serviceName = new QName("http://com/ibm/was/wssample/echo/",
"EchoService");
QName portName = new QName("http://com/ibm/was/wssample/echo/",
"EchoServicePort");

/** Create a service and add at least one port to it. **/
Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

/** Create a Dispatch instance from a service.**/
Dispatch<SOAPMessage> dispatch = service.createDispatch(portName,
SOAPMessage.class, Service.Mode.MESSAGE);

/** Create SOAPMessage request. **/
// compose a request message
MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

// Create a message. This example works with the SOAPPART.
SOAPMessage request = mf.createMessage();
SOAPPart part = request.getSOAPPart();

// Obtain the SOAPEnvelope and header and body elements.
SOAPEnvelope env = part.getEnvelope();
SOAPHeader header = env.getHeader();
SOAPBody body = env.getBody();

// Construct the message payload.
SOAPElement operation = body.addChildElement("invoke", "ns1",
"http://com/ibm/was/wssample/echo/");
SOAPElement value = operation.addChildElement("arg0");
value.addTextNode("ping");
request.saveChanges();

/** Invoke the service endpoint. **/
SOAPMessage response = dispatch.invoke(request);

/** Process the response. **/

Invoking JAX-WS web services asynchronously
Java API for XML-Based Web Services (JAX-WS) provides support for invoking web services using an
asynchronous client invocation. JAX-WS provides support for both a callback and polling model when
calling web services asynchronously. Both the callback model and the polling model are available on the
Dispatch client and the Dynamic Proxy client.

Before you begin

Develop a JAX-WS Dynamic Proxy or Dispatch client. When developing Dynamic Proxy clients, after you
generate the portable client artifacts from a Web Services Description Language (WSDL) file using the
wsimport command, the generated service endpoint interface (SEI) does not have asynchronous methods
included in the interface. Use JAX-WS bindings to add the asynchronous callback or polling methods on
the interface for the Dynamic Proxy client. To enable asynchronous mappings, you can add the
jaxws:enableAsyncMapping binding declaration to the WSDL file. For more information on adding binding
customizations to generate an asynchronous interface, see chapter 8 of the JAX-WS specification.

Note: When you run the wsimport tool and enable asynchronous invocation through the use of the
JAX-WS enableAsyncMapping binding declaration, ensure that the corresponding response
message your WSDL file does not contain parts. When a response message does not contain
parts, the request acts as a two-way request, but the actual response that is sent back is empty.
The wsimport tool does not correctly handle a void response. To avoid this scenario, you can
remove the output message from the operation which makes your operation a one-way operation or
you can add a <wsdl:part> to your message. For more information on the usage, syntax and
parameters for the wsimport tool, see the wsimport command for JAX-WS applications
documentation.

1206 Developing WebSphere applications

About this task

An asynchronous invocation of a web service sends a request to the service endpoint and then
immediately returns control to the client program without waiting for the response to return from the
service. JAX-WS asynchronous web service clients consume web services using either the callback
approach or the polling approach. Using a polling model, a client can issue a request and receive a
response object that is polled to determine if the server has responded. When the server responds, the
actual response is retrieved. Using the callback model, the client provides a callback handler to accept and
process the inbound response object. The handleResponse() method of the handler is called when the
result is available. Both the polling and callback models enable the client to focus on continuing to process
work without waiting for a response to return, while providing for a more dynamic and efficient model to
invoke web services. Polling invocations are valid from Enterprise JavaBeans (EJB) clients or Java
Platform, Enterprise Edition (Java EE) application clients. Callback invocations are valid only from Java EE
application clients.

Using the callback asynchronous invocation model
To implement an asynchronous invocation that uses the callback model, the client provides an
AsyncHandler callback handler to accept and process the inbound response object. The client
callback handler implements the javax.xml.ws.AsyncHandler interface, which contains the
application code that is run when an asynchronous response is received from the server. The
javax.xml.ws.AsyncHandler interface contains the handleResponse(java.xml.ws.Response)
method that is called after the run time has received and processed the asynchronous response
from the server. The response is delivered to the callback handler in the form of a
javax.xml.ws.Response object. The response object returns the response content when the get()
method is called. Additionally, if an error was received, then an exception is returned to the client
during that call. The response method is then invoked according to the threading model used by
the executor method, java.util.concurrent.Executor on the client's java.xml.ws.Service
instance that was used to create the Dynamic Proxy or Dispatch client instance. The executor is
used to invoke any asynchronous callbacks registered by the application. Use the setExecutor
and getExecutor methods to modify and retrieve the executor configured for your service.

Using the polling asynchronous invocation model
Using the polling model, a client can issue a request and receive a response object that can
subsequently be polled to determine if the server has responded. When the server responds, the
actual response can then be retrieved. The response object returns the response content when
the get() method is called. The client receives an object of type javax.xml.ws.Response from the
invokeAsync method. That Response object is used to monitor the status of the request to the
server, determine when the operation has completed, and to retrieve the response results.

Using an asynchronous message exchange
By default, asynchronous client invocations do not have asynchronous behavior of the message
exchange pattern on the wire. The programming model is asynchronous; however, the exchange
of request or response messages with the server is not asynchronous. To use an asynchronous
message exchange, the com.ibm.websphere.webservices.use.async.mep property must be set on
the client request context with a boolean value of true. When this property is enabled, the
messages exchanged between the client and server are different from messages exchanged
synchronously. With an asynchronous exchange, the request and response messages have
WS-Addressing headers added that provide additional routing information for the messages.
Another major difference between asynchronous and synchronous message exchange is that the
response is delivered to an asynchronous listener that then delivers that response back to the
client. For asynchronous exchanges, there is no timeout that is sent to notify the client to stop
listening for a response. To force the client to stop waiting for a response, issue a
Response.cancel() method on the object returned from a polling invocation or a Future.cancel()
method on the object returned from a callback invocation. The cancel response does not affect the
server when processing a request.

Chapter 28. Developing web services 1207

Note: The location of the asynchronous listener is sent to the server, so that the service can
reply to the client. On Windows operating systems, the local host name is used by default, because
it is compatible with Dynamic Host Configuration Protocol (DHCP). However, if the server cannot
resolve the host name, the client application does not receive replies from the target service. For
example, a client application is hosted on the workstation myhost.bar.com. In the following SOAP
message header, the client application sends the short name myhost as its host details. Unless the
target server can resolve myhost to myhost.bar.com, subsequent replies do not reach the client
application:

<soapenv:Header>
<wsa:To>http://target.bar.com:81/LiteSecurityService/SecurityService</wsa:To>
<wsa:ReplyTo>
<wsa:Address>http://myhost:2146/axis2/services/LiteSecurityService.
WSRMServicePort/AnonOutInOp?IBMwebservicesID=922A5DC38A337C4CEF1168347862705

</wsa:Address>
</wsa:ReplyTo>
<wsa:MessageID>urn:uuid:922A5DC38A337C4CEF1168347862403</wsa:MessageID>
<wsa:Action>getEndpointReference</wsa:Action>

</soapenv:Header>

To resolve this issue, configure the client to send the location details for the asynchronous listener
in IP format, by adding the following system property to the Java virtual machine. Note that by
transmitting the IP address, you lose the benefits of DHCP.

-Dcom.ibm.websphere.webservices.transportEPRInIPAddr=yes

Procedure
1. Determine if you want to implement the callback method or the polling method for the client to

asynchronously invoke the web service.

2. (Optional) Configure the client request context. Add the
com.ibm.websphere.webservices.use.async.mep

property to the request context to enable asynchronous messaging for the web services client. Using
this property requires that the service endpoint supports WS-Addressing which is supported by default
for the application server. The following example demonstrates how to set this property:

Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
rc.put("com.ibm.websphere.webservices.use.async.mep", Boolean.TRUE);

3. To implement the asynchronous callback method, perform the following steps.

a. Find the asynchronous callback method on the SEI or javax.xml.ws.Dispatch interface. For an
SEI, the method name ends in Async and has one more parameter than the synchronous method
of type javax.xml.ws.AsyncHandler. The invokeAsync(Object, AsyncHandler) method is the one
that is used on the Dispatch interface.

b. (Optional) Add the service.setExecutor methods to the client application. Adding the executor
methods gives the client control of the scheduling methods for processing the response. You can
also choose to use the java.current.Executors class factory to obtain packaged executors or
implement your own executor class. See the JAX-WS specification for more information on using
executor class methods with your client.

c. Implement the javax.xml.ws.AsyncHandler interface. The javax.xml.ws.AsyncHandler interface
only has the handleResponse(javax.xml.ws.Response) method. The method must contain the logic
for processing the response or possibly an exception. The method is called after the client run time
has received and processed the asynchronous response from the server.

d. Invoke the asynchronous callback method with the parameter data and the callback handler.

e. The handleResponse(Response) method is invoked on the callback object when the response is
available. The Response.get() method is called within this method to deliver the response.

4. To implement the polling method,

a. Find the asynchronous polling method on the SEI or javax.xml.ws.Dispatch interface. For an SEI,
the method name ends in Async and has a return type of javax.xml.ws.Response. The
invokeAsync(Object) method is used on the Dispatch interface.

b. Invoke the asynchronous polling method with the parameter data.

1208 Developing WebSphere applications

c. The client receives the object type, javax.xml.ws.Response, that is used to monitor the status of
the request to the server. The isDone() method indicates whether the invocation has completed.
When the isDone() method returns a value of true, call the get() method to retrieve the response
object.

5. Use the cancel() method for the callback or polling method if the client needs to stop waiting for a
response from the service. If the cancel() method is invoked by the client, the endpoint continues to
process the request. However, the wait and response processing for the client is stopped.

Results

You have enabled your JAX-WS web service client to asynchronously invoke and consume web services.
See the JAX-WS specification for additional information regarding the asynchronous client APIs.

Example

The following example illustrates a web service interface with methods for asynchronous requests from the
client.
@WebService

public interface CreditRatingService {
// Synchronous operation.
Score getCreditScore(Customer customer);
// Asynchronous operation with polling.
Response<Score> getCreditScoreAsync(Customer customer);
// Asynchronous operation with callback.
Future<?> getQuoteAsync(Customer customer,

AsyncHandler<Score> handler);
}

Using the callback method
The callback method requires a callback handler that is shown in the following example. When
using the callback procedure, after a request is made, the callback handler is responsible for
handling the response. The response value is a response or possibly an exception. The Future<?>
method represents the result of an asynchronous computation and is checked to see if the
computation is complete. When you want the application to find out if the request is completed,
invoke the Future.isDone() method. Note that the Future.get() method does not provide a
meaningful response and is not similar to the Response.get() method.

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerTom,
new AsyncHandler<Score>() {

public void handleResponse (
Response<Score> response)

{
score = response.get();
// process the request...

}
}

);

Using the polling method
The following example illustrates an asynchronous polling client:

CreditRatingService svc = ...;
Response<Score> response = svc.getCreditScoreAsync(customerTom);

while (!response.isDone()) {
// Do something while we wait.

}

score = response.get();

Implementing extensions to JAX-WS web services clients
WebSphere Application Server provides extensions to web services clients using the Java API for
XML-based Web Services (JAX-WS) programming model.

Chapter 28. Developing web services 1209

About this task

You can customize web services by using the following extensions to the JAX-WS client programming
model.

Procedure
v Set the JAXWS_OUTBOUND_SOAP_HEADERS and JAXWS_INBOUND_SOAP_HEADERS properties on the request

context of the Dispatch or Proxy object to enable a JAX-WS web services client to send or retrieve
implicit SOAP headers.

An implicit SOAP header is a SOAP header that is not explicitly defined in the WSDL file. An implicit
SOAP header file fits one of the following descriptions:

– A message part that is declared as a SOAP header in the binding in the WSDL file, but the message
definition is not referenced by a portType within a WSDL file.

– An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

To learn how to modify your client code to send or retrieve transport headers, see the information on
sending implicit SOAP headers with JAX-WS or receiving implicit SOAP headers with JAX-WS.

v Set the REQUEST_TRANSPORT_PROPERTIES and RESPONSE_TRANSPORT_PROPERTIES properties to
enable a web services client to send or retrieve transport headers.

Set the properties on the BindingProvider instance.

By modifying your client code to send or retrieve transport headers, you can send or receive specific
information within the transport headers of outgoing requests or incoming responses from the server.
For requests or responses that use the HTTP transport, the information is sent or retrieved in an HTTP
header. Similarly, for a request or response that uses the Java Message Service (JMS) transport, the
information is sent or retrieved in a JMS message property.

To learn how to modify your client code to send or retrieve transport headers, see the information on
sending transport headers with JAX-WS or retrieving transport headers with JAX-WS.

To learn how to enable a web services client to send or retrieve transport headers, see the transport
header properties best practices information.

Example: Using JAX-WS properties to manipulate SOAP headers in a JAX-WS
handler
WebSphere Application Server provides extensions to the Java API for XML-Based Web Services
(JAX-WS) and Web Services for Java Platform, Enterprise Edition (Java EE) client programming models,
including the jaxws.binding.soap.headers.outbound and jaxws.binding.soap.headers.inbound properties.
This example shows how to use these two properties to manipulate SOAP headers in a JAX-WS handler.

The following programming example illustrates how to set two request SOAP headers and retrieve one
response SOAP header within a JAX-WS handler context:
1 //Create the hashmaps for the outbound soap headers
2 Map<QName, List<String>> outboundHeaders=messageContext.get("jaxws.binding.soap.headers.outbound");
3
4 //Add "AtmUuid1" and "AtmUuid2" to the outbound map
5 List<String> list1 = new ArrayList<String>();
6 list1.add("<AtmUuid1 xmlns=\"com.rotbank.security\"><uuid>ROTB-0A01254385FCA09</uuid></AtmUuid1>");
7 List<String> list2 = new ArrayList<String>();
8 list2.add("<AtmUuid2 xmlns=\"com.rotbank.security\"><uuid>ROTB-0A01254385FCA09</uuid></AtmUuid2>"
9 outboundHeaders.put(new QName("com.rotbank.security", "AtmUuid1"), list1);
10 outboundHeaders.put(new QName("com.rotbank.security", "AtmUuid2"), list2);
11 // Set the outbound map on the MessageContext object, which is passed into the JAX-WS handler method
12 messageContext.put("jaxws.binding.soap.headers.outbound", outboundHeaders);

On line 2, retrieve the outbound SOAP header map from the MessageContext parameter, which is passed
into the JAX-WS handler method.

On lines 5-10, the AtmUuid1 and AtmUuid2 headers elements are added to the outbound map.

1210 Developing WebSphere applications

On line 12, the outbound map is set on the JAX-WS handler context, which causes the AtmUuid1 and
AtmUuid2 headers to be added to the request message. This code is not necessary because the
outboundHeaders map is a live map.

JAX-WS handler methods might also retrieve specific headers from the map and remove headers or entire
lists of headers, if desired.

Sending implicit SOAP headers with JAX-WS
You can enable an existing Java API for XML-Based Web Services (JAX-WS) web services client to send
values in implicit SOAP headers. By modifying your client code to send implicit SOAP headers, you can
send specific information within an outgoing web service request.

Before you begin

To complete this task, you need a web services client that you can enable to send implicit SOAP headers.

An implicit SOAP header is a SOAP header that fits one of the following descriptions:

v A message part that is declared as a SOAP header in the binding in the Web Services Description
Language (WSDL) file, but the message definition is not referenced by a portType element within a
WSDL file.

v An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

Using JAX-WS, there is no restriction on types of headers that you can manipulate.

About this task

The client application sets properties on the Dispatch or Proxy object to send and receive implicit SOAP
headers.

Procedure
1. Create a java.util.HashMap<QName, List<String>> object.

2. Add an entry to the HashMap object for each implicit SOAP header that the client wants to send. The
HashMap entry key is the QName of the SOAP header. The HashMap entry value is a List<String>
object, and each String is the XML text of the entire SOAP header element. By using List<String>
object, you can add multiple SOAP header elements that each have the same QName object.

3. Set the HashMap object as a property on the request context of the Dispatch or Proxy object. The
property name is com.ibm.wsspi.websvcs.Constants.JAXWS_OUTBOUND_SOAP_HEADERS. The
value of the property is the HashMap.

4. Issue the remote method calls using the Dispatch or Proxy object. The headers within the HashMap
object are sent in the outgoing message.

A WebServiceException error can occur if any of the following are true:

v The HashMap object contains a key that is not a QName object or if the HashMap object contains a
value that is not a List<String> object.

v The String representing an SOAP header is not a compliant XML message.

v The HashMap contains a key that represents a SOAP header that is declared protected by the
owning component.

Results

You have a JAX-WS web services client that is configured to send implicit SOAP headers.

Chapter 28. Developing web services 1211

Example

The following programming example illustrates how to set two request SOAP headers and retrieve one
response SOAP header within a JAX-WS web services request and response context:
1 //Create the hashmaps for the outbound soap headers
2 Map<QName, List<String>> outboundHeaders=new HashMap<QName, List<String>>();
3
4 //Add "AtmUuid1" and "AtmUuid2" to the outbound map
5 List<String> list1 = new ArrayList<String>();
6 list1.add("<AtmUuid1 xmlns=\"com.rotbank.security\"><uuid>ROTB-0A01254385FCA09</uuid></AtmUuid1>");
7 List<String> list2 = new ArrayList<String>();
8 list2.add("<AtmUuid2 xmlns=\"com.rotbank.security\"><uuid>ROTB-0A01254385FCA09</uuid></AtmUuid2>"
9 outboundHeaders.put(new QName("com.rotbank.security", "AtmUuid1"), list1);
10 outboundHeaders.put(new QName("com.rotbank.security", "AtmUuid2"), list2);
11 // Set the outbound map on the request context
12 dispatch.getRequestContext().put("jaxws.binding.soap.headers.outbound");
13 // Invoke the remote operation
14 dispatch.invoke(parm1);
15 // Get the inbound header map from the response context
16 Map<QName,List<String>> inboundMap = dispatch.getResponseContext().get("jaxws.binding.soap.headers.outbound");
17 List<String> serverUuidList = inboundMap.get(new QName("com.rotbank.security","ServerUuid"));
18 String text = serverUiidList.get(0);
19 //Note: text now equals a XML object that contains a SOAP header:
21//"<y:ServerUuid xmlns:y=\"com.rotbank.security\"><:uuid>ROTB-0A03519322FSA01
22 </y:uuid></y:ServerUuid.");

On line 2, create the outbound SOAP header map.

On lines 5-10, the AtmUuid1 and AtmUuid2 headers elements are added to the outbound map.

On line 12, the outbound map is set on the request context, which causes the AtmUuid1 and AtmUuid2
headers to be added to the request message when the operation is invoked.

On line 14, invoke the remote operation.

On line 15, obtain the outbound header map.

On lines 17-18, the ServerUuid header is retrieved from the response Map. The Map accesses the SOAP
header from the response message.

Receiving implicit SOAP headers with JAX-WS
You can enable an existing Java API for XML-Based Web Services (JAX-WS) web services client to
receive values from implicit SOAP headers. By modifying your client code to receive implicit SOAP
headers, you can receive specific information within an incoming web service response.

Before you begin

To complete this task, you need a web services client that you can enable to receive implicit SOAP
headers.

An implicit SOAP header is a SOAP header that fits one of the following descriptions:

v A message part that is declared as a SOAP header in the binding in the Web Services Description
Language (WSDL) file, but the message definition is not referenced by a portType element within a
WSDL file.

v An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

Using JAX-WS, there is no restriction on types of headers that you can manipulate.

1212 Developing WebSphere applications

About this task

The client application sets properties on the Dispatch or Proxy object to send and receive implicit SOAP
headers.

Procedure
1. Issue a remote method call with the Dispatch or Proxy object.

2. Using the property name, com.ibm.wsspi.websvcs.Constants.JAXWS_INBOUND_SOAP_HEADERS, retrieve
the Map<QName, List<String>> from the ResponseContext of the Dispatch or Proxy object.

3. From the Map<QName, List<String>> value, retrieve a List<String> using the QName of the SOAP
header. If the List<String> value is present, that value contains zero or more String objects that
contain the XML text of the SOAP headers for the corresponding QName.

Results

You have a JAX-WS web services client that can receive values from implicit SOAP headers.

Transport header properties best practices
You can set the REQUEST_TRANSPORT_PROPERTIES property and
RESPONSE_TRANSPORT_PROPERTIES property on a Java API for XML-based RPC (JAX-RPC) client
Stub, a Call instance, or a Java API for XML-Based Web services (JAX-WS) BindingProvider's
RequestContext instance to enable a web services client to send or retrieve transport headers.

Note: Use these best practices to enable a Web services client to send or retrieve transport headers.

REQUEST_TRANSPORT_PROPERTIES best practices

Some transport headers such as the HTTP Cookie header and the Cookie2 header contain multiple
embedded values. For headers that contain multiple values, the header value must be written in the
following way:

v Each name=value pair embedded within the header value must be separated by a semi-colon (;).

v Each name and its value must be separated by an equal (=) sign.

The following is an example of how the header value must be written:
name1=value1;name2=value2;name3=value3

The values contained in the user's Map might be parsed before being added to the outgoing request if the
outgoing request already contains a header identifier that matches one in the Map. For certain transport
headers that contain multiple embedded values, the header values in the Map are parsed into individual
name=value components. A semi-colon (;) separates the components, for example,
name1=value1;name2=value2. Each name=value is appended to the outgoing header unless:

v The outgoing request header contains a name value.

In this case, the name=value from the Map is silently ignored, preventing a client from overwriting or
modifying values for the name value that are already set in the outgoing request header by either the
server or the web services engine.

v The user's header value contains multiple name values.

When the user's header value contains multiple name values, the first occurrence of the name value is
used and the others are silently ignored. For example, if the user's header value contains
name1=value1;name2=value2;name1=value3, where there are two occurrences of name1, the first
value, name1=value1, is used. The other value, name1=value3, is silently ignored.

Chapter 28. Developing web services 1213

RESPONSE_TRANSPORT_PROPERTIES best practices

Only the Map keys are used; the Map values are ignored. The values are filled in this Map by retrieving
the transport headers, which correspond to the Map keys from the incoming response message. An empty
Map causes all of the transport headers and the associated values to be retrieved from the incoming
response message.

HTTP headers that are processed under special consideration

The following are HTTP headers that are given special consideration when sending and retrieving HTTP
responses and requests.

The values in these headers can be set in a variety of ways. For example, some header values are sent
based on settings in a deployment descriptor or binding file. In these cases, the value set through
REQUEST_TRANSPORT_PROPERTIES overrides the values set any other way.

Table 168. HTTP request and response header values. Values to specify for HTTP headers when sending and
retrieving HTTP responses and requests.
Header Send request Retrieve response

Transfer-encoding
v The transfer-encoding header is

ignored for HTTP 1.0.

v When using HTTP 1.1, the
transfer-encoding header is set
to chunked if the value is
chunked.

There is no special processing.

Connection
v The connection header is

ignored for HTTP 1.0.

v When using HTTP 1.1, the
following values are set:

– The connection header is set
to "close" if the value is set to
"close".

– The connection header is set
to "keep-alive" if the value is
set to "keep-alive".

– All other value settings are
ignored.

There is no special processing.

Expect
v The expect header is ignored for

HTTP 1.0.

v When using HTTP 1.1, the
following values are set:

– The connection header is set
to "100-continue" if the value
is set to "100-continue".

– All other value settings are
ignored.

There is no special processing.

Host Ignored There is no special processing.

Content-type Ignored There is no special processing.

SOAPAction Ignored There is no special processing.

Content-length Ignored There is no special processing.

Cookie

The following is a String constant:
com.ibm.websphere.webservices.Constants
.HTTP_HEADER_COOKIE

The value is sent on the header if it
is structured correctly. See the
information in this article for Header
value format and Map values.

There is no special processing.

Cookie2

The following is a String constant:
com.ibm.websphere.webservices.Constants
.HTTP_HEADER_COOKIE2

See the information in the "Cookie"
entry.

There is no special processing.

1214 Developing WebSphere applications

Table 168. HTTP request and response header values (continued). Values to specify for HTTP headers when
sending and retrieving HTTP responses and requests.
Header Send request Retrieve response

Set-cookie

The following is a String constant:
com.ibm.websphere.webservices.Constants
.HTTP_HEADER_SET_COOKIE

There is no special processing. If the property MAINTAIN_SESSION is set to true, the
entire value is saved into
SessionContext.CONTEXT_PROPERTY and is sent
on subsequent requests in the Cookie header. See the
Cookie entry in this table for more information.

Set-cookie2

The following is a String constant:
com.ibm.websphere.webservices.Constants
.HTTP_HEADER_SET_COOKIE2

There is no special processing. If the property MAINTAIN_SESSION is set to true, the
entire value is saved into
SessionContext.CONTEXT_PROPERTY and is sent
on subsequent requests in the Cookie header. See the
Cookie entry in this table for more information.

Example client code

The following is an example of how you can code a web services client to send and retrieve transport
header values:
public class MyApplicationClass {

// Inject an instance of the service’s port-type.
@WebServiceRef(EchoService.class)
private EchoPortType port;

// This method will invoke the web service operation and send and receive transport headers.
public void invokeService() {

// Set up the Map that will contain the request headers.
Map<String, Object>requestHeaders = new HashMap<String, Object>();
requestHeaders.put(“Cookie”, “ClientAuthenticationToken=FFEEBBCC”);
requestHeaders.put(“MyHeaderFlag”, new Boolean(true));

// Set the Map as a property on the RequestContext.
BindingProvider bp = (BindingProvider) port;
bp.getRequestContext().put(com.ibm.websphere.webservices.Constants.REQUEST_TRANSPORT_PROPERTIES, requestHeaders);

// Set up the Map to retrieve transport headers from the response message.
Map<String, Object>responseHeaders = new HashMap<String, Object>();
responseHeaders.put(“Set-Cookie”, null);
responseHeaders.put(“MyHeaderFlag, null);

// Invoke the web services operation.
String result = port.echoString(“Hello, world!”);

// Retrieve the headers from the response.
String cookieValue = responseHeaders.get(“Set-Cookie”);
String headerFlag = responseHeaders.get(“MyHeaderFlag”);

}
}

Sending transport headers with JAX-WS
You can enable an existing Java API for XML-Based Web Services (JAX-WS) web services client to send
application-defined information along with your web services requests by using transport headers. In
addition, you can enable a JAX-WS Web services endpoint to send application-defined information along
with the Web services response message by using transport headers.

Before you begin

You need a JAX-WS web services client that you can enable to send transport headers.

Sending transport headers is supported in JAX-WS Web services clients, and is supported for the HTTP
and JMS transports. The web services client must call the JAX-WS APIs directly and not through any
intermediary layers, such as a gateway function.

About this task

When using the JAX-WS programming model, the client must set a property on the BindingProvider's
RequestContext object to send values in transport headers with the Web services request message. After

Chapter 28. Developing web services 1215

you set the property, the values are set in all the requests for subsequent remote method invocations
against the BindingProvider object until the associated property is set to null or the BindingProvider object
is discarded.

To send values in the transport headers on outbound requests from a JAX-WS Web services client
application, modify the client code as follows:

Procedure
1. Create a java.util.Map object that contains the transport headers.

2. Add an entry to the Map object for each transport header that you want the client to send.

a. Set the Map entry key to a string that exactly matches the transport header identifier. You can
define the header identifier with a reserved header name, such as Cookie in the case of HTTP, or
the header identifier can be user-defined, such as MyTransportHeader. Certain header identifiers
are processed in a unique manner, but no other checks are made as to the header identifier value.
To learn more about the HTTP header identifiers that have unique consideration, read about
transport header properties best practices. You can find common header identifier string constants,
such as HTTP_HEADER_SET_COOKIE in the com.ibm.websphere.webservices.Constants class.

b. Set the Map entry value to the value of the transport header. The type of this value can be one of
the following data types:

v java.lang.String

v java.lang.Integer

v java.lang.Short

v java.lang.Long

v java.lang.Float

v java.lang.Double

v java.lang.Byte

v java.lang.Boolean

3. Set the Map object on the BindingProvider's RequestContext using the
com.ibm.websphere.webservices.Constants.REQUEST_TRANSPORT_PROPERTIES property. When
the REQUEST_TRANSPORT_PROPERTIES property value is set, that Map is used on subsequent
invocations to set the header values in the outgoing requests. If the
REQUEST_TRANSPORT_PROPERTIES property value is set to null, no transport properties are sent
in outgoing requests. To learn more about these properties, see the transport header properties
documentation.

4. Issue remote method calls against the BindingProvider instance. The headers and the associated
values from the Map are added to the outgoing request for each method invocation. If the invocation
uses HTTP, then the transport headers are sent as HTTP headers within the HTTP request. If the
invocation uses JMS, then the transport headers are sent as JMS message properties.

If the Constants.REQUEST_TRANSPORT_PROPERTIES property is not set correctly, you might
experience API usage errors that result in a WebServiceException error. The following requirements
must be met, or the process fails:

a. The Constants.REQUEST_TRANSPORT_PROPERTIES property value that is set on the
BindingProvider's RequestContext must be a java.util.Map object or null.

b. Each key in the Map must be a java.util.String data type.

c. Each value in the Map must be one of the following data types:

v java.lang.String

v java.lang.Integer

v java.lang.Short

v java.lang.Long

v java.lang.Float

1216 Developing WebSphere applications

v java.lang.Double

v java.lang.Byte

v java.lang.Boolean

Results

You have a JAX-WS web services client that is configured to send transport headers in Web services
request messages.

Example

Here is a short programming example that illustrates how request transport headers are sent by a JAX-WS
Web services client application:
public class MyApplicationClass {

// Inject an instance of the service’s port-type.
@WebServiceRef(EchoService.class)
private EchoPortType port;

// This method will invoke the web service operation and send transport headers on the request.
public void invokeService() {

// Set up the Map that will contain the request headers.
Map<String, Object> requestHeaders = new HashMap<String, Object>();
requestHeaders.put(“MyHeader1”, “This is a string value”);
requestHeaders.put(“MyHeader2”, new Integer(33));
requestHeaders.put(“MyHeader3”, new Boolean(true));

// Set the Map as a property on the RequestContext.
BindingProvider bp = (BindingProvider) port;
bp.getRequestContext().put(com.ibm.websphere.webservices.Constants.REQUEST_TRANSPORT_PROPERTIES, requestHeaders);

// Invoke the web services operation.
String result = port.echoString(“Hello, world!”);

}
}

Sending response transport headers from a JAX-WS endpoint:
Before you begin

You need a JAX-WS Web services endpoint implementation class that you can enable to send transport
headers.

Sending response transport headers from a JAX-WS endpoint is similar to sending request transport
headers from a JAX-WS client. It is supported for the HTTP and JMS transports.

About this task

When using the JAX-WS programming model, the endpoint implement class must set a property on the
MessageContext to send values in transport headers with the Web services response message.

Procedure

1. Create a java.util.Map object that contains the transport headers.

2. Add an entry (key and value) to the Map object for each transport header that you want to send in the
response message. This is similar to the procedure for the client above.

3. Retrieve the MessageContext (instance of javax.xml.ws.handler.MessageContext) associated with the
invocation of the endpoint.

4. Set the Map object on the MessageContext using the
com.ibm.websphere.webservices.Constants.RESPONSE_TRANSPORT_PROPERTIES property.

Chapter 28. Developing web services 1217

Results

You have a JAX-WS Web services endpoint implementation class that is configured to send transport
headers in Web services response messages.

Example

Here is a short programming example that illustrates how response transport headers are sent by a
JAX-WS Web services endpoint implementation class:
@WebService
public class EchoServiceImpl implements EchoServicePortType {

// Inject an instance of WebServiceContext so we can retrieve
// the MessageContext for each invocation of this endpoint.
@Resource
WebServiceContext ctxt;

/**
* Default constructor.
*/
public EchoServiceImpl() {

....
}

public String echoString(String input) {
String result = “Echo result: “ + input;

// Retrieve the MessageContext from the injected WebServiceContext.
MessageContext mc = ctxt.getMessageContext();

// Send some headers back in the response message.
Map<String, Object> responseHeaders = new HashMap<String, Object>();
responseHeaders.put("MyHeader1", "This is a string response value");
responseHeaders.put("MyHeader2", new Integer(33));
responseHeaders.put("MyHeader3”, new Boolean(false));

// Set the response header Map on the MessageContext.
mc.put(com.ibm.websphere.webservices.Constants.RESPONSE_TRANSPORT_PROPERTIES, responseHeaders);

return result;
}

}

Retrieving transport headers with JAX-WS
You can enable a Java API for XML-Based Web Services (JAX-WS) web services client to retrieve values
from transport headers. For a request that uses HTTP, the transport headers are retrieved from HTTP
headers found in the HTTP response message. For a request that uses Java Message Service (JMS), the
transport headers are retrieved from the JMS message properties found on the JMS response message.

Before you begin

You need a JAX-WS web services client that you can enable to retrieve transport headers.

Retrieving transport headers is supported only by Web services clients, and is supported for the HTTP and
JMS transports. The web services client must call the JAX-WS APIs directly and not through any
intermediary layers, such as a gateway function.

About this task

When using the JAX-WS programming model, the client must set a property on the BindingProvider's
RequestContext object to retrieve values from the transport headers. After you set the property, values are
read from responses for the subsequent method invocations against that BindingProvider object until the
associated property is set to null or the BindingProvider object is discarded.

To retrieve values from the transport headers on inbound responses, modify the client code as follows:

1218 Developing WebSphere applications

Procedure
1. Create a java.util.Map object that will hold the transport headers retrieved from the response message.

To retrieve all the transport headers from a response message, leave this Map empty.

2. (Optional) Add an entry to the Map for each header that you want to retrieve from the incoming
response message.

a. Set the Map entry key to a string that exactly matches the transport header identifier. You can
specify the header identifier with a reserved header name, such as Cookie in the case of HTTP, or
the header identifier can be user-defined, such as MyTransportHeader. Certain header identifiers
are processed in a unique manner, but no other checks are made to confirm the header identifier
value. To learn more about the HTTP header identifiers that have unique consideration, read about
transport header properties best practices. You can find common header identifier string constants,
such as HTTP_HEADER_SET_COOKIE in the com.ibm.websphere.webservices.Constants class.
The Map entry value is ignored and does not need to be set. An empty Map, for example, one that
is non-null, but does not contain any keys, causes all the transport headers in the response to be
retrieved.

3. Set the Map object on the BindingProvider's RequestContext using the
com.ibm.websphere.webservices.Constants.RESPONSE_TRANSPORT_PROPERTIES property. When
the Map is set, the RESPONSE_TRANSPORT_PROPERTIES property is used in subsequent
invocations to retrieve the headers from the responses. If you set the property to null, no headers are
retrieved from the response. To learn more about these properties, see the transport header properties
documentation.

4. Invoke remote method calls against the BindingProvider instance. The values from the specified
transport headers are retrieved from the response message and placed in the Map.

If the property is not set correctly, you might experience API usage errors that result in a
WebServiceException error. The following requirements must be met, or the process fails:

v The Constants.RESPONSE_TRANSPORT_PROPERTIES property value that is set on the
BindingProvider's RequestContext instance must be either null or an instance of java.util.Map.

v All the Map keys must be of the java.lang.String data type, and the keys must not be null.

v The Map may be empty, which means that it contains no entries at all. In this case, all the transport
headers will be retrieved from the response message.

Results

You have a JAX-WS web service that can receive transport headers from incoming response messages.

Example

Here is a short programming example that illustrates how response transport headers are retrieved by a
JAX-WS Web services client application:
public class MyApplicationClass {

// Inject an instance of the service’s port-type.
@WebServiceRef(EchoService.class)
private EchoPortType port;

// This method will invoke the web service operation and retrieve transport headers on the request.
public void invokeService() {

// Set up the Map to retrieive our response headers.
Map<String, Object> responseHeaders = new HashMap<String, Object>;
responseHeaders.put(“MyHeader1”, null);
responseHeaders.put(“MyHeader2”, null);
responseHeaders.put(“MyHeader3”, null);

// Set the Map as a property on the RequestContext.
BindingProvider bp = (BindingProvider) port;
bp.getRequestContext().put(com.ibm.websphere.webservices.Constants.RESPONSE_TRANSPORT_PROPERTIES, responseHeaders);

// Invoke the web services operation.
String result = port.echoString(“Hello, world!”);

Chapter 28. Developing web services 1219

// Now retrieve our response headers.
Object header1 = responseHeaders.get(“MyHeader1”);
Object header2 = responseHeaders.get(“MyHeader2”);
Object header3 = responseHeaders.get(“MyHeader3”);

}
}

Developing JAX-RPC web services

Setting up a development environment for web services
The application server provides command-line tools to develop web services clients and implementations
that are based on the Web Services for Java Platform, Enterprise Edition (Java EE) specification. You
must set up your development environment before you start developing web services.

Before you begin

Before you can set up a web services development environment within WebSphere Application Server, you
must install WebSphere Application Server. For detailed information on installing the application server,
read about installing your application server environment.

About this task

Set up a web services development environment by completing the following actions.

Procedure
1. Set up the environment.

Run the setupCmdLine.bat command from the /profile_root/<application_server>/bin
directory.

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running this command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /profile_root/<application_server>/bin directory.

You can set WAS_USER_SCRIPT to profile_root\<application_server>\bin\setupCmdLine.bat, which
has the same effect as running the setupCmdLine command.

2. Configure the path. You can add the WebSphere and Java bin directories to your path by typing:

set PATH=%WAS_PATH%;%PATH%

export PATH=$WAS_PATH:$PATH

Results

You have set up an environment so that you can develop Web services.

What to do next

Implement web services applications. See the task overview for implementing web services applications
information to learn about how to develop and implement a Java EE web service.

1220 Developing WebSphere applications

Developing a service endpoint interface from JavaBeans for JAX-RPC
applications
You must develop a service endpoint interface if you are developing a JAX-RPC web service from a
JavaBeans implementation.

Before you begin

You need to set up a development environment for web services and access an existing Java bean web
application archive (WAR) file. See the setting up a development environment for web services
information.

About this task

This task is a required step in developing a JAX-RPC Web service from a Java bean.

The service endpoint interface defines the methods for particular Java API for XML-based RPC (JAX-RPC)
web services. The JavaBeans implementation must implement methods with the same signature as the
methods on the service endpoint interface. A number of restrictions apply on which types to use as
parameters and results of service endpoint interface methods. These restrictions are documented in the
JAX-RPC specification.

You can also create a service endpoint interface by using assembly tools.

Develop a service endpoint interface for a JavaBeans implementation by following the actions listed:

Procedure
1. Create a Java interface that contains the methods to include in the service endpoint interface. If you

start with an existing Java interface, remove any methods that do not conform to the JAX-RPC
specification.

2. Compile the interface.

Use the name of the service endpoint interface class in the javac command for the class to compile.

Use the javac commands.

On operating systems such as AIX or Linux, see the
developing thin application client code information.

Results

You have developed a service endpoint interface that you can use to develop web services.

Example

The following example depicts the AddressBook interface:
package addr;
public interface AddressBook {

/**
* Retrieve an entry from the AddressBook.
*
*@param name the name of the entry to look up.
*@return the AddressBook entry matching name or null if none.
*@throws java.rmi.RemoteException if communications failure.
*/
public addr.Address getAddressFromName(java.lang.String name);

}

Use the AddressBook interface to create the service endpoint interface:
1. Make a copy of the AddressBook.java interface and name it AddressBook_SEI.java. Use this copy as a

template for the service endpoint interface.

Chapter 28. Developing web services 1221

2. Compile the interface.

What to do next

Continue to gather the artifacts that are required to develop a web service, including the Web Services
Description Language (WSDL) file. You need to develop a WSDL file because it is the engine of a web
service. Without a WSDL file, you do not have a web service. See the developing a WSDL file for
JAX-RPC applications information.

Developing a service endpoint interface from enterprise beans for
JAX-RPC applications
You can develop a service endpoint interface from an Enterprise JavaBeans (EJB) for JAX-RPC web
services.

Before you begin

Set up a development environment for web services. To learn more, see the setting up a development
environment for web services information.

Set up a development environment for web services.

This task is a required step in developing a Java API for XML-based RPC (JAX-RPC) web service from an
enterprise bean.

The service endpoint interface defines the web services methods. The enterprise beans that implements
the web service must implement methods having the same signature as the methods of the service
endpoint interface. A number of restrictions exist on which types to use as parameters and results of
service endpoint interface methods. These restrictions are documented in the Java API for XML-based
remote procedure call (JAX-RPC) specification. See the web services specifications and API
documentation to review the JAX-RPC specification along with a complete list of the supported standards
and specifications.

The easiest method for creating the service endpoint interface for an EJB web service implementation is
from the EJB remote interface.

You can also create a service endpoint interface by using assembly tools..

About this task

Develop a service endpoint interface by following the steps provided in this task section.

Procedure
1. Create a Java interface that contains the methods that you want to include in the service endpoint

interface. If you start with an existing Java interface, remove any methods that do not conform to the
JAX-RPC specification.

2. Compile the interface.

Use the name of the service endpoint interface class in the javac command for the class to compile.

Use the javac commands.

On operating systems such as AIX or Linux, see the
developing stand-alone thin client applications documentation.

Results

You have a service endpoint interface that you can use to develop a web service.

1222 Developing WebSphere applications

Example

This example uses the EJB remote interface, AddressBook_RI, to create a service endpoint interface for an
EJB implementation that is used as a web service. The following code example illustrates the
AddressBook_RI remote interface.
package addr;
public interface AddressBook_RI extends javax.ejb.EJBObject {

/**
* Retrieve an entry from the AddressBook.
*
*@param name the name of the entry to look up.
*@return the AddressBook entry matching name or null if none.
*@throws java.rmi.RemoteException if communications failure.
*/
public addr.Address getAddressFromName(java.lang.String name)
throws java.rmi.RemoteException;

}

Use the following steps to create the service endpoint interface with the AddressBook_RI remote interface:
1. Locate a remote interface that has already been created, like the AddressBook_RI.java remote

interface.
2. Make a copy of the AddressBook.java remote interface and use it as a template for the service

endpoint interface.
3. Compile the AddressBook.java service endpoint interface.

What to do next

Continue gathering the artifacts that are required to develop a web service, including the Web Services
Description Language (WSDL) file. You need to develop a WSDL file because it is the engine of a web
service; without a WSDL file, you have no web service.

Developing a WSDL file for JAX-RPC applications
You can develop a Web Services Description Language (WSDL) file to describe the characteristics of your
Java API for XML-based RPC (JAX-RPC) web services application including where the service resides
and how to invoke the service using an XML format.

Before you begin

Depending on your development path, develop a service endpoint interface from a JavaBeans
implementation or develop a service endpoint interface from an enterprise bean implementation.

About this task

You need a WSDL file to use web services. You can develop your own WSDL file or get one from a web
services provider through email, downloading, or through a Uniform Resource Locator (URL). This
documentation assumes you are creating your own.

Develop a WSDL file by following the actions listed:

Procedure
1. Configure the service endpoint interface class and referenced classes into your CLASSPATH variable.

v On Windows systems, set CLASSPATH="%CLASSPATH%;<list your application Java archive (JAR) files
and classes>".

v On UNIX and Linux systems, export CLASSPATH="$CLASSPATH:<list your application JAR files and
classes>".

2. Run the Java2WSDL seiInterface command. A WSDL file named seiInterface.wsdl is created.

v Move the WSDL file to the META-INF/wsdl subdirectory if you are using Enterprise JavaBeans (EJB).

Chapter 28. Developing web services 1223

v Move the WSDL file to the WEB-INF/wsdl subdirectory if you are using JavaBeans.

3. Edit the generated WSDL file and inspect the part names. The WSDL parts have names like arg_0_0.
Modify the WSDL file to use the actual names of the Java parameters.

4. (Optional) Use the Java2WSDL command tool to generate the correct part names of WSDL file. You can
automatically generate and set the correct part names by using the Java2WSDL command tool.
Generating and setting the part names is done by providing additional information to the Java2WSDL
command tool in the form of a Java implementation class that implements the same methods as the
service endpoint interface and is compiled with debug information turned on. Parameter names are
stored in the .class file with the debug information. If your implementation class is compiled with
debug on, you can use the Java2WSDL -implClass seiImpl seiInterface command to generate a
WSDL file with the proper part names.

Results

A WSDL file that defines the web services described by the service endpoint interface.

Example

This example uses the JAR file name AddressBook.jar that contains a class named AddressBook.class
class file.

You must add the AddressBook.jar file to your CLASSPATH to create the WSDL file. The JAR file contains
an EJB implementation class that is compiled with debugging information turned on. Run the Java2WSDL
-implClass addr.AddressBookBean addr.AddressBook command to create the file, AddressBook.wsdl.

What to do next

Depending on your development path, develop web services deployment descriptor templates for
JavaBeans or develop web services deployment descriptor templates for an enterprise beans
implementation.

Java2WSDL command for JAX-RPC applications
The Java2WSDL command-line tool maps Java classes to a WSDL file for Java API for XML-based RPC
(JAX-RPC) applications.

The Java2WSDL command maps a Java class to a Web Services Description Language (WSDL) file by
following the Java API for XML-based Remote Procedure Call (JAX-RPC) 1.1 specification.

The Java2WSDL command accepts a Java class as input and produces a WSDL file that represents the
input class. If a file exists at the output location, it is overwritten. The WSDL file that is generated by the
Java2WSDL command contains WSDL and XML schema constructs that are automatically derived from the
input class. You can override these default values with command-line arguments.

The Java2WSDL command is protocol independent; when you run the Java2WSDL command, you can specify
command-line options that generate both SOAP and non-SOAP protocol bindings in the WSDL file. For
each binding that can be generated, the Java2WSDL command has a binding generator to generate the
WSDL for that binding.

Command line syntax and arguments

The command line syntax is:
Java2WSDL [argument...] class

The following command-line arguments are supported:

1224 Developing WebSphere applications

Required arguments
v class

Represents the fully qualified name of one of the following Java classes:
– Stateless session Enterprise JavaBeans (EJB) remote interface that extends the javax.ejb.EJBObject

class
– Service endpoint interface that extends the java.rmi.Remote class
– Java beans

The Java2WSDL command locates the class in the CLASSPATH variable.

Important arguments
v -location location

Provides the published location or the Uniform Resource Locator (URL) of the service. If this information
is not provided, a warning is issued that indicates that the final published location is not determined yet.
The service location is typically overridden when the web service is deployed.

The name after the last backslash is the name of the service port, unless the name is overridden by the
-servicePortName argument. The service port address location attribute is assigned the specified value.
Multiple endpoint addresses can be specified. Using the -location option is recommended only if a
single binding type is required. If multiple binding types are requested, protocol binding-specific location
properties are passed over the command line using the -x flag.

The following example illustrates how to produce both SOAP over HTTP, and SOAP over Java Message
Service (JMS) bindings :

java2wsdl -bindingTypes http,jms \
-x http.location=http://your.server.name:9080/StockQuoteService/services/StockQuote \
-x jms.location= \
jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF&targetService=StockQuote

Use the -location option to determine to which port the -location option value applies by requiring the
endpoint URLs to be specified through the binding-specific property values.

v -output wsdl-uri

Indicates the path and file name of the output WSDL file. If not specified, the default class.wsdl file is
written into the current directory.

v -input wsdl-uri

Specifies the input WSDL file that is used to build an output WSDL file. Information from an existing
WSDL file, is specified in this option and is used with the input Java class to generate the output.

v -bindingTypes

Specifies the list of binding types write to the output WSDL file. Each binding generator in the Java2WSDL
command supports specific binding types. The valid binding type values are http (SOAP over HTTP),
jms (SOAP over JMS) and ejb (local or remote EJB invocation). For example, the following command
can be used to generate SOAP over HTTP, EJB bindings for the my.pkg.MySEI Service Endpoint
Interface and the my.pkg.MyEJBClass implementation class :

java2wsdl -bindingTypes http,ejb -implClass my.pkg.MyEJBClass my.pkg.MySEI

The following command is an example of using the -bindingTypes option to generate SOAP over HTTP
and SOAP over JMS bindings:

java2wsdl -bindingTypes http,jms -implClass my.pkg.MyEJBClass my.pkg.MySEI

v -style RPC | DOCUMENT

Specifies the WSDL style to use in the generated WSDL file. To learn more, see the Mapping between
Java language, WSDL and XML for JAX-RPC applications information. This argument is used with the
-use argument.

If RPC is specified with -use ENCODED, a style=rpc/use=encoded WSDL file is generated. If RPC is
specified with the -use LITERAL option, a style=rpc/use=literal WSDL file is generated. If
DOCUMENT is specified with the -use LITERAL option, a style=document/use=literal WSDL file is
generated.

v -use LITERAL | ENCODED

Chapter 28. Developing web services 1225

Specifies which style and use combinations are generated into the WSDL file when used with the -style
argument. The combinations are rpc and encoded, rpc and literal, or doc and literal. This setting applies
to all SOAP bindings. To learn more, see the Mapping between Java language, WSDL and XML for
JAX-RPC applications information.

v -transport http | jms

Generates SOAP bindings for either HTTP (default) or JMS. If JMS is specified, the characters jms are
appended to the WSDL file name to prevent overwriting an existing WSDL file for another transport. The
transport option can be specified only once.

This option is deprecated. The -bindingTypes option replaces the -transport option, so that you can
generate bindings that are non-SOAP specific.

v -portTypeName name

Specifies the name to use for the portType element. If not specified, the binding name is the port type
name.

v -bindingName name

Specifies the name to use for the binding element. If not specified, the binding name is the port type
name.

v -serviceElementName name

Specifies the name of the service element.
v -servicePortName name

Specifies the name of the service. If not specified, the service name is derived from the -location
argument.

v -namespace targetNamespace

Indicates the target namespace for the WSDL file being generated. To learn about the algorithm that is
used to obtain the default namespace, see the Mapping between Java language, WSDL and XML for
JAX-RPC applications information.

v -PkgtoNS package namespace

Specifies the mapping of a Java package to a namespace. If a package does not have a namespace,
the Java2WSDL command generates a namespace name. You can repeat the -PkgtoNS argument to
specify mappings for multiple packages.

v -extraClasses classes

Specifies other classes that are represented in the WSDL file.
v -implClass impl-class

The Java2WSDL command uses method parameter names to construct the WSDL file message part
names. The command automatically obtains the message names from the debug information in the
class. If the class is compiled without debug information, or if the class is an interface, the method
parameter names are not available. In this case, you can use the -implClass argument to provide an
alternative class from which to obtain method parameter names. The impl-class does not need to
implement the class if the class is an interface, but it must implement the same methods as the class.

v -verbose

Displays verbose messages.
v -help

Displays the help message.
v -helpX

Displays the help message for extended options and for various options that are supported by binding
generators.

Other arguments
v -wrapped boolean

Specifies whether to generate the WSDL file according to wrapped rules. This option is valid if use is
literal only. The option defaults to true.

v -stopClasses parent [, parent]

1226 Developing WebSphere applications

The Java2WSDL command searches inherited classes and interfaces to construct the list of methods for
WSDL file operations if the -all argument is specified.

The Java2WSDL command searches inherited classes and interfaces when generating extended
complexTypes. The search stops when a class or an interface is found within a package that begins
with java or javax. You can use the -stopClasses argument to define additional classes that cause the
search to stop.

v -methods argument

Specifies a list of method names from the Service Endpoint Interface that must be exposed in the
output WSDL file. The list is separated by spaces or commas.

v -soapAction

Valid arguments are:
– DEFAULT

Sets the soapAction field according to the deployment information.
– NONE

Sets the soapAction field to double quotes ("").
– OPERATION

Sets the soapAction field to the operation name.

v -outputImpl impl-wsdl

Specifies if you want an interface and implementation WSDL file emitted.

v -locationImport location-uri

Specifies the location of the interface WSDL file if you use the -outputImpl argument.

v -namespaceImpl namespace

Specifies the target namespace for the implementation WSDL file, if you use the -outputImpl argument.

v -MIMEStyle <style>

Specifies the Multipurpose Internet Mail Extensions (MIME)- type used to map to Web
Services-Interoperability (WS-I) SOAP with attachments reference (wsi:swaRef) for the binding element.

<style> can be one of the following:

– WSDL11 (default): Exclusively map MIME types using WSDL 1.1 standards. If the MIME type cannot
map to WSDL 1.1 standards, the command fails.

– AXIS: Map MIME types using AXIS standards, for example image becomes axis:image.

– swaRef: Map MIME types using WSDL 1.1 standards with two caveats:

- DataHandler maps to the wsi:swaRef element instead of an application and octet-stream

- If mapping is illegal through WSDL 1.1, map to the wsi:swaRef element

v -propertiesFile argument

Sets existing options, such as -extraClasses, with a properties file instead of with a command line. The
following example illustrates the use of this argument:

extraClasses=com.ibm.Class1, com.sun.Class2,org.apache.Class3

v -voidReturn

Valid arguments are:
– ONEWAY

Methods with void returns are one-way. This argument is the default for a JMS transport.
– TWOWAY

Methods with void returns are two-way. This argument is the default for an HTTP transport.

v -debug

Displays debug messages.

v -property or -x

You can use the -x option to pass command-line options to various binding generators. Use the -x
option multiple times on the command line to specify a set of property values to pass to each binding

Chapter 28. Developing web services 1227

generator method called by the Java2WSDL command. You can also use a single -x option to specify
multiple properties by separating them with a comma, for example:

java2wsdl -x prop1=value1 -x prop2=value2

is equivalent to:
java2wsdl -x prop1=value1,prop2=value2

The -x option provides flexibility to specify each command-line option for each binding generator
individually, if required. The value specified in the -x option overrides the value that is specified in the
equivalent command-line option if both are specified.

Mapping between Java language, WSDL and XML for JAX-RPC applications
Data for Java API for XML-based Remote Procedure Call (JAX-RPC) applications flows as extensible
Markup Language (XML). JAX-RPC applications use mappings to describe the data conversion between
the Java language and extensible Markup Language (XML) technologies, including XML Schema, Web
Services Description Language (WSDL) and SOAP that are supported by the application server.

For JAX-RPC applications, most of the mappings between the Java language and XML are specified by
the JAX-RPC specification. Some mappings that are optional or unspecified in JAX-RPC are also
supported. Review the JAX-RPC specification for a complete list of APIs. For a complete list of the
supported standards and specifications, see the web services specifications and API documentation.

Notational conventions

Table 169. Namespace conventions. Describes the namespace prefixes and the corresponding namespace used in
namespace conventions.
Namespace prefix Namespace

xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

soapenc http://schemas.xmlsoap.org/soap/encoding/

wsdl http://schemas.xmlsoap.org/wsdl/

wsdlsoap http://schemas.xmlsoap.org/wsdl/soap/

ns user-defined namespace

apache http://xml.apache.org/xml-soap

wasws http://websphere.ibm.com/webservices/

Detailed mapping information

The following sections identify the supported mappings, including:
v Java-to-WSDL mapping
v WSDL-to-Java mapping
v Mapping between WSDL and SOAP messages

Java-to-WSDL mapping

This section summarizes the Java-to-WSDL mapping rules. The Java-to-WSDL mapping rules are used by
the Java2WSDL command for bottom-up processing. In bottom-up processing, an existing Java service
implementation is used to create a WSDL file defining the web service. The generated WSDL file can
require additional manual editing for the following reasons:
v Not all Java classes and constructs have mappings to WSDL files. For example, Java classes that do

not comply with the Java bean specification rules might not map to a WSDL construct.
v Some Java classes and constructs have multiple mappings to a WSDL file. For example, a

java.lang.String class can map to either an xsd:string or soapenc:string construct. The Java2WSDL
command chooses one of these mappings, but you must edit the WSDL file if a different mapping is
required.

1228 Developing WebSphere applications

v Multiple ways exist to generate WSDL constructs. For example, you can generate the wsdl:part in
wsdl:message with a type or element attribute. The Java2WSDL command makes an informed choice
based on the -style and -use option settings.

v The WSDL file describes the instance data elements sent in the SOAP message. If you want to modify
the names or format used in the message, the WSDL file must be edited. For example, the Java2WSDL
command maps a Java bean property as an XML element. In some circumstances, you might want to
change the WSDL file to map the Java bean property as an XML attribute.

v The WSDL file requires editing if header or attachment support is desired.
v The WSDL file requires editing if a multipart WSDL file, using the wsdl:import construct, is desired.

For simple services, the generated WSDL file is sufficient. For complicated services, the generated WSDL
file is a good starting point. Read about the Java2WSDL command-line tool for Java API for XML-based
Remote Procedure Call (JAX-RPC) applications to learn more about this tool.

General issues
v Package to namespace mapping:

The JAX-RPC specification does not indicate the default mapping of Java package names to XML
namespaces. The JAX-RPC specification does specify that each Java package must map to a single
XML namespace. Likewise, each XML namespace must map to a single Java package. A default
mapping algorithm is provided that constructs the namespace by reversing the names of the Java
package and adding an http:// prefix. For example, a package named, com.ibm.webservice, is
mapped to the XML namespace http://webservice.ibm.com.

You can override the default mapping between XML namespaces and Java package names by using
the -NStoPkg and -PkgtoNS options of the WSDL2Java and Java2WSDL commands.

v Identifier mapping :

Java identifiers are mapped directly to WSDL and XML identifiers.

Java bean property names are mapped to XML identifiers. For example, a Java bean, with getInfo and
setInfo methods, maps to an XML construct with the name, info.

The service endpoint interface method parameter names, if available, are mapped directly to the WSDL
and XML identifiers. See the information for the WSDL2Java command -implClass option to learn more.

v WSDL construction summary:

Table 170. Mapping of Java to WSDL or an XML construct. Describes the mapping from a Java construct to the
related WSDL and XML construct.
Java construct WSDL and XML construct

Service endpoint interface wsdl:portType

Method wsdl:operation

Parameters wsdl:input, wsdl:message, wsdl:part

Return wsdl:output, wsdl:message, wsdl:part

Throws wsdl:fault, wsdl:message, wsdl:part

Primitive types xsd and soapenc simple types

Java beans xsd:complexType

Java bean properties Nested xsd:elements of xsd:complexType

Arrays JAX-RPC defined xsd:complexType or xsd:element with a maxOccurs="unbounded" attribute

User defined exceptions xsd:complexType

v Binding and service construction

A wsdl:binding that conforms to the generated wsdl:portType is generated. A wsdl:service containing a
port that references the generated wsdl:binding is generated. The names of the binding and service are
controlled by the Java2WSDL command.

v Style and use

Use the -style and -use options to generate different kinds of WSDL files. The four supported
combinations are:
– -style DOCUMENT -use LITERAL

Chapter 28. Developing web services 1229

– -style RPC -use LITERAL
– -style DOCUMENT -use LITERAL -wrapped false
– -style RPC -use ENCODED

The following is a brief description of each combination.
– DOCUMENT LITERAL:

The Java2WSDL command generates a Web Services - Interoperability (WS-I) specification compliant
document-literal WSDL file. The wsdl:binding is generated with embedded style="document" and
use="literal" attributes. An xsd:element is generated for each service endpoint interface method to
describe the request message. A similar xsd:element is generated for each service endpoint interface
method to describe the response message.

– RPC LITERAL:

The Java2WSDL command generates a WS-I compliant rpc-literal WSDL file. The wsdl:binding is
generated with embedded style="rpc" and use="literal" attributes. The wsdl:message constructs are
generated for the inputs and outputs of each service endpoint interface method. The parameters of
the method are described by the part elements within the wsdl:message constructs.

– DOCUMENT LITERAL not wrapped:

The Java2WSDL command generates a document-literal WSDL file according to the JAX-RPC
specification. This WSDL file is not compliant with .NET. The main difference between DOCUMENT
LITERAL and DOCUMENT LITERAL not wrapped is the use of wsdl:message constructs to define
the request and response messages.

– RPC ENCODED:

The Java2WSDL command generates an rpc-encoded WSDL file according to the JAX-RPC
specification. This WSDL file is not compliant with the WS-I specification. The wsdl:binding is
generated with embedded style="rpc" and use="encoded" attributes. Certain soapenc mappings are
used to represent types and arrays.

Many Java types map directly to standard XML types. For example, a java.lang.String maps to an
xsd:string. These mappings are described in the JAX-RPC specification.

Java types that cannot be mapped directly to standard XML types are generated in the wsdl:types
section. A Java class that matches the Java bean pattern is mapped to an xsd:complexType. Review the
JAX-RPC specification for a description of all the mapping rules. The following example illustrates the
mapping for a sample base and derived Java classes.

Java:

public abstract class Base {
public Base() {}
public int a; // mapped
private int b; // mapped via setter/getter
private int c; // not mapped
private int[] d; // mapped via indexed setter/getter

public int getB() { return b;} // map property b
public void setB(int b) {this.b = b;}

public int[] getD() { return d;} // map indexed property d
public void setD(int[] d) {this.d = d;}
public int getD(int index) { return d[index];}
public void setB(int index, int value) {this.d[index] = value;}

public void someMethod() {...} // not mapped
}

public class Derived extends Base {
public int x; // mapped
private int y; // not mapped

}

Mapped to:

<xsd:complexType name="Base" abstract="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:int"/>
<xsd:element name="b" type="xsd:int"/>
<xsd:element name="d" minOccurs="0" maxOccurs="unbounded" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Derived">

1230 Developing WebSphere applications

<xsd:complexContent>
<xsd:extension base="ns:Base">
<xsd:sequence>
<xsd:element name="x" type="xsd:int"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

v Unsupported classes:

If a class cannot be mapped to an XML type, the Java2WSDL command issues a message and an
xsd:anyType reference is generated in the WSDL file. In these situations, modify the web service
implementation to use the JAX-RPC compliant classes.

WSDL-to-Java mapping

The WSDL2Java command generates Java classes using information described in the WSDL file.

General issues:

v Mapping of a namespace to a package:

JAX-RPC does not specify the mapping of XML namespaces to Java package names. JAX-RPC does
specify that each Java package map to a single XML namespace. Likewise, each XML namespace
must map to a single Java package. A default mapping algorithm omits any protocol from the XML
namespace and reverses the names. For example, an XML namespace http://websphere.ibm.com
becomes a Java package with the name com.ibm.websphere.

The default mapping of an XML namespace to a Java package disregards the context-root. If two
namespaces are the same up to the first slash, they map to the same Java package. For example, the
XML namespaces http://websphere.ibm.com/foo and http://websphere.ibm.com/bar map to the
com.ibm.websphere Java package. You can override the default mapping between XML namespaces
and Java package names by using the -NStoPkg and -PkgtoNS options of the WSDL2Java and Java2WSDL
commands.

XML names are much richer than Java identifiers. They can include characters that are not permitted in
Java identifiers. See Appendix 20 of the JAX-RPC specification for the rules to map an XML name to a
Java identifier.

v Java construction summary:

The following table summarizes the XML to Java construction. See the JAX-RPC specification for a
description of these mappings.

Table 171. Mapping of a WSDL or an XML construct to Java. Describes the mapping between constructions for XML
and Java.
WSDL and XML construction Java construction

xsd:complexType Java bean class, Java exception class, or Java
array

nested xsd:element/xsd:attribute Java bean property

xsd:simpleType (enumeration) JAX-RPC enumeration class

wsdl:message The method parameter signature typically is determined by the wsdl:message. Service endpoint interface method signature

wsdl:portType Service endpoint interface

wsdl:operation Service endpoint interface method

wsdl:binding Stub

wsdl:service Service interface

wsdl:port Port accessor method in Service interface

v Mapping standard XML types:

– JAX-RPC simple XML types mapping:

Many XML types are mapped directly to Java types. See the JAX-RPC specification for a description
of these mappings.

The WSDL2Java command generates Java types for the XML schema constructs that are defined in
the wsdl:types section. The XML schema language is broader than the required or optional subset

Chapter 28. Developing web services 1231

defined in the JAX-RPC specification. The WSDL2Java command supports the required mappings and
most of the optional mappings, as well as some XML schema mappings that are not included in the
JAX-RPC specification. The WSDL2Java command ignores some constructs that it does not support.
For example, the command does not support the default attribute. If an xsd:element is defined with
the default attribute, the default attribute is ignored. In some cases, the command maps unsupported
constructs to the Java interface, javax.xml.soap.SOAPElement.

The standard Java bean mapping is defined in section 4.2.3 of the JAX-RPC specification. The
xsd:complexType defines the type. The nested xsd:elements within the xsd:sequence or xsd:all
groups are mapped to Java bean properties. For example:

XML:

<xsd:complexType name="Sample">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" maxOccurs="unbounded" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Java:

public class Sample {
// ..
public Sample() {}

// Bean Property a
public String getA() {...}
public void setA(String value) {...}

// Indexed Bean Property b
public String[] getB() {...}
public String getB(int index) {...}
public void setB(String[] values) {...}
public void setB(int index, String value) {...}

}

– Mapping of the wsdl:portType construct:

The wsdl:portType construct is mapped to the service endpoint interface. The name of the
wsdl:portType construct is mapped to the name of the class of the service endpoint interface.

– Mapping of the wsdl:operation construct:

A wsdl:operation construct within a wsdl:portType is mapped to a method of the service endpoint
interface. The name of the wsdl:operation is mapped to the name of the method. The wsdl:operation
contains wsdl:input and wsdl:output elements that reference the request and response wsdl:message
constructs using the message attribute. The wsdl:operation can contain a wsdl:fault element that
references a wsdl:message describing the fault. These faults are mapped to Java classes that
extend the exception, java.lang.Exception as discussed in section 4.3.6 of the JAX-RPC
specification.
- Effect of document literal wrapped format:

If the WSDL file uses the document literal wrapped format, the method parameters are mapped
from the wrapper xsd:element. The document literal wrapped and literal format is automatically
detected by the WSDL2Java command. The following criteria must be met:
v The WSDL file must have style="document" in its wsdl:binding construct.
v The input and output constructs of the operations within the wsdl:binding must contain

soap:body elements that contain use="literal".
v The wsdl:message referenced by the wsdl:operation input construct must have a single part.
v The part must use the element attribute to reference an xsd:element.
v The referenced xsd:element, or wrapper element, must have the same name as the

wsdl:operation.
v The wrapper element must not contain any xsd:attributes.

In such cases, each parameter name is mapped from a nested xsd:element contained within
wrapper element. The type of the parameter is mapped from the type of the nested xsd:element.
For example:

1232 Developing WebSphere applications

WSDL:

<xsd:element name="myMethod">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="param1" type="xsd:string"/>
<xsd:element name="param2" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
...
<wsdl:message name="response"/>
<part name="parameters" element="ns:myMethod"/>
</wsdl:message name="response"/>

<wsdl:message name="response"/>
...
<wsdl:operation name="myMethod">
<input name="input" message="request"/>
<output name="output" message="response"/>
</wsdl:operation>

Java:

void myMethod(String param1, int param2) ...

- Parameter mapping:

If the document and literal wrapped format is not detected, the parameter mapping follows the
normal JAX-RPC mapping rules set in section 4.3.4 of the JAX-RPC specification.

Each parameter is defined by a wsdl:message part referenced from the input and output elements.
v A wsdl:part in the request wsdl:message is mapped to an input parameter.
v A wsdl:part in the response wsdl:message is mapped to the return value. If multiple wsdl:parts

exist in the response message, they are mapped to output parameters.
– A Holder class is generated for each output parameter, as discussed in section 4.3.5 of the

JAX-RPC specification.
v A wsdl:part that is both the request and response wsdl:message is mapped to an inout

parameter.
– A Holder class is generated for each inout parameter, as discussed in section 4.3.5 of the

JAX-RPC specification.
– The wsdl:operation parameterOrder attribute defines the order of the parameters.

XML:

<wsdl:message name="request">
<part name="param1" type="xsd:string"/>
<part name="param2" type="xsd:int"/>
</wsdl:message name="response"/>

<wsdl:message name="response"/>
...
<wsdl:operation name="myMethod" parameterOrder="param1, param2">
<input name="input" message="request"/>
<output name="output" message="response"/>
</wsdl:operation>

Java:

void myMethod(String param1, int param2) ...

– Mapping of wsdl:binding:

The WSDL2Java command uses the wsdl:binding information to generate an implementation-specific
client-side stub. WebSphere Application Server uses the wsdl:binding information on the server side
to properly deserialize the request, invoke the web service, and serialize the response. The
information in the wsdl:binding does not affect the generation of the service endpoint interface,
except when the document and literal wrapped format is used, or when MIME attachments are
present.
- MIME attachments:

For a WSDL 1.1-compliant WSDL file, the part of an operation message, that is defined in the
binding as a MIME attachment, becomes a parameter of the type of the attachment regardless of
the part declared. For example:

XML:
<wsdl:types>
<schema ...>
<complexType name="ArrayOfBinary">

Chapter 28. Developing web services 1233

<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:binary[]"/>

</restriction>
</complexType>
</schema>
</wsdl:types>

<wsdl:message name="request">
<part name="param1" type="ns:ArrayOfBinary"/>
<wsdl:message name="response"/>

<wsdl:message name="response"/>
...

<wsdl:operation name="myMethod">
<input name="input" message="request"/>
<output name="output" message="response"/>
</wsdl:operation>
...

<binding ...
<wsdl:operation name="myMethod">
<input>
<mime:multipartRelated>
<mime:part>
<mime:content part="param1" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>
...

</wsdl:operation>

Java:

void myMethod(java.awt.Image param1) ...

The JAX-RPC specification requires support for the following MIME types:

Table 172. Mapping of MIME type and Java type. Describes the mapping between MIME types and Java types.
MIME type Java type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

– Mapping of wsdl:service:

The wsdl:service element is mapped to a generated service interface. The generated service
interface contains methods to access each of the ports in the wsdl:service element. The generated
service interface is discussed in sections 4.3.9, 4.3.10, and 4.3.11 of the JAX-RPC specification.

In addition, the wsdl:service element is mapped to the implementation-specific ServiceLocator class,
which is an implementation of the generated service interface.

Read about the WSDL2Java command-line tool for Java API for XML-based Remote Procedure Call
(JAX-RPC) applications to learn more about this tool.

Mapping between WSDL and SOAP messages

The WSDL file defines the format of the SOAP message that are transmitted through network connections.
The WSDL2Java command and the WebSphere Application Server runtime use the information in the WSDL
file to ensure that the SOAP message is properly serialized and deserialized.

If a wsdl:binding element indicates that a message is sent using an RPC format, the SOAP message
contains an element defining the operation. If a wsdl:binding element indicates that the message is sent
using a document format, the SOAP message does not contain the operation element.

1234 Developing WebSphere applications

If the wsdl:part element is defined using the type attribute, the name and type of the part are used in the
message. If the wsdl:part element is defined using the element attribute, the name and type of the element
are used in the message. The element attribute is not supported by the JAX-RPC specification when
use="encoded".

If a wsdl:binding element indicates that a message is encoded, the values in the message are sent with
xsi:type information. If a wsdl:binding element indicates that a message is literal, the values in the
message are typically not sent with xsi:type information. For example:
DOCUMENT/LITERAL
WSDL:

<xsd:element name="c" type="xsd:int"/>
<xsd:element name="method">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element ref="ns:c"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
...
<wsdl:message name="request">
<part name="parameters" element="ns:method"/>

</wsdl:message>
...
<wsdl:operation name="method">
<input message="request"/>
...

Message:
<soap:body>
<ns:method>
<a>ABC
<c>123
<ns:method>

</soap:body>

RPC/ENCODED
WSDL:
<xsd:element name="c" type="xsd:int"/>

...
<wsdl:message name="request">
<part name="a" type="xsd:string"/>
<part name="b" element="ns:c"/>

</wsdl:message>
...
<wsdl:operation name="method">

<input message="request"/>
...

Message:
<soap:body>
<ns:method>
<a xsi:type="xsd:string">ABC
<element attribute is not permitted in rpc/encoded mode>
</ns:method>
</soap:body>

DOCUMENT/LITERAL not wrapped
WSDL:
<xsd:element name="c" type="xsd:int"/>

...
<wsdl:message name="request">
<part name="a" type="xsd:string"/>
<part name="b" element="ns:c"/>

</wsdl:message>
...
<wsdl:operation name="method">

<input message="request"/>

...

Message:
<soap:body>
<a>ABC
<c>123

</soap:body>

Chapter 28. Developing web services 1235

Developing JAX-RPC web services deployment descriptor templates for a
JavaBeans implementation
Deployment descriptors are standard text files, formatted using XML and packaged in a web services
application. Deployment descriptors are required to deploy Java API for XML-based RPC (JAX-RPC) web
services that are developed using Web Services for Java Platform, Enterprise Edition (Java EE)
technology.

Before you begin

Develop a Web Services Description Language (WSDL) file.

You need a WSDL file to use web services. You can develop your own WSDL file or get one from a web
services provider through email, downloading, or through a Uniform Resource Locator (URL). This
documentation assumes you are creating your own. See the developing a WSDL file for JAX-RPC
applications information.

About this task

Completing this task creates the deployment descriptors used to describe how to map the service
implementation to a JavaBeans component for Java API for XML-based RPC (JAX-RPC) applications.

To develop the deployment descriptor templates from a WSDL file, you must obtain the web address of the
WSDL file.

If the WSDL file is a local file and you are running on the Windows platform, the web address looks like
this example: file:drive:\path\file_name.wsdl. If you are using the Linux or Unix platform, the Web
address looks like this example: file:/path/file_name.wsdl. You can also specify local files using the
absolute or relative file system path.

When the web service is a JavaBeans implementation in a web module, the webservices.xml,ibm-
webservices-bnd.xmi and ibm-webservices.ext.xmi deployment descriptors and the JAX-RPC mapping
file are generated in the WEB-INF subdirectory.

Procedure

Run the WSDL2Java -verbose -role develop-server -container web -genJava no wsdlURL command
to generate the server deployment descriptor templates and mapping file into the WEB-INF subdirectory. If
the -verbose option is specified, a list of all the generated files is displayed when the command runs.

Results

You have deployment descriptor templates that are required to implement or use JAX-RPC web services.

Example

The following example uses a WSDL file named AddressBookJ2WB.wsdl:

Generate the template files:
WSDL2Java -verbose -role develop-server -container web -genJava no AddressBookJ2WB.wsdl

The deployment descriptor templates and mapping file are generated into the WEB-INF subdirectory:
Parsing XML file: AddressBookJ2WB.wsdl
Generating: WEB-INF\webservices.xml
Generating: WEB-INF\ibm-webservices-bnd.xmi
Generating: WEB-INF\ibm-webservices-ext.xmi
Generating: WEB-INF\AddressBookJ2WB_mapping.xml

1236 Developing WebSphere applications

What to do next

Now, you need to configure the webservices.xml deployment descriptor and configure the
ibm-webservices-bnd.xmi deployment descriptor so that application server can process the incoming web
services. After you configure the deployment descriptors, you must assemble the web services application
for deployment. See the information on configuring the webservices.xml deployment descriptor for
JAX-RPC web services and configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC
web services.

WSDL2Java command for JAX-RPC applications:

Run the WSDL2Java command-line tool against the WSDL file to create Java APIs and deployment
descriptor templates.

A Web Services Description Language (WSDL) file describes a Web service. The Java API for XML-based
Remote Procedure Call (JAX-RPC) 1.1 specification defines a Java API mapping that interacts with the
web service. The Web Services for Java Platform, Enterprise Edition (Java EE) specification defines
deployment descriptors that deploy a web service in a Java EE environment. The WSDL2Java command is
run against the WSDL file to create Java APIs and deployment descriptor templates according to these
specifications.

Note: It is a best practice to use absolute namespaces within your WSDL or schema. By default, the
WSDL2Java tool does not permit the use of relative namespaces. Relative namespaces have been
deprecated by the XML Plenary Interest Group and the use of relative namespaces causes the
XML Digital Signature to fail as required by the Canonical XML Version 1.0 specification. However,
if you have an established WSDL or schema that relies on relative namespaces, under specific
conditions you can use the allowRelativeNamespace property to disable the relative namespace
restrictions in the WSDL2Java tool. For additional information, see the property description.

You can convert any relative namespaces to absolute namespaces. The following is an example of a
relative namespace:
targetNamespace="MyRelNamespace"

. You can change the relative namespace in this example to an absolute namespace by adding the
protocol and base URI information:
targetNamespace="http://www.sample.com/MyRelNamespace"

Command-line syntax

The command-line syntax is:
WSDL2Java [arguments] WSDL-URI

Required arguments
v WSDL-URI

Specifies the location of the input WSDL file using a Universal Resource Identifier (URI). You can also
use a regular file path if the WSDL file is on the local file system.

Important arguments
v -role Java EE role

Specifies the Java EE development role that identifies which files to generate. Valid arguments include:
– client

A combination of the develop-client and deploy-client arguments.
– deploy-client

Generates binding files for client deployment.
– deploy-server

Chapter 28. Developing web services 1237

Generates binding files for server deployment.
– develop-client (default)

Generates files for client development.
– develop-server

Generates files for server development.
– server

A combination of the develop-server and deploy-server arguments.
v -container Java EE-container

Indicates the Java EE container to use. Valid arguments include:
– client

Indicates client container.
– ejb

Indicates an Enterprise JavaBeans (EJB) container.
– none

Indicates no container.
– web

Indicates a web container.

For client roles (see the -role option), the default argument is none. For server roles, the container must
be ejb or web. The same container option must be used for both development and deployment.

v -output directory

Sets the root directory for emitted files.
v -inputMappingFile mapping file

Specifies the file name of the Web Services for Java EE mapping file.
v -introspect

Uses existing Java beans with a new web service API.

In some scenarios, it is good to use existing Java classes instead of generating new classes. The
-introspect option directs the WSDL2Java command to examine existing Java classes when generating
classes. The existing classes are validated against the JAX-RPC specification. For example:

Suppose you have an existing Java bean
public class Bean {
public Date x;
}

The WSDL file defines x as xsd:dateTime. Without the -introspect option, the WSDL2Java command
generates a Java bean that is similar to the following example:

public class Bean {
private Calendar x;
public void setx(Calendar value) (x=value;)
public Calendar getX() { return x;)
}

The WSDL2Java command uses the -introspect option to examine the original Java bean and to generate
classes that are compatible with existing Java beans.

v -classpath paths

Defines an alternative class path to search for Java classes.
v -noDataBinding

Disables the binding of XML types to Java types. Instead, each XML type is mapped to a
javax.xml.soap.SOAPElement interface defined by the SOAP with Attachments API for Java (SAAJ)
specification.

The Java API for XML Web Services (JAX-WS) programming model supports SAAJ 1.2 and 1.3.

The JAX-RPC programming model supports SAAJ 1.2.

The Java programming models define Java mappings for a subset of XML types. Several XML types
cannot be mapped to Java beans or primitives. In this situation, the WSDL2Java command maps the type

1238 Developing WebSphere applications

to an SAAJ SOAPElement. A SAAJ SOAPElement is a generic representation of the element in the
message. The methods on the SOAPElement can be used to examine the element and its children.

In some scenarios, it might be more appropriate to use the generic SOAPElement mapping exclusively. To
learn more about the use of SOAPElement, see the information on SOAP with Attachments API for Java
interface and custom data binders for JAX-RPC applications.

For a complete list of the supported standards and specifications, see the web services specifications
and API documentation.

v -help

Displays a help message and exits.
v -helpX

Displays a help message for extended options. The options include:
v -verbose

Displays processing information, including the names of the generated files.
v -NStoPkg namespace=package

By default, package names are automatically derived from the namespace strings in the WSDL file. For
example, if the namespace is of the form http://x.y.com or urn:x.y.com, the corresponding package is
com.y.x.

You can provide your own mapping by using the -NStoPkg argument, which you can repeat as often as
necessary, once for each unique namespace mapping. For example, if a namespace in the WSDL file is
called urn:AddressFetcher2, and you want files generated from the objects in this namespace to reside
in the samples.addr package, provide the -NStoPkg "http://urn:AddressFetcher2/"=samples.addr
argument to the WSDL2Java command.

v -timeout seconds

Specifies how long the WSDL2Java command waits, in seconds, for the WSDL-URI to respond before
giving up. The default is 45 seconds; -1 disables the timeout.

v -genResolver

Generates an absolute-import resolver class. The purpose of this class is to record the contents of the
imported WSDL files that are used by the WSDL URI. This class is used by the run time and can also
be used for future WSDL2Java command runs. This flexibility is desirable when the imported WSDL files
are remote and possibly inaccessible. When an import resolver is used, the possibility that a remote
WSDL file has different contents at run time that it did during development is eliminated. The generated
class is named _AbsoluteImportResolver.java. Compile and package this class with the other Java
classes that are generated by the WSDL2Java command.

v -useResolver resolver-class

Specifies an absolute-import resolver class to use during parsing. This class must be created during a
previous run of the WSDL2Java command that uses the -genResolver option. The class must be available
in the CLASSPATH variable.

v -deployScope argument

Indicates how to deploy the server implementation. Valid arguments include:
– Application

Uses one instance of the implementation class for all requests.
– Request

Creates a new instance of the implementation class for each request.
– Session

Creates a new instance of the implementation class for each session.

Other arguments

v -user id

Specifies the login user name to access the WSDL URI.

v -password password

Specifies the login user password to access the WSDL URI.

Chapter 28. Developing web services 1239

v -all

Generates Java files for all types, even those that are not referenced.

v -allowRelativeNamespace true or false

Specifies whether to disable the relative namespace restrictions. If you specify
-allowRelativeNamespace=true, the relative namespace restrictions are disabled.

Note: Only use this property if you have an established WSDL file or schema that relies on a relative
namespaces and you are seeking to interoperate with a defined set of vendors that permit the
use of relative namespaces.

v -debug

Prints debugging information.

v -genJava argument

Generates Java files. Valid arguments include:
– IfNotExists, default
– Overwrite
– No

v -javaSearch argument

The -javaSearch option is used with the -genJava option. If the -genJava IfNotExists, use the
-javaSearch option to determine how file existence is detected.

– File (default): Looks for a file in the output directory

– Classpath: Looks for a class in the CLASSPATH variable

– Both: Looks for a file in the output directory or in a class in the CLASSPATH variable

v -genXML argument

Generates the .xml and .xmi files. Valid arguments are:
– IfNotExists, default
– Overwrite
– No

v -genImplSer true or false

Indicates that each generated Java bean implements the java.io.Serializable. The default is false.

v -genEquals true or false

Indicates that each generated Java bean have equals and hashCode methods. The default is false.

v -noWrappedOperations

Disables wrapped operations detection. Java beans for the request and response messages are
generated.

v -noWrappedArrays

Disables wrapped array detection.

v -fileNStoPkg file name

Specifies the file of the namespace to package mappings. The default is NStoPKG.properties.

v service wsdl service name

Generates files for the installed WSDL service only.

v -testCase

Generates the template for a JUnit test case for testing web services. JUnit is a simple framework to
write repeatable tests.

Developing JAX-RPC web services deployment descriptor templates for an
enterprise bean implementation
You can develop deployment descriptor templates for an Enterprise JavaBeans (EJB) implementation that
is enabled for Java API for XML-based RPC (JAX-RPC) web services.

1240 Developing WebSphere applications

Before you begin

You need to create a service endpoint interface and develop a Web Services Description Language
(WSDL) file before you can develop the deployment descriptor templates because the service endpoint
interface and the WSDL file are artifacts that are used to create the templates.

About this task

Completing this task creates deployment descriptor templates that describe how to map the service
implementation to a Enterprise JavaBeans (EJB). This task is a required step in developing a web service
from an enterprise bean.

To develop the deployment descriptor templates from a WSDL file, you must obtain the Uniform Resource
Locator (URL) of the WSDL file to use.

If the WSDL file is a local file, the URL looks like this example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like this
example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

When the web service implementation contains an enterprise bean in an EJB module, the
webservices.xml, ibm-webservices-bnd.xmi and ibm-webservices-ext.xmi deployment descriptors, and
the Java API for XML-based remote procedure call (JAX-RPC) mapping file are generated in the META-INF
subdirectory.

Procedure

Run the WSDL2Java -verbose -role develop-server -container ejb -genJava no wsdlURL command to
generate the server deployment descriptor templates and mapping file into the META-INF subdirectory. If
the -verbose option is specified, a list of all generated files displays when the command runs.

Results

You have deployment descriptor templates that are required to implement a web service.

Example

The following example uses the AddressBookJ2WE.wsdl WSDL file:
1. Generate the template files with the following command syntax:
WSDL2Java -verbose -role develop-server -container ejb -genJava no AddressBookJ2WE.wsdl

The deployment descriptor templates are generated into the META-INF subdirectory as follows:
Parsing XML file: AddressBookJ2WE.wsdl
Generating: META-INF\webservices.xml
Generating: META-INF\ibm-webservices-bnd.xmi
Generating: META-INF\ibm-webservices-ext.xmi
Generating: META-INF\AddressBookJ2WE_mapping.xml

What to do next

Continue to complete the steps that are necessary to develop a JAX-RPC web service from an enterprise
bean. The next step is to complete the EJB implementation. When you complete the EJB implementation,
you assemble an enterprise bean Java archive (JAR) file that contains the enterprise bean and supporting

Chapter 28. Developing web services 1241

classes created from a WSDL file. To learn more, see the completing the EJB implementation for
JAX-RPC applications information.

Completing the JavaBeans implementation for JAX-RPC applications
After you have developed the Java artifacts necessary to develop a Java API for XML-based RPC
(JAX-RPC) web service, you must complete the JavaBeans implementation to assemble a Java archive
(JAR) file or a web application archive (WAR) file based on your programming model. The resulting JAR
file or WAR file contains the JavaBeans implementation and the supported classes created from the
tooling.

Before you begin

Develop web services deployment descriptor templates for a JavaBeans implementation using the
WSDL2java command-line tool. You need to complete this step to create the deployment descriptor
templates that are configured to map the service implementation to the JavaBeans implementation.

About this task

For JAX-RPC applications, complete the JavaBeans implementation by writing your business application.

Procedure
1. Edit the JavaBeans implementation template, bindingImpl.java. The binding is the name of the

<wsdl:binding> element in the WSDL file. The JavaBeans implementation is generated by the
WSDL2java command-line tool.

a. Complete the implementation of the methods in the template.

b. (Optional) Make changes if necessary.

c. (Optional) Change the class name if the binding name is not acceptable.

2. Compile all the Java classes.

3. Assemble a Web archive (WAR) file. Assemble all the Java classes into a WAR file using web module
assembly tools. Include all of the classes generated from running the WSDL2java command tool for
JAX-RPC web service applications when developing implementation templates and bindings from a
WSDL file.

Results

You have now enabled the JavaBeans-based business application for JAX-RPC web services. You have a
JAR file or a WAR file containing the JavaBeans implementation and supported classes created from the
WSDL file.

What to do next

If you are developing a JAX-RPC web services application from JavaBeans, you need to configure the
webservices.xml deployment descriptor and configure the ibm-webservices-bnd.xmi deployment descriptor
so that the application server can process the incoming web services requests.

Completing the EJB implementation for JAX-RPC applications
After you have developed the Java artifacts necessary to develop a Java API for XML-based RPC
(JAX-RPC) web service, you must complete the Enterprise JavaBeans (EJB) implementation to assemble
a Java archive (JAR) file or a web application archive (WAR) file based on your programming model. The
resulting JAR file or WAR file contains the Enterprise JavaBeans (EJB) implementation and the supported
classes created from the tooling.

1242 Developing WebSphere applications

Before you begin

Develop EJB implementation templates and bindings from a WSDL file for JAX-RPC web services using
the wsdl2java command-line tool. The deployment descriptor templates that are generated from a Web
Services Description Language (WSDL) file are required to complete the EJB implementation in the web
services development process.

About this task

For JAX-RPC applications, complete the enterprise beans implementation by writing your business
application.

Procedure
1. Inspect the EJB remote interface template, portType_RI.java. If necessary, modify the template. The

value portType is the name of the <wsdl:portType> element in the WSDL file.

2. Edit the bindingImpl.java EJB implementation template. Where binding is the name of the
<wsdl:binding> element in the WSDL file.

3. Complete the implementation of the methods in the template.

4. (Optional) Make changes if necessary.

5. (Optional) Change the class name if the binding name is not acceptable.

6. Compile all the Java classes.

7. Assemble an EJB Java archive (JAR) file. Assemble all the Java classes into an enterprise bean JAR
file using assembly tools. Include all of the classes generated from running the WSDL2Java command
tool when developing implementation templates and bindings from a WSDL file.

Results

You have enabled an enterprise beans business application for JAX-RPC web services. You now have an
enterprise bean JAR file containing an EJB and supporting classes created from web services artifacts.

What to do next

Now that you have gathered the required artifacts for developing a JAX-RPC web service with an
enterprise bean, you need to, configure the webservices.xml deployment descriptor.

Configuring the webservices.xml deployment descriptor for JAX-RPC
web services
You can configure the webservices.xml deployment descriptor with an assembly tool.

Before you begin

To configure the client deployment descriptor, read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Before you can configure the ibm-webservices-bnd.xml deployment descriptor, you must develop the
deployment descriptor templates and complete the implementation.

About this task

For JAX-RPC web services, this task is one of the required steps in developing a web service. You need
to configure the deployment descriptors so that the application server can process the incoming web
services requests.

Chapter 28. Developing web services 1243

If you are developing a web service from JavaBeans, you can develop web services JavaBeans
deployment descriptor templates from a Web Services Description Language (WSDL) file. Then, you
complete the JavaBeans implementation. To learn more, read about developing JavaBeans deployment
descriptor templates from a WSDL file and completing the JavaBeans implementation.

If you are developing a web service from an enterprise bean, you can develop web services Enterprise
JavaBeans (EJB) deployment descriptor templates from a WSDL file. Then, you complete the EJB
implementation. To learn more, read about developing web services EJB deployment descriptor templates
from a WSDL file and completing the EJB implementation.

When the JavaBeans implementation is complete, the web module web application archive (WAR) file is
assembled. When the EJB implementation is complete, the enterprise bean Java archive (JAR) file is
assembled. These archive files contain the webservices.xml deployment descriptor. The archive files must
be assembled before you can configure the webservices.xml deployment descriptor.

The assembly tools provide a graphical interface for developing code artifacts, assembling the code
artifacts into various archives (modules) and configuring compliant deployment descriptors for Java
Platform, Enterprise Edition (Java EE).

Configure the webservices.xml deployment descriptor by following the steps provided in this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer information.

4. Configure the deployment descriptor. Read about the configuring the client deployment descriptor in
the Rational Application Developer information.

Results

You have a webservices.xml deployment descriptor that is configured.

What to do next

For JAX-RPC web services, you must configure the ibm-webservices-bnd.xmi deployment descriptor. To
learn more, see the configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web
services information.

Configuring the webservices.xml deployment descriptor for handler
classes
You can use an assembly tool to configure the webservices.xml deployment descriptor for user-provided
handler classes.

Before you begin

You can configure deployment descriptors with assembly tools provided with the application server.

1244 Developing WebSphere applications

A handler class is a class that is written to modify a SOAP message that represents a remote procedure
call (RPC) request or response. Handlers can be associated with a web service or a web service client.

Similar to Java API for XML-based RPC (JAX-RPC) web services, you can use deployment descriptors to
describe Java API for XML Web Services (JAX-WS) web services. For JAX-WS web services, the use of
the webservices.xml deployment descriptor is optional because you can use annotations to specify all of
the information that is contained within the deployment descriptor file. You can use the deployment
descriptor file to augment or override existing JAX-WS annotations. Any information that you define in the
webservices.xml deployment descriptor overrides any corresponding information that is specified by
annotations.

To complete this task, you need an enterprise archive (EAR) file for the applications that you want to
configure. For some handler use, such as logging or tracing, only the server or client application require
configuration. For other handler use, including sending information in the SOAP headers, the client and
server applications must be configured with symmetrical handlers.

About this task

The modules in the EAR file contain the handler classes to configure. These classes implement the
javax.xml.rpc.handler.Handler interface. For more information on writing handler classes, see chapter 6
of the Web Services for Java EE specification. See chapter 9 in the JAX-WS specification or chapter 12 in
the JAX-RPC specification for additional information on the handler framework for your programming
model. The application modules must contain the webservices.xml deployment descriptor. See the web
services specifications and API information to review the JAX-RPC specification along with a complete list
of the supported standards and specifications.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer information.

4. Configure the client deployment descriptor. Read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Configuring the ibm-webservices-bnd.xmi deployment descriptor for
JAX-RPC web services
Use assembly tools to configure the ibm-webservices-bnd.xml deployment descriptor. This file stores
binding information that is associated with the endpoints defined with the webservices.xml deployment
descriptor file.

Before you begin

Note: The ibm-webservices-bnd.xmi deployment descriptor is for Java API for XML-based RPC
(JAX-RPC) based web services application. It is not used for Java API for XML-Based Web
Services (JAX-WS) enabled applications.

To configure the client deployment descriptor, read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Chapter 28. Developing web services 1245

Before you can configure the ibm-webservices-bnd.xml deployment descriptor, you must develop the
deployment descriptor templates and complete the implementation.

About this task

This task is one of the steps in developing a web service. You need to configure the deployment
descriptors so that WebSphere Application Server can process the incoming web services requests.

Depending on if you are developing a web service from JavaBeans or an enterprise bean:
v Develop web services JavaBeans deployment descriptor templates from a Web Services Description

Language (WSDL) file.
v Develop web services Enterprise JavaBeans (EJB) deployment descriptor templates from a WSDL file.

Then, complete the EJB implementation or complete the JavaBeans implementation. When the EJB
implementation is complete, the enterprise bean Java archive (JAR) file is assembled. When the
JavaBeans implementation is complete, the web module web application archive (WAR) file is assembled.
These archive files contain the webservices.xml deployment descriptor. The archive files must be
assembled before you can configure the webservices.xml deployment descriptor.

Configure the webservices.xml deployment descriptor by following the steps provided in this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate JAR files created with the Assembly Toolkit, Application Assembly Tool or a different tool to the
Rational Application Developer assembly tool. To migrate files, import your JAR files to the assembly
tool. Read about migrating code artifacts to an assembly tool in the Rational Application Developer
information.

4. Configure the client deployment descriptor. Read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Results

The ibm-webservices-bnd.xmi deployment descriptor is configured for the web service implementation
module.

What to do next

If you are developing a web service from JavaBeans, assemble a WAR file that is enabled for web
services from Java code. See the assembling a WAR file that is enabled for web services from Java code
information.

If you are developing a web service from an enterprise bean, assemble a JAR file that is enabled for web
services from an enterprise bean. To learn more about assembling the artifacts that are required to enable
the EJB module for web services into the JAR file, see the assembling a JAR file that is enabled for web
services from an enterprise bean information.

JAX-RPC web services enabled module - deployment descriptor settings
(ibm-webservices-bnd.xmi file)
The ibm-webservices-bnd.xmi file is a deployment descriptor for a Java API for XML-based RPC
(JAX-RPC) web services-enabled web module or an Enterprise JavaBeans (EJB) module. This file
contains information for the web services run time that is required by WebSphere Application Server..

1246 Developing WebSphere applications

You can edit these properties using an assembly tool. See Configuring the ibm-webservices-bnd.xmi
deployment descriptor for JAX-RPC web services for instructions.

The following user-defined assembly properties are supported:
v wsDescNameLink

Attribute of the wsdescBindings element that specifies the link to the corresponding
<webservice-description-name> element in the webservices.xml file.

v pc-name-link

Attribute of the pcBindings element that specifies the link to the <port-component-name> element in the
webservices.xml file.

v scope

Attribute of the pcBindings element that specifies when new instances of implementation beans are
created. Possible values are request, session, and application.

You can change scope value for a deployed web service using the administrative console. Click
Enterprise Applications > application > Web modules or EJB modules > module > Web Services
Implementation Scope.

Bindings file examples

The following examples demonstrate the spelling and position of the various attributes. You cannot cut and
paste these examples because they do not contain the required ID attributes. If you add elements to a
binding file template generated by the WSDL2Java command, you must confirm that each element has an ID
attribute with a unique string value. Review the template xmi files generated by the WSDL2Java command
for examples of ID strings. Read about the WSDL2Java command-line tool for Java API for XML-based
Remote Procedure Call (JAX-RPC) applications to learn more about this tool.
<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0" xmlns:xmi=
"http://www.omg.org/XMI" xmlns:com.ibm.etools.webservice.wsbnd=
"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">
<wsdescBindings wsDescNameLink="AddressBookService">
<pcBindings pcNameLink="AddressBook" scope="Application"/>
</wsdescBindings>
</com.ibm.etools.webservice.wsbnd:WSBinding>

Developing JAX-RPC web services with WSDL files (top-down)

Setting up a development environment for web services
The application server provides command-line tools to develop web services clients and implementations
that are based on the Web Services for Java Platform, Enterprise Edition (Java EE) specification. You
must set up your development environment before you start developing web services.

Before you begin

Before you can set up a web services development environment within WebSphere Application Server, you
must install WebSphere Application Server. For detailed information on installing the application server,
read about installing your application server environment.

About this task

Set up a web services development environment by completing the following actions.

Procedure
1. Set up the environment.

Run the setupCmdLine.bat command from the /profile_root/<application_server>/bin
directory.

Chapter 28. Developing web services 1247

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running this command:

. ./setupCmdLine.sh (Notice the space between the periods.)

from the . /profile_root/<application_server>/bin directory.

You can set WAS_USER_SCRIPT to profile_root\<application_server>\bin\setupCmdLine.bat, which
has the same effect as running the setupCmdLine command.

2. Configure the path. You can add the WebSphere and Java bin directories to your path by typing:

set PATH=%WAS_PATH%;%PATH%

export PATH=$WAS_PATH:$PATH

Results

You have set up an environment so that you can develop Web services.

What to do next

Implement web services applications. See the task overview for implementing web services applications
information to learn about how to develop and implement a Java EE web service.

Developing Java artifacts for JAX-RPC applications from a WSDL file
You can develop Java artifacts from a Web Services Description Language (WSDL) file for JAX-RPC
applications from a WSDL file by using the WSDL2Java command-line tool to create Java implementation
templates and bindings.

Before you begin

To develop the JavaBeans implementation templates and bindings from a WSDL file, you must obtain the
Uniform Resource Locator (URL) of the WSDL file.

If the WSDL file is a local file, the URL looks like this example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like this
example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

Implementation templates are generated using the -role develop-server option of the WSDL2Java command.
The WSDL2Java command also generates bindings and deployment descriptors.

About this task

Develop JavaBeans implementation templates and bindings from a WSDL file by issuing the proper
command.

Note: It is a best practice to use absolute namespaces within your WSDL or schema. By default, the
WSDL2Java tool does not permit the use of relative namespaces. Relative namespaces have been
deprecated by the XML Plenary Interest Group and the use of relative namespaces causes the
XML Digital Signature to fail as required by the Canonical XML Version 1.0 specification. You can

1248 Developing WebSphere applications

convert any relative namespaces to absolute namespaces. To learn more about the use of
namespaces with the WSDL2Java tool, see the WSDL2Java command for JAX-RPC applications
documentation.

Procedure

Run the WSDL2Java -verbose -role develop-server -container web wsdlURL command. Since the
-verbose option is specified, a list of all the generated files is displayed when the command runs.

Results

You have templates for the implementation and deployment descriptors required to implement a web
service, as well as bindings files. These templates are partially filled with information from the WSDL file.

Example

The following example uses the AddressBook JavaBeans implementation and the AddressBook.wsdl
WSDL file. After generating the template files from the WSDL2Java -verbose -role develop-server
-container web AddressBook.wsdl command, the following files are generated:
Parsing XML file: file:e:/example/app/topdown/step1/AddressBook.wsdl
WSWS3185I: Info: Parsing XML file: AddressBook.wsdl
WSWS3282I: Info: Generating addr\Address.java.
WSWS3282I: Info: Generating addr\Phone.java.
WSWS3282I: Info: Generating addr\StateType.java.
WSWS3282I: Info: Generating addr\AddressBook.java.
WSWS3282I: Info: Generating addr\AddressBookSoapBindingImpl.java..
WSWS3282I: Info: Generating WEB-INF\webservices.xml.
WSWS3282I: Info: Generating WEB-INF\ibm-webservices-bnd.xmi.
WSWS3282I: Info: Generating WEB-INF\AddressBook_mapping.xml.
WSWS3282I: Info: Generating WEB-INF\ibm-webservices-ext.xmi.

The AddressBookSOAPBindingImpl.java file is the template for the implementation bean. It is named after
the port in the WSDL file. Generally, this class is renamed to a more meaningful name.

What to do next

Complete the JavaBeans implementation for JAX-RPC applications.

Developing EJB implementation templates and bindings from a WSDL
file for JAX-RPC web services
You can develop Enterprise JavaBeans (EJB) implementation deployment descriptor templates and
bindings from a Web Services Description Language (WSDL) file for a JAX-RPC application.

Before you begin

To develop EJB implementation templates and bindings from a WSDL file for a Java API for XML-based
RPC (JAX-RPC) web service, you must obtain the Uniform Resource Locator (URL) of the WSDL file to
use.

If the WSDL file is a local file, the URL looks like the following example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like the
following example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

Chapter 28. Developing web services 1249

About this task

This task is one a required step in developing a web service from an enterprise bean.

Implementation templates are generated using the -role develop-server option of the WSDL2Java
command.

Templates are generated for an EJB implementation for the following components:
v enterprise bean
v EJB remote interface
v EJB Home

The WSDL2Java command also generates bindings and deployment descriptors.

Note: It is a best practice to use absolute namespaces within your WSDL or schema. By default, the
WSDL2Java tool does not permit the use of relative namespaces. Relative namespaces have been
deprecated by the XML Plenary Interest Group and the use of relative namespaces causes the
XML Digital Signature to fail as required by the Canonical XML Version 1.0 specification. You can
convert any relative namespaces to absolute namespaces. To learn more about the use of
namespaces with the WSDL2Java tool, see the WSDL2Java command for JAX-RPC applications
documentation.

Procedure

Run the WSDL2Java -verbose -role develop-server -container ejb wsdlURL command. Because the
verbose option is specified, a list of all the generated files is displayed when the command runs.

Results

You have templates for the implementation and deployment descriptors required to implement web
services, as well as bindings files. These templates are partially completed with information from the
WSDL file.

Example

The following example uses the enterprise bean AddressBook enterprise bean and the AddressBook.wsdl
file. After generating the template files from the WSDL2Java -verbose -role develop-server -container
EJB AddressBook.wsdl command, the following files are generated:
Parsing XML file: file:e:/example/app/topdown/step1/AddressBook.wsdl
WSWS3185I: Info: Parsing XML file: AddressBook.wsdl
WSWS3282I: Info: Generating addr\Address.java.
WSWS3282I: Info: Generating addr\Phone.java.
WSWS3282I: Info: Generating addr\StateType.java.
WSWS3282I: Info: Generating addr\AddressBook.java.
WSWS3282I: Info: Generating addr\AddressBookSoapBindingImpl.java.
WSWS3282I: Info: Generating addr\AddressBook_RI.java.
WSWS3282I: Info: Generating addr\AddressBookHome.java.
WSWS3282I: Info: Generating META-INF\webservices.xml.
WSWS3282I: Info: Generating META-INF\ibm-webservices-bnd.xmi.
WSWS3282I: Info: Generating META-INF\AddressBook_mapping.xml.
WSWS3282I: Info: Generating META-INF\ibm-webservices-ext.xmi.

What to do next

Complete the EJB implementation. When you complete the EJB implementation, an EJB Java archive
(JAR) file that contains an EJB and supporting classes is created from a WSDL file.

1250 Developing WebSphere applications

Completing the JavaBeans implementation for JAX-RPC applications
After you have developed the Java artifacts necessary to develop a Java API for XML-based RPC
(JAX-RPC) web service, you must complete the JavaBeans implementation to assemble a Java archive
(JAR) file or a web application archive (WAR) file based on your programming model. The resulting JAR
file or WAR file contains the JavaBeans implementation and the supported classes created from the
tooling.

Before you begin

Develop web services deployment descriptor templates for a JavaBeans implementation using the
WSDL2java command-line tool. You need to complete this step to create the deployment descriptor
templates that are configured to map the service implementation to the JavaBeans implementation.

About this task

For JAX-RPC applications, complete the JavaBeans implementation by writing your business application.

Procedure
1. Edit the JavaBeans implementation template, bindingImpl.java. The binding is the name of the

<wsdl:binding> element in the WSDL file. The JavaBeans implementation is generated by the
WSDL2java command-line tool.

a. Complete the implementation of the methods in the template.

b. (Optional) Make changes if necessary.

c. (Optional) Change the class name if the binding name is not acceptable.

2. Compile all the Java classes.

3. Assemble a Web archive (WAR) file. Assemble all the Java classes into a WAR file using web module
assembly tools. Include all of the classes generated from running the WSDL2java command tool for
JAX-RPC web service applications when developing implementation templates and bindings from a
WSDL file.

Results

You have now enabled the JavaBeans-based business application for JAX-RPC web services. You have a
JAR file or a WAR file containing the JavaBeans implementation and supported classes created from the
WSDL file.

What to do next

If you are developing a JAX-RPC web services application from JavaBeans, you need to configure the
webservices.xml deployment descriptor and configure the ibm-webservices-bnd.xmi deployment descriptor
so that the application server can process the incoming web services requests.

Completing the EJB implementation for JAX-RPC applications
After you have developed the Java artifacts necessary to develop a Java API for XML-based RPC
(JAX-RPC) web service, you must complete the Enterprise JavaBeans (EJB) implementation to assemble
a Java archive (JAR) file or a web application archive (WAR) file based on your programming model. The
resulting JAR file or WAR file contains the Enterprise JavaBeans (EJB) implementation and the supported
classes created from the tooling.

Before you begin

Develop EJB implementation templates and bindings from a WSDL file for JAX-RPC web services using
the wsdl2java command-line tool. The deployment descriptor templates that are generated from a Web

Chapter 28. Developing web services 1251

Services Description Language (WSDL) file are required to complete the EJB implementation in the web
services development process.

About this task

For JAX-RPC applications, complete the enterprise beans implementation by writing your business
application.

Procedure
1. Inspect the EJB remote interface template, portType_RI.java. If necessary, modify the template. The

value portType is the name of the <wsdl:portType> element in the WSDL file.

2. Edit the bindingImpl.java EJB implementation template. Where binding is the name of the
<wsdl:binding> element in the WSDL file.

3. Complete the implementation of the methods in the template.

4. (Optional) Make changes if necessary.

5. (Optional) Change the class name if the binding name is not acceptable.

6. Compile all the Java classes.

7. Assemble an EJB Java archive (JAR) file. Assemble all the Java classes into an enterprise bean JAR
file using assembly tools. Include all of the classes generated from running the WSDL2Java command
tool when developing implementation templates and bindings from a WSDL file.

Results

You have enabled an enterprise beans business application for JAX-RPC web services. You now have an
enterprise bean JAR file containing an EJB and supporting classes created from web services artifacts.

What to do next

Now that you have gathered the required artifacts for developing a JAX-RPC web service with an
enterprise bean, you need to, configure the webservices.xml deployment descriptor.

Configuring the webservices.xml deployment descriptor for JAX-RPC
web services
You can configure the webservices.xml deployment descriptor with an assembly tool.

Before you begin

To configure the client deployment descriptor, read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Before you can configure the ibm-webservices-bnd.xml deployment descriptor, you must develop the
deployment descriptor templates and complete the implementation.

About this task

For JAX-RPC web services, this task is one of the required steps in developing a web service. You need
to configure the deployment descriptors so that the application server can process the incoming web
services requests.

If you are developing a web service from JavaBeans, you can develop web services JavaBeans
deployment descriptor templates from a Web Services Description Language (WSDL) file. Then, you
complete the JavaBeans implementation. To learn more, read about developing JavaBeans deployment
descriptor templates from a WSDL file and completing the JavaBeans implementation.

1252 Developing WebSphere applications

If you are developing a web service from an enterprise bean, you can develop web services Enterprise
JavaBeans (EJB) deployment descriptor templates from a WSDL file. Then, you complete the EJB
implementation. To learn more, read about developing web services EJB deployment descriptor templates
from a WSDL file and completing the EJB implementation.

When the JavaBeans implementation is complete, the web module web application archive (WAR) file is
assembled. When the EJB implementation is complete, the enterprise bean Java archive (JAR) file is
assembled. These archive files contain the webservices.xml deployment descriptor. The archive files must
be assembled before you can configure the webservices.xml deployment descriptor.

The assembly tools provide a graphical interface for developing code artifacts, assembling the code
artifacts into various archives (modules) and configuring compliant deployment descriptors for Java
Platform, Enterprise Edition (Java EE).

Configure the webservices.xml deployment descriptor by following the steps provided in this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer information.

4. Configure the deployment descriptor. Read about the configuring the client deployment descriptor in
the Rational Application Developer information.

Results

You have a webservices.xml deployment descriptor that is configured.

What to do next

For JAX-RPC web services, you must configure the ibm-webservices-bnd.xmi deployment descriptor. To
learn more, see the configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web
services information.

Configuring the webservices.xml deployment descriptor for handler
classes
You can use an assembly tool to configure the webservices.xml deployment descriptor for user-provided
handler classes.

Before you begin

You can configure deployment descriptors with assembly tools provided with the application server.

A handler class is a class that is written to modify a SOAP message that represents a remote procedure
call (RPC) request or response. Handlers can be associated with a web service or a web service client.

Similar to Java API for XML-based RPC (JAX-RPC) web services, you can use deployment descriptors to
describe Java API for XML Web Services (JAX-WS) web services. For JAX-WS web services, the use of
the webservices.xml deployment descriptor is optional because you can use annotations to specify all of

Chapter 28. Developing web services 1253

the information that is contained within the deployment descriptor file. You can use the deployment
descriptor file to augment or override existing JAX-WS annotations. Any information that you define in the
webservices.xml deployment descriptor overrides any corresponding information that is specified by
annotations.

To complete this task, you need an enterprise archive (EAR) file for the applications that you want to
configure. For some handler use, such as logging or tracing, only the server or client application require
configuration. For other handler use, including sending information in the SOAP headers, the client and
server applications must be configured with symmetrical handlers.

About this task

The modules in the EAR file contain the handler classes to configure. These classes implement the
javax.xml.rpc.handler.Handler interface. For more information on writing handler classes, see chapter 6
of the Web Services for Java EE specification. See chapter 9 in the JAX-WS specification or chapter 12 in
the JAX-RPC specification for additional information on the handler framework for your programming
model. The application modules must contain the webservices.xml deployment descriptor. See the web
services specifications and API information to review the JAX-RPC specification along with a complete list
of the supported standards and specifications.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer information.

4. Configure the client deployment descriptor. Read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Configuring the ibm-webservices-bnd.xmi deployment descriptor for
JAX-RPC web services
Use assembly tools to configure the ibm-webservices-bnd.xml deployment descriptor. This file stores
binding information that is associated with the endpoints defined with the webservices.xml deployment
descriptor file.

Before you begin

Note: The ibm-webservices-bnd.xmi deployment descriptor is for Java API for XML-based RPC
(JAX-RPC) based web services application. It is not used for Java API for XML-Based Web
Services (JAX-WS) enabled applications.

To configure the client deployment descriptor, read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Before you can configure the ibm-webservices-bnd.xml deployment descriptor, you must develop the
deployment descriptor templates and complete the implementation.

1254 Developing WebSphere applications

About this task

This task is one of the steps in developing a web service. You need to configure the deployment
descriptors so that WebSphere Application Server can process the incoming web services requests.

Depending on if you are developing a web service from JavaBeans or an enterprise bean:
v Develop web services JavaBeans deployment descriptor templates from a Web Services Description

Language (WSDL) file.
v Develop web services Enterprise JavaBeans (EJB) deployment descriptor templates from a WSDL file.

Then, complete the EJB implementation or complete the JavaBeans implementation. When the EJB
implementation is complete, the enterprise bean Java archive (JAR) file is assembled. When the
JavaBeans implementation is complete, the web module web application archive (WAR) file is assembled.
These archive files contain the webservices.xml deployment descriptor. The archive files must be
assembled before you can configure the webservices.xml deployment descriptor.

Configure the webservices.xml deployment descriptor by following the steps provided in this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate JAR files created with the Assembly Toolkit, Application Assembly Tool or a different tool to the
Rational Application Developer assembly tool. To migrate files, import your JAR files to the assembly
tool. Read about migrating code artifacts to an assembly tool in the Rational Application Developer
information.

4. Configure the client deployment descriptor. Read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Results

The ibm-webservices-bnd.xmi deployment descriptor is configured for the web service implementation
module.

What to do next

If you are developing a web service from JavaBeans, assemble a WAR file that is enabled for web
services from Java code. See the assembling a WAR file that is enabled for web services from Java code
information.

If you are developing a web service from an enterprise bean, assemble a JAR file that is enabled for web
services from an enterprise bean. To learn more about assembling the artifacts that are required to enable
the EJB module for web services into the JAR file, see the assembling a JAR file that is enabled for web
services from an enterprise bean information.

JAX-RPC web services enabled module - deployment descriptor settings
(ibm-webservices-bnd.xmi file)
The ibm-webservices-bnd.xmi file is a deployment descriptor for a Java API for XML-based RPC
(JAX-RPC) web services-enabled web module or an Enterprise JavaBeans (EJB) module. This file
contains information for the web services run time that is required by WebSphere Application Server..

You can edit these properties using an assembly tool. See Configuring the ibm-webservices-bnd.xmi
deployment descriptor for JAX-RPC web services for instructions.

Chapter 28. Developing web services 1255

The following user-defined assembly properties are supported:
v wsDescNameLink

Attribute of the wsdescBindings element that specifies the link to the corresponding
<webservice-description-name> element in the webservices.xml file.

v pc-name-link

Attribute of the pcBindings element that specifies the link to the <port-component-name> element in the
webservices.xml file.

v scope

Attribute of the pcBindings element that specifies when new instances of implementation beans are
created. Possible values are request, session, and application.

You can change scope value for a deployed web service using the administrative console. Click
Enterprise Applications > application > Web modules or EJB modules > module > Web Services
Implementation Scope.

Bindings file examples

The following examples demonstrate the spelling and position of the various attributes. You cannot cut and
paste these examples because they do not contain the required ID attributes. If you add elements to a
binding file template generated by the WSDL2Java command, you must confirm that each element has an ID
attribute with a unique string value. Review the template xmi files generated by the WSDL2Java command
for examples of ID strings. Read about the WSDL2Java command-line tool for Java API for XML-based
Remote Procedure Call (JAX-RPC) applications to learn more about this tool.
<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0" xmlns:xmi=
"http://www.omg.org/XMI" xmlns:com.ibm.etools.webservice.wsbnd=
"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">
<wsdescBindings wsDescNameLink="AddressBookService">
<pcBindings pcNameLink="AddressBook" scope="Application"/>
</wsdescBindings>
</com.ibm.etools.webservice.wsbnd:WSBinding>

Developing JAX-RPC web services clients

Developing client bindings from a WSDL file for a JAX-RPC Web
services client
You can develop client bindings from a Web Services Description (WSDL) file for a JAX-RPC web services
client.

Before you begin

To develop the client bindings from a WSDL file for JAX-RPC web service applications, you must obtain
the Uniform Resource Locator (URL) of the WSDL file to use. You need bindings and deployment
descriptors in order for a client to use a web service.

If the WSDL file is a local file, the URL looks like the following example: file:drive:\path\
file_name.wsdl.

If the WSDL file is a local file, the URL looks like the
following example: file:/path/file_name.wsdl.

You can also specify local files using the absolute or relative file system path.

Client bindings are generated using the -role develop-client option in combination with the -container
option of the WSDL2Java command. The -container option takes the following parameters:
v -container client

Generates bindings and deployment descriptors for a client residing in the application client container.

1256 Developing WebSphere applications

v -container ejb

Generates bindings and deployment descriptors for a client that is an enterprise bean in the Enterprise
JavaBeans (EJB) module.

v -container web

Generates bindings and deployment descriptors for a client residing in the web container.

About this task

Develop client bindings from a WSDL file by running the appropriate command.

Note: It is a best practice to use absolute namespaces within your WSDL or schema. By default, the
WSDL2Java tool does not permit the use of relative namespaces. Relative namespaces have been
deprecated by the XML Plenary Interest Group and the use of relative namespaces causes the
XML Digital Signature to fail as required by the Canonical XML Version 1.0 specification. You can
convert any relative namespaces to absolute namespaces. To learn more about the use of
namespaces with the WSDL2Java tool, see the WSDL2Java command for JAX-RPC applications
documentation.

Procedure

Run the WSDL2Java -verbose -role develop-client -container type wsdlURL command,
where type is ejb for an enterprise EJB client, web for a JavaBeans client, or client for an application
client.
You can use the following combinations in the command-line:

v -container web

v -container ejb

v -container client

Because the verbose option is specified, a list of all generated files is displayed when the command runs.

Results

You have the bindings and deployment descriptors needed by a client to use a web service.

Example

The following example uses the AddressBook enterprise bean the AddressBook.wsdl WSDL file. After
generating the bindings from the WSDL2Java -verbose -role develop-client -container client
AddressBook.wsdl command, the following files are generated:
Parsing XML file: file:e:/example/app/topdown/step1/AddressBook.wsdl
WSWS3185I: Info: Parsing XML file: AddressBook.wsdl
WSWS3282I: Info: Generating addr\Address.java.
WSWS3282I: Info: Generating addr\Phone.java.
WSWS3282I: Info: Generating addr\StateType.java.
WSWS3282I: Info: Generating addr\AddressBook.java.
WSWS3282I: Info: Generating addr\AddressBookService.java.
WSWS3282I: Info: Generating META-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating META-INF\AddressBook_mapping.xml.
WSWS3282I: Info: Generating META-INF\ibm-webservicesclient-ext.xmi.

What to do next

Complete the client implementation by writing your client application and then assembling the client
artifacts.

.

Chapter 28. Developing web services 1257

Changing SOAP message encoding to support WSI-Basic Profile
Support for Universal Transformation Format (UTF)-16 encoding is required by the WS-I Basic Profile 1.0.
WebSphere Application Server conforms to the WS-I Basic Profile 1.1. UTF-16 is a kind of unicode
encoding scheme using 16-bit values to store Universal Character Set (UCS) characters. UTF-8 is the
most common encoding that is used on the Internet and UTF-16 encoding is typically used for Java and
Windows product applications. You can change the encoding in a SOAP message from UTF-8 to UTF-16.

Before you begin

To learn more about the requirements of the Web Services-Interoperability Basic Profile (WS-I), including
UTF-16, see Web Services-Interoperability Basic Profile information.

About this task

Support for UTF-16 encoding is required by WS-I Basic Profile. The application server only supports
UTF-8 and UTF-16 encoding of SOAP messages.

You can change the character encoding in one of two ways:

Procedure
v Use a property on the Stub for users to set.

This choice applies to the client only.

For a client, the encoding is specified in the SOAP request. The SOAP engine serializes the request
and sends it to the web service engine. The web service engine receives the request and deserializes
the message to Java objects, which are returned to you in a response.

When the web service engine on the server receives the serialized request, a raw message in the form
of an input stream, is passed to the parser, which understands Byte Order Mark (BOM). BOM is
mandatory for UTF-16 encoding and it can be used in UTF-8. The message is deserialized to a Java
objects and a service invocation is made. For two-way invocation, the engine needs to serialize the
message using a specific encoding and send it back to the caller. The following example shows you
how to use a property on the Stub to change the character set:

javax.xml.rpc.Stub stub=service.getPort("MyPortType");
((javax.xml.rpc.Stub)stub).setProperty(com.ibm.wsspi.webservices.Constants.MESSAGE_CHARACTER_SET_ENCODING,"UTF-16");
stub.invokeMethod();

In this code example, com.ibm.wsspi.webservices.Constants.MESSAGE_CHARACTER_SET_ENCODING =
"com.ibm.wsspi.webservices.xmlcharset";

v Use a handler to change the character set through SOAP with Attachments API for Java (SAAJ).

If you are using a handler, the SOAP message is transformed to a SAAJ format from other possible
forms, such as an input stream. In such cases as a handleRequest method on the client side and a
handleResponse method on the server side, the web services engine transforms from a SAAJ format
back to the stream with appropriate character encoding. This transformation or change is called a
roundtrip transformation. The following is an example of how you can use a handler to specify the
character encoding through SAAJ:

handleResponse(MessageContext mc) {
SOAPMessageContext smc = (SOAPMessageContext) context;
javax.xml.soap.SOAPMessage msg = smc.getMessage();
msg.setProperty (javax.xml.soap.SOAPMessage.CHARACTER_SET_ENCODING, "UTF-16");
}
}

Results

You have modified the character encoding from UTF-8 to UTF-16 in the web service SOAP message.

1258 Developing WebSphere applications

Configuring the JAX-RPC web services client deployment descriptor
with an assembly tool
You can configure JAX-RPC web services client deployment descriptor with an assembly tool.

Before you begin

You can configure deployment descriptors with assembly tools provided with WebSphere Application
Server.

Also, you need an enterprise JavaBeans (EJB) Java archive (JAR) file, web application archive (WAR) file
or an application client file that you can import into the assembly tool.

Assemble the client JAR file into an EAR file or assemble the client WAR file into an EAR file. To learn
more, see the information on assembling a web services-enabled client JAR file into an EAR file or
assembling a web services-enabled client WAR file into an EAR file.

About this task

Complete this task if you are developing a managed client that runs in the Java EE client container. This
task is done after you assemble the EJB or web module.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) or Java Archive (JAR) files that are created with the
Assembly Toolkit, Application Assembly Tool (AAT) or a different tool to assembly tools. To migrate
files, import your WAR or JAR files to the assembly tool. Read about migrating code artifacts to an
assembly tool in the Rational Application Developer information.

4. Configure the client deployment descriptor. Read about the configuring the client deployment descriptor
in the Rational Application Developer information.

Results

You have a client deployment descriptor that is configured.

What to do next

Test the web services client. See the testing web services-enabled clients information to learn more about
how to test an unmanaged client Java archive (JAR) file and an unmanaged client application.

Configuring the JAX-RPC client deployment descriptor for handler
classes
You can configure the JAX-RPC client deployment descriptor for user-provided handler classes.

Before you begin

You need an enterprise archive (EAR) file for the applications that you want to configure. For some
handler use, such as logging or tracing, only the server or client application needs to be configured. For
other handler use, including sending information in SOAP headers, the client and server applications must
be configured with symmetrical handlers.

Chapter 28. Developing web services 1259

The modules in the EAR file should contain the handler classes to configure. These classes implement the
javax.xml.rpc.handler.Handler interface. For more information on writing handler classes, see chapter 6
of the Web Services for Java Platform, Enterprise Edition (Java EE) specification and chapter 12 of the
Java API for XML-based remote procedure call (JAX-RPC) specification. The application modules must
contain the webservices.xml (for server) and the client deployment descriptors.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

About this task

Configure a handler in the client deployment descriptor by following the steps provided:

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

information.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer information.

3. Migrate the web application archive (WAR) or Java archive (JAR) files that are created with the
Assembly Toolkit, Application Assembly Tool (AAT) or a different tool to the Rational Application
Developer assembly tool. Read about importing WAR or JAR files using an assembly tool in the
Rational Application Developer information.

4. Configure the client deployment descriptor. Read about creating web services handlers in the Rational
Application Developer information.

Results

You have a client deployment descriptor that is configured.

What to do next

Test the web services client. See the testing web services-enabled clients information to learn more about
how to test an unmanaged client Java archive (JAR) file and an unmanaged client application.

Handler class properties with JAX-RPC
This article describes handler class properties using Java API for XML-based RPC (JAX-RPC).

You can configure the following handler class properties with assembly tools provided with WebSphere
Application Server. See Configuring the webservices.xml deployment descriptor for Handler classes or
Configuring the client deployment descriptors for Handler classes for instructions on how to configure the
properties.

You can configure the following handler class properties with assembly tools provided with WebSphere
Application Server. For instructions on how to configure the handler class properties, read about
configuring the webservices.xml deployment descriptor for handler classes or configuring the client
deployment descriptors for handler classes.

Description:

Standard Java Platform, Enterprise Edition (Java EE) technology descriptor field.

Display name:

Standard Java EE technology descriptor field.

1260 Developing WebSphere applications

Small icon:

Standard Java EE technology descriptor field.

Large icon:

Standard Java EE technology descriptor field.

Handler name:

The name of the handler. This name must be unique within the module.

Handler class:

The fully qualified name of the handler class. Initially, it is set by an assembly tool.

Initial parameters:

Property names and values available to the handler.

SOAP headers:

Qualified names (Qnames) of the SOAP headers that are processed by this handler.

See section 12.2.2 of the Java API for XML-based remote procedure call (JAX-RPC) specification,
available through the web services specifications and APIs information, for more information about setting
this property.

SOAP roles:

URIs containing the SOAP actor names for which the handler acts in the role.

See section 12.2.2 of the Java API for XML-based remote procedure call (JAX-RPC) specification,
available through the web services specifications and APIs information, for more information about setting
this property.

Example: Configuring handler classes for web services deployment descriptors
This scenario explains how to add a client and server handler class to a sample application,
WebServicesSamples.ear. The handler classes display messages when given a request or response to
handle.

The code for the client handler class is illustrated in the following example:
package samples;

public class ClientHandler implements javax.xml.rpc.handler.Handler {
public ClientHandler() { }

public boolean handleRequest(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ClientHandler: In handleRequest");
return true; }

public boolean handleResponse(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ClientHandler: In handleResponse");
return true; }

public boolean handleFault(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ClientHandler: In handleFault");
return true; }

public void init(javax.xml.rpc.handler.HandlerInfo config) {}

public void destroy() {}

Chapter 28. Developing web services 1261

public javax.xml.namespace.QName[] getHeaders() {
return null; }

}

The code for the server handler class is illustrated in the following example:
package sample;
public class ServerHandler implements javax.xml.rpc.handler.Handler {

public ServerHandler() { }

public boolean handleRequest(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ServerHandler: In handleRequest");
return true; }

public boolean handleResponse(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ServerHandler: In handleResponse");
return true; }

public boolean handleFault(javax.xml.rpc.handler.MessageContext context) {
System.out.println("ServerHandler: In handleFault");
return true; }

public void init(javax.xml.rpc.handler.HandlerInfo config) {}

public void destroy() {}

public javax.xml.namespace.QName[] getHeaders() {
return null; }

}

1. Compile these classes using:

%JAVA_HOME%\bin\java -extdirs %WAS_EXT_DIRS% ClientHandler.java
ServerHandler.java

$JAVA_HOME/bin/java -extdirs $WAS_EXT_DIRS
ClientHandler.java ServerHandler.java

2. Open an assembly tool and import the two sample enterprise archive (EAR) files:

v ...\installableApps\WebServicesSamples.ear

.../installableApps/WebServicesSamples.ear

v ...\installableApps\ApplicationClients.ear

.../installableApps/ApplicationClients.ear

3. Import the compiled handler classes into the projects for the sample modules:

v Import sample.ClientHandler into the appClientModule directory of the AddressBookClient project.

v Import sample.ServerHandler into the ejbModule directory of the AddressBookW2JE project.

4. Configure the client deployment descriptor for handler classes.

This topic explains how to configure the client deployment descriptor for user-provided handler
classes.

5. Configure the webservices.xml deployment descriptor for handler classes.

This topic explains how to configure the webservices.xml deployment descriptor for user-provided
handler classes.

6. Save your changes and export the EAR files.

7. Uninstall the WebServicesSamples.ear application from your server if it is already installed.

8. Install the new WebServicesSamples.ear application.

9. Start the server.

10. Run the client:

launchClient ApplicationClients.ear -CCjar=AddressBookClient.jar

When the client runs, the console output looks like the following example. The messages from the
handlers are shown in bold.

1262 Developing WebSphere applications

IBM WebSphere Application Server
J2EE Application Client Tool
Copyright IBM Corp., 1997-2003
WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the J2EE Application Client
Environment.
WSCL0035I: Initialization of the J2EE Application Client
Environment has completed.
WSCL0014I: Invoking the Application Client class
com.ibm.websphere.samples.webservices.addr.AddressBookClient
>> Querying address for ’Purdue Boilermaker’ using port
AddressBookW2JE
ClientHandler: In handleRequest
ClientHandler: In handleResponse
>> Response is:

1 University Drive
West Lafayette, IN 47907
Phone: (765) 555-4900

>> Querying address for ’Purdue Boilermaker’ using port
AddressBookJ2WE
ClientHandler: In handleRequest
ClientHandler: In handleResponse
>> Response is:

2 University Drive
West Lafayette, IN 47907
Phone: (765) 555-4900

>> Querying address for ’Purdue Boilermaker’ using port
AddressBookJ2WB
ClientHandler: In handleRequest
ClientHandler: In handleResponse
>> Response is:

3 University Drive
West Lafayette, IN 47907
Phone: (765) 555-4900

>> Querying address for ’Purdue Boilermaker’ using port AddressBookW2JB
ClientHandler: In handleRequest
ClientHandler: In handleResponse
>> Response is:

4 University Drive
West Lafayette, IN 47907
Phone: (765) 555-4900

For the client, the handler class is configured for each service reference, not for each port. The
AddressBook sample has four ports, but only one service reference, therefore the ClientHandler
handles requests and responses on all ports.

When the server log file is examined, it contains the following data:
[9/24/03 16:39:22:661 CDT] 4deec1c6 WebGroup I SRVE0180I:
[HTTP router for AddressBookW2JE.jar] [/AddressBookW2JE] [Servlet.LOG]:
AddressBook: init
[9/24/03 16:39:23:161 CDT] 4deec1c6 SystemOut O ServerHandler: In handleRequest
[9/24/03 16:39:23:211 CDT] 4deec1c6 SystemOut O ServerHandler: In handleResponse

Results

The deployment descriptors for handler classes are configured. Deployment descriptors are required so
that so that WebSphere Application Server can process the incoming web services requests.

What to do next

Deploy the EAR file that has been configured and enabled for web services. Then you can test the
application to make sure it runs within the WebSphere Application Server environment.

Configuring the JAX-RPC web services client bindings in the
ibm-webservicesclient-bnd.xmi deployment descriptor
You can configure the ibm-webservicesclient-bnd.xmi deployment descriptor file with assembly tools.

Chapter 28. Developing web services 1263

Before you begin

You can configure deployment descriptors with assembly tools provided with the application server.

You must configure the assembly tool before you can use it. Read about configuring the assembly tool in
the Rational Application Developer documentation.

About this task

Now that you have assembled the client module, complete this step to configure the ibm-
webservicesclient-bnd.xmi deployment descriptor. Deployment descriptors are required so that so that
WebSphere Application Server can process the incoming web services requests.

Configure the ibm-webservicesclient-bnd.xmi deployment descriptor file with the following steps provided:

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. Switch to the Java EE Perspective.

a. Click Window > Open Perspective > Other > Java EE.

3. Open the Project Explorer.

a. Click Window > Show View > Other > Project Explorer.

4. Locate the deployment descriptor file for the module. Hint: Deployment Descriptor: <module>

5. Double-click the deployment descriptor file to open the Deployment Descriptor editor.

a. Select the WS Binding tab at the bottom of the editor window to open the Web Services Client
Bindings editor.

6. Verify the serviceRefLink element settings.

a. Open the Web Services Client Bindings editor.

b. Click the Services References tab.

c. Click Add.

d. Select the service references defined in the client deployment descriptor file from the list.

7. Verify the deployedWSDLFile element settings.

a. Open the Web Services Client Bindings editor.

b. Select the service reference.

c. Expand the Service Reference Details section.

d. Click Browse that is located to the right of the Deployed WSDL file field.

e. Select the new Web Services Description Language (WSDL) file.

f. Click OK.

You can also change the deployedWSDLFile element of a deployed web service using the
administrative console. Click Enterprise Applications > application > Web module or EJB module
> module > Web services client bindings.

8. Verify the defaultMappings element settings.

a. Open the Web services client bindings editor.

b. Click Default mappings.

c. Click Add.

d. Edit the entries in the newly added row to establish a mapping between a portType and a port in
the WSDL file. Only one entry is supported for each portType.

e. Click OK.

1264 Developing WebSphere applications

You can also change the defaultMappings element of a deployed web service using the administrative
console. Click Enterprise Applications > application > Web module or EJB module > module >
Web services client bindings.

9. Access the web services client Port bindings editor through the Port qualified name binding details
section at the bottom of the editor pane.

10. Verify the syncTimeout element settings.

a. Create a Port qualified name bindings for the port.

b. Open the Web services client bindings editor.

c. Confirm that a service reference is selected in either the Component-scoped references or the
Service references section.

d. Expand the Port qualified name binding section.

e. Click Add. The Add port qualified name binding dialog opens.

f. Type the namespace of the WSDL file port you want to configure, in the Port namespace link
field.

g. Type the local_name of the WSDL file port you want to configure in the Port local name link
field. The name displayed in the Port qualified name binding list is the local name of the WSDL
file port.

h. Click OK.

a. Configure the syncTimeout property by locating the Synchronization timeout field and enter the
desired value. The default is 300 seconds.

11. Verify the basicAuth element settings.

a. Locate the HTTP basic authentication field in the Port qualified name binding details section.

b. Type the desired value in the User ID and Password fields.

c. Click OK.

12. Verify the sslConfig element settings.

a. Locate the SSL configuration field in the Port qualified name binding details section.

b. Type the desired value in the Name field.

c. Click OK.

13. After editing the properties, type ctrl-s on your keyboard to save the changes.

Results

You have configured the ibm-webservicesclient-bnd.xmi deployment descriptor. If you have configured all
of the client deployment descriptors, test the web services client. If you have not configured all of the client
deployment descriptors, complete the configurations and then test the web services client.

ibm-webservicesclient-bnd.xmi assembly properties for JAX applications
The ibm-webservicesclient-bnd.xmi deployment descriptor file contains information for the web services run
time that is WebSphere product-specific. This deployment descriptor file is used with Java API for
XML-based web services.

You can configure deployment descriptors with assembly tools provided with WebSphere Application
Server. Read about configuring the JAX-RPC web services client bindings in the ibm-webservicesclient-
bnd.xmi deployment descriptor to learn more about configuring this deployment descriptor.

Assembly properties

The following list is a collection of supported properties and attributes that you can define for your
applications.

Chapter 28. Developing web services 1265

Note: The overriddenEndpointURI property is the only property that is applicable for Java API for
XML-Based Web Services (JAX-WS) Web services.

componentNameLink
An attribute of the componentScopedRefs element. When a web service is implemented by an
Enterprise JavaBeans (EJB) implementation, each <componentScopedRefs> element contains
assembly properties for an individual enterprise bean. The componentNameLink attribute of the
<componentScopedRefs> element identifies the enterprise bean that the assembly properties
apply to by specifying the <ejb-name>. This property is used only when the web service client is
an enterprise bean.

serviceRefLink
An attribute of the serviceRefs element. Specifies the link to the <service-ref-name> in the
<service-ref> element in the client deployment descriptor. The client deployment descriptor is
either ejb-jar.xml, web.xml or application-client.xml.

deployedWSDLFile
An attribute of the serviceRefs element is optional. Permits an alternate Web Services Description
Language (WSDL) file to use other than that specified in the <wsdl-file> element of the
<service-ref> element in the client deployment descriptor. If an attribute is specified, the alternate
WSDL file must be packaged in the same module and must be compatible with the development
WSDL file. The deployedWSDLFile property supplies a new WSDL file containing a different
endpoint web address than the original WSDL file.

defaultMappings
An element that identifies which port to use for a given portType when one is not selected by the
client. This element has the following attributes: portTypeNamespace, portTypeLocalName,
portNamespace, portLocalName. These attributes identify which wsdl:port is used for a
wsdl:portType.

syncTimeout
An attribute of the portQnameBindings element. Specifies how long, in seconds, to wait for a
response from a synchronous call. The default is 300 seconds.

basicAuth
An element of the portQnameBindings element. Authenticates a service client to the service
endpoint, independent of the underlying transport that includes, HTTP, HTTPS, and Java Message
Service (JMS). Set the user ID and password attributes as needed.

sslConfig
An element of the portQnameBindings element. Specifies the Secure Sockets Layer (SSL)
configuration of an HTTPS outbound request. The name attribute is the name of an SSL
configuration entry or alias that is defined in the SSL configuration repertoire. This attribute is used
only when the client is running in the WebSphere Application Server.

overriddenEndpointURI
A property that specifies the final URL to which requests will be sent. When the client is run to
invoke the web service, the request is sent to this property's URL, which takes precedence over
the address given in the WSDL file and the client code. This property is the only property in the
ibm-webservicesclient-bnd.xmi file which is applicable to JAX-WS services.

A bindings file example

The following example demonstrates the spelling and position of the various attributes. You cannot cut and
paste these examples because they do not contain the required ID attributes. If you add elements to a
binding file template generated by the WSDL2Java command, you must confirm that each element has an ID
attribute whose value is a unique string. Review the template xmi files generated by the WSDL2Java
command for examples of ID strings. Read about the WSDL2Java command-line tool for Java API for
XML-based Remote Procedure Call (JAX-RPC) applications to learn more about this tool.

1266 Developing WebSphere applications

<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI" xmlns:com.ibm.etools.webservice.wscbnd=
"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

<componentScopedRefs componentNameLink="myComponent ref"/>

<serviceRefs serviceRefLink="myService ref" deployedWSDLFile="META-INF/wsdl/alternate.wsdl">
<defaultMappings portTypeLocalName="AddressBook" portTypeNamespace="http://www.com.ibm"

portLocalName="AddressBookPort" portNamespace="http://www.com.ibm"/>
<portQnameBindings portQnameNamespaceLink="http://www.com.ibm"

portQnameLocalNameLink="AddressBookPort" syncTimeout="99">
<basicAuth userid="myId" password="myPassword"/>
<sslConfig name="mynode/DefaultSSLSettings"/>
</portQnameBindings>
</serviceRefs>
</com.ibm.etools.webservice.wscbnd:ClientBinding>

Implementing extensions to JAX-RPC web services clients
WebSphere Application Server provides extensions to web services clients using the Java API for
XML-based RPC (JAX-RPC) programming model.

About this task

You can customize web services by using the following extensions to the JAX-RPC client programming
model.

Procedure
v Set the REQUEST_SOAP_HEADERS and RESPONSE_SOAP_HEADERS properties in a JAX-RPC

client Stub to enable a web services client to send or retrieve implicit SOAP headers.

An implicit SOAP header is a SOAP header that is not explicitly defined in the WSDL file. An implicit
SOAP header file fits one of the following descriptions:

– A message part that is declared as a SOAP header in the binding in the WSDL file, but the message
definition is not referenced by a portType within a WSDL file.

– An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

To learn how to modify your client code to send or retrieve transport headers, see the information on
sending implicit SOAP headers with JAX-RPC or receiving implicit SOAP headers with JAX-RPC.

v Set the REQUEST_TRANSPORT_PROPERTIES and RESPONSE_TRANSPORT_PROPERTIES
properties to enable a web services client to send or retrieve transport headers.

Set the properties on the Stub or Call object.

By modifying your client code to send or retrieve transport headers, you can send or receive specific
information within the transport headers of outgoing requests or incoming responses from the server.
For requests or responses that use the HTTP transport, the information is sent or retrieved in an HTTP
header. Similarly, for a request or response that uses the Java Message Service (JMS) transport, the
information is sent or retrieved in a JMS message property.

To learn how to modify your client code to send or retrieve transport headers, see the information on
sending transport headers with JAX-RPC or retrieving transport headers with JAX-RPC.

To learn how to enable a Web services client to send or retrieve transport headers, see the transport
header properties best practices information.

v Implement support for javax.xml.rpc.ServiceFactory.loadService() methods.

The loadService methods create an instance of the generated service implementation class in an
implementation-specific manner. The loadService methods are new for JAX-RPC 1.1 and include three
signatures:

– public.javax.xml.rpc.Service loadService (Class serviceInterface)

Chapter 28. Developing web services 1267

As documented in the JAX-RPC specification, this method returns the generated service
implementation for the service interface. See the web services specifications and API documentation
to review the JAX-RPC specification.

– public.javax.xml.rpc.Service loadService (URL wsdlDocumentLocation, Class serviceInterface,
Properties properties)

This method behaves like the loadService (Class serviceInterface) because the following parameters
are ignored:

- wsdlDocumentLocation

- properties

– public.javax.xml.rpc.Service loadService (URL wsdlDocumentLocation, QName serviceName,
Properties properties)

This method returns the generated service implementation for the specified service by using optional
namespace-to-package mapping information.

- wsdlDocumentLocation - ignored

- serviceName - QName (namespace, localpart) of the service

- properties - If this parameter is non-null, it contains namespace-to-package mapping entries. Each
Property entry key is a String corresponding to the namespace. Each Property entry value is a
String corresponding to the Java package name.

If the properties argument contains an entry with a key (namespace) that matches the namespace
portion of the QName serviceName argument, the entry value (javaPackage) is used as the
package name when trying to locate the service implementation.

For more information on these methods, see the JAX-RPC specification.

v Implement the CustomBinder interface to provide concrete custom data binders for a specific XML
schema type (JAX-RPC applications only).

Custom data binders are used to map XML schema types with Java objects. Custom data binders
provide bindings for XML schema types that are not supported by the current Java API for XML-based
Remote Call Procedure (JAX-RPC) specification. WebSphere Application Server provides an extension
to the Web Services for Java Platform, Enterprise Edition (Java EE) programming model called the
CustomBinder interface that implements these custom bindings for a specific XML schema type. The
CustomBinder interface has three properties, in addition to deserialize and serialize methods:

– QName for the XML schema type

– QName scope

– Java type

The custom data binder defines serialize and deserialize methods to convert between a Java object and
a SOAPElement interface. A custom data binder is added to the runtime system and interacts with the
web services runtime using a SOAPElement. They are added to the runtime by using custom binding
providers. Read about the custom data binders and the custom binding provider to learn more. See the
CustomBinder interface documentation to learn more about how you can implement this interface to
provide concrete custom data binders for a specific XML schema type.

Custom data binders for JAX-RPC applications
A custom data binder is used to map XML schema types with Java objects. Custom data binders provide
bindings for XML schema types that are not supported by the current Java API for XML-based Remote
Call Procedure (JAX-RPC) specification.

The custom data binder defines serialize and deserialize methods to convert between a Java object and a
SOAPElement interface. A custom data binder is added to the runtime system and interacts with the web
services run time using a SOAPElement. Unlike conventional deserializers, custom data binders do not
rely on the low-level parsing events from the run time to build the Java object, such as Simple API for XML
(SAX). Instead, the run time builds the custom data binder by rendering the incoming SOAP message into

1268 Developing WebSphere applications

a SOAPElement. The SOAPElement that contains the message is passed to the customer data binder. For
example, if the incoming message contains a Service Data Object (SDO) datagraph, the runtime system
processes as follows:

1. The runtime system recognizes the <sdo:Datagraph> code.

2. The run time queries the type mapping system to locate the custom data binder for the datagraph
data, for example SDOCustomBinder.

3. A SOAPElement is created that represents the incoming SDO datagraph.

4. The run time passes the SOAPElement to the SDOCustomBinder.

Within the deserialized method, the SDOCustomBinder extracts the content from the SOAPElement and
builds a concrete DataGraph object with a commonj.sdo.DataGraph type.

When a Java object is serialized, a similar process occurs. The run time locates a custom data binder and
converts the Java object to a SOAPElement. The runtime serializes the SOAPElement to the raw message
that is transported in the output stream.

The following is an example of an XML schema that is defined by the SDO specification:
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sdo="commonj.sdo"
targetNamespace="commonj.sdo">

<xsd:element name="datagraph" type="sdo:DataGraphType"/>

<xsd:complexType name="DataGraphType">
<xsd:complexContent>
<xsd:extension base="sdo:BaseDataGraphType">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="1"

namespace="##other" processContents="lax"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BaseDataGraphType" abstract="true">
<xsd:sequence>
<xsd:element name="models" type="sdo:ModelsType" minOccurs="0"/>
<xsd:element name="xsd" type="sdo:XSDType" minOccurs="0"/>
<xsd:element name="changeSummary"

Chapter 28. Developing web services 1269

type="sdo:ChangeSummaryType" minOccurs="0"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:complexType name="ModelsType">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="unbounded"

namespace="##other" processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="XSDType">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="unbounded"

namespace="http://www.w3.org/2001/XMLSchema" processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ChangeSummaryType">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="unbounded"

namespace="##any" processContents="lax"/>
</xsd:sequence>
<xsd:attribute name="create" type="xsd:string"/>
<xsd:attribute name="delete" type="xsd:string"/>
</xsd:complexType>

</xsd:schema>

WebSphere Application Server defines the CustomBinder interface that implements concrete custom
bindings for a specific XML schema type.

The custom binding provider is used to import the custom bindings into the run time. To learn how to plug
your custom data binders into the WSDL2Java command-line tool for development, read about custom
binding providers. You can also read about usage patterns for deploying custom data binders to learn
more about how to deploy the provider package to your runtime, as well as the roles involved in the
custom binding process.

Custom binding providers for JAX-RPC applications
A custom binding provider is the packaging of custom data binder classes with a declarative metadata file.
The main purpose of a custom binding provider is to aggregate related custom data binders to support
particular user scenarios. The custom binding provider is used to plug the custom data binders into the
emitter tools and the run time system so that the emitter tools can generate the appropriate artifacts and
the run time system can augment its existing type mapping system to reflect the applied custom data
binders and invoke them.

A custom binding provider works with a specific XML schema type, while applications involve a few related
XML schema types. You need a mechanism to aggregate and declare various custom data binders to
provide a complete binding solution. The concept of the custom binding provider defines a declarative
model that can be used to plug in a set of custom data binders to either emitter tools or the run time
system.

See the custom data binders information and the information on the CustomBinder interface to learn more
about custom data binders and the CustomBinder API included in WebSphere Application Server to define
the custom data binders. After you have defined the custom data binders, you are ready to deploy the
custom binder package. To learn how to deploy this package, see the information on usage patterns for
deploying custom data binders for JAX-RPC applications.

The declarative metadata file, CustomBindingProvider.xml, is an XML file that is packaged with the custom
provider classes in a single Java archive (JAR) file and located in the /META-INF/services/directory.
Once a provider JAR file is packaged, the binary information and the metadata file located in the JAR file
can be used by the WSDL2Java command-line tool and the run time system.

1270 Developing WebSphere applications

The following example is the XML schema for the CustomBindingProvider.xml file. The top-level type is
the providerType that contains a list of mapping elements. Each mapping element defines the associated
custom data binder and properties, including xmlQName, javaName and qnameScope. You can read more
about these properties in the information for CustomBinder interface for JAX-RPC applications. The
providerType also has an attribute called scope that has a value of server, application or module. The
scope attribute is used by the server deployment to resolve the conflict and to realize a custom binding
hierarchy.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

targetNamespace=
"http://www.ibm.com/webservices/customdatabinding/2004/06"

xmlns:customdatabinding=
"http://www.ibm.com/webservices/customdatabinding/2004/06"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:element name="provider" type="customdatabinding:providerType"/>

<xsd:complexType name="providerType">
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="mapping" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="xmlQName" type="xsd:QName"/>
<xsd:element name="javaName" type="xsd:string"/>
<xsd:element name="qnameScope"

type="customdatabinding:qnameScopeType"/>
<xsd:element name="binder" type="xsd:string"/>

</xsd:sequence>
/xsd:complexType>
</xsd:element>
<xsd:attribute name="scope"

type="customdatabinding:ProviderScopeType" default="module"/>
</xsd:sequence>

</xsd:complexType

<xsd:simpleType name="qnameScopeType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="simpleType"/>
<xsd:enumeration value="complexType"/>
<xsd:enumeration value="element"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ProviderScopeType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="server"/>
<xsd:enumeration value="application"/>
<xsd:enumeration value="module"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

The following is an example of the CustomBindingProvider.xml file for the SDO DataGraph schema that
was introduced in CustomBinder interface. The example displays the mapping between a schema type,
DataGraphType, and a Java type, commonj.sdo.DataGraph. The binder that represents this mapping is
called test.sdo.SDODataGraphBinder.
<cdb:provider
xmlns:cdb="http://www.ibm.com/webservices/customdatabinding/2004/06"
xmlns:sdo="commonj.sdo">
<cdb:mapping>
<cdb:xmlQName>sdo:DataGraphType</cdb:xmlQName>
<cdb:javaName>commonj.sdo.DataGraph</cdb:javaName>
<cdb:qnameScope>complexType</cdb:qnameScope>
<cdb:binder>test.sdo.SDODataGraphBinder</cdb:binder>

</cdb:mapping>
</cdb:provider>

You need to import your custom data binders into the WSDL2Java command-line tool for development
purposes. The custom data binders affect how the development artifacts, including the Service Endpoint

Chapter 28. Developing web services 1271

Interface and the JSR 109 mapping data, are generated from the Web Services Description Language
(WSDL) file. The WSDL2Java command-line tool ships with WebSphere Application Server and uses the
custom binder Java archive file, or custom binder package, to generate these the development artifacts.

The following example is a WSDL file that references the SDO DataGraph schema that is introduced in
the CustomBinder interface topic.
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://sdo.test"

xmlns:impl="http://sdo.test"
xmlns:intf="http://sdo.test"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sdo="commonj.sdo">

<wsdl:types>
<schema elementFormDefault="qualified" targetNamespace="http://sdo.test"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sdo="commonj.sdo">
<import namespace="commonj.sdo" schemaLocation="sdo.xsd"/>
</schema>
</wsdl:types>

<wsdl:message name="echoResponse">
<wsdl:part element="sdo:datagraph" name="return"/>
</wsdl:message>

<wsdl:message name="echoRequest">
<wsdl:part element="sdo:datagraph" name="parameter"/>

</wsdl:message>

<wsdl:portType name="EchoService">
<wsdl:operation name="echo">
<wsdl:input message="impl:echoRequest" name="echoRequest"/>
<wsdl:output message="impl:echoResponse" name="echoResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="EchoServiceSoapBinding" type="impl:EchoService">
<wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="echo">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="echoRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>

<wsdl:output name="echoResponse">
<wsdlsoap:body use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="EchoServiceService">
<wsdl:port binding="impl:EchoServiceSoapBinding" name="EchoService">
<wsdlsoap:address location="http://<uri>"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

If you run the WSDL2Java command without the custom data binding package, the following Service
Endpoint Interface is generated with a parameter type, as dictated by the JAX-RPC specification:
public interface EchoService extends java.rmi.Remote {
public javax.xml.soap.SOAPElement
echo(javax.xml.soap.SOAPElement parameter)
throws java.rmi.RemoteException;

}

When you run the WSDL2Java command with the custom data binding package, the custom data binders
are used to generate the parameter types. To apply the custom data binders, use the -classpath option
on the WSDL2Java tool. The tool searches its classpath to locate all the files with the same file path of

1272 Developing WebSphere applications

/META-INF/services/CustomBindingProvider.xml. The following is an example how you can use the
command to generate a Service Endpoint Interface with the parameter type of commonj.sdo.Datagraph:
WSDL2Java -role develop-server -container web classpath sdobinder.jar echo.wsdl

The Service Endpoint Interface that is generated looks like the following:
public interface EchoService extends java.rmi.Remote {
public commonj.sdo.DataGraph
echo(commonj.sdo.DataGraph parameter)
throws java.rmi.RemoteException;

}

The custom binder packaged JAR file has to be made available at runtime to make sure the web service
client is invoked, regardless if it is a stub-based client or a Dynamic Invocation Interface (DII) client. The
same applies to the service.

CustomBinder interface for JAX-RPC applications
WebSphere Application Server defines a CustomBinder interface that you can implement for Java API for
XML-based Remote Call Procedure (JAX-RPC) applications to provide concrete custom data binders for a
specific XML schema type.

The CustomBinder interface has three properties, in addition to deserialize and serialize methods. These
properties are QName for the XML schema type, the QName scope, and the Java type that the schema
type maps to. The properties are accessible through the corresponding getter methods.

getQName

The getQName method returns the QName of the target XML schema type. Custom data binders only
work with the root level schema type.

For anonymous types, the getQName method returns the QName of the containing element.

For named types, the getQName method returns the QName of the complexType or the simpleType.

getQNameScope

The getQNameScope method returns the binder qnameScope property that indicates whether the schema
type is a named type or an anonymous type. The qnameScope property value can be complexType for an
<xsd:complexType>, simpleType for an <xsd:simpleType> or element for an <xsd:element> that is defined
with an anonymous type.

In the following schema, data1 is an element that is defined with an anonymous type. The element, data2,
is defined using the named type, data2Type.
<xsd:element name="data1">
<xsd:complexType>
...
</xsd:complexType>
</xsd:element>

<xsd:element name= "data2" type="data2Type"/>
<xsd:complexType name="data2Type">
...
</xsd:complexType>

The anonymous type, data1, has a qNameScope of element and a qName of data1. The type, data2Type,
has a qNameScope of complexType and a qName of data2Type.

The element, data2, is not represented in the custom data binder. The custom data binder only processes
types and not elements.

Chapter 28. Developing web services 1273

getJavaName

The getJavaName method returns the fully-qualified class name for the Java type that is mapped to the
named or anonymous type. The class can be an interface or a concrete class. The object returned from
the deserialize method has a type that is compatible with the Java type that is returned by the
getJavaName method.

serialize

The serialize method returns the SOAPElement that the custom data binder builds from the Java object.
The Java object is passed from the run time system and is expected to match what is returned from the
getJavaName method. The SOAPElement parameter does not have child elements, but it does have a
valid QName. This parameter is a reference for the binder to create the final SOAPElement.

In most cases, the binder implementation appends the child elements to the root SOAPElement. The run
time system guarantees that the SOAPElement QName is correct. Therefore, the custom data binder for
named types keeps the QName of the root element because the binder does not know the enclosing
element. The binder implementation for an anonymous type should always include the QName in the
returned SOAPElement that matches the defined schema type. WebSphere Application Server does not
have concrete methods in the CustomBindingContext parameter.

deserialize

The deserialize method returns a Java object that the custom data binder builds from the passed root
SOAPElement. The object type of the returned Java object must match what is returned from the
getJavaName method. Unlike the parameter serialize method, the passed SOAPElement contains the
original XML data with the necessary namespace declarations.

The following is an example of an implementation of the SDO DataGraph binder, where the convertToSDO
and convertToSAAJ utility methods convert between SOAPElement and an SDO object.
package test.sdo.binder;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;

import com.ibm.wsspi.webservices.binding.CustomBinder;
import com.ibm.wsspi.webservices.binding.CustomBindingContext;

public class DataGraphBinder implements CustomBinder {
public QName getQName() {
return new QName("commonj.sdo", "DataGraphyType");

}
public String getJavaName() {
return CustomBinder.QNAME_SCOPE_COMPLEXTYPE;
}
public String getJavaName() {
return commonj.sdo.DataGraph.class.getName();
}
public javax.xml.soap.SOAPElement serialize(
Object bean,
SOAPElement rootNode,
CustomBindingContext context)
throws javax,xml.soap.SOAPException {
// convertToSAAJ is a utility method to convert
// the SDO DataGraph to the SOAPElement
return convertToSAAJ(bean, rootNode);

public Object deserialize(
SOAPElement source,
CustomBindingContext context)
throws javax.xml.soap.SOAPException {
// convertToSDO is a utility method to convert
// the SOAPElement to the SDO DataGraph
return convertToSDO(source);
}
}

1274 Developing WebSphere applications

To learn more about custom data binders, see the custom data binders for JAX-RPC applications
information. To learn how to plug your custom data binders into the WSDL2Java command-line tool for
development, see the custom binding providers for JAX-RPC applications information.

Usage patterns for deploying custom data binders for JAX-RPC applications
Custom data binders are used to map XML schema types with Java objects. Custom data binders provide
bindings for XML schema types that are not supported by the current Java API for XML-based Remote
Call Procedure (JAX-RPC) specification. WebSphere Application Server provides an extension to the Web
Services for Java Platform, Enterprise Edition (Java EE) programming model called the CustomBinder
interface that implements these custom bindings for a specific XML schema type. The custom binding
provider is the package for the custom data binders that is imported into the runtime.

To learn more about the CustomBinder API, see the CustomBinder interface for JAX-RPC applications
information. For general information about custom binders, see the custom data binders for JAX-RPC
applications information. See the custom binding providers for JAX-RPC applications information to review
how custom binding providers are packaged for development.

This usage pattern reviews how to deploy the provider package to your runtime, as well as the roles
involved in the custom binding process.

Roles involved in custom data binding

Four roles are involved with custom data binding. These roles that are defined by the Web Services for
Java Platform, Enterprise Edition (Java EE) specification are as follows:

v Custom binding provider is responsible for implementing the required custom data binders, declaring
these binders in a CustomBindingProvider.xml file and packaging the binding classes into a Java
archive (JAR) file.

v Application developer is responsible for applying the custom binding provider JAR file and generating
the development artifacts.

v Application assembler needs to understand the application requirements in terms of the custom data
binding and decides how to package the custom provider JAR file as a part of the application.

v Application deployer configures the shared libraries to make custom data binding support available to
the applications. This needs to be done if the custom provider JAR file is not packaged with the
application. If the application is not deployed, the deployer has to run the web services deployment tools
after the application is installed.

Common usage patterns

The custom binder provider package can be deployed in various ways to provide flexibility beyond the
standard JAX-RPC mapping standards. Three primary deployment usage patterns are as follows:

v Deploy the custom data binders at the server level

This pattern ensures that all the applications that are running on the server are affected by the custom
data binders and is useful if fundamental XML types are introduced but are not supported by the
standard JAX-RPC mapping rules.

This type of situation occurs frequently for new web services specifications that define new schema
types. For example, the WS-Addressing specification defines an EndpointReferenceType schema type
that is not supported by the JAX-RPC mapping rules. Because this pattern requires augmenting the
server classpath, it has a significant impact on the server runtime and affects the installed applications.
This pattern is most suitable for WebSphere Application Server internal components.

v Deploy the custom binders for one or more application

Use this pattern if you only want specified applications to be affected by the custom data binders and if
relevant XML schema types apply to a set of applications. You can share the custom data binders within
a set of applications while achieving isolation between different sets of applications.

v Deploy the custom binders for a specific web module within an application

Chapter 28. Developing web services 1275

Using this pattern ensures that a specific Web module is affected by the deployed custom data binders.
This pattern is useful when fine granularity for custom binding is required. You cannot use this pattern
with EJB modules because the module and its referenced library belong to the entire application.

Usage patterns

This section reviews deploying custom data binders using one of the three patterns:

v Server level deployment

If you deploy the custom data binders at the server level, you need to set the scope attribute of the
declared binding provider as server. Setting the value to server guarantees a higher priority for declared
binders if there are conflicts between the server and applications. The custom binding provider JAR file
needs to be in the appropriate place to be picked up by the server runtime. Configure the server path
and make the custom binding provider JAR file a part of the server classpath. To learn about values
used in configuring the server classpath, see the Java virtual machine settings information.

v Deploying custom data binders for one or more applications

To deploy custom data binders for one or more applications, set the scope attribute of the declared
custom binding provider as application. Setting the value to application guarantees higher priority
binders in case of conflicts between the application and the module. If the custom data binders are used
by more than one application, configure a shared library for the applications to reference. To learn about
values used in configuring the shared libraries path, see the managing shared libraries information.

v Deploy the custom data binders for a specific web module within an application

To deploy custom data binders for a specific web module within an application, set the scope attribute of
the declared custom binding provider to the value module. The only way to apply the custom data binder
for this pattern is to pre-package the custom binding provider JAR file with the web module, for
example, place the JAR file in the /WEB-INF/lib directory.

Sending implicit SOAP headers with JAX-RPC
You can enable an existing Java API for XML-based RPC (JAX-RPC) Web services client to send values
in implicit SOAP headers. By modifying your client code to send implicit SOAP headers, you can send
specific information within an outgoing web service request.

Before you begin

To complete this task, you need a web services client that you can enable to send implicit SOAP headers.

An implicit SOAP header is a SOAP header that fits one of the following descriptions:

v A message part that is declared as a SOAP header in the binding in the Web Services Description
Language (WSDL) file, but the message definition is not referenced by a portType element within a
WSDL file.

v An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

You cannot manipulate protected SOAP headers. A SOAP header that is declared protected by its owning
component, for example, Web Services Security, is not accessible to client applications. An exception
occurs if you try to manipulate protected SOAP headers.

About this task

The client application sets properties on the Stub or Call object to send and receive implicit SOAP
headers.

1276 Developing WebSphere applications

Procedure
1. Create a java.util.HashMap object.

2. Add an entry to the HashMap object for each implicit SOAP header that the client wants to send. The
HashMap entry key is the QName of the SOAP header. The HashMap entry value is either an SAAJ
SOAPElement object or a String that contains the XML text of the entire SOAP header element.

3. Set the HashMap object as a property on the Stub or Call object. The property name is
com.ibm.websphere.webservices.Constants.REQUEST_SOAP_HEADERS. The value of the property is
the HashMap.

4. Issue the remote method calls using the Stub or Call object. The headers within the HashMap object
are sent in the outgoing message.

A JAXRPCException error can occur if any of the following are true:

v The HashMap object contains a key that is not a QName object or if the HashMap object contains a
value that is not a String or a SOAPElement object.

v The HashMap object contains a key that represents a SOAP header that is declared protected by
the owning component.

Results

You have a JAX-RPC web services client that is configured to send implicit SOAP headers.

Example

The following programming example illustrates how to send two request SOAP headers and receive one
response SOAP header within a web services request and response:
1 //Create the request and response hashmaps.
2 HashMap requestHeaders=new HashMap();
3 HashMap responseHeaders=new HashMap();
4
5 //Add "AtmUuid1" and "AtmUuid2" to the request hashmap.
6 requestHeaders.put(new QName("com.rotbank.security", "AtmUuid1"),
7 "<AtmUuid1 xmlns=\"><uuid>ROTB-0A01254385FCA09</uuid></AtmUuid1>");
8 requestHeaders.put(new QName("com.rotbank.security", "AtmUuid2"),
9 ((IBMSOAPFactory)SOAPFactory.newInstance()).createElementFromXMLString(
10 "x:AtmUuid2 xmlns:x=\"com.rotbank.security\"><x:uuid>ROTB-0A01254385FCA09

</x:uuid><x:AtmUuid2>"));
11
12 //Add "ServerUuid" to the response hashmap.
13 //If "responseHeaders" is empty, all the SOAP headers are
14 //extracted from the response message.
15 responseHeaders.put(new QName("com.rotbank.security","ServerUuid"), null);
16
17 //Set the properties on the Stub object.
18 stub.setProperty(Constants.REQUEST_SOAP_HEADERS.requestHeaders);
19 stub.setProperty(Constants.RESPONSE_SOAP_HEADERS.responseHeaders);
20
21 //Call the operationon the Stub.
22 stub.foo(parm2, parm2);
23
24 //Retrieve "ServerUuid" from the response hashmap.
25 SOAPElement serverUuid =
26 (SOAPElement) responseHeaders.get(new QName("com.rotbank.security","ServerUuid"));
27
28 //Note: "serverUuid" now equals a SOAPElement object that represents the
29 //following code:
30//"<y:ServerUuid xmlns:y=\"com.rotbank.security\"><:uuid>ROTB-0A03519322FSA01

</y:uuid></y:ServerUuid.");

On lines 2-3, new HashMaps are created that are used for the request and response SOAP headers.

On lines 6-10, the AtmUuid1 and AtmUuid2 headers elements are added to the request HashMap.

On line 15, the ServerUuid header element name, along with a null value, is added to the response
HashMap.

Chapter 28. Developing web services 1277

On line 18, the request HashMap is set as a property on the Stub object. This causes the AtmUuid1 and
AtmUuid2 headers to be added to each request message that is associated with an operation that is
invoked on the Stub object.

On line 19, the response HashMap is set as a property on the Stub object. This causes the ServerUuid
header to be extracted from each response message that is associated with an operation that is invoked
on the Stub object.

On line 22, the web service operation is invoked on the Stub object.

On lines 25-26, the ServerUuid header is retrieved from the response HashMap. The header was
extracted from the response message and inserted into the HashMap by the web services engine.

Receiving implicit SOAP headers with JAX-RPC
You can enable an existing Java API for XML-based RPC (JAX-RPC) Web services client to receive
values from implicit SOAP headers. By modifying your client code to receive implicit SOAP headers, you
can receive specific information within an incoming web service response.

Before you begin

To complete this task, you need a web services client that you can enable to receive implicit SOAP
headers.

An implicit SOAP header is a SOAP header that fits one of the following descriptions:

v A message part that is declared as a SOAP header in the binding in the Web Services Description
Language (WSDL) file, but the message definition is not referenced by a portType element within a
WSDL file.

v An element that is not contained in the WSDL file.

Handlers and service endpoints can manipulate implicit or explicit SOAP headers using the SOAP with
Attachments API for Java (SAAJ) data model.

You cannot manipulate protected SOAP headers. A SOAP header that is declared protected by its owning
component, for example, Web Services Security, is not accessible to client applications. An exception
occurs if you try to manipulate protected SOAP headers.

About this task

The client application sets properties on the Stub or Call object to send and receive implicit SOAP
headers.

Procedure
1. Create a java.util.HashMap object

2. Add an entry to the HashMap object for each implicit SOAP header that the client wants to receive.
The HashMap entry key is the QName of the SOAP header. The HashMap entry value is null.

3. Set the HashMap entry on the Stub or Call object. The property name is
com.ibm.websphere.webservices.Constants.RESPONSE_SOAP_HEADERS. The value of the property
is the HashMap.

4. Issue remote method calls against the Stub or Call object. The web services engine extracts the
specified response headers from the web services response message and inserts them into the
HashMap. After the remote method returns, the response headers are accessible from the HashMap
object.

A JAXRPCException error can occur if any of the following are true:

v The HashMap contains a key that is not a QName.

1278 Developing WebSphere applications

v The HashMap contains a key that represents a SOAP header that is declared protected by the
owning component.

Results

You have a JAX-RPC web services client that can receive values from implicit SOAP headers.

Sending transport headers with JAX-RPC
You can enable an existing Java API for XML-based RPC (JAX-RPC) Web services client to send
application-defined information along with your Web services requests by using transport headers.

Before you begin

You need a JAX-RPC web services client that you can enable to send transport headers.

Sending transport headers is supported only by web services clients, and only supported for the HTTP and
JMS transports. The web services client must call the JAX-RPC APIs directly and not through any
intermediary layers, such as a gateway function. Sending and retrieving transport headers on the web
services server is done through non-web services APIs.

About this task

When using the JAX-RPC programming model, the client must set a property on the Stub or Call object to
send values in transport headers. After you set the property, the values are set in all the requests for
subsequent remote method invocations against that Stub or Call object until the associated property is set
to null or the Stub or Call object is discarded.

To send values in the transport headers on outbound requests, modify the client code as follows:

Procedure
1. Create a java.util.HashMap object that contains the transport header identifiers.

2. Add an entry to the HashMap object for each transport header that you want the client to send.

a. Set the HashMap entry key to a string that exactly matches the transport header identifier. You can
define the header identifier with a reserved header name, such as Cookie in the case of HTTP, or
the header identifier can be user defined, such as MyTransportHeader. Certain header identifiers
are processed in a unique manner, but no other checks are made as to the header identifier value.
To learn more about the HTTP header identifiers that have unique consideration, read about
transport header properties best practices. You can find common header identifier string constants,
such as HTTP_HEADER_SET_COOKIE in the com.ibm.websphere.webservices.Constants class.

b. Set the HashMap entry value to a string that contains the value of the transport header.

3. Set the HashMap entry on the Stub or Call object using the
com.ibm.websphere.webservices.Constants.REQUEST_TRANSPORT_PROPERTIES property. When the
REQUEST_TRANSPORT_PROPERTIES property value is set, that HashMap is used on subsequent
invocations to set the header values in the outgoing requests. If the
REQUEST_TRANSPORT_PROPERTIES property value is set to null, no HashMap is used on
subsequent invocations to set header values in outgoing requests. To learn more about these
properties, see the transport header properties documentation.

4. Issue remote method calls against the Stub or Call object. The headers and the associated values
from the HashMap are added to the outgoing request for each method invocation. If the invocation
uses HTTP, then the transport headers are sent as HTTP headers within the HTTP request. If the
invocation uses JMS, then the transport headers are sent as JMS message properties.

If the property is not set correctly, you might experience API usage errors that result in a
JAXRPCException error. The following requirements must be met, or the process fails:

v The property value that is set on the Stub or Call object must be a HashMap object or null.

Chapter 28. Developing web services 1279

v The HashMap must not be empty.

v Each key in the HashMap must be a String object.

v Each value in the HashMap must be a String object.

Results

You have a JAX-RPC web services client that is configured to send transport headers.

Retrieving transport headers with JAX-RPC
You can enable an existing Java API for XML-based RPC (JAX-RPC) Web services client to retrieve
values from transport headers. For a request that uses HTTP, the transport headers are retrieved from
HTTP headers found in the HTTP response message. For a request that uses Java Message Service
(JMS), the transport headers are retrieved from the JMS message properties found on the JMS response
message.

Before you begin

You need a web services client that you can enable to retrieve transport headers.

Retrieving transport headers is supported only by web services clients, and only supported for the HTTP
and JMS transports. The web services client must call the JAX-RPC APIs directly and not through any
intermediary layers, such as a gateway function. Sending and retrieving transport headers on the web
services server is done through non-web services APIs.

About this task

When using the JAX-RPC programming model, the client must set a property on the Stub or Call object in
order to retrieve values from the transport headers. After you set the property, values are read from
responses for the subsequent method invocations against that Stub or Call instance until the associated
property is set to null or the Stub or Call object is discarded.

To retrieve values from the transport headers on inbound responses, modify the client code.

Procedure
1. Create a java.util.HashMap object that contains the names of the transport headers to be retrieved

from incoming response messages.

2. Add an entry to the HashMap for each header that you want to retrieve a value from every incoming
response message.

a. Set the HashMap entry key to a string that exactly matches the transport header identifier. You can
define the header identifier with a reserved header name, such as Cookie in the case of HTTP, or
the header identifier can be user-defined, such as MyTransportHeader. Certain header identifiers
are processed in a unique manner, but no other checks are made to confirm the header identifier
value. To learn more about the HTTP header identifiers that have unique consideration, read about
transport header properties best practices. You can find common header identifier string constants,
such as HTTP_HEADER_SET_COOKIE in the com.ibm.websphere.webservices.Constants class.
The HashMap entry value is ignored and does not need to be set. An empty HashMap, for
example, one that is non-null, but does not contain any keys, causes all the transport headers in
the response to be retrieved.

3. Set the HashMap entry on the Stub or Call object using the
com.ibm.websphere.webservices.Constants.RESPONSE_TRANSPORT_PROPERTIES property. When
the HashMap is set, the RESPONSE_TRANSPORT_PROPERTIES property is used in subsequent
invocations to retrieve the headers from the responses. If you set the property to null, no headers are
retrieved from the response. To learn more about these properties, see the transport header properties
documentation.

1280 Developing WebSphere applications

4. Issue remote method calls against the Stub or Call object. The values from the specified transport
headers are retrieved from the response message and placed in the HashMap.

If the property is not set correctly, you might experience API usage errors that result in a
JAXRPCException error. The following requirements must be met, or the process fails:

v The property value that is set on the Stub or Call object must be either null or an instance of a
HashMap.

v All the HashMap keys must be a string data type, and the keys must not be null.

Results

You have a JAX-RPC web service that can receive transport headers from incoming response messages.

Assembling web services applications

Assembling web services applications
You can assemble Java-based web services applications using assembly tools.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with the application
server.

About this task

After you develop your web service application, you are now ready to assemble the application.
Assembling a web service application consists of creating the Java Platform, Enterprise Edition (Java EE)
modules that you can deploy onto application servers. The modules are created from code artifacts such
as web application archives (WAR) files for JavaBeans applications or enterprise beans Java archive
(JAR) files for enterprise beans applications. This packaging and configuring of code artifacts into
enterprise application modules (EAR files) or standalone web modules is necessary for deploying the
modules onto an application server.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. Assemble your web services enabled bean into the appropriate module.

v For JavaBeans enabled as web services:

a. “Assembling a WAR file that is enabled for web services from Java code” on page 1284.

b. “Assembling a web services-enabled WAR file from a WSDL file” on page 1285.

v For enterprise beans enabled as web services:

a. “Assembling a JAR file that is enabled for web services from an enterprise bean” on page 1282.

b. “Assembling a web services-enabled enterprise bean JAR file from a WSDL file” on page 1283.

Note: This product supports packaging enterprise beans in WAR files. If you include a web
services-enabled enterprise bean JAR file into a WAR file, you must merge any information in
the webservices.xml deployment descriptor files that are in the JAR files into the
webservices.xml deployment descriptor in the WEB-INF directory of the WAR file. To learn
more, see the EJB content in WAR modules information.

Note: When developing faults for a JAX-WS application, it is a best practice to always include the
fault bean that is generated by the JAX-WS tooling in the packaging of your JAX-WS
application. However if your application does not use the fault bean classes that are

Chapter 28. Developing web services 1281

generated by the JAX-WS tooling (that is, you use a bottom-up development approach
starting from Java and you choose not to package the fault bean classes), the application
server runtime environment dynamically generates the fault beans. Even so, it is a best
practice to always package the fault bean.

3. Assemble the web services enabled module into an enterprise archive (EAR) file.

v “Assembling a web services-enabled WAR into an EAR file” on page 1287.

v “Assembling an enterprise bean JAR file into an EAR file” on page 1286.

4. Enable the EAR file for EJB modules that contain web services. When the EAR file contains
Enterprise JavaBeans (EJB) modules that contain web services, you must run the endptEnabler
command-line tool or an assembly tool before deployment to produce a web services endpoint WAR
file. This tool is also used to specify whether the web services are exposed using SOAP over Java
Message Service (JMS) or SOAP over HTTP.

5. Assemble a web services-enabled WAR file into an EAR file.

Results

You have a web services-enabled EAR file that you can deploy onto the application server.

What to do next

Now you need to deploy the web services-enabled EAR file onto your application server. To learn more,
read about deploying web services applications onto application servers

Assembling a JAR file that is enabled for web services from an enterprise bean
You can assemble a web service-enabled enterprise bean Java archive (JAR) file with an assembly tool
using artifacts generated from tooling.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

You need the following artifacts that are generated from the WSDL2Java command-line tool to complete this
task:
v An assembled enterprise bean JAR file that is not enabled for web services
v A compiled Java class for the service endpoint interface
v A Web Services Description Language (WSDL) file
v The complete webservices.xml, ibm-webservices-bnd.xmi, and ibm-webservices-ext.xmi deployment

descriptor, and Java API for XML-based remote procedure call (JAX-RPC) mapping file.

About this task

Assemble a web services-enabled enterprise bean JAR file from Java code by following the actions in the
steps for this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

1282 Developing WebSphere applications

3. Migrate JAR files created with the Assembly Toolkit, Application Assembly Tool or a different tool to the
Rational Application Developer assembly tool. To migrate files, import your JAR files to the assembly
tool. Read about migrating code artifacts to an assembly tool in the Rational Application Developer
documentation.

Results

You have the artifacts required to web service-enable an Enterprise JavaBeans (EJB) module for web
services. The artifacts are added to the JAR file. Now you need to configure the deployment descriptors so
that you can deploy the web service into the application server run time environment.

Example

The AddressBook.jar JAR file contains the following files after assembly. The files added in this task are in
bold. These files include the WSDL file, the deployment descriptors, and the JAX-RPC mapping file.
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
addr/Address.class
addr/AddressBook_RI.class
addr/AddressBookBean.class
addr/AddressBookHome.class
addr/Phone.class
addr/StateType.class
addr/AddressBook.class
META-INF/wsdl/AddressBook.wsdl
META-INF/ibm-webservices-bnd.xmi
META-INF/ibm-webservices-ext.xmi
META-INF/webservices.xml
META-INF/AddressBook_mapping.xml

What to do next

Assemble the EAR file so that you can deploy the EAR file into WebSphere Application Server.

Assembling a web services-enabled enterprise bean JAR file from a WSDL file
You can assemble a web services-enabled enterprise bean Java archive (JAR) file from a Web Services
Description Language (WSDL) file with an assembly tool.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

You need the following artifacts to complete this task:
v An assembled enterprise bean JAR file that contains the Enterprise JavaBeans (EJB) implementation

and all classes that generate from the WSDL2Java command-line tool when the role argument is
develop-server and the container argument is EJB.

v A WSDL file
v The complete webservices.xml, ibm-webservices-bnd.xmi and ibm-webservices-ext.xmi deployment

descriptors, and the Java API for XML-based remote procedure call (JAX-RPC) mapping file.

About this task

Assemble a web services-enabled enterprise bean JAR file from a WSDL file by following the actions in
the steps for this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

Chapter 28. Developing web services 1283

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate JAR files created with the Assembly Toolkit, Application Assembly Tool or a different tool to the
Rational Application Developer assembly tool. To migrate files, import your JAR files to the assembly
tool. Read about migrating code artifacts to an assembly tool in the Rational Application Developer
documentation.

Results

You have the artifacts required to web service-enable an EJB module for web services. The artifacts are
added to the JAR file. Now you need to configure the deployment descriptors so that you can deploy the
web service into the application server runtime environment.

Example

The AddressBook.jar JAR file contains the following files after assembly. The files added in this task are in
bold. These files include the WSDL file, the deployment descriptors, and the JAX-RPC mapping file.
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
addr/Address.class
addr/AddressBook_RI.class
addr/AddressBookSoapBindingImpl.class
addr/AddressBookHome.class
addr/Phone.class
addr/StateType.class
addr/AddressBook.class
META-INF/wsdl/AddressBook.wsdl
META-INF/ibm-webservices-bnd.xmi
META-INF/ibm-webservices-ext.xmi
META-INF/webservices.xml
META-INF/AddressBook_mapping.xml

What to do next

For JAX-RPC web services, configure the webservices.xml deployment descriptor . You need to configure
the deployment descriptors for the web service so that WebSphere Application Server can process the
incoming web services requests.

Assembling a WAR file that is enabled for web services from Java code
You can assemble a web application archive (WAR) file that is enabled for web services from Java code
with an assembly tool.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

For Java API for XML-Based Web Services (JAX-WS) web service applications, you need the portable
artifacts that are generated by the wsgen command-line tool when starting from a service endpoint
implementation to complete this task. The wsgen tool processes a compiled service endpoint
implementation class as input and generates the following portable artifacts:

v any additional Java Architecture for XML Binding (JAXB) classes that are required to marshal and
unmarshal the message contents. The additional classes include classes that are represented by the
@RequestWrapper annotation and the @ResponseWrapper annotation for a wrapped method.

v a WSDL file if the optional -wsdl argument is specified. The wsgen command does not automatically
generate the WSDL file. The WSDL file is automatically generated when you deploy the service
endpoint.

1284 Developing WebSphere applications

For Java API for XML-based RPC (JAX-RPC) web service applications, you need the following artifacts
that are generated by the WSDL2Java command-line tool to complete this task:
v An assembled WAR file that contains the web.xml file, but is not enabled for web services.
v The Java class for the service endpoint interface
v A Web Services Description Language (WSDL) file
v The complete webservices.xml, ibm-webservices-bnd.xmi, and ibm-webservices-ext.xmi deployment

descriptors, and the Java API for XML-based remote procedure call (JAX-RPC) mapping file classes
that are generated by the WSDL2Java command.

About this task

Assemble a web services-enabled WAR file from Java code by following the actions in the steps for this
task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Import the JavaBeans implementation and the artifacts generated by the command-line tooling into the
assembly tool.

4. Migrate WAR files created with the Assembly Toolkit, Application Assembly Tool (AAT) or a different
tool to the Rational Application Developer assembly tool. To migrate files, import your WAR files to the
assembly tool. Read about migrating code artifacts to an assembly tool in the Rational Application
Developer information.

Results

The artifacts required to enable the web module for web services are added to the WAR file.

What to do next

Now you can assemble the WAR file that is enabled for Web services into an EAR file. To learn more,
read about assembling a web services-enabled WAR into an EAR file.

Assembling a web services-enabled WAR file from a WSDL file
You can assemble a web application archive (WAR) file from a Web Services Description Language
(WSDL) file that is enabled for web services.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

For Java API for XML-Based Web Services (JAX-WS) web service applications, you need the portable
artifacts that are generated by the wsimport command-line tool when starting from a WSDL file to
complete this task. The wsimport tool processes a WSDL file as input and generates the following portable
artifacts:

v Service Endpoint Interface (SEI)

v Service class

v Exception classes that are mapped from the wsdl:fault class (if any)

v Java Architecture for XML Binding (JAXB) generated type values which are Java classes mapped from
XML schema types

Chapter 28. Developing web services 1285

You can package the generated artifacts in a web application archive (WAR) file with the WSDL file and
schema documents along with the endpoint implementation that you plan to deploy.

For Java API for XML-based RPC (JAX-RPC) web service applications, you need the following artifacts
that are generated by the WSDL2Java command-line tool to complete this task:
v An assembled WAR file that contains the Enterprise JavaBeans (EJB) implementation, all the classes

that generate from the WSDL2Java command-line tool and the web.xml deployment descriptor file.
v A WSDL file
v The complete webservices.xml, ibm-webservices-bnd.xmi, and ibm-webservices-ext.xmi deployment

descriptors, and the Java API for XML-based remote procedure call (JAX-RPC) mapping file.

About this task

Assemble a web services-enabled WAR file from a WSDL file by following the actions in the steps for this
task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Import the JavaBeans implementation and the artifacts generated by the command-line tooling into the
assembly tool.

4. Migrate JAR files created with the Assembly Toolkit, Application Assembly Tool or a different tool to the
Rational Application Developer assembly tool. To migrate files, import your JAR files to the assembly
tool. Read about migrating code artifacts to an assembly tool in the Rational Application Developer
information.

Results

The artifacts required to enable the web module for web services is added to the WAR file.

What to do next

Now you can assemble the WAR file that is enabled for Web services into an EAR file. To learn more,
read about assembling a web services-enabled WAR into an EAR file.

Assembling an enterprise bean JAR file into an EAR file
You can assemble an enterprise bean Java archive (JAR) file into an enterprise archive (EAR) file with an
assembly tool. Assembling the JAR file, and now the EAR file, are required tasks to enable Java code for
web services.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

Before assembling a web services-enabled EAR file you must assemble an enterprise bean JAR file that
you want to enable for Web services. To learn more about the artifacts that are needed for the assembly
of the enterprise bean JAR file, see the information on assembling an enterprise bean JAR file from Java
code that is enabled for web services.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the

1286 Developing WebSphere applications

application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

About this task

To assemble a web services-enabled EAR file:

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Assemble the web services-enabled JAR file into an EAR file. The EAR file can contain an enterprise
bean or application client JAR files, WAR files, web applications, and metadata describing the
applications or application.xml files.

Results

A web services-enabled EAR file.

Example

In the following example, there is an application.xml deployment descriptor packaged with a web
services-enabled JAR file called AddressBook.jar that is packaged into an EAR file called
AddressBook.ear. The EAR file contains:
META-INF/MANIFEST.MF
META-INF/application.xml
AddressBook.jar

An example of the application.xml deployment descriptor is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">
<application id="Application_ID">
<display-name>AddressBookJ2WEE</display-name>
<description>AddressBook EJB Example from Java</description>
<module id="EjbModule_1">
<ejb>AddressBook.jar</ejb>
</module>
</application>

What to do next

You can enable an EAR file for EJB modules that contain web services. Then, deploy the EAR file into
WebSphere Application Server.

Assembling a web services-enabled WAR into an EAR file
You can assemble a web services-enabled web application archive (WAR) file into an enterprise archive
(EAR) file with an assembly tool.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

Chapter 28. Developing web services 1287

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

About this task

Assemble a web services-enabled WAR file into an EAR file using the steps provided in this task section.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in theRational Application Developer

documentation.

2. Assemble the web services-enabled WAR file into an EAR file. Assemble the EAR file that contains the
JAR or WAR files. The EAR file can contain an enterprise bean or application client JAR files; web
applications or WAR files; and metadata describing the applications or application.xml files. To learn
more about how to assemble the WAR file, see the assembling applications documentation.

Results

A web services-enabled EAR file.

Example

In the following example, there is an application.xml deployment descriptor packaged with a web
services-enabled JAR file called AddressBook.jar that is packaged into an EAR file called
AddressBook.ear. The EAR file contains:
META-INF/MANIFEST.MF
META-INF/application.xml
AddressBook.war

An example of the application.xml deployment descriptor is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">
<application id="Application_ID">
<display-name>AddressBook</display-name>
<description>AddressBook Example from Java bean</description>
<module id="WebModule_1">
<web>
<web-uri>AddressBook.war</web-uri>
<context-root>/AddressBook</context-root>
</web>
</module>
</application>

What to do next

Deploy your web services.

Enabling an EAR file for EJB modules that contain web services
When your enterprise archive (EAR) file contains enterprise JavaBeans (EJB) modules that contain Web
services, you must run the endptEnabler command-line tool or an assembly tool before deployment to
produce a web services endpoint web application archive (WAR) fiile.

1288 Developing WebSphere applications

Before you begin

Assemble an enterprise Java archive (JAR) file that is enabled for web services from an enterprise bean.
The enterprise JAR file is an artifact that is required to build the EAR file.

About this task

You can add router modules to your application that is enabled for web services with either the
endptEnabler command-line tool or with assembly tools provided with WebSphere Application Server. The
tool that you choose to use for this task depends on your preference to work with a command-line tool or
a graphical user interface. See the assembly tools documentation to learn how to use assembly tool to
accomplish this task.

These tools add one or more router modules to the EAR file for each web service-enabled enterprise
JavaBeans (EJB) module contained in the EAR file. A router module provides an endpoint for the web
service in a particular EJB module.

You should not modify the contents of the EJB module or the web module that was generated using the
endptEnablercommand-line tool. If you do, an error occurs during run time. The following is an example
of the error that displays:
"Error]- WSWS3142E: Error: Could not find web services engine.]: javax.servlet.ServletException: WSWS3142E:
Error: Could not find web services engine."

Each router module supports a specific transport such as HTTP or Java Message Service (JMS). If no
enterprise bean JAR modules are located in the EAR file, it is not necessary to use these tools.

Procedure

Enable an EAR file with the endptEnabler command-line tool. In its interactive mode, the endptEnabler
command guides you through the required steps to enable one or more services within an application.

What to do next

Deploy the EAR file into WebSphere Application Server. An assembled EAR file that is enabled for web
services is required for deployment.

Enabling an EAR file for web services with the endptEnabler command:

Use the endptEnabler command-line tool to enable an enterprise archive (EAR) file for Enterprise
JavaBeans (EJB) modules that contain web services and to specify whether the web services are exposed
using SOAP over Java Message Service (JMS) or SOAP over HTTP.

Before you begin

Before doing this task, you need to assemble a web services-enabled enterprise Java archive (JAR) into
an EAR file.

About this task

The endptEnabler command-line tool adds one or more router modules to the EAR file for each Java API
for XML Web Services (JAX-WS) or Java API for XML-based RPC (JAX-RPC) based Web service-enabled
enterprise bean Java archive (JAR) module within the EAR file. A router module provides an endpoint for
the web services in a particular enterprise bean JAR module.

Each router module supports a specific transport such as HTTP or JMS. An HTTP router module is a web
application archive (WAR) module that provides an HTTP endpoint for each of the web services contained

Chapter 28. Developing web services 1289

within a particular enterprise bean JAR module. Likewise, a JMS router module is an enterprise bean JAR
module that contains a Message Driven Bean (MDB) that serves as the message listener for requests
intended for the web service endpoints.

If no enterprise bean JAR modules exist in the EAR file, it is not necessary to use this tool.

Procedure

1. Invoke the endptEnabler command.

Invoke the endptEnabler command from the install_root/bin directory.

2. Enter the name of the EAR file, when prompted.

3. Enter various input values as requested by the endptEnabler command. You are prompted for various
input values for each enterprise bean JAR module that is enabled for web services in the EAR file.
Typically, you accept the defaults for each prompt. To learn about the properties of this command, see
the endptEnabler command documentation.

a. Specify an HTTP router module to transport your EJB-based web service. Use the -transport
http option to indicate the web service is available using HTTP. One router module is created for
each enterprise bean JAR file that contains either JAX-WS or JAX-RPC web services.

b. Specify an JMS router module to transport your EJB-based web service. Use the -transport jms
option to indicate the web service is available using JMS. One router module is created for each
enterprise bean JAR file that contains either JAX-WS or JAX-RPC web services.

Results

An HTTP or JMS router module is added to the EAR file for each enterprise bean JAR module within the
EAR file that contains web services endpoints. For HTTP, a context-root is configured for the application
so that the web service can be invoked through a Web address. The web address used to invoke the web
service is:
http://host[:port]/<context-root>/services/<port-component-name>

Ensure that you install the HTTP or Java Message Service (JMS) router module that you generated with
the endptEnabler command onto the same target as your web services enterprise bean JAR files. These
HTTP or JMS router modules are included in your web services application and they need to use the
runtime libraries of the application server.

What to do next

Deploy the EAR file onto your application server. An assembled EAR file that is enabled for web services
is required for deployment.

If you are using JMS as a transport for your web service requests, define the various JMS objects such as
queues, topics, or connection factories, that will be used by your application prior to installing the
application.

endptEnabler command:

The endptEnabler command is used to enable a set of web services within an enterprise archive (EAR)
file. The endptEnabler command must run on EAR files containing Enterprise JavaBeans (EJB) modules
that are enabled for web services.

Each router module provides a web service endpoint for a particular transport. For example, you can add
a HTTP router module so that the web service can receive requests over the HTTP transport. Or, you can
add a Java Message Service (JMS) router module so that the web service can receive requests from a
JMS queue or topic.

1290 Developing WebSphere applications

In its interactive mode, the endptEnabler command guides you through the required steps to enable one
or more services within an application. The endptEnabler command makes a backup copy of your original
EAR file in the event that you need to remove or add services at a later time. If your EAR file contains an
enterprise bean Java archive (JAR) file that is enabled for web services, you must run the endptEnabler
command before the EAR file is deployed. Otherwise, you do not need to run the command.

endptEnabler usage syntax

Invoke the endptEnabler command from the WebSphere Application Server bin directory. The command
syntax is presented in the following example:
endptEnabler

[-verbose|-v]
[-quiet|-q]
[-help|-h|-?]
[-properties|-p properties-filename]
[-transport|-t default-transports]
[-enableHttpRouterSecurity]
[-enableClientCertSecurity]
[ear-filename]
[-classpath|-cp]

All parameters are optional and described in the following list:

-verbose, -v
This parameter details and displays progress messages as the endptEnabler tool processes the EAR
file. This command-line option is mapped to the verbose global property.

-quiet, -q
This parameter makes sure that there are no displays of per-module progress messages as the
endptEnabler tool processes the EAR file. This command-line option is mapped to the quiet global
property.

-help, -h, -?
This parameter displays a brief help message that explains the various options.

-properties, -p <properties-filename>
This parameter reads properties from the properties-filename properties and controls the behavior of
the endptEnabler tool.

-transport, -t <default-transports>
This parameter specifies the default list of transports for which router modules are created for each
enterprise bean JAR file contained in the EAR file. This command-line option is mapped to the
defaultTransports global property. The following are examples of this parameter:
-transport http (the default)
-transport jms
-t http,jms

-enableHttpRouterSecurity
This parameter enables you to add a security policy for all authenticated users to protect the HTTP
router module if all the EJB modules are secured in the enterprise bean JAR file. This command-line
option is mapped to the http.enableRouterSecurity global property.

-enableClientCertSecurity
This parameter enables you to add the following login-config stanza to the web.xml file for certificate
authentication, instead of basic-auth or form-login. This command-line option is mapped to the
http.enableClientCertSecurity global property.
<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

Note: Use the -enableClientCertSecurity parameter with the -enableHttpRouterSecurity parameter.

Chapter 28. Developing web services 1291

<ear-filename>
This parameter specifies the name of the EAR file to be processed.

If the ear-filename parameter is not entered on the command line, the interactive mode is used. In
the interactive mode, you are prompted for the EAR file name, the router module names and other
important values as the processing occurs. The following dialog is an example of the endptEnabler
interactive mode.

In this dialog, the user input is in fixed width font and the endptEnabler output is in bold.
endptEnabler<enter>
WSWS2004I: IBM WebSphere Application Server Release 5
WSWS2005I: Web Services Enterprise Archive Endpoint Enabler Tool.
WSWS2007I: (C) COPYRIGHT International Business Machines Corp. 1997, 2003
WSWS2006I: Please enter the name of your EAR file: AddressBook.ear<enter>

WSWS2003I: Backing up EAR file to: AddressBook.ear~

WSWS2016I: Loading EAR file: AddressBook.ear
WSWS2017I: Found EJB Module: AddressBookEJB.jar

WSWS2029I: Enter http router name for EJB Module AddressBookEJB
[AddressBookEJB_HTTPRouter.war]:<enter>
WSWS2030I: Enter http context root for EJB Module AddressBookEJB
[/AddressBookEJB]:<enter>
WSWS2024I: Adding http router for EJB Module AddressBookEJB.jar.
WSWS2036I: Saving EAR file AddressBook.ear...
WSWS2037I: Finished saving the EAR file.
WSWS2018I: Finished processing EAR file AddressBook.ear.

If the ear-filename parameter is entered on the command-line, the non-interactive mode is used. In
the non-interactive mode, the router module names and other important values are determined from
the user-specified properties or default values.

-classpath, -cp
This parameter enables you to specify separate JAR files in the class path for the endptEnabler
command. Use this parameter if the EJB file references Java types in separate JAR files that do not
exist within the EAR file. You can specify multiple values for this parameter. For example:
endptEnabler -classpath C:\MyWork\Utility.jar;D:\SharedFiles\Hello.zip;HelloWorld.jar

When you do not specify this parameter, you might encounter an error that is similar to the following
message:
WSWS2021I: Skipping the enterprise bean module module_name
because it contains no web services.

endptEnabler properties

With the endptEnabler command you can control its runtime behavior by specifying a set of properties with
the -properties command-line option. These properties are organized in one of two ways: global and
per-module. Global properties affect the overall behavior of the tool as it processes multiple enterprise
bean JAR modules within the EAR file. Per-module properties affect the processing of a particular
enterprise bean JAR module.

Table 173. Global properties for the endptEnabler command. Use these global properties of the endptEnabler
command when enabling a set of web services within an enterprise archive (EAR) file.
Property name Description Default value

verbose Displays detailed progress messages. False

quiet Displays only brief progress messages. False

http.enableRouterSecurity Enables you to add a security policy for all authenticated users to protect the HTTP router module
if all the EJB modules are secured in the enterprise bean JAR file.

False

1292 Developing WebSphere applications

Table 173. Global properties for the endptEnabler command (continued). Use these global properties of the
endptEnabler command when enabling a set of web services within an enterprise archive (EAR) file.
Property name Description Default value

http.enableClientCertSecurity Enables you to add the following login-config stanza to the web.xml file for certificate
authentication, instead of basic-auth or form-login:

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

False

http.routerModuleNameSuffix Specifies the suffix used to construct default HTTP router module names. The .war extension is
added by the endptEnabler command.

_HTTPRouter

jms.routerModuleNameSuffix Specifies the suffix used to construct default JMS router module names. The .jar extension is
added by the endptEnabler command.

_JMSRouter

jms.defaultDestinationType Specifies the default destination type to use for all JMS router modules that are added to the EAR
file. This type is either queue or topic.

queue

defaultTransports Specifies the default list of transports for which router modules are created. The list can contain
the values http and jms. Multiple values are separated by a comma. Examples are: http, jms
and http,jms.

http

The following table describes the per-module properties supported by the endptEnabler command. The
ejbJarName variable refers to the name of an enterprise bean JAR module within the EAR file, without the
.jar extension.

Table 174. Per-module properties for the endptEnabler command. Use these properties of the endptEnabler
command that affect the processing of a particular enterprise bean JAR module.
Property name Description Default value

<ejbJarName>.transports Lists the transports for which router modules are created for a
particular enterprise bean JAR file. The list can contain the values
http and jms. Multiple values are separated by a comma. Examples
are: http, jms and http,jms.

http

<ejbJarName>.http.skip Specifies the flag which bypasses the addition of an HTTP router
module, even if it otherwise is added based on other properties.
Valid values are true and false.

false

<ejbJarName>
.http.routerModuleName

Specifies the name of the HTTP router module for a particular
enterprise bean JAR file.

ejbJarName_HTTPRouter

<ejbJarName>.http.contextRoot Specifies the context root associated with the HTTP router module
for a particular enterprise bean JAR file.

/ejbJarName

<ejbJarName>.jms.skip Specifies the flag that bypasses the addition of an JMS router
module even if it otherwise is added based on other properties. Valid
values are true and false.

false

<ejbJarName>.jms.
routerModuleName

Specifies the name of the JMS router module for a particular
enterprise bean JAR file.

ejbJarName_JMSRouter

<ejbJarName>.jms.
activationSpecJndiName

Specifies the Java Naming and Directory Interface (JNDI) name of
the activation specification that is configured for the Message Driven
Bean (MDB) within the JMS router module.

null

<ejbJarName>.jms.
listenerInputPortName

Specifies the name of the listener port to configure for the MDB
within the JMS router module. The listener port is configured only if
an activationSpecJndiName property is not specified.

null

<ejbJarName>.jms.destinationType Specifies the JMS destination type associated with the MDB within
the JMS router. Valid values are queue and topic.

queue

<ejbJarName>.<port_local_name>
.http.urlPattern=
<url_pattern_name>

Specifies the URL pattern for ports. If you have EJB module with the
indicated name that has a port with the indicated local name, you
can specify the HTTP URL pattern with this property. This property
only applies to HTTP router modules. It has no affect on JMS router
modules.

null

Properties example

Suppose an EAR file contains an enterprise bean JAR file named, StockQuoteEJB.jar that contains web
services. The following set of properties can be used to control the endptEnabler command runtime
behavior as it processes the EAR file:

Chapter 28. Developing web services 1293

StockQuoteEJB.transports=http,jms

StockQuoteEJB.http.routerModuleName=StockQuoteEJB_HTTP

StockQuoteEJB.http.contextRoot=/StockQuote

StockQuoteEJB.jms.routerModuleName=StockQuoteEJB_JMS

StockQuoteEJB.jms.destinationType=queue

endptEnabler examples

The following commands are examples of how the endptEnabler command can be used:
endptEnabler MyApp.ear

endptEnabler -t jms,http MyApp.ear

endptEnabler -v -properties MyApp.props MyApp.ear

endptEnabler -q -t jms MyApp.ear

endptEnabler -v -t http,jms

Assembling web services-enabled clients

Assembling a web services-enabled client JAR file into an EAR file
Now that you have generated your application artifacts, you need to assemble these artifacts to create an
enterprise archive (EAR) file that is used in the web services application.

Before you begin

For Java API for XML-Based Web Services (JAX-WS) web service applications, you need the portable
artifacts that are generated by the wsimport command-line tool when starting from a WSDL file to
complete this task. The wsimport tool processes a WSDL file as input and generates the following portable
artifacts:

v Service Endpoint Interface (SEI)

v Service class

v Exception classes that are mapped from the wsdl:fault class (if any)

v Java Architecture for XML Binding (JAXB) generated type values which are Java classes mapped from
XML schema types

v An assembled client module that contains the implementation, all of the classes generated by the
wsimport command-line tool and the ejb-jar.xml deployment descriptor or the application-client.xml
deployment descriptor. This module can be:
– An application client module that contains the META-INF/application-client.xml file.
– An Enterprise JavaBeans (EJB) module that contains the META-INF/ejb-jar.xml file.

For Java API for XML-based RPC (JAX-RPC) web service applications, you need the following artifacts
that are generated from the WSDL2Java command-line tool to complete this task:
v An assembled client module that contains the implementation, all of the classes generated by the

WSDL2Java command-line tool and the ejb-jar.xml deployment descriptor or the application-
client.xml deployment descriptor. This module can be:
– An application client module that contains the META-INF/application-client.xml file.
– An Enterprise JavaBeans (EJB) module that contains the META-INF/ejb-jar.xml file.

v The WSDL file that you used to develop the client.
v The templates for the ibm-webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi deployment

descriptor, if used.
v A generated Java API for XML-based remote procedure call (JAX-RPC) mapping deployment descriptor.

1294 Developing WebSphere applications

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

About this task

You can use assembly tools included with WebSphere Application Server to assemble web
services-enabled client applications.

Assemble the client code and artifacts that enable the application client to access a web service with steps
provided:

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Import the client implementation and the artifacts generated by the command-line tooling into the
assembly tool.

4. Migrate JAR files created with the Rational Application Developer assembly tool. To migrate files,
import your JAR files to the assembly tool. Read about migrating code artifacts to an assembly tool in
the Rational Application Developer documentation.

5. Assemble the JAR file into an enterprise archive (EAR) file using typical assembly techniques if the
client runs in a container.

Results

You have assembled the artifacts required to enable the client application for web services into an EAR
file.

Example

This example of the assembly process uses the AddressBookClient.jar JAR file the
AddressBookClient.ear EAR file:
META-INF/MANIFEST.MF
META-INF/application-client.xml
META-INF/wsdl/AddressBook.wsdl
META-INF/AddressBook_mapping.xml

com/ibm/websphere/samples/webservices/addr/Address.class
com/ibm/websphere/samples/webservices/addr/AddressBook.class
com/ibm/websphere/samples/webservices/addr/AddressBookClient.class
com/ibm/websphere/samples/webservices/addr/AddressBookService.class
...other generated classes...

After assembling the AddressBookClient.jar file into the AddressBookClient.ear file, the
AddressBookClient.ear file contains the following files:
META-INF/MANIFEST.MF
AddressBookClient.jar
META-INF/application.xml

Chapter 28. Developing web services 1295

What to do next

For Java API for XML-Based Web Services (JAX-WS) applications, you are ready to deploy the web
services client application.

For Java API for XML-based RPC (JAX-RPC) applications, you need to configure the client deployment
descriptor bindings with an assembly tool so that the client can communicate with a web service that is
deployed on a server.

Assembling a web services-enabled client WAR file into an EAR file
Now that you have generated your application artifacts, you need to assemble these artifacts to create an
enterprise archive (EAR) file that is used in the web services application.

Before you begin

You can assemble Java-based web services modules with assembly tools provided with WebSphere
Application Server.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

About this task

Assemble the client code and artifacts that enable the application client to access a web service with steps
provided:

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate WAR files created with the Assembly Toolkit, Application Assembly Tool (AAT) or a different
tool to the Rational Application Developer assembly tool. To migrate files, import your WAR files to an
assembly tool. Read about importing web application archive (WAR) files using an assembly tool in the
Rational Application Developer documentation.

Results

You have assembled the artifacts required to enable the client application for web services into an EAR
file.

Example

This example of the assembly process uses the AddressBookWeb.war WAR file and the AddressBook.ear
EAR file:
WEB-INF/MANIFEST.MF
WEB-INF/web.xml
WEB-INF/wsdl/AddressBook.wsdl
WEB-INF/AddressBook_mapping.xml
WEB-INF/ibm-webservicesclient-ext.xmi (optional)
WEB-INF/ibm-webservicesclient-bnd.xmi

1296 Developing WebSphere applications

com/ibm/websphere/samples/webservices/addr/Address.class
com/ibm/websphere/samples/webservices/addr/AddressBook.class
com/ibm/websphere/samples/webservices/addr/AddressBookClient.class
com/ibm/websphere/samples/webservices/addr/AddressBookService.class
...other generated classes...

After assembling the AddressBookWeb.war file into the AddressBook.ear file, the AddressBook.ear file
contains the following files:
META-INF/MANIFEST.MF
AddressBookWeb.war
META-INF/application.xml

What to do next

For Java API for XML-Based Web Services (JAX-WS) applications, you are ready to deploy the web
services client application.

For Java API for XML-based RPC (JAX-RPC) applications, you need to configure the client deployment
descriptor bindings with an assembly tool so that the client can communicate with a web service that is
deployed on a server.

Chapter 28. Developing web services 1297

1298 Developing WebSphere applications

Chapter 29. Developing web services - Addressing
(WS-Addressing)

The Web Services Addressing (WS-Addressing) support in this product provides the environment for web
services that use the World Wide Web Consortium (W3C) WS-Addressing specifications. This family of
specifications provide transport-neutral mechanisms to address web services and to facilitate end-to-end
addressing.

Using the Web Services Addressing APIs: Creating an application that
uses endpoint references
This product provides application programming interfaces for applications that have to create endpoint
references and use those endpoint references to target web service endpoints.

Before you begin

The steps described in this task apply to servers and clients that run on WebSphere Application Server.

About this task

Complete this task if you are a web service developer who needs to create endpoint references within an
application, and then use these references to target web service resource instances. For example, a
WSRF application developer.

Procedure
1. Create a web service that is referenced by an endpoint reference, and a client that accesses the web

service. For JAX-WS applications, use the instructions in “Creating a JAX-WS web service application
that uses Web Services Addressing.” For JAX-RPC applications, use the instructions in “Creating a
JAX-RPC web service application that uses Web Services Addressing” on page 1304

2. Optional: You can extend the application that you created in the previous step so that it conforms to
the Web Services Resource Framework (WSRF) specifications, by following the instructions in
Creating stateful web services by using the Web Services Resource Framework.

Creating a JAX-WS web service application that uses Web Services
Addressing
Web Services Addressing (WS-Addressing) aids interoperability between web services by defining a
standard way to address web services and provide addressing information in messages. This task
describes the steps that are required to create a JAX-WS web service that is accessed using a
WS-Addressing endpoint reference. The task also describes the extra steps that are required to use
stateful resources as part of the web service.

Before you begin

The steps that are described in this task apply to servers and clients that run on WebSphere Application
Server.

About this task

Complete this task if you are creating a JAX-WS web service that uses the WS-Addressing specification.
This task uses the JAX-WS WS-Addressing APIs to create the required endpoint reference. Alternatively,
you can create endpoint references by using the IBM proprietary WS-Addressing API, and convert them
into JAX-WS API objects for use with the rest of the application.

© IBM Corporation 2009 1299

Procedure
1. Provide a web service interface that returns an endpoint reference to the target service.

The interface must return an endpoint reference, which it can do by using a factory operation or a
separate factory service. The target service can front a resource instance, for example a shopping cart.

2. Implement the web service created in the previous step. For the WS-Addressing portion of the
implementation, complete the following steps:

a. Optional: Include annotations to specify WS-Addressing behavior. See “Web Services Addressing
annotations” on page 1351 for more details.

b. Optional: If your interface involves a web service that fronts a resource instance, create or look up
the resource instance.

c. Optional: If you are using a resource instance, obtain the identifier of the resource. The resource
identifier is application dependent and might be generated during the creation of the resource
instance.

Attention: Do not put sensitive information in the resource identifier, because the identifier is
propagated in the SOAP message.

d. Create an endpoint reference that references the web service by following the instructions in
“Creating endpoint references by using the JAX-WS Web Services Addressing API” on page 1302.
If you are using a resource instance, pass in the resource identifier as a parameter.

e. Return the endpoint reference.

3. If your web service uses resource instances, extend the implementation to match incoming messages
to the appropriate resource instances. Because you associated the resource identifier with the endpoint
reference that you created earlier, any incoming messages targeted at that endpoint reference contain
the resource identifier information as a reference parameter in the SOAP header of the message.
Because the resource identifier is passed in the SOAP header, you do not have to expose it on the
web service interface. When WebSphere Application Server receives the message, it puts this
information into the message context on the thread. Extend the implementation to undertake the
following actions:

a. Obtain the resource instance identifier from the message context.

v If you are using the 2005/08 WS-Addressing namespace, use the REFERENCE_PARAMETERS
property of the MessageContext class.

v If you are using the 2004/08 WS-Addressing namespace, you must use the IBM WS-Addressing
API, specifically the EndpointReferenceManager.getReferenceParameterFrom
MessageContext(QName resource_id) method.

Use the following method for the 2005/08 namespace:
...
List resourceIDList = (List)getContext().getMessageContext().get(MessageContext.REFERENCE_PARAMETERS);
...

Use the following method for the 2004/08 namespace:
...

String resource_identifier =
EndpointReferenceManager.getReferenceParameterFromMessageContext(PRINTER_ID_PARAM_QNAME);

...

b. Forward the message to the appropriate resource instance.

4. Optional: Configure a proxy client to communicate with the service.

a. Use the wsimport or xjc tool to generate the artifacts required by the client.

Note: If you want to use the 2004/08 WS-Addressing specification, specify the provided binding
file, app_server_root/util/SubmissionEndpointReference.xjb, as the -b parameter of the tool.
This parameter tells the tool to generate endpoint reference objects by using the
SubmissionEndpointReference class that is part of the IBM implementation of the standard
JAX-WS API. If you do not specify this bindings file, the resulting endpoint reference objects
will not work with the standard JAX-WS API.

1300 Developing WebSphere applications

b. In the client code, create an instance of the service class.

c. Obtain a proxy object from the service class. There are several ways to use the JAX-WS API to
obtain proxy objects. For example, there are several getPort methods on the Service class and one
on the EndpointReference class. For more information, refer to the API documentation.

d. Optional: Use the Addressing or SubmissionAddressing feature to enable WS-Addressing support.
For example, create a proxy by using a getPort method that accepts web service features as a
parameter. If you prefer, you can enable WS-Addressing support by using another method, such as
policy sets. For more information see “Enabling Web Services Addressing support for JAX-WS
applications” on page 1315.

e. Use the proxy object to invoke the service method that returns the endpoint reference.

The following sample code shows a client invoking a web service to add two numbers together. The
web service issues a ticket (the resource identifier) to the client, and requires the client to use this
ticket when invoking the web service.

The client creates two proxies. The first proxy obtains the ticket as an endpoint reference from the
service. The second proxy uses the AddressingFeature class to enable WS-Addressing for the 2005/08
specification, and invokes the service to add the two numbers together.

...
CalculatorService service = new CalculatorService();
// Create the first proxy
Calculator port1 = service.getCalculatorServicePort();
// Obtain the ticket as an endpoint reference from the service
W3CEndpointReference epr = port1.getTicket();

// Create the second proxy, using an addressing feature to enable WS-Addressing
Calculator port2 = epr.getPort(Calculator.class, new AddressingFeature());
// Invoke the service to add the numbers
int answer = port2.add(value0, value1);
System.out.println("The answer is: " + answer);
...

Note: If the metadata of the endpoint reference conflicts with the information already associated with
the outbound message, for example if the proxy object is configured to represent a different
interface, a javax.xml.ws.WebServiceException exception is thrown on attempts to invoke the
endpoint.

If you want to set message-addressing properties, such as a reply to endpoint, you must use the IBM
proprietary WS-Addressing SPI and the BindingProvider class, as described in “Specifying and
acquiring message-addressing properties by using the IBM proprietary Web Services Addressing SPIs”
on page 1312.

5. Optional: Configure a Dispatch client to communicate with the service. You can configure a client in
different ways; the following steps describe one example.

a. Create an instance of the service.

b. Add a port to the service object.

c. Create an instance of the Dispatch class, passing in the endpoint reference.

d. Create a Dispatch<T> object. Use the Service.createDispatch method with the following
parameters:

v The endpoint reference returned by the service, which represents the resource to forward
messages to.

v An array of web service features. Include one or more WS-Addressing features to enable
WS-Addressing. See “Enabling Web Services Addressing support for JAX-WS applications” on
page 1315 for more details.

There are several variations of the Service.createDispatch method; see the API documentation for
more details.

e. Compose the client request message.

f. Invoke the service endpoint with the Dispatch client.

The following code shows an example fragment of a Dispatch client that enables 2004/08
WS-Addressing.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1301

...
CalculatorService service = new CalculatorService();
Dispatch(<SOAPMessage> dispatch = service.createDispatch(

endpointReference,
SOAPMessage.class,
Service.Mode.MESSAGE,
new SubmissionAddressingFeature(true));

...

Results

The web service and client are configured to use endpoint references through the WS-Addressing support.
For a detailed example that includes code, see “Example: Creating a web service that uses the JAX-WS
Web Services Addressing API to access a generic web service resource instance” on page 1310.

What to do next
v Refer to “Web Services Addressing security” on page 1353 for information about security with

WS-Addressing.

v Deploy the application. If you used WS-Addressing annotations or features in the code, you do not have
to take any additional steps to enable WS-Addressing support. For more information and for other
scenarios that might require additional steps, for example enabling WS-Addressing support by using
policy sets, see “Enabling Web Services Addressing support for JAX-WS applications” on page 1315.

Creating endpoint references by using the JAX-WS Web Services Addressing API
Endpoint references are a primary concept of the Web Services Addressing (WS-Addressing)
interoperability protocol, and provide a standard mechanism to encapsulate information about specific web
service endpoints. This product provides interfaces for you to create endpoint references by using the
standard JAX-WS API.

About this task

This task is a subtask of “Creating a JAX-WS web service application that uses Web Services Addressing”
on page 1299.

Complete this task if you are writing an application that uses the standard JAX-WS WS-Addressing API.
Such applications require endpoint references to target web service endpoints. The standard JAX-WS API
is designed to create only simple endpoint references, and therefore has the following restrictions:

v You cannot create highly available or workload managed endpoint references.

v You cannot create endpoint references that represent stateful session beans.

v You cannot use classes that are created by using the JAX-WS API with the IBM proprietary
WS-Addressing SPI.

You can overcome these restrictions by using the IBM proprietary WS-Addressing API to create the
endpoint references and then converting them into standard JAX-WS endpoint references that can be
used by the rest of the application.

Procedure
v If an endpoint needs to create an endpoint reference that represents itself, use the

getEndpointReference method of the web service context object, passing in an Element object
representing the reference parameters to be associated with the endpoint reference (or a null object if
you do not want to specify any reference parameters).

By default, this method creates a W3CEndpointReference object. If you want to create a
SubmissionEndpointReference object, representing an endpoint that conforms to the 2004/08
WS-Addressing specification, pass the endpoint reference type as a parameter. For example, the
following code fragment uses the getEndpointReference method to return a W3CEndpointRerence
object that has a ticket ID associated with it:

1302 Developing WebSphere applications

...
@WebService(name="Calculator",

targetNamespace="http://calculator.org")

public class Calculator {
@Resource
WebServiceContext wsc;

...
// Create the ticket id
element = document.createElementNS(

"http://calculator.jaxws.axis2.apache.org", "TicketId");
element.appendChild(document.createTextNode("123456789"));
...

public W3CEndpointReference getEPR() {
// Get the endpoint reference and associate the ticket id
// with it as a reference parameter
W3CEndpointReference epr = (W3CEndpointReference)wsc.getEndpointReference(element);

return epr;
}

...

The following line of code shows how to create a 2004/08 endpoint reference for the preceding sample:
SubmissionEndpointReference epr = (SubmissionEndpointReference)

wsc.getEndpointReference(SubmissionEndpointReference.class, element);

v If an endpoint needs to create an endpoint reference that represents a different endpoint, use either the
W3CEndpointReferenceBuilder class or the SubmissionEndpointReferenceBuilder class, depending on
the namespace that you want to use.

1. Create an instance of the appropriate builder class. Use the W3CEndpointReferenceBuilder class if
you want to create an endpoint reference that complies with the 2005/08 WS-Addressing
specification. Use the SubmissionEndpointReferenceBuilder class if you want to create an endpoint
reference that complies with the 2004/08 WS-Addressing specification.

2. Set the following property or properties of the builder instance according to the location of the
endpoint.

– If the endpoint is in another module in this application, set the serviceName and endpointName
properties to appropriate values. You must set the serviceName property before you set the
endpointName property, otherwise the application throws an error. The endpoint reference that is
returned contains a suitable address for the endpoint, as determined by the implementation.

Note: This behavior differs from the IBM WS-Addressing API, in that creating an endpoint
reference using the
com.ibm.websphere.wsaddressing.EndpointReferenceManager.createEndpointReference(QName
serviceName, String endpointName) method is not restricted to endpoints in the same
application.

– If the endpoint is in another Java EE application, set the address property to point to the
endpoint.

3. Optional: Set other properties of the builder instance as required. For example, if the web service is
used to access a resource instance, use the referenceParameter property to associate the identifier
of the resource with the endpoint reference. For more information on the properties that you can set,
see the API documentation.

4. Invoke the build method on the builder instance to obtain the endpoint reference.

For example, the following code fragment uses the W3CEndpointReferenceBuilder class to obtain an
endpoint reference that complies with the 2005/08 specification, and points to an endpoint that is in
another application:

...
@WebService(name="Calculator", targetNamespace="http://calculator.org")
public class Calculator {

public W3CEndpointReference getEPR() {
...
// Create the builder object
W3CEndpointReferenceBuilder builder = new

W3CEndpointReferenceBuilder();

Chapter 29. Developing web services - Addressing (WS-Addressing) 1303

// Modify builder properties
builder.address(otherServiceURI);

// Create the endpoint reference from the builder object
W3CEndpointReference epr = builder.build();
return epr;

}
...

The following code fragment uses the SubmissionEndpointReferenceBuilder class to obtain an endpoint
reference that complies with the 2004/08 specification, and points to an endpoint that is in another
module in this application:

...
@WebService(name="Calculator", targetNamespace="http://calculator.org")
public class Calculator {

public W3CEndpointReference getEPR() {
...
// Create the builder object
SubmissionEndpointReferenceBuilder builder = new

SubmissionEndpointReferenceBuilder();

// Modify builder properties
builder.serviceName(calculatorService);
builder.endpointName(calculatorPort);

// Create the endpoint reference from the builder object
SubmissionEndpointReference epr = builder.build();
return epr;

}
...

Results

You created an endpoint reference for use by your application.

What to do next
1. If required, convert the endpoint reference to an instance of the

com.ibm.websphere.wsaddressing.EndpointReference class, by using the createIBMEndpointReference
method. For example, on a client you might want to set the FaultTo message addressing property for
outbound messages. You cannot set this property by using the JAX-WS API, so you must convert the
endpoint reference representing the FaultTo endpoint to an instance of the
com.ibm.websphere.wsaddressing.EndpointReference class, before setting it as a property on the
BindingProvider object.

2. Continue with “Creating a JAX-WS web service application that uses Web Services Addressing” on
page 1299.

Creating a JAX-RPC web service application that uses Web Services
Addressing
Web Services Addressing (WS-Addressing) aids interoperability between web services by defining a
standard way to address web services and provide addressing information in messages. This task
describes the steps that are required to create a JAX-RPC web service that is accessed by using a
WS-Addressing endpoint reference. The task also describes the extra steps that are required to use
stateful resources as part of the web service.

Before you begin

The steps that are described in this task apply to servers and clients that run on WebSphere Application
Server.

About this task

Complete this task if you are creating a web service that uses the WS-Addressing specification.

1304 Developing WebSphere applications

Procedure
1. Provide a web service interface, by creating or generating a Web Services Description Language

(WSDL) document for the web service, that returns an endpoint reference to the target service. The
interface must return an endpoint reference, which it can do by using a factory operation or a separate
factory service. The target service can front a resource instance, for example a shopping cart.

2. Implement the web service created in the previous step. For the WS-Addressing portion of the
implementation, complete the following steps:

a. Create an endpoint reference that references the web service, by following the instructions in
“Creating endpoint references by using the IBM proprietary Web Services Addressing API” on page
1308.

b. Optional: If your interface involves a web service that fronts a resource instance, create or look up
the resource instance.

c. Optional: If you are using a resource instance, obtain the identifier of the resource and associate it
with the endpoint reference as a reference parameter, by using the
EndpointReference.setReferenceParameter(QName resource_id_name, String value) method. The
resource identifier is application-dependent and might be generated during the creation of the
resource instance.

Attention: Do not put sensitive information in the resource identifier, because the identifier is
propagated in the SOAP message.
The endpoint reference now targets the resource.

d. Return the endpoint reference.

3. If your web service uses resource instances, extend the implementation to match incoming messages
to the appropriate resource instances. Because you associated the resource identifier with the endpoint
reference that you created earlier, any incoming messages targeted at that endpoint reference contain
the resource identifier information as a reference parameter in the SOAP header of the message.
Because the resource identifier is passed in the SOAP header, you do not have to expose it on the
web service interface. When WebSphere Application Server receives the message, it puts this
information into the message context on the thread. Extend the implementation to undertake the
following actions:

a. Obtain the resource instance identifier from the message context, by using the
EndpointReferenceManager.getReferenceParameterFromMessageContext(QName
resource_id_name) method.

b. Forward the message to the appropriate resource instance.

4. To configure a client to communicate with the service, use the endpoint reference that is produced by
the service in the first step to send messages to the endpoint.

a. Obtain a Stub object (by looking up the service in the Java Naming and Directory Interface (JNDI)),
or create an empty Call object.

b. Associate the endpoint reference with the proxy object. Use the setProperty(String property_name,
Object value) method of the Stub or Call object. Use the WS-Addressing constant
WSADDRESSING_DESTINATION_EPR as the property name, and the endpoint reference as the
value.

This procedure automatically configures the Stub or Call object, to represent the web service (or
resource instance if your interface uses a web service that fronts a resource instance) of the
endpoint reference. For Call objects, this process includes the configuration of the interface and
endpoint metadata (portType and port elements) that are associated with the endpoint reference.

Note: If the metadata of the endpoint reference conflicts with the information already associated
with the outbound message, for example if the Stub object is configured to represent a
different interface, a javax.xml.rpc.JAXRPCException exception is thrown on attempts to
invoke the endpoint.

Invocations on the Stub or Call object are now targeted at the web service or resource instance that is
defined by the endpoint reference. When an invocation occurs, the product adds appropriate message

Chapter 29. Developing web services - Addressing (WS-Addressing) 1305

addressing properties, such as a reference parameter contained within the endpoint reference that
identifies a target resource, to the message header.

Results

The web service and client are configured to use endpoint references through the WS-Addressing support.

Providing a web service interface that returns an endpoint reference to the target
service

The following examples correspond to steps 1 to 4 in the procedure. The examples show how an IT
organization might use web services to manage a network of printers. The organization might represent
each printer as a resource that is addressed through an endpoint reference. The following examples show
how to code such a service by using the IBM proprietary Web Services Addressing (WS-Addressing)
application programming interfaces (APIs) that are provided by WebSphere Application Server, and
JAX-WS.

The IT organization implements a PrinterFactory service that offers a CreatePrinter portType element. This
portType element accepts a CreatePrinterRequest message to create a resource that represents a logical
printer, and responds with an endpoint reference that is a reference to the resource.

The WSDL definition for such a PrinterFactory service might include the following code:
<wsdl:definitions targetNamespace="http://example.org/printer" ...

xmlns:pr=" http://example.org/printer">
<wsdl:types>
...
<xsd:schema...>
<xsd:element name="CreatePrinterRequest"/>
<xsd:element name="CreatePrinterResponse"

type="wsa:EndpointReferenceType"/>
</xsd:schema>

</wsdl:types>
<wsdl:message name="CreatePrinterRequest">
<wsdl:part name="CreatePrinterRequest"

element="pr:CreatePrinterRequest" />
</wsdl:message>
<wsdl:message name="CreatePrinterResponse">
<wsdl:part name="CreatePrinterResponse"

element="pr:CreatePrinterResponse" />
</wsdl:message>
<wsdl:portType name="CreatePrinter">
<wsdl:operation name="createPrinter">
<wsdl:input name="CreatePrinterRequest"

message="pr:CreatePrinterRequest" />
<wsdl:output name="CreatePrinterResponse"

message="pr:CreatePrinterResponse" />
</wsdl:operation>

</wsdl:portType>
</wsdl:definitions>

The CreatePrinter operation in the previous example returns a wsa:EndpointReference object that
represents the newly created Printer resource. The client can use this endpoint reference to send
messages to the service instance that represents the printer.

The createPrinter method shown in the following example creates an endpoint reference to the Printer
service. The operation then obtains the identifier for the individual printer resource instance, and
associates it with the endpoint reference. Finally, the createPrinter method converts the EndpointReference
object, which now represents the new printer, into a W3CEndpointReference object, and returns the
converted endpoint reference.
import com.ibm.websphere.wsaddressing.EndpointReferenceManager;
import com.ibm.websphere.wsaddressing.EndpointReference;
import com.ibm.websphere.wsaddressing.jaxws.EndpointReferenceConverter;
import com.ibm.websphere.wsaddressing.jaxws.W3CEndpointReference;

import javax.xml.namespace.QName;

public class MyClass {

// Create the printer
...

1306 Developing WebSphere applications

// Define the printer resource ID as a static constant as it is required in later steps
public static final QName PRINTER_ID_PARAM_QNAME = new QName("example.printersample",

"IBM_WSRF_PRINTERID", "ws-rf-pr");
public static final QName PRINTER_SERVICE_QNAME = new QName("example.printer.com", "printer", "...");
public static final String PRINTER_ENDPOINT_NAME = new String("PrinterService");

public W3CEndpointReference createPrinter(java.lang.Object createPrinterRequest)
throws Exception {
// Create an EndpointReference that targets the appropriate WebService URI and port name.
EndpointReference epr = EndpointReferenceManager.createEndpointReference(PRINTER_SERVICE_QNAME,

PRINTER_ENDPOINT_NAME);

// Create or lookup the stateful resource and derive a resource
// identifier string.
String resource_identifier = "...";

// Associate this resource identifier with the EndpointReference as
// a reference parameter.
// The choice of name is arbitrary, but should be unique
// to the service.
epr.setReferenceParameter(PRINTER_ID_PARAM_QNAME,resource_identifier);
// The endpoint reference now targets the resource rather than the service.
...

return EndpointReferenceConverter.createW3CEndpointReference(epr);
}

}

Because of the web service implementation described previously, the printer resource instance now has a
unique identifier embedded in its endpoint reference. This identifier becomes a reference parameter in the
SOAP header of subsequent messages that are targeted at the web service, and can be used by the web
service to match incoming messages to the appropriate printer.

When a web service receives a message containing WS-Addressing message-addressing properties, the
WebSphere Application Server processes these properties before the message is dispatched to the
application endpoint, and sets them into the message context on the thread. The Printer web service
application accesses the reference parameters that are associated with the target endpoint from the
WebServiceContext object, as illustrated in the following example:
import com.ibm.websphere.wsaddressing.EndpointReferenceManager;
...
// Initialize the reference parameter name
QName name = new QName(..);
// Extract the String value.
String resource_identifier =

EndpointReferenceManager.getReferenceParameterFromMessageContext(PRINTER_ID_PARAM_QNAME);

The web service implementation can forward messages based on the printer identity acquired from the
getReferenceParameterFromMessageContext method to the appropriate printer instances.

The client creates a JAX-WS proxy for the printer, and converts the proxy into a BindingProvider object.
The client then associates the EndpointReference object obtained previously with the request context of
the BindingProvider object, as illustrated in the following example.
import javax.xml.ws.BindingProvider;
...

javax.xml.ws.Service service= ...;
Printer myPrinterProxy = service.getPort(portName, Printer.class);

javax.xml.ws.BindingProvider bp = (javax.xml.ws.BindingProvider)myPrinterProxy;

// Retrieve the request context for the BindingProvider object
Map myMap = myBindingProvider.getRequestContext();

// Associate the endpoint reference that represents the new printer to the request context
// so that the BindingProvider object now represents a specific printer instance.
myMap.put(WSADDRESSING_DESTINATION_EPR, destinationEpr);

...

The BindingProvider object now represents the new printer resource instance, and can be used by the
client to send messages to the printer through the Printer web service. When the client invokes the

Chapter 29. Developing web services - Addressing (WS-Addressing) 1307

BindingProvider object, WebSphere Application Server adds appropriate message-addressing properties to
the message header, which in this case is a reference parameter contained within the endpoint reference
that identifies the target printer resource.

Alternatively, the client can use a JAX-RPC Stub or Call object, which the client configures to represent
the new printer. The use of the Call object is illustrated in the following example.
import javax.xml.rpc.Call;
...
:
// Associate the endpoint reference that represents the new printer with the call.
call.setProperty(

"com.ibm.websphere.wsaddressing.WSAConstants.
WSADDRESSING_DESTINATION_EPR ", epr);

From the perspective of the client, the endpoint reference is opaque. The client cannot interpret the
contents of any endpoint reference parameters and should not try to use them in any way. Clients cannot
directly create instances of endpoint references because the reference parameters are private to the
service provider; clients must obtain endpoint references from the service provider, for example through a
provider factory service, and then use them to direct web service operations to the endpoint that is
represented by the endpoint reference, as shown.

What to do next
v Refer to “Web Services Addressing security” on page 1353 for information about security with

WS-Addressing.

v Deploy the application. For this scenario, you do not have to take any additional steps to enable the
WS-Addressing support in WebSphere Application Server because you specified a WS-Addressing
property on the client. For more information, and for other scenarios that might require additional steps,
see “Enabling Web Services Addressing support for JAX-RPC applications” on page 1357.

Creating endpoint references by using the IBM proprietary Web Services
Addressing API
Endpoint references are a primary concept of the Web Services Addressing (WS-Addressing)
interoperability protocol, and provide a standard mechanism to encapsulate information about specific Web
service endpoints. This product provides interfaces for you to create endpoint references by using the IBM
proprietary implementation of the WS-Addressing standard.

About this task

This task is a subtask of “Creating a JAX-RPC web service application that uses Web Services
Addressing” on page 1304.

Complete this task if you are writing an application that uses the IBM proprietary WS-Addressing API.
Such applications require endpoint references to target web service endpoints. When you are writing the
application, you might not know the address of the endpoint, because the address can change when the
application is deployed. By using the IBM proprietary API, you can either specify the endpoint address, or
allow the product to generate it for you at run time.

If you want to use endpoint reference objects from the standard JAX-WS API instead of the IBM
proprietary equivalents, but want the extra functions provided by the IBM proprietary API, create the
endpoint references by using the methods described in this task and then convert them by using the
supplied converter classes. For example, you might want to undertake such a conversion if you have a
JAX-WS service application and you are creating endpoint references that represent stateful session
beans, or that have an affinity to a particular server, or are workload managed. You cannot create such
endpoint references by using the JAX-WS API.

1308 Developing WebSphere applications

Procedure
v To create an endpoint reference with an address that you specify directly, use the WS-Addressing

EndpointReferenceManager.createEndpointReference(URI address) method of the system programming
interface (SPI) provided. This method is useful in test scenarios, where the address of the service does
not change.

v To create an endpoint reference with an address that is automatically generated by the product,
complete the following steps:

1. If you created the web service deployment descriptor file, webservices.xml, manually, ensure that
the webservice-description-name in the file is the same as the local part of the Web Services
Description Language (WSDL) service name. If you generated the webservices.xml file by using the
tools provided, the names match by default. This match is required for the generation of the correct
URI for the endpoint reference.

2. Create the endpoint reference by using the method that is appropriate for the object that the
reference will represent.

– If you are creating an endpoint reference to represent a stateful session bean that maintains
in-memory state, create the endpoint reference using the
EndpointReferenceManager.createEndpointReference(QName serviceName, String
endpointName, Remote statefulSessionBean) method of the application programming interface
(API) provided. This method ensures that requests are targeted at the specific server that hosts
the stateful session bean instance, and are not workload-managed.

– If you are creating an endpoint reference to represent any other object, create the endpoint
reference by using the EndpointReferenceManager.createEndpointReference(QName
serviceName, String endpointName) method of the API. The combination of service name and
endpoint name must be unique in the server. If there is more than one web service application
with the same service name and endpoint name, the application server cannot generate a unique
URI object for the endpoint. If you cannot ensure that the combination of service name and
endpoint name is unique, use an SPI method to create the endpoint reference.

When the application invokes either of the previous two methods, the product generates the address
URI for the endpoint reference, and puts the service name and endpoint name into the metadata of
the newly created endpoint reference.

Note: If you configured a virtual host for the server on which the endpoint is created, the URI of the
endpoint reference refers to the virtual host of the HTTP server configuration. You can use
the administrative console to override this setting and provide your own HTTP endpoint URL
information. The methods described previously will use the overridden value to generate the
address URI for the endpoint reference.

Results

You created an endpoint reference for use by your application.

What to do next
1. If you want to convert the endpoint references from IBM proprietary WS-Addressing objects to

standard JAX-WS WS-Addressing objects, use one of the following methods of the
com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceConverter class, depending on the
namespace of the endpoint reference:

v createW3CEndpointReference(EndpointReference epr): use this method if the EndpointReference
object uses the 2005/08 specification. This method creates a W3CEndpointReference object.

v createSubmissionEndpointReference(EndpointReference epr): use this method if the
EndpointReference object uses the 2004/08 specification. This method creates a
SubmissionEndpointReference object.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1309

2. Continue with “Creating a JAX-RPC web service application that uses Web Services Addressing” on
page 1304, or if you converted the endpoint reference to the standard JAX-WS API, continue with
“Creating a JAX-WS web service application that uses Web Services Addressing” on page 1299.

Example: Creating a web service that uses the JAX-WS Web Services
Addressing API to access a generic web service resource instance
Consider an IT organization that has a network of printers that it wants to manage using web services.
The organization might represent each printer as a resource that is addressed through an endpoint
reference. This example shows how to code such a service by using the JAX-WS Web Services
Addressing (WS-Addressing) application programming interfaces (APIs) that are provided by WebSphere
Application Server.

Providing a web service interface that returns an endpoint reference to the target
service

The IT organization implements a PrinterFactory service that offers a CreatePrinter portType element. This
portType element accepts a CreatePrinterRequest message to create a resource that represents a logical
printer, and responds with an endpoint reference that is a reference to the resource.

The WSDL definition for such a PrinterFactory service might include the following code:
<wsdl:definitions targetNamespace="http://example.org/printer" ...

xmlns:pr=" http://example.org/printer">
<wsdl:types>
...
<xsd:schema...>
<xsd:element name="CreatePrinterRequest"/>
<xsd:element name="CreatePrinterResponse"

type="wsa:EndpointReferenceType"/>
</xsd:schema>

</wsdl:types>
<wsdl:message name="CreatePrinterRequest">
<wsdl:part name="CreatePrinterRequest"

element="pr:CreatePrinterRequest" />
</wsdl:message>
<wsdl:message name="CreatePrinterResponse">
<wsdl:part name="CreatePrinterResponse"

element="pr:CreatePrinterResponse" />
</wsdl:message>
<wsdl:portType name="CreatePrinter">
<wsdl:operation name="createPrinter">
<wsdl:input name="CreatePrinterRequest"

message="pr:CreatePrinterRequest" />
<wsdl:output name="CreatePrinterResponse"

message="pr:CreatePrinterResponse" />
</wsdl:operation>

</wsdl:portType>
</wsdl:definitions>

The CreatePrinter operation in the previous example returns a wsa:EndpointReference object that
represents the newly created Printer resource. The client can use this endpoint reference to send
messages to the service instance that represents the printer.

Implementing the web service interface

The createPrinter method shown in the following example obtains the identifier for the individual printer
resource instance. The operation then creates an endpoint reference to the Printer service, and associates
the printer ID with the endpoint reference. Finally, the createPrinter method returns the endpoint reference.
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder;

import javax.xml.namespace.QName;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class MyClass {

// Create the printer
...

1310 Developing WebSphere applications

//Define the printer resource ID as a static constant as it is required in later steps
public static final QName PRINTER_SERVICE_QNAME = new QName("example.printer.com", "printer", "...");
public static final QName PRINTER_ENDPOINT_NAME = new QName("example.printer.com", "PrinterService", "...");

public W3CEndpointReference createPrinter(java.lang.Object createPrinterRequest)
{
Document document = ...;

// Create or lookup the stateful resource and derive a resource
// identifier string.
String resource_identifier = "...";

// Associate this resource identifier with the EndpointReference as
// a reference parameter.
// The choice of name is arbitrary, but should be unique
// to the service.
Element element = document.createElementNS("example.printersample",

"IBM_WSRF_PRINTERID");
element.appendChild(document.createTextNode(resource_identifier));
...

// Create an EndpointReference that targets the appropriate WebService URI and port name.
// Alternatively, the getEndpointReference() method of the MessageContext can be used.
W3CEndpointReferenceBuilder builder = new W3CEndpointReferenceBuilder();
builder.serviceName(PRINTER_SERVICE_QNAME);
builder.endpointName(PRINTER_ENDPOINT_NAME);
builder.referenceParameter(element);

// The endpoint reference now targets the resource rather than the service.
return builder.build();
}

}

Extending the target service to match incoming messages to web service resource
instances

Because of the web service implementation described previously, the printer resource instance now has a
unique identifier embedded in its endpoint reference. This identifier becomes a reference parameter in the
SOAP header of subsequent messages that are targeted at the web service, and can be used by the web
service to match incoming messages to the appropriate printer.

When a web service receives a message containing WS-Addressing message addressing properties, the
WebSphere Application Server processes these properties before the message is dispatched to the
application endpoint, and sets them into the message context on the thread. The Printer web service
application accesses the reference parameters that are associated with the target endpoint from the
WebServiceContext object, as illustrated in the following example:
@Resource
private WebServiceContext context;
...
List list = (List) context.getMessageContext().get(MessageContext.REFERENCE_PARAMETERS);

If your application uses the 2004/08 version of the WS-Addressing specification, use the IBM proprietary
API to retrieve the message parameters, as illustrated in the following example.
import com.ibm.websphere.wsaddressing.EndpointReferenceManager;
...
// Initialize the reference parameter name
QName name = new QName(..);
// Extract the String value.
String resource_identifier =

EndpointReferenceManager.getReferenceParameterFromMessageContext(PRINTER_ID_PARAM_QNAME);

The web service implementation can forward messages based on the printer ID to the appropriate printer
instances.

Using endpoint references to send messages to an endpoint

The client uses the endpoint reference returned from the service to create a JAX-WS proxy for the printer,
as illustrated in the following example.
javax.xml.ws.Service jaxwsServiceObject= ...;
W3CEndpointReference epr = ...;
...
Printer myPrinterProxy = jaxwsServiceObject.getPort(epr, Printer.class, new AddressingFeature());

Chapter 29. Developing web services - Addressing (WS-Addressing) 1311

The proxy object now represents the new printer resource instance, and can be used by the client to send
messages to the printer through the Printer Web service. When the client invokes the service, WebSphere
Application Server adds appropriate message addressing properties to the message header, which in this
case is a reference parameter contained within the endpoint reference that identifies the target printer
resource.

From the perspective of the client, the endpoint reference is opaque. The client cannot interpret the
contents of any endpoint reference parameters and should not try to use them in any way. Clients cannot
directly create instances of endpoint references because the reference parameters are private to the
service provider; clients must obtain endpoint references from the service provider, for example through a
provider factory service, and then use them to direct web service operations to the endpoint that is
represented by the endpoint reference, as shown.

Using the IBM proprietary Web Services Addressing SPIs: Performing
more advanced Web Services Addressing tasks
This product provides proprietary system programming interfaces for more advanced Web Services
Addressing (WS-Addressing) tasks, which involve the WS-Addressing message-addressing properties that
are passed in the SOAP header of a web service message. You can also use the SPIs to choose a
WS-Addressing specification level other than the default used by the product.

Before you begin

You cannot use the standard JAX-WS API classes with these proprietary SPIs. However, you can convert
endpoint references created using the standard JAX-WS API classes to instances of the
com.ibm.websphere.wsaddressing.EndpointReference class, by using the
com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceConverter class. You can then use these
converted endpoint references with the SPIs.

The steps described in this task apply to servers and clients that run on WebSphere Application Server.

About this task

Complete this task to specify or acquire WS-Addressing message-addressing properties, or if you have an
application that needs to interoperate with a client or endpoint that is not using the default WS-Addressing
specification supported by this product.

Procedure
v To manipulate message-addressing properties, follow the instructions in “Specifying and acquiring

message-addressing properties by using the IBM proprietary Web Services Addressing SPIs”

v To interoperate with the pre-W3C specification of WS-Addressing, with the namespace
http://schemas.xmlsoap.org/ws/2004/08/addressing, refer to “Interoperating with Web Services
Addressing endpoints that do not support the default specification supported by WebSphere Application
Server” on page 1314.

Specifying and acquiring message-addressing properties by using the
IBM proprietary Web Services Addressing SPIs
Using the proprietary Web Services Addressing (WS-Addressing) system programming interfaces (SPIs),
you can add WS-Addressing message addressing properties (MAPs) to the SOAP headers of an outbound
client message, through properties on the JAX-WS BindingProvider request context, or the JAX-RPC Stub
or Call object. When the target endpoint receives the message, the SPI enables the endpoint to acquire
the MAPs through properties on the message context.

1312 Developing WebSphere applications

About this task

There are no equivalent SPIs in the JAX-WS standard. If you want to set message-addressing properties
in a client that uses JAX-WS endpoint references, you must convert the endpoint references to the IBM
proprietary classes, before using them with these SPIs.

Complete this task if you are a web service developer that uses the WS-Addressing support, or a system
programmer that uses the IBM proprietary WS-Addressing SPIs to specify message addressing properties,
such as fault or reply endpoint references, on web services messages.

The properties that you can set or retrieve are described, with the Java type of property instances, in IBM
proprietary Web Services Addressing SPIs. Most properties are of type
com.ibm.websphere.wsaddressing.EndpointReference, for example destination, reply, or fault endpoint
references. The relationship property is a java.util.Set object that contains instances of the
com.ibm.wsspi.wsaddressing.Relationship class. Use relationships when you want to specify an
association between messages; for example, in a response message you might want to specify the ID of
the message to which you are replying. The action property is an AttributedURI object that identifies a
specific method or operation within the target endpoint.

Attention: The destination endpoint reference and action properties are required for the message to be
WS-Addressing compliant.

Procedure
1. On the client, obtain the endpoint reference from the service and associate it with your BindingProvider

object request context, or your Stub or Call object, as described in “Creating a JAX-RPC web service
application that uses Web Services Addressing” on page 1304.

2. Create instances of the required properties. For example, if you want to specify an endpoint reference
for the target service to send replies to, create an instance of the
com.ibm.websphere.wsaddressing.EndpointReference class, to use as the
WSADDRESSING_REPLYTO_EPR property.

3. Set the required properties by associating them with the BindingProvider object request context, or the
Stub or Call object. If you are using a Stub or Call object, use the setProperty(String property_name,
Object value) method. Note that unlike the endpoint reference required for the first step, these endpoint
references do not have to be converted to another type, because they are passed in the header of the
SOAP message rather than the body. The following example sets a destination endpoint reference and
a reply endpoint reference on a BindingProvider object request context:

import javax.xml.ws.BindingProvider;
...
javax.xml.ws.Service jaxwsServiceObject=...;
Printer myPrinterProxy = jaxwsServiceObject.getPort(portName, Printer.class);

javax.xml.ws.BindingProvider myBindingProvider = (javax.xml.ws.BindingProvider)myPrinterProxy;

// Retrieve the request context for the BindingProvider object
Map myMap = myBindingProvider.getRequestContext();

// Associate the endpoint reference for the web service. This property is required for the message
// to be WS-Addressing compliant.
myMap.put(WSADDRESSING_DESTINATION_EPR, destinationEpr);

// Associate the endpoint reference that represents the reply to the request context
myMap.put(WSADDRESSING_REPLYTO_EPR, replyToEpr);

When an invocation occurs on the BindingProvider, Stub, or Call object, the product adds the
appropriate MAPs to the message header.

4. On the server, retrieve the MAPs from the inbound message through the
javax.xml.ws.WebServiceContext or javax.xml.rpc.handler.MessageContext object that is currently on
the thread. When WebSphere Application Server receives the message, it puts the MAP information
into the message context on the thread, making it available to the service. You can retrieve the
message context by, for example, using the session context of the endpoint enterprise bean. For more

Chapter 29. Developing web services - Addressing (WS-Addressing) 1313

information about message contexts, refer to the JSR-109 standard. The following example retrieves
the reply endpoint reference by using the web service context:

import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.WebServiceContext;
...

// Obtain the message context from the WebService context
private WebServiceContext wsContext;
MessageContext context = wsContext.getMessageContext();

// Retrieve the reply endpoint reference
replyToEpr = context.getProperty(WSADDRESSING_INBOUND_REPLYTO_EPR);

Interoperating with Web Services Addressing endpoints that do not
support the default specification supported by WebSphere Application
Server
A target web service endpoint might not support the same Web Services Addressing (WS-Addressing)
namespace as this product. In most cases, you do not have to undertake any extra actions to interoperate
with such endpoints, however some scenarios require additional steps in the implementation of your web
service.

About this task

WebSphere Application Server supports the default WS-Addressing 2005/08 namespace
http://www.w3.org/2005/08/addressing. Complete this task to interoperate with endpoints that support other
namespaces. This task specifically describes interoperation with endpoints that are hosted on a node that
supports only the 2004/08 namespace: http://schemas.xmlsoap.org/ws/2004/08/addressing.

If you are using the standard JAX-WS API, ensure that you use the appropriate feature, annotation or
endpoint reference class for the 2004/08 namespace.

If you are sending to or receiving messages from an endpoint that supports only the 2004/08 namespace,
you do not have to undertake any additional steps for interoperability. This product recognizes and
understands incoming WS-Addressing messages that conform to the 2004/08 specification, and outbound
messages automatically adhere to the namespace of their destination endpoint reference. If you are
sending a request, all WS-Addressing elements, such as reply endpoint or fault endpoint elements, must
use the same namespace as the message. Any discrepancy results in a JAX-WS or JAX-RPC
configuration error.

If you are interacting in a different way with an endpoint that supports only the 2004/08 namespace, such
as exporting endpoint references in the message header or body, and you are not using the JAX-WS
standard API, you must undertake additional steps as detailed below.

Procedure
v If you are generating a web service for use by a client that supports only the 2004/08 specification,

update the WS-Addressing namespace in the Web Services Description Language (WSDL) document
for your web service, by changing http://www.w3.org/2006/05/addressing/wsdl to
http://schemas.xmlsoap.org/ws/2004/08/addressing.

Note: Only the WS-Addressing WSDL Action extensibility element is recognized by pre-W3C
WS-Addressing clients.

v If you are creating endpoint references at run time for export to an endpoint that supports the 2004/08
namespace only, perform the following steps:

1. Create the endpoint reference to export.

2. Associate the appropriate namespace with the endpoint reference, by using the setNamespace
method. The following example illustrates the association of the 2004/08 namespace with an
endpoint reference:

1314 Developing WebSphere applications

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing

import com.ibm.wsspi.wsaddressing.EndpointReference;
import com.ibm.wsspi.wsaddressing.NamespaceNotSupportedException;
import com.ibm.wsspi.wsaddressing.WSAConstants;

:

EndpointReference epr = ...

try
{

epr.setNamespace(WSAConstants.WSADDRESSING_NAMESPACE_2004_08);
} catch (NamespaceNotSupportedException e)
{

// Error handling code here
}

When you pass the endpoint reference to the target endpoint, in either the SOAP body or the SOAP
header of a message, the endpoint reference is appropriately serialized into SOAP elements according
to its namespace.

v To establish the namespace of an inbound request, use the IBM proprietary WS-Addressing system
programming interface (SPI) to retrieve the WSADDRESSING_INBOUND_NAMESPACE property from
the inbound message context. This property specifies the Core WS-Addressing specification namespace
of the incoming message.

Note: This procedure uses the IBM proprietary WS-Addressing API. There is no equivalent procedure
in the JAX-WS API.

You can retrieve the message context by, for example, using the session context of the endpoint
enterprise bean. For more information about message contexts, refer to the JSR-109 specification. The
following code example shows how you can establish the namespace of an incoming message on the
receiving endpoint:

import com.ibm.wsspi.wsaddressing.WSAConstants;
import javax.xml.rpc.handler.MessageContext;

:
// If the endpoint is implemented as an enterprise bean, you can use its session context
// to obtain the message context
private SessionContext sessionContext;
MessageContext context = sessionContext.getMessageContext();

try
{
String namespace = (String)msgContext.getProperty(WSAConstants.WSADDRESSING_INBOUND_NAMESPACE);

} catch (IllegalArgumentException e)
{
// Error handling code here

}

Enabling Web Services Addressing support for JAX-WS applications
The Web Services Addressing (WS-Addressing) support provides mechanisms to address web services
and provide addressing information in messages. For JAX-WS applications, you can enable
WS-Addressing support in several different ways, such as configuring policy sets or using annotations in
code.

About this task

Perform this task to enable the WS-Addressing support, either as a service provider or as a client of a
service provided by another party.

For service providers, WS-Addressing support is enabled by default, so you do not have to undertake any
actions to enable support. However, you can use the enabling mechanisms to modify other
WS-Addressing behavior for the service, such as whether WS-Addressing information is required, and
what is included in the generated WSDL document.

v Modify the behavior of the WS-Addressing support after the application is deployed by attaching a policy
set to the application. Within the policy set, you can configure the WS-Addressing policy type to specify
whether WS-Addressing information is required in incoming messages, and whether to use synchronous
or asynchronous messaging. You can communicate the WS-Addressing policy configuration to other

Chapter 29. Developing web services - Addressing (WS-Addressing) 1315

servers and clients that support WS-Policy, by enabling policy sharing on the server, and by applying
the provider policy on the client. This method overrides other methods.

v Use deployment descriptor elements within a port-component element.

v Modify the behavior of the WS-Addressing support during development of the service by using the
Addressing or SubmissionAddressing annotations in the service code. Within each annotation you can
specify whether WS-Addressing is enabled on the server, whether the server requires WS-Addressing
information in incoming messages and the message exchange pattern the server will use. The presence
of the Addressing annotation in the code adds a UsingAddressing element and a WS-Policy assertion to
any WSDL document that is generated for the service.

v Modify the behavior of the WS-Addressing support during development of the service by either adding
UsingAddressing elements or WS-Policy assertions into the WSDL document. If you do provide your
own WSDL document, instead of relying on the JAX-WS runtime environment to generate one, and your
WSDL document is being consumed by non JAX-WS 2.2 clients, you may wish to include the
UsingAddressing element as such clients will not process WS-Policy assertions.

For service clients, WS-Addressing support is disabled by default. Use one of the following methods to
enable WS-Addressing support. The following list is in descending order of precedence, because you can
apply multiple methods. For example the deployment descriptor method overrides the use of annotations
or features, but is itself overridden by the use of policy sets.

v Attach a policy set to the client artifact and perform one of the following actions:

– Specify in the policy that WS-Addressing is mandatory.

– Apply both client and provider policies. In this situation, WS-Addressing support is enabled on the
client only if policy sharing is enabled on the service provider and the policy configuration for the
provider specifies that WS-Addressing is mandatory.

This method overrides other methods.

v Set the com.ibm.websphere.webservices.use.async.mep property on the client request context.

v Use the IBM proprietary WS-Addressing SPI to add message-addressing properties to the message
request context.

v Use deployment descriptor elements within a port-component-ref element.

v Use the Addressing annotation in combination with the WebServiceRef annotation in the client code
(when you are using an injected Web services proxy reference).

v Use addressing features in the client code. Properties set by using this method override those set in the
WSDL document for the service.

v Use WS-Policy assertions in the WSDL document to specify WS-Addressing support. If you add
Addressing annotations to your client application code, the generated WSDL document will contain
WS-Policy assertions.

v Specify the UsingAddressing element in the WSDL document for the service. If the service uses the
Addressing annotation and you generate the WSDL document from the code, the UsingAddressing
element already exists.

The following tables summarize the behavior of the WS-Addressing support. Use this table to determine
whether a request message is accepted for client settings that do not involve policy configuration.

This is a complex table containing spanned column headings. There is a header column on the left entitled
"Client settings" which specifies whether WS-Addressing support is enabled on the client and also which
messaging style is configured. The second main column shows the policy settings on the provider, with
two sub-columns for whether WS-Addressing is optional or mandatory. Both of these sub-columns are
further sub-divided into three sub-columns for messaging style (synchronous, asynchronous, or both). The
third main column shows the WSDL settings on the provider, with two sub-columns for whether
WS-Addressing is optional or mandatory.

1316 Developing WebSphere applications

Table 175. How client and provider settings interact to determine whether a request message is accepted. The
preceding paragraph describes this table.

Client
settings

Provider policy settings Provider WSDL settings
(UsingAddressing required

attribute)WS-Addressing is optional WS-Addressing is mandatory1

Synchronous
and
asynchronous

Synchronous
only

Asynchronous
only

Synchronous
and
asynchronous

Synchronous
only

Asynchronous
only

false
(WS-
Addressing is
optional)

true
(WS-
Addressing is
mandatory1)

WS-
Addressing
support
enabled and
messaging
style
synchronous

Message
accepted

Message
accepted

Fault Message
accepted

Message
accepted

Fault Message
accepted

Message
accepted

WS-
Addressing
support
enabled and
messaging
style
asynchronous

Message
accepted

Fault Message
accepted

Message
accepted

Fault Message
accepted

Message
accepted

Message
accepted

WS-
Addressing
support not
enabled and
messaging
style
synchronous

Message
accepted

Message
accepted

Message
accepted2

Fault Fault Fault Message
accepted

Fault

WS-
Addressing
support not
enabled and
messaging
style
asynchronous3

Fault Fault Fault Fault Fault Fault Fault Fault

Notes:

1. If WS-Addressing is mandatory, all requests without WS-Addressing headers are rejected.

2. The messaging style is only enforced if WS-Addressing headers are present in the request.

3. Asynchronous messaging is not possible without WS-Addressing headers.

Use the following table to determine whether a request message is accepted when the client and provider
both have a WS-Addressing policy configuration; the client has provider and client policies applied; and
policy sharing is enabled on the server.

This is a complex table containing spanned column headings. There is a header column on the left entitled
"Client settings" which specifies whether WS-Addressing support is optional or mandatory on the client and
also which messaging style is configured. The second main column shows the policy settings on the
provider, with two sub-columns for whether WS-Addressing is optional or mandatory. Both of these
sub-columns are further sub-divided into three sub-columns for messaging style (synchronous and
asynchronous, synchronous only, or asynchronous only).

Chapter 29. Developing web services - Addressing (WS-Addressing) 1317

Table 176. How client and provider policy settings interact to determine whether a request message is accepted. The
preceding paragraph describes this table.

Client policy
settings

Provider policy settings

WS-Addressing is optional WS-Addressing is mandatory

Synchronous and
asynchronous

Synchronous only Asynchronous
only

Synchronous and
asynchronous

Synchronous only Asynchronous
only

WS-Addressing
optional and
messaging style
synchronous and
asynchronous

Message accepted Message accepted Message accepted Message accepted Message accepted Message accepted

WS-Addressing
optional and
messaging style
synchronous only

Message accepted Message accepted Message accepted1 Message accepted Message accepted Fault

WS-Addressing
optional and
messaging style
asynchronous only2

Fault Fault Fault Message accepted Fault Message accepted

WS-Addressing
mandatory and
messaging style
synchronous and
asynchronous

Message accepted Message accepted Message accepted Message accepted Message accepted Message accepted

WS-Addressing
mandatory and
messaging style
synchronous only

Message accepted Message accepted Fault Message accepted Message accepted Fault

WS-Addressing
mandatory and
messaging style
asynchronous only

Message accepted Fault Message accepted Message accepted Fault Message accepted

Notes:

1. The messaging style is only enforced if WS-Addressing headers are present in the request.

2. Asynchronous messaging is not possible without WS-Addressing headers.

If the provider and client policies are not shared, the client does not send WS-Addressing headers (unless
you enable WS-Addressing on the client by another method). In this situation, if the provider policy
specifies that WS-Addressing is mandatory, the server generates a fault regardless of the messaging style.

Procedure
v To modify the behavior of the WS-Addressing support by creating or modifying policy sets on either the

service provider or client, see the topic: “Enabling Web Services Addressing support for JAX-WS
applications using policy sets” on page 1319.

v Set the com.ibm.websphere.webservices.use.async.mep property on the client request context when
using WebSphere Application Server clients to enable WS-Addressing support. See the topic: “Invoking
JAX-WS web services asynchronously” on page 1206 for more information.

v To modify the behavior of the WS-Addressing support by using the deployment descriptor of the service
or client application, see the topic: “Enabling Web Services Addressing support for JAX-WS applications
using deployment descriptors” on page 1346.

v To modify the behavior of the WS-Addressing support programmatically by using addressing annotations
in the service application, or on the client with an injected web service proxy reference, see the topic:
“Enabling Web Services Addressing support for JAX-WS applications using addressing annotations” on
page 1347.

v To enable WS-Addressing support programmatically on the client by creating an instance of an
addressing feature class, see the topic: “Enabling Web Services Addressing support for JAX-WS
applications using addressing features” on page 1349.

1318 Developing WebSphere applications

v To modify the behavior of the WS-Addressing support during the development of a client or service
application by adding WS-Policy assertions into the WSDL file, see the topic: “Enabling Web Services
Addressing support for JAX-WS applications using WS-Policy” on page 1350.

Results

WS-Addressing properties are now included in the SOAP message header, and are processed by the
server on receipt of the message.

Enabling Web Services Addressing support for JAX-WS applications
using policy sets
For JAX-WS applications, you can enable WS-Addressing support after you deploy an application to the
server, by creating or modifying policy sets, and attaching those policy sets to either a service or client
application.

About this task

You can also configure the WS-Addressing support using other methods, for example in the code of the
application, however this method overrides all other methods. Note that WS-Addressing support is enabled
by default for service providers.

Procedure
1. Ensure that you have a policy set that contains the WS-Addressing policy type. If you have to create a

new policy set, or add the WS-Addressing policy to an existing policy set, refer to Managing policy sets
using the administrative console for instructions.

2. Configure the WS-Addressing policy type according to the instructions in “Configuring the
WS-Addressing policy” on page 1327. Use the two settings to specify whether WS-Addressing is
mandatory, and whether to use a synchronous or asynchronous message exchange pattern. The
default settings are that WS-Addressing is not mandatory, and that both synchronous and
asynchronous messaging patterns are used.

3. Attach the policy set to a web service provider or client artifact, according to the instructions in
“Attaching a policy set to a service artifact” on page 1329.

4. Optional: If you want to communicate the WS-Addressing policy settings to other servers and clients,
configure policy sharing as described in “Configuring a service provider to share its policy
configuration” on page 1330 or “Configuring the client policy to use a service provider policy” on page
1338. If policy sharing is enabled and the server and client cannot agree a policy, normal WS-Policy
behavior applies (a policy error is produced).

Results

WS-Addressing properties are now included in the SOAP message header, and are processed by the
server on receipt of the message.

Creating policy sets using the administrative console
You can use the administrative console to either create a policy set by specifying all the necessary
information or by copying an existing policy set that you rename. You can use policy sets, or assertions
that define services, to simplify your web services configuration because policy sets group security and
other web services settings into reusable units.

Before you begin

To create a new policy set, you can either specify the information to create a new policy set or you can
copy and rename an existing policy set. Using either method, you need basic information about the policy
set that you want to create, such as the name, description, policies to include, policy details, attachments,

Chapter 29. Developing web services - Addressing (WS-Addressing) 1319

and binding configurations. If you are creating a policy set by copying an existing policy set, then you
should also view the existing policy sets to choose one with properties that are most similar to the one you
plan to create.

About this task

Whether you choose to create a new policy set or copy and rename an existing one, start from the
Applications policy sets collection in the administrative console.

Procedure
1. From the administrative console, click Services > Policy sets > Application policy sets or Services

> Policy sets > System policy sets.

2. If the policy set you are creating is:

v a new policy set, then click New.

v an existing policy set to be copied and renamed, click the Select box beside the name of the policy
set to be copied in the Name column and click Copy.

Using either method, this action opens the Policy set settings view to specify the required information
about the policy set being created or copied.

3. Enter the name of the policy set that you want to create or copy in the Name field.

4. Enter a brief description of the policy set in the Description field. This is the description that displays
in the Application policy sets or the System policy set collection, so it must be meaningful to you and
other potential users of this policy set.

Note: If you created a new policy set, it does not contain policies to edit until you add them to the
policy set. The policy set is initially empty.

Results

You have provided the basic information to create a policy set.

Example

After you have looked at your web services, you might decide that the WS-I RSP default policy set most
closely meets your needs. You would go to the administrative console and click Services > Policy sets >
Application policy sets to access the Application policy sets collection. Locate the WS-I RSP default in
the Name column of the table and click the box beside it (in the Select column). Click Copy. This opens
the Policy set settings window. You might want to name your policy set by your company or division so
you could provide a name like ABC WS-I RSP in the Name field. Because you know others in your
organization might access and use it, you've chosen a name that is meaningful to those people too. You
want to be sure everyone knows exactly what this copy of the WS-I RSP policy is used for, so you add a
description in the Description field describing it. Now you want to customize the policy set so you edit the
policy information by clicking the name of a policy to edit it.

When you identify the requirements of your web service, you might decide that none of the default policy
sets meet your needs closely enough to use them as a template so you might decide to create your own
policy set. You would first create the policy set with the name you choose to give it. As if you were reusing
an existing template, you would go to the administrative console and click Services > Policy sets >
Application policy sets and click New. The Policy set settings window opens but note that the Policy set
name field is blank and there are not yet any associated policies in the table. Enter the name and add any
policies necessary.

When you add policies to a policy set, the policies are set to their default values. You can then edit the
policies to modify any attribute values that need to be changed and save the settings.

1320 Developing WebSphere applications

What to do next

If you are creating a new policy set without copying an existing policy set, you need to specify the policy
information. If you are copying an existing policy set, you can either accept the default policies associated
with the policy set or you can change the policies.

WS-I RSP default policy sets:

The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable
Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP
default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the
Username WS-I RSP default policy set. You can use these policy sets to simplify your web services
configuration.

The WS-I RSP default policy sets are composed of a set of policies to provide reliable and secure web
services. The WS-I RSP default policy sets use the WS-Addressing, WS-ReliableMessaging, and
WS-Security specifications. Use the WS-I RSP default policy set, the LTPA WS-I RSP default policy set, or
the Username WS-Security WS-I RSP default policy set as provided with the application server. To
customize the policy sets, you must first copy the policy set, and then configure custom policy settings and
bindings to meet your needs.

The WS-I RSP default policy sets include the following policies:

WS-Addressing policy
You can use the WS-Addressing policy to enable the addressing capability of the WS-Addressing
specification.

WS-ReliableMessaging policy
You can use the WS-ReliableMessaging policy to specify the quality of service for reliable delivery.

WS-Security policy
The WS-Security policy in the WS-I RSP default policy set provides the following security:

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications.

v Traditional RSA cryptography is used to secure a request to a Trust Server to obtain a Secure
Context Token (SCT). Thereafter, the conversation is secured using symmetric keys derived
from the SCT.

The application server provides additional policy sets that you can use or customize. To use the following
default policy sets, you must import the policy sets from the default repository. Read about importing policy
sets using the administrative console for more information.

The following WS-I RSP default policy sets exist:

WS-I RSP default
This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging.

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1321

LTPA WS-I RSP default
This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username WS-I RSP default
This policy set provides the WS-I RSP default policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request.

SecureConversation default policy sets:

The SecureConversation default policy sets are based on the Web Services Secure Conversation
Language (SecureConversation) standard that establishes a secure context, based on shared keys for the
client and server to use for a series of messages. This standard provides a framework to define how to
secure the message exchange across organizations. The SecureConversation default policy sets include
the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation
policy set, and the Username SecureConversation policy set.

The SecureConversation default policy sets are based on the WS-SecureConversation, the WS-Security,
and the WS-Addressing specifications. Use the SecureConversation policy set, the LTPA
SecureConversation policy set, or the Username SecureConversation policy set as provided with the
application server. To customize the policy sets, you must first copy the policy set, and then configure
custom policy settings and bindings to meet your needs.

The WS-SecureConversation specification alone does not provide a complete security solution. The
WS-SecureConversation is built on the WS-Security and WS-Trust specifications to provide secure
communication across one or more messages. Specifically, this specification defines mechanisms for
establishing and sharing security contexts, and deriving keys from established security contexts or any
shared secret.

WS-Security focuses on the message authentication model but not in a security context. The
WS-SecureConversation specification defines mechanisms for establishing and sharing security contexts,
and deriving keys from security contexts, to enable a secure conversation. By using the SOAP extensibility
model, modular SOAP-based specifications are designed to be composed with each other to provide a rich
messaging environment.

The following SecureConversation default policy sets exist:

SecureConversation
This policy set provides:

v Message integrity by digital signature that includes signing the body, timestamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications.

v Message confidentiality by encryption that includes encrypting the body, signature and signature
confirmation elements, using WS-SecureConversation and WS-Security specifications.

LTPA SecureConversation
This policy set provides the SecureConversation policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username SecureConversation
This policy set provides the SecureConversation policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request

1322 Developing WebSphere applications

WS-ReliableMessaging default policy sets:

The WS-ReliableMessaging default policy sets are pre-configured to provide reliable message exchange
between web services. Two of these policy sets (WS-I RSP and WS-I RSP ND) are immediately available,
and the rest are readily available for import from a default repository.

With WS-ReliableMessaging, you can make your SOAP over HTTP-based web services reliable without
writing custom code. You can use the provided non-editable default policy sets without change, or you can
create customized copies of them.

All the default policy sets that include the WS-ReliableMessaging policy also include the WS-Addressing
policy. The WS-ReliableMessaging policy provides the ability to deliver a message reliably to its intended
receiver. The WS-Addressing policy provides a transport-neutral way to uniformly address web services
and messages, and WS-ReliableMessaging uses WS-Addressing to provide asynchronous request and
reply capabilities.

Note: WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If you use
a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and the
WS-Addressing policy is configured as optional, then WebSphere Application Server overrides the
WS-Addressing setting and automatically enables WS-Addressing.

The following default policy sets that include the WS-ReliableMessaging policy are immediately available,
as described in Viewing policy sets using the administrative console:

WS-I RSP
This policy set enables WS-ReliableMessaging Version 1.1 and uses the minimum quality of
service, unmanaged non-persistent. This quality of service requires minimal configuration.
However it is non-transactional and, although it allows for the resending of messages that are lost
in the network, if a server becomes unavailable you will lose messages. In-order delivery is set to
“false”, so messages are not necessarily delivered in the order in which they were sent. Message
integrity is provided by digitally signing the body, the time stamp, and the WS-Addressing headers.
Message confidentiality is provided by encrypting the body and the signature. This policy set
follows the WS-SecureConversation and WS-Security specifications.

WS-I RSP ND
This is the network deployment version of the WS-I RSP policy set. This policy set provides the
WS-I RSP default policy set and adds a managed non-persistent quality of service. This
in-memory quality of service option uses a messaging engine to manage the sequence state, and
messages are written to disk if memory is low. This quality of service allows for the re-sending of
messages that are lost in the network, and can also recover from server failure. However, state is
discarded after a messaging engine restart so in this case you will lose messages.

The following additional default policy sets that include the WS-ReliableMessaging policy are readily
available for import, as described in Importing policy sets using the administrative console:

LTPA WS-I RSP
This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username WS-I RSP
This policy set provides the WS-I RSP default policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request.

WSReliableMessaging 1_0
This policy set enables both WS-ReliableMessaging Version 1.0 and WS-Addressing and uses the

Chapter 29. Developing web services - Addressing (WS-Addressing) 1323

minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

You can use this policy set with .NET-based web services.

WSReliableMessaging default
This policy set enables both WS-ReliableMessaging Version 1.1 and WS-Addressing and uses the
minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

WSReliableMessaging persistent
This policy set enables both WS-ReliableMessaging and WS-Addressing and uses the maximum
quality of service, managed persistent. This quality of service supports asynchronous web service
invocations and uses a service integration messaging engine and message store to manage the
sequence state. Messages are processed within transactions, are persisted at the web service
requester server and at the web service provider server, and are recoverable in the event of server
failure. In-order delivery is set to “false”, so messages are not necessarily delivered in the order in
which they were sent.

Because this policy set specifies managed persistent quality of service, you have to define
bindings to the service integration bus and messaging engine that you want to use to manage the
WS-ReliableMessaging state. You can attach and bind a WS-ReliableMessaging policy set to a
web service application by using the administrative console or the wsadmin tool.

WSAddressing default policy set:

The WSAddressing default policy set provides a transport-neutral way to uniformly address web services
and messages.

The WSAddressing default policy set is based on the WS-Addressing specification. The WS-Addressing
standard uses endpoint references and message addressing properties to facilitate the addressing of web
services in a standard and interoperable way.

Use the WSAddressing default policy set as provided with the application server. To customize the policy
set, you must first copy the policy set, and then configure custom policy settings and bindings to meet your
needs.

To learn more about the WS-Addressing standard, read about Web Services Addressing support.

Web Services Security default policy sets:

The Web Services Security default policy sets are based on the WS-Security 1.0 and Web Services
Addressing (WS-Addressing) specifications. The Web Services Security default policy sets include the
WSSecurity default policy set, the Lightweight Third-Party Authentication (LTPA) WSSecurity policy set, the
Username WSSecurity policy set, and the Kerberos V5 HTTPS default policy set. These default policy sets
are used to build secure web services.

The Web Services Security default policy sets use the WS-Security 1.0 specification enhancements to
SOAP messaging to provide quality of protection through message integrity, message confidentiality, and
single message authentication. Providing quality of protection means to prevent the following potential
threats to SOAP messages:

v The message being modified or read by antagonists.

1324 Developing WebSphere applications

v An antagonist sending messages to a service that are formed correctly, but lack the appropriate security
claims to be processed.

The WS-Addressing specification defines XML 1.0 and XML Namespaces elements to identify web
services endpoints and to secure end-to-end endpoint identification in messages.

You can use the WSSecurity default policy set, the LTPA WSSecurity policy set, the Username WSSecurity
policy set, or the Kerberos V5 HTTPS default policy set as provided with the application server. To
customize the other Web Services Security policy sets, you must first copy the policy set, and then
configure custom policy settings and bindings to meet your needs.

Features and details of the default Web Services Security policy sets are as follows:

Kerberos V5 HTTPS default
This policy set provides message authentication with a Kerberos Version 5 token. Message
integrity and confidentiality are provided by Secure Sockets Layer (SSL) transport security. This
policy set follows the OASIS Kerberos Token Profile V1.1 and WS-Security specifications.

When you use this policy set, configure the basic authentication data and custom properties such
as the com.ibm.wsspi.wssecurity.krbtoken.targetServiceName and
com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost custom properties in the client bindings. For
more information, see the Authentication generator or consumer token settings and Protection
token settings (generator or consumer) topics.

LTPA WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A Lightweight Third Party Authentication (LTPA) token included in the request message to
authenticate the client to the service.

Username SecureConversation
This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and
signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request

Username WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request.

WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1325

WSTransaction default policy sets:

The WSTransaction default policy sets are based on the WS-Transaction specification and provide
transactional integrity for web services. The WSTransaction default policy sets include the WSTransaction
policy set and the SSL WSTransaction policy set.

You can use the WSTransaction default policy sets to make your SOAP over HTTP-based web services
interoperable and coordinate atomic transactions or business activities without writing custom code. Use
the WSTransaction policy set or the SSL WSTransaction policy set as provided with the application server.
To customize the policy sets, you must first copy the policy set, and then configure custom policy settings
and bindings to meet your needs.

The WSTransaction default policy sets are:

WSTransaction
Use this policy set to coordinate distributed transactional work atomically and interoperably, by
using the WS-AtomicTransaction specification. Also, use this policy set to coordinate loosely
coupled business processes that are distributed across the heterogenous web service
environment, with the ability to compensate actions if a failure occurs in the business activity, by
using the WS-BusinessActivity specification.

SSL WSTransaction
Use this policy set to coordinate distributed transactional work atomically, interoperably and
securely, by using the WS-AtomicTransaction specification and SSL Transport security. Also, use
this policy set to coordinate loosely coupled business processes, with the ability to compensate
actions if a failure occurs in the business activity, securely, by using the WS-BusinessActivity
specification and SSL Transport security.

WSHTTPS default policy set:

The WSHTTPS default policy set provides SSL transport security for the HTTP protocol with web services
applications.

The WSHTTPS default policy set is provided with the application server and it contains the HTTP transport
policy, the SSL transport policy and the WS-Addressing policy.

You can use the WSHTTPS default policy set as provided with the application server. You cannot edit the
WSHTTPS default policy set. You can create a copy of the default policy set and then configure custom
policy settings and bindings to meet your needs. Alternatively, you can create a new policy set and specify
the policies for it.

Copy of default policy set and bindings settings:

Use this page to copy a policy set that you select from a list of available policy sets.

To view this administrative console page:

1. Click Services > Policy sets > Application policy sets.

2. Select the policy set that you want to copy, and click Copy.

3. Enter a name for the copy of the policy set in the Name field.

4. [Optional] Enter a description for the copy of the policy set in the Description field.

Name:

Specifies the name of the policy set. Use this field to enter a name for the copy of the policy set.

Description:

1326 Developing WebSphere applications

Specifies a description of the policy set that you want to copy.

Transfer attachments:

If the policy set that you want to copy is attached to one or more applications, services, or endpoints, then
the check box option for Attach this policy set in place of the original for all attached applications,
services, endpoints, and operations, is available. The default setting for this check box is cleared. You
can perform the following actions:

1. Select the Attach this policy set in place of the original for all attached applications, services,
endpoints, and operations check box to move the attachments to a new policy set. Selecting the
check box detaches the original policy set and attaches the replacement policy set in its place.

2. Select Copy bindings if you want to copy the bindings of the policy set that is currently attached.

3. [Optional] Select Restore default bindings if you want to restore the default bindings.

Configuring the WS-Addressing policy
When working with policy sets in the administrative console, you can add and configure policies to enable
standard addressing of web services.

Before you begin

You can specify policies for custom policy sets. The provided default policy sets cannot be edited. You
must create a copy of the default policy set or create a completely new policy set in order to specify the
policies for it.

About this task

Adding a WS-Addressing policy enables the support for WS-Addressing. This support provides a standard
way to address Web services and include addressing information in messages. Adding a WS-Addressing
policy is equivalent to configuring the WSDL file for the web service to specify that WS-Addressing should
be used.

To specify or configure the policies associated with a policy set, use the administrative console.

Procedure
1. In the navigation pane of the administrative console, click Services > Policy sets > Application

policy sets > policy_set_name > [Policies] WS-Addressing. The WS-Addressing settings pane is
displayed.

2. Select WS-Addressing is mandatory to specify that WS-Addressing information must be included in
SOAP message headers. For servers, this setting means that the server returns a fault if it receives a
message that does not contain a WS-Addressing header. For clients, this setting means that
WS-Addressing headers are always added to SOAP messages. If you have enabled WS-Policy, this
requirement is communicated between servers and clients that support WS-Policy.

3. In the Messaging style box, select the message exchange pattern to use:

v Synchronous and asynchronous. The targeting of response messages is not restricted.

v Synchronous only. Response messages must be targeted at the WS-Addressing anonymous URI.

v Asynchronous only. Response messages must not be targeted at the WS-Addressing anonymous
URI.

4. Click OK.

5. Save your changes to the master configuration.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1327

Results

After you have included the WS-Addressing policy in a policy set, the associated policy set uses this policy
to address web services.

WS-Addressing policy settings:

Use this page to define the appropriate WS-Addressing policy assertions for this policy set.

To view this administrative console page, click Services > Policy sets > Application policy sets >
policy_set_name > [Policy] WS-Addressing, when the policy set includes the WS-Addressing policy
type.

You can configure the WS-Addressing policy type for both client-side and provider-side policy sets. If you
enable WS-Policy, this configuration is communicated between servers and clients that support WS-Policy.

WS-Addressing is mandatory:

Specifies whether a WS-Addressing SOAP header is included on messages.

Information Value
Data type Check box
Default Cleared
Range

Cleared
WS-Addressing is not mandatory. Servers will not
generate a fault if they receive a message that
does not contain a WS-Addressing header.
Clients might not include WS-Addressing headers
in SOAP messages, for example, if WS-Policy is
enabled and the server does not specify that
WS-Addressing is mandatory.

Selected
WS-Addressing is mandatory. Servers return a
fault if they receive a message that does not
contain a WS-Addressing header. Clients always
include WS-Addressing headers in SOAP
messages.

Messaging style:

Specifies the messaging style supported by this policy set.

Use the radio buttons to configure the messaging style.

v Select Synchronous and asynchronous to specify that there is no restriction on the targeting of
response messages.

v Select Synchronous only to specify that response messages must be targeted at the WS-Addressing
anonymous URI. You might want to use this messaging style in the following situations:

– The SOAP headers are not signed, and WS-Security is not enabled. Specifying the synchronous
message exchange pattern prevents the server sending messages to a third party, thereby
preventing the server from potentially taking part in a Denial of Service attack.

– Clients with a NAT device between themselves and the endpoint. In this configuration,
non-anonymous URIs cannot be routed. Use this setting to prevent the client from sending a
message containing a ReplyTo endpoint reference with a non-anonymous URI.

1328 Developing WebSphere applications

v Select Asynchronous only to specify that response messages must not be targeted at the
WS-Addressing anonymous URI. This setting does not mean that all non-anonymous URIs are
supported, therefore a server can return a fault if it receives a response endpoint reference that it
cannot process. You might want to use this messaging style if the endpoint has a very long-running
invocation time, and you do not want to hold the connection open while waiting for a response.

The following table shows how the messaging style options correspond to WS-Policy assertions.

Table 177. WS-Addressing messaging style and WS-Policy. This table provides a mapping between messaging style
options and WS-Policy assertions.
Messaging style WS-Policy mapping

Synchronous and asynchronous wsam:AnonymousResponses or wsam:NonAnonymousResponses

Synchronous only wsam:AnonymousResponses

Asynchronous only wsam:NonAnonymousResponses

Information Value
Required No
Data type Radio button

Attaching a policy set to a service artifact
Attach a policy set to a service artifact, such as an application, service, endpoint or operation, to define the
quality of services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,
WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and
Secure Sockets Layer (SSL) transport.

Before you begin

Before you can start this task, you must deploy an application containing web services. Also, if none of the
default policy sets contain the necessary policy definitions, then you must create a custom policy set with
the necessary definitions.

About this task

Develop a web service that contains each of the necessary artifacts, and deploy your web services
application into your application server instance. Now you can attach policy sets to your service artifacts,
such as an application, service, or endpoint.

To attach a policy set to a service artifact, perform the following steps:

Procedure
1. Open the administrative console.

2. To attach a policy set to a service provider, click Applications > Enterprise applications >
application_name > Service provider policy sets and bindings.

To attach a policy set to a service client, click Applications > Enterprise applications >
application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact.

4. Select Attach to display a list of available policy sets to attach. Select a policy set from the list.

5. Click Save, to save your changes to the master configuration.

6. [Optional] To see what attachments are defined for a given policy set, select Services > Policy sets >
Application policy sets > policy_set_name > Attached applications.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1329

Results

When you finish these steps, a policy set is attached to the service artifact.

Example

If you have the application, app1 and you want to attach the policy set, WSSecurity default, then perform
the following steps:

1. Locate the app1 application in the Applications > Enterprise applications collection.

2. Click the app1 application.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link.

4. Select the check box for the service artifact where the policy set is to be attached.

5. Click Attach. Select WSSecurity default policy set.

6. Click Save, to save your changes to the master configuration.

What to do next

You can create custom bindings for policy set attachments. Read about creating custom bindings for policy
set attachments.

You can configure the service client or service provider to share their policies. Read about using
WS-Policy to exchange policies in a standard format.

Configuring a service provider to share its policy configuration
A WebSphere Application Server service provider can share its policy configuration in published Web
Services Description Language (WSDL), or WSDL that is obtained by using an HTTP GET request or the
Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a web services service provider that contains all the necessary artifacts and deployed
your web services application into your application server instance. You have attached the policy sets and
managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the topic
about learning about WS-Policy.

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service
endpoint available to share in the following ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to
publish, or to obtain by using an HTTP GET request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy
configuration of the service provider is included in the WSDL and is available to a WS-
MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange protocol is
that you can apply message-level security to WS-MetadataExchange GetMetadata requests by using a
suitable system policy set.

If the service provider application uses multipart WSDL, all the WSDL must be local to the web service
application. For more information about multipart WSDL, see the topic about WSDL.

1330 Developing WebSphere applications

You must configure a service provider to share its policy configuration because by default the policy
configuration is not available in its WSDL. You can configure the service provider to include the policy
configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or
both. This topic describes how to configure a service provider to share its policy configuration by using the
administrative console. You can also configure a service provider to share its policy configuration by using
wsadmin commands or Rational Application Developer tools.

You can configure a service provider to share its policy configuration at application or service level. The
policy configuration that is represented by the policy sets attached to any lower levels will also be shared.
Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

Procedure
1. From the navigation pane of the administrative console, click Applications > Application Types >

WebSphere enterprise applications > service_provider_application_instance > [Web services
properties] Service provider policy sets and bindings.

2. In the row for the application or service where the provider policy that you want to share is attached,
click the link in the Policy sharing column. The link is either Enabled or Disabled. The Policy Sharing
pane is displayed.

3. To include the policy configuration of the service provider in its WSDL so that it can be either published
or obtained by using an HTTP GET request, select Exported WSDL.

4. To enable WS-MetadataExchange and make the policy configuration of the service provider available
to a WS-MetadataExchange GetMetada request, select WS-MetadataExchange request.

5. Optional: If you select WS-MetadataExchange request and you want to use message-level security,
select Attach a system policy set to the WS-MetadataExchange, then select a suitable policy set
and binding from the drop-down lists. See Configuring security for a WS-MetadataExchange request.

6. Click OK and save your changes to the master configuration.

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider
contains the current policy configuration in WS-PolicyAttachments format so that it is available to other
clients, service registries, or services that support the Web Services Policy (WS-Policy) specification. The
link in the Policy Sharing column on the Service provider policy sets and bindings pane changes to
Enabled.

If the policy configuration cannot be shared, an error that describes the problem is written to the service
provider error log, and the following policy is attached to the WSDL of the service provider:
<wsp:Policy>
<wsp:ExactlyOne>
</wsp:ExactlyOne>
</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects
of the WSDL are unaffected.

A service provider might not be able to share its policy configuration because the configuration cannot be
expressed in the standard WS-PolicyAttachments format. One reason might be because multiple
incompatible policies are defined for a particular attach point. Another reason might be because there is
not enough binding information to generate the standard policy. Policy configuration might include
bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also
be expressed in WS-PolicyAttachments format.

Configuring a service provider to share its policy configuration using wsadmin scripting:

Chapter 29. Developing web services - Addressing (WS-Addressing) 1331

A WebSphere Application Server service provider can share its policy configuration in published Web
Services Description Language (WSDL), or WSDL that is obtained by using an HTTP GET request or the
Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a web services service provider that contains all the necessary artifacts and deployed
your web services application into your application server instance. You have attached the policy sets and
managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the topic
about learning about WS-Policy.

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service
endpoint available to share in the following ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to
publish, or to obtain by using an HTTP GET request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy
configuration of the service provider is included in the WSDL and is available to a WS-
MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange protocol is
that you can apply message-level security to WS-MetadataExchange GetMetadata requests by using a
suitable system policy set.

If the service provider application uses multipart WSDL, all the WSDL must be local to the web service
application. For more information about multipart WSDL, see the topic about WSDL.

You must configure a service provider to share its policy configuration because by default the policy
configuration is not available in its WSDL. You can configure the service provider to include the policy
configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or
both. This topic describes how to configure a service provider to share its policy configuration by using
wsadmin commands. You can also use the administrative console or Rational Application Developer tools.

You can configure a service provider to share its policy configuration at application or service level. The
policy configuration that is represented by the policy sets attached to any lower levels will also be shared.
Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

Procedure

1. Start the wsadmin scripting client if it is not already running.

2. Use the SetProviderPolicySharingInfo command. For example:
AdminTask.setProviderPolicySharingInfo(’[-applicationName WebServiceProviderApplication
-resource WebService:/WebServiceProvider.war:{http://example_path/}Service1
-sharePolicyMethods [httpGet]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:
AdminConfig.save()

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider
contains the current policy configuration in WS-PolicyAttachments format so that it is available to other
clients, service registries, or services that support the Web Services Policy (WS-Policy) specification.

1332 Developing WebSphere applications

If the policy configuration cannot be shared, an error that describes the problem is written to the service
provider error log, and the following policy is attached to the WSDL of the service provider:
<wsp:Policy>
<wsp:ExactlyOne>
</wsp:ExactlyOne>
</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects
of the WSDL are unaffected.

A service provider might not be able to share its policy configuration because the configuration cannot be
expressed in the standard WS-PolicyAttachments format. One reason might be because multiple
incompatible policies are defined for a particular attach point. Another reason might be because there is
not enough binding information to generate the standard policy. Policy configuration might include
bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also
be expressed in WS-PolicyAttachments format.

What to do next

Optionally, you can publish the WSDL files.

setProviderPolicySharingInfo command:

Use the setProviderPolicySharingInfo command to set how an application or service that is a web
service provider can share its policy configuration with other clients, service registries, or services that
support the WS-Policy specification. You can set or remove this information about how a provider policy is
shared.

To run the command, use the AdminTask object of the wsadmin scripting client.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('PolicySetManagement')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the setProviderPolicySharingInfo command to set how an application, or a service in an application,
shares its policy configuration with clients, service registries, or services that support the WS-Policy
specification. The policy configuration is shared in WS-PolicyAttachments format.

The policy configuration of the resource can be shared with clients through a WS-MetadataExchange
request, through Web Services Description Language (WSDL) exported by a ?WSDL HTTP Get request, or
through both methods.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1333

Target object

None.

Required parameters

-applicationName
The name of the application for which you want to set how the provider policy is shared. (String)

-resource
The name of the resource for which you want to set how the provider policy is shared. For all
resources in an application, specify WebService:/. For a service in an application, specify
WebService:/module:{namespace}service_name. Endpoints or operations inherit the settings of the
parent application or service. (String)

Optional parameters

-sharePolicyMethods
Specifies how the policy configuration of the resource can be shared. (String array)

Enter either or both of the following values:

httpGet
The resource can share its policy configuration through WSDL that is obtained by a ?WSDL
HTTP Get request.

wsMex The resource can share its policy configuration through a WS-MetadataExchange request.

-wsMexProperties
Specifies that message-level security is required for WS-MetadataExchange requests and specifies the
settings that provide the message-level security. (Properties)

Enter the following values, following each value with the setting that you require for that value:

wsMexPolicySetName
The name of the system policy set that specifies message-level security when the resource
shares its policy configuration through a WS-MetadataExchange request. Specify a system
policy set that contains only WS-Security policies, only WS-Addressing policies, or both. The
default policy set is SystemWSSecurityDefault.

wsMexPolicySetBinding
The name of the general binding for the policy set attachment when the resource shares its
policy configuration through a WS-MetadataExchange request. Specify a general binding that
is scoped to the global domain, or scoped to the security domain of this service. If you do not
specify this property, the default binding is used.

This parameter is valid only when you specify wsMex for the sharePolicyMethods parameter.

-remove
Specifies whether the information about how the provider policy is shared is removed from the
resource. (Boolean)

This parameter takes the following values:

true The information about how the provider policy is shared is removed from the resource.

false This value is the default. The information about how the provider policy is shared is not
removed from the resource.

Examples

The following example removes the information about how the provider policy is shared from the
WSSampleServices application:

1334 Developing WebSphere applications

AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/ -remove true]’)

The following example enables policy sharing, using WSDL exported by a ?WSDL HTTP Get request, for the
EchoService service in the WSSampleServices application:
AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/WSSampleServicesSei.war:{http://example_path/}EchoService
-sharePolicyMethods [httpGet]]’)

The following example enables policy sharing, using a WS-MetadataExchange request with message-level
security, for the WSSampleServices application. Message level security is provided by the
SystemWSSecurityDefault policy set and the “Provider sample” general binding.
AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/ -sharePolicyMethods [wsMex]
-wsMexProperties [[wsMexPolicySetName [SystemWSSecurityDefault]]
[wsMexPolicySetBinding [Provider sample]]]]’)

getProviderPolicySharingInfo command:

Use the getProviderPolicySharingInfo command to find out whether an application or service that is a
web service provider can share its policy configuration, and list the properties that apply to sharing that
configuration.

To run the command, use the AdminTask object of the wsadmin scripting client.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('PolicySetManagement')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the getProviderPolicySharingInfo command to find out how a web services application, or a service
in a Web services application, shares its policy configuration with clients, service registries, or services that
support the WS-Policy specification. The policy configuration is shared in WS-PolicyAttachments format.

The command returns properties that show whether the policy configuration of the resource can be shared
with clients through a WS-MetadataExchange request or through Web Services Description Language
(WSDL) that is obtained by a ?WSDL HTTP Get request.

Target object

None.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1335

Required parameters

-applicationName
The name of the application for which you want to find out how it shares its policy configuration. The
application must be a service provider. (String)

Optional parameters

-resource
The name of the resource for which you want to find out how it shares its policy configuration. If you
specify this parameter, only the properties for that resource are returned. To retrieve information for the
application, specify WebService:/. Alternatively, you can specify a service, endpoint or operation.
However, policy sets are attached only at the application or service level, so the properties returned for
an endpoint or operation are the settings that are inherited from the service. (String)

Return value

Returns a list of properties that include the resource name and that show whether the policy configuration
of the resource can be shared. The following properties can be returned:

wsMexPolicySetName
The name of the policy set that specifies message-level security when the resource shares its policy
configuration through a WS-MetadataExchange request. This property is returned if the value of the
sharePolicyMethods property is wsMex and a policy set to provide message-level security was
specified.

wsMexPolicySetBinding
The name of the binding that is applied when the resource shares its policy configuration through a
WS-MetadataExchange request. This property is returned if the value of the sharePolicyMethods
property is wsMex and a binding to provide message-level security was specified.

resource
The resource that you specified.

directSetting
How the properties apply to the resource. Valid values for this property are:

true
The properties apply directly to the resource.

false
The properties are inherited from the parent application or service.

sharePolicyMethods
How the policy configuration of the resource can be shared. Valid values for this property are:

httpGet
The resource shares its policy configuration through an HTTP Get request.

wsMex
The resource shares its policy configuration through a WS-MetadataExchange request.

Example

The following command displays the policy sharing configuration properties for the EchoService service in
the WSSampleServices application. The provider is configured to share its policy through an HTTP Get
request, and a WS-MetadataExchange request with message-level security. Message-level security for the
WS-MetadataExchange request is provided by using the SystemWSSecurityDefault policy set and the
“Provider sample” general binding.
AdminTask.getProviderPolicySharingInfo([’-applicationName’, ’WSSampleServices’,
’-resource’, ’WebService:/SampleServicesSei.war:{http://example_path/}EchoService’])
.

1336 Developing WebSphere applications

.
[[wsMexPolicySetName SystemWSSecurityDefault] [wsMexPolicySetBinding [Provider sample]]
[resource WebService:/SampleServicesSei.war:{http://example_path/}EchoService/]
[directSetting true] [sharePolicyMethods [httpGet wsMex]]]

Policy sharing settings:

Use this pane to view and change whether the policy configuration of a web services service provider is
shared. You can configure the service provider to include the policy configuration in its Web Services
Description Language (WSDL) so that it can be accessed using an HTTP Get request, or published. You
can also make the policy configuration available to a Web Services Metadata Exchange
(WS-MetadataExchange) request.

To view this administrative console page for an application or service, complete the following steps. The
application must be a web services service provider.

1. Click Applications > Application Types > WebSphere enterprise applications >
service_provider_application_name > [Web Services Properties] Service provider policy sets
and bindings.

2. Select the link in the Policy Sharing column for the application or service you require. The link is
available if the application or service has a policy set attached.

To view this administrative console page for a service, complete the following steps.

1. Click Services > Service providers > service_name.

2. Select the link in the Policy Sharing column for the service. The link is available if the service has a
policy set attached.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Exported WSDL:

Select Exported WSDL to include the policy configuration of the service provider in the WSDL. The policy
configuration is in WS-PolicyAttachments format in the WSDL so that it is then available to other clients,
service registries, or services that support the Web Services Policy (WS-Policy) specification. The policy
configuration will be available in published WSDL, or a client can use an HTTP Get request that is
targeted at the target URL followed by ?WSDL to obtain the provider policy.

WS-MetadataExchange request:

Select WS-MetadataExchange to make the policy configuration of the service provider available to a
WS-MetadataExchange GetMetadata request. The policy configuration is in WS-PolicyAttachments format
in the WSDL so that it is then available to other clients, service registries or services that support the Web
Services Policy (WS-Policy) specification and the WS-MetadataExchange GetMetadata request.

When WS-MetadataExchange is selected, the Attach a system policy set to the WS-
MetadataExchange option is available.

Attach a system policy set to the WS-MetadataExchange:

Select Attach a system policy set to the WS-MetadataExchange to set message-level security for the
WS-MetadataExchange request. By default, this option is not selected and the transport policy of the
application is used. This option is available only when WS-MetadataExchange is selected.

When Attach a system policy set to the WS-MetadataExchange is selected, the Policy set and
Binding lists are available.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1337

Policy set:

Select the policy set you require from the list to provide message-level security for the
WS-MetadataExchange request. You can select from system policy sets that contain only WS-Security
policies, only WS-Addressing policies, or both. The default policy set is SystemWSSecurityDefault.

System policy sets are used for system messages that are not business-related, for example, messages
that apply qualities of service (QoS), including the messages that are defined in the WS-
MetadataExchange protocol.

Note that any transport policy of the application is always used.

This option is available only when Attach a system policy set to the WS-MetadataExchange is
selected.

Binding:

Select the binding you require from the list to provide message-level security for the WS-
MetadataExchange request. You can select from general bindings that are scoped to the global domain, or
scoped to the security domain of this service.

This option is available only when Attach a system policy set to the WS-MetadataExchange is
selected.

Configuring the client policy to use a service provider policy
An application that is a web service client can obtain the policy configuration of a web service provider and
use this information to establish a policy configuration that is acceptable to both the client and the service
provider.

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that
policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be
able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of the service
provider in the standard WS-PolicyAttachments format. You can administer the client to apply dynamically
the provider policy at the application or service or service reference level. By default, endpoints and
operations inherit their policy configuration from the relevant service. However, it is possible to configure a
service reference to override the service, in which case the endpoints and operations inherit their policy
configuration from the service reference.

If the provider policy uses multipart WSDL, you can use an HTTP GET request to obtain the policy of the
provider, but you cannot use the WS-MetadataExchange protocol. For more information about multipart
WSDL, see the topic about WSDL.

1338 Developing WebSphere applications

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are
compatible, and the calculation of a new policy, known as the effective policy, that complies with both their
requirements and capabilities.

This topic describes how to configure the client policy to use a service provider policy by using the
administrative console. You can also configure the client policy to use a service provider policy by using
wsadmin commands.

Procedure
1. From the navigation panel of the administrative console, click Applications > Application Types >

WebSphere enterprise applications > service_client_application_instance > [Web services
properties] Service client policy sets and bindings.

2. In the row for the application or service where you want to apply the policy, click the link in the Policies
Applied column. The Policies Applied panel is displayed.

3. Select one of the following options from the drop-down list:

v Provider policy only. Configure the client based solely on the policy of the service provider. This
option is available when a client policy set is not attached.

v Client and provider policy. Configure the client based on both the client policy set and the policy of
the service provider. This option is available when a client policy set is attached.

The other options in the list do not apply to this task.

4. Use the radio buttons to select which method to employ to obtain the provider policy: an HTTP GET
request (see step 5) or a WS-MetadataExchange request (see step 6).

5. Optional: To obtain the provider policy by using an HTTP GET request, click HTTP GET request. By
default, the HTTP GET request is targeted at the URL for the service endpoint followed by ?WSDL. For
example:

http://myhost:9080/WSSampleSei/EchoService?WSDL

When the policy set attach point is at the application level you cannot change this value.

a. Optional: If you are applying a policy to a service and the provider policy is located at the service
endpoint, ensure that Use the default request target is selected.

b. Optional: If you are applying a policy to a service and the provider policy is not located at the
service endpoint, click Specify request target, then enter the URL for the location of the provider
policy in the field. For example, you might change the target of the HTTP GET request if the
provider policy is located in a repository.

c. Optional: If you select HTTP GET request as the method to be used to obtain the provider policy
and if you select Specify request target and you want to configure transport-level security, select
Attach a system policy set to the HTTP GET request, then select a suitable policy set and
binding from the drop-down lists. Select the policy set you require from the Policy set list to provide
transport-level security for the HTTP GET request. Select from system policy sets that contain
solely HTTP transport policies, solely SSL transport policies, or both; the policy set cannot contain
other policy types. Select the binding you require from the Binding list for the HTTP GET request.
You can select from general bindings that are scoped to the global domain or scoped to the
security domain of this service.

6. Optional: To obtain the provider policy by using a Web Services Metadata Exchange
(WS-MetadataExchange) GetMetadata request, click WS-MetadataExchange request.

a. Optional: If you select WS-MetadataExchange request and want to use message-level security,
select Attach a system policy set to the WS-MetadataExchange request, then select a suitable
policy set and binding from the drop-down lists. See Configuring security for a
WS-MetadataExchange request.

7. Click OK.

8. Save your changes to the master configuration.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1339

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a
runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Configuring the client policy to use a service provider policy by using wsadmin scripting:

An application that is a web service client can obtain the policy configuration of a web service provider and
use this information to establish a policy configuration that is acceptable to both the client and the service
provider.

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that
policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be
able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of the service
provider in the standard WS-PolicyAttachments format. You can administer the client to dynamically apply
the provider policy at the application or service or service reference level.

Note: If you specify client dynamic policy control at the service reference level, you must use the new
name-value paired list format of the resource string. If you are not specifying client dynamic policy
control at service reference level, you can use either format.

Table 178. How to specify policy control at different levels of the application. For each applicable level of the
application, the table lists the relevant string format command and name-value pair format command needed to
specify policy control and summarizes the associated behavior.
Level String format Name-value pair list format (NEW) Behavior

Type "WebService:/" "type=WebService:/" Indicates all artifacts in the
application

Service "WebService:/myModule:{namespace}myService" "type=WebService:/,module=myModule,service={namespace}myService" Indicates all artifacts within
the web service

Endpoint
(under this
service)

"WebService:/myModule:{namespace}myService/
endpointA"

"type=WebService:/
,module=myModule,service={namespace}myService,endpoint=endpointA"

Indicates all operations for
this endpoint (under the
service)

Operation
(under this
service)

"WebService:/myModule:{namespace}myService/
endpointA/operation1"

"type=WebService:/
,module=myModule,service={namespace}myService,endpoint=endpointA,
operation=operation1"

Indicates a specific single
operation (under the
service)

Service
reference

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef"

Indicates all artifacts within
the web service reference

1340 Developing WebSphere applications

Table 178. How to specify policy control at different levels of the application (continued). For each applicable level
of the application, the table lists the relevant string format command and name-value pair format command needed to
specify policy control and summarizes the associated behavior.
Level String format Name-value pair list format (NEW) Behavior

Endpoint
(under this
service
reference)

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef,
endpoint=endpointA"

Indicates all operations for
this endpoint (under the
service reference)

Operation
(under this
service
reference)

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef,
endpoint=endpointA,operation=operation1"

Indicates a specific single
operation (under the
service reference)

If the provider policy uses multipart WSDL, you can use an HTTP GET request to obtain the policy of the
provider, but you cannot use the WS-MetadataExchange protocol. For more information about multipart
WSDL, see the topic about WSDL.

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are
compatible, and the calculation of a new policy, known as the effective policy, that complies with both their
requirements and capabilities.

This topic describes how to configure the client policy to use a service provider policy by using wsadmin
commands. You can also configure the client policy to use a service provider policy by using the
administrative console.

Procedure

1. Start the wsadmin scripting client if it is not already running.

2. Use the SetClientDynamicPolicyControl command. For example:
AdminTask.setClientDynamicPolicyControl(’[-applicationName WebServiceClientApplication
-resource WebService:/ClientApplication.war:{http://example_path/}Service1
-acquireProviderPolicyMethod [httpGet]
-httpGetProperties [httpGetTargetURI http://example_path]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:
AdminConfig.save()

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a
runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Configuring the client policy to use a service provider policy from a registry:

An application that is a web service client can obtain the policy configuration of a web service provider
from a registry, such as WebSphere Service Registry and Repository (WSRR), and use this information to
establish a policy configuration that is acceptable to both the client and the service provider.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1341

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The Web Services Description Language (WSDL) for the policy of the service provider, and its
corresponding policies and policy attachments, are stored in a registry such as WSRR. That policy must
contain its policy configuration in WS-PolicyAttachments format. The client must be able to support those
provider policies.

The registry must support the use of HTTP GET requests to publish WSDL that contains WS-Policy
attachments, for example WSRR Version 6.2 or later.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of a service
provider that is held in a registry. You can administer the client at the service or service reference level to
dynamically apply the provider policy that it obtains from a registry. By default, endpoints and operations
inherit their policy configuration from the relevant service. However, it is possible to configure a service
reference to override the service, in which case the endpoints and operations inherit their policy
configuration from the service reference. You cannot administer the client to apply dynamically the provider
policy that it obtains from a registry at the application level.

You can configure the client policy to use a service provider policy that is stored in a registry by using the
administrative console. You can also configure the client policy to use a service provider policy that is
stored in a registry by using wsadmin commands.

Procedure

1. From the navigation pane of the administrative console, click Applications > Application Types >
WebSphere enterprise applications.

2. Click the web service client application that you want to configure.

3. Click [Web services properties] Service client policy sets and bindings.

4. In the row for the service where you want to apply the policy, click the link in the Policies Applied
column. You cannot apply the policy at application level. The Policies Applied pane is displayed.

5. Select one of the following options from the drop-down list:

v Provider policy only. Configure the client based solely on the policy of the service provider. This
option is available when a client policy set is not attached.

v Client and provider policy. Configure the client based on both the client policy set and the policy of
the service provider. This option is available when a client policy set is attached.

The other options in the list do not apply to this task.

6. Click HTTP GET request.

7. Click Specify request target, then enter the URL for the location of the provider policy in the field,
that is, the address in the repository for the WSDL and policy. For information about using WSRR to
retrieve a WSDL document with embedded policies, and therefore obtain the required URL, see the
WSRR documentation. The following example shows a typical URL:

https://www.wsrr.host/WSRR/6.2/PolicyService/
WSDL?bsrURI=3b9b493b-278f-4f64.ba3f.dabd30da3f7e

8. Click OK.

1342 Developing WebSphere applications

9. Optional: If there is a secure connection that uses the Secure Sockets Layer (SSL) protocol between
the client and the registry, ensure that trust is established between the application server and the
registry server. To access the registry, the client uses the SSL transport policy that is part of its
service-level application policy. For example, for WSRR, you can enter the URL for the WSRR server
in a browser window. If the WSRR server is not already trusted, a message is displayed stating that
the security certificate is not trusted. To establish trust, use the following steps:

a. Retrieve and store the X509 certificate from the WSRR server. Use the options on the message
to view details of the certificate and save those details to a file, using distinguished encoding rules
(DER) encoded binary format.

b. Find out the key store that the client uses, that is, the key store that is shown by the SSL security
transport bindings of the client application policy set. See Configuring the SSL transport policy.
For example, the key store might be the default trust store for the node.

c. Add the signer certificate that you saved in step a. to the key store that the client uses. See
Adding a signer certificate to a keystore.

10. Optional: To access the registry, the client uses the transport policy that is part of its service-level
application policy. If the registry requires authentication using the HTTP protocol, configure a valid
user name and password as part of the application-level transport policy binding configuration. It is
advisable to secure any authorization credentials, because they are used for interactions with both
the web service endpoint and the registry.

a. Ensure that the client has a policy set that contains the HTTP transport policy attached to the
application or service level. See the relevant steps in Managing policy sets and bindings for
service clients at the application level using the administrative console .

b. Configure the HTTP transport client bindings for the binding named Client sample and enter the
user name and password that the registry requires to authenticate outbound service requests.
See the relevant steps in Configuring the HTTP transport policy.

11. Save your changes to the master configuration.

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a
runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Policies applied settings:

Use this panel to view and change whether the policy configuration of a WebSphere Application Server
service client is configured dynamically, based on the policies supported by its service provider. You can
view or change how the client obtains the policy of the service provider; the client can use an HTTP GET
request or a Web Services Metadata Exchange (WS-MetadataExchange) request. You can specify a policy
set and binding to provide message-level security for WS-MetadataExchange requests or to specify HTTP
transport and SSL transport configuration for HTTP GET requests.

To view this administrative console page for an application or service, complete the following steps. The
application must be a web services service client.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1343

1. Click Applications > Application Types > WebSphere enterprise applications >
service_client_application_name > [Web Services Properties] Service client policy sets and
bindings.

2. Select the link in the Policies Applied column for the application or service you require.

To view this administrative console page for a service, complete the following steps:

1. Click Services > Service clients > service_name.

2. Select the link in the Policies Applied column for the service. The link is available if the service or the
parent application has a policy set attached.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Apply the following policies:

Specifies whether the client policy is based on the policy of the service provider, and how that policy is
used.

Select from the following options:

v Client policy only. Configure the client based solely on the client policy set. Do not use the policy of the
service provider. This option is available when a client policy set is attached to the resource.

v Client and provider policy. Configure the client based on both the client policy set and the policy of the
service provider. This option is available when a client policy set is attached to the resource.

v Inherit application attachment. Inherit the setting of the parent application. This option is available for a
service when a client policy set is not attached to the service. If there is a policy set attached to the
parent application, the inherited properties are displayed on this panel, but you cannot change them. If
there is no policy set attached to the parent application, when you return to the Service clients policy
sets and bindings panel, the Policies applied column shows a value of None.

v Provider policy only. Configure the client based solely on the policy of the service provider. This option
is available when a client policy set is not attached to the resource.

HTTP GET request:

Click HTTP GET request to obtain the policy of the service provider by using an HTTP GET request. The
policy configuration must be in WS-PolicyAttachments format in the WSDL of the service provider.

This option is available when Apply the following policies is set to Client and provider policy or Provider
policy only.

By default, the HTTP GET request is targeted at the URL for each service endpoint followed by ?WSDL.

Use the default request target:

When you apply a policy to a service, click Use the default request target to target the HTTP GET
request at the URL for each service endpoint followed by ?WSDL.

If the attach point is for the service, then you can either select this default request target or you can
choose to specify an alternative request target using the Specify request target option.

If the attach point is for the application then the default request target will be used.

Specify request target:

1344 Developing WebSphere applications

When you apply a policy to a service, click Specify request target to change the target for acquiring
provider policy using an HTTP GET request. Enter the URL for the location of the provider policy in the
field.

This option is available when HTTP GET request is selected and you apply a policy to a service.

When you apply a policy to an application, this option is not available.

Attach a system policy set to the HTTP GET request:

Select Attach a system policy set to the HTTP GET request to set HTTP transport and SSL transport
configuration for the HTTP GET request. This option is available when HTTP GET request is selected as
the method to be used to obtain the provider policy and when Specify request target is selected and
completed.

If you do not specify a policy set you will inherit the HTTP transport and SSL transport configuration from
the application.

Policy set (for the HTTP GET request):

Select the policy set you require from the list to provide HTTP transport and SSL transport configuration
for the HTTP GET request. Select from system policy sets that contain solely HTTP transport policies,
solely SSL transport policies, or both; the policy set cannot contain other policy types.

This option is available when Attach a system policy set to the HTTP GET request is selected and the
Specify request target is selected and completed.

Binding (for the HTTP GET request):

Select the binding you require from the list for the HTTP GET request. You can select from Global Default
Bindings or General client/provider policy set bindings, which are specific to the individual service.

This option is available when Attach a system policy set to the HTTP GET request is selected and the
Specify request target is selected and completed.

The value of Default will result in the Global Default Binding being used.

WS-MetadataExchange request:

Click WS-MetadataExchange to obtain the policy of the service provider by using a WS-
MetadataExchange GetMetadata request. The policy configuration must be in WS-PolicyAttachments
format in the WSDL of the service provider.

This option is available when Apply the following policies is set to Client and provider policy or Provider
policy only.

Attach a system policy set to the WS-MetadataExchange request:

Select Attach a system policy set to the WS-MetadataExchange request to set message-level security
for the WS-MetadataExchange request. By default, this option is not selected and the transport policy of
the application is used. This option is available when WS-MetadataExchange request is selected.

When Attach a system policy set to the WS-MetadataExchange request is selected, the Policy set
and Binding lists are available. If you select Attach a system policy set to the WS-MetadataExchange
request, you must also select a policy set and a binding.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1345

Policy set (for the WS-MetadataExchange request):

Select the policy set you require from the list to provide message-level security for the
WS-MetadataExchange request. You can select from system policy sets that contain only WS-Security
policies, only WS-Addressing policies, or both. The default policy set is SystemWSSecurityDefault.

System policy sets are used for system messages that are not business-related, for example, messages
that apply qualities of service (QoS), including the messages that are defined in the WS-
MetadataExchange protocol.

Note that any transport policy of the application is always used.

This option is available when Attach a system policy set to the WS-MetadataExchange is selected.

Binding (for the WS-MetadataExchange request):

Select the binding you require from the list to provide message level security for the WS-
MetadataExchange request. You can select from Global Default Bindings or General client/provider
policy set bindings, which are specific to the individual service.

This option is available when Attach a system policy set to the WS-MetadataExchange is selected.

The value of Default will result in the Global Default Binding being used.

Enabling Web Services Addressing support for JAX-WS applications
using deployment descriptors
For JAX-WS applications, you can enable WS-Addressing support during the packaging of either a service
or client application, by editing the deployment descriptor for that application.

About this task

To modify WS-Addressing behavior by using deployment descriptors, add an <addressing> element to the
deployment descriptor file for the application. The <addressing> element has optional child elements as
described in the following table.

The <addressing> element functions in the same way as the Addressing annotation. The child elements of
the <addressing> annotation function in the same way as the parameters of the Addressing annotation.

Table 179. Child elements of the addressing deployment descriptor element. The table lists the different child
elements with their possible values and a description of each one.
Element name Possible values Description

enabled true (default)
false

Whether WS-Addressing support is enabled.

required true
false (default)

Whether WS-Addressing headers are required.

responses All (default)
ANONYMOUS
NON_ANONYMOUS

Whether to use a synchronous or an
asynchronous message exchange pattern.
Specify ANONYMOUS to send messages in a
synchronous message pattern; use
NON_ANONYMOUS to send messages in an
asynchronous message exchange pattern.

Procedure
v To modify the behavior of the WS-Addressing support in the service application, add the <addressing>

element, and optional child elements as required, to the service deployment descriptor under the
<port-component> element within the <webservice-description> element. In the following example, the

1346 Developing WebSphere applications

Addressing deployment descriptor fragment specifies that WS-Addressing is enabled and required, and
that the asynchronous message exchange pattern is used.

<port-component>
<port-component-name>MyPort1</port-component-name>

<addressing>
<enabled>true</enabled>
<required>true</required>
<responses>NON_ANONYMOUS</responses>
</addressing>
<service-impl-bean>

<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

v To modify the behavior of the WS-Addressing support in the client application, add the <addressing>
element, and optional child elements as required, to the client deployment descriptor under the
<port-component-ref> element within the <service-ref> element. For example, the following
deployment descriptor fragment indicates that WS-Addressing is enabled:

<service-ref>
<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<addressing>

<enabled>true</enabled>
</addressing>

</port-component-ref>
</service-ref>

Results

WS-Addressing properties are now included in the SOAP message header, and are processed by the
server on receipt of the message.

Enabling Web Services Addressing support for JAX-WS applications
using addressing annotations
For JAX-WS applications, you can enable WS-Addressing support during development of a service
application, by using addressing annotations in the code. You can also use this method in a client
application that uses an injected web service proxy reference.

About this task

Use one of the following addressing annotations in your service code:

v Addressing - use this annotation if you want to use the 2005/08 WS-Addressing specification.

v SubmissionAddressing - use this annotation if you want to use the 2004/08 WS-Addressing
specification.

On clients, use the Addressing annotation only; the SubmissionAddressing annotation is not supported.
You must specify the Addressing annotation in combination with the WebServiceRef annotation. The
WebServiceRef annotation specifies a reference to the web service proxy that is injected by the client
container.

Annotation settings override settings in the WSDL document. Annotation settings might differ from WSDL
settings if you create the WSDL document manually rather than generating it from the code.

Specify up to three optional parameters for each annotation:

Table 180. Parameters for the addressing annotations. The table lists the different parameters with their possible
values and a description of each one.
Parameter name Possible values Description

enabled true (default)
false

Whether WS-Addressing support is enabled.

required true
false (default)

Whether WS-Addressing headers are required.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1347

Table 180. Parameters for the addressing annotations (continued). The table lists the different parameters with their
possible values and a description of each one.
Parameter name Possible values Description

responses Responses.All (default)
Responses.ANONYMOUS
Responses.NON_ANONYMOUS

Whether to use a synchronous or an
asynchronous message exchange pattern.
Specify Responses.ANONYMOUS to send messages
in a synchronous message pattern; use
Responses.NON_ANONYMOUS to send messages in
an asynchronous message exchange pattern.
Note: This parameter is not supported on the
SubmissionAddressing annotation.

Note: You can use the Addressing annotation only with a SOAP (1.1 or 1.2) over HTTP binding. If you
use the class with another binding, such as XML over HTTP, an exception is thrown on clients, and
on servers the web service fails to deploy.

Procedure
v To modify the behavior of the WS-Addressing support programmatically in the service application, use

one of the addressing annotations, with optional parameters as required, in the code. In the following
example, the Addressing annotation is used with no parameters, so the default settings apply.

import javax.xml.ws.soap.Addressing;

@Addressing
@WebService(endpointInterface =

"org.apache.axis2.jaxws.calculator.Calculator",
serviceName = "CalculatorService",
portName = "CalculatorServicePort",
targetNamespace = "http://calculator.jaxws.axis2.apache.org")

In the following example, the SubmissionAddressing annotation is used with parameters that specify
that WS-Addressing is enabled and required. The responses attribute is not supported on this
annotation.

import com.ibm.websphere.wsaddressing.jaxws21.SubmissionAddressing;

@SubmissionAddressing(enabled=true, required=true)
@WebService(endpointInterface =

"org.apache.axis2.jaxws.calculator.Calculator",
serviceName = "CalculatorService",
portName = "CalculatorServicePort",
targetNamespace = "http://calculator.jaxws.axis2.apache.org")

v To enable WS-Addressing support on clients that use an injected web service proxy reference, use the
Addressing annotation, with optional parameters as required, in combination with the WebServiceRef
annotation. The SubmissionAddressing annotation is not supported for this method.

For example, the following code fragment specifies that WS-Addressing is enabled and that the
synchronous message exchange pattern is used:

public class MyClientApplication {

// Enable Addressing for a port-component-ref resource injection.
@Addressing(enabled=true, responses=Responses.ANONYMOUS)
@WebServiceRef(MyService.class)
private MyPortType myPort;
...

}

Results

If you use an addressing annotation in the service application, the server processes any WS-Addressing
headers that conform to the relevant specification in inbound SOAP messages. If you specify that
WS-Addressing is required, and an inbound SOAP message does not include any WS-Addressing
headers, or includes WS-Addressing headers that do not conform to the specification indicated by the
annotation, the server returns a fault message. For example, if a client sends a message that includes
2004/08 WS-Addressing headers, and the server requires 2005/08 headers, the server returns a fault
message.

1348 Developing WebSphere applications

If you use the Addressing annotation and generate a WSDL document from the code, a UsingAddressing
element and WS-Policy assertions are created in the WSDL document. Clients that use this WSDL
document will include WS-Addressing information in their messages. The SubmissionAddressing
annotation is not understood by current WSDL generation tools. However, the WSDL document does not
distinguish between the 2005/08 specification and the 2004/08 specification, so if you want to generate a
WSDL document from code that contains a SubmissionAddressing annotation, use both the Addressing
and SubmissionAddressing annotations together.

If you specify the responses attribute, the corresponding message exchange pattern will be used.

Enabling Web Services Addressing support for JAX-WS applications
using addressing features
For JAX-WS applications, you can enable WS-Addressing support during development of a client
application, by using addressing features in the code.

About this task

Use one of the following addressing feature classes in your client code:

v AddressingFeature - use this class if you want to send messages that include WS-Addressing headers
that conform to the 2005/08 WS-Addressing specification

v SubmissionAddressingFeature - use this class if you want to send messages that include
WS-Addressing headers that conform to the 2004/08 WS-Addressing specification

If you use both feature classes, the specification that is used depends on the type of endpoint reference
that you also specify. For example, if you specify a W3CEndpointReference object, the specification that is
used is the 2005/08 specification. If you specify an endpoint reference whose type conflicts with that
indicated by the feature class, for example a W3CEndpointReference object with a
SubmissionAddressingFeature instance, an error is thrown. If you do not specify an endpoint reference,
the default specification is the 2005/08 specification.

Specify up to three optional parameters for each addressing feature instance:

Table 181. Parameters for the addressing features. The table lists the different addressing feature parameters as
well as their possible values and a description of each one.
Parameter name Possible values Description

enabled true (default)
false

Whether WS-Addressing support is enabled.

required true
false (default)

Whether WS-Addressing headers are required.

responses Responses.All (default)
Responses.ANONYMOUS
Responses.NON_ANONYMOUS

Whether to use a synchronous or an
asynchronous message exchange pattern.
Specify Responses.ANONYMOUS to send
messages in a synchronous message pattern;
use Responses.NON_ANONYMOUS to send
messages in an asynchronous message
exchange pattern.
Note: This parameter is not supported for the
SubmissionAddressingFeature class.

Note: You can use the addressing feature classes only with a SOAP (1.1 or 1.2) over HTTP binding. If
you use the class with another binding, such as XML over HTTP, an exception is thrown on clients,
and on servers the web service fails to deploy.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1349

Procedure

Create an instance of one of the addressing feature classes, with parameters as required. For example, to
specify that WS-Addressing is enabled and required, and that the 2005/08 specification and the
asynchronous message exchange pattern is used, use the following code:
AddressingFeature feat = new AddressingFeature(true, true, AddressingFeature.Responses.NON_ANONYMOUS);

To specify that WS-Addressing is disabled for the 2004/08 specification, use the following code:
SubmissionAddressingFeature feat = new SubmissionAddressingFeature(false);

Results

If you specify that WS-Addressing is enabled, the client includes WS-Addressing headers in SOAP
messages. The headers conform to the WS-Addressing specification indicated by the type of feature class
used. If the server does not use annotations, or uses policy sets to enable WS-Addressing, the server
accepts both the 2005/08 and 2004/08 specifications.

If you specify that WS-Addressing is required and the client receives a message that does not include
WS-Addressing headers, the client returns a fault.

If you specify the responses attribute, the corresponding message exchange pattern will be used.

Enabling Web Services Addressing support for JAX-WS applications
using WS-Policy
For JAX-WS applications, you can enable WS-Addressing support during the development of a client or
service application by adding WS-Policy assertions into the WSDL document.

About this task

The JAX-WS 2.2 specification introduces functionality that enables WS-Policy assertions in the application
WSDL document to be mapped to and from Java annotations in the code.

There are several ways of enabling WS-Addressing support for JAX-WS applications. The method of using
WS-Policy will be effective unless it is overridden by another method with greater precedence, such as if
you are using AddressingFeature classes or using Addressing annotations. See the parent topic: Enabling
Web Services Addressing support for JAX-WS applications for full details about the order of precedence
used by WebSphere Application Server.

Note: WebSphere Application Server version 8 supports the JAX-WS 2.2 specification. One of the
differences between the JAX-WS 2.1 and JAX-WS 2.2 specifications is that whereas the presence
of WS-Policy in an application's WSDL was formerly ignored, if WS-Addressing support is defined
within the WS-Policy, this will now be used by WebSphere Application Server in the configuration of
the application. As the presence of WS-Policy in an application's WSDL is now checked for
WS-Addressing configuration, you may notice a change in behavior in applications formerly run in
previous versions of WebSphere Application Server.

If you add an Addressing annotation to your provider code and use the wsgen command-line tool to
generate the WSDL document, it will contain WS-Policy assertions specifying the WS-Addressing support.
However, if you are looking at the published WSDL document for the provider service, it is possible that
policy defined in policy sets is showing, as this would overwrite any annotations defined in the code.

If you are using an existing WSDL document to create Java code, when WebSphere Application Server
reads the WSDL, if any WS-Policy assertions specifying WS-Addressing support are present, the
generated Java code will contain Addressing annotations.

1350 Developing WebSphere applications

Procedure
v To enable WS-Addressing support on clients, use WS-Policy assertions in the code, with optional

attributes as required. The wsam:Addressing assertion indicates that WS-Addressing is required. If you
want to indicate that WS-Addressing is supported but not mandatory, add the wsp:Optional attribute. In
the following example, WS-Addressing is supported, but is not mandatory and the messaging format to
use has not been specified.

<wsp:Policy>
<wsam:Addressing wsp:Optional="true">

<wsp:Policy/>
</wsam:Addressing>

</wsp:Policy>

This example is equivalent to the policy set configuration of WS-Addressing being set to non-mandatory
and the messaging style being set to synchronous and asynchronous.

v To specify the message exchange pattern to be employed, use the wsam:AnonymousResponses assertion
for synchronous message exchanges and the wsam:NonAnonymousResponses assertion for asynchronous
message exchanges. In the following example, WS-Addressing support is set as mandatory and a
synchronous message exchange pattern has been specified.

<wsp:Policy>
<wsam:Addressing>

<wsp:Policy>
<wsam:AnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>

This example is equivalent to the policy set configuration of WS-Addressing being set to required and
the messaging style being set to synchronous only.

For more information, see the Web Services Addressing 1.0 - Metadata specification document.

Results

If you add WS-Addressing annotations to the application code specifying that WS-Addressing is enabled,
when you generate the WSDL it will contain WS-Policy assertions.

When WS-Policy assertions specifying WS-Addressing support are included in the WSDL, WS-Addressing
headers are included in the generated SOAP messages.

If you specify that WS-Addressing is required and an inbound SOAP message is received that does not
include any WS-Addressing headers, an exception occurs.

Web Services Addressing annotations
The WS-Addressing specification provides transport-neutral mechanisms to address web services and to
facilitate end-to-end addressing. If you have a JAX-WS application you can use Java annotations in your
code to specify WS-Addressing behavior at run time.

You can use WS-Addressing annotations to enable WS-Addressing support, to specify whether
WS-Addressing information is required in incoming messages, to control the message exchange pattern
the service supports, and to specify actions to be associated with a web service operation or fault
response.

The following WS-Addressing annotations are supported in WebSphere Application Server. These
annotations are defined in the JAX-WS 2.2 specification unless otherwise stated. The JAX-WS 2.2
specification supersedes and includes functions within the JAX-WS 2.1 specification. See the Java API for
XML-Based Web Services 2.2 specification for full details.

javax.xml.ws.Action
Specifies the action that is associated with a web service operation.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1351

http://www.w3.org/TR/ws-addr-metadata/
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html

v When following a bottom-up approach to developing JAX-WS web services, you can generate a
WSDL document from Java application code using the wsgen command-line tool. However, for
this attribute to be added to the WSDL operation, you must also specify the @Addressing
annotation on the implementation class. The result in the generated WSDL document is that the
Action annotations will have the wsam:Action attribute on the input message and output
message elements of the wsdl:operation. Alternatively, if you do not want to use the
@Addressing annotation you can supply your own WSDL document with the Action attribute
already defined.

v When following a top-down approach to developing JAX-WS web services, you can generate
Java application code from an existing WSDL document using the wsimport command-line tool.
In such cases, the resulting Java code will contain the correct Action and FaultAction
annotations.

If this action is not specified in either code annotations or in the WSDL document, the default
action pattern as defined in the Web Services Addressing 1.0 Metadata specification is used.
Refer to this specification for full details.

Note: Whilst the WebSphere Application Server runtime environment supports the deprecated
wsaw:Action attribute, if you try to generate Java code from an old WSDL document
containing the deprecated wsaw:Action attribute, this attribute will be ignored.

javax.xml.ws.FaultAction
Specifies the action that is added to a fault response. When you use this annotation with a
particular method, the WS-Addressing FaultAction extension attribute is added to the fault element
of the WSDL operation that corresponds to that method. For this attribute to be added to the
WSDL operation, you must also specify the Addressing annotation on the implementation class. If
you do not want to use the Addressing annotation you can supply your own WSDL document with
the Action attribute already defined. This annotation must be contained within an Action annotation.

WSDL documents generated from Java application code containing the WS-Addressing
FaultAction annotation will have the wsam:Action attribute on the fault message element of the
wsdl:operation.

Note: To ensure that any custom Exception classes you write are successfully mapped to the
generated WSDL document, extend the java.lang.Exception class instead of the
java.lang.RuntimeException class.

javax.xml.ws.soap.Addressing
Specifies that this service is to enable WS-Addressing support. You can use this annotation only
on the service implementation bean; you cannot use it on the service endpoint interface.

com.ibm.websphere.wsaddressing.jaxws21.SubmissionAddressing
This annotation is part of the IBM implementation of the JAX-WS specification. This annotation
specifies that this service is to enable WS-Addressing support for the 2004/08 WS-Addressing
specification. You can use this annotation only on the service implementation bean; you cannot
use it on the service endpoint interface.

For more information about the Addressing and SubmissionAddressing annotations, including code
examples, see Enabling Web Services Addressing support for JAX-WS applications using addressing
annotations.

The following example code uses the Action annotation to define the invoke operation to be invoked
(input), and the action that is added to the response message (output). The example also uses the
FaultAction annotation to specify the action that is added to a response message if a fault occurs:
@WebService(name = "Calculator")
public interface Calculator {

...
@Action(
input="http://calculator.com/inputAction",
output="http://calculator.com/outputAction",

1352 Developing WebSphere applications

http://www.w3.org/TR/ws-addr-metadata/

fault = { @FaultAction(className=AddNumbersException.class,
value="http://calculator.com/faultAction")

}
)
public int add(int value1, int value2) throws AddNumbersException {

return value1 + value2;
}

}

If you use a tool to generate service artifacts from code, the WSDL tags that are generated from the
preceding example are as follows:
<definitions targetNamespace="http://example.com/numbers" ...>

...
<portType name="AddPortType">

<operation name="Add">
<input message="tns:AddInput" name="Parameters"

wsam:Action="http://calculator.com/inputAction"/>
<output message="tns:AddOutput" name="Result"

wsam:Action="http://calculator.com/outputAction"/>
<fault message="tns:AddNumbersException" name="AddNumbersException"

wsam:Action="http://calculator.com/faultAction"/>
</operation>

<portType>
...

<definitions>

Web Services Addressing security
It is essential that communications that use Web Services Addressing (WS-Addressing) are adequately
secured and that a sufficient level of trust is established between the communicating parties. You can
achieve secure communications through the signing of WS-Addressing message-addressing properties
and the encryption of endpoint references.

Undertake these actions for both the supported addressing namespaces, http://www.w3.org/2005/08/
addressing and http://schemas.xmlsoap.org/ws/2004/08/addressing, even if you intend to use only one of
those namespaces.

Signing of WS-Addressing message-addressing properties

You can use an assembly tool to specify the message-addressing properties, and therefore the
WS-Addressing message elements, that require signing, or that require signature verification on inbound
requests. The receiver of the message might rely on the presence of this verifiable signature to determine
that the outbound message originated from a trusted source. Similarly, the lack of a verifiable signature
that is associated with the specified inbound message addressing properties causes the rejection of the
message with a SOAP fault.

Encryption of endpoint references

You can encrypt endpoint references as part of the SOAP header or SOAP body. Alternatively, you can
remove the need for encryption by not including sensitive information in the address or reference
parameters properties of the endpoint reference.

Use of the synchronous message exchange pattern

This method applies to JAX-WS applications only.

If you do not secure the WS-Addressing information in the SOAP message by using one or more of the
previous methods, and you do not have WS-Security enabled, the ReplyTo and FaultTo elements of the
SOAP message could be used to send messages to a third party, potentially taking part in a Denial of
Service attack. To prevent such attacks, apply a WS-Addressing policy type and configure it to specify
synchronous messaging only. You should also enable WS-Policy so that this requirement is communicated
to clients.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1353

Invoking JAX-WS web services asynchronously
Java API for XML-Based Web Services (JAX-WS) provides support for invoking web services using an
asynchronous client invocation. JAX-WS provides support for both a callback and polling model when
calling web services asynchronously. Both the callback model and the polling model are available on the
Dispatch client and the Dynamic Proxy client.

Before you begin

Develop a JAX-WS Dynamic Proxy or Dispatch client. When developing Dynamic Proxy clients, after you
generate the portable client artifacts from a Web Services Description Language (WSDL) file using the
wsimport command, the generated service endpoint interface (SEI) does not have asynchronous methods
included in the interface. Use JAX-WS bindings to add the asynchronous callback or polling methods on
the interface for the Dynamic Proxy client. To enable asynchronous mappings, you can add the
jaxws:enableAsyncMapping binding declaration to the WSDL file. For more information on adding binding
customizations to generate an asynchronous interface, see chapter 8 of the JAX-WS specification.

Note: When you run the wsimport tool and enable asynchronous invocation through the use of the
JAX-WS enableAsyncMapping binding declaration, ensure that the corresponding response
message your WSDL file does not contain parts. When a response message does not contain
parts, the request acts as a two-way request, but the actual response that is sent back is empty.
The wsimport tool does not correctly handle a void response. To avoid this scenario, you can
remove the output message from the operation which makes your operation a one-way operation or
you can add a <wsdl:part> to your message. For more information on the usage, syntax and
parameters for the wsimport tool, see the wsimport command for JAX-WS applications
documentation.

About this task

An asynchronous invocation of a web service sends a request to the service endpoint and then
immediately returns control to the client program without waiting for the response to return from the
service. JAX-WS asynchronous web service clients consume web services using either the callback
approach or the polling approach. Using a polling model, a client can issue a request and receive a
response object that is polled to determine if the server has responded. When the server responds, the
actual response is retrieved. Using the callback model, the client provides a callback handler to accept and
process the inbound response object. The handleResponse() method of the handler is called when the
result is available. Both the polling and callback models enable the client to focus on continuing to process
work without waiting for a response to return, while providing for a more dynamic and efficient model to
invoke web services. Polling invocations are valid from Enterprise JavaBeans (EJB) clients or Java
Platform, Enterprise Edition (Java EE) application clients. Callback invocations are valid only from Java EE
application clients.

Using the callback asynchronous invocation model
To implement an asynchronous invocation that uses the callback model, the client provides an
AsyncHandler callback handler to accept and process the inbound response object. The client
callback handler implements the javax.xml.ws.AsyncHandler interface, which contains the
application code that is run when an asynchronous response is received from the server. The
javax.xml.ws.AsyncHandler interface contains the handleResponse(java.xml.ws.Response)
method that is called after the run time has received and processed the asynchronous response
from the server. The response is delivered to the callback handler in the form of a
javax.xml.ws.Response object. The response object returns the response content when the get()
method is called. Additionally, if an error was received, then an exception is returned to the client
during that call. The response method is then invoked according to the threading model used by
the executor method, java.util.concurrent.Executor on the client's java.xml.ws.Service
instance that was used to create the Dynamic Proxy or Dispatch client instance. The executor is
used to invoke any asynchronous callbacks registered by the application. Use the setExecutor
and getExecutor methods to modify and retrieve the executor configured for your service.

1354 Developing WebSphere applications

Using the polling asynchronous invocation model
Using the polling model, a client can issue a request and receive a response object that can
subsequently be polled to determine if the server has responded. When the server responds, the
actual response can then be retrieved. The response object returns the response content when
the get() method is called. The client receives an object of type javax.xml.ws.Response from the
invokeAsync method. That Response object is used to monitor the status of the request to the
server, determine when the operation has completed, and to retrieve the response results.

Using an asynchronous message exchange
By default, asynchronous client invocations do not have asynchronous behavior of the message
exchange pattern on the wire. The programming model is asynchronous; however, the exchange
of request or response messages with the server is not asynchronous. To use an asynchronous
message exchange, the com.ibm.websphere.webservices.use.async.mep property must be set on
the client request context with a boolean value of true. When this property is enabled, the
messages exchanged between the client and server are different from messages exchanged
synchronously. With an asynchronous exchange, the request and response messages have
WS-Addressing headers added that provide additional routing information for the messages.
Another major difference between asynchronous and synchronous message exchange is that the
response is delivered to an asynchronous listener that then delivers that response back to the
client. For asynchronous exchanges, there is no timeout that is sent to notify the client to stop
listening for a response. To force the client to stop waiting for a response, issue a
Response.cancel() method on the object returned from a polling invocation or a Future.cancel()
method on the object returned from a callback invocation. The cancel response does not affect the
server when processing a request.

Note: The location of the asynchronous listener is sent to the server, so that the service can
reply to the client. On Windows operating systems, the local host name is used by default, because
it is compatible with Dynamic Host Configuration Protocol (DHCP). However, if the server cannot
resolve the host name, the client application does not receive replies from the target service. For
example, a client application is hosted on the workstation myhost.bar.com. In the following SOAP
message header, the client application sends the short name myhost as its host details. Unless the
target server can resolve myhost to myhost.bar.com, subsequent replies do not reach the client
application:

<soapenv:Header>
<wsa:To>http://target.bar.com:81/LiteSecurityService/SecurityService</wsa:To>
<wsa:ReplyTo>
<wsa:Address>http://myhost:2146/axis2/services/LiteSecurityService.
WSRMServicePort/AnonOutInOp?IBMwebservicesID=922A5DC38A337C4CEF1168347862705

</wsa:Address>
</wsa:ReplyTo>
<wsa:MessageID>urn:uuid:922A5DC38A337C4CEF1168347862403</wsa:MessageID>
<wsa:Action>getEndpointReference</wsa:Action>

</soapenv:Header>

To resolve this issue, configure the client to send the location details for the asynchronous listener
in IP format, by adding the following system property to the Java virtual machine. Note that by
transmitting the IP address, you lose the benefits of DHCP.

-Dcom.ibm.websphere.webservices.transportEPRInIPAddr=yes

Procedure
1. Determine if you want to implement the callback method or the polling method for the client to

asynchronously invoke the web service.

2. (Optional) Configure the client request context. Add the
com.ibm.websphere.webservices.use.async.mep

property to the request context to enable asynchronous messaging for the web services client. Using
this property requires that the service endpoint supports WS-Addressing which is supported by default
for the application server. The following example demonstrates how to set this property:

Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
rc.put("com.ibm.websphere.webservices.use.async.mep", Boolean.TRUE);

Chapter 29. Developing web services - Addressing (WS-Addressing) 1355

3. To implement the asynchronous callback method, perform the following steps.

a. Find the asynchronous callback method on the SEI or javax.xml.ws.Dispatch interface. For an
SEI, the method name ends in Async and has one more parameter than the synchronous method
of type javax.xml.ws.AsyncHandler. The invokeAsync(Object, AsyncHandler) method is the one
that is used on the Dispatch interface.

b. (Optional) Add the service.setExecutor methods to the client application. Adding the executor
methods gives the client control of the scheduling methods for processing the response. You can
also choose to use the java.current.Executors class factory to obtain packaged executors or
implement your own executor class. See the JAX-WS specification for more information on using
executor class methods with your client.

c. Implement the javax.xml.ws.AsyncHandler interface. The javax.xml.ws.AsyncHandler interface
only has the handleResponse(javax.xml.ws.Response) method. The method must contain the logic
for processing the response or possibly an exception. The method is called after the client run time
has received and processed the asynchronous response from the server.

d. Invoke the asynchronous callback method with the parameter data and the callback handler.

e. The handleResponse(Response) method is invoked on the callback object when the response is
available. The Response.get() method is called within this method to deliver the response.

4. To implement the polling method,

a. Find the asynchronous polling method on the SEI or javax.xml.ws.Dispatch interface. For an SEI,
the method name ends in Async and has a return type of javax.xml.ws.Response. The
invokeAsync(Object) method is used on the Dispatch interface.

b. Invoke the asynchronous polling method with the parameter data.

c. The client receives the object type, javax.xml.ws.Response, that is used to monitor the status of
the request to the server. The isDone() method indicates whether the invocation has completed.
When the isDone() method returns a value of true, call the get() method to retrieve the response
object.

5. Use the cancel() method for the callback or polling method if the client needs to stop waiting for a
response from the service. If the cancel() method is invoked by the client, the endpoint continues to
process the request. However, the wait and response processing for the client is stopped.

Results

You have enabled your JAX-WS web service client to asynchronously invoke and consume web services.
See the JAX-WS specification for additional information regarding the asynchronous client APIs.

Example

The following example illustrates a web service interface with methods for asynchronous requests from the
client.
@WebService

public interface CreditRatingService {
// Synchronous operation.
Score getCreditScore(Customer customer);
// Asynchronous operation with polling.
Response<Score> getCreditScoreAsync(Customer customer);
// Asynchronous operation with callback.
Future<?> getQuoteAsync(Customer customer,

AsyncHandler<Score> handler);
}

Using the callback method
The callback method requires a callback handler that is shown in the following example. When
using the callback procedure, after a request is made, the callback handler is responsible for
handling the response. The response value is a response or possibly an exception. The Future<?>
method represents the result of an asynchronous computation and is checked to see if the
computation is complete. When you want the application to find out if the request is completed,

1356 Developing WebSphere applications

invoke the Future.isDone() method. Note that the Future.get() method does not provide a
meaningful response and is not similar to the Response.get() method.

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerTom,
new AsyncHandler<Score>() {

public void handleResponse (
Response<Score> response)

{
score = response.get();
// process the request...

}
}

);

Using the polling method
The following example illustrates an asynchronous polling client:

CreditRatingService svc = ...;
Response<Score> response = svc.getCreditScoreAsync(customerTom);

while (!response.isDone()) {
// Do something while we wait.

}

score = response.get();

Enabling Web Services Addressing support for JAX-RPC applications
The Web Services Addressing (WS-Addressing) support provides mechanisms to address web services
and provide addressing information in messages. To enable the WS-Addressing support for JAX-RPC
applications, either configure the Web Services Description Language (WSDL) file for a service that runs
on WebSphere Application Server, or use the WS-Addressing application programming interface (API) or
system programming interface (SPI) to add WS-Addressing properties in a WebSphere Application Server
client.

About this task

Complete this task to enable the WS-Addressing support, either as a service provider or as a client of a
service provided by another party. This task also describes how to disable the WS-Addressing support,
which can improve performance for those applications that do not use WS-Addressing or any protocol that
depends on the WS-Addressing support.

If you are creating a web service, you can enable the WS-Addressing support during development of the
service, by including the UsingAddressing extensibility element in the WSDL binding element for the
service. This element contains a required attribute that has a value of either false, which specifies that
WS-Addressing information is accepted but not required in incoming messages, or true, which specifies
that WS-Addressing information is required in incoming messages. The default value is false. Messages
from WebSphere Application Server clients always include WS-Addressing information if your service
WSDL file includes the UsingAddressing element, regardless of the value of the required attribute.

If you are creating a client application to use a service from another provider, you might not have access
to the WSDL file for the service, or the service might use a version of WSDL that does not support the
UsingAddressing element (if the service is not running on a current version of this product). However, you
can still enable WS-Addressing support, during run time, by setting WS-Addressing properties on the
JAX-RPC stub or call object that you use to communicate with the service.

The following table summarizes the behavior of the WS-Addressing support in each of the scenarios
mentioned previously.

Chapter 29. Developing web services - Addressing (WS-Addressing) 1357

Table 182. The behavior of the WS-Addressing support in the product. The table details the resulting behavior of
different UsingAddressing settings when an application server client sends a message.

The WSDL for the service
specifies UsingAddressing
required = "false"

The WSDL for the service
specifies

The WSDL for the service does
not specify UsingAddressing

A client sends a message that
contains WS-Addressing
information

The WS-Addressing information is
processed by the product.

The WS-Addressing information is
processed by the product.

The WS-Addressing information is
processed by the product.

A non-WebSphere Application
Server client sends a message
that does not contain
WS-Addressing information

The message is accepted. The service returns a fault. The message is accepted.

A WebSphere Application Server
client sends a message, without
specifying addressing properties

The message automatically
contains the mandatory
WS-Addressing information, as
defined in the WS-Addressing
specification. The information is
processed by the product.

The message automatically
contains the mandatory
WS-Addressing information, as
defined in the WS-Addressing
specification. The information is
processed by the product.

WS-Addressing information is not
added. The message is accepted.

Procedure
v To enable WS-Addressing support from the server by configuring the WSDL file, complete the following

steps:

1. Ensure that the WSDL file for the service contains the UsingAddressing extensibility element on the
binding element. If you generated the WSDL file by using the Java2WSDL tool, this element is
automatically added for you. If you created the WSDL file yourself, for use with the WSDL2Java
tool, you must add the extensibility element. The UsingAddressing element has a required attribute
with a default value of false. For example:

<wsdl:binding name="TestServiceSoapBinding" type="intf:TestService">
<wsaw:UsingAddressing wsdl:required="false"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"/>

<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="invokeInstance">
...

</wsdl:operation>

</wsdl:binding>

This code indicates that the endpoint will process WS-Addressing information, but that this
information is not required.

2. Optional: To specify that WS-Addressing information is required, change the value of the required
attribute to true. If the endpoint receives a message that does not contain the mandatory
WS-Addressing elements within the message header, the endpoint returns a fault message, as
defined in the WS-Addressing specification.

WebSphere Application Server clients always send WS-Addressing conformant messages to
endpoints with bindings that specify the UsingAddressing element.

v To enable WS-Addressing support from a WebSphere Application Server client, use the IBM proprietary
WS-Addressing API or SPI to associate one or more WS-Addressing properties with the JAX-RPC stub
or call object that is used to send messages to the endpoint.

These properties become message-addressing properties (MAPs) in the SOAP message header. If the
node that receives the message is a WebSphere Application Server node, it processes the incoming
MAPs in accordance with the WS-Addressing specification, even if the service does not have a
UsingAddressing element in its WSDL file.

Use this method when communicating with endpoints that use earlier versions of the WS-Addressing
specification (for example: http://schemas.xmlsoap.org/ws/2004/08/addressing) that do not support the
UsingAddressing element, or when the WSDL file for the target endpoint is not available to the client.

1358 Developing WebSphere applications

Results

WS-Addressing properties are now included in the SOAP message header, and are processed by the
server on receipt of the message.

Disabling Web Services Addressing support
The Web Services Addressing (WS-Addressing) support provides mechanisms to address web services
and provide addressing information in messages. WS-Addressing support is disabled by default on clients.
The method for disabling WS-Addressing support on servers depends on whether your application is
based on JAX-RPC or JAX-WS.

About this task

You do not have to disable WS-Addressing support even if your application does not require it, because in
most cases WS-Addressing support does not have a negative impact on the running of applications. For
JAX-RPC applications, disabling WS-Addressing support can be risky as this action also disables support
for other specifications such as Web Services Atomic Transactions.

Procedure
v Disable WS-Addressing support for JAX-WS service providers using one of the following ways:

– Use both the Addressing and SubmissionAddressing annotations in the service code, with the
enabled parameter set to false; for example:

import javax.xml.ws.soap.Addressing;

@Addressing(enabled=false)
@SubmissionAddressing(enabled=false)
@WebService(...)

– Use the <webservice-description>/<port-component>/<addressing> deployment descriptor element
in the deployment descriptor for the service application; for example:

<port-component>
<port-component-name>MyPort1</port-component-name>
<addressing>

<enabled>false</enabled>
</addressing>
<service-impl-bean>

<servlet-link>MyPort1ImplBean</servlet-link>
</service-impl-bean>

</port-component>

v You do not have to take any action to disable WS-Addressing support for JAX-WS clients, because
WS-Addressing support is disabled by default. However, you can programmatically specify that
WS-Addressing is disabled by using one of the following ways:

– Use both the AddressingFeature and SubmissionAddressingFeature classes in the client code, with
the enabled parameter set to false; for example:

AddressingFeature feat = new AddressingFeature(false);
SubmissionAddressingFeature feat = new AddressingFeature(false);

– Use the Addressing annotation for an injected web services proxy reference; for example:
public class MyClientApplication {

// Disable Addressing for a port-component-ref resource injection.
@Addressing(enabled=false)
@WebServiceRef(MyService.class)
private MyPortType myPort;
...

}

– Use the <service>/<port-component>/<addressing> deployment descriptor; for example:
<service-ref>

<service-ref-name>service/MyPortComponentRef</service-ref-name>
<service-interface>com.example.MyService</service-ref-interface>
<port-component-ref>

<service-endpoint-interface>com.example.MyPortType</service-endpoint-interface>
<addressing>

<enabled>false</enabled>
</addressing>

</port-component-ref>
</service-ref>

Chapter 29. Developing web services - Addressing (WS-Addressing) 1359

v To disable WS-Addressing support for JAX-RPC service providers or clients, set the
com.ibm.ws.wsaddressingAndDependentsDisabled system property to true. For example:

java -Dcom.ibm.ws.wsaddressingAndDependentsDisabled=true ... application_name

Attention: Use this property with care because applications might require WS-Addressing message
addressing properties to function correctly. Setting this property also disables support for the following
specifications, which depend on the WS-Addressing support: Web Services Atomic Transactions, Web
Services Business Agreement, Web Services Notification and Web Services Reliable Messaging.

Results

By completing this task, you disabled the WS-Addressing support. Disabling WS-Addressing on clients
prevents WebSphere Application Server sending WS-Addressing message addressing properties in the
SOAP header of outbound web service messages. Disabling WS-Addressing on servers additionally
prevents WebSphere Application Server processing WS-Addressing MAPs in incoming SOAP headers.

1360 Developing WebSphere applications

Chapter 30. Developing web services - Invocation framework
(WSIF)

The Web Services Invocation Framework (WSIF) is a Web Services Description Language
(WSDL)-oriented Java™ API. You use this API to invoke web services dynamically, regardless of the
service implementation format (for example enterprise bean) or the service access mechanism (for
example Java Message Service (JMS)). Using WSIF, you can move away from the usual web services
programming model of working directly with the SOAP APIs, towards a model where you interact with
representations of the services. You can therefore work with the same programming model regardless of
how the service is implemented and accessed.

Using WSIF to invoke web services
You invoke a web service dynamically by using the WSIF API directly.

About this task

You specify the location of the Web Services Description Language (WSDL) file for the service, the name
of the operation to invoke, and any operation arguments. All other information needed to access the web
service (the abstract interface, the binding, and the service endpoint) is available through the WSDL.

This kind of invocation does not require stub classes and does not need a separate compilation cycle.

Note: You should not use WSIF for new applications in WebSphere Application Server, unless you are
supporting an existing WSIF configuration. You should instead adopt a more recent open standard,
such as the Java API for XML-Based Web Services (JAX-WS) programming model.

For more information about using the Web Services Invocation Framework (WSIF) to invoke web services,
see the following topics:

Procedure
v “Linking a WSIF service to the underlying implementation of the service.”

v “Developing a WSIF service” on page 1377.

v “Using complex types” on page 1385.

v “Using WSIF to bind a JNDI reference to a web service” on page 1386.

v “Example: Passing SOAP messages with attachments by using WSIF” on page 1388.

v “Interacting with the Java EE container in WebSphere Application Server” on page 1390.

v “Invoking a WSDL-based web service through the WSIF API” on page 1391.

v “Running WSIF as a client” on page 1397

Linking a WSIF service to the underlying implementation of the service
A Web Services Invocation Framework (WSIF) service is linked to the underlying service through a WSIF
provider. A provider is an implementation of a Web Services Description Language (WSDL) binding that
can run a WSDL operation through a binding-specific protocol. Providers implement the interface between
the WSIF API and the implementation of a service.

About this task

Providers are pluggable within the WSIF framework, and are registered according to the namespace of the
WSDL extension that they implement. Some providers use the Java Platform, Enterprise Edition (Java EE)
programming model to use Java EE services. If a provider is available, but its required class libraries are
not, then the provider is disabled.

© IBM Corporation 2009 1361

To use the providers that are supplied with WebSphere Application Server, see the following topics:

Procedure
v Link a WSIF service to a SOAP over HTTP service.

v Link a WSIF service to a JMS-provided service (SOAP over JMS, or native JMS).

v Link a WSIF service to a local Java application.

v Write the WSDL extension that lets your WSIF service invoke an enterprise bean.

Linking a WSIF service to a SOAP over HTTP service
The SOAP provider allows WSIF stubs and dynamic clients to invoke SOAP services. Add Web Services
Description Language (WSDL) extensions to your web service WSDL file so that the service can use the
SOAP provider.

Before you begin

Note: The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully
interoperate with services that are running on the former (Apache SOAP) provider. This is because
the IBM Web Service SOAP provider is designed to interoperate fully with a JAX-RPC compliant
web service, and Apache SOAP cannot provide such a service. For more information see “WSIF
SOAP provider: working with existing applications.”

About this task

The Web Services Invocation Framework (WSIF) SOAP provider supports SOAP 1.1 over HTTP.

The SOAP provider is JSR 101/109 compliant and uses Web Services for Java EE for parsing and
creating SOAP messages.

The SOAP provider supports:
v SOAP-ENC encoding.
v RPC style and Document style SOAP messages.
v SOAP messages with attachments.

The SOAP provider is not transactional.

The SOAP provider does not support the WSIF synchronous timeout. The SOAP provider uses the default
client timeout value that is set for Web Services for Java EE.

To link a WSIF service to a SOAP over HTTP service, you write extensions to the service WSDL file.

Procedure
v Optional: If you have a web service that you expect multiple clients to use to connect over SOAP,

before you deploy the service set up your application deployment descriptor file dds.xml to handle
multiple connections. For more information, see the troubleshooting tip Using WSIF with multiple clients
causes a SOAP parsing error.

v Write the WSDL extension that lets your WSIF service access a SOAP over JMS service.

Note: The WSDL binding extension for SOAP over JMS varies only slightly from the SOAP over HTTP
binding.

v Write the WSDL extensions for SOAP attachments.

WSIF SOAP provider: working with existing applications:

1362 Developing WebSphere applications

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully interoperate
with services that are designed to run on the former (Apache SOAP) provider. This is because the IBM
Web Service SOAP provider is designed to interoperate fully with a JAX-RPC compliant web service, and
Apache SOAP cannot provide such a service.

About this task

As a result of the change from the Apache SOAP provider to the IBM Web Service SOAP provider,
previous WSIF clients might not work in either of the following cases:

1. The web service uses any of the following parameter types: xsd:date, xsd:dateTime, xsd:hexBinary
or xsd:QName. For more information, see the Type Mappings section of WSIF - Known restrictions.

2. The web service was built upon the Apache SOAP provider.

To get your existing services working again, you have two options:

Procedure

v Change the default WSIF SOAP provider back to the former Apache SOAP provider (in which case any
future invocations to a JAX-RPC compliant web service will not work if that web service uses parameter
types xsd:date, xsd:dateTime, xsd:hexBinary or xsd:QName).

v Modify your web services to use the IBM Web Service SOAP provider.

Changing the default WSIF SOAP provider:

The WSIF default SOAP provider (the IBM Web Service SOAP provider) is designed to interoperate fully
with a JAX-RPC compliant web service, and therefore the default provider does not fully interoperate with
services that are running on the former (Apache SOAP) provider. To get your existing services working
again, you can either modify your web services to use the current IBM Web Service SOAP provider, or
you can change the WSIF default provider back to Apache SOAP as described in this topic.

About this task

WSIF uses a properties file named wsif.properties to choose what SOAP provider to use. The SOAP
provider is a node-wide setting, so all servers on the node must be restarted for any changes to take
effect. The wsif.properties file is shipped in the com.ibm.ws.runtime.jar file that is located in the
app_server_root/plugins directory (where app_server_root is the root directory for your installation of IBM
WebSphere Application Server), and the “as shipped” properties file is accessed in this location by being
put on the class path. However when you make changes to the file, you do not replace the original copy in
the com.ibm.ws.runtime.jar file. Instead, you save the modified version in the app_server_root/lib/
properties directory.

To change the WSIF default SOAP provider back to Apache SOAP, complete the following steps:

Procedure

1. Extract the wsif.properties file from the com.ibm.ws.runtime.jar file that is located in the
app_server_root/plugins directory (where app_server_root is the root directory for your installation of
IBM WebSphere Application Server).

2. Open the wsif.properties file in a text editor.

3. Remove the leading “#” character from the following lines:
wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1
wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\
http://schemas.xmlsoap.org/wsdl/soap/
#

After the update, the preceding lines should look like this:

Chapter 30. Developing web services - Invocation framework (WSIF) 1363

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1
wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\
http://schemas.xmlsoap.org/wsdl/soap/
#

4. Save the updated wsif.properties file in the app_server_root/lib/properties directory.

5. Stop then restart all application servers on the node.

Example

Modifying web services to use the IBM Web Service SOAP provider:

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) is designed to
interoperate fully with a JAX-RPC compliant web service, and therefore the current default provider does
not fully interoperate with services that are running on the former (Apache SOAP) provider. To get your
existing services working again, you can either modify your web services to use the current IBM Web
Service SOAP provider as described in this topic, or you can change the WSIF default provider back to
Apache SOAP.

About this task

To modify an existing web service, use the assembly tool to complete the following steps and thereby
generate new deployment artifacts for access to the service from the IBM Web Service provider:

Procedure

1. Import into the Workspace the project that contains your existing web services.

2. For every existing SOAP service in the project, repeat the following steps :

a. From the pop-up menu for your_service.wsdl, select Generate Deploy Code.

b. In the Generate Deploy Code window, change the Inbound Binding Type from SOAP to IBM Web
Service.

c. Click Finish.

3. Export the EAR file that contains all of the deployment artifacts for the IBM Web Service web service.

Linking a WSIF service to a JMS-provided service
The JMS providers enable a WSIF service to be invoked through either SOAP over JMS, or native JMS.
Add Web Services Description Language (WSDL) extensions to your web service WSDL file so that the
service can use the JMS providers.

About this task

The Java Message Service (JMS) is an API for transport technology. The mapping to a JMS destination is
defined during deployment and maintained by the container.

The JMS destination endpoint for a web service can be realized in any of the following ways:
v The JMS destination for the queue can be the web service implementation.
v The JMS destination can be (but is not required to be) associated with a message-driven bean by the

EJB container, thereby allowing the message-driven bean to be the web service implementation.
v For SOAP over JMS, the JMS destination can unwrap the JMS message and route the SOAP message

to a web service that is implemented as a stateless session bean.

The JMS destination endpoint must respect the interaction model expected by the client and defined by
the WSDL. It must return a response if one is required.

When the JMS destination endpoint creates the JMS response message the following rules must be
followed:
v The response message must be sent to JMSReplyTo from the incoming request.

1364 Developing WebSphere applications

v The JMSCorrelationID value of the response message must be set to the JMSMessageID value from the
request message.

v The response must be sent with a deliveryMode value equal to the JMSDeliveryMode value of the
request message.

v The response must be sent with a priority value equal to the JMSPriority value of the request
message.

v The TimeToLive/JMSExpiration value must be set to a value that equals the JMSExpiration value of the
request message.

The client does not see any of these headers. The container receives the JMS message and (for SOAP
over JMS) removes the SOAP message to send to the client.

To link a WSIF service to a JMS-provided service, use the following information and code examples:

Procedure
v Link your WSIF service to a SOAP over JMS service.

v Link a WSIF service to a service provided at a JMS destination.

v Enable a WSIF client to invoke a web service through JMS.

Writing the WSDL extension that lets your WSIF service access a SOAP over JMS service:

You can write a Web Services Description Language (WSDL) extension that enables your Web Services
Invocation Framework (WSIF) service to access a SOAP service that uses the Java Message Service
(JMS) as its transport mechanism.

Before you begin

This topic assumes that you chose and configured a JMS provider when you installed WebSphere
Application Server (either the default messaging provider, or another provider such as the WebSphere MQ
messaging provider). If not, do so now as described in Choosing a messaging provider.

About this task

If a SOAP message contains only XML, it can be carried on the Java Message Service (JMS) transport
mechanism with the JMS message body type TextMessage. The SOAP message, including the SOAP
envelope, is wrapped with a JMS message and put on the appropriate queue. The container receives the
JMS message and removes the SOAP message to send to the client.

Use the following procedure, and associated code fragments, to help you to write the Web Services
Description Language (WSDL) extension that enables your WSIF service to access a SOAP over JMS
service.

Note: You can also use this procedure as a guide to writing the WSDL binding extension for SOAP over
HTTP, because the SOAP over JMS binding is almost identical to the SOAP over HTTP binding.

Procedure

v Select the SOAP over JMS binding.

You set the transport attribute of the <soap:binding> tag to indicate that JMS is used. If you also set
the style attribute to rpc (Remote Procedure Call), then the Web Services Invocation Framework
(WSIF) assumes that an operation is invoked on the web service endpoint:
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/jms”/>

v Set the JMS address.

Note: See also the alternative method for specifying the JMS address that is given in the next step.

Chapter 30. Developing web services - Invocation framework (WSIF) 1365

For SOAP over JMS, the <wsdl:port> tag must contain a <jms:address> element. This element
provides the information required for a client to connect correctly to the web service by using the JMS
programming model. Typically, it is the stubs generated to support the SOAP over JMS binding that act
as the JMS client. Alternatively, the web service client can use the JMS programming model directly.

The <jms:address> element takes this form:

<jms:address

destinationStyle=“queue”
jmsVendorURI=“http://ibm.com/ns/mqseries”?
initialContextFactory=“com.ibm.NamingFactory”?
jndiProviderURL=“iiop://something:900/wherever”?
jndiConnectionFactoryName=“orange”
jndiDestinationName=“fred”>

<jms:propertyValue name=“targetService” type=“xsd:string”
value=“StockQuoteServicePort”/>

</jms:address>

where attributes marked with a question mark (?) are optional.

The optional jmsVendorURI attribute is a string that uniquely identifies the JMS implementation. WSIF
ignores this URI, which is used by the client developer and perhaps the client implementation to
determine if it has access to the correct JMS provider in the client runtime environment.

The optional attributes initialContextFactory and jndiProviderURL can only be omitted if the runtime
environment has a default Java Naming and Directory Interface (JNDI) provider configured.

The jndiConnectionFactoryName attribute gives the name of a JMS ConnectionFactory object, which
can be looked up within the JNDI context given by the jndiContext attribute. This ConnectionFactory
object is used to create a JMS connection to the JMS provider instance that owns the queue. In a
simple configuration, the same ConnectionFactory object is used by the server message listener and by
the clients. However the server and the clients can use different ConnectionFactory objects, provided
that they all create connections to the same JMS provider instance.

The value attribute of the targetService <jms:propertyValue> element is the name of the port
component for the target service as defined in the <port-component-name> element of the
webservices.xml file for the target service.

v Set the JMS address (alternative method).

For the SOAP over JMS provider you can instead specify the JMS address using the <soap:address>
tag in the following format:
jms:/[queue|topic]?<property>=<value>&<property>=<value>&...

where the specification of queue or topic corresponds to the JMS address destinationStyle attribute.

Table 183. Properties that are valid for use with the <soap:address> tag. Column 1 specifies the property name,
column 2 describes the property, and column 3 specifies the corresponding JMS address value.
Property name Property description Corresponding JMS address value

destination The JNDI name of the destination queue or topic jndiDestinationName

connectionFactory The JNDI name of the connection factory. jndiConnectionFactory

targetService The name of the port component of the target
service

targetService jms:propertyValue within
jms:address

JNDI-related properties (optional):

initialContextFactory The name of the initial context factory. initialContextFactory

jndiProviderURL The JNDI provider URL jndiProviderURL

JMS-related properties (optional):

deliveryMode An indication as to whether the request message
should be persistent or not. The valid values are
DeliveryMode.NON_PERSISTENT (default) and
DeliveryMode.PERSISTENT

JMSDeliveryMode

1366 Developing WebSphere applications

Table 183. Properties that are valid for use with the <soap:address> tag (continued). Column 1 specifies the
property name, column 2 describes the property, and column 3 specifies the corresponding JMS address value.
Property name Property description Corresponding JMS address value

password The password to be used to gain access to the
connection factory.

JMSPassword

priority The JMS priority associated with the request
message. Valid values are 0 to 9. The default
value is 4.

JMSDeliveryMode

replyTo The JNDI destination queue to which reply
messages should be sent.

JMSReplyTo

timeToLive The lifetime (in milliseconds) of the request
message. A value of 0 indicates an infinite
lifetime.

JMSTimeToLive

userid The userid to be used to gain access to the
connection factory.

JMSUserid

Here is an example of this format:

<jms:address> format:
<wsdl:port name=“StockQuoteServicePort”

binding=“sqi:StockQuoteSoapJMSBinding”>

<jms:address destinationStyle=“queue”
jndiConnectionFactoryName=“myQCF”
jndiDestinationName=“myQ”
initialContextFactory=“com.ibm.NamingFactory”
jndiProviderURL=“iiop://something:900/”>

<jms:propertyValue name=“targetService”
type=“xsd:string”
value=“StockQuoteServicePort”/>

</jms:address>

</wsdl:port>

<soap:address> format:
<wsdl:port name=“StockQuoteServicePort”

binding=“sqi:StockQuoteSoapJMSBinding”>
<soap:address location=“jms:/queue?connectionFactory=myQCF&destination

=myQ&initialContextFactory=com.ibm.NamingFactory&jndiProviderURL
=iiop://something:900/&targetService=StockQuoteServicePort” />

</wsdl:port>

v Set the JMS headers and properties.

You use the <jms:property> tag to set the JMS headers and properties. This tag maps either a
message part, or a literal value, into a JMS property:
<jms:property name=“Priority” {part=“requestPriority” | value=“fixedValue”}/>

If the <jms:property> has a literal value, then it can also be nested within the <jms:address> tag:
<jms:property name=“Priority” value=“fixedValue” />

This form of the <jms:property> tag is also used in the native JMS binding.

Example of a WSDL that defines a SOAP over JMS binding
<!-- Example: SOAP over JMS Text Message -->

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions

name="StockQuoteInterfaceDefinitions"
targetNamespace="urn:StockQuoteInterface"
xmlns:tns="urn:StockQuoteInterface"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:jms="http://schemas.xmlsoap.org/wsdl/jms/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Chapter 30. Developing web services - Invocation framework (WSIF) 1367

<wsdl:message name="GetQuoteInput">
<part name="symbol" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="GetQuoteOutput">

<part name="value" type="xsd:float"/>
</wsdl:message>

<wsdl:portType name="StockQuoteInterface">
<wsdl:operation name="GetQuote">

<wsdl:input message="tns:GetQuoteInput"/>
<wsdl:output message="tns:GetQuoteOutput"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapJMSBinding" type="tns:StockQuoteInterface">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/jms"/>
<wsdl:operation name="GetQuote">

<soap:operation soapAction="urn:StockQuoteInterface#GetQuote"/>
<wsdl:input>

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:input>
<wsdl:output>

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="StockQuoteService">

<wsdl:port name="StockQuoteServicePort"
binding="sqi:StockQuoteSoapJMSBinding">

<jms:address destinationStyle=“queue”
jndiConnectionFactoryName="myQCF"
jndiDestinationName=“myQ”
initialContextFactory=“com.ibm.NamingFactory”
jndiProviderURL=“iiop://something:900/”>

<jms:propertyValue name=“targetService”
type=“xsd:string”
value=“StockQuoteServicePort”/>

</jms:address>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Writing the WSDL extensions that let your WSIF service access a service at a JMS destination:

Using the native Java Message Service (JMS) provider, Web Services Invocation Framework (WSIF)
clients can treat a service that is available at a JMS destination as a Web service. Use this information,
and associated code fragments, to help you to write the Web Services Description Language (WSDL)
extensions.

Before you begin

This topic assumes that you chose and configured a JMS provider when you installed WebSphere
Application Server (either the default messaging provider, or another provider such as the WebSphere MQ
messaging provider). If not, do so now as described in Choosing a messaging provider.

About this task

The WSDL extensions for JMS are identified with the namespace prefix jms. For example, <jms:binding>.

1368 Developing WebSphere applications

The supported operations are either one-way operations (send for JMS point-to-point messaging, or
publish for JMS publish and subscribe messaging) or request-response operations (send and receive for
JMS point-to-point messaging). The WSDL operations therefore specify either an input message only, or
an input and an output message.

Operations that describe message interfaces with a native JMS binding do not have fault messages. No
assumptions are made about the message schema or the semantics of message properties, therefore no
distinction can be made between output and fault messages.

Use the following procedure, and associated code fragments, to help you to write the Web Services
Description Language (WSDL) extensions that enable your WSIF service to access an underlying service
at a JMS destination.

Procedure

v Set the JMS message body type.

You use the <jms:binding> extension to specify the JMS message body type:
<wsdl:binding ... >

<jms:binding type="messageBodyType" />
...

</wsdl:binding>

where messageBodyType is either ObjectMessage or TextMessage.

v Specify the parts to use for the input and output messages.

For JMS text messages and JMS object messages created from one or more WSDL message parts,
you use the <jms:input> and <jms:output> extensions to specify the message parts to use for the JMS
messages:

<wsdl:input ... >
<jms:input parts="part1 part2 ..." />

</wsdl:input>

<wsdl:output ... >
<jms:output parts="part1 part2 ..." />

</wsdl:output>

In the next example, the WSDL message has just one part that contains the complete message body.
This message body might result from a mapping of some other representation (see the next step “Map
the data types”).

<wsdl:input ... >
<jms:input parts="part1" />

</wsdl:input>

If no parts are defined, then all the message parts are used.

v Map the data types.

You use the <format> extensions to map data types:
<wsdl:binding ... >

<jms:binding type="..." />

<format:typeMapping encoding="Java" style="Java">
<format:typeMap typeName="..." formatType="targetType"/>

</format:typemapping>
...

</wsdl:binding>

The value of targetType is dependent on the JMS message body type (see the step “Set the JMS
message body type”). For JMS object messages, the target data type implements the
java.io.Serializable class. For JMS text messages, the target data type is always java.lang.String.

The <format> extensions are also used in other bindings that deal with Java interfaces.

v Set the JMS headers and properties.

Chapter 30. Developing web services - Invocation framework (WSIF) 1369

JMS does not make assumptions about message headers. For example, if the JMS provider is
MQSeries then each JMS message carries an RFH2 header. However you can access data in this
message header indirectly, by getting and setting JMS message properties.

When you want your application to pass a property into the Web Services Invocation Framework (WSIF)
as a part on the WSIF message, you use a <jms:property> tag. When you want to hard code a
property value into the WSDL, you use a <jms:propertyValue> tag. The <jms:propertyValue> tag
contains a specification of a literal value and its associated XML schema type.

You can specify <jms:property> and <jms:propertyValue> extensions within the <wsdl:input> tag in
the binding operation, and also within the <jms:address> tag. For the<wsdl:output> tag in the binding
operation, you can only specify the <jms:property> extension. Property values that are set in the
<jms:property> tag take precedence over values set in the <<jms:propertyValue> tag, and property
values that are set in the binding operation (in the <input> and <output> tags) take precedence over
values set in the <jms:address> tag.

Here is an example of the <jms:property> and <jms:propertyValue> tags nested within the <input> and
<output> tags:

<wsdl:input ... >

<jms:property name="propertyName" part="partName" />

<jms:propertyValue name="propertyName"
type="xsdType" value="actualValue" />

</wsdl:input>

<wsdl:output ... >

<jms:property name="propertyName" part="partName" />

</wsdl:output>

where propertyName identifies the JMS property that is associated with the header field, and partName
identifies the message part that is associated with the property.

The JMS property identified by propertyName can be user-defined, or it can be one of the following
predefined header fields:

Table 184. Predefined JMS message header fields.

Column 1 specifies the header field value, and column 2 specifies the data type for that header field value.

Value Java type

JMSMessageId java.lang.String

JMSTimeStamp long

JMSCorrelationId byte [] or java.lang.String

JMSReplyTo javax.jms.Destination

JMSDestination javax.jms.Destination

JMSDeliveryMode int

JMSRedelivered boolean

JMSType java.lang.String

JMSExpiration long

JMSTimeToLive long

See the JMS specification for restrictions that apply when setting JMS header field values. Attempts to
set restricted values are ignored.

1370 Developing WebSphere applications

For application-defined JMS message properties, the Java types used in the native JMS binding
implementation (used for calls to the corresponding JMS methods) are derived from the XML schema
type in the abstract interface (<wsdl:part> tag), and from the type mapping information in the format
binding (<format:typemap> tag).

v Handle transactions.

Independent of other JMS properties, the asynchronous processing of request-response operations has
implications for callers running in a transaction scope. The send request part and the receive response
part are separated into two transactions, because the send needs to be committed in order for the
request message to become visible. Implementations that process WSDL for asynchronous
request-response operations (such as WSIF) must therefore take the following additional actions:
– They must ensure that the send request transaction returns a correlation ID to the user, and provides

a callback with which users can pass in the response message to process the receive response
transaction.

– They might implement their own response message listener in order to recognize the arrival of
response messages, and to manage the correlation to the request message.

Example 1: JMS Text Message

The JMS text message contains a java.lang.String. In this example, the WSDL message contains only one
part that represents the whole message body:
<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest"> ... </wsdl:message>
<wsdl:message name="JmsOperationResponse"> ... </wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<jms:binding type="TextMessage" />

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:String" formatType="String" />

</format:typemapping>

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:input parts="requestMessageBody" />
</wsdl:input>
<wsdl:output message="JmsOperationResponse">

<jms:output parts="responseMessageBody" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

Chapter 30. Developing web services - Invocation framework (WSIF) 1371

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

As an extension to the previous JMS message example, the following example WSDL describes a
request-response operation in which specific JMS property values of the request and response message
are set for the request message and retrieved from the response message.

The JMS properties in the request message are set according to the values in the input message.
Likewise, selected JMS properties of the response message are copied to the corresponding values of the
output message. The direction of the mapping is determined by the appearance of the <jms:property> tag
in the input or output section, respectively.
<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest">
<wsdl:part name="myInt" type="xsd:int"/>
...

</wsdl:message>

<wsdl:message name="JmsOperationResponse">
<wsdl:part name="myString" type="xsd:String"/>
...

</wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<!-- the JMS message type might be any of the above -->
<jms:binding type="..." />

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:int" formatType="int" />
...

</format:typemapping>

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:property message="tns:JmsOperationRequest" parts="myInt" />
<jms:propertyValue name="myLiteralString"

type="xsd:string" value="Hello World" />
...

</wsdl:input>
<wsdl:output message="JmsOperationResponse">

<jms:property message="tns:JmsOperationResponse" parts="myString" />
...

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

1372 Developing WebSphere applications

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Enabling a WSIF client to invoke a web service through JMS:

The ways in which the Web Services Invocation Framework (WSIF) interacts with the Java Message
Service (JMS), and the steps to take to enable a service to be invoked through JMS by a WSIF client
application.

Before you begin

This topic assumes that you chose and configured a JMS provider when you installed WebSphere
Application Server (either the default messaging provider, or another provider such as the WebSphere MQ
messaging provider). If not, do so now as described in Choosing a messaging provider.

About this task

Here are the ways in which WSIF interacts with JMS:
v WSIF only supports input JMS properties.
v WSIF needs two queues when invoking an operation: one for the request message and one for the

reply.
v The replyTo queue is by default a temporary queue, which WSIF creates on behalf of the application.

You can specify a permanent queue by setting the JMSReplyTo property to the JNDI name of a queue.
v WSIF uses the default values for properties set by the JMS implementation.

To enable a service to be invoked through JMS by a WSIF client application, complete the following steps:

Procedure

1. Use the administrative console to create and configure a queue connection factory and a queue
destination for your chosen messaging provider.

For more information, see Configuring resources for the default messaging provider, Configuring JMS
resources for the WebSphere MQ messaging provider or Managing messaging with a third-party
messaging provider.

Note: In WebSphere MQ and some other JMS implementations, messages are persistent by default.
The WSIF replyTo temporary queue is of type temporary dynamic by default, which means that
your JMS provider cannot write a persistent response message to this queue. If you are using
the WebSphere MQ messaging provider, create a temporary model queue that is of type
permanent dynamic, then pass this model as the tempmodel of your queue connection factory.
This ensures that persistent messages are written to a temporary replyTo queue that is of type
permanent dynamic.

2. Use the administrative console to add the new queue destination to the list of JMS destination names
for your application server. Ensure that the Initial State is started.

3. Put the JNDI names of the queue destination and queue connection factory, as well as your JNDI
configuration, in the Web Services Description Language (WSDL) file.

4. Optional: If your client is running on an application server that has been migrated from WebSphere
Application Server Version 5, you might get basic authentication errors and therefore have to modify
your security settings. For more information see Web Services Invocation Framework troubleshooting
tips.

JMS message header: The TimeToLive property reference:

Chapter 30. Developing web services - Invocation framework (WSIF) 1373

The range of permitted values for the TimeToLive property of a JMS message that WSIF puts onto a
queue.

The JMS message header property JMSTimeToLive is of type long. It sets the time to live of a message put
onto a queue, in milliseconds. A value of 0 means live indefinitely.

The factors that determine the time to live of a JMS message are as follows:

v For a one-way (input only) operation, the default time to live is 0, so the message remains on the queue
indefinitely or until the server end-processes the message. The JMSTimeToLive value, if specified in the
service endpoint URL or the JMS Address, is used for one-way messages. The client never waits for a
response to a one-way operation and so it never times out. During a one-way operation, the client fails
only if the queue itself is unavailable.

v For a two-way (request and response) operation the JMSTimeToLive value, if specified in the service
endpoint URL or the JMS Address, is used for two-way messages. When the time to live is not
specified, the default value is determined by the client response timeout setting.

Writing the WSDL extension that lets your WSIF service invoke a method on a
local Java object
Using the Web Services Invocation Framework (WSIF) Java provider, WSIF can invoke Java code. This
means that, in a thin-client environment such as a Java virtual machine (JVM) or Tomcat test runtime
environment, you can define shortcuts to local Java programs. Use this procedure to help you to write the
Web Services Description Language (WSDL) extension that links your WSIF service to a local Java
application.

Before you begin

The WSIF Java provider is not intended for use in a Java Platform, Enterprise Edition (Java EE)
environment. There is a difference between a client using the WSIF Java provider to invoke a Java
component, and implementing a web service as a Java component on the server side.

About this task

The WSIF Java binding exploits the format binding for type mapping. Using the format binding, your WSDL
can define the mapping between XML schema types and Java types.

The WSIFJava provider requires the targeted Java classes to be on the class path of the client. The Java
method is invoked synchronously, in-process, in-thread, with the current thread and Object Request Broker
(ORB) contexts.

The WSIF Java provider is not transactional.

The WSIF Java provider does not support the WSIF synchronous timeout. The Java provider will not time
out waiting for a Java method to complete.

Use the following procedure, and associated code fragments, to help you to specify the WSDL extension
that enables your WSIF service to invoke a method on a local Java object.

Procedure
v Specify the Java binding.

To use the Java provider, you need the following binding specified in the WSDL file:
<!-- Java binding -->
<binding >

<java:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>

1374 Developing WebSphere applications

<operation>*
<java:operation

methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
methodType="instance|constructor" />

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

In this example:
– A question mark (?) means optional, and an asterisk (*) means 0 or more.
– The name attribute of the <format:typeMap> element is a qualified name of a simple or complex type

used by one of the Java operations.
– The formatType attribute of the <format:typeMap> element is the fully qualified class name for the

Java class to which the element specified by name maps.
– The methodName attribute of the <java:operation> element is the name of the method on the Java

object that is called by the operation.
– The parameterOrder attribute of the <java:operation> element contains a white space-separated list

of part names that define the order in which they are passed to the Java object method.
– The methodType attribute of the <java:operation> element must be set to either instance or

constructor. The value specifies whether the method that is invoked on the object is an instance
method or a constructor for the object.

v Specify the <java:address> element.

The className attribute of the <java:address> element specifies the fully qualified class name of the
object containing the method to invoke:
<service ... >

<port>*
<java:address

className="nmtoken"/>
</port>

</service>

Writing the WSDL extension that lets your WSIF service invoke an enterprise bean
Using the EJB provider, WSIF clients can invoke enterprise beans through Remote Method Invocation over
Internet Inter-ORB Protocol (RMI-IIOP). Use this information, and associated code fragments, to help you
to write the Web Services Description Language (WSDL) extension that links your WSIF service to a
service implemented as an enterprise bean.

Before you begin

Although you can use the EJB provider for EJB(IIOP)-based web service invocation, it is recommended
that you instead invoke RMI-IIOP web services by using JAX-RPC.

The EJB client JAR file must be available in the client runtime environment with the current provider.

The EJB provider does not support the WSIF synchronous timeout. The EJB provider will not time out
waiting for a Java method to complete.

About this task

Your WSIF client can invoke an enterprise bean by using RMI-IIOP, with the current security and
transaction contexts. If the EJB provider is invoked within a transaction, the transaction is passed to the
onward service and the standard EJB transaction attribute applies.

Chapter 30. Developing web services - Invocation framework (WSIF) 1375

If there are multiple implementations of the service, it is up to the service providers to make sure that
every implementation offers the same semantics. For example, for transactions, the bean deployer must
specify TX_REQUIRES_NEW to force a new transaction.

Use the following procedure, and associated code fragments, to help you to write the Web Services
Description Language (WSDL) extension that enables your WSIF service to invoke an enterprise bean.

Procedure
v Specify the EJB binding.

<!-- EJB binding -->
<binding >

<ejb:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*

<ejb:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
interface="remote|home" />

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

In this example:
– A question mark (?) means optional, and an asterisk (*) means 0 or more.
– The name attribute of the <format:typeMap> element is a qualified name of a simple or complex type

used by one of the EJB operations.
– The formatType attribute of the <format:typeMap> element is the fully qualified class name for the

Java class to which the element specified by name maps.
– The methodName attribute of the <ejb:operation> element is the name of the method on the

enterprise bean that is called by the operation.
– The parameterOrder attribute of the <ejb:operation> element contains a white space-separated list

of part names that define the order in which they are passed to the EJB method.
– The interface attribute of the <ejb:operation> element must be set to either remote or home. The

value specifies the interface of the enterprise bean on which the method named by the methodName
attribute is accessible.

v Specify the <ejb:address> element.
<service ... >

<port>*
<ejb:address

className="nmtoken"
jndiName="nmtoken"
initialContextFactory="nmtoken" ?
jndiProviderURL="nmtoken" ? />

</port>
</service>

In this example:

– The className attribute of the <ejb:address> element specifies the fully qualified class name of the
home interface class of the enterprise bean.

– The jndiName attribute of the <ejb:address> element specifies the full Java Naming and Directory
Interface (JNDI) name that is used to look up the enterprise bean.

– The initialContextFactory attribute of the <ejb:address> element is optional and specifies the
initial context factory class.

– The jndiProviderURL attribute of the <ejb:address> element is optional and specifies the JNDI
provider web address.

1376 Developing WebSphere applications

Developing a WSIF service
A Web Services Invocation Framework (WSIF) service is a web service that uses WSIF.

About this task

To develop a WSIF service, develop the web service (or use an existing web service), then develop the
WSIF client based on the Web Services Description Language (WSDL) document for that Web service.

There are also two pre-built WSIF samples available for download from the WebSphere Application Server
samples page of the developerWorks website:
v The Address Book sample.
v The Stock Quote sample.

For more information about using the pre-built samples, see the documentation that is included in the
developerWorks download package. Note that these samples were written to work with WebSphere
Application Server Version 5.

To develop a WSIF service, complete the following steps:

Procedure
1. Implement the web service.

Use web services tools to discover, create, and publish the web service. You can develop Java bean,
enterprise bean, and URL web services. You can use web service tools to create skeleton Java code
and a sample application from a WSDL document. For example, an enterprise bean can be offered as
a Web service, and use Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) as the
access protocol. Or you can use a Java class as a web service, with native Java invocations as the
access protocol.

You can use the WebSphere Studio Application Developer to create a web service from a Java
application, as described in its StockQuote service tutorial. The Java application that you use in this
scenario returns the last trading price from the Internet website www.xmltoday.com, given a stock
symbol. Using the web service wizard, you generate a binding WSDL document named
StockQuoteService-binding.wsdl and a service WSDL document named StockQuoteService-
service.wsdl from the StockQuoteService.java bean. You then deploy the web service to a web
server, generate a client proxy to the Web service, and generate a sample application that accesses
the StockQuoteService through the client proxy. You test the StockQuote web service, publish it by
using the IBM UDDI Explorer, and then discover the StockQuote web service in the IBM UDDI Test
Registry.

2. Develop the WSIF client.

Use the following information to help you develop a WSIF client:
v “Example: Using WSIF to invoke the AddressBook sample web service dynamically” on page 1378

gives example code to show how you define a web service in WSDL.
v “Linking a WSIF service to the underlying implementation of the service” on page 1361 describes

the available providers, and gives example code of how their WSDL extensions are coded.
v “Invoking a WSDL-based web service through the WSIF API” on page 1391 defines the main

interfaces that your client uses to support the invocation of Web services defined in WSDL.

The AddressBook sample is written for synchronous interaction. If you are using a JMS provider, your
WSIF client might have to act asynchronously. WSIF provides two main features that meet this
requirement:
v A correlation service that assigns identifiers to messages so that the request can match up with the

(eventual) response.
v A response handler that picks up the response from the web service at a later time.

For more information, see “WSIFOperation - Asynchronous interactions reference” on page 1395.

Chapter 30. Developing web services - Invocation framework (WSIF) 1377

Example: Using WSIF to invoke the AddressBook sample web service dynamically

This is example code for dynamic invocation of the AddressBook sample web service by using WSIF:
try {

String wsdlLocation="clients/addressbook/AddressBookSample.wsdl";

// The starting point for any dynamic invocation using wsif is a
// WSIFServiceFactory. Create one through the newInstance
// method.
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

// Once you have a factory, you can use it to create a WSIFService object
// corresponding to the AddressBookService service in the wsdl file.
// Note: because you only have one service defined in the wsdl file, you
// do not have to use the namespace and name of the service and can pass
// null instead. This also applies to the port type, although values have
// been used below for illustrative purposes.
WSIFService service = factory.getService(

wsdlLocation, // location of the wsdl file
null, // service namespace
null, // service name
“http://www.ibm.com/namespace/wsif/samples/ab”, // port type namespace
“AddressBookPT” // port type name

);

// The AddressBook.wsdl file contains the definitions for two complexType
// elements within the schema element. Map these complexTypes
// to Java classes. These mappings are used by the Apache SOAP provider
service.mapType(

new javax.xml.namespace.QName(
“http://www.ibm.com/namespace/wsif/samples/ab/types”,
“address”),

Class.forName(“com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress”));
service.mapType(

new javax.xml.namespace.QName(
“http://www.ibm.com/namespace/wsif/samples/ab/types”,
“phone”),

Class.forName(“com.ibm.www.namespace.wsif.samples.ab.types.WSIFPhone”));
// You now have a WSIFService object. The next step is to create a WSIFPort
// object for the port you want to use. The getPort(String portName) method
// allows us to generate a WSIFPort from the port name.

WSIFPort port = null;

if (portName != null) {
port = service.getPort(portName);

}
if (port == null) {

// If no port name was specified, attempt to create a WSIFPort from
// the available ports for the port type specified on the service
port = getPortFromAvailablePortNames(service);

}

// Once you have a WSIFPort, you can create an operation. Execute
// the addEntry operation and therefore attempt to create a WSIFOperation
// corresponding to it. The addEntry operation is overloaded in the wsdl i.e.

// there are two versions of it, each taking different parameters (parts).
// This overloading requires that you specify the input and output message
// names for the operation in the createOperation method so that the correct
// operation can be resolved.

// Because the addEntry operation has no output message, you use null for its name.
WSIFOperation operation =

port.createOperation(“addEntry”, “AddEntryWholeNameRequest”, null);

// Create messages to use in the execution of the operation. This should
// be done by invoking the createXXXXXMessage methods on the WSIFOperation.
WSIFMessage inputMessage = operation.createInputMessage();

1378 Developing WebSphere applications

WSIFMessage outputMessage = operation.createOutputMessage();
WSIFMessage faultMessage = operation.createFaultMessage();

// Create a name and address to add to the addressbook
String nameToAdd=“Chris P. Bacon”;
WSIFAddress addressToAdd =

new WSIFAddress (1,
“The Waterfront”,
“Some City”,
“NY”,
47907,
new WSIFPhone (765, “494”, “4900”));

// Add the name and address to the input message
inputMessage.setObjectPart(“name”, nameToAdd);
inputMessage.setObjectPart(“address”, addressToAdd);

// Execute the operation, obtaining a flag to indicate its success
boolean operationSucceeded =

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println(“Successfully added name and address to addressbook\n”);

} else {
System.out.println(“Failed to add name and address to addressbook”);

}

// Start from fresh
operation = null;
inputMessage = null;
outputMessage = null;
faultMessage = null;

// This time you will lookup an address from the addressbook.
// The getAddressFromName operation is not overloaded in the
// wsdl and therefore you can specify the operation name
// without any input or output message names.
operation = port.createOperation(“getAddressFromName”);

// Create the messages
inputMessage = operation.createInputMessage();
outputMessage = operation.createOutputMessage();
faultMessage = operation.createFaultMessage();

// Set the name to find in the addressbook
String nameToLookup=“Chris P. Bacon”;
inputMessage.setObjectPart(“name”, nameToLookup);

// Execute the operation
operationSucceeded =

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println(“Successful lookup of name ’“+nameToLookup+”’ in addressbook”);

// You can get the address that was found by querying the output message
WSIFAddress addressFound = (WSIFAddress) outputMessage.getObjectPart(“address”);
System.out.println(“The address found was:”);
System.out.println(addressFound);

} else {
System.out.println(“Failed to lookup name in addressbook”);

Chapter 30. Developing web services - Invocation framework (WSIF) 1379

}

} catch (Exception e) {
System.out.println(“An exception occurred when running the sample:”);
e.printStackTrace();

}
}

The preceding code refers to the following Sample method:
WSIFPort getPortFromAvailablePortNames(WSIFService service)

throws WSIFException {
String portChosen = null;

// Obtain a list of the available port names for the service
Iterator it = service.getAvailablePortNames();
{

System.out.println(“Available ports for the service are: ”);
while (it.hasNext()) {

String nextPort = (String) it.next();
if (portChosen == null)

portChosen = nextPort;
System.out.println(“ - ” + nextPort);

}
}
if (portChosen == null) {

throw new WSIFException(“No ports found for the service!”);
}
System.out.println(“Using port ” + portChosen + “\n”);

// An alternative way of specifying the port to use on the service
// is to use the setPreferredPort method. Once a preferred port has
// been set on the service, a WSIFPort can be obtained through getPort
// (no arguments). If a preferred port has not been set and more than
// one port is available for the port type specified in the WSIFService,
// an exception is thrown.
service.setPreferredPort(portChosen);
WSIFPort port = service.getPort();
return port;

}

The web service uses the following classes:

WSIFAddress:
public class WSIFAddress implements Serializable {

//instance variables
private int streetNum;
private java.lang.String streetName;
private java.lang.String city;
private java.lang.String state;
private int zip;
private WSIFPhone phoneNumber;

//constructors
public WSIFAddress () { }

public WSIFAddress (int streetNum,
java.lang.String streetName,
java.lang.String city,
java.lang.String state,
int zip,
WSIFPhone phoneNumber) {

this.streetNum = streetNum;
this.streetName = streetName;
this.city = city;

1380 Developing WebSphere applications

this.state = state;
this.zip = zip;
this.phoneNumber = phoneNumber;

}

public int getStreetNum() {
return streetNum;

}

public void setStreetNum(int streetNum) {
this.streetNum = streetNum;

}

public java.lang.String getStreetName() {
return streetName;

}

public void setStreetName(java.lang.String streetName) {
this.streetName = streetName;

}

public java.lang.String getCity() {
return city;

}

public void setCity(java.lang.String city) {
this.city = city;

}

public java.lang.String getState() {
return state;

}

public void setState(java.lang.String state) {
this.state = state;

}

public int getZip() {
return zip;

}

public void setZip(int zip) {
this.zip = zip;

}

public WSIFPhone getPhoneNumber() {
return phoneNumber;

}

public void setPhoneNumber(WSIFPhone phoneNumber) {
this.phoneNumber = phoneNumber;

}
}

WSIFPhone:
public class WSIFPhone implements Serializable {

//instance variables
private int areaCode;
private java.lang.String exchange;
private java.lang.String number;

//constructors
public WSIFPhone () { }

public WSIFPhone (int areaCode,

Chapter 30. Developing web services - Invocation framework (WSIF) 1381

java.lang.String exchange,
java.lang.String number) {

this.areaCode = areaCode;
this.exchange = exchange;
this.number = number;

}

public int getAreaCode() {
return areaCode;

}

public void setAreaCode(int areaCode) {
this.areaCode = areaCode;

}

public java.lang.String getExchange() {
return exchange;

}

public void setExchange(java.lang.String exchange) {
this.exchange = exchange;

}

public java.lang.String getNumber() {
return number;

}

public void setNumber(java.lang.String number) {
this.number = number;

}
}

WSIFAddressBook:
public class WSIFAddressBook {

private Hashtable name2AddressTable = new Hashtable();

public WSIFAddressBook() {
}

public void addEntry(String name, WSIFAddress address)
{

name2AddressTable.put(name, address);
}

public void addEntry(String firstName, String lastName, WSIFAddress address)
{

name2AddressTable.put(firstName+“ ”+lastName, address);
}

public WSIFAddress getAddressFromName(String name)
throws IllegalArgumentException

{

if (name == null)
{

throw new IllegalArgumentException(“The name argument must not be ” +
“null.”);

}
return (WSIFAddress)name2AddressTable.get(name);

}

}

The following code is the corresponding WSDL file for the web service:

1382 Developing WebSphere applications

<?xml version="1.0" ?>

<definitions targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:tns="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:typens="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"
xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"
xmlns:ejb="http://schemas.xmlsoap.org/wsdl/ejb/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema

targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="phone">
<xsd:element name="areaCode" type="xsd:int"/>
<xsd:element name="exchange" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="address">
<xsd:element name="streetNum" type="xsd:int"/>
<xsd:element name="streetName" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:int"/>
<xsd:element name="phoneNumber" type="typens:phone"/>

</xsd:complexType>

</xsd:schema>
</types>

<message name="AddEntryWholeNameRequestMessage">
<part name="name" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="AddEntryFirstAndLastNamesRequestMessage">
<part name="firstName" type="xsd:string"/>
<part name="lastName" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="GetAddressFromNameRequestMessage">
<part name="name" type="xsd:string"/>

</message>

<message name="GetAddressFromNameResponseMessage">
<part name="address" type="typens:address"/>

</message>

<portType name="AddressBookPT">
<operation name="addEntry">

<input name="AddEntryWholeNameRequest"
message="tns:AddEntryWholeNameRequestMessage"/>

</operation>
<operation name="addEntry">

<input name="AddEntryFirstAndLastNamesRequest"
message="tns:AddEntryFirstAndLastNamesRequestMessage"/>

</operation>
<operation name="getAddressFromName">

<input name="GetAddressFromNameRequest"
message="tns:GetAddressFromNameRequestMessage"/>
<output name="GetAddressFromNameResponse"

Chapter 30. Developing web services - Invocation framework (WSIF) 1383

message="tns:GetAddressFromNameResponseMessage"/>
</operation>

</portType>

<binding name="SOAPHttpBinding" type="tns:AddressBookPT">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryWholeNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryFirstAndLastNamesRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
<operation name="getAddressFromName">

<soap:operation soapAction=""/>
<input name="GetAddressFromNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output name="GetAddressFromNameResponse">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

<binding name="JavaBinding" type="tns:AddressBookPT">
<java:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
</format:typeMapping>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="name address"
methodType="instance"/>

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="firstName lastName address"
methodType="instance"/>

<input name="AddEntryFirstAndLastNamesRequest"/>
</operation>
<operation name="getAddressFromName">

<java:operation
methodName="getAddressFromName"
parameterOrder="name"
methodType="instance"
returnPart="address"/>

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

1384 Developing WebSphere applications

</operation>
</binding>

<binding name="EJBBinding" type="tns:AddressBookPT">
<ejb:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
</format:typeMapping>
<operation name="addEntry">

<ejb:operation
methodName="addEntry"
parameterOrder="name address"
interface="remote"/>

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<ejb:operation
methodName="addEntry"
parameterOrder="firstName lastName address"
interface="remote"/>

<input name="AddEntryFirstAndLastNamesRequest"/>
</operation>
<operation name="getAddressFromName">

<ejb:operation
methodName="getAddressFromName"
parameterOrder="name"
interface="remote"
returnPart="address"/>

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

</operation>
</binding>
<service name="AddressBookService">

<port name="SOAPPort" binding="tns:SOAPHttpBinding">
<soap:address
location="http://myServer/wsif/samples/addressbook/soap/servlet/rpcrouter"/>

</port>
<port name="JavaPort" binding="tns:JavaBinding">

<java:address className="services.addressbook.WSIFAddressBook"/>
</port>
<port name="EJBPort" binding="tns:EJBBinding">

<ejb:address className="services.addressbook.ejb.AddressBookHome"
jndiName="ejb/samples/wsif/AddressBook"

classLoader="services.addressbook.ejb.AddressBook.ClassLoader"/>
</port>

</service>

</definitions>

Using complex types
WSIF supports user-defined complex types through the mapping of complex types to Java classes. You
can specify this mapping manually or automatically.

About this task

Any calls to the WSIFService mapType and mapPackage methods used for manual mapping override any
equivalent mapping information that is produced automatically. This override helps to maintain backwards
compatibility, and also accommodates less standard mappings.

To map your user-defined complex types to Java classes, complete either of the following steps:
v Manually map complex types.
v Automatically map complex types.

Chapter 30. Developing web services - Invocation framework (WSIF) 1385

Procedure
v Manually map complex types.

The method to use when you create these mappings manually depends on the provider. For the Java
and EJB providers, the mappings are specified in the Web Services Description Language (WSDL) file
in the binding element. The following example provides the syntax for specifying the mapping:
<binding >

<ejb:binding|java:binding/>
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap typeName="qname" formatType="nmtoken"/>*
</format:typeMapping>

...
</binding>

In this example:

– A question mark (“?”) means “optional” and an asterisk (“*”) means “0 or more”.

– The format:typeMap typeName attribute is a qualified name of a complex type or simple type used
by one of the operations.

– The format:typeMap formatType attribute is the fully qualified class name for the Java class to which
the element specified by typeName maps.

If you use the Apache SOAP provider then you specify the mapping of a complex type to a Java class
in the client code through two methods on the org.apache.wsif.WSIFService interface:

public void mapType(QName elementType, Class javaType)

and
public void mapPackage(String namespaceURI, String packageName)

Use the mapType method to specify a mapping between an XML schema element and a Java class.
The method takes a QName representing the complex type or simple type, and the corresponding Java
class to which it maps.

Use the mapPackage method to specify a more general mapping between a namespace and a Java
package. Any custom, complex or simple type whose namespace matches that of the mapping is
mapped to a Java class in the corresponding package. The name of the class is derived from the name
of the complex type using standard XML to Java naming conventions.

v Automatically map complex types.

For complex types defined in the WSDL, where a generated bean is used to represent this type in Java,
the Web Services Invocation Framework (WSIF) programming model requires that a call is made to the
WSIFService.mapType() method. This call tells WSIF the package and class name of the bean
representing the XML schema type that is identified with a QName. To make things easier, the
WSIFService.mapPackage() method provides a mechanism to specify a wildcard version of this, where
any class within a specified package is mapped to the namespace of a QName. This is a mechanism
for manually mapping an XML schema type to a Java class and back again (one mapping entry
provides a bidirectional mapping).

There are many ways to convert a QName representing an XML schema type name to a Java package
name and class. To enable automatic type mapping, set the WSIF_FEATURE_AUTO_MAP_TYPES
feature on the WSIFServiceFactory instance:

WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
factory.setFeature(WSIFConstants.WSIF_FEATURE_AUTO_MAP_TYPES, new Boolean(true));

WSIF maps types by converting the URI part of the XML schema type QName to a package name, and
converting the local part to a class name. WSIF does this mapping by using the WSIFUtils methods
getPackageNameFromNamespaceURI and getJavaClassNameFromXMLName.

Using WSIF to bind a JNDI reference to a web service
You can use the Web Services Invocation Framework (WSIF) to bind a reference to a web service, then
look up the reference by using JNDI.

1386 Developing WebSphere applications

About this task

You access a web service through information provided in the Web Services Description Language
(WSDL) document for the service. If you do not know where to find the WSDL document for the service,
but you know that it has been registered in a UDDI registry, then you look it up in the registry. Java
programs access Java objects and resources in a similar manner, but using a JNDI interface.

The code fragments in the following steps show how, by using WSIF, you can bind a reference to a web
service then look up the reference by using JNDI.

Procedure
v Specify the argument values for the web service.

The web service is represented in WSIF by an instance of the org.apache.wsif.naming.WSIFServiceRef
class. This simple Referenceable object has the following constructor:

public WSIFServiceRef(
String WSDL,
String sNS,
String sName,
String ptNS,
String ptName)

{
[...]

}

In this example
– WSDL is the location of the WSDL file containing the definition of the service.
– sNS is the full namespace for the service definition (you can specify null if only one service is

defined in the WSDL file).
– sName is the local name for the service definition (you can specify null if only one service is defined

in the WSDL file).
– ptNS is the full namespace for the port type within the service that you want to use (you can specify

null if only one port type is available for the service).
– ptName is the local name for the port type (you can specify null if only one port type is available for

the service).

For example, if the WSDL file for the web service is available from the web address
http://myServer/WSDL/Example.WSDL and contains the following service and port type definitions:
<definitions targetNamespace="http://hostname/namespace/example"

xmlns:abc="http://hostname/namespace/abc"
[...]

<portType name="ExamplePT">
<operation name="exampleOp">

<input name="exampleInput" message="tns:ExampleInputMsg"/>
</operation>

</portType>
[...]

<service name="abc:ExampleService">
[...]

</service>
[...]

</definitions>

You can specify the following argument values for the WSIFServiceRef class:
– WSDL is http://myServer/WSDL/Example.WSDL
– sNS is http://hostname/namespace/abc
– sName is ExampleService
– ptNS is http://hostname/namespace/example
– ptName is ExamplePT

v Bind the service by using JNDI.

Chapter 30. Developing web services - Invocation framework (WSIF) 1387

To bind the service reference in the naming directory by using JNDI, you can use the
com.ibm.websphere.naming.JndiHelper class in WebSphere Application Server:

[...]
import com.ibm.websphere.naming.JndiHelper;
import org.apache.wsif.naming.*;

[...]
try {

Context startingContext = new InitialContext();
WSIFServiceRef ref = new WSIFServiceRef(“http://myServer/WSDL/Example.WSDL”,

“http://hostname/namespace/abc”
“ExampleService”,
“http://hostname/namespace/example”,
“ExamplePT”);

JndiHelper.recursiveRebind(startingContext,
“myContext/mySubContext/myServiceRef”, ref);

}
catch (NamingException e) {

// Handle error.
}

[...]

v Look up the service by using JNDI.

The following code fragment shows the lookup of a service by using JNDI:
[...]

try {
[...]

InitialContext ic = new InitialContext();
WSIFService myService =
(WSIFService) ic.lookup(“myContext/mySubContext/myServiceRef”);

[...]
}
catch (NamingException e) {

// Handle error.
}

[...]

Example: Passing SOAP messages with attachments by using WSIF
Information and example code for using the Web Services Invocation Framework (WSIF) SOAP provider
to pass attachments within a MIME multipart/related message in such a way that the SOAP processing
rules for a standard SOAP message are not changed. This includes how to write the Web Services
Description Language (WSDL) extensions for SOAP attachments, and how to work with types and type
mappings.

The W3C SOAP Messages with Attachments document describes a standard way to associate a SOAP
message with one or more attachments in their native format (for example GIF or JPEG) by using a
multipart MIME structure for transport. It defines specific use of the “Multipart/Related” MIME media type,
and rules for the use of URI references to entities bundled within the MIME package. It thereby outlines a
technique for carrying a SOAP 1.1 message within a MIME multipart/related message in such a way that
the SOAP processing rules for a standard SOAP message are not changed.

WSIF supports passing attachments in a MIME message using the SOAP provider to link a WSIF service
to a SOAP over HTTP service. The attachment is a javax.activation.DataHandler object. The
mime:multipartRelated, mime:part and mime:content tags are used to describe the attachment in the
WSDL.
v “Example: Writing the WSDL extensions for SOAP attachments” on page 1389
v “Example: Using WSIF to pass SOAP attachments” on page 1389
v “SOAP attachments - Working with types and type mappings” on page 1390
v “SOAP attachments - scenarios that are not supported” on page 1390

1388 Developing WebSphere applications

Example: Writing the WSDL extensions for SOAP attachments

The following example WSDL illustrates a simple operation that has one attachment called attch:
<binding name="MyBinding" type="tns:abc" >

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyOperation">

<soap:operation soapAction=""/>
<input>

<mime:multipartRelated>
<mime:part>

<soap:body use="encoded" namespace="http://mynamespace"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</mime:part>
<mime:part>

<mime:content part="attch" type="text/html"/>
</mime:part>

</mime:multipartRelated>
</input>

</operation>
</binding>

In this type of WSDL extension:
v There must be a part attribute (in this example attch) on the input message for the operation (in this

example MyOperation). There can be other input parts to MyOperation that are not attachments.
v In the binding input there must either be a <soap:body> tag or a <mime:multipartRelated> tag, but not

both.
v For MIME messages, the <soap:body> tag is inside a <mime:part> tag. There must only be one

<mime:part> tag that contains a <soap:body> tag in the binding input and that must not contain a
<mime:content> tag as well, because a content type of text/xml is assumed for the <soap:body> tag.

v There can be multiple attachments in a MIME message, each described by a <mime:part> tag.
v Each <mime:part> tag that does not contain a <soap:body> tag contains a <mime:content> tag that

describes the attachment itself. The type attribute inside the <mime:content> tag is not checked or used
by the Web Services Invocation Framework (WSIF). It is there to suggest to the application that uses
WSIF what the attachment contains. Multiple <mime:content> tags inside a single <mime:part> tag
means that the backend service expects a single attachment with a type specified by one of the
<mime:content> tags inside that <mime:part> tag.

v The parts="..." attribute (optional) inside the <soap:body> tag is assumed to contain the names of all
the MIME parts as well as the names of all the SOAP parts in the message.

Example: Using WSIF to pass SOAP attachments

The following code fragment can invoke the service described by the example WSDL in “Example: Writing
the WSDL extensions for SOAP attachments”:
import javax.activation.DataHandler;
. . .
DataHandler dh = new DataHandler(new FileDataSource(“myimage.jpg”));
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
WSIFService service = factory.getService(“my.wsdl”,null,null,“http://mynamespace”,“abc”);
WSIFOperation op = service.getPort().createOperation(“MyOperation”);
WSIFMessage in = op.createInputMessage();
in.setObjectPart(“attch”,dh);
op.executeInputOnlyOperation(in);

The associated type mapping in the DeploymentDescriptor.xml file depends upon your SOAP server. For
example if you use Tomcat with SOAP 2.3, then the DeploymentDescriptor.xml file contains the following
type mapping:
<isd:mappings>
<isd:map encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:x=“http://mynamespace”
qname=“x:datahandler”

Chapter 30. Developing web services - Invocation framework (WSIF) 1389

javaType=“javax.activation.DataHandler”
java2XMLClassName=“org.apache.soap.encoding.soapenc.MimePartSerializer”
xml2JavaClassName=“org.apache.soap.encoding.soapenc.MimePartSerializer” />

</isd:mappings>

In this case, the backend service is invoked with the following signature:
public void MyOperation(DataHandler dh);

You can also use stubs to pass attachments into the Web Services Invocation Framework (WSIF):
DataHandler dh = new DataHandler(new FileDataSource(“myimage.jpg”));
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
WSIFService service = factory.getService(“my.wsdl”,null,null,“http://mynamespace”,“abc”);
MyInterface stub = (MyInterface)service.getStub(MyInterface.class);
stub.MyOperation(dh);

Attachments can also be returned from an operation, but only one attachment can be returned as the
return parameter.

SOAP attachments - Working with types and type mappings

By default, attachments are passed into WSIF as DataHandler objects. If the part on the message that is
the DataHandler object maps to a <mime:part> tag in the WSDL, then WSIF automatically maps the fully
qualified name of the WSDL type to the DataHandler class and sets up that type mapping with the SOAP
provider.

In your WSDL, you might have defined a schema for the attachment (for instance as a binary[] type).
WSIF silently ignores this mapping and treats the attachment as a DataHandler object, unless you
explicitly issue a mapType() method. WSIF lets the SOAP provider set the MIME content type based on the
type of the DataHandler object, instead of the type attribute specified for the <mime:content> tag in the
WSDL.

SOAP attachments - scenarios that are not supported

The following scenarios are not supported:
v Using DIME.
v Passing in javax.xml.transform.Source and javax.mail.internet.MimeMultipart.
v Using the mime:mimeXml WSDL tag.
v Nesting a mime:multipartRelated tag inside a mime:part tag.
v Using types that extend DataHandler, Image, and so on.
v Using types that contain DataHandler, Image, and soon.
v Using Arrays or Vectors of DataHandlers, Images, and so on.
v Using multiple in/out or output attachments.

The MIME headers from the incoming message are not preserved for referenced attachments. The
outgoing message contains new MIME headers for Content-Type, Content-Id and Content-Transfer-
Encoding that are created by WSIF.

Interacting with the Java EE container in WebSphere Application
Server
How, and to what extent, WSIF interacts with the Java EE container that is provided in WebSphere
Application Server.

About this task

You can interact with a container in any of the following ways:

1390 Developing WebSphere applications

Procedure
v Use the application server administrative console to define web services to WebSphere Application

Server. This task is described in “Using WSIF to bind a JNDI reference to a web service” on page 1386.
As part of the definition of a service, the administrator might define a “preferred port”.

v Use the Web Services Invocation Framework (WSIF) to make log and trace calls to the JRAS services
in WebSphere Application Server, as described in Tracing and logging WSIF.

v Use WSIF providers to access Java Platform, Enterprise Edition (Java EE) services. For example, use
the EJB provider to access the Java Naming and Directory Interface (JNDI) and make calls to remote
enterprise beans.

v Use WSIF to wrap the use of container services so that, when WSIF is run in an unmanaged (thin)
environment, the operation can succeed.

Invoking a WSDL-based web service through the WSIF API
The Web Services Invocation Framework (WSIF) provides a Java API for invoking web services,
independent of the format of the service, or the transport protocol through which it is invoked.

Before you begin

WSIF includes an EJB provider for EJB invocation that uses the Remote Method Invocation over Internet
Inter-ORB Protocol (RMI-IIOP). However, for EJB(IIOP)-based web service invocation, invoke RMI-IIOP
Web services using JAX-RPC instead.

Ensure that your application uses only one thread to call WSIF.

About this task

The WSIF API supports the invocation of Web Services Description Language (WSDL)-defined web
services. WSIF is intended for use in both WSIF clients and web service intermediaries.

The WSIF API is driven by the abstract service description in WSDL; it is completely independent of the
binding used. This independence makes the API more natural to work with because it uses WSDL terms to
refer to message parts, operations, and other items.

The WSIF API was designed for the WSDL usage model:

1. Select a port that supports the port type that you need.

2. Invoke the operation by providing the necessary abstract input message consisting of the required
parts, without worrying about how the message is mapped to a specific binding protocol.

Other web service APIs, for example SOAP APIs, are not designed on WSDL, but for a specific binding
protocol with its associated syntax; for example, target URIs and encoding styles.

The main WSIF API interfaces are described in the following procedure. For additional technical details of
the WSIF API, see the generated API documentation that is supplied with WSIF (see the Apache WSIF
website).

Procedure
v Create a message for sending to a port through the WSIFMessage interface.

In WSDL, a message describes the abstract type of the input or output to an operation. The
corresponding WSIF class is WSIFMessage, which represents in memory the input or output of an
operation. The WSIFMessage interface separates the representation of the data from the abstract type
defined by WSDL.

A WSIFMessage class is a container for a set of named parts. WSIFMessage classes can be sent
between Java Virtual Machines (JVMs).

Chapter 30. Developing web services - Invocation framework (WSIF) 1391

1. Choose whether to represent the WSIF message at run time as a Java class or as XML.

There are two natural ways to represent a WSDL message in a runtime environment:
– The generated Java class, based on a WSDL to Java mapping such as that provided by a Java

API for XML-based remote procedure call (JAX-RPC).
– The XML representation of the data, for example using SOAP Encoding.

Each option offers benefits in different scenarios. The Java class is the natural approach when
WSIF is used in a standard Java client. However, in other scenarios where WSIF is used in an
intermediary, it might be more efficient to keep a WSDL message in the SOAP encoded format. The
style used to define messages must be consistent within the message, so all the parts in one
message must be consistent. A string - getRepresentationStyle() - always returns null. This
indicates that parts on this WSIFMessage class are represented as Java objects.

2. Get and set the parts of the WSIF message.

You add parts to a WSIFMessage class with the setObjectPart or setTypePart methods. Each part is
named. Part names within a message are unique. If you set a part more than once, the last setting
is the one that is used.

You retrieve parts by name from a WSIFMessage class with the getObjectPart or getTypePart
methods. If the named part does not exist, the method returns a WSIFException error.

You can use Iterators to retrieve parts from the message through the getParts() and getPartNames()
methods.

The order in which you set the parts is not important, but the message implementation might be
more efficient if the parts are set in the parameter order specified by WSDL.

WSIFMessage classes are cloneable and serializable. If the parts set are not cloneable, the
implementation can try to clone them using serialization. If the parts are not serializable either, then
a CloneNotSupportedException exception is thrown if cloning is attempted.

3. Set the WSIF message name.

In addition to the containing parts, a WSIFMessage class also has a message name. This is
required for operation overloading, which is supported by WSDL and WSIF.

For more information about the WSIFMessage interface (/wsi/org/apache/wsif/WSIFMessage.html) see
the generated API documentation that is supplied with WSIF.

v Find a port factory or service through the WSIFService interface and the WSIFServiceFactory class.

The WSIFService interface is a port factory that models and supports the WSDL approach in which a
service is available on one or more ports. The factory hides the implementation of the port. WSIF
supports dynamic ports that are based on a particular protocol and transport and configured using the
WSDL at run time. For example, the dynamic SOAP port can invoke any SOAP service based on the
WSDL description of that service, so you can hide and modify the set of available ports at run time.

To find a service from a WSDL document at a web address, or from a code-generated code base, use
the WSIFServiceFactory class.

v Invoke an operation through the WSIFPort interface and the WSIFOperation interface.

A WSIFPort interface handles the details of invoking an operation. The port provides access to the
implementation of the service.

A WSDL document can provide many different WSDL bindings, and these bindings can drive multiple
ports. The client can choose a port, the service stub can choose a port, or WSIF can choose a default
port.

The port offers an interface to retrieve an Operation object. A WSIFOperation interface offers the ability
to run the given operation.

If the port is serialized and deserialized at a later time, WSIF ensures that the client provides the correct
information to the server to identify the instance. If the server instance is no longer available, the server
must decide whether to create a fault or provide a new instance. That behavior can depend on the type
of service. For example, for an enterprise bean, the WSIFPort interface stores the EJB Home and uses

1392 Developing WebSphere applications

it to select the bean before each invocation. The client is responsible for serializing or maintaining the
port instance if it requires instance support. The client must create a new operation and messages for
each invocation.

WSIFService interface
The WSIFService interface can generate an instance of the WSIFOperation interface to use for a particular
invocation of a service operation.

The Web Services Invocation Framework (WSIF) service stores a list of providers that can each generate
a WSIF operation for a particular Web Services Description Language (WSDL) binding. This service looks
up providers by the provider type. For example, the service knows about one provider that handles SOAP
ports, and other providers that handle Java ports that you define. In a managed environment, the container
can configure the WSIFService interface.

For more information about the WSIFService interface, see the generated API documentation that is
supplied with WSIF (see the Apache WSIF website).

A WSIFService implementation can choose a preferred port based on a number of criteria. The
WSIFService implementation can set the preferred port, or it can be set by calling the setPreferredPort
method.

The getPort method returns an instance of the WSIFPort class that is used to invoke a service on the port.
Variants of the getPort method are used to define the characteristics of the port to be created:

v the getPort method with no arguments returns the preferred port.

v the getPort method with a string argument returns the port named by the string containing the WSDL
identifier for the selected port.

The return value is null if the port name is not valid.

If a port is chosen (either by the WSIFService implementation, or by the setPreferredPort method), then
the WSIFService implementation validates that the relevant provider exists and is configured. If the
provider fails this validation check, the WSIFService interface chooses any other port for which a provider
is defined. For example, if the preferred port is SOAP over JMS but the JMS libraries are not available,
then WSIF chooses another port. If no preferred port is set, or the preferred port is not available, the WSIF
implementation chooses the first available port listed in the WSDL.

The getAvailablePortNames() method returns, as an iteration of strings, the list of WSDL port names
filtered by the set of available providers.

The getDefinition() method returns the WSDL definition for the service. If the WSDL definition is not
available, this method returns null.

WSIFServiceFactory class
To find a service from a Web Services Description Language (WSDL) document at a web address, or from
a code-generated code base, you can use the WSIFServiceFactory class.

Note: When you create a WSIFService interface from a WSIFServiceFactory class, you can specify a
ClassLoader object to use in locating the WSDL file. You must specify this object when the WSDL
file is in a JAR file. In such a case, specify the location of the WSDL file relative to the root of the
JAR file, and use forward slashes (/) with the preceding slash removed.

For example:
com/myCompany/wsdl/MyWSDLFile.wsdl

rather than
/com/myCompany/wsdl/MyWSDLFile.wsdl

Chapter 30. Developing web services - Invocation framework (WSIF) 1393

For more information about the WSIFServiceFactory class, see the generated API documentation that is
supplied with WSIF (see the Apache WSIF website).

The WSIFServiceFactory class returns null if no service is found with that identifier.

WSIFPort interface
The port implements a factory method for the WSIFOperation interface.

For detailed information about the WSIFPort interface, see the generated API documentation that is
supplied with WSIF (see the Apache WSIF website).

The createOperation(String) method returns a new instance of a WSIFOperation object. If the
operationName value is not valid, or the operation is overloaded, the method throws an exception.

The createOperation(String, String, String) method supports overloaded Web Services Description
Language (WSDL) operations. You can overload based on the input parameters, but not on the output
parameters.

The client must call the close method when a port is no longer in use. In many cases, where the transport
is sessionless, such as HTTP, this has no effect. However, if the port is using a session-based protocol
such as MQSeries, Java Message Service (JMS), or External Call Interface (ECI), this supports the port in
caching an open connection to the server and then closing it as required. Responsibly-written applications
will call the close method if appropriate.

WSIFOperation interface
You use the WSIFOperation interface to invoke a service, based on a particular binding.

The WSIFOperation interface is the runtime representation of an operation. This interface provides
methods to create input, output, and fault messages, and to invoke the operation.

For more information about the WSIFOperation interface, see the generated API documentation that is
supplied with WSIF (see the Apache WSIF website).

createInputMessage, createOutputMessage and createFaultMessage
These are factory methods to create the messages required by the invocation methods. All
invocation methods require an input message.

executeRequestResponseOperation
This method invokes “In Out” operations.

executeInputOnlyOperation
This method invokes “In only” operations.

executeRequestResponseOperation
If this method is used for invocation, an output and a fault message are instantiated and passed
on the call to the method. If the method returns true, the output message contains the response
message. If the message returns false, a fault occurred and is returned in the fault message.

executeRequestResponseAsync
This method allows “In Out” operations to be invoked with the reply handled by using an
alternative thread. Use of this method is discussed further in “WSIFOperation - Asynchronous
interactions reference” on page 1395.

setContext and getContext
Use of these methods is discussed in “WSIFOperation - Context” on page 1395.

All of the executeNnnn methods fail with an exception if there is an error in processing the request in the
WSIF provider.

1394 Developing WebSphere applications

Setting the timeouts for synchronous and asynchronous operations is discussed in “WSIFOperation -
Synchronous and asynchronous timeouts reference” on page 1396.

WSIFOperation - Context:

Although Web Services Description Language (WSDL) does not define context, a number of uses of the
Web Services Invocation Framework (WSIF) require the ability to pass context to the port that is invoking
the service.

For example, a SOAP over HTTP port might require an HTTP user name and password. This information
is specific to the invocation, but is not a parameter of the service. In general, context is defined as a set of
name-value pairs. However, because web services tend to define the types of data by using XML schema
types, WSIF represents the name-value pairs of the context by using the same representation that
WSIFMessage classes use; that is, a set of named parts, each of which equates to an instance of an XML
schema type.

You use the WSIFOperation interface setContext and getContext methods to pass context information to
the binding. The port implementation can use this context, for example to update a SOAP header. There is
no definition of how a port can use the context.

The parameter of the setContext and getContext methods is a WSIFMessage interface, and this interface
has named parts defining the context information. The WSIFConstants class defines constants for the part
names that can be set in a context WSIFMessage interface.

The following code fragment shows how to set the user name and password for HTTP basic
authentication:
// set a basic authentication header

WSIFMessage headers = new WSIFDefaultMessage();
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_USER, “user name”);
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_PSWD, “password”);
operation.setContext(headers);

The WSIFOperation interface ignores context parts that it does not support. For example, the previous
code is ignored by the WSIF Java provider.

The WSIFConstants class includes the following constants that can be used for context part names:
v CONTEXT_HTTP_USER
v CONTEXT_HTTP_PSWD
v CONTEXT_SOAP_HEADERS

The HTTP header values are expected to be of type String, and the SOAP header value is expected to be
of type java.util.List, which should contain entries of type org.w3c.dom.Element.

WSIFOperation - Asynchronous interactions reference:

The Web Services Invocation Framework (WSIF) supports asynchronous operation. In this mode of
operation, the client puts the request message as part of one transaction, and carries on with the thread of
execution. The response message is then handled by a different thread, with a separate transaction.

Asynchronous operation is supported by the WSIF providers for SOAP over JMS and native JMS.

The WSIFPort class uses the supportsAsync method to test whether asynchronous operation is supported.

An asynchronous operation is initiated with the WSIFOperation interface executeRequestResponseAsync
method. This method lets a Remote Procedure Call (RPC) method be invoked asynchronously. The
method returns before the operation is completed, and the thread of execution continues.

Chapter 30. Developing web services - Invocation framework (WSIF) 1395

The response to the asynchronous request is processed by the WSIFOperation interface
fireAsyncResponse or processAsyncResponse methods.

To initiate the request, there are two forms of the executeRequestResponseAsync method:
v public WSIFCorrelationId executeRequestResponseAsync

(WSIFMessage input, WSIFResponseHandler handler)
v public WSIFCorrelationId executeRequestResponseAsync (WSIFMessage input)

executeRequestResponseAsync(WSIFMessage input, WSIFResponseHandler handler)

This method takes an input message and a WSIFResponseHandler handler. The handler is
invoked on another thread when the operation completes. When using this method, the client
listener calls the fireAsyncResponse method, which then calls the WSIFResponseHandler interface
executeAsyncResponse method.

For more information about the WSIFResponseHandler interface, see the generated API
documentation that is supplied with WSIF (see the Apache WSIF website).

executeRequestResponseAsync(WSIFMessage input)
This method only takes an input message, and does not use a response handler. The client
listener processes the response by calling the WSIFOperation interface processAsyncResponse
method. This process updates the WSIFMessage output and fault messages with the result of the
request.

WSIF supports correlation between the asynchronous request and response. When the request is sent,
the WSIFOperation object is serialized into the WSIFCorrelationService object. The
executeRequestResponseAsync methods return a WSIFCorrelationId object that identifies the serialized
WSIFOperation object. The client listener can use this to match a response to a particular request.

The correlation service is located with the WSIFCorrelationServiceLocator class getCorrelationService()
method in the org.apache.wsif.utils package.

In a managed container a default correlation service is defined in the default Java Naming and Directory
Interface (JNDI) namespace by using the name: java:comp/wsif/WSIFCorrelationService. If this correlation
service is not available, WSIF uses the WSIFDefaultCorrelationService.

For more information about the WSIFCorrelationService interface, see the generated API documentation
that is supplied with WSIF.

This is the correlator ID:
public interface WSIFCorrelator extends Serializable {

public String getCorrelationId();
}

The client must implement its own response message listener or message data base so that it can
recognize the arrival of response messages. This client implementation manages the correlation of the
response message to the request and call of one of the asynchronous response processing methods. As
an example of the requirement for a client listener, the following code fragment shows what can be in the
onMessage method of a Java Message Service (JMS) listener:
public void onMessage(Message msg) {

WSIFCorrelationService cs = WSIFCorrelationServiceLocator.getCorrelationService();
WSIFCorrelationId cid = new JmsCorrelationId(msg.getJMSCorrelationID());
WSIFOperation op = cs.get(cid);
op.fireAsyncResponse(msg);

}

WSIFOperation - Synchronous and asynchronous timeouts reference:

1396 Developing WebSphere applications

When you use the Web Services Invocation Framework (WSIF) with the Java Message Service (JMS) you
can set timeouts for synchronous and asynchronous operations.

Default values for these timeouts are defined in the wsif.properties file:
maximum number of milliseconds to wait for a response to a synchronous request.
Default value if not defined is to wait forever.
wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.
if not defined or invalid defaults to no timeout
wsif.asyncrequest.timeout=60

If you use these default values, a synchronous request (such as a WSIFOperation interface
executeRequestResponseOperation method call) times out after ten seconds, and an asynchronous
request (such as a WSIFOperation interface executeRequestResponseAsync method call) times out after
sixty seconds.

Note:

The code that processes both of these timeout values uses milliseconds as its unit of time. The
WSIFProperties class getAsyncTimeout method multiplies the wsif.asyncrequest.timeout value by
1000, to convert the value from seconds to milliseconds.

You can override these default values for a given request by writing a WSDL extension that sets a JMS
property on the operation request with the <jms:property> and <jms:propertyValue> WSDL elements. Set
the name of the property to be the name of the timeout from the WSIF properties file.

The following example sets synchronous requests to time out after two minutes (120 seconds):
<jms:propertyValue name=“wsif.syncrequest.timeout” type=“xsd:string” value=“120000”/>

and the following example disables asynchronous timeouts (a value of zero means wait forever):
<jms:propertyValue name=“wsif.asyncrequest.timeout” type=“xsd:string” value=“0”/>

When an asynchronous timeout expires, no listener or message data base waiting for the response is
notified. The asynchronous timeout is only used to tell the correlation service that the stored
WSIFOperation can be deleted. For more information about the correlation service, see “WSIFOperation -
Asynchronous interactions reference” on page 1395.

Running WSIF as a client
You can run the Web Services Invocation Framework (WSIF) in the Application Client for WebSphere
Application Server, and in similar clients from other suppliers.

Procedure

To simplify the process of launching client applications in the Application Client for WebSphere Application
Server, use the launchClient tool as described in “Running a Java EE client application with launchClient”
on page 2014.

Chapter 30. Developing web services - Invocation framework (WSIF) 1397

1398 Developing WebSphere applications

Chapter 31. Developing web services - Notification
(WS-Notification)

WS-Notification enables web services to use the publish and subscribe messaging pattern.You use publish
and subscribe messaging to publish one message to many subscribers. In this pattern a producing
application inserts (publishes) a message (event notification) into the messaging system having marked it
with a topic that indicates the subject area of the message. Consuming applications that have subscribed
to the topic in question, and have appropriate authority, all receive an independent copy of the message
that was published by the producing application.

Developing applications that use WS-Notification
You can code a single application to undertake several WS-Notification tasks. These topics provide sample
code for common tasks that your WS-Notification applications can perform.

Before you begin

Most of these examples use the Java API for XML-based remote procedure call (JAX-RPC) APIs and
WebSphere Application Server APIs and SPIs. These JAX-RPC examples can interact successfully with
Version 6.1 or Version 7.0 WS-Notification service points. However if you want to use WS-Notification with
policy sets, for example to enable composition with WS-ReliableMessaging, then your WS-Notification
applications must be encoded to use the Java API for XML-based Web Services (JAX-WS) programming
model and must interact with Version 7.0 WS-Notification service points. If you are new to programming
JAX-WS client applications, see the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

If you have an existing Version 6.1 WS-Notification configuration, and you want to use WS-Notification with
policy sets, work through the following tasks:

1. Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1
to Version 7.0 or later.

2. Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification.

3. Configuring WS-Notification for reliable notification.

Your applications can also use WS-Notification to receive event notifications generated by other clients of
the service integration bus such as JMS clients. This is described in Topology for WS-Notification as an
entry or exit point to the service integration bus and Providing access for WS-Notification applications to
an existing bus topic space. For information about developing applications for a mixed clients solution,
including cross-streaming from a JMS client, see Interacting with JMS message types.

About this task

A single application can be coded to undertake several WS-Notification tasks. Use the examples to help
you code these tasks into your WS-Notification applications.

For an overview of how applications can use the notification broker, see WS-Notification: How client
applications interact at runtime.

WS-Notification applications divide into two broad types: those that expose a Web service endpoint (for
example a WS-Notification consumer application that receives notifications of stock valuation changes),

© IBM Corporation 2009 1399

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html

and those that do not expose a web service endpoint (for example applications that generate notifications
of stock valuation changes). For broad guidance on the steps you take to develop each of these
application types, see the following topics:

v “Writing a WS-Notification application that exposes a web service endpoint.”

v “Writing a WS-Notification application that does not expose a web service endpoint” on page 1401.

Rather than receiving all messages on a topic to which you have subscribed, your consuming application
can use XML Path (XPath) selectors to filter the messages based upon the contents of each message as
described in “Filtering the message content of publications” on page 1402.

The code examples listed in this topic use the following WebSphere Application Server APIs and SPIs:
com.ibm.websphere.sib.wsn.AbsoluteOrRelativeTime;
com.ibm.websphere.sib.wsn.CreatePullPoint;
com.ibm.websphere.sib.wsn.CreatePullPointResponse;
com.ibm.websphere.sib.wsn.Filter;
com.ibm.websphere.sib.wsn.GetMessages;
com.ibm.websphere.sib.wsn.GetMessagesResponse;
com.ibm.websphere.sib.wsn.NotificationMessage;
com.ibm.websphere.sib.wsn.TopicExpression;
com.ibm.websphere.webservices.soap.IBMSOAPFactory;
com.ibm.websphere.wsaddressing.EndpointReference;
com.ibm.websphere.wsaddressing.WSAConstants;
com.ibm.wsspi.wsaddressing.EndpointReferenceManager;

Procedure
v For examples of client applications, see the following topics:

1. “Example: Subscribing a WS-Notification consumer” on page 1403.

2. “Example: Pausing a WS-Notification subscription” on page 1406.

3. “Example: Publishing a WS-Notification message” on page 1407.

4. “Example: Creating a WS-Notification pull point” on page 1409.

5. “Example: Getting messages from a WS-Notification pull point” on page 1410.

6. “Example: Registering a WS-Notification publisher” on page 1411.

v For example XML code illustrating message content filtering by using XPath selectors, see “Filtering the
message content of publications” on page 1402.

v For an example WSDL document describes a web service that implements the NotificationConsumer
portType, see “Example: Creating a Notification consumer web service skeleton” on page 1413.

Writing a WS-Notification application that exposes a web service
endpoint
Write a Java EE application, containing a web service definition, that can be deployed to the application
server and act as a NotificationProducer, NotificationConsumer or demand-based publisher.

Before you begin

This task assumes that you have the following resources:

v An installed and functioning copy of IBM Rational Application Developer, Rational Software Architect or
equivalent tooling.

v The WSDL file for the endpoint that is to be exposed.

About this task

To write a WS-Notification application that exposes a Web service endpoint, follow the method provided by
your tooling for creating a web service implementation from a WSDL file. For example in Rational Software
Architect there is a wizard in the Tutorials Gallery under “Create and deploy a WS-I compliant web service

1400 Developing WebSphere applications

and an enterprise bean skeleton from a WSDL document by using the WebSphere Application Server
runtime environment”. This wizard guides you through the following steps for writing a JAX-RPC
application. The steps are very similar for writing a JAX-WS application. For an example of a JAX-WS
NotificationConsumer client application that exposes a web service endpoint, see Writing JAX-WS
applications for WS-Notification.

Procedure
1. Create a Dynamic Web Project.

2. Import and validate the WSDL file.

3. Create the web service. Select File > New > Other > Web services > Web service wizard >
Skeleton EJB web service.

4. Implement the business methods in the generated EJB class. The methods you choose depend upon
the type of endpoint that you are exposing (NotificationProducer, NotificationConsumer or demand
based publisher).

5. Export the application.

What to do next

You are now ready to deploy the application to WebSphere Application Server as described in Installing
enterprise application files with the console. In the Select installation options panel, ensure that the Deploy
web services option is enabled.

Writing a WS-Notification application that does not expose a web
service endpoint
Write a Java EE application that can be run outside of the application server to make web service
invocations against an external web service. This application acts as a lightweight publisher, or a pull type
consumer by invoking web service operations against another web service such as the NotificationBroker
provided by WebSphere Application Server.

Before you begin

This task assumes that you have the following resources:

v An installed and functioning copy of IBM Rational Application Developer, Rational Software Architect or
equivalent tooling.

v Knowledge of where to find the WSDL file for the service that is to be invoked.

About this task

To write a WS-Notification application that does not expose a web service endpoint, follow the method
provided by your tooling for creating a web service implementation from a WSDL file. As an illustration, the
following steps describe the method provided by Rational Software Architect for writing a JAX-RPC
application. The steps are very similar for writing a JAX-WS application. For examples of JAX-WS
publisher and subscriber client applications that do not expose a web service endpoint, see Writing
JAX-WS applications for WS-Notification.

Procedure
1. Get the WSDL files for the service that you want to invoke. If the target service is the notification

broker service that was generated by WebSphere Application Server, use the administrative console to
publish the WSDL files for the service to a compressed file.

2. Create a Dynamic Web Project with a name of your choice.

3. Choose File > New > Other > Web services > Web services Client.

4. Select Java Proxy.

Chapter 31. Developing web services - Notification (WS-Notification) 1401

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html

5. Enter or select the WSDL you obtained earlier.

6. Choose a Client Type of “Application Client” or “Java” depending upon your requirements.

7. Select your required security configuration.

8. Click Finish.

9. Use the generated proxy and stubs to make calls against the remote web service. For detailed coding
examples, see “Developing applications that use WS-Notification” on page 1399.

What to do next

You are now ready to deploy the application for use in the Java EE application client container as
described in “Running a Java EE client application with launchClient” on page 2014.

Filtering the message content of publications
Rather than receiving all messages on a topic to which you have subscribed, your consuming application
can use XML Path (XPath) selectors to filter the messages based upon the contents of each message.
This content-based subscription gives you greater flexibility in defining the type of information that you
want to receive, and your applications do not need to handle their own filtering. Performance is improved
because messages that are not relevant are not sent unnecessarily from the server to the application.

About this task

The WS-Notification publish and subscribe messaging model is topic-based. Each publication is classified
as belonging to one of a fixed set of topics. Publishers label each publication with a topic name and
consumers subscribe to all publications on a particular topic. For example a stock trading notification
system might define a topic for each issue: Publishers post information labeled with the appropriate issue
as the topic name, and subscribers subscribe to information regarding some issue.

You can use XPath selectors to filter messages for a given topic, by using a Boolean expression that is
evaluated over the XML message content of the message body. For example, a subscriber to a
topic-based publish and subscribe system for stock trading might use XPath selectors to specify
constraints against three message attributes at the same time:

v issue name

v price

v volume of shares

The resultant Boolean statement might be as follows:
(issue="IBM") and (price<120) and (volume>1000)

You code your XPath 1.0 message content filters in the subscribing applications, by using XML Path
(XPath) language, Version 1.0..

Note: If your subscriber applications use message content filtering, and are coded to specify the XPath
Version 1.0 SelectorDomain, they can also filter publications from other WS-Notification providers
that are of type JMS TextMessage or BytesMessage. For more information about these JMS
message types, see Topology for WS-Notification as an entry or exit point to the service integration
bus.

To filter the message content of publications by using XPath selectors, complete the following steps.

Procedure
1. Create a new application that subscribes a WS-Notification consumer.

2. Code an XPath message content filter in the subscribing application. For example code for doing this,
see “Example: Subscribing a WS-Notification consumer” on page 1403. For an example of message
content filter usage, see the example at the end of this task.

1402 Developing WebSphere applications

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

3. Code error handling for cases where the filter is not valid.

4. Invoke the application.

Example

This example XML code illustrates message content filtering by using XPath selectors. In this example a
business, represented by a NotificationConsumer application, wants to be notified of bank transfers of over
$1,000,000. The monitoring application subscribes on behalf of the NotificationConsumer specifying a valid
XPath Version 1.0 message content filter, in the following WS-Notification subscribe message:
<wsnt:Subscribe>
<wsnt:ConsumerReference>
wsa:EndpointReference

</wsnt:ConsumerReference>
<wsnt:Filter>
[<wsnt:TopicExpression Dialect="xsd:anyURI">

{any} ?
</wsnt:TopicExpression> |
<wsnt:ProducerProperties Dialect="xsd:anyURI">
{any} ?

</wsnt:ProducerProperties> |
<wsnt:MessageContent Dialect="xsd:anyURI">
/bankTransfer[value %gt; 1,000,000]

</wsnt:MessageContent> |
{any} *

] *
</wsnt:Filter> ?
<wsnt:InitialTerminationTime>
[xsd:dateTime | xsd:duration]

</wsnt:InitialTerminationTime> ?
<wsnt:SubscriptionPolicy>
[<wsnt:UseRaw/> |
{any}

] *
</wsnt:SubscriptionPolicy> ?
{any}*

</wsnt:Subscribe>

The WS-Notification service stores the subscription and its filter.

Another WS-Notification application then publishes a notification in which the message body contains the
following information:
<bankTransfer origin="123456 87654321" target="224466 88664422">
<originName>IBM Corporation</originName>
<targetName>Matt Roberts</targetName>
<date>02/02/2006</date>
<value currency="USD">100,000,000</value>

</bankTransfer>

The WS-Notification service in the application server matches this publication to the earlier subscription
and delivers the notification to the consumer specified in the subscription.

Example: Subscribing a WS-Notification consumer
Use this task to write the code for a JAX-RPC client acting in the publisher registration role, registering a
publisher (producer) application with a broker, based on the example code extract provided.

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

Chapter 31. Developing web services - Notification (WS-Notification) 1403

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

The article Writing JAX-WS applications for WS-Notification includes an example of a JAX-WS subscriber
client application.

Raw subscriptions:

In this example, the first optional code block shows you how to create a raw
subscription. This concept is defined in section 4.2 of the Web Services Base
Notification specification.

In the normal case, a wrapped subscription causes the Notify operation of the
NotificationConsumer to be driven when matching event notifications become
available. If the Subscriber instead creates a raw subscription, then only the
application specific content of the event notification (that is, the contents of the
NotificationMessage element) are sent to the target consumer endpoint. Note that
the web service endpoint specified in the ConsumerReference of the Subscribe
request that also specifies UseRaw (that is, a raw subscription request) does not have
to implement the NotificationConsumer port type because the Notify operation will
not be used to deliver event notifications.

This means that the consumer must be able to accept operations for each of the
types of application content that will be published on the specified topic. This pattern
allows WS-Notification to invoke a group of existing web service applications that are
not WS-Notification aware, but that want to receive the same information.

JAX-WS supports action-based dispatch, and JAX-WS raw consumer applications
must accept the http://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/
Notify action URI. For more information, see the troubleshooting tip A JAX-WS
application that is a raw consumer of brokered notifications must recognize a
notification broker SOAP action.

To write the code for a JAX-RPC client acting in the publisher registration role, registering a publisher
(producer) application with a broker, complete the following steps, referring to the example code extract for
further information.

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

2. Get a stub for the port on which you want to invoke operations.

3. Create the ConsumerReference. This either contains the address of the consumer web service that is
being subscribed to, or a reference to a pull point. Specifying a pull point EPR indicates that the
consumer is to use pull-based notifications.

4. Create the filter. This provides the name of the topic to which you want to subscribe the consumer.

1404 Developing WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html

5. Create a topic expression and add it to the filter. The prefixMappings are mappings between
namespace prefixes and their corresponding namespaces for prefixes used in the expression.

6. Create an XPath 1.0 message content filter. For example you could select a subset of the available
messages in the topic, based upon salary level. For an example of message content filter usage, see
“Filtering the message content of publications” on page 1402.

7. Create the InitialTerminationTime. This is the time when you want the subscription to terminate. For
example, you could set a time of 1 year in the future.

8. Create the Policy information.

9. Optional: Construct a policy indicating that the consumer is to receive raw style notifications.

10. Create holders to hold the multiple values returned from the broker:
v The subscription reference
v The current time at the broker
v The termination time for the subscription
v Any additional elements

11. Invoke the Subscribe operation by calling the associated method on the stub.

12. Get the returned values:

v An endpoint reference for the subscription that has been created. This is required for subsequent
lifetime management of the subscription, for example pausing the subscription.

v The current time at the broker.

v The termination time of the subscription.

v Any other information.

Example

The following example code describes a subscriber client application that can subscribe a consumer
application with a broker:
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup(

"java:comp/env/services/NotificationBroker");

// Get a stub for the port on which you want to invoke operations
NotificationBroker stub = (NotificationBroker) service.getPort(NotificationBroker.class);

// Create the ConsumerReference. This contains the address of the consumer web service that is being
// subscribed, or alternatively is a reference to a pull point (see alternative below). Specifying a
// pull point EPR indicates that the consumer is to use pull-based notifications.
EndpointReference consumerEPR =

EndpointReferenceManager.createEndpointReference(new URI("http://myserver.mycom.com:9080/Consumer"));

/*
// Alternative ConsumerReference for pull-based notifications:

EndpointReference consumerEPR = pullPointEPR;

*/

// Create the Filter. This provides the name of the topic to which you want to subscribe the consumer
Filter filter = new Filter();

// Create a topic expression and add it to the filter. The prefixMappings are mappings between namespace
// prefixes and their corresponding namespaces for prefixes used in the expression
Map prefixMappings = new HashMap();
prefixMappings.put("abc", "uri:example");
TopicExpression exp =

new TopicExpression(TopicExpression.SIMPLE_TOPIC_EXPRESSION, "abc:ExampleTopic", prefixMappings);
filter.addTopicExpression(exp);

//Create an XPath 1.0 message content filter
//This example selects a subset of the available messages in the topic, based upon salary level
String filterExpression = "/company/department/employee/salary > 10000";
URI xpathURI = new URI(http://www.w3.org/TR/1999/REC-xpath-19991116);

Chapter 31. Developing web services - Notification (WS-Notification) 1405

QueryExpression qexp =
new QueryExpression(xpathURI, filterExpression);

filter.addMessageContentExpression(qexp);

// Create the InitialTerminationTime. This is the time when you want the subscription to terminate.
// For example, set a time of 1 year in the future.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.YEAR, 1);
AbsoluteOrRelativeTime initialTerminationTime = new AbsoluteOrRelativeTime(cal);

// Create the Policy information
SOAPElement[] policyElements = null;

/*
Optional

The following lines show how to construct a policy indicating that the consumer is to
receive raw style notifications:

javax.xml.soap.SOAPFactory soapFactory = javax.xml.soap.SOAPFactory.newInstance();
SOAPElement useRawElement = null;

if (soapFactory instanceof IBMSOAPFactory) {
// You can use the value add methods provided by the IBMSOAPFactory API to create the SOAPElement
// from an XML string.
String useRawElementXML = "<mno:UseRaw xmlns:mno=\"http://docs.oasis-open.org/wsn/b-2\"/>";
useRawElement = ((IBMSOAPFactory) soapFactory).createElementFromXMLString(useRawElementXML);

} else {
useRawElement = soapFactory.createElement("UseRaw", "mno", "http://docs.oasis-open.org/wsn/b-2");

}

policyElements = new SOAPElement[] { useRawElement };
*/

// Create holders to hold the multiple values returned from the broker:
// The subscription reference
EndpointReferenceTypeHolder subscriptionRefHolder = new EndpointReferenceTypeHolder();

// The current time at the broker
CalendarHolder currentTimeHolder = new CalendarHolder();

// The termination time for the subscription
CalendarHolder terminationTimeHolder = new CalendarHolder();

// Any additional elements
AnyArrayHolder anyOtherElements = new AnyArrayHolder();

// Invoke the Subscribe operation by calling the associated method on the stub
stub.subscribe(consumerEPR,

filter,
initialTerminationTime,
policyElements,
anyOtherElements,
subscriptionRefHolder,
currentTimeHolder,
terminationTimeHolder);

// Get the returned values:
// An endpoint reference for the subscription that has been created. It is required for
// subsequent lifetime management of the subscription, for example pausing the subscription
com.ibm.websphere.wsaddressing.EndpointReference subscriptionRef = subscriptionRefHolder.value;

// The current time at the broker
Calendar currentTime = currentTimeHolder.value;

// The termination time of the subscription
Calendar terminationTime = terminationTimeHolder.value;

// Any other information
SOAPElement[] otherElements = anyOtherElements.value;

Example: Pausing a WS-Notification subscription
Use this task to write the code for a JAX-RPC client acting in the subscriber role, pausing a subscription
for a consumer application, based on the example code extract provided.

1406 Developing WebSphere applications

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

The PauseSubscription operation belongs to the SubscriptionManager service.

2. Get a stub for the port on which you want to invoke operations.

3. Associate the request with the subscription you want to pause. The subscriptionEPR is the
EndpointReference returned by the invocation of the Subscribe operation.

4. Create any optional information.

5. Invoke the PauseSubscription operation by calling the associated method on the stub.

Example

The following example code describes a JAX-RPC client acting in the subscriber role, pausing a
subscription for a consumer application:
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.
// The PauseSubscription operation belongs to the SubscriptionManager service
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup("java:comp/env/services/SubscriptionManager");

// Get a stub for the port on which you want to invoke operations
SubscriptionManager stub = (SubscriptionManager) service.getPort(SubscriptionManager.class);

// Associate the request with the subscription you want to pause. The subscriptionEPR is the
// EndpointReference returned by the invocation of the Subscribe operation
((Stub) stub)._setProperty(WSAConstants.WSADDRESSING_DESTINATION_EPR, subscriptionEPR);

// Create any optional information
SOAPElement[] optionalInformation = new SOAPElement[] {};

// Invoke the PauseSubscription operation by calling the associated method on the stub
SOAPElement[] additionalReturnedInformation = stub.pauseSubscription(optionalInformation);

Example: Publishing a WS-Notification message
Use this task to write the code for a publisher client application that can publish a notification message to
a broker, based on the example code extract provided.

Chapter 31. Developing web services - Notification (WS-Notification) 1407

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

The article Writing JAX-WS applications for WS-Notification includes an example of a JAX-WS publisher
client application.

To write the code for a publisher client application that can publish a notification message to a broker,
complete the following steps, referring to the example code extract for further information.

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

2. Get a stub for the port on which you want to invoke operations.

3. Create the message contents for a notification message.

4. Create a notification message from the contents.

5. Add a topic expression to the notification message. The topic expression must indicate to which topic
or topics the message corresponds.

6. Create any optional information.

7. Optional: If the broker requires publisher client applications to register, associate the request with a
particular publisher registration. The registrationEPR is the ConsumerReference EndpointReference
returned by the broker in relation to an invocation of the RegisterPublisher operation.

8. Invoke the Notify operation by calling the associated method on the stub.

Example

The following example code represents a publisher client application that can publish a notification
message to a broker:
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup(

"java:comp/env/services/NotificationBroker");

// Get a stub for the port on which you want to invoke operations
NotificationBroker stub = (NotificationBroker) service.getPort(NotificationBroker.class);

// Create the message contents for a notification message
SOAPElement messageContents = null;
javax.xml.soap.SOAPFactory soapFactory = javax.xml.soap.SOAPFactory.newInstance();
if (soapFactory instanceof IBMSOAPFactory) {

// You can use the value add methods provided by the IBMSOAPFactory API to create the SOAPElement
// from an XML string.
String messageContentsXML = "<xyz:MyData xmlns:xyz=\"uri:mynamespace\">Some data</xyz:MyData>";

1408 Developing WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html

messageContents = ((IBMSOAPFactory) soapFactory).createElementFromXMLString(messageContentsXML);
} else {

// Build up the SOAPElement using the standard javax.xml.soap APIs
messageContents = soapFactory.createElement("MyData", "xyz", "uri:mynamespace");
messageContents.addTextNode("Some data");

}

// Create a notification message from the contents
NotificationMessage message = new NotificationMessage(messageContents);

// Add a topic expression to the notification message indicating to which topic or topics the
// message corresponds
Map prefixMappings = new HashMap();
prefixMappings.put("abc", "uri:example");
TopicExpression exp =

new TopicExpression(TopicExpression.SIMPLE_TOPIC_EXPRESSION, "abc:ExampleTopic", prefixMappings);
message.setTopic(exp);

// Create any optional information
SOAPElement[] optionalInformation = new SOAPElement[] {};

/*
Optional

The following line will cause the request to be associated with a particular publisher registration.
You must do this if the broker requires publishers to register. The registrationEPR is the
ConsumerReference EndpointReference returned by the broker in relation to an invocation of the
RegisterPublisher operation.

((Stub) stub)._setProperty(WSAConstants.WSADDRESSING_DESTINATION_EPR, consumerReferenceEPR);
*/

// Invoke the Notify operation by calling the associated method on the stub
stub.notify(new NotificationMessage[] { message }, optionalInformation);

Example: Creating a WS-Notification pull point
Use this task to write the code for a JAX-RPC subscriber client. This client creates a pull point for use by
consumer applications that use pull style notifications.

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

To write the code for a JAX-RPC client acting in the subscriber role, creating a pull point for use by a
consumer application that is to use pull style notifications, complete the following steps, referring to the
example code extract for further information.

Chapter 31. Developing web services - Notification (WS-Notification) 1409

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

2. Get a stub for the port on which you want to invoke operations.

3. Create the request information.

4. Invoke the CreatePullPoint operation by calling the associated method on the stub.

5. Retrieve the reference to the pull point from the response.

6. Retrieve any additional information from the response.

Example

The following example code describes a JAX-RPC client acting in the subscriber role, creating a pull point
for use by a consumer application that is to use pull style notifications:
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup(

"java:comp/env/services/NotificationBroker");

// Get a stub for the port on which you want to invoke operations
NotificationBroker stub = (NotificationBroker) service.getPort(NotificationBroker.class);

// Create the request information.
SOAPElement[] optionalInformation = null;
CreatePullPoint cpp = new CreatePullPoint(optionalInformation);

// Invoke the CreatePullPoint operation by calling the associated method on the stub
CreatePullPointResponse response = stub.createPullPoint(cpp);

// Retrieve the reference to the pull point from the response
EndpointReference pullPointEPR = response.getPullPoint();

// Retrieve any additional information from the response
SOAPElement[] additionalInformation = response.getElements();

Example: Getting messages from a WS-Notification pull point
Use this task to write the code for a JAX-RPC client acting in the pull style consumer role, requesting
messages from a pull point, based on the example code extract provided.

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

To write the code for a JAX-RPC client acting in the pull style consumer role, requesting messages from a
pull point, complete the following steps, referring to the example code extract for further information.

1410 Developing WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

2. Get a stub for the port on which you want to invoke operations.

3. Associate the request with a pull point. The pullPointEPR is the EndpointReference returned from
invoking the CreatePullPoint operation.

4. Specify the number of messages you want to retrieve.

5. Create any optional information.

6. Create the request information.

7. Invoke the GetMessages operation by calling the associated method on the stub.

8. Get the messages returned from the response.

Example

The following example code describes a JAX-RPC client acting in the pull style consumer role, requesting
messages from a pull point:
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup(

"java:comp/env/services/NotificationBroker");

// Get a stub for the port on which you want to invoke operations
NotificationBroker stub = (NotificationBroker) service.getPort(NotificationBroker.class);

// Associate the request with a pull point. The pullPointEPR is the EndpointReference returned
// from invoking the CreatePullPoint operation
((Stub) stub)._setProperty(WSAConstants.WSADDRESSING_DESTINATION_EPR, pullPointEPR);

// Specify the number of messages you want to retrieve
Integer numberOfMessages = new Integer(2);

// Create any optional information
SOAPElement[] optionalInformation = new SOAPElement[] {};

// Create the request information
GetMessages request = new GetMessages(numberOfMessages, optionalInformation);

// Invoke the GetMessages operation by calling the associated method on the stub
GetMessagesResponse response = stub.getMessages(request);

// Get the messages returned from the response
NotificationMessage[] messages = response.getMessages();

Example: Registering a WS-Notification publisher
Use this task to write the code for a subscriber client application that can subscribe a consumer
application with a broker, based on the example code extract provided.

About this task

This example is based on using the Java API for XML-based remote procedure calls (JAX-RPC) APIs with
code generated by using the WSDL2Java tool (run against the Notification Broker WSDL generated as a
result of creating your WS-Notification service point) and WebSphere Application Server APIs and SPIs.

In WebSphere Application Server there are two implementations of the WS-Notification service: Version
6.1 and Version 7.0. This JAX-RPC example can interact successfully with Version 6.1 or Version 7.0
WS-Notification service points. However if you want to use WS-Notification with policy sets, for example to
enable composition with WS-ReliableMessaging, then your WS-Notification applications must be encoded
to use the Java API for XML-based Web Services (JAX-WS) programming model and must interact with
Version 7.0 WS-Notification service points. If you are new to programming JAX-WS client applications, see
the following topics:

v JAX-WS

Chapter 31. Developing web services - Notification (WS-Notification) 1411

v JAX-WS client programming model

v Implementing static JAX-WS web services clients

v Writing JAX-WS applications for WS-Notification

v Web services hints and tips: JAX-RPC versus JAX-WS, Part 1

To write the code for a subscriber client application that can subscribe a consumer application with a
broker, complete the following steps, referring to the example code extract for further information.

Procedure
1. Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation.

2. Get a stub for the port on which you want to invoke operations.

3. Create a reference for the publisher (producer) being registered. This contains the address of the
producer web service.

4. Create a list (array) of topic expressions to describe the topics to which the producer publishes
messages.

5. Indicate that you do not want the publisher to use demand based publishing.

6. Set a value for the initial termination time of the registration. For example, you could set a value 1
year in the future.

7. Create holders to hold the multiple values returned from the broker:
v PublisherRegistrationReference defines the endpoint reference for use in lifetime management of

the registration.
v ConsumerReference defines the endpoint reference for use in subsequent publishing of messages.

8. Invoke the RegisterPublisher operation by calling the associated method on the stub.

9. Retrieve the PublisherRegistrationReference.

10. Retrieve the ConsumerReference.

Example

The following example code represents a JAX-RPC client acting in the publisher registration role,
registering a publisher (producer) application with a broker.
// Look up the JAX-RPC service. The JNDI name is specific to your web services client implementation
InitialContext context = new InitialContext();
javax.xml.rpc.Service service = (javax.xml.rpc.Service) context.lookup(

"java:comp/env/services/NotificationBroker");

// Get a stub for the port on which you want to invoke operations
NotificationBroker stub = (NotificationBroker) service.getPort(NotificationBroker.class);

// Create a reference for the publisher (producer) being registered. This contains the address of the
// producer web service.
EndpointReference publisherEPR =

EndpointReferenceManager.createEndpointReference(new URI("http://myserver.mysom.com:9080/Producer"));

// Create a list (array) of topic expressions to describe the topics to which the producer publishes
// messages. For this example you add one topic
Map prefixMappings = new HashMap();
prefixMappings.put("abc", "uri:mytopicns");
TopicExpression topic =

new TopicExpression(TopicExpression.SIMPLE_TOPIC_EXPRESSION, "abc:xyz", prefixMappings);
TopicExpression[] topics = new TopicExpression[] {topic};

// Indicate that you do not want the publisher to use demand based publishing
Boolean demand = Boolean.FALSE;

// Set a value for the initial termination time of the registration. For example, set a value 1 year in
// the future
Calendar initialTerminationTime = Calendar.getInstance();
initialTerminationTime.add(Calendar.YEAR, 1);

// Create holders to hold the multiple values returned from the broker:
// PublisherRegistrationReference: An endpoint reference for use in lifetime management of
// the registration

1412 Developing WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html

EndpointReferenceTypeHolder pubRegMgrEPR = new EndpointReferenceTypeHolder();

// ConsumerReference: An endpoint reference for use in subsequent publishing of messages
EndpointReferenceTypeHolder consEPR = new EndpointReferenceTypeHolder();

// Invoke the RegisterPublisher operation by calling the associated method on the stub
stub.registerPublisher(publisherEPR, topics, demand, initialTerminationTime, null, pubRegMgrEPR, consEPR);

// Retrieve the PublisherRegistrationReference
EndpointReference registrationEPR = pubRegMgrEPR.value;

// Retrieve the ConsumerReference
EndpointReference consumerReferenceEPR = consEPR.value;

Example: Creating a Notification consumer web service skeleton
Use this example when creating a web service that implements the NotificationConsumer portType defined
by the Web Services Base Notification specification.

About this task

This task provides two code examples:

v An example WSDL document that describes a web service that implements the NotificationConsumer
portType defined by the Web Services Base Notification specification.

v A basic implementation of the Service Endpoint Interface (SEI) generated from the preceding WSDL
document using the WSDL2Java tool.

Note: The article Writing JAX-WS applications for WS-Notification also includes an example of a
consumer Web service.

Procedure

If you are creating a Notification consumer web service skeleton, see the following code examples.

Example

The following example WSDL document describes a web service that implements the
NotificationConsumer portType defined by the Web Services Base Notification specification:
<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsn-bw="http://docs.oasis-open.org/wsn/bw-2"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="uri:example.wsn/consumer"
targetNamespace="uri:example.wsn/consumer">

<wsdl:import namespace="http://docs.oasis-open.org/wsn/bw-2"
location="http://docs.oasis-open.org/wsn/bw-2.wsdl" />

<wsdl:binding name="NotificationConsumerBinding" type="wsn-bw:NotificationConsumer">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="Notify">

<wsdlsoap:operation soapAction="" />
<wsdl:input>

<wsdlsoap:body use="literal" />
</wsdl:input>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="NotificationConsumerService">
<wsdl:port name="NotificationConsumerPort" binding="tns:NotificationConsumerBinding">

<wsdlsoap:address location="http://myserver.mycom.com:9080/Consumer" />

Chapter 31. Developing web services - Notification (WS-Notification) 1413

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The following example shows a basic implementation of the Service Endpoint Interface (SEI) generated
from the preceding WSDL document using the WSDL2Java tool:
public class ConsumerExample implements NotificationConsumer {

public void notify(NotificationMessage[] notificationMessage, SOAPElement[] any)
throws RemoteException {

// Process each NotificationMessage
for (int i=0; i<notificationMessage.length; i++) {

NotificationMessage message = notificationMessage[i];

// Get the contents of the message
SOAPElement messageContent = message.getMessageContents();

// Get the expression indicating which topic the message is associated with
TopicExpression topic = message.getTopic();

// Get a reference to the producer (this value is optional and so might be null)
EndpointReference producerRef = message.getProducerReference();

// Get a reference to the subscription (this value is optional and so might be null)
EndpointReference subscriptionRef = message.getSubscriptionReference();

// User defined processing ...

}
}

}

1414 Developing WebSphere applications

Chapter 32. Developing web services - Reliable messaging
(WS-ReliableMessaging)

To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent.

Developing a reliable web service application
Develop a Java API for XML-Based Web Services (JAX-WS) provider or requester application that can
compose with a WS-ReliableMessaging-enabled policy set.

Before you begin

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

About this task

You can develop a Java API for XML-Based Web Services (JAX-WS) web service requester application
that sends messages reliably, or a web service provider application that requires reliable messaging. Your
client application can also take programmatic control of WS-ReliableMessaging sequences.

Procedure
1. Develop your JAX-WS web service application.

For a Web service requester application that sends messages reliably:

a. Get an implementation WSDL document, and select the SOAP over HTTP binding. The WSDL
should be WS-I Basic Profile compliant.

b. Build the JAX-WS application from the WSDL implementation document.

c. (Optional) Enable transaction support for outbound (requester) one-way message sends. For more
information, see “Providing transactional recoverable messaging through WS-ReliableMessaging”
on page 1418.

d. (Optional) Use the waitUntilSequenceCompleted method on the sequenceManager to ensure that
reliable messaging state is released after the client finishes messaging, as described in the
“Controlling WS-ReliableMessaging sequences programmatically” on page 1416 topic.

e. (Optional) If you want to use in-order delivery (that is, you want WS-ReliableMessaging to make
messages available to your requester application in the order that they were sent), then you must
also configure your requester application to poll for the messages in the order in which it should
receive them. For more information, see Configuring the WS-ReliableMessaging policy.

For a web service provider application that requires reliable messaging:

a. Write or get an interface WSDL document that describes the service interface. The document
should be compliant with the WS-I Basic Profile.

b. Write or get an implementation WSDL document, and select the SOAP over HTTP binding. The
WSDL should remain WS-I Basic Profile compliant.

c. Build the JAX-WS application from the WSDL implementation document.

2. Enable your client application to take programmatic control of WS-ReliableMessaging sequences.

This helps manage resources on the server, for example by removing sequences after a client
application has finished messaging. You can add code to create sequences, send acknowledgement

© Copyright IBM Corp. 2012 1415

requests, close sequences, terminate sequences and wait until sequences are complete. For more
information, including example code, see “Controlling WS-ReliableMessaging sequences
programmatically.”

What to do next

You are now ready to configure a policy set instance to enable WS-ReliableMessaging.

Controlling WS-ReliableMessaging sequences programmatically
Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server
SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. This helps
manage resources on the server, for example by removing sequences after a client application has
finished messaging. You can add code to create sequences, send acknowledgement requests, close
sequences, terminate sequences and wait until sequences are complete.

Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set
configuration that is applied to the client from which the SPI is called. It does not use any alternative policy
set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

About this task

By closing sequences programmatically, you limit the number of open sequences a single client has to
support in a single JVM at one time.

For your client application to gain programmatic control over reliable messaging sequences, it needs
access to a WSRMSequenceManager instance. Use the following code fragment to achieve this:
import com.ibm.wsspi.wsrm.WSRMSequenceManager;
import com.ibm.wsspi.wsrm.WSRMSequenceManagerFactory;

.........

// Get the factory
WSRMSequenceManagerFactory factory = WSRMSequenceManagerFactory

.getInstance();

// Get the sequence manager instance
WSRMSequenceManager sequenceManager = factory.createWSRMSequenceManager();

All WSRMSequenceManager methods take the following parameters:

v The client instance object. This is either a Dispatch client instance, or the Dynamic proxy client. For
details of the client types, see the JAX-WS client programming model topic.

v The Port QName instance for the target endpoint.

To control WS-ReliableMessaging sequences programmatically, add code to your client application as
described in the following steps:

Procedure
v Add code to create a sequence.

To set the available properties use the following methods:
/**
* Sets the target provider endpoint.
* A null value will cause a NullPointerException when the WSRMSequenceProperties object is used.
*
* @param providerEndPoint The target service endpoint URI
*/
public void setTargetEndpointUri(String providerEndPoint);

/**
* This is used to indicate that a response flow is required between the provider and requester and the response
* flow will be established at create sequence time

1416 Developing WebSphere applications

*
* By calling this method it will indicate that a response flow is required.
*/
public void setUseOfferedSequenceId();

/**
* Set the Soap version for RM protocol messages.
* The default value for this property is WSRMSequenceProperties.SOAP_11
*
* @param soapVersion
*/
public void setSoapVersion(int soapVersion);

/**
* If the Sequence Acknowledgement messages are to be sent back asynchronously call this method.
*
*/
public void useAsyncTransport();

To create the reliable messaging sequence use the createNewWSRMSequence method on the
WSRMSequenceManager:

/**
* Initiates a new sequence handshake between this client and the target EPR specified in the
* WSRMSequenceProperties instance.
*
* This sequence will only be valid for the client issuing the createNewWSRMSequence call.
*
* When returning from this call, there is no guarantee that the sequence has been established.
*
* @throws NullPointerException if the sequenceProperties object is null, or the target EPR is null
*
* @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.
* @param sequencePropeties The properties for creating the reliable messaging sequence
* @throws WSRMNotEnabledException
* @throws WSRMSequenceAlreadyExistsException
*/
public void createNewWSRMSequence(Object clientObject, QName portQName, WSRMSequenceProperties sequencePropeties)

throws WSRMNotEnabledException,
WSRMSequenceAlreadyExistsException;

v Add code to send an acknowledgment request.

To send an acknowledgment request for a WS-ReliableMessaging sequence, use the following method
on the WSRMSequenceManager:

/**
* Sending an acknowledgement request sends the ACK requested message to the specified target endPointUri.
* The target will respond with a range of messages that can be acknowledged for the current reliable messaging
* sequence.
*
* @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.
* @param portQName
* @param endPointUri The target endpoint uri
* @throws WSRMNotEnabledException
* @throws WSRMSequenceUnknownException
* @throws WSRMSequenceTerminatedException
* @throws WSRMSequenceClosedException
*/
public void sendAcknowledgementRequest(Object clientObject, QName portQName, String endPointUri)

throws WSRMNotEnabledException,
WSRMSequenceUnknownException,
WSRMSequenceTerminatedException,
WSRMSequenceClosedException;

v Add code to close a sequence.

To close a WS-ReliableMessaging sequence use the following method on the
WSRMSequenceManager:

/**
* Closes the web services reliable messaging session from this application to
* the endpoint url specified.
*
* Throws a WSRMSequenceTerminatedException if the session between this application
* and the target endpoint url is already closed
*
* Throws a WSRMSequenceTerminatedException when the session between this application
* and the target endpoint has already been terminated.
*
* Throws WSRMSequenceUnknownException exception when either reliable messaging is not engaged to
* the specified endpoint url or the sequence has previously been terminated and removed.
*
* @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.
* @param endPointUri The target endpoint url
*
* @throws WSRMNotEnabledException

Chapter 32. Developing web services - Reliable messaging (WS-ReliableMessaging) 1417

* @throws WSRMSequenceUnknownException
* @throws WSRMSequenceClosedException
* @throws WSRMSequenceTerminatedException
*/
public void closeSequence(Object clientObject, QName portQName, String endPointUri)

throws WSRMNotEnabledException,
WSRMSequenceUnknownException,
WSRMSequenceClosedException,
WSRMSequenceTerminatedException;

v Add code to terminate a sequence.

To terminate a WS-ReliableMessaging sequence use the following method on the
WSRMSequenceManager:

/**
* Terminates web services reliable messaging session from this application to
* the endpoint url specified.
*
* Throws a WSRMSequenceTerminatedException when the session between this application
* and the target endpoint has already been terminated.
*
* Throws WSRMSequenceUnknownException exception when either reliable messaging is not engaged to
* the specified endpoint url or the sequence has previously been terminated and removed.
*
* @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.
* @param endPointUri The target endpoint url
* @throws WSRMNotEnabledException
*
* @throws WSRMSequenceTerminatedException
* @throws WSRMSequenceUnknownException
*/
public void terminateSequence(Object clientObject, QName portQName, String endPointUri) throws WSRMNotEnabledException;

v Add code to wait for a sequence to complete.

To wait for a reliable messaging sequence to complete, you use a method call that ensures that all
messages have been sent and acknowledged by the target service. After the sequence is completed, it
is terminated and cleaned up.

There are two ways of using the waitUntilSequenceCompleted method:
–

public boolean waitUntilSequenceCompleted(Object clientObject,
QName portQName, String endPointUri, long waitTime)

This method call waits for the specified waitTime for the reliable messaging sequence to complete. If
the sequence does not complete in the specified time, the method returns false. If the sequence
does complete in time, the method returns true.

–
public boolean waitUntilSequenceCompleted(Object clientObject,
QName portQName, String endPointUri)

This method call does not return until the reliable messaging sequence is completed.

Providing transactional recoverable messaging through
WS-ReliableMessaging
If your WS-ReliableMessaging application runs inside the web container and uses a managed quality of
service, you can use WS-ReliableMessaging to provide transactional recoverable messaging.

About this task

The WS-ReliableMessaging transactional model is as follows:

v On the web service requester side, the transaction is between the application and the local managed
store.

v The WS-ReliableMessaging protocol delivers the message to the web service provider side, where a
different transaction is used between the second managed store and the application being dispatched.

For the outbound (requestor) case on a one-way message send, if the enableTransactionalOneWay
property is set to true, then the send is performed under any transactional context currently held by the
application thread. (Note that transactions are not supported under an outbound two-way message
exchange).

1418 Developing WebSphere applications

For the inbound (provider) case, if the inOrderDelivery property is set to true, then an inbound message
is dispatched to the application under a transaction. For an inbound two-way message exchange, the
response is also generated under that transaction and is not sent until that transaction has committed.

Note:

WS-ReliableMessaging transactions do not use the WS-AtomicTransactions protocol. The
relationship between these two protocols is as follows:

v WS-AtomicTransactions and WS-ReliableMessaging are mutually exclusive when
WS-ReliableMessaging is being used, with a managed store, to provide transactional recoverable
messaging.

v If WS-ReliableMessaging is configured to use an in-memory store, then there are cases where a
WS-AtomicTransaction can be flowed between the reliable messaging source and the reliable
messaging destination for two-way invocations. In this situation, WS-ReliableMessaging only
protects against network failures, not against server failure.

For more information, see WS-AtomicTransactions.

To provide transactional recoverable messaging through WS-ReliableMessaging, work through the steps
described in Adding assured delivery to web services through WS-ReliableMessaging and also complete
the following additional steps:

Procedure
v To enable transactional messaging for outbound (requester) one-way message sends, when you

develop your JAX-WS web service application set the enableTransactionalOneWay property to
Boolean.TRUE (or the string true) in the jaxWS request context map.

v To enable transactional messaging for inbound (provider) one-way and two-way message exchanges,
when you configure your WS-ReliableMessaging policy either use the administrative console to select
the option Deliver messages in the order that they were sent or use the wsadmin tool to set the
inOrderDelivery property to true.

Configuring endpoints to only support clients that use
WS-ReliableMessaging
By default, when a WS-ReliableMessaging enabled policy set is attached to an endpoint, the server
supports clients that use reliable messaging and clients that do not use reliable messaging. In this version
of the product, you can configure endpoints to only support clients that use reliable messaging.

About this task

You configure endpoints to only support clients that use reliable messaging by setting a property in either
of the following ways:

v Set a property when packaging the application.

v Set a property as a JVM argument for the server.

This setting is reflected by WS-Policy if engaged. For information about how to engage WS-Policy, see
Using WS-Policy to exchange policies in a standard format.

Procedure
v When packaging the application, configure endpoints to only support clients that use reliable messaging

by setting the strictlyEnforceWSRM property in the META-INF/MANIFEST.MF of a WAR file or EJB
module.

Chapter 32. Developing web services - Reliable messaging (WS-ReliableMessaging) 1419

v Using a JVM argument for the server, configure endpoints to only support clients that use reliable
messaging by defining the Java virtual machine custom property
com.ibm.ws.websvcs.rm.strictlyEnforceWSRM on the server. For more information, see Configuring the
JVM.

1420 Developing WebSphere applications

Chapter 33. Developing web services - RESTful services

You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on manipulating
resources. Resources can contain static or dynamically updated data. By identifying the resources in your
application, you can make the service more useful and easier to develop.

Planning JAX-RS web applications

Planning to use JAX-RS to enable RESTful services
By using the Java API for RESTful Web Services (JAX-RS) API, application developers can quickly
develop RESTful applications. When planning to use JAX-RS to enable RESTful services, consider how to
best implement the capabilities and characteristics of a RESTful application with JAX-RS.

Before you begin

Read the overview of JAX-RS information to learn about REST services and the advantages of using
JAX-RS to build RESTful services.

About this task

JAX-RS is a programming model that provides a mechanism for developing services that follow
Representational State Transfer (REST) principles. Using JAX-RS, development of RESTful services is
simplified.

JAX-RS is a Java API for developing REST applications quickly. While JAX-RS provides a faster way for
developing web applications than servlets, the primary goal of JAX-RS is to build RESTful services.
JAX-RS 1.0 defines a server-side component API to build REST applications. IBM JAX-RS provides an
implementation of the JAX-RS (JSR 311) specification.

By using JAX-RS technology, REST applications are simpler to develop, simpler to consume, and simpler
to scale when compared to other types of distributed systems. Many popular and widely used Internet
services have successfully provided RESTful APIs to their applications. Third parties have used various
REST APIs to build their own businesses and applications.

Due to the simple consumption of RESTful services, you can write clients in many languages on different
platforms. Most languages require no third-party libraries as long as there is a method to use an HTTP
connection. Because of the pervasiveness of web browsers, the most prevalent clients are typically web
browsers. For example, many Web 2.0 properties use a JavaScript framework such as Dojo toolkit for
developing a client in a browser in conjunction with a RESTful server-side application that provides the
data for the client.

Procedure
1. Review existing business and middleware applications in your environment to determine which

services you want to implement as REST services.

2. Define the resources in your RESTful applications.

3. Determine the URL patterns, operations, and media type formats to use for each resource.

a. Define the URI patterns for resources in RESTful applications.

b. Define the client capabilities for RESTful applications using HTTP methods .

c. Define the HTTP headers and response codes for RESTful applications using HTTP methods.

© Copyright IBM Corp. 2012 1421

Results

You have a design plan for using JAX-RS to implementing REST services.

Defining the resources in RESTful applications
You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on manipulating
resources. Resources can contain static or dynamically updated data. By identifying the resources in your
application, you can make the service more useful and easier to develop.

Before you begin

After you have identified the application that you want to expose as a RESTFUL service, you must first
define the resources for your RESTful application. When defining the resources for your application,
consider the type of data do you want to expose. Perhaps you already have a relational database that
contains information that you want to expose to users using REST technology. Do you already have a set
of Java classes defined for accessing that data?

For example, consider the case of an application defined to support a book store. This application
currently has a database with several tables that define the various items in the collection of books and
the inventory of each book. In this example, there are a number of ways to represent the data in the
database in a RESTful application. One approach is to consider each table as an individual resource, so
that each of the verbs in the RESTful request maps to the actions that the database supports on that table
such as select, insert, update, delete. This example is a simple approach to creating a RESTful
application. This approach using the book store example is also used in the documentation that describes
defining URL patterns for resources, resource methods, HTTP headers and response codes, media types,
and parameters for request representations to resources

In support of this database for the book store application, there might already be existing code that is
responsible for accessing the database and retrieving the data from each table. Even though the rows in
each of the tables logically represents each resource, the accessor classes are used to define the
resources. The implementing JAX-RS applications documentation provides more details on how these
classes are incorporated into your JAX-RS application.

Alternately, you might have more static content that does not reside in a database that you want to
distribute as resources. Whether it is a collection of documents in various formats or a resource-based
facade for other remote systems, using JAX-RS, you can distribute content from multiple sources.

About this task

Resources are the basic building block of a RESTful service. Examples of a resource from an online book
store application include a book, an order from a store, and a collection of users.

Resources are addressable by URLs and HTTP methods can perform operations on resources. Resources
can have multiple representations using different formats such as XML and JSON. You can use HTTP
headers and parameters to pass additional information that is relevant to the request and response.

With JAX-RS, you can annotate existing or new Plain Old Java objects (POJO) with JAX-RS specific
annotations. JAX-RS annotated resource classes and the annotated methods are invoked depending on
the URI patterns. You can use the annotated resource classes after these resource classes are added to
the list of resources returned by the overridden methods in the JAX-RS application class.

Procedure
1. Identify the types of resources in the application.

2. (optional) Identify existing Java classes that you can use as resource classes.

1422 Developing WebSphere applications

3. Create new Java classes for resources that do not have an existing Java class.

Results

You have defined the content that you want to expose as a collection of resources in your application.

What to do next

Based on the resources that you have defined, read about defining URL patterns for resources, resource
methods, HTTP headers and response codes, media types, and parameters for request representations to
resources to learn more about additional steps you can take to define the resources for your JAX-RS
application.

Defining the URI patterns for resources in RESTful applications
Representational State Transfer (REST) services are based on manipulating resources. Resources for
RESTful services are addressable, and URLs are the primary way of achieving addressability in REST.

Before you begin

Identify the resources in the application that you want to expose as a RESTful service.

About this task

URLs are used to specify the location of a resource. Interaction between the server and client is based on
issuing HTTP operations to URLs. Defining URL patterns is important because URLs often have a long
lifetime so that clients can directly address a resource long after the resource is initially discovered.

URLs are typically used when you enter addresses to web browsers, such as http://www.ibm.com/ or
http://www.example.com/bookstore/books/ISBN123. Although URLs are not required to be understandable
by users, RESTful services that provide logical URLs in understandable patterns enable client application
developers to work efficiently.

RESTful clients use URLs to manipulate resources. Each resource must have its own unique URL. Some
URL patterns have a collection path with a unique identifier appended. For example, you can use
http://www.example.com/bookstore/books as the collection resource URL, http://www.example.com/
bookstore/books/ISBN123 as a unique book resource URL, and you can use http://www.example.com/
bookstore/books/ISBN123/authors to retrieve a collection resource describing ISBN123 authors.

The application developer must carefully consider the granularity of URLs because it can affect usage of
the application and performance. For example, you can include the author information of a book as part of
the book resource or you can define the author information as a unique resource with its own URL that is
referenced in the book resource. Depending on the reuse of resources, it might be more efficient to define
a separate resource for the author information that is referenced in a hyperlink of the book resource for
cases when the author writes a different book.

After an initial URL is given to a client, subsequent related requests are discoverable by parsing the
current resource. In the book example, a GET request to http://www.example.com/bookstore/books/
retrieves a list of book URLs that can include http://www.example.com/bookstore/books/ISBN123.

Because systems rely on resources being available, URLs typically have longevity. Because HTTP has
built-in status codes for redirection, such as the 301 moved permanently code and the 307 temporarily
redirected code, users and clients with caches often reuse previously discovered URLs first. You can
additionally consider including a version identifier in the URL pattern, such as http://www.example.com/
bookstore/v2/books/ISBN123. Like the planning involved to define an interface using Java code, be sure to
carefully choose your URL patterns because of expected longevity.

Chapter 33. Developing web services - RESTful services 1423

In Java API for RESTful Web Services (JAX-RS), you must add @Path annotations to the Java class files
or the Java methods to define the relative URL of the resource. You can use JAX-RS subresource locators
and subresource methods to define resources. Use parameters, such as the path parameter or matrix
parameter, in the URL to identify the resource.

The value in the @Path annotation defines the relative part of the full URL to your resource. The base
URL is derived from the domain, port, application module context root, and any URL pattern mappings in
the web.xml file of the application module. For example, if the domain is www.example.com, the port is 9060,
the module context root is example, the servlet URL pattern is store/*, and the value of the @Path
annotation is /bookstore/books. The full URL is: http://www.example.com:9060/example/store/bookstore/
books.

Procedure
1. Identify the types of resources in the application. Suppose that you have two types of resources, a

BooksCollection and an individual Book object which have the following class definitions:
public class BooksCollection {

public BooksCollection() {
/* no argument constructor */

}

}

public class Book {
public Book(String ISBN) {

/* This constructor has an argument that will be annotated with a JAX-RS annotation.
See the JAX-RS specification for information on valid constructors. */

}
}

As defined in the JAX-RS specification, by default, resource instances are created per request. For
the JAX-RS runtime environment to create a resource instance, you must have either a constructor
with no argument or a constructor with only JAX-RS annotated parameters present.

2. Add a @javax.ws.rs.Path annotation to each resource class. For each @javax.ws.rs.Path annotation,
set the value as the part of the URL after the base URL of the application.

/*
* BooksCollection.java
* This Java class represents the books collection URL at /bookstore/books.
*/
@javax.ws.rs.Path("/bookstore/books/")
public class BooksCollection {

}

After completing the application, you can use the resource by visiting http://<host_name>:<port>/
<context_root>/<servlet_path>/bookstore/books. For this URL, specify the context root value as the
part of the URL after the context module. Specify the servlet path as any URL patterns in the web.xml
file, if it exists.

3. (optional) Determine if a resource needs to use part of the URL as a parameter. If a resource needs to
use part of the URL as a parameter, such as an identifier, you can use the @javax.ws.rs.Path
annotation with a regular expression. You can then add a @javax.ws.rs.PathParam annotation in
either the resource constructor or the resource method.

/*
* Book.java represents individual books.
*/

@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

public Book(@javax.ws.rs.PathParam("bookID") String ISBN) {

}
}

When an HTTP request is made to http://<host_name>:<port>/<context_root>/<servlet_path>/
bookstore/books/ISBN_number, a Book instance is created with ISBN_number passed in to the ISBN
parameter of the constructor.

1424 Developing WebSphere applications

For more information about other possible parameters, read about defining parameters for requests to
resources in RESTful applications.

4. Create the javax.ws.rs.core.Application subclass to define to the JAX-RS runtime environment which
classes are part of the JAX-RS application. The resource classes are returned in the getClasses()
method; for example:

public class BookApplication extends javax.ws.rs.core.Application {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(BooksCollection.class);
classes.add(Book.class);
return classes;

}
}

By defining the javax.ws.rs.core.Application subclass, classes returned from its methods are registered
to the JAX-RS runtime environment. When configuring the web.xml file, you must specify
the javax.ws.rs.core.Application subclass as a parameter to the servlet or filter. For more information,
read about configuring the web.xml file for JAX-RS applications.

Results

You have created a URL to identify your resources for your RESTful service. By considering issues with
URL patterns early in the application design, the RESTful service increases its usability and value over an
extended time.

What to do next

The resource at the defined URL exists. However, the resource does not yet have any methods to handle
HTTP method actions such as GET, POST, PUT, or DELETE. See the defining resource methods for
RESTful applications to learn more about defining capabilities of resources using supported HTTP
methods.

Defining resource methods for RESTful applications
Individual resources can define their capabilities using supported HTTP methods. In Representational
State Transfer (REST) services, the supported methods are GET, PUT, DELETE, and POST. All operations
are typically conducted by using one of the predefined HTTP methods with a resource.

Before you begin

Understand the predefined HTTP methods and their known attributes. Some HTTP methods are meant to
be safe, meaning that issuing the request does not change the resource, or idempotent, meaning that
multiple invocations of the operation do not change the result. While HTTP methods are defined to have
certain attributes, the service implementation follows the definitions. See the HTTP method definitions
information to learn more about the common set of methods for HTTP.

About this task

Clients use HTTP methods to perform certain operations. Unlike other distributed systems where unique
interfaces are defined by each system, RESTful systems based on HTTP mainly rely on predefined
methods. The four most common methods are GET, PUT, DELETE, and POST. Resources are not
required to permit all HTTP methods for all clients.

The HTTP GET method retrieves a resource representation. It is safe and idempotent. Repeated GET
requests do not change any resources.

The HTTP PUT method is often used to update resources or to create a new entity at a known URL.
When a resource must be updated or created, an HTTP PUT method is issued at the resource URL with
the new resource data as the request entity, also known as the message body. The HTTP PUT method is

Chapter 33. Developing web services - RESTful services 1425

idempotent so multiple identical PUT requests with the same entity to the same URL yields the same
result as if only one PUT request was issued. This method assumes that no other relevant requests were
made.

The HTTP DELETE method removes a resource at a given URL. It is also idempotent.

The HTTP POST method is often used when creating a resource in a collection when the final resource
URL is not known. For instance, an administrator issues a POST request to a /users collection resource
that creates a user with a unique ID such as 1234567890. The unique ID is then used as part of the URL
path to describe the new user resource, such as /users/1234567790. It is not safe and is not idempotent.
In this case, the multiple POST requests to the /users collection can continue creating a new unique ID
and adding this new ID to the users collection even if the user has the same information.

Because most RESTful services use well-known HTTP methods that provide expected results, you can
more easily create clients. RESTful service developers can take advantage of the expected behaviors of
HTTP methods. Resource methods can also use parameters, such as path parameters, query parameters,
or matrix parameters to identify the resource. Read about defining the use of parameters for request
representations to resources to learn more.

(optional) If you have a sub-resource method and a sub-resource locator method that have an @Path
annotation with the same value in the same resource class, the sub-resource locator is not considered
when determining the method to invoke by default. This is in compliance with the JAX-RS specification.

Use the wink.searchPolicyContinuedSearch property with a value of true to modify this behavior. This
results in sub-resource locators being used if no sub-resource methods match the request.

To enable the property, include a properties file in the WEB-INF directory of the module that has the
wink.searchPolicyContinuedSearch property and value specified. In the web.xml file of the application
module, include an init-param element with the propertiesLocation value for the param-name element.
The param-value element specifies the location of the properties file, for example, WEB-INF/
my_wink.properties.

The following example illustrates the web.xml file:
<servlet>

...

...
<init-param>

<param-name>propertiesLocation</param-name>
<param-value>/WEB-INF/my_wink.properties</param-value>

</init-param>
</servlet>

The following example illustrates the WEB-INF/my_wink.properties properties file:
wink.searchPolicyContinuedSearch=true

Procedure
1. Identify the types of resources in the application.

For each resource class, identify an existing method or create a method that you want to invoke for
each supported HTTP method. Methods that respond to HTTP requests are also known as resource
methods. For each resource method in the resource class, annotate the Java method with a single
JAX-RS HTTP method annotation such as @javax.ws.rs.GET, @javax.ws.rs.POST,
@javax.ws.rs.DELETE or @javax.ws.rs.PUT. For example, if an HTTP GET method is supported by
the BooksCollection class, then you can create and annotate a method like the following snippet:

@javax.ws.rs.Path("/bookstore/books/")
public class BooksCollection {

@javax.ws.rs.GET
public String getBooksCollection() {

String str = /* Construct a String representation of the resource. */
return str;

}
}

1426 Developing WebSphere applications

When issuing an HTTP GET request to http://<host_name>:<port>/<context_root>/<servlet_path>/
bookstore/books URL using a web browser or another HTTP client, the previous getBooksCollection()
method is invoked.

2. Ensure that the resource supports the required HTTP methods.

Each resource typically has multiple resource methods; for example:
@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

/* This is a database key. */
private String ISBN;

public Book(@javax.ws.rs.PathParam("bookID") String ISBN) {
this.ISBN = ISBN;

}

@javax.ws.rs.GET
public String retrieveSpecificBookInformation() {

/* This code retrieves a book resource based on the ISBN key. */
}

@javax.ws.rs.PUT
public String updateBookInformation(String updatedBookInfo) {

/* This code updates the book resource based on ISBN key and the entity (message body) sent
in the request that is stored in updatedBookInfo. */

}

@javax.ws.rs.DELETE
public void removeBook() {

/* This code deletes a book resource based on ISBN key. */
}

}

When issuing an HTTP GET request to the http://<host_name>:<port>/<context_root>/
<servlet_path>/bookstore/books/<isbn_number> URL using a web browser or another HTTP client,
the retrieveSpecificBookInformation() method is invoked. Sending an HTTP PUT request to the same
URL invokes the updateBookInformation method and any content in the request message body is
passed as the value of the updatedBookInfo object. Finally, sending an HTTP DELETE request to the
same URL invokes the removeBook() method.

Note: According to the JAX-RS specification, you must not put multiple HTTP method annotations,
such as @javax.ws.rs.POST or @javax.ws.rs.PUT on the same resource method Because
HTTP methods have uniquely defined semantics, do not use a resource method for multiple
HTTP methods.

Results

You have defined valid operations for the resources.

Defining the HTTP headers and response codes for RESTful
applications
HTTP headers and status codes are useful to help intermediary and client programs understand
information about requests and responses for applications. HTTP headers contain metadata information.
HTTP status codes provide status information about the response.

Before you begin

See the HTTP 1.1 specification to become familiar with HTTP headers and HTTP status codes.

About this task

HTTP headers contain metadata information such as security authentication information, the user agent
that is used, and cache control metadata. Standard HTTP headers are defined in the HTTP specification;
however, you can use custom HTTP headers, if necessary.

Chapter 33. Developing web services - RESTful services 1427

You can read HTTP headers from the request and set the headers in the response. There are a set of
common request and response headers, but there are also unique request and unique response headers.
JAX-RS provides the HttpHeaders injectable interface and the @HeaderParam parameter annotation for
reading HTTP headers. If a javax.ws.rs.core.Response object is returned from a resource method, you can
set HTTP headers on the response. Also, you can set HTTP headers when an entity is written using the
MessageBodyWriter interface.

You can set HTTP response status codes to help client programs understand the response. While
responses can contain an error code in XML or other format, client programs can quickly and more easily
understand an HTTP response status code. The HTTP specification defines several status codes that are
typically understood by clients.

Procedure
v To read a specific request header, add a @javax.ws.rs.HeaderParam annotated parameter.
@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

@javax.ws.rs.GET
public String retrieveSpecificBookInformation(@javax.ws.rs.HeaderParam(“User-Agent”) String theUserAgent) {

/* The book ID was sent in a HTTP request header with the name "bookID". */
}

}

v To read any request header, use the @javax.ws.rs.core.Context javax.ws.rs.core.HttpHeaders injected
object.

@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

@javax.ws.rs.GET
public String retrieveSpecificBookInformation(@javax.ws.rs.core.Context HttpHeaders requestHeaders) {

/* Call methods on "requestHeaders" to get any request header sent by the client. */
List<String> bookIdValues = requestHeaders.getRequestHeader("User-Agent");

}
}

v To set a response status code or header, return a javax.ws.rs.core.Response object and build the
response with the appropriate status code and headers.

@javax.ws.rs.Path(“/bookstore/books/{bookID}”) public class Book {
@javax.ws.rs.GET public javax.ws.rs.core.Response retrieveSpecificBookInformation() {

return Response.status(200).header("responseHeaderName", "responseHeaderValue").header("anotherResponseHeaderName", "foo").build();
}

}

Results

You have used HTTP headers to read request headers and set response status codes and headers for
JAX-RS web applications.

Defining media types for resources in RESTful applications
Resources are represented by multiple formats. XML, JavaScript Object Notation (JSON), Atom, binary
formats such as PNG, JPEG, GIF, plain text, and proprietary formats are used to represent resources.
Representational State Transfer (REST) provides the flexibility to represent a single resource in multiple
formats.

Before you begin

Define the resources in the JAX-RS web application.

About this task

Resources have representations. A resource representation is the content in the HTTP message that is
sent to, or returned from the resource using the URI. Each representation that a resource supports has a
corresponding media type. For example, if a resource is going to return content formatted as XML, you
can use application/xml as the associated media type in the HTTP message.

1428 Developing WebSphere applications

Depending on the requirements of your application, resources can return representations in a preferred
single format or in multiple formats. For example, resources that are accessed using JavaScript clients
might prefer JSON representations because JSON is easy to consume.

JAX-RS provides @Consumes and @Produces annotations to declare the media types that are
acceptable for a resource method to read and write.

JAX-RS also maps Java types to and from resource representations using entity providers. A
MessageBodyReader entity provider reads a request entity and deserializes the request entity into a Java
type. A MessageBodyWriter entity provider serializes from a Java type into a response entity.

Table 185. Standard entity providers and basic Java types. This table includes the standard entity providers and
basic Java types that are included in the JAX-RS runtime environment, along with the corresponding supported
content types.

Java type MessageBodyReader MessageBodyWriter
Supported Content
types

byte[] X X */*

java.io.InputStream X X */*

java.io.Reader X X */*

java.lang.String X X */*

java.io.File X X */*

javax.activation.DataSource X X */*

javax.xml.transform.Source X X text/xml, application/xml,
application/*+xml

javax.ws.rs.core.MultivaluedMap X X application/x-www-form-
urlencoded

JAXB types X X text/xml, application/xml,
application/*+xml

javax.ws.rs.core.StreamingOutput X */*

If a String value is used as the request entity parameter, the MessageBodyReader entity provider
deserializes the request body into a new String. If a JAXB type is used as the return type on a resource
method, the MessageBodyWriter serializes the Java Architecture for XML Binding (JAXB) object into a
response body.

If you need a custom mapping from a Java type to a specific representation, see the information for using
an application-defined entity provider.

If your client can handle multiple formats and you want the server to determine the best resource
representation to return, read about using content negotiation in JAX-RS applications to serve multiple
content types.

The specifications for XML, JSON, and Atom provide details regarding the formats of resource
representations for applications. See the specifications to learn more about the formats of resource
representations.

Procedure
1. Determine the resource representation format such as XML, JSON, or ATOM to use for either the

request or the response.

2. Add the @Consumes and @Produces annotations appropriately to the resource method.

3. If the resource needs to read the content of the request, add a request entity parameter to the
resource method. The request entity parameter is a single Java parameter on the method that does
not have an annotation.

Chapter 33. Developing web services - RESTful services 1429

4. If the resource method returns content in the response, return a Java object that is writable by a
JAX-RS entity provider. This Java object is mapped to the response entity in the HTTP response. The
returned object must be a JAX-RS supported Java type or wrapped in a javax.ws.rs.core.Response or
javax.ws.rs.core.GenericEntity type.

Results

You have mapped the request entities to the resource method entity parameter and any response objects
that are returned are mapped to the response entity for the resource representation.

Example

The following example illustrates defining XML as the resource representation for a RESTful bookstore
application.

1. Identify the resource methods that you want to read the request entity or return a response entity.

In the retrieveSpecificBookInformation method example that follows, there is no request entity that is
read. However, there is a response object that is returned. This object wraps a JAXB object that
contains the entity information. Adding the @Produces annotation on the resource method with a
media type of application/xml indicates that the resource method always returns an XML
representation with a media type of application/xml.

Clients that have an Accept HTTP request header value compatible with the application/xml media
type invoke the method correctly.

Clients that do not have an Accept HTTP header value compatible with the application/xml media
type automatically receive a 406 Not Acceptable response status which indicates that the server
cannot produce an acceptable response.

The following example identifies the resource methods that read the request entity or return a
response entity:

/*
* Book.java
* This class represents individual books. The @Produces annotation specifies a media type of application/xml.
*/
@Path(“/bookstore/books/{bookID}”)
public class Book {
@GET
@Produces(“application/xml”)
public javax.ws.rs.core.Response retrieveSpecificBookInformation(@PathParam(“bookID”) String theBookID,
@Context javax.ws.rs.core.HttpHeaders headers) {
/* ... */
return
Response.ok(/* JAXB object to represent response body entity */).expires(/* Expires response header value*/).header(“CustomHeaderName”, “CustomHeaderValue”).build();
}
@PUT
public String updateBookInformation(@PathParam(“bookID”) String theBookID, String theRequestEntity,
@javax.ws.rs.HeaderParam(“Content-Length”) String contentLengthHeader) { /* ... */ }

@DELETE
public void removeBook(@PathParam(“bookID”) String theBookID) { /* ... */ }

}

2. Identify the resource methods that need to consume the request information.

In the following snippet, the PUT method on the book resource accepts the request entity content if a
media type of text/plain is sent, as defined in the @Consumes annotation. This method returns
content with a text/plain representation as specified in the @Produces annotations.

If a client does not send a message with a Content-Type value of text/plain, then the PUT resource
method is not invoked. If Content-Type: application/xml is sent in the HTTP request headers, the
updateBookInformation Java method is not be called.

The DELETE method neither reads a request entity nor returns a response entity; therefore, it does not
require either an @Consumes or an @Produces annotation.

The following example identifies the resource methods that consume the request information:
/*
* Book.java
* This class represents represent individual books with custom headers.
*/
@Path(“/bookstore/books/{bookID}”)
public class Book {
@GET
@Produces(“application/xml”)
public javax.ws.rs.core.Response retrieveSpecificBookInformation(@PathParam(“bookID”) String theBookID, @Context javax.ws.rs.core.HttpHeaders headers) {

1430 Developing WebSphere applications

/* ... */
return Response.ok(/* JAXB object to represent response body entity */).expires(/* Expires response header value).header(“CustomHeaderName”, “CustomHeaderValue”).build();

}
@PUT
@Consumes(“text/plain”)
@Produces(“text/plain”)
public String updateBookInformation(@PathParam(“bookID”) String theBookID, String theRequestEntity, @javax.ws.rs.HeaderParam(“Content-Length”) String contentLengthHeader) {
/* ... */
String responseEntity = /* a plain text representation */;
return responseEntity;

}

@DELETE
public void removeBook(@PathParam(“bookID”) String theBookID) { /* ... */ }

}

What to do next

See the JAX-RS specification for a list of all the standard media formats that are supported for
representations.

Advanced users might consider defining custom mappings of Java types to representations or using
content negotiation for clients to negotiate preferred resource representations. To learn more about these
options, see the using custom defined entity formats information or the serving multiple content types with
content negotiation information.

Defining parameters for request representations to resources in
RESTful applications
Parameters are used to pass and add additional information to a request. You can use parameters as part
of the URL or in the headers. Path parameters, matrix parameters, query parameters, header parameters,
and cookie parameters are useful for passing in additional information to a request.

About this task

Multiple parameters types exist. Java API for RESTful Web Services (JAX-RS) enables easy access to all
the types of parameters using annotated injected parameters.

You can use any basic Java primitive type including java.lang.String as parameters, as well as Java types
with a constructor that uses a single String or a valueOf(String) static method. Additionally, you can use
List, SortedSet, and Set interfaces where the generic type is one of the previously mentioned types, such
as a Set when a parameter can have multiple values. If you need to parse requests, then use String as
the parameter type to enable you to complete basic inspection and customization of error path responses.

JAX-RS provides the following annotations to use on resource method parameters to specify that the
resource method can be invoked with correct parameter values.

javax.ws.rs.PathParam annotation

Path parameters are part of the URL. For example, the URL can include /collection/{item},
where {item} is a path parameter that identifies the item in the collection. Because path
parameters are part of the URL, they are essential in identifying the request.

If parts of the URL are parameters, you can use a @javax.ws.rs.PathParam annotated parameter;
for example:

@javax.ws.rs.Path(“/bookstore/books/{bookId}”)
public class BooksCollection {

@javax.ws.rs.GET
public String getSpecificBookInfo(@javax.ws.rs.PathParam(“bookId”) String theBookId) {

/* theBookId would contain the next path segment after /bookstore/books/ */
}

}

In this example, requests to /bookstore/books/12345 assigns the value of 12345 to the theBookId
variable.

javax.ws.rs.MatrixParam annotation

Chapter 33. Developing web services - RESTful services 1431

Matrix parameters are part of the URL. For example, if the URL includes the path segment,
/collection;itemID=itemIDValue, the matrix parameter name is itemID and itemIDValue is the
value.

You can read matrix parameters with a @javax.ws.rs.MatrixParam annotated parameter; for
example:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.MatrixParam(“page”) int page, @javax.ws.rs.MatrixParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

In this example, requests to/bookstore/books;page=25;filter=test invoke the
getBookCollectionInfo parameter so that the value for the page variable is set to 25 and the value
for filter variable is set to test.

javax.ws.rs.QueryParam annotation

Query parameters are appended to the URL after a “?” with name-value pairs. For instance, if the
URL is http://example.com/collection?itemID=itemIDValue, the query parameter name is itemID
and itemIDValue is the value. Query parameters are often used when filtering or paging through
HTTP GET requests.

You can read query parameters with a @javax.ws.rs.QueryParam annotated parameter; for
example:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.QueryParam(“page”) int page, @javax.ws.rs.QueryParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

In this example, requests to/bookstore/books;page=25;filter=test invoke the
getBookCollectionInfo parameter so that the value for the page variable is set to 25 and the value
for filter variable is set to test.

javax.ws.rs.HeaderParam annotation

Header parameters are HTTP headers. While there are pre-defined HTTP headers, you can also
use custom headers. Headers often contain control metadata information for the client,
intermediary, or server.

If a HTTP request header must be read, use the @javax.ws.rs.HeaderParam annotation; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.HeaderParam(“Range”) String rangeValue) {

/* The rangeValue variable contains the value of the HTTP request header "Range" */
}

}

In this example, requests to /bookstore/books/ with a Range HTTP request header value of
bytes=0-499 invokes the method with bytes=0-499 as the value for the rangeValue variable.

javax.ws.rs.CookieParam annotation

Cookie parameters are special HTTP headers. While cookies are associated with storing session
identification or stateful data that is not accepted as RESTful, cookies can contain stateless
information.

If an HTTP cookie is sent, such as mycustomid=customvalue123, you can retrieve the value of the
mycustomid variable using the following example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET

1432 Developing WebSphere applications

public String getBookCollectionInfo(@javax.ws.rs.CookieParam(“mycustomid”) String mycustomid) {
/* The cookie value is passed to the mycustomid variable. */

}
}

javax.ws.rs.FormParam annotation

Form parameters are used when submitting a HTML form from a browser with a media type of
application/x-www-form-urlencoded. The form parameters and values are encoded in the request
message body in the form like the following: firstParameter=firstValue
&secondParameter=secondValue. The javax.ws.rs.FormParam annotation enables easy access to
individual form parameter values.

If a form is submitted and the entity value is firstName=Bob&lastName=Smith, you can retrieve the
values of the form parameters using the following example:

@javax.ws.rs.Path(“/customer”)
public class Custommer {

@javax.ws.rs.POST
public String postCustomerInfo(@javax.ws.rs.FormParam(“firstName”) String firstName, @javax.ws.rs.FormParam("lastName") String lastName) {

/* firstName would be "Bob" and secondName would be "Smith" */
}

}

Note: You can either use a single unannotated parameter to represent the message body or use
multiple FormParam annotated parameters, but not both. Because the FormParam requires
the request message body to be read and the message body is represented as a byte
stream, the message body cannot be read again. The following code is not valid:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.POST
public String postSpecificBookInfo(@javax.ws.rs.FormParam(“bookId”) String theBookId, String theRequestEntity) {

/* This code is invalid. Can only use FormParam or a request entity parameter like "String theRequestEntity" and not both */
}

}

Choose one of the following ways to define variables to read parameters.

Procedure
v Add a parameter to the resource method by using an appropriate JAX-RS parameter annotation on the

method to identify the type of parameter. You can read multiple types of parameters from a request; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.QueryParam(“page”) int page, @javax.ws.rs.QueryParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

Issuing an HTTP GET request using a web browser or other HTTP client, such as http://
<host_name>:<port>/<context_root>/<servlet_path>/bookstore/books?page=10&filter=FilterValue,
invokes the getBookCollectionInfo() method with the page set to 10 and filter set to FilterValue.

v Add the parameter annotation on the fields, JavaBeans properties, and constructor arguments; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.QueryParam(“page”) int page;

String filter;

@javax.ws.rs.QueryParam(“filter”)
public void setFilter(String filter) {

this.filter = filter;
}

@javax.ws.rs.GET
public String getBookCollectionInfo() {

/* This statement uses the page and filter parameters. */
}

}

Chapter 33. Developing web services - RESTful services 1433

Issuing an HTTP GET request using a web browser or other HTTP client, such as http://
<host_name>:<port>/<context_root>/<servlet_path>/bookstore/books?page=10&filter=FilterValue,
also invokes the getBookCollectionInfo() method with the page set to 10 and filter set to FilterValue.

Results

Your resource methods are defined so that they can be invoked with appropriate parameter values.

Example

Defining exception mappers for resource exceptions and errors
Java API for RESTful Web Services (JAX-RS) applications can produce exceptions and errors. The default
behavior is to use the exception handling functionality of application container such as JavaServer Pages
(JSP) error pages. However, you can customize the error handling and send specific responses back
when an exception or error occurs.

About this task

JAX-RS resource methods, like any Java method, can throw checked and unchecked exceptions. By
default, an unchecked runtime exception or error occurs in the container again. A checked exception is
wrapped in a ServletException for resources running in the web container. Therefore, a developer can
use error handling facilities such as JSP error pages to handle exceptions thrown from a JAX-RS
application.

JAX-RS introduced the exception, javax.ws.rs.WebApplicationException. A developer can specify a
specific error class name or javax.ws.rs.core.Response object when creating a WebApplicationException.
When the WebApplicationException is thrown, the information included in the exception by way of a status
class name or Response object is used to serialize a response.

If you cannot throw the exception, WebApplicationException, in your code and you cannot use the error
handling facilities in the web container, but you want to use a custom error response, then you can create
a customized JAX-RS javax.ws.rs.ext.ExceptionMapper class to map exceptions to HTTP error
responses.

The following procedure illustrates how to write a custom ExceptionMapper class.

Procedure
1. Create a class that implements the javax.ws.rs.ext.ExceptionMapper class and annotate the class

with the javax.ws.rs.ext.Provider annotation. This step assumes that your JAX-RS resource can
throw the exception, MyCustomException, in its methods. The following example illustrates a simple
ExceptionMapper class:

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;
import javax.ws.rs.ext.Provider;

@Provider
public class CustomExceptionMapper implements ExceptionMapper<MyCustomException> {

public Response toResponse(MyCustomException exception) {
return null;

}

}

2. In the toResponse(MyCustomException) method, return a Response object that contains the customized
error response. The following example illustrates a customized
ExceptionMapper.toResponse(MyCustomException) method:

@Provider
public class CustomExceptionMapper implements ExceptionMapper<MyCustomException> {

public Response toResponse(MyCustomException exception) {
return Response.status(500).entity("Unfortunately, the application cannot

1434 Developing WebSphere applications

process your request at this time.").type("text/plain").build();
}

}

You can have additional code where you log an error, inspect the exception thrown, or use more
complex logic.

3. Package the compiled custom ExceptionMapper class with your web application project. If you rely on
the annotation scanning capabilities to find all of your JAX-RS classes in your web application, no
additional steps are required. However, if you return all of the relevant JAX-RS resource classes and
providers in a JAX-RS application subclass method, then you must also add the custom
ExceptionMapper class to the returned set. The following example illustrates a preexisting
javax.ws.rs.core.Application subclass:

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.core.Application;

public class MyApplication extends Application {

@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(CustomExceptionMapper.class);
/* add your additional JAX-RS classes here */
return classes;

}
}

When exceptions occur in your JAX-RS resource methods, you can customize the HTTP error
response so that a user cannot see a stack trace or potentially confidential data. Use an
ExceptionMapper or the exception handling functionality in the web container to give more helpful
responses if the application is not behaving correctly.

Results

You have written a custom ExceptionMapper to handle exceptions in your JAX-RS web application.

Developing JAX-RS web applications

Getting started with IBM JAX-RS
JAX-RS is a collection of interfaces and Java annotations that simplifies development of server-side REST
applications. By using JAX-RS technology, Representational State Transfer (REST) applications are easier
to develop and easier to consume when compared to other types of distributed systems.

About this task

JAX-RS is a Java API for developing REST applications quickly. While JAX-RS provides a faster way of
developing web applications than servlets, the primary goal of JAX-RS is to build RESTful services.
JAX-RS 1.0 defines a server-side component API to build REST applications. The IBM implementation of
JAX-RS provides an implementation of the JAX-RS (JSR 311) specification.

Use this Getting Started guide to help you quickly develop and deploy a simple JAX-RS web application.

This procedure illustrates developing a simple Hello World service that is packaged inside a web
application archive (WAR) module.

Procedure
1. Create a Java class. This class is used to represent a type of resource.

Chapter 33. Developing web services - RESTful services 1435

package com.ibm.jaxrs.sample;

public class HelloWorldResource {

}

2. Annotate the Java class with a javax.ws.rs.Path annotation. The value of the annotation is the
relative part of the URL after the application context. The application context is fully defined during
deployment. In JAX-RS terminology, this class is known as a root resource.

package com.ibm.jaxrs.sample;

@javax.ws.rs.Path("/helloworld")
public class HelloWorldResource {

}

3. Create a Java method that returns a Hello World! response. It is intended for the method to be
invoked when an HTTP request is received.

package com.ibm.jaxrs.sample;

@javax.ws.rs.Path("/helloworld")
public class HelloWorldResource {

public String sayHelloWorld() {
return "Hello World!";

}
}

4. Add a javax.ws.rs.GET annotation to the Java method.

Now, whenever an HTTP GET request is received by the application to the /helloworld path, the
sayHelloWorld Java method is invoked. The response message body will contain Hello World! as its
content.

package com.ibm.jaxrs.sample;

@javax.ws.rs.Path("/helloworld")
public class HelloWorldResource {

@javax.ws.rs.GET
public String sayHelloWorld() {

return "Hello World!";
}

}

The resource implementation is now complete.

5. You must create the JAX-RS javax.ws.rs.core.Application configuration subclass. This subclass
needs to return the set of Java classes that is relevant to the JAX-RS runtime environment.

package com.ibm.jaxrs.sample;

public class HelloWorldAppConfig extends javax.ws.rs.core.Application {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(com.ibm.jaxrs.sample.HelloWorldResource.class);
return classes;

}
}

6. Create the web.xml web module configuration file.

The file tells the web container that the web module contains the IBM JAX-RS REST servlet. You must
initialize the IBM JAX-RS Rest servlet with the application configuration class.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="2.4" xmlns=http://java.sun.com/xml/ns/j2ee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<servlet>

<servlet-name>HelloWorldApp</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.jaxrs.sample.HelloWorldAppConfig</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>HelloWorldApp</servlet-name>
<url-pattern>/rest/*</url-pattern>

</servlet-mapping>
</web-app>

1436 Developing WebSphere applications

See the servlet mapping that is specified in the previous example. The pattern is used to help
determine the final URL of the RESTful service.

7. Add the j2ee.jar file to the classpath.

Get the j2ee.jar file from the app_server_root/dev/JavaEE directory and add the JAR file to the
classpath. Compile the classes.

8. Assemble the web application.

By using the jar command-line tool that is included with the JDK, run the following command:
jar cvf helloworld-jaxrs.war *

This command creates a WAR file.

9. Deploy the application onto the application server.

When deploying the application, you might be prompted to provide a value for the context root of the
module. The context root is used to define the application context.

When using the IBM JAX-RS servlet, the following URL defines the application context:
http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/servlet_mapping_pattern

Root resource URLs that are specified by the @javax.ws.rs.Path values are relative to the application
context root. Therefore, if the context root is defined as myapplication during deployment, the URL
pattern is defined in the web.xml file as /rest/*, and the Java root resource class has a
@javax.ws.rs.Path value of /helloworld. An example of the final URL is:

http://localhost:9080/myapplication/rest/helloworld

Now, you can send a client request to the final URL by using a web browser or any other HTTP client.

Results

You have developed and deployed a JAX-RS web application on the application server.

Setting up a development environment for JAX-RS applications
The application server provides command-line tools to develop web services clients and implementations
that are based on the Java API for RESTful Web Services (JAX-RS) specification. You must set up your
development environment before you start developing web services.

Before you begin

Before you can set up a web services development environment within WebSphere Application Server, you
must install WebSphere Application Server. For detailed information about installing the application server,
read about installing your application server environment.

To develop JAX-RS applications, the JAX-RS libraries must be added to the class path definition. See the
information for your assembly tools to understand how to include libraries on the class path for the
JAX-RS application.

About this task

Set up a web services development environment by completing the following actions.

Procedure
1. Set up the environment.

Run the setupCmdLine.bat command from the /profile_root/<application_server>/bin
directory.

Operating systems such as AIX or Linux source the
script to the parent shell to inherit the exported variables by running the following command from the .
/profile_root/<application_server>/bin directory:

Chapter 33. Developing web services - RESTful services 1437

. ./setupCmdLine.sh (Notice the space between
the periods.)

You can set WAS_USER_SCRIPT to profile_root\<application_server>\bin\setupCmdLine.bat,
which has the same effect as running the setupCmdLine command.

2. Configure the path. You can add the WebSphere and Java bin directories to your path by typing:

set PATH=%WAS_PATH%;%PATH%

export PATH=$WAS_PATH:$PATH

Results

You have set up an environment so that you can develop RESTful web services.

What to do next

Develop your JAX-RS application and configure the web.xml file for the JAX-RS servlet.

Development and assembly tools
You can use an Integrated Development Environment to develop, assemble, and deploy Java Platform,
Enterprise Edition (Java EE) modules for WebSphere Application Server.

The IBM Rational Application Developer for WebSphere Software product and the IBM WebSphere
Application Server Developer Tools for Eclipse product are supported tools for integrated development
environments.

This information center refers to the products as the assembly tools. However, you can use the products to
do more than assemble modules. Use these tools in an integrated development environment to develop,
assemble, and deploy Java EE modules.

The Rational Application Developer for WebSphere Software is a more extensive set of tools supporting
enterprise development. This workbench has integrated support for WebSphere Application Server Version
6.1 and later. This workbench also supports both the OSGi and Java EE programming models, and
contains wizards and visual editors to help you develop Web 2.0, Service Component Architecture (SCA),
Java, and Java EE applications. This product contains code quality tools to help you analyze code and
improve performance. This product integrates with Rational Team Concert to provide a team-based
environment to help developers share information and work collaboratively. The Trial download for Rational
Application Developer is available at http://www.ibm.com/developerworks/downloads/r/rad/.

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE applications to WebSphere Application Server Version 7.0 and 8.x.
This workbench integrates with the application server to help you to quickly deploy and test applications.
This product contains wizards and visual editors that support the Java EE programming model.

For documentation on the tools, see “Rational Application Developer documentation.” Topics on application
assembly in this information center supplement that documentation.

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

1438 Developing WebSphere applications

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 186. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 187. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Chapter 33. Developing web services - RESTful services 1439

Table 188. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 189. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 190. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 191. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

1440 Developing WebSphere applications

Table 192. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Configuring JAX-RS web applications

Configuring JAX-RS applications using JAX-RS 1.1 methods
You can configure Java API for RESTful Web Services (JAX-RS) applications in multiple ways depending
on your needs. To take advantage of the Java Platform, Enterprise Edition (Java EE) 6 functionality, you
can use the annotation scanning capabilities. By using annotation scanning, you can omit a JAX-RS
javax.ws.rs.core.Application subclass or have a minimally defined javax.ws.rs.core.Application subclass.

About this task

The JAX-RS 1.1 specification supports several new ways to configure a JAX-RS application. You can use
the built-in annotation scanning to help automatically configure the application. You can optionally add
javax.ws.rs.core.Application subclasses to your application and then add the URL patterns required using
either the javax.ws.rs.ApplicationPath annotation or a web.xml servlet definition. When using the IBM
JAX-RS implementation, you do not have to specify the servlet class implementation because it is
automatically added to the configuration of the web module by the time the JAX-RS application is started.

When using a web.xml file, you must use a Java Servlet 3.0 web.xml file.

Procedure
v Configure the JAX-RS application with only one JAX-RS default application in the web.xml file. Use this

method if you only need one JAX-RS application and all resource classes are located after a single
URL pattern. You can also specify security constraints with this method, if needed.

1. Add all of your JAX-RS resource and provider classes to the WEB-INF/classes or WEB-INF/lib
directory for your web application. You do not need to add a javax.ws.rs.core.Application subclass
to your web application.

2. In your web.xml file, add a servlet definition with javax.ws.rs.core.Application as the servlet name.
You do not need to add a servlet-class. You must add a servlet URL pattern to the web.xml file.
The application server runtime environment adds the specific IBM JAX-RS implementation to the
configuration of the web module by the time the JAX-RS application is started; for example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
version="3.0">
<servlet>
<servlet-name>javax.ws.rs.core.Application</servlet-name>
</servlet>
<servlet-mapping>
<servlet-name>javax.ws.rs.core.Application</servlet-name>
<url-pattern>/rest/*</url-pattern>
</servlet-mapping>
</web-app>

The JAX-RS resources are now available at a URL such as:

Chapter 33. Developing web services - RESTful services 1441

http://{hostname}:{port}/{context_root_of_Web_ module}/{value_of_Web.xml_URL_pattern}/{value_of_@javax.ws.rs.Path}

v Configure the JAX-RS application using the javax.ws.rs.core.Application subclass and the web.xml file.
Use this method if you need multiple JAX-RS applications or require only specific resources in certain
JAX-RS applications with specific URL patterns. You can also specify security constraints with this
method, if needed.

1. Create a javax.ws.rs.core.Application subclass. In your javax.ws.rs.core.Application subclass
getClasses() or getSingletons() methods, return the relevant JAX-RS resources and providers. If
you return empty sets in both the getClasses() and getSingletons() methods, all the JAX-RS
resource and provider classes that are found in the application are added to the JAX-RS application
subclass; for example:

package com.example;

public class MyApplication extends javax.ws.rs.core.Application {

}

This example uses the default implementations of javax.ws.rs.core.Application subclass getClasses()
and getSingletons() methods that return empty sets. Therefore, all relevant JAX-RS classes are
assumed to be returned by the javax.ws.rs.core.Application subclass.

2. Add the javax.ws.rs.core.Application subclass to your web application.

3. Add a partial servlet definition in the web.xml file. The servlet name is the full name of the
javax.ws.rs.core.Application subclass. Do not define the servlet-class. You must add a servlet
URL pattern to the web.xml file. The application server runtime environment adds the specific IBM
JAX-RS implementation to the configuration of the web module by the time the JAX-RS application
is started; for example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
version="3.0">
<servlet>
<servlet-name>com.example.MyApplication</servlet-name>
</servlet>
<servlet-mapping>
<servlet-name>com.example.MyApplication</servlet-name>
<url-pattern>/rest/*</url-pattern>
</servlet-mapping>
</web-app>

The JAX-RS resources are now available at a URL such as:
http://{hostname}:{port}/{context_root_of_Web_ module}/{value_of_Web.xml_URL_pattern_for_Application_subclass}/{value_of_@javax.ws.rs.Path}

v Configure the JAX-RS application without a web.xml file. Use this method if you do not want to use a
web.xml file. When you use this method, you cannot specify security constraints. To specify security
constraints, you must use a web.xml file.

1. Create a javax.ws.rs.core.Application subclass. In your javax.ws.rs.core.Application subclass
getClasses() or getSingletons() methods, return the relevant JAX-RS resources and providers. If
you return empty sets in both the getClasses() and getSingletons() methods, all the JAX-RS
resource and provider classes that are found in the application are added to the JAX-RS application
subclass; for example:

package com.example;

public class MyApplication extends javax.ws.rs.core.Application {

}

This example uses the default implementations of javax.ws.rs.core.Application subclass getClasses()
and getSingletons() methods that return empty sets. Therefore, all relevant JAX-RS classes are
assumed to be returned by the javax.ws.rs.core.Application subclass.

1442 Developing WebSphere applications

2. Add a javax.ws.rs.ApplicationPath annotation to the javax.ws.rs.core.Application subclass. The
ApplicationPath annotation is supported with the JAX-RS 1.1 specification. The value of the
ApplicationPath annotation is used as the servlet URL pattern which is equivalent to the servlet URL
pattern in the web.xml file; for example:

package com.example;

@javax.ws.rs.ApplicationPath("rest")
public class MyApplication extends javax.ws.rs.core.Application {

}

3. Add the javax.ws.rs.core.Application subclass to your web application. When the application is
started, the resources are available at the following URL:

http://{hostname}:{port}/{context_root_of_Web_ module}/{value_of_@javax.ws.rs.ApplicationPath}}/{value_of_@javax.ws.rs.Path}

Results

You have configured your JAX-RS application using JAX-RS 1.1 supported methods by taking advantage
of annotation scanning to help automatically configure the application.

Configuring the web.xml file for JAX-RS servlets
The web.xml file contains information about the structure and external dependencies of web components in
the module and describes how the components are used at run time. To enable the web container to run
Java API for RESTful Web Services (JAX-RS) applications, you can configure the web.xml file to point
directly to the IBM JAX-RS servlet. When using servlets, you can define a servlet path in the web.xml file
that is appended to the base URL.

About this task

You can configure the web.xml file for your web application to enable the JAX-RS application code. You
can specify an IBM specific JAX-RS servlet to use to run your JAX-RS code. The web.xml file provides
configuration and deployment information for the web components that comprise a web application. Read
about configuring the web.xml file for JAX-RS to learn more about this deployment descriptor file.

When using servlets, any servlet path that is defined in the web.xml is appended to the base URL. For
example, if a root resource has a @javax.ws.rs.Path value of myresource and a servlet path of
myservletpath, the final URL of the resource is http://<your_hostname>:<your Web_container_port>/
<context_root_of_Web_application>//myservletpath/myresource.

Procedure
1. Open the WEB-INF/web.xml file.

2. Add the following servlet definition to the WEB-INF/web.xml file. In the following servlet, you must
replace the unique_servlet_name with your unique servlet name. Also, replace the Java_class_name
variable with the full Java package and class name of the javax.ws.rs.core.Application subclass.

<servlet>
<servlet-name>unique_servlet_name</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name </param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

3. (optional) If there are multiple JAX-RS application subclasses needed in the same web application, you
must include an additional servlet initialization parameter, requestProcessorAttribute, in the servlet
definition that you add to the WEB-INF/web.xml file. In the following servlet, you must replace the
unique_servlet_name with your unique servlet name, the Java_class_name variable with the full Java
package and class name of the javax.ws.rs.core.Application subclass, and the unique_identifier
variable with a unique identifier.

Chapter 33. Developing web services - RESTful services 1443

<servlet>
<servlet-name>unique_servlet_name_a</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name_a </param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>unique_identifier_a</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>unique_servlet_name_b</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name_b</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>unique_identifier_b </param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

4. Add servlet mappings in the WEB-INF/web.xml file for each servlet definition. The servlet path is
appended to the context root of the web application.

<servlet-mapping>
<servlet-name>servlet_name</servlet-name>
<url-pattern>servlet_pattern_path</url-pattern>

</servlet-mapping>

For example, if the servlet_pattern_path is /restapi/*, all valid requests start at the following URL:
http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/restapi/

Results

After editing the WEB-INF/web.xml file, the web application is configured for the JAX-RS application.

Example

The following example illustrates a WEB-INF/web.xml file that configures a servlet path for a JAX-RS
application. The servlet path that is defined in the web.xml file is appended to the base URL.
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="2.4"
xmlns=http://java.sun.com/xml/ns/j2ee
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>
<servlet-name>RestApplication1</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.rest.sample.app1.MyApplication</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>restApplication1ProcessorID</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet>
<servlet-name>OtherRestApplicationServlet</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.rest.other.sample.OtherApplication </param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>otherRestApplicationID </param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

1444 Developing WebSphere applications

<servlet-name> RestApplication1</servlet-name>
<url-pattern>/rest/api/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>OtherRestApplicationServlet /servlet-name>
<url-pattern>/other/*</url-pattern>

</servlet-mapping>
</web-app>

What to do next

Assemble the web application.

Configuring the web.xml file for JAX-RS filters
The web.xml file contains information about the structure and external dependencies of web components
in the module and describes how the components are used at run time. To enable the web container to
run Java API for RESTful Web Services (JAX-RS) applications, you can configure the web.xml file to
define filters that indicate the possible URLs on which the filter can be invoked.

About this task

You can configure the web.xml file for your web application to enable the JAX-RS application code. You
can specify an IBM specific JAX-RS filter to use to run your JAX-RS code. The web.xml file provides
configuration and deployment information for the web components that comprise a web application. Read
about configuring the web.xml file for JAX-RS to learn more about this deployment descriptor file.

When using servlets, any servlet path defined in the web.xml is appended to the base URL. Filters do not
append a path to the resource base URL. Instead, filter URL mappings indicate the possible URLs on
which the filter can be invoked. For instance, if a root resource has a @javax.ws.rs.Path value of
myresource, the final URL of the resource is http://<your_hostname>:<your Web_container_port>/
<context_root_of_Web_application>/myresource. The URL mapping pattern for the filter must match
myresource for the root resource to be served correctly. For this example, you can use /* or /myresource
for the URL pattern. When there are multiple resources in the application, the URL pattern for the filter
must match all of the resources. The /* pattern is a common value for the filter.

If the incoming request URL does not match any JAX-RS resources in the JAX-RS application, the request
is passed to the rest of the filter chain. Depending on the application, you might want to use the filter
behavior so that requests are served by the JAX-RS application, or if there is no JAX-RS resource
available, the request can proceed to an underlying web container artifact, such as a JavaServer Pages
(JSP). If the web container has no matching artifact, then the web container is responsible for the error
response.

Procedure
1. Open the WEB-INF/web.xml file.

2. Define your filter in the WEB-INF/web.xml file. Add the following filter definition to the
WEB-INF/web.xml file. Replace the unique_filter_name with your unique filter name. Also replace the
Java_class_name variable with the full Java package and class name of the JAX-RS application Java
subclass.

<filter>
<filter-name>unique_filter_name</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name</param-value>

</init-param>
</filter>

3. (optional) If there are multiple JAX-RS application subclasses needed in the same web application, you
must include an additional filter initialization parameter, requestProcessorAttribute, in the filter
definition that you add to the WEB-INF/web.xml file. In the following filter, replace the

Chapter 33. Developing web services - RESTful services 1445

unique_filter_name with your unique filter name; replace the Java_class_name variable with the full
Java package and the class name of the JAX-RS application Java subclass; replace the
unique_identifier variable with a unique identifier.

<filter>
<filter-name>unique_filter_name_a</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name_a</param-value>

</init-param>

<init-param>
<param-name>requestProcessorAttribute</param-name>
<param-value>unique_identifier_a</param-value>

</init-param>
</filter>

<filter>
<filter-name>unique_filter_name_b</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>Java_class_name_b</param-value>

</init-param>

<init-param>
<param-name>requestProcessorAttribute</param-name>
<param-value>unique_identifier_b</param-value>

</init-param>
</filter

4. Add filter mappings in the WEB-INF/web.xml file for each filter definition.

The URL pattern specified in the filter mapping defines to the container the valid URL patterns for
invoking the IBMRestFilter filter. If an incoming request URL is compatible with the URL pattern, the
IBMRestFilter is invoked. If the request URL does not match, the filter is not invoked. The request
URLs always start at the context root for the filter. See the following example filter mappings:

<filter-mapping>
<filter-name>filter_name</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

For example, suppose you have the following two resources:
@javax.ws.rs.Path("myresource")
public class MyResource {

}

@javax.ws.rs.Path("myresource2")
public class MyResource2 {

}

You can reach the resources using the following URL:
http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/myresource

http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/myresource2

If you apply the following filter mapping:
<filter-mapping>

<filter-name>filter_name</filter-name>
<url-pattern>/myresource</url-pattern>

</filter-mapping>

you can use MyResource root resource by visiting the following URL:
http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/myresource

This URL invokes the IBMRestFilter filter and the URL can find the resource. Because the
/myresource path matches with the URL pattern in the filter-mapping, the IBMRestFilter does get
invoked and there is a root resource that has a matching @Path value.

However, suppose you visit the following URL:
http://<your_hostname>:<your Web_container_port>/<context_root_of_Web_application>/myresource2

the IBMRestFilter filter is not invoked because the URL pattern /myresource does not match
/myresource2.

1446 Developing WebSphere applications

Results

After editing the WEB-INF/web.xml file to apply filters, the web application is configured for the JAX-RS
application.

Example

The following example illustrates a WEB-INF/web.xml file that is configured to apply filters to a JAX-RS
application. This example defines the RestApplication1 filter. If an incoming request URL matches a
resource in the RestApplication1 filter, the response is generated from RestApplication1 filter. If the
incoming request URL does not match a resource in the RestApplication1 filter but matches a resource in
OtherRestApplicationFilter, then the response is generated from the OtherRestApplicationFilter filter. If the
incoming URL does not match either filter, then the request can be served from another web container
artifact, such as a JSP.
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="2.4"
xmlns=http://java.sun.com/xml/ns/j2ee
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<filter>
<filter-name>RestApplication1</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.rest.sample.app1.MyApplication</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>restApplication1ProcessorID</param-value>

</init-param>
</filter>
<filter>

<filter-name>OtherRestApplicationServlet</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.rest.other.sample.OtherApplication</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>otherRestApplicationID </param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>RestApplication1</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>OtherRestApplicationServlet</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
</web-app>

What to do next

Assemble the web application.

Implementing clients using the Apache Wink REST client
You can use the Apache Wink REST client to send requests and process responses from RESTful
services. You can use the client API in Java programs to communicate with web services.

About this task

By default, the Apache Wink client uses the java.net.HttpURLConnection class from the Java runtime
environment for issuing requests and processing responses. The Apache Wink client can also use Apache
HttpClient 4.0 as the underlying client transport.

Chapter 33. Developing web services - RESTful services 1447

You can also use JAX-RS entity providers to help serialize request entities or deserialize response entities.
The standard JAX-RS providers used in the JAX-RS server-side services are provided with the client.

You can configure the Apache Wink REST client programmatically or by setting Java Virtual Machine
(JVM) properties.

To implement an Apache Wink REST client, you must first create an org.apache.wink.client.ClientConfig
object that is then used to construct an org.apache.wink.client.RestClient. You can change the
configuration settings for the RestClient object programmatically, or you can use JVM properties to modify
the default ClientConfig object values.

To configure the configuration settings for the RestClient object programmatically, invoke the public
methods of the ClientConfig object.

Note: After a ClientConfig object is used to construct a RestClient object, the ClientConfig object can no
longer be modified. Attempting to do so results in an org.apache.wink.client.ClientConfigException
error message.

Alternatively, you can configure the configuration settings for the RestClient object using JVM properties to
modify the default ClientConfig object values. Use the following JVM properties to modify the default
ClientConfig object values:

wink.client.readTimeout

This property specifies how long the RestClient object waits (in milliseconds) for a response to
requests before timing out. A value of zero (0) means that the client waits for an unlimited amount
of time and will not timeout.

The default value is 60,000 milliseconds.

wink.client.connectTimeout

This property specifies how long the RestClient object waits (in milliseconds) before timing out
when attempting to connect to the target resource. A value of zero (0) means that the client waits
for an unlimited amount of time and will not timeout.

The default value is 60,000 milliseconds.

You can programmatically alter any values for the RestClient object that you specify using JVM properties.
The programmatic values take precedence over any JVM property values.

Procedure
1. Create an org.apache.wink.client.ClientConfig object.

The following code snippet illustrates how to create an org.apache.wink.client.ClientConfig object:
org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

.

If you use an Apache HTTP client as the underlying transport, create and use an
org.apache.wink.client.ApacheHttpClientConfig object instead. You must also include the Apache HTTP
client libraries in the classpath. The following code snippet illustrates how to create an
org.apache.wink.client.ApacheHttpClientConfig object:

org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ApacheHttpClientConfig();

2. (optional) Modify the default ClientConfig object values that you want to use for the RestClient object.

v You can optionally modify the default configuration settings for the RestClient object
programmatically. To specify the configuration settings for the RestClient object programmatically,
invoke the public methods of the ClientConfig object; for example:

clientConfig.connectTimeout(30000);
clientConfig.readTimeout(30000);

1448 Developing WebSphere applications

v If you are using the Thin Client for JAX-RS in a stand-alone unmanaged client runtime environment,
you can optionally modify the configuration settings for the RestClient object using JVM properties.
Set the custom JVM properties on the JVM under which the thin client is running.

v If you are not using the Thin Client for JAX-RS as a stand-alone client runtime environment, but you
are using the RestClient object in an application that is intended for installation on the application
server, you can optionally modify the configuration settings for the RestClient object using JVM
properties. Set the custom JVM properties using the administrative console for your REST client
code that is running within an application that is installed on the application server. See the Java
virtual machine custom properties information for details on using the administrative console to set
these custom JVM properties.

3. (optional) If you use a custom entity provider, add the entity provider using the client configuration.
org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

javax.ws.rs.core.Application app = new javax.ws.rs.core.Application() {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyCustomEntityProvider.class);
return classes;

}
};
clientConfig.applications(app);

4. Create a org.apache.wink.client.RestClient object with the client configuration.
org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

javax.ws.rs.core.Application app = new javax.ws.rs.core.Application() {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyCustomEntityProvider.class);
return classes;

}
};
clientConfig.applications(app);

org.apache.wink.client.RestClient client = new org.apache.wink.client.RestClient(clientConfig);

5. Create a org.apache.wink.client.Resource object with a URI from the REST client.
org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

javax.ws.rs.core.Application app = new javax.ws.rs.core.Application() {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyCustomEntityProvider.class);
return classes;

}
};
clientConfig.applications(app);

org.apache.wink.client.RestClient client = new org.apache.wink.client.RestClient(clientConfig);

org.apache.wink.client.Resource resource = client.resource(“http://www.example.com/rest/api/book/123”);

6. You can add request headers to the pending request by calling methods on the Resource object.

You can call a Java method such as post() with the request content as a parameter to send the
request. In the following example, an HTTP POST request is made with a Content-Type header value
of text/plain and an Accept header value of */*.

org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

javax.ws.rs.core.Application app = new javax.ws.rs.core.Application() {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyCustomEntityProvider.class);
return classes;

}
};
clientConfig.applications(app);

org.apache.wink.client.RestClient client = new org.apache.wink.client.RestClient(clientConfig);

org.apache.wink.client.Resource resource = client.resource(“http://www.example.com/rest/api/book/123”);

ClientResponse response = resource.contentType(“text/plain”).accept(“*/*”).post(“The request body as a string”);

Instead of calling resource.post("The request body as a string") with a String object, you can use
any other object that has a class with a valid javax.ws.rs.ext.MessageBodyWriter object such as a
JAXB annotated class, a byte[], or a custom class that has a custom entity provider.

Chapter 33. Developing web services - RESTful services 1449

7. Process the response by using the status code, response headers, or the response message body.
org.apache.wink.client.ClientConfig clientConfig = new org.apache.wink.client.ClientConfig();

javax.ws.rs.core.Application app = new javax.ws.rs.core.Application() {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyCustomEntityProvider.class);
return classes;

}
};
clientConfig.applications(app);

org.apache.wink.client.RestClient client = new org.apache.wink.client.RestClient(clientConfig);

org.apache.wink.client.Resource resource = client.resource(“http://www.example.com/rest/api/book/123”);

ClientResponse response = resource.contentType(“text/plain”).accept(“*/*”).post(“The request body as a string”);

System.out.println(“The response code is: “ + response.getStatusCode());
System.out.println(“The response message body is: “ + response.getEntity(String.class));

Instead of calling the response.getEntity(String.class) object with String.class file, you can use any
other class that has a valid javax.ws.rs.ext.MessageBodyReader object, such as a JAXB annotated
class, a byte[], or a custom class that has a custom entity provider.

8. (optional) Configure the client to transmit basic authentication security tokens. To configure basic
authentication for your client, you can choose to manage the appropriate HTTP headers yourself, or
more simply, you can use the provided BasicAuthSecurityHandler handler class. The
BasicAuthSecurityHandler class simplifies the enablement of basic authentication in the Wink client
application. To learn more about using the security client handler to perform basic HTTP
authentication, see the securing JAX-RS applications within the web container information.

Results

You have implemented a JAX-RS client using the Apache Wink REST client that can issue requests to a
JAX-RS application.

Implementing a client using the unmanaged RESTful web services
JAX-RS client
WebSphere Application Server provides a thin Java Platform, Standard Edition 6 (Java SE 6) RESTful web
services client runtime to enable application developers to quickly and easily create JAX-RS client
applications. The Thin Client for JAX-RS with WebSphere Application Server is a stand-alone Java SE 6
client environment that enables running unmanaged JAX-RS RESTful web services client applications in a
non-WebSphere environment to invoke JAX-RS RESTful web services that are hosted by the application
server.

Before you begin

Note: You can use the Thin Client for JAX-RS with WebSphere Application Server as a stand-alone client
run time in a pure Java SE environment. The Thin Client for JAX-RS running within WebSphere
Application Server or WebSphere Application Client environments is not supported. In this version
of the application server, other Thin Client run times provided with the application server can also
reside in the CLASSPATH and coexist with the Thin Client for JAX-RS.

Before you set up a JAX-RS unmanaged client execution environment, obtain the Thin Client for JAX-RS
Java archive (JAR) file. To obtain the Thin Client for JAX-RS, install WebSphere Application Server Version
8.5 or the Application Client for WebSphere Application Server Version 8.5. The Thin Client for JAX-RS
JAR file, com.ibm.jaxrs.thinclient_8.5.0.jar, is located in the app_server_root\runtimes directory.

Copy the Thin Client for JAX-RS com.ibm.jaxrs.thinclient_8.5.0.jar file to other machines to create a
lightweight client environment that enables communications with the product. Copies of the Thin Client for

1450 Developing WebSphere applications

JAX-RS are subject to the same terms and conditions of the license agreement for the WebSphere
product where you obtained the Thin Client for JAX-RS. Refer to the license agreements for correct usage
and other limitations.

The Thin Client for JAX-RS works with IBM Software Development Kits (SDKs) Version 6.0 and higher.
The Thin Client for JAX-RS is also supported on non-IBM software development kits that are V6.0 and
higher.

About this task

Set up a Thin Client for JAX-RS environment by completing the following steps.

Procedure
1. Configure the path. Enter the following command to add the Java bin directories to your path:

set PATH=<your_JDK_bin_directory>;%PATH%

export PATH=<your_JDK_bin_directory>:$PATH

2. Configure the class path. Add the Thin Client for JAX-RS JAR file to the classpath definition; for
example:

set CLASSPATH=.;<your_jax-rs_thin_client_install_directory>\com.ibm.jaxrs.thinclient_8.5.0.jar;
<your_application_jars>;%CLASSPATH%

export CLASSPATH=.:<your_JAX-RS_thin_client_install_directory>/com.ibm.jaxrs.thinclient_8.5.0.jar:
<your_application_jars>;$CLASSPATH

3. Enter the following command to run your client application:

%JAVA_HOME%/bin/java <your_client_application>

$JAVA_HOME/bin/java <your_client_application>

Results

You have set up an unmanaged JAX-RS client runtime environment to invoke RESTful web services that
are hosted on a WebSphere Application Server.

Migrating a Feature Pack for Web 2.0 JAX-RS application to
WebSphere Version 8
When packaging an application for the Feature Pack for Web 2.0, you must manually make the Java API
for RESTful Web Services (JAX-RS) run time available on the application CLASSPATH. A common way of
doing this is placing the JAX-RS runtime Java archive (JAR) files in the WEB-INF/lib directory of the web
archive (WAR) module. In Version 8, the JAX-RS runtime environment is native to the application server. It
is no longer necessary to manually add the path of the runtime libraries on the CLASSPATH. Migrating Web
2.0 applications to the native runtime environment simplifies packaging and deployment, and allows for
future updates to take advantage of Java Platform, Enterprise Edition (Java EE) integration features.

Before you begin

Identify Feature Pack for Web 2.0 JAX-RS applications to migrate to the native Version 8 JAX-RS runtime
environment. Identify where the JAX-RS runtime JAR files have been made available to the application
CLASSPATH. Two common methods are the WEB-INF/lib directory of the WAR module or by way of a
shared library.

Chapter 33. Developing web services - RESTful services 1451

About this task

In WebSphere Version 8, the JAX-RS run time runs natively within the application server process. Unlike
deploying JAX-RS applications with the Web 2.0 Feature Pack installed on WebSphere Version 7 or
earlier, it is no longer necessary to package the JAX-RS runtime JAR files as an external library for the
application.

To migrate Web 2.0 applications to the Version 8 runtime environment, simply remove the external JAX-RS
runtime libraries. For example, if the runtime JAR files were placed in the WEB-INF/lib directory of the
WAR module, delete them from that directory before redeploying the application. No other changes are
necessary. All other application configurations, such as web.xml configuration, are still valid in WebSphere
Version 8.

Once the external JAX-RS runtime library is removed, the native runtime environment runs the JAX-RS
application. There are advantages to this over Web 2.0 deployment. Application packaging and
deployment are simplified since it is no longer necessary to add external libraries on the application
CLASSPATH. Additionally, new Java EE integration features can be taken advantage of in future updates to
the application. Examples are Enterprise JavaBeans (EJB) in a WAR and Java Contexts and Dependency
Injection (JCDI) support.

Procedure
1. Remove external JAX-RS runtime libraries from the Feature Pack for Web 2.0 application.

2. Redeploy the application.

Results

You have migrated a Web 2.0 Feature Pack JAX-RS application to the native WebSphere Version 8
JAX-RS runtime environment.

Disabling the JAX-RS runtime environment
There are cases where you must disable the Java API for RESTful Web Services (JAX-RS) runtime
environment. When disabling the JAX-RS runtime environment, JAX-RS features are not available,
including base JAX-RS runtime capabilities, Enterprise JavaBeans (EJB) runtime integration, Java
Contexts and Dependency Injection (JCDI) runtime integration, and Servlet 3.0 web container integration.

About this task

By disabling the JAX-RS runtime environment, any JAX-RS related processing of the application, including
processing of classes with scanned JAX-RS annotations, EJB metadata, and JCDI bean enablement, is no
longer performed. The JAX-RS runtime environment is not used to process requests and responses to and
from the web container.

Note: Disabling the JAX-RS runtime environment does not disable Servlet 3.0 based annotation scanning
for JAX-RS annotations such as javax.ws.rs.Path. To disable annotation scanning, set the
metadata-complete attribute. If annotation scanning is disabled, it is disabled for all other
components outside of JAX-RS.

The explicit plug points to the IBM JAX-RS runtime environment are the
com.ibm.websphere.jaxrs.server.IBMRestServlet servlet class and the
com.ibm.websphere.jaxrs.server.IBMRestFilter filter class. If you specify these classes as your
servlet-class or servlet-filter in the web module's web.xml file, the IBM JAX-RS runtime environment is
used to process requests to that servlet.

1452 Developing WebSphere applications

To disable the JAX-RS runtime environment from doing so, replace those classes with any other servlet or
filter class that can handle expected requests to the servlet, or remove the servlet entirely from the
web.xml file.

Note: Replacing the IBMRestServlet class with another might modify existing behavior in the application.
Removing the servlet entirely results in requests not being processed.

Even if not explicitly using the com.ibm.websphere.jaxrs.server.IBMRestServlet or
com.ibm.websphere.jaxrs.server.IBMRestFilter classes, the JAX-RS integration runtime environment
may still process the application. For example, if the web.xml file of a web module is Servlet 3.0 based,
and appropriate conditions are met according to the JSR-311 specification, the JAX-RS integration runtime
environment processes scanned classes with JAX-RS annotations and may inject a servlet that can handle
requests to the JAX-RS resources in the application.

To disable this functionality, and other functionality such as EJB and JCDI integration, set the
com.ibm.websphere.jaxrs.server.DisableIBMJAXRSEngine custom Java virtual machine (JVM) property on
the application server with a value of true.

Procedure
1. Remove references to IBMRestServlet and IBMRestFilter from the web.xml file. The following example

illustrates a sample web.xml file from an application that uses the IBM JAX-RS runtime environment:
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
version="3.0">
<servlet>

<servlet-name>MyRestApplication1</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.websphere.jaxrs.example.Application1</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>MyRestApplication1RequestProcessorAttribute</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>MyNonJAXRSApplication</servlet-name>
<servlet-class>com.ibm.websphere.example.NonJAXRSServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<filter>

<filter-name>MyRestApplication2</filter-name>
<filter-class>com.ibm.websphere.jaxrs.server.IBMRestFilter</filter-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.websphere.jaxrs.example.Application2</param-value>

</init-param>
<init-param>

<param-name>requestProcessorAttribute</param-name>
<param-value>MyRestApplication2RequestProcessorAttribute</param-value>

</init-param>
</filter>
<servlet-mapping>

<servlet-name>MyRestApplication1</servlet-name>
<url-pattern>/jaxrsapp1/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>MyNonJAXRSApplication</servlet-name>
<url-pattern>/nonjaxrsapp/*</url-pattern>

</servlet-mapping>
<filter-mapping>

<filter-name>MyRestApplication2</servlet-name>
<url-pattern>/jaxrsapp2/*</url-pattern>

</filter-mapping>
<web-app>

Chapter 33. Developing web services - RESTful services 1453

The following example illustrates how the web.xml file looks after removing the references to the
IBMRestServlet and IBMRestFilter classes:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
version="3.0">
<servlet>

<servlet-name>MyNonJAXRSApplication</servlet-name>
<servlet-class>com.ibm.websphere.example.NonJAXRSServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>MyNonJAXRSApplication</servlet-name>
<url-pattern>/nonjaxrsapp/*</url-pattern>

</servlet-mapping>
</web-app>

2. Set the com.ibm.websphere.jaxrs.server.DisableIBMJAXRSEngine custom JVM property on the
application server with a value of true.

3. Restart the application server for the custom JVM property to take effect.

Results

You have disabled the JAX-RS runtime environment from processing your application.

Assembling JAX-RS web applications
After you develop the Java class files for your Java API for RESTful Web Services (JAX-RS) web
application and edit the web.xml file to enable the JAX-RS servlet, you must assemble the application.

Before you begin

Identify the assembly tool to use to assemble your application. The web application is assembled into a
web application archive (WAR) package. You can assemble the WAR package into an enterprise archive
(EAR) package if required.

Before assembling the web application, ensure that you have customized the web.xml file to enable the
JAX-RS servlet or filter configuration. To learn more, see the information about configuring the web.xml file
for the JAX-RS application.

About this task

You must add the JAX-RS libraries to the web application in the WEB-INF/lib directory before you
assemble the web application.

By packaging your JAX-RS application classes into the WEB-INF/classes directory of your WAR package
and editing the web.xml file, you can use the built-in JAX-RS runtime environment.

Procedure

Create the WAR package using assembly tools.

1. Package your compiled JAX-RS Java classes into the WEB-INF/classes directory of your WAR
package.

2. Package the web.xml file for your web application in the WEB-INF/ directory into the WAR package.

Results

A WAR package is created that contains the web application. If needed, you can add the WAR package to
an EAR package. The application server can deploy either the WAR or EAR packages.

1454 Developing WebSphere applications

What to do next

Deploy the web application.

Chapter 33. Developing web services - RESTful services 1455

1456 Developing WebSphere applications

Chapter 34. Developing web services - Security (WS-Security)

The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

Developing applications that use Web Services Security
The Web Services Security specification provides a flexible framework for building secure web services to
implement message content integrity and confidentiality. The Web Services Security service programming
model supports this flexible framework by providing extension points to integrate new token formats, and
methods to obtains keys needed for message protection. The application server programming model
provides Web Services Security programming application programming interfaces (WSS API) for securing
SOAP messages.

Configuring HTTP basic authentication for JAX-RPC web services
programmatically
You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) web services
by programmatically modifying HTTP properties.

Before you begin

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with an assembly tool or with the administrative console.

If you programmatically configure HTTP basic authentication, the properties are configured in the Stub or
Call instance. If you choose to configure HTTP basic authentication with the administrative console or an
assembly tool, the Web Services Security binding information is modified. The values that are set
programmatically take precedence over the values defined in the binding.

About this task

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

Configure HTTP basic authentication programmatically with the following steps.

Procedure

Set the properties in the Stub or Call instance for a Web service or a web service client. You can set
properties with the following constant names:
javax.xml.rpc.Call.USERNAME_PROPERTY
javax.xml.rpc.Call.PASSWORD_PROPERTY
javax.xml.rpc.Stub.USERNAME_PROPERTY
javax.xml.rpc.Stub.PASSWORD_PROPERTY

Example

The following code enables you to configure basic authentication programmatically:
Properties prop = new Properties();
InitialContext ctx = new InitialContext(prop);
Service service = (Service)ctx.lookup("java:comp/env/service/StockQuoteService");
QName portQname = new QName("http://httpchannel.test.wsfvt.ws.ibm.com", "StockQuoteHttp");
StockQuote sq = (StockQuote)service.getPort(portQname, StockQuote.class);
((javax.xml.rpc.Stub) sq)._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY, "myUser");
((javax.xml.rpc.Stub) sq)._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY, "myPwd");

© IBM Corporation 2009 1457

Developing message-level security for JAX-WS web services
JAX-WS applications can be secured with Web Services Security in one of two ways. The application can
be secured using policy sets, or through the use of the Web Services Security API (WSS API). The WSS
API can only be used to secure a JAX-WS client application. The Web Services Security service
programming interface (WSS SPI) provides additional programming interfaces for securing web services.

Web Services Security API programming model
The application server programming model provides Web Services Security programming application
programming interfaces (WSS API) for securing SOAP messages.

The API programming model is an interface-based programming model that is based on Web Services
Security Version 1.1 standards, but the design also includes support for Web Services Security Version 1.0
for securing SOAP messages. The WSS API programming model implementation is a simplified version,
which is based on an early draft proposal of JSR-183, which is the JSR for defining Java API binding for
Web Services Security. By design, because the application code is programmed to the interface, any
application code that is programmed with the open source implementation should be able to run on the
WebSphere Application Server with minimal changes or no changes at all.

The configuration model for web services has also been redesigned from a deployment descriptor model
to a policy set model. Web Services Security can be enabled by either using a policy set that is configured
by using the administrative console, or by using the WSS API for configuration. The functions provided by
the policy set configurations are the same as the functions supported by the WSS API for the Web
Services Security run time. However, the security policy that is defined using policy sets has a higher
priority over the WSS API. When the WSS API and the policy set are both used in the application, the
default behavior is for the security policy from the policy set to be enforced and the WSS API to be
ignored. To use the WSS API in the application, you must make sure that there is no policy set attached to
the application or to the application resources, or make sure there is no security policy in the attached
policy set.

You can still use your existing JAX-RPC applications with Web Services Security; however, those
applications cannot take advantage of the Web Services Security Version 1.1 functions, such as
configuring the security policy using a policy set, OM filter performance improvements, WSS API, Web
Services Secure Conversation (WS-SecureConversation), Kerberos token and the associated SHA-1 key
for message protection and identity propagation, and Web Services Trust (WS-Trust) features.

In order to take advantage of the Web Services Security Version 1.1 functions, you must rewrite an
existing JAX-RPC application as a JAX-WS application, manually re-configure the security constraints to a
policy set, and perform code migration of the DOM-based SPIs to the OM-based SPIs.

For example, when using the JAX-WS programming model, the improved design of the pluggable token
framework allows the same security implementation to be used for both the API and policy sets. The
framework uses the JAAS Login Module and JAAS Callback Handler for token creation and token
validation.

The following diagrams illustrate differences between the programming models.

1458 Developing WebSphere applications

Figure 3. Pluggable token architecture using the JAX-WS programming model

Chapter 34. Developing web services - Security (WS-Security) 1459

What is supported when using the WSS APIs

The WSS API can only be used on the client. You can use the Java SE 6 client, the J2EE Application
client, or a server client (a service provider acting as client) using the API to secure SOAP message with
message-level security.

You should have Web Services Security (WSS) knowledge to use the WSS APIs. Before using the WSS
API, keep in mind that the WSS API:

v Are Java-based interfaces.

v Are implemented by using a factory model (WSSFactory).

v Supports the WS-Security Version 1.0 and 1.1 standards, which include the Username and X.509 token
profiles, Versions 1.0 and 1.1.

v Are very XML centric.

v Include an object-oriented design which simplifies the APIs.

v Are task oriented and allow common usage scenarios, such as: signing the body and encrypting the
SOAP message body content.

v Are flexible and extensible, and they let you to extend the token type support.

v Are based on the provider framework and allow the use of different data models to be used, such as:
AXIOM or DOM.

v Provides application programmer with better control and flexibility in applying WSS in their applications.

The default values for the WSS API are predefined and are part of the Web Services Security run time.
Default values are provided for:

Figure 4. Pluggable token architecture using the JAX-RPC programming model

1460 Developing WebSphere applications

v The duration of the timestamp

v The signing algorithm, canonicalization algorithm, digest method, transform algorithm, security token
reference method and signed parts such as the SOAP body, Web Services Addressing headers and the
time stamp.

v The key encryption algorithm, data encryption algorithm, security token reference method, and
encrypted parts such as the SOAP body content.

The signature validation has similar default values as the signature (signing information). Similarly,
decryption has similar default values as encryption.

What is not supported when using the WSS APIs

The WSS API provided with the application server does not support the following function:

v The application programming model is JAX-WS, meaning JAX-RPC (JSR-109) applications are not
supported.

v The WSS API is available in the synchronous message exchange of the JAX-WS client application.
However, the WSS API are not supported for the asynchronous client.

v WSS API support is available only for the requester and not for the provider.

v The identity assertion semantic programming model is not supported in the WSS API because identity
assertion is not part of the Web Services Security Version 1.0 standard. However, you can use the WSS
API to add Identity Assertion semantic in the token processing.

WS-Trust and WS-SecureConversation scenarios

There are several ways to secure the WS-Trust SOAP messages:

v Using the bootstrap policy defined in the policy set.

v Using the WSS API, which supports WS-SecureConversation.

v Enabling dynamic policy for the provider so that the client can retrieve the provider-side policy at run
time.

An application would use the WSS API to acquire a security context token for programmatic API-based
secure conversation. The WebSphere Application Server trust service provides an application the ability to
request a security token for access to a service. The scope and focus of the trust service is only for a
WebSphere Application Server Security Context Token (SCT) for WS-SecureConversation.

The WS-SecureConversation and WS-Trust scenarios focus on the inter-operability functions, such as the
configuration and runtime interaction of various components. You would use the WSS API to secure the
bootstrap RST and RSTR to acquire the security context token from the trust service. After acquiring the
security context token, a Derived Key Token is created by using the WSS API. Then the Derived Key
Token can be used for signature and encryption.

There are two conditions when using the WSS API to secure the SOAP message with Web Services
Security:

v Generation of the secure SOAP message, which is in the request generator application code.

v Consuming of the secured SOAP message, which is in the response consumer application code.

In both cases, a Java exception class com.ibm.websphere.wssecurity.wssapi.WSSException is provided if
an error is encountered.

Web services client security context

When the JAX-WS client invokes web services, the current security context that is constructed by the
security handler is stored in the RequestContext object. By default, the security context in the JAX-WS

Chapter 34. Developing web services - Security (WS-Security) 1461

web services client runtime environment is reconstructed for the next web services request invocation. You
can preserve the security context for subsequent web services invocations. An example of this is a
scenario where the security policy requires the client to send a username security token with the user
name and password. When the client sends the first request to invoke the service, you are prompted to
enter the required user name and password. The user name and password is saved in a Username
SecurityToken token in a Subject in the security context. To avoid being prompted to enter the same user
name and password again in subsequent request invocations, you can preserve the security context.
There are two methods to preserve the security context: 1) configure the client run time to automatically
preserve the client security context for subsequent request invocations; or 2) preserve the security context
manually.

To configure the JAX-WS client run time environment to automatically preserve the security context, set
the Java system property com.ibm.websphere.wssecurity.context.management to true. When this system
property is true, the JAX-WS client run time copies the security context constructed by the security handler
to the RequestContext automatically, and the context is used for subsequent request invocations.

To manually preserve the security context, use the following sample code:
// First request
Service svc = Service.create(...);
svc.addPort(...);
Dispatch<String> dispatch = svc.createDispatch(...);
Map<String, Object> requestContext = dispatch.getRequestContext();
String response = dispatch.invoke(body.toString());

Object securityContext = requestContext.get(com.ibm.wsspi.websvcs.Constants.WEBSPHERE_SECURITY_CONTEXT);

// Subsequent request

Dispatch<String> dispatch = svc.createDispatch(...);
Map<String, Object> requestContext = dispatch.getRequestContext();
Object securityContext = requestContext.put(com.ibm.wsspi.websvcs.Constants.WEBSPHERE_SECURITY_CONTEXT, securityContext);

Service Programming Interfaces (SPI)
The Web Services Security service programming interface (WSS SPI) provides programming interfaces for
securing Web Services Security.

The Web Services Security specification provides a flexible framework for building secure web services to
implement message content integrity and confidentiality. The specification does not define specific token
formats, but instead associates separate profile documents that define various security token formats and
semantics for using those tokens. The Web Services Security service programming model supports the
flexible framework by providing extension points to integrate with new token formats, and with methods to
obtains keys needed for message protection. Web Services Security uses this programming model to
implement support for the standard X.509 token profile, the Username token profile, and the Kerberos
token profiles. The programming model is also used to implement support for the LTPA security token, and
for new security token types.

The Web Service Security run time token generation and token consuming Service Programming
Interfaces (SPI) have been redesigned so that the same security token interface and JAAS Login Module
implementation can be used for both the WSS API and the SPI. The WSS SPI for the service provider
extends the security token types and provides keys and deriving keys for signing, signature verification,
encryption and decryption.

The Web Services Security service programming model provides mechanisms to process custom security
tokens, to use custom token in signing and encryption, and to retrieve encryption and signing keys. The
Web Services Security service programming interfaces for the JAX-RPC run time, and for the JAX-WS run
time, are similar, but not identical.

JAX-RPC run time

1462 Developing WebSphere applications

The plug-in programming interfaces for the JAX-RPC run time consist of the TokenGenerator, KeyLocator,
and JAAS CallbackHandler for outbound message processing, and the TokenConsumer, KeyLocator, and
JAAS LoginModule for inbound message processing.

Token Generator, KeyLocator, and Callback Handler
The TokenGenerator class is responsible for formatting the security token to the XML element.
This class calls the CallbackHandler class that is specified in the TokenGeneratorConfig object,
which obtains the security token input data, and then stores the resulting security token in the
Subject object private credentials.

Token Consumer, KeyLocator and JAAS LoginModule
The KeyLocator class is responsible for obtaining the required key for signing and encrypting
SOAP message elements from a key store that is specified by the KeyStoreConfig and the
KeyLocatorConfig configuration. The TokenConsumer class extracts the token data from the XML
security token representation, and stores it in the JAAS Subject using a JAAS LoginModule. The
specified KeyLocator class is invoked to find the required key for verifying the digital signature and
decrypting the SOAP message elements.

JAX-WS run time

The plug-in programming interfaces for the JAX-WS run time are based on the JAAS programming model
for both inbound and outbound SOAP message processing. The JAAS LoginModule and CallbackHandler
are responsible for processing the security tokens in SOAP messages. The Login Module and Callback
Handler both retrieve and generate tokens, and store the SecurityToken objects in the run time. They
replace the functionality of the TokenGenerator, TokenConsumer, and KeyLocator interfaces.

Due to the differences in the programming models, any WebSphere Application Server or custom SPI
implementation from the Web Services Security Version 6.1 run time is not supported to run on the Web
Services Security run time with the Version 6.1 Feature Pack for Web Services, or the Version 7.0 and
later Web Services Security runtime. However, the Web Services Security Version 6.1 run time is
supported simultaneously with the Version 6.1 Feature Pack for Web Services, meaning the Version 6.1
SPI implementations are still supported through the original run time. Before using the new Web Services
Security run time, a code migration is required to reprogram the Version 6.1 DOM-based SPIs to the
AXIOM-based SPIs in the Feature Pack for Web Services, before the SPI can be used.

Developing SAML applications
Use the SAML library application programming interface (API), the SAMLTokenFactory, to configure token
parameters, create a SAML token, and bind the created token to a service request. The SAML trust client
API provides helper functions that send WS-Trust SOAP requests to the specified external Security Token
Service (STS).

About this task

The SAMLTokenFactory API creates SAML tokens through various method signatures. The API also
instantiates runtime configuration objects related to the SAML token requester, as well as the recipient.

The WS-Trust Client API for SAML includes the WSSTrustClient class, the WSSTrustClientValidateResult
class, and other configuration utility classes.

The following topics provide more information about developing SAML applications using the APIs.

WS-Trust client API:

The WS-Trust client application programming interface (API) includes the WSSTrustClient class, the
WSSTrustClientValidateResult class, and other configuration utility classes. The WSSTrustClient class

Chapter 34. Developing web services - Security (WS-Security) 1463

provides helper functions that send WS-Trust SOAP requests to the specified external Security Token
Service (STS) so that the STS can issue or validate one or more SAML assertions and other types of
security tokens.

Overview

WebSphere Application Server includes WS-Trust client function, implemented through the WSSTrustClient
class, that sends WS-Trust SOAP requests to a specified external Security Token Service (STS). Using the
trust requests, the STS can issue one or more SAML assertions or other types of security tokens. The
WSSTrustClient class supports the OASIS WS-Trust Version 1.3 specification, and also the WS-Trust
Version 1.2 specification. In addition, the SOAP Version 1.1 and SOAP Version 1.2 specifications are
supported by the function.

The sample code which follows demonstrates how a web services client uses the WSSTrustClient API to
request a SAML bearer token. In the explanatory text which precedes the code sample, the term SAML
token is used interchangeably with the term SAML assertion.

The WSSTrustClient class

You can copy the sample code into an assembly tool application, such as Rational Application Developer,
and start using the code after completing the configuration steps. Use the WSSTrustClient class, together
with other SAML APIs, to build useful SAML functions. Refer to the SAML API Javadoc for more
information.

The WSSTrustClient class is an abstract class and has two concrete implementations: a WS-Trust Version
1.3 implementation and a WS-Trust v1.2 implementation. On line 50 of the code sample, the
SAMLWSTrustClientExample web services client code invokes the
WSSTrustClient.getInstance(ProviderConfig) method to retrieve the WS-Trust v1.3 implementation. The
getInstance() method takes a single ProviderConfig object, which specifies configuration data that are
relevant to the SAML token issuer. A ProviderConfig object is also instantiated in the sample code on line
32. The client code sends WS-Trust Version 1.3 request messages to a target STS endpoint. In the
sample, the endpoint is https://MyCompany/Trust/13/UsernameMixed. To use the sample code, replace this
example STS endpoint with the specific STS endpoint you plan to use.

Note: Starting with WebSphere Application Server Release 8, you can use the
com.ibm.websphere.wssecurity.wssapi.token.SAMLToken class in Web Services Security (WSS)
application programming interface (API). When there is no concern of confusion we use the term
SAMLToken instead of using its complete package name. You can use WSS API to request
SAMLToken processing from an external Security Token Service (STS), to propagate SAMLTokens
in SOAP request messages, and to use a symmetric or asymmetric key identified by SAMLTokens
to protect SOAP messages.

The WSS API SAML support complements the
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory and
com.ibm.websphere.wssecurity.wssapi.trust.WSSTrustClient interfaces. SAMLTokens that are
generated using the com.ibm.websphere.wssecurity.wssapi.WSSFactory newSecurityToken()
method can be processed by the SAMLTokenFactory and WSSTrustClient programming interfaces.
Conversely, SAMLTokens that are generated by SAMLTokenFactory or returned by WSSTrustClient
can be used in WSS API. Deciding which API to use in your application depends on your specific
needs. WSS API SAML support is self contained in the sense that it provides functionality
equivalent to that of the SAMLTokenFactory and WSSTrustClient interfaces as far as web services
client applications are concerned. The SAMLTokenFactory interface has additional functions to
validate SAMLTokens and to create the JAAS Subject that represents authenticated SAMLTokens.
This validation is useful for the Web services provider side. When you develop applications to
consume SAMLTokens, the SAMLTokenFactory programming interface is more suitable for you.

1464 Developing WebSphere applications

Example: Web services client code that uses the WSSTrustClient class
1. package sample;
2.
3. import com.ibm.websphere.wssecurity.wssapi.WSSException;
4. import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
5. import com.ibm.websphere.wssecurity.wssapi.trust.WSSTrustClient;
6. import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
7. import com.ibm.websphere.wssecurity.wssapi.XMLStructure;
8.
9.
10. import com.ibm.wsspi.wssecurity.core.token.config.RequesterConfiguration;
11. import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.Namespace;
12. import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.TokenType;
13. import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST13;
14. import com.ibm.wsspi.wssecurity.trust.config.ProviderConfig;
15. import com.ibm.wsspi.wssecurity.trust.config.RequesterConfig;
16. import com.ibm.wsspi.wssecurity.wssapi.OMStructure;
17.
18. import org.apache.axiom.om.OMElement;
19. import org.apache.axis2.util.XMLPrettyPrinter;
20.
21. import java.util.List;
22. import java.io.ByteArrayOutputStream;
23. import java.io.InputStream;
24. import java.io.BufferedReader;
25. import java.io.InputStreamReader;
26. import java.io.IOException;
27.
28. public class WSSTrustClientExample {
29.
30. public static void main(String[] args) {
31. try {
32. ProviderConfig providerConfig = WSSTrustClient.newProviderConfig(Namespace.WST13, https://MyCompany.com/Trust/13/UsernameMixed);
33.
34. showProviderConfigDefaultValue(providerConfig);
35.
36. providerConfig.setPolicySetName("Username WSHTTPS default");
37. providerConfig.setBindingName("SamlTCSample");
38. providerConfig.setBindingScope("domain");
39.
40.
41. RequesterConfig requesterConfig = WSSTrustClient.newRequesterConfig(Namespace.WST13);
42.
43. showRequestConfigDefaultValue(requesterConfig);
44.
45. requesterConfig.put(RequesterConfiguration.RSTT.APPLIESTO_ADDRESS, "https://user.MyCompany:9443/WSSampleSei/EchoService12");
46. requesterConfig.put(RequesterConfiguration.RSTT.TOKENTYPE, TokenType.SAML11);
47. requesterConfig.put(RequesterConfiguration.RSTT.KEYTYPE, WST13.KEYTYPE_BEARER);
48. requesterConfig.setSOAPNamespace(Namespace.SOAP12);
49.
50. WSSTrustClient client = WSSTrustClient.getInstance(providerConfig);
51. List<SecurityToken> securityTokens = client.issue(providerConfig, requesterConfig);
52.
53. // Process SAML token
54. if (securityTokens != null && !securityTokens.isEmpty()) {
55. System.out.println("Number of tokens returned = " + securityTokens.size());
56. SecurityToken token = securityTokens.get(0);
57. if (token instanceof SAMLToken) {
58. showSAMLToken((SAMLToken)token);
59. } else {
60. System.out.println("Returned token is not an SAMLToken");
61. }
62. } else {
63. System.out.println("No securityToken obtained.");
64. }
65.
66. } catch (SoapSecurityException ex) {
67. System.out.println("Caught exception: " + ex.getMessage());
68. ex.printStackTrace();
69. }
70. }
71.
72. private static void showProviderConfigDefaultValue(ProviderConfig providerConfig) {
73. System.out.println("providerConfig.getApplicationName() = " + providerConfig.getApplicationName());
74. System.out.println("providerConfig.getBindingName() = " + providerConfig.getBindingName());
75. System.out.println("ProviderConfig.getBindingScope() = " + providerConfig.getBindingScope());
76. System.out.println("providerConfig.getIssuerURI() = " + providerConfig.getIssuerURI());
77.
78. System.out.println("providerConfig.getPolicySetName() = " + providerConfig.getPolicySetName());
79. System.out.println("ProviderConfig.getPortName() = " + providerConfig.getPortName());
80. System.out.println("providerConfig.getProvider() = " + providerConfig.getProvider());
81. System.out.println("ProviderConfig.getServiceName() = " + providerConfig.getServiceName());
82. System.out.println("providerConfig.getWSTrustNamespace() = " + providerConfig.getWSTrustNamespace());
83. System.out.println("ProviderConfig.toString() = " + providerConfig.toString());
84. }
85.
86. private static void showRequestConfigDefaultValue(RequesterConfig requesterConfig) {
87. System.out.println("requesterConfig.getRSTTProperties() = " + requesterConfig.getRSTTProperties());
88. System.out.println("requesterConfig.getSecondaryParameters() = " + requesterConfig.getSecondaryParameters());

Chapter 34. Developing web services - Security (WS-Security) 1465

89. System.out.println("requesterConfig.getSOAPNamespace() = " + requesterConfig.getSOAPNamespace());
90. System.out.println("requesterConfig.getWSAddressingNamespace() = " + requesterConfig.getWSAddressingNamespace());
91.
92. System.out.println("requesterConfig.getMessageID() = " + requesterConfig.getMessageID());
93. System.out.println("requesterConfig.toString() = " + requesterConfig.toString());
94. }
95.
96. private static void showSAMLToken(SAMLToken samlToken){
97. System.out.println("samlToken.getAssertionQName() = " + samlToken.getAssertionQName());
98. System.out.println("samlToken.getAudienceRestriction() = " + samlToken.getAudienceRestriction());
99. System.out.println("samlToken.getAuthenticationMethod() = " + samlToken.getAuthenticationMethod());
100. System.out.println("samlToken.getConfirmationMethod() = " + samlToken.getConfirmationMethod());
101. System.out.println("samlToken.getId() = " + samlToken.getId());
102. System.out.println("samlToken.getKeyIdentifier() = " + samlToken.getKeyIdentifier());
103. System.out.println("samlToken.getKeyIdentifierEncodingType() = " + samlToken.getKeyIdentifierEncodingType());
104. System.out.println("samlToken.getKeyIdentifierValueType() = " + samlToken.getKeyIdentifierValueType());
105. System.out.println("samlToken.getKeyName() = " + samlToken.getKeyName());
106. System.out.println("samlToken.getPrincipal() = " + samlToken.getPrincipal());
107. System.out.println("samlToken.getProperties() = " + samlToken.getProperties());
108. System.out.println("samlToken.getReferenceURI() = " + samlToken.getReferenceURI());
109. System.out.println("samlToken.getSAMLAttributes() = " + samlToken.getSAMLAttributes());
110. System.out.println("samlToken.getSamlCreated() = " + samlToken.getSamlCreated());
111. System.out.println("samlToken.getSamlExpires() = " + samlToken.getSamlExpires());
112. System.out.println("samlToken.getSamlID() = " + samlToken.getSamlID());
113. System.out.println("samlToken.getSAMLIssuerName() = " + samlToken.getSAMLIssuerName());
114. System.out.println("samlToken.getSAMLNameID() = " + samlToken.getSAMLNameID());
115. System.out.println("samlToken.getStringAttributes() = " + samlToken.getStringAttributes());
116. System.out.println("samlToken.getSubjectDNS() = " + samlToken.getSubjectDNS());
117. System.out.println("samlToken.getSubjectIPAddress() = " + samlToken.getSubjectIPAddress());
118. System.out.println("samlToken.getThumbprint() = " + samlToken.getThumbprint());
119. System.out.println("samlToken.getThumbprintEncodingType() = " + samlToken.getThumbprintEncodingType());
120. System.out.println("samlToken.getThumbprintValueType() = " + samlToken.getThumbprintValueType());
121. System.out.println("samlToken.getTokenQname() = " + samlToken.getTokenQname());
122. System.out.println("samlToken.getValueType() = " + samlToken.getValueType());
123.
124. XMLStructure samlXmlStructure = samlToken.getXML();
125. if (samlXmlStructure != null && samlXmlStructure instanceof OMStructure) {
126. OMStructure samlOMStructure = (OMStructure) samlXmlStructure;
127. System.out.println("((OMStructure)samlToken.getXML()).getNode()formatted = " + formatXML(samlOMStructure.getNode()));
128. }
129.
130. try {
131. InputStream is = samlToken.getXMLInputStream();
132. if (is != null) {
133. try {
134. BufferedReader reader = new BufferedReader(new InputStreamReader(is));
135. StringBuilder sb = new StringBuilder();
136. String line = null;
137. while ((line = reader.readLine()) != null) {
138. sb.append(line + "\n");
139. }
140. System.out.println(sb.toString());
141. } catch (Exception ex) {
142. System.out.println("Caught exception reading from InputStream: " + ex.getMessage());
143. ex.printStackTrace();
144. } finally {
145. try {
146. is.close();
147. } catch (IOException e) {
148. e.printStackTrace();
149. }
150. }
151. }
152. } catch (WSSException wex) {
153. System.out.println("Caught exception getXMLInputStream(): " + wex.getMessage());
154. wex.printStackTrace();
155. }
156. }
157.
158. private static String formatXML(OMElement omInput) {
159. ByteArrayOutputStream out = new ByteArrayOutputStream();
160. String output = "";
161.
162. try {
163. XMLPrettyPrinter.prettify(omInput, out);
164. output = out.toString();
165. } catch (Throwable e) {
166. try {
167. output = omInput.toString();
168. } catch (Throwable e2) {
169. System.out.println("Caught exception: " + e2.getMessage());
170. e2.printStackTrace();
171. }
172. }
173. return output;
174. }
175.
176. }

1466 Developing WebSphere applications

WSSTrustClient class support for policy sets and bindings

The WS-Trust client function supports both application-specific bindings and general bindings for use with
the trust client policy set and binding documents. In addition, general bindings and default bindings are
supported if the application is running in the application server environment. General bindings are
supported in the thin client environment, but default bindings are not.

Managing the policy set and bindings for the WS-Trust client API is similar to managing a policy set and
bindings for a web services client. However, differences exist that are unique to the WS-Trust client. One
difference is that the WS-Trust client does not use policy set attachments. Instead, the policy set name
and binding name are specified in a ProviderConfig object, as shown in line 36 and line 37 of the sample
code.

When the WS-Trust client looks for bindings, the way the client manages the search scope differs from the
web services client. If you do not specify the wstrustClientBindingScope property for the trust client
binding, the system first searches the application for an application-specific binding with the binding name
that you specified. If a binding is found, it is used for the trust client request. If no application-specific
binding is found, the system searches the available general bindings for a binding with the name that you
specified. If a general binding is found, it is used for the trust client request. If no bindings with the specific
name are found, then default bindings are used in a server environment. Default bindings are only used in
a server environment. If the binding scope is specified, only that scope is used for the binding search.

Line 38 of the sample code, providerConfig.setBindingScope("domain"), indicates that the example uses
general bindings. You can also set the binding scope to application to indicate that the sample code uses
application-specific bindings. The example uses the general binding named SamlTCSample. Both
application-specific and general bindings are supported in the application server and the thin client
environment. For more information about configuring the SamlTCSample bindings when the application is
installed on the application server, read about configuring policy sets and bindings to communicate with
STS.

The showProviderConfigDefaultValue(providerConfig) code on line 34 of the sample code shows the
default settings. The sample code includes a utility method that prints out the contents of providerConfig.

Line 51 of the sample code, List<SecurityToken> securityTokens = client.issue(providerConfig,
requesterConfig), sends an issue WS-Trust request. The second parameter on this line specifies the
RequesterConfig object, and this parameter determines the content of the issue request. The code on line
41, RequesterConfig requesterConfig = WSSTrustClient.newRequesterConfig(Namespace.WST13),
instantiates a RequesterConfig object that is used to construct the trust request using the WS-Trust
Version 1.3 namespace. A utility function is shown on line 43:
showRequestConfigDefaultValue(requesterConfig). This function displays the default settings for the
RequesterConfig object. The code between lines 45 and 48 initializes the RequesterConfig to request a
Version 1.1 SAML bearer token. This token is used to access the service endpoint using the SOAP 1.2
namespace. In the example, the service endpoint is https://user.MyCompany.com:9443/WSSampleSei/
EchoService12.

JVM arguments support

Before executing the sample code, you must set up several Java Virtual Machine (JVM) arguments. The
sample code implements the Username WSHTTPS default policy set, which has two requirements: 1) a
Username token is sent to the STS; and 2) messages are protected using Secure Sockets Layer (SSL). To
set up the environment to meet these requirements, first configure the ssl.client.props file to define a
truststore. For step-by-step instructions, read about running an unmanaged web services JAX-WS client.

To meet the second requirement regarding SSL message protection, obtain a copy of the STS SSL X.509
certificate and inset it into the truststore. To do this, follow the steps in the topic, Using the retrieveSigners
command in SSL, to enable server-to-server trust. Alternately, you can accept the STS certificate when

Chapter 34. Developing web services - Security (WS-Security) 1467

you send the first trust request to the STS if the com.ibm.ssl.enableSignerExchangePrompt property in the
profile_home/properties/ssl.client.props file is set to true. For more information about this option,
read about changing the signer auto-exchange prompt at the client.

In addition, you must specify the client JAAS configuration file so that the client runtime environment can
locate the Username token LoginModule JAAS login configuration. Specify the parameter using this code:
-Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf. You must also include
the thin client jar, for example com.ibm.jaxws.thinclient_8.0.0.jar, in the classpath. For more information,
read about running an unmanaged web services JAX-WS client application.

Sample code execution

A prerequisite to executing the sample code is to set up an external STS endpoint to issue a SAML 1.1
bearer token for the specified web services as defined by the
RequesterConfiguration.RSTT.APPLIESTO_ADDRESS property.

Executing the sample code generates a WS-Trust issue request message, as shown in the example:
177. <?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
178. <soapenv:Header>
179. <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">https://user.MyCompany.com/Trust/13/UsernameMixed</wsa:To>
180. <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">urn:uuid:4951B6775950CAC92A1252458259166</wsa:MessageID>
181. <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue</wsa:Action>
182. </soapenv:Header>
183. <soapenv:Body>
184. <wst:RequestSecurityToken xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
185. <wst:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1</wst:TokenType>
186. <wst:RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue</wst:RequestType>
187. <wst:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer</wst:KeyType>
188. <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
189. <wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing">
190. <wsa:Address>https://user.MyCompany.com:9443/WSSampleSei/EchoService12</wsa:Address>
191. </wsa:EndpointReference>
192. </wsp:AppliesTo>
193. </wst:RequestSecurityToken>
194. </soapenv:Body>
195. </soapenv:Envelope>

To view the WS-Trust request message, you must enable a client-side trace. Set the following JVM
properties:

v -DtraceSettingsFile=MyTraceSettings.properties

v -Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager

v -Djava.util.logging.configureByServer=true

For more information about these properties, read about enabling trace on client and stand-alone
applications. In addition to setting the JVM properties, you must also specify the trace setting,
com.ibm.ws.wssecurity.*=all=enabled, in the MyTraceSettings.properties file. Look for Trust Client
outgoing request: in the trace log file.

SAML token return

The code on line 51 of the sample code, List<SecurityToken> securityTokens =
client.issue(providerConfig, requesterConfig), returns a SAML token if the WS-Trust issue request is
processed successfully. The code between lines 54 and 64 processes the returned SAML token. The utility
function shown on line 58, showSAMLToken((SAMLToken)token), displays the content of the received SAML
token. The showSAMLToken() routine shows the SAML token as an XML document. An example of this XML
document is provided in line 196 to line 233 of the sample code.
196. <?xml version="1.0" encoding="UTF-8"?>
197. <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" MajorVersion="1" MinorVersion="1"
198. AssertionID="_f7f65d28-fbb1-4e10-8ddf-f4b6ed0c8277" Issuer="http://MyCompany.com/Trust"
199. IssueInstant="2009-09-09T01:04:41.144Z">
200. <saml:Conditions NotBefore="2009-09-09T01:04:41.141Z" NotOnOrAfter="2009-09-09T11:04:41.141Z">
201. <saml:AudienceRestrictionCondition>
202. <saml:Audience>https://user.MyCompany.com:9443/WSSampleSei/EchoService12</saml:Audience>
203. </saml:AudienceRestrictionCondition>
204. </saml:Conditions>
205. <saml:AuthenticationStatement AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
206. AuthenticationInstant="2009-09-09T01:04:41.131Z">
207. <saml:Subject>
208. <saml:SubjectConfirmation>

1468 Developing WebSphere applications

209. <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
210. </saml:SubjectConfirmation>
211. </saml:Subject>
212. </saml:AuthenticationStatement>
213. <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
214. <ds:SignedInfo>
215. <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
216. <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
217. <ds:Reference URI="#_f7f65d28-fbb1-4e10-8ddf-f4b6ed0c8277">
218. <ds:Transforms>
219. <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
220. <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
221. </ds:Transforms>
222. <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
223. <ds:DigestValue>AQ6e7YQqKgcg/B/ebBj8/DF+uWg=</ds:DigestValue>
224. </ds:Reference>
225. </ds:SignedInfo>
226. <ds:SignatureValue>SuccIOniR yjTh9iQs=</ds:SignatureValue>
227. <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
228. <X509Data>
229. <X509Certificate>MIIB3zCCAUi itzymqg3</X509Certificate>
230. </X509Data>
231. </KeyInfo>
232. </ds:Signature>
233. </saml:Assertion>

SAML token library APIs:

The SAML token library application programming interfaces (APIs) provide methods you can use to create,
validate, parse, and extract SAML tokens.

Overview

The library implementation for SAML Version 1.1 and SAML Version 2.0 provides three types of subject
confirmation: holder-of-key (HoK), bearer, and sender-vouches. You can use the SAML token library APIs
to create, validate, and extract the attributes of a SAML HoK or bearer token. SAML token propagation
from web services SOAP messages is also discussed. Sample code is provided to demonstrate the use of
the APIs.

WebSphere Application Server with SAML provides default policy sets to support the bearer and HoK
subject confirmation.

These sections discuss creating a SAML token using the SAML token library APIs:

1. “Configuration of token creation parameters” on page 1470

2. “SAML token factory instance creation” on page 1471

3. “SAML token creation” on page 1471

4. “Sample code” on page 1472

The SAMLTokenFactory API is the primary SAML token library programming interface. SAMLTokenFactory
supports creating, parsing, and validating both SAML 1.1 and SAML 2.0 tokens. Using the
SAMLTokenFactory API, you can create ProviderConfid, RequesterConfig, and ConsumerConfig
configuration objects to define the required SAML token characteristics. Read the API documentation for
more details.

You can perform additional operations on a SAML token after it is created, including:

v “SAML token validation” on page 1471

v “SAML token identity mapped to a subject” on page 1471

v “Parse assertion elements” on page 1472

v “SAML token attributes extraction” on page 1472

Note: Starting with WebSphere Application Server Release 8, you can use the
com.ibm.websphere.wssecurity.wssapi.token.SAMLToken class in Web Services Security (WSS)
application programming interface (API). When there is no concern of confusion we use the term
SAMLToken instead of using its complete package name. You can use WSS API to request

Chapter 34. Developing web services - Security (WS-Security) 1469

SAMLToken processing from an external Security Token Service (STS), to propagate SAMLTokens
in SOAP request messages, and to use a symmetric or asymmetric key identified by SAMLTokens
to protect SOAP messages.

The WSS API SAML support complements the
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory and
com.ibm.websphere.wssecurity.wssapi.trust.WSSTrustClient interfaces. SAMLTokens that are
generated using the com.ibm.websphere.wssecurity.wssapi.WSSFactory newSecurityToken()
method can be processed by the SAMLTokenFactory and WSSTrustClient programming interfaces.
Conversely, SAMLTokens that are generated by SAMLTokenFactory or returned by WSSTrustClient
can be used in WSS API. Deciding which API to use in your application depends on your specific
needs. WSS API SAML support is self contained in the sense that it provides functionality
equivalent to that of the SAMLTokenFactory and WSSTrustClient interfaces as far as web services
client applications are concerned. The SAMLTokenFactory interface has additional functions to
validate SAMLTokens and to create the JAAS Subject that represents authenticated SAMLTokens.
This validation is useful for the Web services provider side. When you develop applications to
consume SAMLTokens, the SAMLTokenFactory programming interface is more suitable for you.

Configuration of token creation parameters

When you configure the token creation parameters, the configuration information relates to either the
requesting entity, the issuing entity, or the receiving entity. In this example, configuration information is
defined for the requesting and the issuing entities. For each type of supported subject confirmation, the
SAML token library provides pre-configured attributes for the requesting entity. These attributes are used
during the creation of the self-issued SAML token by the WebSphere runtime environment. A self-issued
SAML token is one that is generated locally, instead of one that is requested from a Security Token
Service (STS). If you need to customize the attributes for a default parameter, use the RequesterConfig
parameter. For more information, read about the RequesterConfig parameter in the SAMLTokenFactory
API topic.

First, set up the requestor configuration information:
// Setup the requester’s configuration information (parameters needed
// to create the token specified as configuration properties).
// in this case we are using the configuration information to create a
// SAML token that contains a symmetric holder of key subject
// confirmation.
RequesterConfig requesterData =

samlFactory.newSymmetricHolderOfKeyTokenGenerateConfig();

Next, set the recipient public key alias and optionally, the authentication method:
// Set recipient’s public key alias
// (in this example we use SOAPRecipient), so the provider can encrypt secret
// key for the receiving end.
requesterData.setKeyAliasForAppliesTo("SOAPRecipient");

// Set the authentication method that took place. This is an optional
// parameter.
reqData.setAuthenticationMethod("Password");

Then set the issuer configuration attributes:
// Set issuer information by instantiating a default ProviderConfig.
// See javadocs for the SAMLTokenFactory class on the details of the
// default values and how to modify them.
ProviderConfig samlIssuerCfg =

samlFactory.newDefaultProviderConfig("WebSphereSelfIssuer");

1470 Developing WebSphere applications

SAML token factory instance creation

Use the SAMLTokenFactory class, specifying the SAML token type, either Version 1.1 or Version 2.0. Set
additional parameters for creating the SAML token.

Use the SAMLTokenFactory class with the SAML token type:
// Instantiate a token factory based on the version level of the token
// to use. In this example we use the SAML v1.1 token factory.
SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

Set additional parameters in the CredentialConfig object using the caller subject or the runAsSubject:
// Retrieve the caller subject or the runAsSubject (depending on your
// scenario) then use the Subject to get a CredentialConfig object
// using the SAML token library.
// This invocation requires the
// wssapi.SAMLTokenFactory.newCredentialConfig" Java Security
// permission.
CredentialConfig cred = samlFactory.newCredentialConfig(runAsSubject);

SAML token creation

Create the SAML token using the token factory:
// Now create the SAML token. This invocation requires the
// "wssapi.SAMLTokenFactory.newSAMLToken" Java Security permission.
SecurityToken samlToken =

samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

SAML token validation

An entity that receives a SAML token, such as a business service, can use the SAML token library API to
validate the token before using it. For example, the service needs to validate the token before extracting
the SAML attributes from the requester. An existing SAML assertion document can be validated using the
configuration data from the consumer.

The following API code validates the token:
ConsumerConfig consumerConfig = samlFactory.newConsumerConfig();
XMLStructure xml =
try {

SAMLToken token = samlFactory.newSAMLToken(consumerConfig, XMLStructure xml);
// token successfully validated

} catch(WSSException e){
// token failed validation
}

SAML token identity mapped to a subject

A SAML token can be used to create a subject. The name identifier in the SAML token is mapped to a
user in the user registry to obtain the principal name for the subject.
Subject subject;
SAMLToken aSAMLToken = ...;

try {
subject = samlFactory.newSubject(aSAMLToken);

} catch(WSSException e) {
}

Chapter 34. Developing web services - Security (WS-Security) 1471

Parse assertion elements

The recipient of a SAML token can parse and extract assertion elements from the SAML token using the
SAMLToken APIs, which are included in the SAML token library API. For example, the token creation time
can be extracted using this code:
Date dateCreated = samlToken.getSamlCreated();

Extract the name of the token issuer and the confirmation method as follows:
String confirmationMethpo = samlToken.getConfirmationMethod();
String issuerName = samlToken.getSAMLIssuerName();

If the extracted subject confirmation method is returned as holder-of-key confirmation, then you can use
the following API to retrieve the bytes for the key material:
byte[] hokBytes = samlToken.getHolderOfKeyBytes();

For more information about all the SAML APIs, read the API documentation for the SAMLToken interface.

SAML token attributes extraction

Extract SAML attributes from the initiating entity (service requester) using the SAMLToken API, as shown
in the following code snippets.
// Get all attributes
List<SAMLAttribute> allAttributes =

((SAMLToken) samlToken).getSAMLAttributes();

// Iterate over the attribute and process accordingly
Iterator<SAMLAttribute> iter = allAttributes.iterator();
while (iter.hasNext())
{

SAMLAttribute anAttribute = iter.next();

// Handle attributes
String attributeName = anAttribute.getName();
String[] attributeValues = anAttribute.getStringAttributeValue();

}

Sample code

The sample code demonstrates how to use the SAML token library APIs to accomplish some of the
operations previously described. A JVM property that points to the location of the SAML properties file is a
prerequisite for running this code. The SAML properties file, SAMLIssuerConfig.properties, must contain
configuration attributes related to the issuer (provider) of the SAML token.

The default location of the SAMLIssuerConfig.properties file for the cell level is: app_server_root/profiles/
$PROFILE/config/cells/$CELLNAME/sts.

For the server level, the default location is: app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/
nodes/$NODENAME/servers/$SERVERNAME.
IssuerURI=WebSphere
TimeToLive=3600000
KeyStorePath=c:/samlsample/saml-provider.jceks
KeyStoreType=jceks
KeyStorePassword=myissuerstorepass
KeyAlias=samlissuer
KeyName=CN=SAMLIssuer, O=IBM, C=US
KeyPassword=xxxxxxxxx
TrustStorePath=c:/samlsample/saml-provider.jceks
TrustStoreType=jceks
TrustStorePassword=yyyyyyyy

package samlsample;

1472 Developing WebSphere applications

import java.util.List;
import java.util.Iterator;
import java.util.ArrayList;
import javax.security.auth.Subject;

// Import methods from the SAML token library
import com.ibm.wsspi.wssecurity.saml.data.SAMLAttribute;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.wsspi.wssecurity.saml.config.ProviderConfig;
import com.ibm.wsspi.wssecurity.saml.config.RequesterConfig;
import com.ibm.wsspi.wssecurity.saml.config.CredentialConfig;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.wsspi.wssecurity.core.token.config.RequesterConfiguration;

public class SamlAPIsample {

public void testSAMLTokenLibrary() throws Exception {

try {
// Get an instance of the SAML v1.1 token factory
SAMLTokenFactory samlFactory = SAMLTokenFac
tory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

// Generate default requester data for a subject confirmation of
// type holder-of-key (secret key).
RequesterConfig requesterData =

samlFactory.newSymmetricHolderOfKeyTokenGenerateConfig();

// Set the recipient’s key alias, so that the issuer can encrypt
// the secret key for recipient as part of the subject confirmation.
requesterData.setKeyAliasForAppliesTo("SOAPRecipient");

// Set the authentication method that took place.
requesterData.setAuthenticationMethod("Password");

System.out.println("default holder of key confirmation key type is: "+
Requester

Data.getRSTTProperties().get(RequesterConfiguration.RSTT.KEYTYPE));
Requester
Data.getRSTTProperties().put(RequesterConfiguration.RSTT.KEYTYPE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey");

requesterData.getRSTTProperties().put(
RequesterConfiguration.RSTT.APPLIESTO_ADDRESS,

"http://localhost:9080");

requesterData.setConfirmationMethod("holder-of-key");

// Set the recipient’s key alias so that token infomation such as
// the secret HoK can be encrypted by the issuer and decrypted by the
// recipient.
requesterData.setKeyAliasForAppliesTo("SOAPRecipient");
requesterData.setAuthenticationMethod("Password");
requesterData.getRSTTProperties().put(
RequesterConfiguration.RSTT.ENCRYPTIONALGORITHM,

"http://www.w3.org/2001/04/xmlenc#aes128-cbc");
requester
Data.getRSTTProperties().put(RequesterConfiguration.RSTT.TOKENTYPE,

"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1");

requesterData.setRequesterIPAddress("9.53.52.65");

// Print requester configuration items
System.out.println("authentication method for requester is: "+

requesterData.getAuthenticationMethod());
System.out.println("confirmation method for requester is: "+

requesterData.getConfirmationMethod());
System.out.println("key alias for requester is: "+

requesterData.getKeyAliasForRequester());
System.out.println("key alias for recipient as set in requester config is "+

requesterData.getKeyAliasForAppliesTo());
System.out.println("holder of key confirmation key type is: "+

Requester
Data.getRSTTProperties().get(RequesterConfiguration.RSTT.KEYTYPE));

// Get an instance of the Credential config object
CredentialConfig cred = samlFactory.newCredentialConfig();
cred.setRequesterNameID("Alice");

// Set some user attributes
ArrayList<SAMLAttribute> userAttrs = new ArrayList<SAMLAttribute>();
SAMLAttribute anAttribute = new SAMLAttribute("EmployeeInfo",

new String[] {"GreenRoofing","JohnDoe", "19XY981245"},
null, "WebSphere Namespace", null, "JohnDoeInfo ");

userAttrs.add(anAttribute);
cred.setSAMLAttributes(userAttrs);

// Get default provider configuration

Chapter 34. Developing web services - Security (WS-Security) 1473

ProviderConfig samlIssuerCfg =
samlFactory.newDefaultProviderConfig("WebSphereSelfIssuer");

System.out.println("time to live from the default provider config: "+
samlIssuerCfg.getTimeToLive());

System.out.println("keyStore path from default provider config: "+
samlIssuerCfg.getKeyStoreConfig().getPath());

System.out.println("keyStore type from default provider config: "+
samlIssuerCfg.getKeyStoreConfig().getType());

System.out.println("key alias from default provider config: "+
samlIssuerCfg.getKeyInformationConfig().getAlias());

// Generate the SAML token
SecurityToken samlToken =

samlFactory.newSAMLToken(cred, requesterData, samlIssuerCfg);
System.out.println("token’s creation Date is:

"+((SAMLToken)samlToken).getSamlCreated().toString());
System.out.println("token’s expiration Date is:

"+((SAMLToken)samlToken).getSamlExpires().toString());
System.out.println("token’s subject confirmation method is:

"+((SAMLToken)samlToken).getConfirmationMethod());

// Create a Subject, mapping the name identifier in the token to a user
// in the user registry to obtain the Principal name
Subject subject = samlFactory.newSubject((SAMLToken)samlToken);

// Retrieve attributes from the token
List<SAMLAttribute> allAttributes =

((SAMLToken)samlToken).getSAMLAttributes();

// Iterate through the attributes and process accordingly
Iterator<SAMLAttribute> iter = allAttributes.iterator();
while (iter.hasNext()) {
SAMLAttribute attribute = iter.next();
String attributeName = attribute.getName();
String[] attributeValues = attribute.getStringAttributeValue();
System.out.println("attribute name = "+ attributeName +

" attribute value = ["+
attributeValues[0]+ ",
"+attributeValues[1]+ ", "+
attributeValues[2]+"]");

}
} catch(Exception e) {

e.printStackTrace();
}
}
}

Sample code output
default holder of key confirmation key type is: http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
authentication method for requester is: Password
confirmation method for requester is: holder-of-key
key alias for requester is: null
key alias for recipient as set in requester config is SOAPRecipient
holder of key confirmation key type is: http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
time to live from the default provider config: 3600000
keyStore path from default provider config: C:/saml/samlsample/saml-provider.jceks
keyStore type from default provider config: jceks
key alias from default provider config: samlissuer
token’s creation Date is: Mon Sep 14 15:49:00 CDT 2009
token’s expiration Date is: Mon Sep 14 16:49:00 CDT 2009
token’s subject confirmation method is: urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
attribute name = EmployeeInfo attribute value = [GreenRoofing, JohnDoe, 19XY981245]

Creating a SAML bearer token using the API:

Use the SAML library API to create a SAML bearer token.

About this task

This library allows you to create a SAML bearer token. You can use the SAML library API to create
required SAML configuration objects, then use those configuration objects to generate a bearer SAML
token.

Procedure

1. Create a SAMLTokenFactory instance using the SAML token version as a parameter.

a. Use the following line of code to import the method:
import com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory;

1474 Developing WebSphere applications

b. Use one of these lines of code to create the instance, depending on the token version.

v Add the following line of code to create a SAMLTokenFactory instance for a version 1.1 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

v Add the following line of code to create a SAMLTokenFactory instance for a version 2.0 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token20);

2. After you create the instance, the SAMLTokenFactory is used to create a RequesterConfig instance,
which determines how the token will be generated, according the authentication requirements of the
requester. Use this line of code to create the RequesterConfig instance for the bearer token:

RequesterConfig reqData = samlFactory.newBearerTokenGenerateConfig();

The default RequestConfig instance is sufficient to generate a simple bearer token, but additional
assertions can be included in the SAML token by customizing the RequesterConfig instance. For
example, to include password authentication information in the token, use setAuthenticationMethod:

reqData.setAuthenticationMethod(“password”);

To disable signing in a SAML assertion, use the setAssertionSignatureRequired method, for example:
reqData.setAssertionSignatureRequired(false);

For more information, read about the SAML bearer assertion.

3. Use the SAMLTokenFactory to create a ProviderConfig instance, which describes the token issuer. The
ProviderConfig instance specifies the SAML issuer name, as well as keystore and truststore
information, which identifies the key for SAML encryption and signing. The ProviderConfig instance is
created using property values from a property file. The property file specifies the default value of the
ProviderConfig object. In a Java client environment, this property file is defined by a JVM system
property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath.

In the WebSphere Application Server runtime environment, the property file name is
SAMLIssuerConfig.properties. The file can be located either under the server level configuration
directory, or the cell level directory, in that order of precedence. An example of the server level path
follows:

app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/nodes/$NODENAME/servers/$SERVERNAME/SAMLIssuerConfig.properties

An example of the cell level path follows:
app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/sts/SAMLIssuerConfig.properties

The JVM system property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath, is
ignored if the property is defined in server runtime environment. For a detailed description of all the
properties, read about configuration of a SAML token during token creation.

Use the following line of code to create a default ProviderConfig instance:
ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(“any issuer name”);

The issuer name is optional. If the issuer name is specified, the Issuer name appears in the SAML
assertion. If the issuer name is not specified, a default issuer name property from the
SAMLIssuerConfig.properties is used as the issuer name.

4. Optional: When creating a new SAML token, the SAMLTokenFactory uses either a JAAS subject or a
CredentialConfig instance to populate the new SAML token. To use a JAAS subject to populate the
token, use the com.ibm.websphere.security.auth.WSSubject getCallerSubject() API or the
getRunAsSubject() API to obtain a JAAS subject that represents the requesting client, or the identity of
the execution thread.

When you use the JAAS subject to create a new SAML token, the SAMLTokenFactory searches for a
SAMLToken object in the subject PrivateCredentials list. If a SAMLToken object exists, the NameId or
NameIdentifier are copied to the new SAML token. The SAMLTokenFactory also copies the SAML
attributes and AuthenticationMethod from the existing SAML token to the new SAML token. The new

Chapter 34. Developing web services - Security (WS-Security) 1475

SAML token includes a new issuer name, new signing certificate, confirmation method, new KeyInfo for
the holder-of-key confirmation method, and new NotBefore and NotOnAfter conditions. These token
settings are determined by the configuration parameters in the ProviderConfig and RequesterConfig
objects.

If there is no SAMLToken object in the subject, only the WSPrincipal principal name is copied from the
subject to the new SAML token. No other attributes in the subject are copied into the new SAML token.
Similarly, the issuer name, signing certificate, confirmation method, KeyInfo for the holder-of-key, and
NotBefore and NotOnOrAfter conditions are determined by configuration parameters in ProviderConfig
and RequesterConfig objects.

Alternately, you can use the RunAsSubject method on the execution thread to create the SAML token.
When using this method, do not pass the JAAS subject or the CredentialConfig object to the
SAMLTokenFactory to create the SAML token. Instead, the content of the existing SAML token is
copied to the new SAML token, as described previously.

Another method of creating a SAML token is to use a CredentialConfig object to populate the SAML
NameId and Attributes programmatically. Use this method in the following circumstances:

v Custom SAML attributes must be included in the new SAML token.

v The SAML token is created manually instead of using the SAMLTokenFactory to populate the SAML
token from a JAAS subject automatically.

v There is no existing SAML token in the subject.

v There is no JAAS subject available.

To create a CredentialConfig object without using the JAAS subject, use this line of code:
CredentialConfig cred = samlFactory.newCredentialConfig ();

There is no initial value provided for this CredentialConfig object, so you must use setter methods to
populate the CredentialConfig object.

To populate the SAML NameIdentifier or NameID, use the following line of code:
cred.setRequesterNameID("any name");

The value of the any name variable is used as the principal name in the SAML token. The name
appears in the assertion as the NameIdentifier in a SAML Version 1.1 token, or NameId in the SAML
Version 2.0 token. For example, if the value of any name is Alice, the following assertion is generated
in a SAML Version 1.1 token:

<saml:NameIdentifier>Alice</saml:NameIdentifier>

The following assertion is generated in a SAML Version 2.0 token:
<saml2:NameID>Alice</saml2:NameID>

To include SAML attributes in the <AttributeStatement> portion of an assertion, use this code:
SAMLAttribute samlAttribute = new SAMLAttribute("email" /* Name*/, new String[] {"joe@websphere"}
/*Attribute Values*/, null, "IBM WebSphere namespace" /* namespace*/, "email" /* format*/, "joe" /*friendly name */);
ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(samlAttribute)
sattribute = new SAMLAttribute("Membership", new String[] {"Super users", "Gold membership"}, null, null /* format*/, null, null);
al.add(samlAttribute);
cred.setSAMLAttributes(al);

This sample code generates the following <Attribute> assertions:
<saml:Attribute AttributeName="email" NameFormat="email" AttributeNamespace="IBM WebSphere namespace">
<saml:AttributeValue>joe@websphere</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="Membership">
<saml:AttributeValue>Super users</saml:AttributeValue><saml:AttributeValue>Gold membership</saml:AttributeValue>
</saml:Attribute>

5. Generate a SAML bearer token using this line of code:
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

This method requires the Java security permission wssapi.SAMLTokenFactory.newSAMLToken.

1476 Developing WebSphere applications

Complete code samples using lines of code from the previous steps are included in the Example
section.

Example

Use this sample code to create a SAML version 1.1 bearer token from the subject:
SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11)

RequesterConfig reqData = samlFactory.newBearerTokenGenerateConfig();

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(“WebSphere Server”);

Subject subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

SAMLToken samlToken = samlFactory.newSAMLToken(subject, reqData, samlIssuerCfg);

Use this sample code to create a SAML version 1.1 bearer token without using the subject:
SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

RequesterConfig reqData = samlFactory.newBearerTokenGenerateConfig();
reqData.setAuthenticationMethod("Password"); //Authentication method for Assertion

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(Self issuer);

CredentialConfig cred = samlFactory.newCredentialConfig ();
cred.setRequesterNameID("Alice"); // SAML NameIdentifier
//SAML attributes:
SAMLAttribute attribute = new SAMLAttribute

("email" /* Name*/, new String[] {"joe@websphere"}
/*Attribute Values in String*/,null
/*Attribute Values in XML */, "WebSphere" /* Namespace*/, "email" /* format*/, "joe" /*Friendly_name */);

ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(attribute);
attribute = new SAMLAttribute("Membership", new String[] {"Super users", "My team"}, null, null, null, null);
al.add(attribute);
cred.setSAMLAttributes(al);

SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

Creating a SAML holder-of-key token using the API:

The SAML holder-of-key token extends the security token public interface in WebSphere Application
Server, and can be used as a protection token. WebSphere Application Server provides a SAML library
API for SAML holder-of-key token creation.

About this task

SAML token creation requires three parameters:

v com.ibm.wsspi.wssecurity.saml.config.RequesterConfig

v com.ibm.wsspi.wssecurity.saml.config.ProviderConfig

v com.ibm.wsspi.wssecurity.saml.config.CredentialConfig

Follow the steps to create an instance for each of the parameters and then create a SAML holder-of-key
token. As an alternative to CredentialConfig, you can also use javax.security.auth.Subject. For more
information, read the API documentation.

Procedure

1. Create a com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory instance using the SAML
token version as a parameter. The supported SAMLToken versions are http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV1.1 and http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0. The SAMLTokenFactory instance is a singleton and therefore is thread-safe.
Use one of these lines of code to create the instance, depending on the token version.

v Use the following line of code to create a
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory instance for a version 1.1 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

Chapter 34. Developing web services - Security (WS-Security) 1477

v Use the following line of code to create a
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory instance for a version 2.0 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token20);

2. The SAMLTokenFactory instance is used to create a RequesterConfig instance, which determines how
the token is generated, according the authentication requirements of the requester. Use one of these
lines of code to create the RequesterConfig instance, depending on whether you want the token to use
a secret key (symmetric key) or a public key:

v Use the following line of code to create a default RequesterConfig for the SAML holder-of-key token
using a secret key (symmetric key), which is included in the SubjectConfirmation:

RequesterConfig reqData = samlFactory. newSymmetricHolderOfKeyTokenGenerateConfig ();

You must also set the key alias for the target service so the provider can encrypt the secret key for
the service:

reqData.setKeyAliasForAppliesTo("Soap Recipient”);

v Use the following line of code to create a default RequesterConfig for the SAML holder-of-key token
using a public key, which is included in the SubjectConfirmation:

RequesterConfig reqData = samlFactory. newAsymmetricHolderOfKeyTokenGenerateConfig ();

You must also set the key alias for the requester so the provider can extract the public key from the
requester, and include the key in the SubjectConfirmation:

reqData.setKeyAliasForRequester(“SOAP Initiator”);

The default RequestConfig instance is sufficient to generate a simple holder-of-key token, but
additional assertions can be included in the SAML token by customizing the RequesterConfig instance.
For example, to include password authentication information in the token, use
setAuthenticationMethod:

reqData.setAuthenticationMethod(“password”);

3. Use the SAMLTokenFactory to create a ProviderConfig instance, which describes the token issuer. The
ProviderConfig instance specifies the SAML issuer name, as well as keystore and truststore
information, which identifies the key for SAML encryption and signing. The ProviderConfig instance is
created using property values from a property file. The property file specifies the default value of the
ProviderConfig object. In a Java client environment, this property file is defined by a JVM system
property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath.

In the WebSphere Application Server runtime environment, the property file name is
SAMLIssuerConfig.properties. The file can be located either under the server level configuration
directory, or the cell level directory, in that order of precedence. An example of the server level path
follows:

app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/nodes/$NODENAME/servers/$SERVERNAME/SAMLIssuerConfig.properties

An example of the cell level path follows:
app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/sts/SAMLIssuerConfig.properties

The JVM system property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath, is
ignored if the property is defined in server runtime environment. For a detailed description of all the
properties, read about configuration of a SAML token during token creation.

Use the following line of code to create a default ProviderConfig instance:
ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(“any issuer name”);

The issuer name is optional. If the issuer name is specified, the Issuer name appears in the SAML
assertion. If the issuer name is not specified, a default issuer name property from the
SAMLIssuerConfig.properties is used as the issuer name.

4. Optional: When creating a new SAML token, the SAMLTokenFactory uses either a JAAS subject or a
CredentialConfig instance to populate the new SAML token. To use a JAAS subject to populate the

1478 Developing WebSphere applications

token, use the com.ibm.websphere.security.auth.WSSubject getCallerSubject() API or the
getRunAsSubject() API to obtain a JAAS subject that represents the requesting client, or the identity of
the execution thread.

When you use the JAAS subject to create a new SAML token, the SAMLTokenFactory searches for a
SAMLToken object in the subject PrivateCredentials list. If a SAMLToken object exists, the NameId or
NameIdentifier are copied to the new SAML token. The SAMLTokenFactory also copies the SAML
attributes and AuthenticationMethod from the existing SAML token to the new SAML token. The new
SAML token includes a new issuer name, new signing certificate, confirmation method, new KeyInfo for
the holder-of-key confirmation method, and new NotBefore and NotOnAfter conditions. These token
settings are determined by the configuration parameters in the ProviderConfig and RequesterConfig
objects.

If there is no SAMLToken object in the subject, only the WSPrincipal principal name is copied from the
subject to the new SAML token. No other attributes in the subject are copied into the new SAML token.
Similarly, the issuer name, signing certificate, confirmation method, KeyInfo for the holder-of-key, and
NotBefore and NotOnOrAfter conditions are determined by configuration parameters in ProviderConfig
and RequesterConfig objects.

Alternately, you can use the RunAsSubject method on the execution thread to create the SAML token.
When using this method, do not pass the JAAS subject or the CredentialConfig object to the
SAMLTokenFactory to create the SAML token. Instead, the content of the existing SAML token is
copied to the new SAML token, as described previously.

Another method of creating a SAML token is to use a CredentialConfig object to populate the SAML
NameId and Attributes programmatically. Use this method in the following circumstances:

v Custom SAML attributes must be included in the new SAML token.

v The SAML token is created manually instead of using the SAMLTokenFactory to populate the SAML
token from a JAAS subject automatically.

v There is no existing SAML token in the subject.

v There is no JAAS subject available.

To create a CredentialConfig object without using the JAAS subject, use this line of code:
CredentialConfig cred = samlFactory.newCredentialConfig ();

There is no initial value provided for this CredentialConfig object, so you must use setter methods to
populate the CredentialConfig object.

To populate the SAML NameIdentifier or NameID, use the following line of code:
cred.setRequesterNameID("any name");

The value of the any name variable is used as the principal name in the SAML token. The name
appears in the assertion as the NameIdentifier in a SAML Version 1.1 token, or NameId in the SAML
Version 2.0 token. For example, if the value of any name is Alice, the following assertion is generated
in a SAML Version 1.1 token:

<saml:NameIdentifier>Alice</saml:NameIdentifier>

The following assertion is generated in a SAML Version 2.0 token:
<saml2:NameID>Alice</saml2:NameID>

To include SAML attributes in the <AttributeStatement> portion of an assertion, use this code:
SAMLAttribute samlAttribute = new SAMLAttribute("email" /* Name*/, new String[] {"joe@websphere"}
/*Attribute Values*/, null, "IBM WebSphere namespace" /* namespace*/, "email" /* format*/, "joe" /*friendly name */);
ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(samlAttribute)
sattribute = new SAMLAttribute("Membership", new String[] {"Super users", "Gold membership"}, null, null /* format*/, null, null);
al.add(samlAttribute);
cred.setSAMLAttributes(al);

This sample code generates the following <Attribute> assertions:

Chapter 34. Developing web services - Security (WS-Security) 1479

<saml:Attribute AttributeName="email" NameFormat="email" AttributeNamespace="IBM WebSphere namespace">
<saml:AttributeValue>joe@websphere</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="Membership">
<saml:AttributeValue>Super users</saml:AttributeValue><saml:AttributeValue>Gold membership</saml:AttributeValue>
</saml:Attribute>

5. Generate a SAML holder-of-key token using this line of code:
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

This method requires the Java security permission wssapi.SAMLTokenFactory.newSAMLToken.
Complete code samples using lines of code from the previous steps are included in the Example
section.

Example

Use this sample code to create a SAML version 1.1 holder-of-key token using a secret key (symmetric
key) from the subject.
import com.ibm.wsspi.wssecurity.saml.config.RequesterConfig;
import com.ibm.wsspi.wssecurity.saml.config.ProviderConfig;
import com.ibm.wsspi.wssecurity.saml.config.CredentialConfoig ;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

RequesterConfig reqData = samlFactory.newSymmetricHolderOfKeyTokenGenerateConfig();

//Map "AppliesTo" to key alias, so library knows how to encrypt the Symmetric Key
reqData.setKeyAliasForAppliesTo("SOAPRecipient");

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(IsserUri);

Subject subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

SAMLToken samlToken = samlFactory.newSAMLToken(subject, reqData, samlIssuerCfg);

Use this sample code to create a SAML version 2.0 holder-of-key token using a public key from the
subject:
//User expression on how SAML should be created, default provided
RequesterConfig reqData = samlFactory.newAsymmetricHolderOfKeyTokenGenerateConfig();

//Choose a public key to be included in SAML
reqData.setKeyAliasForRequester("SOAPInitiator");

//Get issuer key store so can sign or encrypt assertion, issuer name
ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig("any_issuer");

//Get JAAS Subject so the factory can populate principal and attributes to SAML
Subject subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

SAMLToken samlToken = samlFactory.newSAMLToken(subject, reqData, samlIssuerCfg);

Use this sample code to create a SAML version 2.0 holder-of-key token using a secret key (symmetric
key):
SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance (SAMLTokenFactory.WssSamlV20Token11);

RequesterConfig reqData = samlFactory. newSymmetricHolderOfKeyTokenGenerateConfig ();
//Map "AppliesTo" to key alias so library knows how to encrypt the Symmetric Key
reqData.setKeyAliasForAppliesTo("SOAPRecipient");

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(null);

CredentialConfig cred = samlFactory.newCredentialConfig ();
cred.setRequesterNameID("any_name");

SAMLToken samlToken = samlFactory.newSAMLToken(subject, reqData, samlIssuerCfg);

Creating a SAML sender-vouches token using the API:

1480 Developing WebSphere applications

Use the SAML library API to create a SAML sender-vouches token, which includes the sender-vouches
confirmation method. The sender-vouches confirmation method is used when a server needs to propagate
the client identity or behavior of the client.

About this task

When SAML function is installed on a WebSphere server, a SAML library API is provided. Use the library
to create a SAML sender-vouches token. You can use the SAML library API to create required SAML
configuration objects. Then, use those configuration objects to generate a SAML sender-vouches token.

Procedure

1. Create a SAMLTokenFactory instance using the SAML token version as a parameter.

a. Use the following line of code to import the method:
import com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory;

b. Use one of these lines of code to create the instance, depending on the token version.

v Add the following line of code to create a SAMLTokenFactory instance for a version 1.1 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

v Add the following line of code to create a SAMLTokenFactory instance for a version 2.0 SAML
token:

SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token20);

2. After you create the instance, the SAMLTokenFactory is used to create a RequesterConfig instance,
which determines how the token will be generated, according the authentication requirements of the
requester. Use this line of code to create the RequesterConfig instance for the sender-vouches token:

RequesterConfig reqData = samlFactory.newSenderVouchesTokenGenerateConfig();

The default RequestConfig instance is sufficient to generate a simple sender-vouches token, but
additional assertions can be included in the SAML token by customizing the RequesterConfig instance.
For example, to include password authentication information in the token, use the method,
setAuthenticationMethod:

reqData.setAuthenticationMethod(“password”);

The trust validation for a sender-vouches assertion is the responsibility of the sender, not the issuer, so
the Enveloped-Signature element is not required in the assertion. To remove the Enveloped-Signature
element from the SAML assertion, use the setAssertionSignatureRequired method; for example:

reqData.setAssertionSignatureRequired(false);

3. Use the SAMLTokenFactory API to create a ProviderConfig instance, which describes the token issuer.
The ProviderConfig instance specifies the SAML issuer name, as well as keystore and truststore
information, which identifies the key for SAML encryption and signing. The ProviderConfig instance is
created using property values from a property file. The property file specifies the default value of the
ProviderConfig object. In a Java client environment, this property file is defined by a JVM system
property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath.

In the WebSphere Application Server runtime environment, the property file name is
SAMLIssuerConfig.properties. The file can be located either under the server level configuration
directory, or the cell level directory, in that order of precedence. See the following example of the
server-level path:

app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/nodes/$NODENAME/servers/$SERVERNAME/SAMLIssuerConfig.properties

See the following example of the cell-level path:
app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/sts/SAMLIssuerConfig.properties

The JVM system property, com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath, is
ignored if the property is defined in server runtime environment. For a detailed description of all the
properties, read about configuration of a SAML token during token creation.

Use the following line of code to create a default ProviderConfig instance:

Chapter 34. Developing web services - Security (WS-Security) 1481

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(“any issuer name”);

The issuer name is optional. If the issuer name is specified, the Issuer name appears in the SAML
assertion. If the issuer name is not specified, a default issuer name property from the
SAMLIssuerConfig.properties is used as the issuer name.

4. Optional: When creating a new SAML token, the SAMLTokenFactory uses either a Java Authentication
and Authorization Service (JAAS) subject or a CredentialConfig instance to populate the new SAML
token. To use a JAAS subject to populate the token, use the
com.ibm.websphere.security.auth.WSSubject getCallerSubject() API or the getRunAsSubject() API to
obtain a JAAS subject that represents the requesting client, or the identity of the execution thread.

v When you use the JAAS subject to create a new SAML token, the SAMLTokenFactory API searches
for a SAMLToken object in the subject PrivateCredentials list. If a SAMLToken object exists, the
NameId or NameIdentifier objects are copied to the new SAML token. The SAMLTokenFactory also
copies the SAML attributes and AuthenticationMethod method from the existing SAML token to the
new SAML token. The new SAML token includes a new issuer name, new signing certificate,
confirmation method, new KeyInfo for the holder-of-key confirmation method, and new NotBefore
and NotOnAfter conditions. These token settings are determined by the configuration parameters in
the ProviderConfig and RequesterConfig objects.

If there is no SAMLToken object in the subject, only the WSPrincipal principal name is copied from
the subject to the new SAML token. No other attributes in the subject are copied into the new SAML
token. Similarly, the issuer name, signing certificate, confirmation method, KeyInfo for the
holder-of-key, and NotBefore and NotOnOrAfter conditions are determined by configuration
parameters in ProviderConfig and RequesterConfig objects.

Alternately, you can use the RunAsSubject method on the execution thread to create the SAML
token. When using this method, do not pass the JAAS subject or the CredentialConfig object to the
SAMLTokenFactory to create the SAML token. Instead, the content of the existing SAML token is
copied to the new SAML token, as described previously.

v Another method of creating a SAML token is to use a CredentialConfig object to populate the SAML
NameId and Attributes programmatically. Use this method in the following circumstances:

– Custom SAML attributes must be included in the new SAML token.

– The SAML token is created manually instead of using the SAMLTokenFactory to populate the
SAML token from a JAAS subject automatically.

– There is no existing SAML token in the subject.

– There is no JAAS subject available.

a. To create a CredentialConfig object without using the JAAS subject, use this line of code:
CredentialConfig cred = samlFactory.newCredentialConfig ();

There is no initial value provided for this CredentialConfig object, so you must use setter methods
to populate the CredentialConfig object.

b. To populate the SAML NameIdentifier or NameID, use the following line of code:
cred.setRequesterNameID("any name");

The value of the parameter passed to the setRequesterNameID() method is used as the principal
name in the SAML token. The name appears in the assertion as the NameIdentifier in a SAML
Version 1.1 token, or NameId in the SAML Version 2.0 token. For example, if the value of the
parameter passed to the setRequesterNameID() method is Alice, the following assertion is
generated in a SAML Version 1.1 token:

<saml:NameIdentifier>Alice</saml:NameIdentifier>

The following assertion is generated in a SAML Version 2.0 token:
<saml2:NameID>Alice</saml2:NameID>

c. To include SAML attributes in the <AttributeStatement> portion of an assertion, use this code:

1482 Developing WebSphere applications

SAMLAttribute samlAttribute = new SAMLAttribute("email" /* Name*/, new String[] {"joe@websphere"}
/*Attribute Values*/, null, "IBM WebSphere namespace" /* namespace*/, "email" /* format*/, "joe" /*friendly name */);
ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(samlAttribute)
sattribute = new SAMLAttribute("Membership", new String[] {"Super users", "Gold membership"}, null, null /* format*/, null, null);
al.add(samlAttribute);
cred.setSAMLAttributes(al);

This sample code generates the following <Attribute> assertions:
<saml:Attribute AttributeName="email" NameFormat="email" AttributeNamespace="IBM WebSphere namespace">
<saml:AttributeValue>joe@websphere</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="Membership">
<saml:AttributeValue>Super users</saml:AttributeValue><saml:AttributeValue>Gold membership</saml:AttributeValue>
</saml:Attribute>

5. Generate a SAML sender-vouches token using this line of code:
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

This method requires the Java security permission wssapi.SAMLTokenFactory.newSAMLToken.

Complete code samples using lines of code from the previous steps are included in the Example
section.

Example

Use this sample code to create a SAML version 1.1 sender-vouches token from the subject:
SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11)

RequesterConfig reqData = samlFactory.newSenderVouchesTokenGenerateConfig();

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(“WebSphere Server”);

Subject subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

SAMLToken samlToken = samlFactory.newSAMLToken(subject, reqData, samlIssuerCfg);

Use this sample code to create a SAML version 1.1 sender-vouches token without using the subject:
SAMLTokenFactory samlFactory = SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

RequesterConfig reqData = samlFactory.newSenderVouchesTokenGenerateConfig();
reqData.setAuthenticationMethod("Password"); //Authentication method for Assertion

ProviderConfig samlIssuerCfg = samlFactory.newDefaultProviderConfig(Self issuer);

CredentialConfig cred = samlFactory.newCredentialConfig ();
cred.setRequesterNameID("Alice"); // SAML NameIdentifier
//SAML attributes:
SAMLAttribute attribute = new SAMLAttribute

("email" /* Name*/, new String[] {"joe@websphere"}
/*Attribute Values in String*/,null
/*Attribute Values in XML */, "WebSphere" /* Namespace*/, "email" /* format*/, "joe" /*Friendly_name */);

ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(attribute);
attribute = new SAMLAttribute("Membership", new String[] {"Super users", "My team"}, null, null, null, null);
al.add(attribute);
cred.setSAMLAttributes(al);

SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

Propagation of SAML tokens using the API:

The SAML propagation function is useful for applications that interact across multiple servers. The
propagation feature communicates token information from the originating server downstream to other
servers.

You can propagate SAML tokens using administrative commands, or programmatically using the SAML
application programming interface (API). Propagation through administrative commands is discussed in the
topics Propagating SAML tokens and SAML token propagation methods.

Programmatic propagation of SAML tokens is achieved through a combination of explicit programming and
use of the Web Services Security runtime environment. For example, you can extract the SAMLToken from
the org.apache.axis2.jaxws.BindingProvider object. The token is then used for outbound calls. In this

Chapter 34. Developing web services - Security (WS-Security) 1483

example, since WebSphere security is not required, programmatically propagating the SAML token allows
you to exploit SAML security at the application level. Furthermore, the SAML token can be communicated
downstream using any protocol.

Use the following sample code to extract the SAMLToken on the client side after the first request is
completed.

Create a Dispatch object and invoke the request:
javax.xml.ws.Dispatch dispatch = ...;
dispatch.invoke();

Obtain a response context and extract the SAMLToken:
Map<String, Object> responseContext = dispatch.getResponseContext();

SAMLToken samlToken =
(SAMLToken) responseContext.get(com.ibm.wsspi.wssecurity.saml.config.SamlConstants.

SAMLTOKEN_OUT_MESSAGECONTEXT);

The following sample code shows how to reuse a SAMLToken for subsequent web services requests.

The web services client program creates a dispatch instance to invoke a service:
javax.xml.ws.Dispatch dispatch = ...;

The web services client then uses this code to pass a SAMLToken to the Web Services Security handler:
Map<String, Object> requestContext = dispatch.getRequestContext();

requestContext.put(com.ibm.wsspi.wssecurity.saml.config.SamlConstants.
SAMLTOKEN_IN_MESSAGECONTEXT, samlToken);

The web services provider (receiver) can use the following code to extract a SAMLToken from an incoming
web services request.

Extract a SAMLToken from the requestContext:
Subject subject = (Subject) context.get(com.ibm.wsspi.wssecurity.core.Constants.WSSECURITY_TOKEN_WSSSUBJECT);
SAMLToken samlToken = null;

try
{
samlToken = (SAMLToken) AccessController.doPrivileged(
new java.security.PrivilegedExceptionAction() {
public Object run() throws

java.lang.Exception
{
final java.util.Iterator authIterator =

subject.getPrivateCredentials(SAMLToken.class)
.iterator();

if (authIterator.hasNext()) {
final SAMLToken token = (SAMLToken)

authIterator.next();

return token;
}
return null;
}
});

} catch (Exception ex) {
// Error handling

Extract the SAML attributes:
List<SAMLAttribute> allAttributes;
allAttributes = ((SAMLToken) samlToken).getSAMLAttributes();

The web services client runtime environment can cache the SAML token. On subsequent client requests
within the application, the security runtime environment retrieves the SAML token from the cache for use
with the target.

Web services client token cache for SAML:

1484 Developing WebSphere applications

When a SAML token is initially requested, the web services runtime environment automatically caches the
SAMLToken. As a result of this automatic client token caching function, subsequent web services requests
can use the SAMLToken from the previous request.

The web services client token cache for SAML enables web services clients to reuse SAML tokens when
accessing business services. Reusing valid SAML tokens reduces traffic to the Security Token Service
(STS) and also reduces the performance impact of sending WS-Trust request messages. There are
several requirements for a token to be considered valid and therefore available for caching and reuse.

In order for a SAML token to be reused, the expiration time of the token must be equivalent to, or greater
than, the current time. A cache cushion is added to the current time when comparing the token expiration
time with the current time so that the token does not expire immediately after it is sent.

In addition, a token is valid only if it is sent again to the same business service. The SAML function in
WebSphere Application Server does not verify the AudienceRestriction condition for the SAML token.
Therefore, a practical way to ensure that the SAML token is reused for the right audience is to reuse the
token only for the same web service that originally used the token. If an assertion contains the
OneTimeUse assertion, the SAML token is not cached.

To take advantage of the SAMLToken cache, the application and SAMLToken must meet the following
requirements:

v The SAMLToken must have a relatively long expiration time, with at least 5 minutes remaining in the
token lifetime after the first request is completed. The WS-Security runtime environment validates the
cached SAMLToken expiration time against a predefined cache cushion. The cached token is valid only
if the remaining token lifetime is greater than the cushion value. The default cushion value is 5 minutes.
This value can be configured using the custom property, cacheCushion. To override the default cache
cushion, edit the CallbackHandler custom property for the SAMLToken generator. Add the cacheCushion
property and set the cache cushion value in milliseconds. If the cached SAMLToken lifetime is within the
cache cushion limit, a new SAMLToken is requested. For example, you can change the cache cushion
to 3 minutes or 180000 milliseconds.

Custom property name Value

cacheCushion 180000

v The SAML token cannot contain the OneTimeUse assertion.

v If the SAML token is encrypted, make sure that the STS communicates the token expiration time
outside the encrypted token, and that the SAML token does not include the OneTimeUse assertion.

When you do not want to reuse the same SAMLToken for subsequent requests, you can disable the client
side SAMLToken cache with the cacheToken custom property. To disable the client side SAMLToken
cache, modify the custom property in the CallbackHandler for the SAMLToken generator. Add the
cacheToken property and set the value to false.

Custom property name Value

cacheToken false

Securing web services applications using the WSS APIs at the message level
Standards and profiles address how to provide protection for messages that are exchanged in a web
service environment. Web Services Security is a message-level standard that is based on securing SOAP
messages through XML digital signature, confidentiality through XML encryption, and credential
propagation through security tokens.

Chapter 34. Developing web services - Security (WS-Security) 1485

Before you begin

To secure web services, you must consider a broad set of security requirements, including authentication,
authorization, privacy, trust, integrity, confidentiality, secure communications channels, delegation, and
auditing across a spectrum of application and business topologies. One of the key requirements for the
security model in today's business environment is the ability to interoperate between formerly incompatible
security technologies in heterogeneous environments. The complete Web Services Security protocol stack
and technology roadmap is described in the web services roadmap.

About this task

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services
Security: SOAP Message Security Version 1.1 specification is the basic messaging transport for all web
services. SOAP 1.2 adds extensions to the existing SOAP 1.1 extensions so that you can build secure
web services. Attachments can be added to SOAP messages by using Message Transmission
Optimization Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) instead of the SOAP with
Attachments (SWA) profile.

The OASIS Web Services Security (WS-Security) Version 1.1 specification is the building block that is
used in conjunction with other web service and application-specific protocols to accommodate a wide
variety of security models. Web Services Security for WebSphere Application Server is based on specific
standards that are included in the OASIS Web Services Security Version 1.1 specification and profiles.

The Version 1.1 specification defines additional facilities for protecting the integrity and confidentiality of a
message. The Version 1.1 specification also provides the mechanisms for associating security-related
claims with the message. The Web Services Security Version 1.1 standards that are supported by
WebSphere Application Server include the signature confirmation, encrypted header elements, the
Username Token Profile and the X.509 Token Profile. The Username Token Profile and the X.509 Token
Profile have been updated as Version 1.1 profiles. For the X.509 Certificate Token Profile, one new type of
security token reference is the Thumbprint reference, which is specified in the binding.

XML Schema, Part 1 and Part 2 are specifications that explain how schemas are organized in XML
documents. The two WS-Security Version 1.0 schemas have been updated to the Version 1.1
specifications plus a new Version 1.1 schema has been added. Note that the Version 1.1 schema does not
replace the Version 1.0 schema but instead builds upon it by defining an additional set of capabilities
within a Version 1.1 namespace.

You can use the following methods to configure Web Services Security and to define policy types to
secure the SOAP messages:

v Use the administrative console to configure policy sets.

This method uses the bootstrap policy that is defined in the policy set. You can use policy sets, or
assertions about how services are defined, to simplify your security configuration for web services. You
can use the administrative console to create, modify, and delete custom policy sets. A set of default
policy sets are available.

For example, you can define the bootstrap policy in the policy set to secure the Web Services Trust
(WS-Trust) SOAP messages.

You can also use the administrative console to perform policy set management tasks and to secure web
services using encryption, signing information, and security tokens.

The following steps high-level steps describe how to configure WebSphere Application Server to use
WS-Security and to secure the SOAP messages using the administrative console. The generator and
consumer tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

– Create and configure the application policy sets or the system policy sets for trust service.

– Define the policy types to be used to secure the SOAP messages when creating and configuring the
policy sets.

1486 Developing WebSphere applications

– Configure the policy set binding. Select either the symmetric or asymmetric binding assertion to
describe the token type and the algorithm to be used for message protection.

– Assemble your Web Services Security-enabled application by using an assembly tool.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for
the client)

WebSphere Application Server uses a new API programming model. In addition to the existing
JAX-RPC programming model, a new programming model, Java API for XML Web Services (JAX-WS),
has been added. The JAX-WS programming standard aligns with the document-centric messaging
model and replaces the remote procedure call programming model defined by the Java API for
XML-based RPC (JAX-RPC) specification.

For example, an application could create system policy sets and then use the WebSphere Application
Server WSS API to acquire the security context token for programmatic API-based Web Services
Secure Conversation (WS-SecureConversation).

You can also use the administrative console to perform the encryption, signing, and token configuration
tasks that the WSS APIs perform to secure web services.

The following high-level steps describe how to configure WebSphere Application Server to use
WS-Security and to secure the SOAP messages using the WSS APIs. The generator and consumer
tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

– Use the WSSSignature API to configure the signing information for the request generator (client side)
binding.

Different message parts can be specified in the message protection for a request on the generator
side. The default required parts are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature
for message protection. The default signature method is RSA_SHA1. The default canonicalization
method is EXC_C14N.

– Use the WSSSignPart API if you want to change the digest method and the transform method.

The default signed parts are WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS and
WSSSignature.TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or
changed the signed parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the
signature for the SOAP message using the SHA256 digest method instead of the default value of
SHA1.

– Use the WSSEncryption API to configure the encryption information on the request generator side.

The encryption information on the generator side is used for encrypting an outgoing SOAP message
for the request generator (client side) bindings. The default targets of encryption are
BODY_CONTENT and SIGNATURE.

The WSSEncryption API also specifies the different algorithm methods to be used to protect
message confidentiality. The default data encryption method is AES128. The default key encryption
method is KW_RSA_OAEP.

– Use the WSSEncryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to
TRIPLE_DES.

No algorithm methods are required for encrypted parts.

– Use the WSS API to configure the token on the generator side.

The requirements for the security token depend on the token type. The JAAS Login Module and the
JAAS CallbackHandler are responsible for creating the security token on the generator side. Different
stand-alone tokens can be sent in request and response. The default token is the X509Token. The
other token that can be used for signing is the DerivedKeyToken, which is used only with Web
Services Secure Conversation (WS-SecureConversation).

– Use the WSSVerification API to verify the signature for the response consumer (client side) binding.

Chapter 34. Developing web services - Security (WS-Security) 1487

Different message parts can be specified in the message protection for a response on the consumer
side. The required targets for verification are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSVerification API also specifies the different algorithm methods to be used for verifying the
signature and for message protection. The default signature method is RSA_SHA1. The default
canonicalization method is EXC_C14N.

– Use the WSSVerifyPart API to change the digest method and the transform method. The required
verify parts are WSSVerification.BODY, WSSVerification.ADDRESSING_HEADERS and
WSSVerification.TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or
changed the verification parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N.

– Use the WSSDecryption API to configure the decryption information for the response consumer
(client side) binding.

The decryption information on the consumer side is used for decrypting an incoming SOAP
message. The targets of decryption are BODY_CONTENT and SIGNATURE. The default key
encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.

– Use the WSSDecryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to
TRIPLE_DES.

No algorithm methods are required for decrypted parts.

– Use the WSS API to configure the token on the consumer side.

The requirements for the security token depend on the token type. The JAAS Login Module and the
JAAS CallbackHandler are responsible for validating (authenticating) the security token on the
consumer side. Different stand-alone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default
token is X509Token.

v Use the wsadmin administrative scripting tool to configure policy sets.

This method allows you to create, manage, and delete policy sets from the command-line or to create
scripts to automate your tasks. You can use the wsadmin tool and the PolicySetManagement command
group to manage default policy sets, create custom policy sets, configure policies, and manage
attachments and bindings. For more information, use the policy set scripting topics in the information
center.

To secure web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. You must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

Results

After completing these high-level steps for WebSphere Application Server, you have secured web services
by configuring policy sets and by using the WSS API to configure encryption and decryption, the signature
and signature verification information, and the consumer and generator tokens.

Securing messages at the request generator using WSS APIs:

You can secure SOAP messages by configuring signing information, encryption, and generator tokens to
protect message integrity, confidentiality, and authenticity, respectively. This request (client-side) generator
configuration defines the Web Services Security requirements for the outgoing SOAP message request.

1488 Developing WebSphere applications

Before you begin

To secure web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. Therefore, in addition to securing messages at the request generator level,
you must also secure messages at the response consumer level.

About this task

The request (client-side) generator configuration requirements involve generating a SOAP message
request that uses a digital signature, incorporates encryption, and attaches security tokens.

To secure web service applications, you must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

You can use the following interfaces to configure Web Services Security and to define policy types to
secure the SOAP messages:

v Use the administrative console to configure policy sets.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

The following high-level steps use the WSS APIs:

Procedure

v Configure generator signing to protect message integrity.

v Configure encryption to protect message confidentiality.

v Attach generator tokens to protect message authenticity.

v Propagate self-issued SAML bearer tokens using WSS APIs.

v Propagate self-issued SAML sender-vouches tokens with message protection using WSS APIs.

v Propagate self-issued SAML sender-vouches tokens with transport protection using WSS APIs.

v “Sending self-issued SAML holder-of-key tokens with symmetric key using WSS APIs” on page 1592.

v “Sending self-issued SAML holder-of-key tokens with asymmetric key using WSS APIs” on page 1594.

Results

After completing these procedures, you have secured messages at the request generator level.

What to do next

Next, if not already configured, secure messages with signature verification, decryption, and consumer
tokens at the response consumer (client-side) level.

Configuring encryption to protect message confidentiality using the WSS APIs:

You can configure encryption information for the client-side request generator (sender) bindings.
Encryption information is used to specify how the generators (senders) encrypt outgoing SOAP messages.
To configure encryption, specify which message parts to encrypt and specify which algorithm methods and
security tokens are to be used for encryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone understanding the message flowing across the Internet. With confidentiality specifications, the
message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to

Chapter 34. Developing web services - Security (WS-Security) 1489

configuring encryption, familiarize yourself with XML encryption.

About this task

For encryption, you must specify the following:

v Which parts of the message are to be encrypted.

v Which encryption algorithms to specify.

To configure encryption and encrypted parts on the client side, use the WSSEncryption and
WSSEncryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

WebSphere Application Server uses encryption information for the default generator to encrypt parts of the
SOAP message. The WSSEncryption API configures the following required parts as encrypted parts.

Table 193. Required encrypted parts. Use encrypted parts to increase the confidentiality of SOAP messages.
Encryption parts Description

Keywords Keywords are used to add the encrypted parts to the SOAP message.

XPath expression An XPath expression is used to add the encrypted parts to the SOAP message.

WSSEncryptPart object This object adds the encrypted parts to the SOAP message.

WSSSignature object This object adds the signature component as an encrypted part.

Header This part adds the header in the SOAP header, specified by QName, as an encryption part.

Security token object This object adds the security token as an encryption part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when
Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the
message that are to be encrypted. WebSphere Application Server supports the use of the following
keywords:

Table 194. Supported encryption keywords. Use keywords to specify encrypted parts.
Keyword References

BODY_CONTENT The keyword for the contents of the SOAP message body as an encryption target.

SIGNATURE The keyword for the signature component as an encryption target.

If configuring using the WSS APIs, the WSSEncryption and WSSEncryptPart APIs complete these
high-level steps:

Procedure

1. Use the WSSEncryption API to configure encryption. The WSSEncryption API performs these tasks by
default:

a. Generates the callback handler.

b. Generates the generator security token object.

c. Adds the security token reference type.

d. Adds the signature component.

e. Adds the WSSEncryptPart object.

f. Adds the parts to be encrypted. Adds the default parts as targets of encryption by using keywords
and XPath expressions.

g. Adds the header in the SOAP message, specified by QName.

1490 Developing WebSphere applications

h. Sets the default data encryption method.

i. Specifies whether the key is to be encrypted using a Boolean value.

j. Sets the default key encryption method.

k. Selects a part reference.

l. Sets the MTOM optimization Boolean value.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The
WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.

b. Sets the encrypted parts specified by an XPath expression.

c. Sets the signature component object, WSSSignature.

d. Sets the header in the SOAP message, specified by QName.

e. Sets the generator security token.

f. Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could
change one or more of the following items:

v Change the data encryption algorithm from the default value of AES 128.

v Change the key encryption algorithm from the default value of KW_RSA_OAEP.

v Specify to not encrypt the key (false).

v Change the security token type from default of X.509 token.

v Change the security token reference type from the default value of SecurityToken.REF_STR.

v Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

v Turn MTOM optimization on (true).

Results

The encryption information is configured for the generator binding.

Example

The following is an example of the WSSEncryption API:
WSSFactory factory = WSSFactory.getInstance();
WSSGenerationContext gencont = factory.newWSSGenerationContext();

X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);
WSSEncryption enc = factory.newWSSEncryption(token);

gencont.add(enc);

What to do next

You must configure similar decryption information for the client-side response consumer (receiver)
bindings, if you have not already configured the information.

Next, review the WSSEncryption API process.

Encrypting the SOAP message using the WSSEncryption API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the client for request encryption on the generator side,
use the WSSEncryption API to encrypt the SOAP message. The WSSEncryption API specifies which
request SOAP message parts to encrypt when configuring the client.

Chapter 34. Developing web services - Security (WS-Security) 1491

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable encryption and add
generator security tokens in the SOAP message. To secure SOAP messages, use the WSS APIs to
complete the following encryption tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts, as needed, using the WSSEncryptPart API.

About this task

The encryption information on the generator side is used for encrypting an outgoing SOAP message for
the request generator (client side) bindings. The client generator configuration must match the
configuration for the provider consumer.

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and
which message parts to attach encrypted Nonce and timestamp elements to.

The following encryption parts can be configured:

Table 195. Encryption parts. Use the encryption parts to enable encryption in messages.
Encryption parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encryption parts using keywords. WebSphere Application Server supports the following keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encryption part using an XPath expression.

signature Adds the WSSignature component as a target of the encrypted part.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encryption, certain default behaviors occur. The simplest way to use the WSSEncryption API is to use
the default behavior (see the example code).

1492 Developing WebSphere applications

WSSEncryption provides defaults for the key encryption algorithm, the data encryption algorithm, the
security token reference method, and the encryption parts such as the SOAP body content and the
signature. The encryption default behaviors include:

Table 196. Encryption decisions. Use encryption default behavior to secure the message body content and signature.
Encryption decisions Default behavior

Which SOAP message parts to encrypt using
keywords

Sets the encryption parts that you can add using keywords. The default encryption parts are the
BODY_CONTENT and SIGNATURE. WebSphere Application Server supports using these keywords:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Which data encryption method to choose
(algorithm)

Sets the data encryption method. Both data and key encryption methods can be specified. The default
data encryption algorithm method is AES 128. WebSphere Application Server supports these data
encryption methods:

v WSSEncryption.AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

v WSSEncryption.AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

v WSSEncryption.AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

v WSSEncryption.TRIPLE_DES: http://www.w3.org.2001/04/xmlenc#tripledes-cbc

Whether to encrypt the key (isEncrypt) Specifies whether to encrypt the key. The values are true or false. The default value is to encrypt the
key (true).

Which key encryption method to choose
(algorithm)

Sets the key encryption method. Both data and key encryption methods can be specified. The default
key encryption algorithm method is key wrap RSA OAEP. WebSphere Application Server supports
these key encryption methods:

v WSSEncryption.KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v WSSEncryption.KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

v WSSEncryption.KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

v WSSEncryption.KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v WSSEncryption.KW_RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v WSSEncryption.KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Which security token to specify
(securityToken)

Sets the SecurityToken. The default security token type is the X509Token. WebSphere Application
Server provides the following pre-configured consumer token types:

v Derived key token

v X.509 tokens

Which token reference to use (refType) Sets the type of the security token reference. The default token reference is
SecurityToken.REF_KEYID. WebSphere Application Server supports the following token reference
types:

v SecurityToken.REF_KEYID

v SecurityToken.REF_STR

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

Whether to use MTOM (mtomOptimize) Sets Message Transmission Optimization Mechanism (MTOM) optimization for the encrypted part.

Procedure

1. To encrypt the SOAP message using the WSSEncryption API, first ensure that the application server is
installed.

2. The WSS API process for encryption performs these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory used for encryption.

d. Creates WSSEncryption from the WSSFactory instance using the SecurityToken. The default
behavior of WSSEncryption is to encrypt the body content and the signature.

e. Adds a new part to be encrypted in WSSEncryption if the existing part is not appropriate. After
addEncryptPart(), addEncryptHeader(), or addEncryptPartByXPath() is called, the default part is
cleared.

f. Calls the encryptKey(false) if the key is not to be encrypted.

g. Sets the data encryption method if the default method is not appropriate.

Chapter 34. Developing web services - Security (WS-Security) 1493

h. Sets the key encryption method if the default method is not appropriate.

i. Sets the token reference if the default token reference is not appropriate.

j. Adds WSSEncryption to WSSConsumingContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web Services Security.

Example

The following example provides sample code using methods that are defined in WSSEncryption:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",
null,
"CN=Bob, O=IBM, C=US",
null);

// Generate the security token used for encryption (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance (step: d)
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)
enc.addEncryptHeader(new QName("http://www.w3.org/2005/08/addressing",

"MessageID"));

// Set the part specified by WSSSignature (step: e)
SecurityToken sigToken = getSecurityToken();

WSSSignature sig = factory.newWSSSignature(sigToken);
enc.addEncryptPart(sig);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandler untCallbackHandler =

new UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

untCallbackHandler);
enc.addEncryptPart(unt, false);

// sSt the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

enc.addEncryptPartByXPath(sb.toString());

// Set whether the key is encrypted (step: f)
// DEFAULT: true

enc.encryptKey(true);

// Set the data encryption method (step: g)

1494 Developing WebSphere applications

// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method (step: h)
// DEFAULT: WSSEncryption.KW_RSA_OAEP

enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Set the token reference (step: i)
// DEFAULT: SecurityToken.REF_KEYID
enc.setTokenReference(SecurityToken.REF_STR);

// Add the WSSEncryption to the WSSGenerationContext (step: j)
gencont.add(enc);

// Process the WS-Security header (step: k)
gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler does not need the key password because the public key is
used for encryption. You do not need a password to obtain the public key from the Java keystore.

What to do next

If you have not previously specified which encryption methods to choose, use the WSS API or configure
the policy sets using the administrative console to choose the data and key encryption algorithm methods.

Choosing encryption methods for generator bindings:

To configure the client for request encryption for the generator binding, you must specify which encryption
methods to use when the client encrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting
and decrypting SOAP messages.

To specify which algorithm methods are to be used when the client encrypts the SOAP messages,
complete the following tasks:

v Use the WSSEncryption API to configure the data encryption algorithm and the key encryption algorithm
methods.

v Use the WSSEncryptPart API to configure a transform algorithm method, if needed. The default is no
transform algorithm.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following
information defines some data encryption-related terms:

Data encryption method algorithm
Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data
encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength
ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,
you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

Key encryption method algorithm
Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the method to
encrypt the key that is used to encrypt data. The algorithm represents public key encryption
algorithms that are specified for encrypting and decrypting keys.

Chapter 34. Developing web services - Security (WS-Security) 1495

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or
SHA512 message digest algorithm by specifying a key encryption algorithm property.

The property name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is
one of the following URIs of the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded
value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side
only. On the consumer side, these properties are read from the incoming SOAP
message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the
unrestricted JCE policy files from the following website: http://www.ibm.com/developerworks/java/
jdk/security/index.html.

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and
its policies concerning the import, possession, use, and re-export of encryption
software, to determine if it is permitted.

Table 197. Encryption usage types. The encryption usage types describe encryptions methods.
Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data. Encrypts and decrypts
data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

Data encryption

WebSphere Application Server supports the following pre-configured data encryption algorithms:

Table 198. Data encryption algorithms. These pre-configuring encryption algorithms are supported by WebSphere
Application Server.
Data encryption name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, 3DES: http://www.w3.org.2001/04/xmlenc#tripledes-cbc

Key encryption

WebSphere Application Server supports the following pre-configured key encryption algorithms:

Table 199. Key encryption algorithms. These pre-configured encryption algorithms are supported by WebSphere
Application Server.
Key encryption name Algorithm URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128: http://www.w3.org/2001/04/xmlenc#kw-
aes128

1496 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Table 199. Key encryption algorithms (continued). These pre-configured encryption algorithms are supported by
WebSphere Application Server.
Key encryption name Algorithm URI

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192: http://www.w3.org/2001/04/xmlenc#kw-
aes192
Restriction: Do not use the 192-bit key encryption algorithm if you want your configured
application to be in compliance with the Basic Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256: http://www.w3.org/2001/04/xmlenc#kw-
aes256

WSSEncryption.KW_RSA_OAEP (the default value) A URI of key encryption algorithm, key wrap RSA OAEP: http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5: http://www.w3.org/2001/04/xmlenc#rsa-
1_5

WSSEncryption.KW_TRIPLE_DES http://www.w3.org/2001/04/xmlenc#kw-tripledes

To configure the encryption and encrypted part algorithm methods, use the WSSEncryption API, or
configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with web services endpoints that use policy sets.

The WSS API process completes the following high-level steps to specify which encryption methods to use
when configuring the client for request encryption:

Procedure

1. Using the WSSEncryption API, adds the required data encryption algorithm. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message. Data encryption algorithms
specify the algorithm uniform resource identifier (URI) of the data encryption method.

The client generator configuration must match the configuration for the provider consumer.

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI
of the data encryption algorithm, is http://www.w3.org/2001/04/xmlenc#aes128-cbc. WebSphere
Application Server supports the following pre-configured data encryption algorithms:

v AES 128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

The AES 128 algorithm is the default data algorithm method.

v AES 192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v AES 256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v TRIPLEDES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption API method to specify another data encryption algorithm. For
example, you might add the following code to change from the default AES 128 algorithm to the Triple
DES algorithm:

// Default data encryption algorithm: AES128
WSSEncryption enc = factory.newWSSEncryption(x509t);

enc.setEncryptionMethod(EncryptionMethod.TRIPLEDES_CBC);
gencont.add(enc);

3. Using the WSSEncryption API, adds the required key encryption algorithm. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP

Chapter 34. Developing web services - Security (WS-Security) 1497

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

message. If the encryption key, which is the key that is used for encrypting the message parts, is not
encrypted, then the decryption API selects false to match the encryption key.

The client generator configuration must match the configuration for the provider consumer.

The default key encryption algorithm value is key wrap RSA OAP. The key encryption name is
KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key
encryption algorithms:

v KW AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v KW AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).KW AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java
Cryptography Extension (JCE) policy file from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

v KW RSA OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

The KW RSA OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this algorithm. This algorithm appears in the list of supported key
transport algorithms when running with SDK Version 1.5. See more information at
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v KW RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v KW TRIPLE DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition
key-related information, such as the:
v algorithmName
v keyLength

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web Services Security.

Example

The following example provides sample WSS API code using WSSEncryption.setEncryptionMethod() and
WSSEncryption.setKeyEncryptionMethod().
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",

1498 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

null,
"CN=Bob, O=IBM, C=US",
null);

// Generate the security token used for encryption
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the data encryption method
// DEFAULT: WSSEncryption.AES128

enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method
// DEFAULT: WSSEncryption.KW_RSA_OAEP

enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// Generate the WS-Security header
gencont.process(msgcontext);

What to do next

Next, if you want to add a transform algorithm, review the WSSEncryptPart API process task.

Encryption methods:

For request generator binding settings, the encryption methods include specifying the data and key
encryption algorithms to use to encrypt the SOAP message. The WSS API for encryption (WSSEncryption)
specifies the algorithm name and the matching algorithm uniform resource identifier (URI) for the data and
key encryption methods. If the data and key encryption algorithms are specified, only elements that are
encrypted with those algorithms are accepted.

Data encryption algorithms

The data encryption algorithm is used to encrypt parts of the SOAP message, including the body and the
signature. Data encryption algorithms specify the algorithm uniform resource identifier (URI) for each type
of data encryption algorithms.

The following pre-configured data encryption algorithms are supported:

Table 200. Data encryption algorithms. The algorithms are used to encrypt SOAP messages.
Data encryption algorithm name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/
xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/
xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/
xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES: http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

Chapter 34. Developing web services - Security (WS-Security) 1499

For the AES256-cbc and the AES192-CBC algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/developerworks/
java/jdk/security/index.html.

The data encryption algorithm configured for encryption for the generator side must match the data
encryption algorithm that is configured for decryption for the consumer side.

Key encryption algorithms

This algorithm is used to encrypt and decrypt keys. This key information is used to specify the
configuration that is needed to generate the key for digital signature and encryption. The signing
information and encryption information configurations can share the key information. The key information
on the consumer side is used for specifying the information about the key that is used for validating the
digital signature in the received message or for decrypting the encrypted parts of the message. The
request generator is configured for the client.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with web services endpoints using the policy
sets.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption
method. The following pre-configured key encryption algorithms are supported:

Table 201. Supported pre-configured key encryption algorithms. The algorithms are used to encrypt and decrypt
keys.
WSS API URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128: http://www.w3.org/2001/04/
xmlenc#kw-aes128

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192: http://www.w3.org/2001/04/
xmlenc#kw-aes192
Restriction: Do not use the 192-bit key encryption algorithm if you want your
configured application to be in compliance with the Basic Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the default value) A URI of key encryption algorithm, key wrap RSA OAEP: http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5: http://www.w3.org/2001/04/
xmlenc#rsa-1_5

WSSEncryption.KW_TRIPLE_DES A URI of key encryption algorithm, key wrap TRIPLE DES: http://www.w3.org/2001/
04/xmlenc#kw-tripledes

For Secure Conversation, additional key-related information must be specified, such as:

v algorithmName

v keyLength

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest
algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of
the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm
property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams.
The property value is the base 64-encoded value of the octet string.

1500 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Important: You can set these digest method and OAEPParams properties on the generator side only. On
the consumer side, these properties are read from the incoming SOAP message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the unrestricted
JCE policy files from the following website: http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm for the generator must match the key decryption algorithm that is configured
for the consumer.

This example provides sample code for encryption to use the Triple DES for the data encryption method
and to use RSA1.5 for the key encryption method:

// get the message context
Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",
null,
"CN=Bob, O=IBM, C=US",
null);

// generate the security token used to the encryption
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// generate WSSEncryption instance to encrypt the SOAP body content
WSSEncryption enc = factory.newWSSEncryption(token);
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

// set the data encryption method
// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// set the key encryption method
// DEFAULT: WSSEncryption.KW_RSA_OAEP
enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// generate the WS-Security header
gencont.process(msgcontext);

Adding encrypted parts using the WSSEncryptPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure encrypted parts for the request generator (client side)
bindings, use the WSSEncryptPart API to define and add to the listing of elements in the encrypted part.
WSSEncryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.encryption
package.

Before you begin

You can use the WSS APIs or configure policy sets using the administrative console to enable the
encrypted parts. To secure SOAP messages, use the WSS APIs to complete the following encryption
tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts using the WSSEncryptpart API, as needed.

Chapter 34. Developing web services - Security (WS-Security) 1501

http://www.ibm.com/developerworks/java/jdk/security/index.html

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and
which message parts to attach encrypted elements to. The encryption information on the generator side is
used for encrypting an outgoing SOAP message. The request generator is configured for the client.

The WSSEncryptPart API specifies information related to encrypted parts and sets the encrypted parts that
have been added for message confidentiality protection. Use the WSSEncryptPart to set the transform
method and to specify the part to which the transform method is to be applied. Sets the transform method
only if using SOAP with Attachments. The WSSEncryptPart is usually not needed except, in some case for
tasks such as setting the transform method.

The encrypted parts and related information displayed in the following table are used to protect the
confidentiality of messages.

Table 202. Encrypted parts. Use encrypted parts to secure messages.
Encrypted parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encrypted parts using keywords. The default encryption parts that you can add using keywords
are the BODY_CONTENT and SIGNATURE. WebSphere Application Server supports using these keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encrypted part by using an XPath expression.

signature Adds the WSSSignature component as a target of the encrypted part.

WSSSignature is applicable only if the SOAP message contains a signature element.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encrypted parts, certain default behaviors occur. The simplest way to use the WSSEncryptPart API is
to use the default behavior. The WSSEncryptPart API provides defaults for specifying the transform
algorithm, setting objects as targets, specifying the encrypted parts, such as: the SOAP body content and
the signature.

The encryption default behaviors include:

Table 203. Encrypted part decisions. Several encrypted message parts are set by default.
Encrypted part decisions Default behavior

Which SOAP message parts to encrypt using
keywords

Specifies which keywords to use for the encrypted parts. WebSphere Application Server sets the
following SOAP message parts by default for encryption:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Which transform method to add WebSphere Application Server does not specify any transform method by default. Specify a
transform method only if using SOAP with Attachments.

Procedure

1. To encrypt the SOAP message parts using the WSSEncryptPart API, first ensure that the application
server is installed.

2. The WSS API process using WSSEncryptPart follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the encryption.

d. Creates WSSEncryption from the WSSFactory instance using SecurityToken.

e. Creates WSSEncryptPart from WSSFactory.

1502 Developing WebSphere applications

f. Adds the parts to be encrypted and to be applied with the transform in WSSEncryptPart.
WebSphere Application Server sets these encrypted parts by default for WSSEncryptPart: the
BODY_CONTENT and SIGNATURE. After you add other encrypted parts, the default values are no
longer valid. For example, if you call addEncryptPart(securityToken, false), only the security token is
encrypted, and not the signature and body content. So if you want to encrypt the security token, the
signature, and the body content, you must call addEncryptPart(securityToken, false),
addEncryptPart(WSSEncryption.SIGNATURE), and
addEncryptPart(WSSEncrypyion.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSEncryptPart to WSSEncryption.

i. Adds WSSEncryption to WSSGenerationContext.

j. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption of the message parts, a WSSException is provided. If
successful, the API calls the WSSGenerationContext.process(), the WS-Security header is generated, and
the SOAP message is now secured using Web Services Security.

What to do next

After enabling encrypted parts for the request generator (client side) binding, you must specify the same
parts to be decrypted for the response consumer (client side) bindings. Next, to configure decryption and
decrypted parts, use the WSS APIs or configure policy sets using the administrative console.

Configuring generator signing information to protect message integrity using the WSS APIs:

You can configure the signing information to protect message integrity for the request (client side)
generator binding. Signing information includes the signature and the signed parts. To keep the integrity of
the message, digital signatures are typically applied.

Before you begin

In addition to using a digital signature and configuring the signing information, the following tasks should
also be performed:

v Verify the signing information.

v Incorporate encryption.

v Attach security tokens.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying
a digital signature to a SOAP message. To configure the signing information to protect message integrity,
you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the
risk of data modification when you transmit data across a network.

Also, message integrity is provided by digitally signing the body, time stamp, and WS-Addressing headers
using the signature algorithm methods. The WSS APIs specify which algorithm is to be used to sign the
certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the signature
method. WebSphere Application Server supports several pre-configured request signing algorithm
methods.

You can use the following interfaces to configure Web Services Security and to protect SOAP message
integrity:

Chapter 34. Developing web services - Security (WS-Security) 1503

v Use the administrative console to configure policy sets for the signing information.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client).

Perform the following signing tasks, using the WSS APIs, to configure the signing information and to
protect message integrity for the generator binding.

Procedure

v Configure the signing information using the WSSSignature API. Configure the signing information for the
generator binding using the WSSSignature API. Signing information is used to sign parts of a message
including the SOAP body, the time stamp, and the WS-Addressing headers. Both signing and encryption
can be applied to the same message parts, such as the SOAP body.

v Add or change signed parts using the WSSSignPart API.

v Configure the client for request signing methods using the WSSSignature or WSSSignPart APIs. To
configure the client for request signing, choose the signing methods. The request signing methods
include the signature, the canonicalization, the digest, and the transform methods. Use the
WSSSignature API to configure the signature and canonicalization methods. Use the WSSSignPart API
to configure the digest and transform methods.

Results

The WSS APIs also specify the security token for the generator (client) binding and set the type of token
reference to protect message authenticity. By completing the steps in these tasks, you have configured
generator signing to protect the integrity of the SOAP message.

What to do next

Next, verify the consumer signing information by using the WSS APIs or by configuring policy sets using
the administrative console.

Configuring signing information using the WSS APIs:

You can configure the signing information for the client-side request generator (sender) bindings. Signing
information is used to sign and validate parts of a message including the SOAP body, the timestamp
information, and the Username token. To configure the client for request signing, specify which message
parts to digitally sign when configuring the client.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,
and SHA1. XML signature defines many methods for describing key information and enables the definition
of a new method. Prior to completing these steps, familiarize yourself with XML digital signature for signing
and verifying digital signatures for digital content.

About this task

By including XML signature in SOAP messages, the following issues are realized: message integrity and
authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity
decreases the risk of data modification while the data is transmitted across the Internet. WebSphere
Application Server uses the signing information for the default generator to sign parts of the message,
such as the body, time stamp, and Username token.

For the signing information, you must specify the following:

v Which parts of the message are to be signed.

v The key information that is referenced by the key information for the signing keys.

1504 Developing WebSphere applications

v The signing algorithms.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

The WSSSignature API configures the following parts as signature parts:

Table 204. Pre-configured signature parts. Use the signing information to validate parts of a message.
Part Description

Security token object This object authenticates the client. If this option is specified, then the message is signed. You can
digitally sign the message using a security token if a login configuration authentication method is
selected.

WSSTimestamp object This object adds a time stamp to a message. The time stamp determines if the message is valid based
on the time that the message is sent and then received.

WSSSignature Part object This object adds the signature parts to a message.

SOAP header and the QName as a target This signature part adds the header, specified by QName, as a verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the message
are to be signed. WebSphere Application Server supports the use of the following keywords:

Table 205. Supported signature keywords. Key information is used to specify which parts of a message are signed.
Keyword References

ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

BODY The SOAP message body. The body is the user data portion of the message.

TIMESTAMP The creation and expiration timestamp information.

The Web Services Security API (WSS API) are used to configure the signing information for the request
generator (client side) section of the bindings file. To configure the signing information on the client side,
use the WSS APIs or configure policy sets for signing using the administrative console.

If configuring using the WSS APIs, the WSSSignature and WSSSignPart APIs complete the following steps
to specify which message parts to digitally sign when configuring the client for request generator signing:

Procedure

1. The WSSSignature API adds the required parts of the SOAP message to digitally sign. Either a
keyword or an XPath expression can be used to specify the required encryption parts.

2. The WSSSignature API sets the signature method algorithm. The default signature method is
RSA_SHA1. WebSphere Application Server supports the following pre-configured algorithms:

v RSA SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v HMAC SHA1http://www.w3.org/2000/09/xmldsig#hmac-sha1

WebSphere Application Server does not support the following algorithm for DSA-SHA1:
http://www.w3.org/2000/09/xmldsig#dsa-sha1. You cannot use the DSA-SHA1 algorithm if you want to
be compliant with the Basic Security Profile (BSP).

Any ds:SignatureMethod/@Algorithm element in a signature is based on a symmetric key and must
have a value of RSA-SHA1 or HMAC-SHA1.

The algorithm that is specified for the request generator configuration must match the algorithm that
is specified for the request consumer configuration.

3. The WSSSignature API sets the canonicalization method. The default signature method is
EXC_C14N. WebSphere Application Server supports the following pre-configured algorithms:

v The URI of the exclusive canonicalization algorithm, EXC_C14N: http://www.w3.org/2001/10/xml-
exc-c14n#.

v The URI of the inclusive canonicalization algorithm, C14N: http://www.w3.org/2001/10/xml-c14n#.

Chapter 34. Developing web services - Security (WS-Security) 1505

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

The canonicalization algorithm that you specify for the generator must match the algorithm for the
consumer.

4. The WSSSignature API adds a security token. The API adds information about the security token that
is to be used for the signature, such as:

v The class for security token.

v The callback handler

v The name of the JAAS login configuration.

5. The WSSSignature API sets the type of security token and sets the type of token reference.
WebSphere Application Server supports the following pre-configured token references:

v SecurityToken.REF_STR

Represents the security token reference as a token reference type.

v SecurityToken.REF_KEYID

Represents the key identifier reference as a token reference type.

v SecurityToken.REF_EMBEDDED

Represents the embedded reference as a token reference type.

v SecurityToken.REF_THUMBPRINT

Represents the thumbprint reference as a token reference type.

6. If SecurityToken.REF_KEYID is set as the type of token reference, the WSSSignature API sets the
key information signature type and configures the key information that is referenced by the key
information references. WebSphere Application Server supports the following:

v Specifying that the KeyInfo element is not signed.

v Specifying that the entire <KeyInfo> element is signed.

v Specifying that the child elements <Keyinfochildelements> of the <KeyInfo> element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server specifies
that the entire <KeyInfo> element is signed, by default.

If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a
subsequent step, WebSphere Application Server also signs the referenced token.

The key information signature type for the generator must match the signature type for the consumer.

7. The WSSSignature API specifies whether to require signature confirmation. The OASIS Web Services
Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If you are
using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after
the receiving message is returned. This method is called if the response message is expected to
attach the signature confirmation into the SOAP message.

8. The WSSSignPart API specifies the part reference. The part reference specifies which parts of the
message to digitally sign.

The part reference refers to the message part that is digitally signed. The part attribute refers to the
name of the <Integrity> element when the <PartReference> element is specified for the signature.
You can specify multiple <PartReference> elements within the <SigningInfo> element. The
<PartReference> element has two child elements when it is specified for the signature verification:
<DigestTransform> and <Transform>.

9. The WSSSignPart API specifies the digest method algorithm. The digest method algorithm specified
within the <DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following pre-configured digest algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

1506 Developing WebSphere applications

10. The WSSSignPart API specifies the transform algorithm. The transform algorithm is that is specified
within the <Transform> element and specifies the transform algorithm for the signature. WebSphere
Application Server supports the following pre-configured transform algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want to be compliant with the Basic Security Profile
(BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that you
select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the
referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#STR-Transform as the transform algorithm.

11. If you configure the client and server signing information correctly, but receive a Soap body not
signed error when running the client, you might need to configure the actor. Configure policy sets
using the administrative console to configure the same actor strings for the web service on the server,
which processes the request and sends the response back.

The actor information on both the client and server must refer to the same exact string. When the
actor fields on the client and server match, the request or response is acted upon instead of being
forwarded downstream. The actor might be different when you have web services acting as a
gateway to other web services. However, in all other cases, make sure that the actor information
matches on the client and server. When web services are acting as a gateway and they do not have
the same actor configured as the request passing through the gateway, web services do not process
the message from a client. Instead, these web services send the request downstream. The
downstream process that contains the correct actor string processes the request. The same situation
occurs for the response. Therefore, it is important that you verify that the appropriate client and server
actor fields are synchronized.

Results

After the WSSSignature and WSSSignPart APIs complete these steps, the signing information is
configured for the generator sections of the bindings files.

Example

The following example shows WSS API sample code to configure the signature, to generate the callback
handler, and to specify the X.509 token type as the security token:
WSSFactory factory = WSSFactory.getInstance();
// Instantiate a generation context
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler and specify the X.509 token
X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// Set the signature information
WSSSignature sig = factory.newWSSSignature(token);
// Add the header using QName

sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "To"));
sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "MessageID"));

Chapter 34. Developing web services - Security (WS-Security) 1507

sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "Action"));
// Apply the signature

gencont.add(sig);

// Secure the message
gencont.process(msgctx);

What to do next

You must configure similar signature information for the client-side request consumer (receiver) bindings
by completing the following verification tasks:

v Verify the signature

v Choose the signature algorithm methods.

v Change or add signed parts, as needed.

If signature verification is already configured, configure the encryption and decryption information, or
configure the consumer and generator tokens.

Configuring signing information using the WSSSignature API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the signing information for the generator binding sections
for the client-side request, use the WSSSignature API. The WSSSignature API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to enable the signing information. To secure SOAP messages, you must complete the following signing
tasks:

v Configure the signing information.

v Choose the signing methods.

v Add or change signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new
method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be
represented in various ways within serialized XML documents. The C14N process is used to canonicalize
XML information. Select an appropriate C14N algorithm because the information that is canonicalized
depends on this algorithm.

The signing information specifies the integrity constraints that are applied to generated messages. The
constraints include specifying which message parts within the generated message must be digitally signed,
and the message parts to attach digitally signed Nonce and timestamp elements to. The following
signature and related signature part information are configured:

1508 Developing WebSphere applications

Table 206. Signature parts information. Use the signature parts to secure messages.
signature parts Description

keyword Adds a signature part using keywords. Use the following keywords for the signature parts:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds a signature part by using an XPath expression.

part Adds a WSSSignPart object as a target of the signature part.

timestamp Adds a WSSTimestamp object as a target of the signature part. When specified, the timestamp
information also specifies when the message is generated and when it expires.

header Adds the header, specified by QName, as a target of the signature part.

securityToken Adds a SecurityToken object as a target of the signature part.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignature API is
to use the default behavior (see the example code). The default values are defined by the WSS API for
the signing method, the canonicalization method, the security token references, and the signature parts.

Table 207. Signature default behaviors. Several signature behaviors are configured by default.
Signature decisions Default behavior

Which keywords to use Sets the keywords. WebSphere Application Server supports the following keywords by default:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

Which signature method to use Sets the signature algorithm. The default signature method is RSA SHA1. WebSphere
Application Server supports the following pre-configured signature methods:

v WSSSignature.RSA_SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/xmldsig#dsa-sha1) is not
supported.

Which canonicalization method to use Sets the canonicalization algorithm. The default canonicalization method is EXC C14N.
WebSphere Application Server supports the following pre-configured canonicalization methods:

v WSSSignature.EXC_C14N; http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: http://www.w3.org/2001/10/xml-c14n#

Whether signature confirmation is required Sets whether to require signature confirmation. The default value is false. Signature
confirmation is defined in the OASIS Web Services Security Version 1.1 specification. If
required, the value of your signature confirmation is stored in order to use it to validate the
signature confirmation after receiving back the message that generated the signature
confirmation in the response message. This method is for the requestor side.

Which security token to use Sets the SecurityToken. The token type specifies which type of token to use for signing and
validating messages. The X.509 token is the default token type.

WebSphere Application Server provides the following pre-configured consumer token types:

v Derived Key Token

v X509 tokens

You can also create custom token types, as needed.

Which token reference to set Sets the refType. SecurityToken.REF_STR is the default value for the type of token reference.
WebSphere Application Server supports these pre-configured token references types:

v SecurityToken.REF_STR

v SecurityToken.REF_KEYID

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

If WSSSignature.requireSignatureConfirmation() is called, then the WSSSignature API expects that the
response message will include the signature confirmation.

Chapter 34. Developing web services - Security (WS-Security) 1509

Procedure

1. To configure the signing information in a SOAP message by using the WSS API, first ensure that the
application server is installed.

2. Use the WSSSignature API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signature follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.
WSSGenerationContext must be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken. The default
behavior of WSSSignature is to sign these signature parts: BODY, ADDRESSING_HEADERS, and
TIMESTAMP.

e. Adds the part to be signed, if the default part is not appropriate. If the digest method or transform
method is changed, creates WSSSignPart and add it to WSSSignature.

f. Creates WSSSignaturePart to WSSSignature. Calls the requiredSignatureConfirmation() method, if
the signature confirmation is to be applied.

g. Sets the canonicalization method, if the default is not appropriate.

h. Sets the signature method, if the default is not appropriate.

i. Sets the token reference, if the default is not appropriate.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signature for the generator section of the bindings. If there
is an error condition when signing the message parts, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses methods that are defined in the WSSignature API.
// Get the message context

Object msgcontext = getMessageContext();

// Generate the com.ibm.websphere.wssecurity.wssapi.WSSFactory instance (step: a)
WSSFactory factory = com.ibm.websphere.wssecurity.wssapi.WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token to be used for the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// Generate the WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part to be signed (step: e)
// DEFAULT: WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS,
// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP Header specified by QName (step: e)
sig.addSignHeader(new

QName("http://www.w3.org/2005/08/addressing",

1510 Developing WebSphere applications

"MessageID"));

// Set the part specified by the keyword (step: e)
sig.addSignPart(WSSSignature.BODY);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandler untCallbackHandler = new

UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

untCallbackHandler);
sig.addSignPart(unt);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();

sigPart.setSignPart(WSSSignature.TIMESTAMP);
sigPart.setDigestMethod(WSSSignPart.SHA256);
sig.addSignPart(sigPart);

// Set the part specified by WSSTimestamp (step: e)
WSSTimestamp timestamp = factory.newWSSTimestamp();

sig.addSignPart(timestamp);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

sig.addSignPartByXPath(sb.toString());

// Set to apply the signature confirmation (step: f)
sig.requireSignatureConfirmation();

// Set the canonicalization method (step: g)
// DEFAULT: WSSSignature.EXC_C14N

sig.setCanonicalizationMethod(WSSSignature.C14N);

// Set the signature method (step: h)
// DEFAULT: WSSSignature.RSA_SHA1

sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

// Set the token reference (step: i)
// DEFAULT: SecurityToken.REF_STR

sig.setTokenReference(SecurityToken.REF_KEYID);

// Add the WSSSignature to WSSGenerationContext (step: j)
gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process(msgctx);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Next, chose the algorithm methods if you want a method that is different from the default values. If the
algorithm methods do not need to be changed, next use the WSSVerification API to verify the signature
and specify the algorithm methods in the consumer section of the binding. Note that the WSSVerification
API is only supported on the response consumer (client side).

Adding signed parts using the WSSSignPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure parts to be signed for the request generator (client side)
bindings, use the WSSSignPart API to protect the integrity of messages and to configure the digest and
transform algorithm methods. The WSSSignPart API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Chapter 34. Developing web services - Security (WS-Security) 1511

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to configure the signing information. To secure SOAP messages using the signing information, you must
complete one of the following tasks:

v Configure the signature information

v Configure signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing digest and transform algorithms (for example,
SHA1 or TRANSFORM_EXC_C14N).

The signing information specifies the integrity constraints that are applied to generated messages. The
signed parts are used to protect the integrity of messages. You can specify the signed parts to add for
message integrity protection.

The following table shows the required signed parts when the digital signature security constraint (integrity)
is defined:

Table 208. Signed parts information. Use the signed parts to secure messages.
Signed parts Description

keyword Adds signed parts using keywords. WebSphere Application Server supports the following
keywords for signed parts:

v BODY

v ADDRESSING_HEADERS

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds the required signed parts by using an XPath expression.

header Adds the header, specified by QName, as a signed part.

timestamp Adds a WSSTimestamp object as a signed part. If specified, the timestamp information specifies
when the message is generated and when it expires.

Different message parts can be specified in the message protection for request on the generator side.
WSSSignPart allows for adding a transform algorithm, setting a digest method, setting objects as targets,
specifying whether an element, and the signed parts, such as: the SOAP body, the WS-Addressing
header, and timestamp information.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignPart API is
to use the default behavior (see the example code). The signed parts default behaviors include:

Table 209. Default behavior of signed parts. Several signed part characteristics are configured by default.
Signature decisions Default behavior

Which SOAP message parts to sign WebSphere Application Server supports the following SOAP message parts to be signed and
used for message protection:

v WSSSignature.BODY

v WSSSignature.ADDRESSING_HEADERS

v WSSSignature.TIMESTAMP

Which digest method to use Sets the digest algorithm method. The digest method algorithm that is specified within the
<DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following pre-configured digest methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

1512 Developing WebSphere applications

Table 209. Default behavior of signed parts (continued). Several signed part characteristics are configured by
default.
Signature decisions Default behavior

Which transform algorithms to use Adds the transform method. The transform algorithm is specified within the <Transform>
element and specifies the transform algorithm for the signature.

WebSphere Application Server supports the following pre-configured transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-
exc-c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

Use this transform method to ensure compliance with the Basic Security Profile (BSP).

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

Procedure

1. To enable Web Services Security by using the WSS API (WSSSignPart), first ensure that the
application server is installed.

2. Use the WSSSignPart API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signed parts follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken.

e. Creates WSSSignPart from the WSSFactory instance.

f. Sets the part to be signed and the digest method or transform method specified by step g or step h
if the default is not appropriate.

g. Sets the digest method if the default is not appropriate.

h. Sets the transform method if the default is not appropriate.

i. Adds WSSSignPart to WSSSignature. After any WSSSignPart is set to WSSSignature, the default
parts to be signed, which are specified in WSSSignature, are ignored.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signed parts for the generator section of the bindings files.
If there is an error condition, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses all of methods that are defined in the WSSSignPart
API:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler
"",

Chapter 34. Developing web services - Security (WS-Security) 1513

"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token used to the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

// Generate WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();

// Set the part specified by WSSSignPart (step: f)
sigPart.setSignPart(WSSSignature.BODY);

// Set the digest method specified by WSSSignPart (step: g)
sigPart.setDigestMethod(WSSSignPart.SHA256);

// Set the transform method specified by WSSSignPart (step: h)
sigPart.setTransformMethod(WSSSignPart.TRANSFORM_STRT10);

// Add the part specified by WSSSignPart (step: i)
sig.addSignPart(sigPart);

// Add the WSSSignature to the WSSGenerationContext (step: j)
gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Use the WSSVerifyPart API or configure policy sets using the administrative console to verify the signed
parts on the consumer side.

Configuring request signing methods for the client:

Use the WSSSignature and WSSSignPart APIs to choose the signing methods. The request signing
methods include the signature, canonicalization, digest, and transform methods.

Before you begin

First, you must have specified which parts of the message sent by the client must be digitally signed using
the WSS APIs or configuring policy sets using the administrative console.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following website http://www.w3.org/TR/xmldsig-core.

Table 210. Signing methods. Use the signing methods to secure messages.
Name of method Description

Canonicalization algorithm Canonicalizes the <SignedInfo> element before the information is digested as part of the
signature operation.

Signature algorithm Calculates the signature value of the canonicalized <SignedInfo> element. The algorithm
selected for the client request sender configuration must match the algorithm selected in the
server request receiver configuration.

Transform method Transforms the parts to be signed before the information is digested as part of the signature
operation.

Digest method Calculates the digest value of the transformed parts. The algorithm selected for the client
request sender configuration must match the algorithms selected in the server request
receiver configuration.

1514 Developing WebSphere applications

http://www.w3.org/TR/xmldsig-core

You can use the WSS APIs or configure policy sets using the administrative console to configure the
signing algorithm methods. If using the WSS APIs, use the WSSSignature and WSSSignPart APIs to
specify which message parts to digitally sign when configuring the client for request signing.

The WSSSignature and WSSSignPart APIs complete the following steps to configure the signature and
signed part algorithm methods:

Procedure

1. For the generator binding, the WSSSignature API specifies the signature method. WebSphere
Application Server supports the following pre-configured signature methods:

v WSSSignature.RSA_SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 digital signature
method, http://www.w3.org/2000/09/xmldsig#dsa-sha1.

2. For the generator binding, the WSSSignature API specifies the canonicalization method. WebSphere
Application Server supports the following pre-configured canonicalization algorithms:

v WSSSignature.EXC_C14N (the default value): The exclusive canonicalization algorithm,
http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: The inclusive canonicalization algorithm, http://www.w3.org/2001/10/xml-c14n#

3. For the generator binding, the WSSSignPart API specifies the digest method. WebSphere Application
Server supports the following pre-configured digest methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

4. For the generator binding, the WSSSignPart API specifies the transform method. WebSphere
Application Server supports the following pre-configured transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

Results

Using the WSS APIs, you have specified which algorithm methods are used to digitally sign a message
when the client sends a message to a server.

Example

The following example is sample code for specifying the signature information, HMAC_SHA1 as signature
method, C14N as a canonicalizaion method, SHA256 as a digest method, and EXC_C14N and
TRANSFORM_STRT10 as the transform methods:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

Chapter 34. Developing web services - Security (WS-Security) 1515

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod(WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the digest method
// DEFAULT: WSSSignPart.SHA1
sigPart.setDigestMethod(WSSSignPart.SHA256);

//add the transform method
// DEFAULT: WSSSignPart.TRANSFORM_EXC_C14N
sigPart.addTransformMethod(WSSSignPart.TRANSFORM_EXC_C14N);
sigPart.addTransformMethod(WSSSignPart.TRANSFORM_STRT10);

// add the WSSSignPart to the WSSSignature
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

What to do next

After you configure the client to digitally sign the message and to choose the algorithm methods, you must
configure the server to verify the digital signature for request signing and to choose the algorithm methods.

Configure policy sets using the administrative console to configure the signature verification information
and methods on the server.

Digital signing methods using the WSSSignature API:

You can configure the signing information for the generator binding using the WSS API. To configure the
client for request signing, choose the digital signing methods. The algorithm methods include the signing
and canonicalization methods.

You must configure generator signing information to protect message integrity by digitally signing SOAP
messages. Integrity refers to digital signature while confidentiality refers to encryption. Integrity decreases
the risk of data modification when you transmit data across a network.

After you have specified which message parts to digitally sign, you must specify which method is used to
digitally sign the message.

Methods

Methods that are used for the signing information include the:

1516 Developing WebSphere applications

Signature method
Sets the signature algorithm method.

Canonicalization method
Sets the canonicalization algorithm method.

Signature algorithms

The signature algorithms specify the algorithm that is used to sign the certificate. The signature algorithms
specify the Uniform Resource Identifiers (URI) of the signature method. WebSphere Application Server
supports the following pre-configured algorithms:

Table 211. Signature algorithms. The algorithms include the signing methods.
Algorithm Description

WSSSignature.HMAC_SHA1 A URI of the signature algorithm, HMAC: http://www.w3.org/2000/09/
xmldsig#hmac-sha1

WSSSignature.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA: http://www.w3.org/2000/09/
xmldsig#rsa-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 algorithm,
http://www.w3.org/2000/09/xmldsig#dsa-sha1

The signing algorithm that is specified for the request generator configuration must match the algorithm
that is specified for the request consumer configuration.

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization
method. WebSphere Application Server supports the following pre-configured algorithms:

Table 212. Signature canonicalization algorithms. The algorithms include the canonicalization methods.
Algorithm Description

WSSSignature.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm EXC_C14N:
http://www.w3.org/2001/10/xml-exc-c14n#

WSSSignature.C14N A URI of the inclusive canonicalization algorithm, C14N:
http://www.w3.org/2001/10/xml-c14n#

The canonicalization algorithm that is specified for the request generator configuration must match the
algorithm that is specified for the request consumer configuration.

The following example provides sample WSS API code that specifies the HMAC_SHA1 as a signature
method and C14n as a canonicalization method:

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

//generate WSSSignature instance

Chapter 34. Developing web services - Security (WS-Security) 1517

WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod(WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

Signed parts methods using the WSSSignPart API:

You can configure the signed parts information for the generator binding using the WSS API. The
algorithms include the digest and transform methods.

You can protect message integrity by configuring signed parts and key information. Integrity refers to
digital signature while confidentiality refers to encryption. Integrity decreases the risk of data modification
when you transmit data across a network.

Methods

Methods that are used for the signed parts include the:

Digest method
Sets the digest algorithm method.

Transform algorithm
Sets the transform algorithm method.

Digest algorithms

The digest method algorithm specified within the element is used in the element. WebSphere Application
Server supports the following pre-configured algorithms:

Table 213. Signed parts digest methods. The methods are used for the signed parts.
Digest method Description

WSSSignPart.SHA1 (the default value) A URI of the digest algorithm, SHA1: http://www.w3.org/2000/09/
xmldsig#sha1

WSSSignPart.SHA256 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha256

WSSSignPart.SHA512 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha512

Transform algorithms

The transform method algorithm specified within the element is used in the element. WebSphere
Application Server supports the following pre-configured algorithms:

Table 214. Signed parts transform methods. The methods are used for the signed parts.
Digest method Description

WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE A URI of the transform algorithm, enveloped signature:
http://www.w3.org/2000/09/xmldsig#enveloped-signature

WSSSignPart.TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform: http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform

WSSSignPart.TRANSFORM_EXC_C14N (the default value) A URI of the transform algorithm, Exc-C14N: http://www.w3.org/2001/10/
xml-exc-c14n#

1518 Developing WebSphere applications

Table 214. Signed parts transform methods (continued). The methods are used for the signed parts.
Digest method Description

WSSSignPart.TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter: http://www.w3.org/2002/
06/xmldsig-filter2

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm
for the signed part.

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

The following example provides sample WSS API code for specifying the signature and signed parts,
setting the signing key and adding the STR-Transform transform algorithm as signed parts:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the part specified by WSSSignPart
sigPart.setSignPart(WSSSignature.BODY);

//set the digest method specified by WSSSignPart
sigPart.setDigestMethod(WSSSignPart.SHA256);

//set the transform method specified by WSSSignPart
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

//set the part specified by WSSSignPart
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

Attaching the generator token using WSS APIs to protect message authenticity:

When you specify the token generator, the information is used on the generator side to generate the
security token.

Before you begin

The token processing and pluggable token architecture in the Web Services Security run time reuses the
same security token interface and Java Authentication and Authorization Service (JAAS) Login Module

Chapter 34. Developing web services - Security (WS-Security) 1519

from the Web Services Security APIs (WSS API). The same implementation of token creation and
validation can be used in both the WSS API and the WSS SPI in the Web Services Security run time.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface is not used with
JAX-WS web services. If you are using JAX-RPC web services, this interface is still valid.

Note that the key name (KeyName) element is not supported in the application server because there is no
KeyName policy assertion defined in the current OASIS Web Services Security draft specification.

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible
for creating the security token on the generator side and validating (authenticating) the security token on
the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using
the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username
SecurityToken object and passes it to the Web Services Security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for
validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the
Web Services Security run time to the LoginModule. After the token is authenticated, a Username
SecurityToken object is created and passed it to the Web Services Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere
Application Server default login module implementation, meaning adding the login module before or
after the WebSphere Application Server login module implementation. If you want to stack the login
module implementations, you must develop the required login modules because there is no default
implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server
includes support for these classes:

v Security token (SecurityTokenImpl)

v Binary security token (BinarySecurityTokenImpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security
tokens:

v Derived key token

v Security context token (SCT)

v Username token

v LTPA token propagation

v LTPA token

v X509PKCS7 token

v X509PKIPath token

v X509v3 token

v Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message
authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS API and WSS SPI are only supported on the client. To specify the security token type on the
generator side, you can also configure policy sets using the administrative console. You can also use the
WSS APIs or policy sets for matching consumer security tokens.

1520 Developing WebSphere applications

The default Login Module and Callback implementations are designed to be used as a pair, meaning both
a generator and a consumer part. To use the default implementations, select the appropriate generator
and consumer security token in a pair. For example, select system.wss.generate.x509 in the token
generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the generator-side security token, use the appropriate pre-configured token generator
interface from the WSS APIs to complete the following token configuration process steps:

Procedure

1. Generate the wssFactory instance.

2. Generate the wssGenerationContext instance.

The WSSGenerationContext interface stores the components for generating Web Services Security
(WS-Security), such as the signing and encryption information, the security token, and the time
stamp. When the generate() method is called, all of these components are generated.

3. Create the generator-side components, such as the WSSSignature and the WSSEncryption objects.

4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java
Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS
configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not
remove the predefined system or application login configurations. However, within these
configurations, you can add module class names and specify the order in which WebSphere
Application Server loads each module.

5. Specifiy a token generator class name. The token generator class name specifies the required
information to generate the SecurityToken. The Username token, the X.509 tokens, and the LTPA
tokens are used by default for message authenticity.

6. Specifiy the settings for the callback handler by specifying a callback handler class name and also
specifies the callback handler keys. This class name is the name of the callback handler
implementation class that is used for the plug-in to the security token framework.

The callback handler implementation obtains the required security token and passes it to the token
generator. The token generator inserts the security token in the Web Services Security header within
the SOAP message. Also, the token generator is a plug-in point for the pluggable security token
framework. Service providers can provide their own implementation, but the implementation must use
the WSSGenerationContext interface.

WebSphere Application Server provides the following default callback handler implementations for the
generator side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback
This class is a callback for handling the name-value pair in elements in the Web Services
Security (WS-Security) configuration XMI files.

com.ibm.websphere.wssecurity.callbackhandler.UNTGUIPromptCallbackHandler
This class is a callback handler for the Username token with the GUI prompt on the generator
side. This instance is used to set the WSSGenerationContext object to generate a Username
token.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
This class is a callback handler for the Username token on the generator side. This instance
is used to set into WSSGenerationContext object to attach a Username token. Use this
implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
This class is a callback handler that is used to generate the X.509 certificate that is inserted
in the Web Services Security header within the SOAP message as a binary security token on
the generator side. This instance is used to generate the WSSSignature and WSSEncryption
objects, set the objects into the WSSGenerationContext object to generate the X.509 binary

Chapter 34. Developing web services - Security (WS-Security) 1521

security tokens. A keystore and a key definition are required for this callback handler. If you
use this implementation, a key store password, path, and type must be provided on the
generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler
This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens
on the generator side. This instance is used to generate WSSSignature object and
WSSEncryption object to generate a LTPA token.

This callback handler is used to validate the LTPA security token inserted in the Web Services
Security header within the SOAP message as a binary security token. However, if the user
name and password are specified, WebSphere Application Server authenticates the user
name and password to obtain the LTPA security token rather than obtaining it from the Run
As Subject. Use this callback handler only when the web service is acting as a client on the
application server. It is recommended that you do not use this callback handler on a Java EE
application client. If you use this implementation, a basic authentication user ID and password
must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler
This class is a callback handler for the Kerberos v5 token on the generator side. This
instance is used to set the WSSGenerationContext object to generate the Kerberos v5
AP-REQ as a binary security token. The instance is also used to generate the WSSSignature
and WSSEncryption objects to use the Kerberos session key or derived key in the SOAP
message signature and encryption.

7. If a X.509 token is specified, additional token information is also specified.

Table 215. Information for X.509 token. Use the X.509 token for signing and encryption.
Token Information Description

storeRef The reference name of the keystore.

storePath The keystore file path from which the keystore is loaded, if needed. It is recommended that you use the
${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application Server path
on your machine. This path is required when you use the X.509 tokens callback handler implementations.

storePassword The password that is used to check the integrity of the keystore, or the keystore password that is used to
unlock the keystore and to access the keystore file. The keystore and its configuration are used for some of
the default callback handler implementations that are provided by WebSphere Application Server.

storeType The keystore type of keystore that is used for the key locator. This selection indicates the format that is
used by the keystore file. The following values are available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the software development kit
(SDK). The default IBM JCE is configured in WebSphere Application Server. This option
provides stronger protection for stored private keys by using Triple DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format might
contain RSA keys on cryptographic hardware or might encrypt keys that use cryptographic
hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

alias The key alias name. The key alias is used by the key locator to find the key within the keystore file.

keyPassword The key password that is used for recovering the key. This password is needed to access the key object
within the keystore file.

keyName The name of the key. For digital signatures, the key name is used by the request generator or response
consumer signing information to determine which key is used to digitally sign the message. For encryption,
the key name is used to determine the key used for encryption. The key name must be a fully qualified,
distinguished name (DN). For example, CN=Bob,O=IBM,C=US.

certStores A list of certificate stores. A collection certificate store includes a list of untrusted, intermediary certificates
and certificate revocation lists (CRLs). This step configures a collection certificate store and certificate
revocation lists for the generator bindings.

1522 Developing WebSphere applications

Table 215. Information for X.509 token (continued). Use the X.509 token for signing and encryption.
Token Information Description

identityAssertion Specifies whether identity assertion is used. Selects this item if identity assertion is defined. This option
indicates that only the identity of the initial sender is required and inserted into the Web Services Security
header within the SOAP message. For an X.509 token generator, the application server sends the original
signer certification only.

requestorCertificate Specifies whether the certificate of the requestor is used.

The following can be specified for a X.509 token:

a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted
root certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. For example, when you select the trust anchor or the certificate
store of a trusted certificate, you must configure the trust anchor and the certificate store before
setting the certificate path.

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The
keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to
access the keystore file. Keystore objects within trust anchors contain trusted root certificates that
are used by the CertPath API to validate the trustworthiness of a certificate chain.

d. With keystore that is used for the key locator and the trust anchor.

e. With a map that includes key-value pairs. For example, you might specify the value type name
and the value type Uniform Resource Identifier (URI). The value type specifies the namespace
URI of the value type for the generated token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3

Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler
is used to create X.509 certificates encoded with the PkiPath format. The certificate is
inserted in the Web Services Security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by
the callback handler; therefore, the collection certificate store is not required or used. If
you use this implementation, you must provide a key store password, path, and type on
this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#PKCS7

Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web Services Security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value
type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For an LTPA token, you can use LTPA for the value type local name. This local name
causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for
the value type Uniform Resource Identifier (URI).

Chapter 34. Developing web services - Security (WS-Security) 1523

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local
name. This local name causes http://www.ibm.com/websphere/appserver/tokentype to
be specified for the value type Uniform Resource Identifier (URI).

8. If the Username token is specified as the token generator class name, the following token information
can be specified:

a. Whether to use IdentityAssertion option. This option is selected if identity assertion is defined.
This option indicates that only the identity of the initial sender is required and inserted into the
Web Services Security header within the SOAP message. For example, WebSphere Application
Server sends only the user name of the original caller for a Username token generator.

b. Whether to use RunAsSubject identity option. This option is used if an identity assertion is defined
and you want to use the Run As identity instead of the initial caller identity for identity assertion in
a downstream call. This option is valid only if you have configured the Username token as the
token generator.

c. Whether to use sendRealm.

d. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token generator. Nonce is a unique,
cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of
Username tokens. Nonce is valid only when the generated token type is a Username token, and it
is available only for the request generator binding.

e. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in
the Username token. The time stamp is valid only when the incorporated token type is a
Username token.

f. Specifies a map that includes key-value pairs. For example, you might specify the value type
name and the value type Uniform Resource Identifier (URI). The value type specifies the
namespace URI of the value type for the generated token, and represents the token type of this
class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

Specifies a Username token.

9. If the Kerberos v5 token is specified as the token generator class name, the following token
information can be specified:

Token Information Description Default Value

name Kerberos client principal name

password Kerberos client password

realm Kerberos realm associated with the
Kerberos client

Default realm name in Kerberos
configuration file.

Specify null to use the default value.

targetService Kerberos service name associated
with the target web services.

targetHost Kerberos realm name associated with
the Kerberos service name.

tokenValueType Kerberos token value type in QName
defined by Oasis Kerberos Token
Profile v1.1 specification.

http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

targetRealm Kerberos realm name associated with
the Kerberos service name.

Default realm name in the Kerberos
configuration file

prompt A boolean value to enable the login
prompt.

false

1524 Developing WebSphere applications

Token Information Description Default Value

supportTokenRequireSHA1 A boolean value to require a SHA1
key that is used in subsequent
request messages when the Kerberos
token is used as a supporting token.

false

SHA1 key is consumed only if the
supporting Kerberos token is
protected. If set to true, the SHA1 key
is always consumed.

alwaysAPREQ A boolean value to indicate that the
client should always send the
Kerberos AP_REQ token in the
request messages.

false

The SHA1 key is used instead in the
subsequent messages. If set to true,
the Kerberos AP_REQ token is
always used.

requireDKT A boolean value to require a derived
key for message protection.

false

clabel The client label for the derived key. WS-SecureConversation

Specify null to use the default value.

slabel The service label for the derived key. WS-SecureConversation

Specify null to use the default value.

keylen The length of the derived key. 16

Specify zero to use the default value

noncelen The length of the nonce. 16

Specify zero to use the default value

encComponent An instance of WSSEncryption. Set encComponent and
sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

sigComponent An instance of WSSSignature. Set encComponent and
sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.
Specify the token value type as the local name. It is not necessary to specify the value type URI for
the Kerberos v5 token.

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

10. If Secure Conversation is used for message protection, the following information must be specified:

Chapter 34. Developing web services - Security (WS-Security) 1525

Information Description

bootstrapWSSGenerationContext The bootstrap configuration used to secure the
RequestSecurityToken (RST) token.

bootstrapWSSConmingContext The bootstrap configuration used for consuming a
secured RequestSecurityTokenResponse (RSTR).

ENDPOINT_URL The service end point URL.

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssGenerationContext object.

12. Invoke the wssGenerationContext.process() method.

Results

Using the Web Services Security API (WSS API) process, you can configured the token generator.

What to do next

Next, you must specify a similar token consumer configuration.

Configuring generator security tokens using the WSS API:

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.
To configure the token on the generator side, use the Web Services Security APIs (WSS API). The
generator security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same
framework from the WSS API can be reused. The same implementation of creating and validating security
token can be used both for the Web Services Security runtime and for the WSS API application code. The
redesigned framework also simplifies the SPI programming model and will make it easier to add security
token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To
configure tokens, you must complete the following token tasks:

v Configure the generator tokens.

v Configure the consumer tokens.

About this task

The JAAS CallbackHandler and JAAS LoginModule are responsible for creating the security token on the
generator side.

On the generator side, the token is created by using the JAAS LoginModule and by using JAAS
CallbackHandler to pass authentication data. Then, the JAAS LoginModule creates the securityToken
object, such as the UsernameToken, and passes it to the Web Services Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.
then the JAAS CallbackHandler is used to pass authentication data from the Web Services Security
runtime to the LoginModule. After the token is authenticated, a security token object is created, and the
token is passed it to the Web Services Security runtime.

1526 Developing WebSphere applications

When using the WSS API for generator token creation, certain default behaviors occur. The simplest way
to use the WSS API is to use the default behavior (see the example code). The WSS API provide default
values for the token type, the token value, and the JAAS confirmation name. The default token behaviors
include:

Table 216. Token decisions and default behaviors. Several token characteristics are configured by default.
Generator token decisions Default behavior

Which token type to use The token type specifies which type of token to use for message integrity, message confidentiality, or
message authenticity.

WebSphere Application Server provides the following pre-configured generator token types for message
integrity and message confidentiality:

v Derived key token

v X509 tokens

You can also create custom token types, as needed.

WebSphere Application Server also provides the following pre-configured generator token types for the
message authenticity:

v Username token

v LTPA tokens

v X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration name to
specify

The JAAS login configuration name specifies which JAAS login configuration name to use.

Which configuration type to use The JAAS login module specifies the configuration type. Only the pre-configured generator
configuration types can be used for generator token types.

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token
class and represents the security token that has methods to get the identity, the XML format, and the
cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the
SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature
and one for encryption, respectively.

The following tokens types are subclasses of the generic security token class:

Table 217. Subclasses of the SecurityToken. Use the subclasses to represent the security token.
Token type JAAS login configuration name

Username token system.wss.generate.unt

Security context token system.wss.generate.sct

Derived key token system.wss.generate.dkt

The following tokens types are subclasses of the binary security token class:

Table 218. Subclasses of the BinarySecurityToken. Use the subclasses to represent the binary security token.
Token type JAAS login configuration name

LTPA token system.wss.generate.ltpa

LTPA propagation token system.wss.generate.ltpaProp

X.509 token system.wss.generate.x509

X.509 PKI Path token system.wss.generate.pkiPath

X.509 PKCS7 token system.wss.generate.pkcs7

Note:

v For each JAAS login token generator configuration name, there is a respective token consumer
configuration name. For example, for the Username token, the respective token consumer
configuration name is system.wss.consume.unt.

Chapter 34. Developing web services - Security (WS-Security) 1527

v The LTPA and LTPA propagation tokens are only available to a requester that is running as a
server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6
or Java EE application client.

Procedure

1. To configure the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure
that the application server is installed.

2. Use the Web Services Security token generator process to configure the tokens. For each token type,
the process is similar to the following process that demonstrates the UsernameToken token generator
process:

a. Use WSSFactory.getInstance() to get the WSS API implementation instance.

b. Create the WSSGenerationContext instance from the WSSFactory instance.

c. Create a JAAS CallbackHandler. The authentication data, such as the user name and password
are specified as part of the CallbackHandler. For example, the following code specifies Chris as the
user name and sirhC as the password: UNTGenerationCallbackHandler("Chris", "sirhC");

d. Call any JAAS CallbackHandler parameters and review the token class information for which
parameters are required or optional. For example, for the UsernameToken, the following
parameters can be configured also:

Nonce
Indicates whether a nonce is included in the user name token for the token generator.
Nonce is a unique, cryptographic number that is embedded in a message to help stop
repeat, unauthorized attacks of user name tokens. The nonce value is valid only when the
generated token type is a UsernameToken and only when it applies to the request
generator binding.

Created timestamp
Indicates whether to insert a time stamp into the UsernameToken. The timestamp value is
valid only when the generated token type is a UsernameToken and only when it applies to
the request generator binding.

e. Create the SecurityToken from WSSFactory.

By default, the UsernameToken API specifies the ValueType as: "http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken"

By default, the UsernameToken API provides the QName of this class and specifies the
NamespaceURI as http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd and also specifies the LocalPart as UsernameToken.

f. Optional: Specify the JAAS login module configuration name. On the generator side, the
configuration type is always generate (for example, system.wss.generate.unt).

g. Add the SecurityToken to the WSSGenerationContext.

h. Call WSSGenerationContext.process() and generate the WS-Security header.

Results

If there is an error condition, a WSSException is provided. If successful, the WSSGenerationContext
process() is called, and the security token for the generator binding is attached.

Example

The following example code shows how to use WSS APIs to create a Username security token, attach the
Username token to the SOAP message, and configure the Username token in the generator binding.
// import the packages
import javax.xml.ws.BindingProvider;
import com.ibm.websphere.wssecurity.wssapi.*;
import com.ibm.websphere.wssecurity.callbackhandler.*;
...

// obtain the binding provider

1528 Developing WebSphere applications

BindingProvider bp = ... ;

// get the request context
Map<String, Object> reqContext = bp.getRequestContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler
UNTGenerateCallbackHandler untCallbackHandler =
new UNTGenerateCallbackHandler("Chris", "sirhC");

// generate the username token
SecurityToken unt = factory.newSecurityToken(UsernameToken.class, untCallbackHandler);

// add the SecurityToken to the WSSGenerationContext
gencont.add(unt);

// generate the WS-Security header
gencont.process(reqContext);

The following example code shows how to modify the preceding Username token sample to create an
LTPAv2 token from the runAs identity on the current thread. The two lines of code that instantiate the
callback handler and create the security token are replaced with the following two lines of code:
// generate callback handler
LTPAGenerateCallbackHandler ltpaCallbackHandler = new LTPAGenerateCallbackHandler(null, null);

// generate the LTPAv2 token
SecurityToken ltpa = wssfactory.newSecurityToken(LTPAv2Token.class, ltpaCallbackHandler);

The instantiation of the LTPAGenerateCallbackHandler object with (null, null) indicates that the LTPA token
should be generated from the current runAs identity. If the callback handler is instantiated with basicAuth
information, ("userName", "password"), a new LTPA token is created using the specified basicAuth
information.

The following example shows how to use secure conversation with the WSS APIs to configure the
generator tokens, as well as the consumer tokens. In this example, the SecurityContextToken token is
created using the WS-SecureConversation draft namespace: http://schemas.xmlsoap.org/ws/2005/02/
sc/sct. To use the WS-SecureConversation version 1.3 namespace, http://docs.oasis-open.org/ws-sx/
ws-secureconversation/200512/sct, specify SecurityContextToken13.class instead of
SecurityContextToken.class.
// import the packages
import javax.xml.ws.BindingProvider;
import com.ibm.websphere.wssecurity.wssapi.*;
import com.ibm.websphere.wssecurity.callbackhandler.*;
...

// obtain the binding provider
BindingProvider bp = ... ;

// get the request context
Map<String, Object> reqContext = bp.getRequestContext();

// generate WSSFactory instance
WSSFactory wssFactory = WSSFactory.getInstance();

WSSGenerationContext bootstrapGenCon = wssFactory.newWSSGenerationContext();

// Create a Timestamp
...
// Add Timestamp
...

// Sign the SOAP Body, WS-Addressing headers, and Timestamp
X509GenerateCallbackHandler btspReqSigCbHandler = new X509GenerateCallbackHandler(...);
SecurityToken btspReqSigToken = wssFactory.newSecurityToken(X509Token.class,

btspReqSigCbHandler);
WSSSignature bootstrapReqSig = wssFactory.newWSSSignature(btspReqSigToken);
bootstrapReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);

// Add Sign Parts
...
bootstrapGenCon.add(bootstrapReqSig);

// Encrypt the SOAP Body and the Signature
X509GenerateCallbackHandler btspReqEncCbHandler = new X509GenerateCallbackHandler(...);
SecurityToken btspReqEncToken = wssFactory.newSecurityToken(X509Token.class,

Chapter 34. Developing web services - Security (WS-Security) 1529

btspReqEncCbHandler);
WSSEncryption bootstrapReqEnc = wssFactory.newWSSEncryption(btspReqEncToken);
bootstrapReqEnc.setEncryptionMethod(WSSEncryption.AES128);
bootstrapReqEnc.setKeyEncryptionMethod(WSSEncryption.KW_RSA15);

// Add Encryption parts
...
bootstrapGenCon.add(bootstrapReqEnc);
WSSConsumingContext bootstrapConCon = wssFactory.newWSSConsumingContext();
X509ConsumeCallbackHandler btspRspVfyCbHandler = new X509ConsumeCallbackHandler(....);
WSSVerification bootstrapRspVfy = wssFactory.newWSSVerification(X509Token.class,

btspRspVfyCbHandler);
bootstrapRspVfy.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Add Verify parts
...
bootstrapConCon.add(bootstrapRspVfy);
X509ConsumeCallbackHandler btspRspDecCbHandler = new X509ConsumeCallbackHandler(...);
WSSDecryption bootstrapRspDec = wssFactory.newWSSDecryption(X509Token.class,

btspRspDecCbHandler);
bootstrapRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);
bootstrapRspDec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_RSA15);

// Add Decryption parts
...
bootstrapConCon.add(bootstrapRspDec);
SCTGenerateCallbackHandler sctgch = new SCTGenerateCallbackHandler(bootstrapGenCon,

bootstrapConCon,
ENDPOINT_URL,
WSSEncryption.AES128);

SecurityToken[] scts = wssFactory.newSecurityTokens(new Class[]{SecurityContextToken.class},
sctgch);

SecurityContextToken sct = (SecurityContextToken)scts[0];

// Use the SCT to generate DKTs for Secure Conversation
// Signature algorithm and client and service labels
DerivedKeyToken dktSig = sct.getDerivedKeyToken(WSSSignature.HMAC_SHA1,

"WS-SecureConversation",
"WS-SecureConversation");

// Encryption algorithm and client and service labels
DerivedKeyToken dktEnc = sct.getDerivedKeyToken(WSSEncryption.AES128,

"WS-SecureConversation",
"WS-SecureConversation");

// Create the application generation context for the request message
WSSGenerationContext applicationGenCon = wssFactory.newWSSGenerationContext();

// Create and add Timestamp
...

// Add the derived key token and Sign the SOAP Body and WS-Addressing headers
WSSSignature appReqSig = wssFactory.newWSSSignature(dktSig);
appReqSig.setSignatureMethod(WSSSignature.HMAC_SHA1);
appReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);
...
applicationGenCon.add(appReqSig);

// Add the derived key token and Encrypt the SOAP Body and the Signature
WSSEncryption appReqEnc = wssFactory.newWSSEncryption(dktEnc);
appReqEnc.setEncryptionMethod(WSSEncryption.AES128);
appReqEnc.setTokenReference(SecurityToken.REF_STR);
appReqEnc.encryptKey(false);
...
applicationGenCon.add(appReqEnc);

// Create the application consuming context for the response message
WSSConsumingContext applicationConCon = wssFactory.newWSSConsumingContext();

//client and service labels and decryption algorithm
SCTConsumeCallbackHandler sctCbHandler = new SCTConsumeCallbackHandler("WS-SecureConversation",

"WS-SecureConversation",
WSSDecryption.AES128);

// Derive the token from SCT and use it to Decrypt the SOAP Body and the Signature
WSSDecryption appRspDec = wssFactory.newWSSDecryption(SecurityContextToken.class,

sctCbHandler);
appRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);
appRspDec.encryptKey(false);
...
applicationConCon.add(appRspDec);

// Derive the token from SCT and use it to Verify the
// signature on the SOAP Body, WS-Addressing headers, and Timestamp
WSSVerification appRspVfy = wssFactory.newWSSVerification(SecurityContextToken.class,

sctCbHandler);
...

1530 Developing WebSphere applications

applicationConCon.add(appRspVfy);
...
applicationGenCon.process(reqContext);
applicationConCon.process(reqContext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,
specify the similar consumer tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by
signing the SOAP message or by encrypting the message, as needed. You can use either the WSS APIs
or the administrative console to secure the SOAP messages.

Securing messages at the request generator using WSS APIs:

You can secure SOAP messages by configuring signing information, encryption, and generator tokens to
protect message integrity, confidentiality, and authenticity, respectively. This request (client-side) generator
configuration defines the Web Services Security requirements for the outgoing SOAP message request.

Before you begin

To secure web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. Therefore, in addition to securing messages at the request generator level,
you must also secure messages at the response consumer level.

About this task

The request (client-side) generator configuration requirements involve generating a SOAP message
request that uses a digital signature, incorporates encryption, and attaches security tokens.

To secure web service applications, you must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

You can use the following interfaces to configure Web Services Security and to define policy types to
secure the SOAP messages:

v Use the administrative console to configure policy sets.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

The following high-level steps use the WSS APIs:

Procedure

v Configure generator signing to protect message integrity.

v Configure encryption to protect message confidentiality.

v Attach generator tokens to protect message authenticity.

v Propagate self-issued SAML bearer tokens using WSS APIs.

v Propagate self-issued SAML sender-vouches tokens with message protection using WSS APIs.

v Propagate self-issued SAML sender-vouches tokens with transport protection using WSS APIs.

v “Sending self-issued SAML holder-of-key tokens with symmetric key using WSS APIs” on page 1592.

v “Sending self-issued SAML holder-of-key tokens with asymmetric key using WSS APIs” on page 1594.

Chapter 34. Developing web services - Security (WS-Security) 1531

Results

After completing these procedures, you have secured messages at the request generator level.

What to do next

Next, if not already configured, secure messages with signature verification, decryption, and consumer
tokens at the response consumer (client-side) level.

Configuring encryption to protect message confidentiality using the WSS APIs:

You can configure encryption information for the client-side request generator (sender) bindings.
Encryption information is used to specify how the generators (senders) encrypt outgoing SOAP messages.
To configure encryption, specify which message parts to encrypt and specify which algorithm methods and
security tokens are to be used for encryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone understanding the message flowing across the Internet. With confidentiality specifications, the
message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to
configuring encryption, familiarize yourself with XML encryption.

About this task

For encryption, you must specify the following:

v Which parts of the message are to be encrypted.

v Which encryption algorithms to specify.

To configure encryption and encrypted parts on the client side, use the WSSEncryption and
WSSEncryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

WebSphere Application Server uses encryption information for the default generator to encrypt parts of the
SOAP message. The WSSEncryption API configures the following required parts as encrypted parts.

Table 219. Required encrypted parts. Use encrypted parts to increase the confidentiality of SOAP messages.
Encryption parts Description

Keywords Keywords are used to add the encrypted parts to the SOAP message.

XPath expression An XPath expression is used to add the encrypted parts to the SOAP message.

WSSEncryptPart object This object adds the encrypted parts to the SOAP message.

WSSSignature object This object adds the signature component as an encrypted part.

Header This part adds the header in the SOAP header, specified by QName, as an encryption part.

Security token object This object adds the security token as an encryption part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when
Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the
message that are to be encrypted. WebSphere Application Server supports the use of the following
keywords:

1532 Developing WebSphere applications

Table 220. Supported encryption keywords. Use keywords to specify encrypted parts.
Keyword References

BODY_CONTENT The keyword for the contents of the SOAP message body as an encryption target.

SIGNATURE The keyword for the signature component as an encryption target.

If configuring using the WSS APIs, the WSSEncryption and WSSEncryptPart APIs complete these
high-level steps:

Procedure

1. Use the WSSEncryption API to configure encryption. The WSSEncryption API performs these tasks by
default:

a. Generates the callback handler.

b. Generates the generator security token object.

c. Adds the security token reference type.

d. Adds the signature component.

e. Adds the WSSEncryptPart object.

f. Adds the parts to be encrypted. Adds the default parts as targets of encryption by using keywords
and XPath expressions.

g. Adds the header in the SOAP message, specified by QName.

h. Sets the default data encryption method.

i. Specifies whether the key is to be encrypted using a Boolean value.

j. Sets the default key encryption method.

k. Selects a part reference.

l. Sets the MTOM optimization Boolean value.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The
WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.

b. Sets the encrypted parts specified by an XPath expression.

c. Sets the signature component object, WSSSignature.

d. Sets the header in the SOAP message, specified by QName.

e. Sets the generator security token.

f. Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could
change one or more of the following items:

v Change the data encryption algorithm from the default value of AES 128.

v Change the key encryption algorithm from the default value of KW_RSA_OAEP.

v Specify to not encrypt the key (false).

v Change the security token type from default of X.509 token.

v Change the security token reference type from the default value of SecurityToken.REF_STR.

v Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

v Turn MTOM optimization on (true).

Results

The encryption information is configured for the generator binding.

Chapter 34. Developing web services - Security (WS-Security) 1533

Example

The following is an example of the WSSEncryption API:
WSSFactory factory = WSSFactory.getInstance();
WSSGenerationContext gencont = factory.newWSSGenerationContext();

X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);
WSSEncryption enc = factory.newWSSEncryption(token);

gencont.add(enc);

What to do next

You must configure similar decryption information for the client-side response consumer (receiver)
bindings, if you have not already configured the information.

Next, review the WSSEncryption API process.

Encrypting the SOAP message using the WSSEncryption API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the client for request encryption on the generator side,
use the WSSEncryption API to encrypt the SOAP message. The WSSEncryption API specifies which
request SOAP message parts to encrypt when configuring the client.

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable encryption and add
generator security tokens in the SOAP message. To secure SOAP messages, use the WSS APIs to
complete the following encryption tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts, as needed, using the WSSEncryptPart API.

About this task

The encryption information on the generator side is used for encrypting an outgoing SOAP message for
the request generator (client side) bindings. The client generator configuration must match the
configuration for the provider consumer.

1534 Developing WebSphere applications

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and
which message parts to attach encrypted Nonce and timestamp elements to.

The following encryption parts can be configured:

Table 221. Encryption parts. Use the encryption parts to enable encryption in messages.
Encryption parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encryption parts using keywords. WebSphere Application Server supports the following keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encryption part using an XPath expression.

signature Adds the WSSignature component as a target of the encrypted part.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encryption, certain default behaviors occur. The simplest way to use the WSSEncryption API is to use
the default behavior (see the example code).

WSSEncryption provides defaults for the key encryption algorithm, the data encryption algorithm, the
security token reference method, and the encryption parts such as the SOAP body content and the
signature. The encryption default behaviors include:

Table 222. Encryption decisions. Use encryption default behavior to secure the message body content and signature.
Encryption decisions Default behavior

Which SOAP message parts to encrypt using
keywords

Sets the encryption parts that you can add using keywords. The default encryption parts are the
BODY_CONTENT and SIGNATURE. WebSphere Application Server supports using these keywords:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Chapter 34. Developing web services - Security (WS-Security) 1535

Table 222. Encryption decisions (continued). Use encryption default behavior to secure the message body content
and signature.
Encryption decisions Default behavior

Which data encryption method to choose
(algorithm)

Sets the data encryption method. Both data and key encryption methods can be specified. The default
data encryption algorithm method is AES 128. WebSphere Application Server supports these data
encryption methods:

v WSSEncryption.AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

v WSSEncryption.AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

v WSSEncryption.AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

v WSSEncryption.TRIPLE_DES: http://www.w3.org.2001/04/xmlenc#tripledes-cbc

Whether to encrypt the key (isEncrypt) Specifies whether to encrypt the key. The values are true or false. The default value is to encrypt the
key (true).

Which key encryption method to choose
(algorithm)

Sets the key encryption method. Both data and key encryption methods can be specified. The default
key encryption algorithm method is key wrap RSA OAEP. WebSphere Application Server supports
these key encryption methods:

v WSSEncryption.KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v WSSEncryption.KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

v WSSEncryption.KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

v WSSEncryption.KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v WSSEncryption.KW_RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v WSSEncryption.KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Which security token to specify
(securityToken)

Sets the SecurityToken. The default security token type is the X509Token. WebSphere Application
Server provides the following pre-configured consumer token types:

v Derived key token

v X.509 tokens

Which token reference to use (refType) Sets the type of the security token reference. The default token reference is
SecurityToken.REF_KEYID. WebSphere Application Server supports the following token reference
types:

v SecurityToken.REF_KEYID

v SecurityToken.REF_STR

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

Whether to use MTOM (mtomOptimize) Sets Message Transmission Optimization Mechanism (MTOM) optimization for the encrypted part.

Procedure

1. To encrypt the SOAP message using the WSSEncryption API, first ensure that the application server is
installed.

2. The WSS API process for encryption performs these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory used for encryption.

d. Creates WSSEncryption from the WSSFactory instance using the SecurityToken. The default
behavior of WSSEncryption is to encrypt the body content and the signature.

e. Adds a new part to be encrypted in WSSEncryption if the existing part is not appropriate. After
addEncryptPart(), addEncryptHeader(), or addEncryptPartByXPath() is called, the default part is
cleared.

f. Calls the encryptKey(false) if the key is not to be encrypted.

g. Sets the data encryption method if the default method is not appropriate.

h. Sets the key encryption method if the default method is not appropriate.

i. Sets the token reference if the default token reference is not appropriate.

j. Adds WSSEncryption to WSSConsumingContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

1536 Developing WebSphere applications

Results

If there is an error condition during encryption, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web Services Security.

Example

The following example provides sample code using methods that are defined in WSSEncryption:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",
null,
"CN=Bob, O=IBM, C=US",
null);

// Generate the security token used for encryption (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance (step: d)
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)
enc.addEncryptHeader(new QName("http://www.w3.org/2005/08/addressing",

"MessageID"));

// Set the part specified by WSSSignature (step: e)
SecurityToken sigToken = getSecurityToken();

WSSSignature sig = factory.newWSSSignature(sigToken);
enc.addEncryptPart(sig);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandler untCallbackHandler =

new UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

untCallbackHandler);
enc.addEncryptPart(unt, false);

// sSt the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

enc.addEncryptPartByXPath(sb.toString());

// Set whether the key is encrypted (step: f)
// DEFAULT: true

enc.encryptKey(true);

// Set the data encryption method (step: g)
// DEFAULT: WSSEncryption.AES128

enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method (step: h)
// DEFAULT: WSSEncryption.KW_RSA_OAEP

enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Set the token reference (step: i)
// DEFAULT: SecurityToken.REF_KEYID

Chapter 34. Developing web services - Security (WS-Security) 1537

enc.setTokenReference(SecurityToken.REF_STR);

// Add the WSSEncryption to the WSSGenerationContext (step: j)
gencont.add(enc);

// Process the WS-Security header (step: k)
gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler does not need the key password because the public key is
used for encryption. You do not need a password to obtain the public key from the Java keystore.

What to do next

If you have not previously specified which encryption methods to choose, use the WSS API or configure
the policy sets using the administrative console to choose the data and key encryption algorithm methods.

Choosing encryption methods for generator bindings:

To configure the client for request encryption for the generator binding, you must specify which encryption
methods to use when the client encrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting
and decrypting SOAP messages.

To specify which algorithm methods are to be used when the client encrypts the SOAP messages,
complete the following tasks:

v Use the WSSEncryption API to configure the data encryption algorithm and the key encryption algorithm
methods.

v Use the WSSEncryptPart API to configure a transform algorithm method, if needed. The default is no
transform algorithm.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following
information defines some data encryption-related terms:

Data encryption method algorithm
Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data
encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength
ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,
you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

Key encryption method algorithm
Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the method to
encrypt the key that is used to encrypt data. The algorithm represents public key encryption
algorithms that are specified for encrypting and decrypting keys.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or
SHA512 message digest algorithm by specifying a key encryption algorithm property.

The property name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is
one of the following URIs of the digest method:

1538 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded
value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side
only. On the consumer side, these properties are read from the incoming SOAP
message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the
unrestricted JCE policy files from the following website: http://www.ibm.com/developerworks/java/
jdk/security/index.html.

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and
its policies concerning the import, possession, use, and re-export of encryption
software, to determine if it is permitted.

Table 223. Encryption usage types. The encryption usage types describe encryptions methods.
Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data. Encrypts and decrypts
data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

Data encryption

WebSphere Application Server supports the following pre-configured data encryption algorithms:

Table 224. Data encryption algorithms. These pre-configuring encryption algorithms are supported by WebSphere
Application Server.
Data encryption name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, 3DES: http://www.w3.org.2001/04/xmlenc#tripledes-cbc

Key encryption

WebSphere Application Server supports the following pre-configured key encryption algorithms:

Table 225. Key encryption algorithms. These pre-configured encryption algorithms are supported by WebSphere
Application Server.
Key encryption name Algorithm URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128: http://www.w3.org/2001/04/xmlenc#kw-
aes128

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192: http://www.w3.org/2001/04/xmlenc#kw-
aes192
Restriction: Do not use the 192-bit key encryption algorithm if you want your configured
application to be in compliance with the Basic Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256: http://www.w3.org/2001/04/xmlenc#kw-
aes256

Chapter 34. Developing web services - Security (WS-Security) 1539

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Table 225. Key encryption algorithms (continued). These pre-configured encryption algorithms are supported by
WebSphere Application Server.
Key encryption name Algorithm URI

WSSEncryption.KW_RSA_OAEP (the default value) A URI of key encryption algorithm, key wrap RSA OAEP: http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5: http://www.w3.org/2001/04/xmlenc#rsa-
1_5

WSSEncryption.KW_TRIPLE_DES http://www.w3.org/2001/04/xmlenc#kw-tripledes

To configure the encryption and encrypted part algorithm methods, use the WSSEncryption API, or
configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with web services endpoints that use policy sets.

The WSS API process completes the following high-level steps to specify which encryption methods to use
when configuring the client for request encryption:

Procedure

1. Using the WSSEncryption API, adds the required data encryption algorithm. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message. Data encryption algorithms
specify the algorithm uniform resource identifier (URI) of the data encryption method.

The client generator configuration must match the configuration for the provider consumer.

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI
of the data encryption algorithm, is http://www.w3.org/2001/04/xmlenc#aes128-cbc. WebSphere
Application Server supports the following pre-configured data encryption algorithms:

v AES 128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

The AES 128 algorithm is the default data algorithm method.

v AES 192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v AES 256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v TRIPLEDES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption API method to specify another data encryption algorithm. For
example, you might add the following code to change from the default AES 128 algorithm to the Triple
DES algorithm:

// Default data encryption algorithm: AES128
WSSEncryption enc = factory.newWSSEncryption(x509t);

enc.setEncryptionMethod(EncryptionMethod.TRIPLEDES_CBC);
gencont.add(enc);

3. Using the WSSEncryption API, adds the required key encryption algorithm. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP
message. If the encryption key, which is the key that is used for encrypting the message parts, is not
encrypted, then the decryption API selects false to match the encryption key.

The client generator configuration must match the configuration for the provider consumer.

1540 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

The default key encryption algorithm value is key wrap RSA OAP. The key encryption name is
KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key
encryption algorithms:

v KW AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v KW AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).KW AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java
Cryptography Extension (JCE) policy file from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

v KW RSA OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

The KW RSA OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this algorithm. This algorithm appears in the list of supported key
transport algorithms when running with SDK Version 1.5. See more information at
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v KW RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v KW TRIPLE DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition
key-related information, such as the:
v algorithmName
v keyLength

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web Services Security.

Example

The following example provides sample WSS API code using WSSEncryption.setEncryptionMethod() and
WSSEncryption.setKeyEncryptionMethod().
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",
null,
"CN=Bob, O=IBM, C=US",
null);

// Generate the security token used for encryption
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

Chapter 34. Developing web services - Security (WS-Security) 1541

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

// Generate WSSEncryption instance
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the data encryption method
// DEFAULT: WSSEncryption.AES128

enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method
// DEFAULT: WSSEncryption.KW_RSA_OAEP

enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// Generate the WS-Security header
gencont.process(msgcontext);

What to do next

Next, if you want to add a transform algorithm, review the WSSEncryptPart API process task.

Encryption methods:

For request generator binding settings, the encryption methods include specifying the data and key
encryption algorithms to use to encrypt the SOAP message. The WSS API for encryption (WSSEncryption)
specifies the algorithm name and the matching algorithm uniform resource identifier (URI) for the data and
key encryption methods. If the data and key encryption algorithms are specified, only elements that are
encrypted with those algorithms are accepted.

Data encryption algorithms

The data encryption algorithm is used to encrypt parts of the SOAP message, including the body and the
signature. Data encryption algorithms specify the algorithm uniform resource identifier (URI) for each type
of data encryption algorithms.

The following pre-configured data encryption algorithms are supported:

Table 226. Data encryption algorithms. The algorithms are used to encrypt SOAP messages.
Data encryption algorithm name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/
xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/
xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/
xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES: http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

For the AES256-cbc and the AES192-CBC algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/developerworks/
java/jdk/security/index.html.

1542 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

The data encryption algorithm configured for encryption for the generator side must match the data
encryption algorithm that is configured for decryption for the consumer side.

Key encryption algorithms

This algorithm is used to encrypt and decrypt keys. This key information is used to specify the
configuration that is needed to generate the key for digital signature and encryption. The signing
information and encryption information configurations can share the key information. The key information
on the consumer side is used for specifying the information about the key that is used for validating the
digital signature in the received message or for decrypting the encrypted parts of the message. The
request generator is configured for the client.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with web services endpoints using the policy
sets.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption
method. The following pre-configured key encryption algorithms are supported:

Table 227. Supported pre-configured key encryption algorithms. The algorithms are used to encrypt and decrypt
keys.
WSS API URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128: http://www.w3.org/2001/04/
xmlenc#kw-aes128

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192: http://www.w3.org/2001/04/
xmlenc#kw-aes192
Restriction: Do not use the 192-bit key encryption algorithm if you want your
configured application to be in compliance with the Basic Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the default value) A URI of key encryption algorithm, key wrap RSA OAEP: http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5: http://www.w3.org/2001/04/
xmlenc#rsa-1_5

WSSEncryption.KW_TRIPLE_DES A URI of key encryption algorithm, key wrap TRIPLE DES: http://www.w3.org/2001/
04/xmlenc#kw-tripledes

For Secure Conversation, additional key-related information must be specified, such as:

v algorithmName

v keyLength

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest
algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of
the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm
property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams.
The property value is the base 64-encoded value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only. On
the consumer side, these properties are read from the incoming SOAP message.

Chapter 34. Developing web services - Security (WS-Security) 1543

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the unrestricted
JCE policy files from the following website: http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm for the generator must match the key decryption algorithm that is configured
for the consumer.

This example provides sample code for encryption to use the Triple DES for the data encryption method
and to use RSA1.5 for the key encryption method:

// get the message context
Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"bob",
null,
"CN=Bob, O=IBM, C=US",
null);

// generate the security token used to the encryption
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// generate WSSEncryption instance to encrypt the SOAP body content
WSSEncryption enc = factory.newWSSEncryption(token);
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

// set the data encryption method
// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// set the key encryption method
// DEFAULT: WSSEncryption.KW_RSA_OAEP
enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// generate the WS-Security header
gencont.process(msgcontext);

Adding encrypted parts using the WSSEncryptPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure encrypted parts for the request generator (client side)
bindings, use the WSSEncryptPart API to define and add to the listing of elements in the encrypted part.
WSSEncryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.encryption
package.

Before you begin

You can use the WSS APIs or configure policy sets using the administrative console to enable the
encrypted parts. To secure SOAP messages, use the WSS APIs to complete the following encryption
tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts using the WSSEncryptpart API, as needed.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and

1544 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html

which message parts to attach encrypted elements to. The encryption information on the generator side is
used for encrypting an outgoing SOAP message. The request generator is configured for the client.

The WSSEncryptPart API specifies information related to encrypted parts and sets the encrypted parts that
have been added for message confidentiality protection. Use the WSSEncryptPart to set the transform
method and to specify the part to which the transform method is to be applied. Sets the transform method
only if using SOAP with Attachments. The WSSEncryptPart is usually not needed except, in some case for
tasks such as setting the transform method.

The encrypted parts and related information displayed in the following table are used to protect the
confidentiality of messages.

Table 228. Encrypted parts. Use encrypted parts to secure messages.
Encrypted parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encrypted parts using keywords. The default encryption parts that you can add using keywords
are the BODY_CONTENT and SIGNATURE. WebSphere Application Server supports using these keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encrypted part by using an XPath expression.

signature Adds the WSSSignature component as a target of the encrypted part.

WSSSignature is applicable only if the SOAP message contains a signature element.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encrypted parts, certain default behaviors occur. The simplest way to use the WSSEncryptPart API is
to use the default behavior. The WSSEncryptPart API provides defaults for specifying the transform
algorithm, setting objects as targets, specifying the encrypted parts, such as: the SOAP body content and
the signature.

The encryption default behaviors include:

Table 229. Encrypted part decisions. Several encrypted message parts are set by default.
Encrypted part decisions Default behavior

Which SOAP message parts to encrypt using
keywords

Specifies which keywords to use for the encrypted parts. WebSphere Application Server sets the
following SOAP message parts by default for encryption:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Which transform method to add WebSphere Application Server does not specify any transform method by default. Specify a
transform method only if using SOAP with Attachments.

Procedure

1. To encrypt the SOAP message parts using the WSSEncryptPart API, first ensure that the application
server is installed.

2. The WSS API process using WSSEncryptPart follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the encryption.

d. Creates WSSEncryption from the WSSFactory instance using SecurityToken.

e. Creates WSSEncryptPart from WSSFactory.

f. Adds the parts to be encrypted and to be applied with the transform in WSSEncryptPart.
WebSphere Application Server sets these encrypted parts by default for WSSEncryptPart: the
BODY_CONTENT and SIGNATURE. After you add other encrypted parts, the default values are no

Chapter 34. Developing web services - Security (WS-Security) 1545

longer valid. For example, if you call addEncryptPart(securityToken, false), only the security token is
encrypted, and not the signature and body content. So if you want to encrypt the security token, the
signature, and the body content, you must call addEncryptPart(securityToken, false),
addEncryptPart(WSSEncryption.SIGNATURE), and
addEncryptPart(WSSEncrypyion.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSEncryptPart to WSSEncryption.

i. Adds WSSEncryption to WSSGenerationContext.

j. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption of the message parts, a WSSException is provided. If
successful, the API calls the WSSGenerationContext.process(), the WS-Security header is generated, and
the SOAP message is now secured using Web Services Security.

What to do next

After enabling encrypted parts for the request generator (client side) binding, you must specify the same
parts to be decrypted for the response consumer (client side) bindings. Next, to configure decryption and
decrypted parts, use the WSS APIs or configure policy sets using the administrative console.

Configuring generator signing information to protect message integrity using the WSS APIs:

You can configure the signing information to protect message integrity for the request (client side)
generator binding. Signing information includes the signature and the signed parts. To keep the integrity of
the message, digital signatures are typically applied.

Before you begin

In addition to using a digital signature and configuring the signing information, the following tasks should
also be performed:

v Verify the signing information.

v Incorporate encryption.

v Attach security tokens.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying
a digital signature to a SOAP message. To configure the signing information to protect message integrity,
you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the
risk of data modification when you transmit data across a network.

Also, message integrity is provided by digitally signing the body, time stamp, and WS-Addressing headers
using the signature algorithm methods. The WSS APIs specify which algorithm is to be used to sign the
certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the signature
method. WebSphere Application Server supports several pre-configured request signing algorithm
methods.

You can use the following interfaces to configure Web Services Security and to protect SOAP message
integrity:

v Use the administrative console to configure policy sets for the signing information.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client).

1546 Developing WebSphere applications

Perform the following signing tasks, using the WSS APIs, to configure the signing information and to
protect message integrity for the generator binding.

Procedure

v Configure the signing information using the WSSSignature API. Configure the signing information for the
generator binding using the WSSSignature API. Signing information is used to sign parts of a message
including the SOAP body, the time stamp, and the WS-Addressing headers. Both signing and encryption
can be applied to the same message parts, such as the SOAP body.

v Add or change signed parts using the WSSSignPart API.

v Configure the client for request signing methods using the WSSSignature or WSSSignPart APIs. To
configure the client for request signing, choose the signing methods. The request signing methods
include the signature, the canonicalization, the digest, and the transform methods. Use the
WSSSignature API to configure the signature and canonicalization methods. Use the WSSSignPart API
to configure the digest and transform methods.

Results

The WSS APIs also specify the security token for the generator (client) binding and set the type of token
reference to protect message authenticity. By completing the steps in these tasks, you have configured
generator signing to protect the integrity of the SOAP message.

What to do next

Next, verify the consumer signing information by using the WSS APIs or by configuring policy sets using
the administrative console.

Configuring signing information using the WSS APIs:

You can configure the signing information for the client-side request generator (sender) bindings. Signing
information is used to sign and validate parts of a message including the SOAP body, the timestamp
information, and the Username token. To configure the client for request signing, specify which message
parts to digitally sign when configuring the client.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,
and SHA1. XML signature defines many methods for describing key information and enables the definition
of a new method. Prior to completing these steps, familiarize yourself with XML digital signature for signing
and verifying digital signatures for digital content.

About this task

By including XML signature in SOAP messages, the following issues are realized: message integrity and
authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity
decreases the risk of data modification while the data is transmitted across the Internet. WebSphere
Application Server uses the signing information for the default generator to sign parts of the message,
such as the body, time stamp, and Username token.

For the signing information, you must specify the following:

v Which parts of the message are to be signed.

v The key information that is referenced by the key information for the signing keys.

v The signing algorithms.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

Chapter 34. Developing web services - Security (WS-Security) 1547

The WSSSignature API configures the following parts as signature parts:

Table 230. Pre-configured signature parts. Use the signing information to validate parts of a message.
Part Description

Security token object This object authenticates the client. If this option is specified, then the message is signed. You can
digitally sign the message using a security token if a login configuration authentication method is
selected.

WSSTimestamp object This object adds a time stamp to a message. The time stamp determines if the message is valid based
on the time that the message is sent and then received.

WSSSignature Part object This object adds the signature parts to a message.

SOAP header and the QName as a target This signature part adds the header, specified by QName, as a verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the message
are to be signed. WebSphere Application Server supports the use of the following keywords:

Table 231. Supported signature keywords. Key information is used to specify which parts of a message are signed.
Keyword References

ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

BODY The SOAP message body. The body is the user data portion of the message.

TIMESTAMP The creation and expiration timestamp information.

The Web Services Security API (WSS API) are used to configure the signing information for the request
generator (client side) section of the bindings file. To configure the signing information on the client side,
use the WSS APIs or configure policy sets for signing using the administrative console.

If configuring using the WSS APIs, the WSSSignature and WSSSignPart APIs complete the following steps
to specify which message parts to digitally sign when configuring the client for request generator signing:

Procedure

1. The WSSSignature API adds the required parts of the SOAP message to digitally sign. Either a
keyword or an XPath expression can be used to specify the required encryption parts.

2. The WSSSignature API sets the signature method algorithm. The default signature method is
RSA_SHA1. WebSphere Application Server supports the following pre-configured algorithms:

v RSA SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v HMAC SHA1http://www.w3.org/2000/09/xmldsig#hmac-sha1

WebSphere Application Server does not support the following algorithm for DSA-SHA1:
http://www.w3.org/2000/09/xmldsig#dsa-sha1. You cannot use the DSA-SHA1 algorithm if you want to
be compliant with the Basic Security Profile (BSP).

Any ds:SignatureMethod/@Algorithm element in a signature is based on a symmetric key and must
have a value of RSA-SHA1 or HMAC-SHA1.

The algorithm that is specified for the request generator configuration must match the algorithm that
is specified for the request consumer configuration.

3. The WSSSignature API sets the canonicalization method. The default signature method is
EXC_C14N. WebSphere Application Server supports the following pre-configured algorithms:

v The URI of the exclusive canonicalization algorithm, EXC_C14N: http://www.w3.org/2001/10/xml-
exc-c14n#.

v The URI of the inclusive canonicalization algorithm, C14N: http://www.w3.org/2001/10/xml-c14n#.

The canonicalization algorithm that you specify for the generator must match the algorithm for the
consumer.

4. The WSSSignature API adds a security token. The API adds information about the security token that
is to be used for the signature, such as:

v The class for security token.

1548 Developing WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

v The callback handler

v The name of the JAAS login configuration.

5. The WSSSignature API sets the type of security token and sets the type of token reference.
WebSphere Application Server supports the following pre-configured token references:

v SecurityToken.REF_STR

Represents the security token reference as a token reference type.

v SecurityToken.REF_KEYID

Represents the key identifier reference as a token reference type.

v SecurityToken.REF_EMBEDDED

Represents the embedded reference as a token reference type.

v SecurityToken.REF_THUMBPRINT

Represents the thumbprint reference as a token reference type.

6. If SecurityToken.REF_KEYID is set as the type of token reference, the WSSSignature API sets the
key information signature type and configures the key information that is referenced by the key
information references. WebSphere Application Server supports the following:

v Specifying that the KeyInfo element is not signed.

v Specifying that the entire <KeyInfo> element is signed.

v Specifying that the child elements <Keyinfochildelements> of the <KeyInfo> element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server specifies
that the entire <KeyInfo> element is signed, by default.

If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a
subsequent step, WebSphere Application Server also signs the referenced token.

The key information signature type for the generator must match the signature type for the consumer.

7. The WSSSignature API specifies whether to require signature confirmation. The OASIS Web Services
Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If you are
using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after
the receiving message is returned. This method is called if the response message is expected to
attach the signature confirmation into the SOAP message.

8. The WSSSignPart API specifies the part reference. The part reference specifies which parts of the
message to digitally sign.

The part reference refers to the message part that is digitally signed. The part attribute refers to the
name of the <Integrity> element when the <PartReference> element is specified for the signature.
You can specify multiple <PartReference> elements within the <SigningInfo> element. The
<PartReference> element has two child elements when it is specified for the signature verification:
<DigestTransform> and <Transform>.

9. The WSSSignPart API specifies the digest method algorithm. The digest method algorithm specified
within the <DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following pre-configured digest algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

10. The WSSSignPart API specifies the transform algorithm. The transform algorithm is that is specified
within the <Transform> element and specifies the transform algorithm for the signature. WebSphere
Application Server supports the following pre-configured transform algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Chapter 34. Developing web services - Security (WS-Security) 1549

Do not use this transform algorithm if you want to be compliant with the Basic Security Profile
(BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that you
select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the
referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#STR-Transform as the transform algorithm.

11. If you configure the client and server signing information correctly, but receive a Soap body not
signed error when running the client, you might need to configure the actor. Configure policy sets
using the administrative console to configure the same actor strings for the web service on the server,
which processes the request and sends the response back.

The actor information on both the client and server must refer to the same exact string. When the
actor fields on the client and server match, the request or response is acted upon instead of being
forwarded downstream. The actor might be different when you have web services acting as a
gateway to other web services. However, in all other cases, make sure that the actor information
matches on the client and server. When web services are acting as a gateway and they do not have
the same actor configured as the request passing through the gateway, web services do not process
the message from a client. Instead, these web services send the request downstream. The
downstream process that contains the correct actor string processes the request. The same situation
occurs for the response. Therefore, it is important that you verify that the appropriate client and server
actor fields are synchronized.

Results

After the WSSSignature and WSSSignPart APIs complete these steps, the signing information is
configured for the generator sections of the bindings files.

Example

The following example shows WSS API sample code to configure the signature, to generate the callback
handler, and to specify the X.509 token type as the security token:
WSSFactory factory = WSSFactory.getInstance();
// Instantiate a generation context
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler and specify the X.509 token
X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// Set the signature information
WSSSignature sig = factory.newWSSSignature(token);
// Add the header using QName

sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "To"));
sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "MessageID"));
sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "Action"));

// Apply the signature
gencont.add(sig);

// Secure the message
gencont.process(msgctx);

1550 Developing WebSphere applications

What to do next

You must configure similar signature information for the client-side request consumer (receiver) bindings
by completing the following verification tasks:

v Verify the signature

v Choose the signature algorithm methods.

v Change or add signed parts, as needed.

If signature verification is already configured, configure the encryption and decryption information, or
configure the consumer and generator tokens.

Configuring signing information using the WSSSignature API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the signing information for the generator binding sections
for the client-side request, use the WSSSignature API. The WSSSignature API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to enable the signing information. To secure SOAP messages, you must complete the following signing
tasks:

v Configure the signing information.

v Choose the signing methods.

v Add or change signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new
method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be
represented in various ways within serialized XML documents. The C14N process is used to canonicalize
XML information. Select an appropriate C14N algorithm because the information that is canonicalized
depends on this algorithm.

The signing information specifies the integrity constraints that are applied to generated messages. The
constraints include specifying which message parts within the generated message must be digitally signed,
and the message parts to attach digitally signed Nonce and timestamp elements to. The following
signature and related signature part information are configured:

Table 232. Signature parts information. Use the signature parts to secure messages.
signature parts Description

keyword Adds a signature part using keywords. Use the following keywords for the signature parts:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds a signature part by using an XPath expression.

part Adds a WSSSignPart object as a target of the signature part.

timestamp Adds a WSSTimestamp object as a target of the signature part. When specified, the timestamp
information also specifies when the message is generated and when it expires.

Chapter 34. Developing web services - Security (WS-Security) 1551

Table 232. Signature parts information (continued). Use the signature parts to secure messages.
signature parts Description

header Adds the header, specified by QName, as a target of the signature part.

securityToken Adds a SecurityToken object as a target of the signature part.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignature API is
to use the default behavior (see the example code). The default values are defined by the WSS API for
the signing method, the canonicalization method, the security token references, and the signature parts.

Table 233. Signature default behaviors. Several signature behaviors are configured by default.
Signature decisions Default behavior

Which keywords to use Sets the keywords. WebSphere Application Server supports the following keywords by default:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

Which signature method to use Sets the signature algorithm. The default signature method is RSA SHA1. WebSphere
Application Server supports the following pre-configured signature methods:

v WSSSignature.RSA_SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/xmldsig#dsa-sha1) is not
supported.

Which canonicalization method to use Sets the canonicalization algorithm. The default canonicalization method is EXC C14N.
WebSphere Application Server supports the following pre-configured canonicalization methods:

v WSSSignature.EXC_C14N; http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: http://www.w3.org/2001/10/xml-c14n#

Whether signature confirmation is required Sets whether to require signature confirmation. The default value is false. Signature
confirmation is defined in the OASIS Web Services Security Version 1.1 specification. If
required, the value of your signature confirmation is stored in order to use it to validate the
signature confirmation after receiving back the message that generated the signature
confirmation in the response message. This method is for the requestor side.

Which security token to use Sets the SecurityToken. The token type specifies which type of token to use for signing and
validating messages. The X.509 token is the default token type.

WebSphere Application Server provides the following pre-configured consumer token types:

v Derived Key Token

v X509 tokens

You can also create custom token types, as needed.

Which token reference to set Sets the refType. SecurityToken.REF_STR is the default value for the type of token reference.
WebSphere Application Server supports these pre-configured token references types:

v SecurityToken.REF_STR

v SecurityToken.REF_KEYID

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

If WSSSignature.requireSignatureConfirmation() is called, then the WSSSignature API expects that the
response message will include the signature confirmation.

Procedure

1. To configure the signing information in a SOAP message by using the WSS API, first ensure that the
application server is installed.

2. Use the WSSSignature API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signature follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.
WSSGenerationContext must be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

1552 Developing WebSphere applications

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken. The default
behavior of WSSSignature is to sign these signature parts: BODY, ADDRESSING_HEADERS, and
TIMESTAMP.

e. Adds the part to be signed, if the default part is not appropriate. If the digest method or transform
method is changed, creates WSSSignPart and add it to WSSSignature.

f. Creates WSSSignaturePart to WSSSignature. Calls the requiredSignatureConfirmation() method, if
the signature confirmation is to be applied.

g. Sets the canonicalization method, if the default is not appropriate.

h. Sets the signature method, if the default is not appropriate.

i. Sets the token reference, if the default is not appropriate.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signature for the generator section of the bindings. If there
is an error condition when signing the message parts, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses methods that are defined in the WSSignature API.
// Get the message context

Object msgcontext = getMessageContext();

// Generate the com.ibm.websphere.wssecurity.wssapi.WSSFactory instance (step: a)
WSSFactory factory = com.ibm.websphere.wssecurity.wssapi.WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token to be used for the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// Generate the WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part to be signed (step: e)
// DEFAULT: WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS,
// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP Header specified by QName (step: e)
sig.addSignHeader(new

QName("http://www.w3.org/2005/08/addressing",
"MessageID"));

// Set the part specified by the keyword (step: e)
sig.addSignPart(WSSSignature.BODY);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandler untCallbackHandler = new

UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

untCallbackHandler);
sig.addSignPart(unt);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();

sigPart.setSignPart(WSSSignature.TIMESTAMP);
sigPart.setDigestMethod(WSSSignPart.SHA256);
sig.addSignPart(sigPart);

Chapter 34. Developing web services - Security (WS-Security) 1553

// Set the part specified by WSSTimestamp (step: e)
WSSTimestamp timestamp = factory.newWSSTimestamp();

sig.addSignPart(timestamp);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

sig.addSignPartByXPath(sb.toString());

// Set to apply the signature confirmation (step: f)
sig.requireSignatureConfirmation();

// Set the canonicalization method (step: g)
// DEFAULT: WSSSignature.EXC_C14N

sig.setCanonicalizationMethod(WSSSignature.C14N);

// Set the signature method (step: h)
// DEFAULT: WSSSignature.RSA_SHA1

sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

// Set the token reference (step: i)
// DEFAULT: SecurityToken.REF_STR

sig.setTokenReference(SecurityToken.REF_KEYID);

// Add the WSSSignature to WSSGenerationContext (step: j)
gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process(msgctx);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Next, chose the algorithm methods if you want a method that is different from the default values. If the
algorithm methods do not need to be changed, next use the WSSVerification API to verify the signature
and specify the algorithm methods in the consumer section of the binding. Note that the WSSVerification
API is only supported on the response consumer (client side).

Adding signed parts using the WSSSignPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure parts to be signed for the request generator (client side)
bindings, use the WSSSignPart API to protect the integrity of messages and to configure the digest and
transform algorithm methods. The WSSSignPart API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to configure the signing information. To secure SOAP messages using the signing information, you must
complete one of the following tasks:

v Configure the signature information

v Configure signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing digest and transform algorithms (for example,
SHA1 or TRANSFORM_EXC_C14N).

1554 Developing WebSphere applications

The signing information specifies the integrity constraints that are applied to generated messages. The
signed parts are used to protect the integrity of messages. You can specify the signed parts to add for
message integrity protection.

The following table shows the required signed parts when the digital signature security constraint (integrity)
is defined:

Table 234. Signed parts information. Use the signed parts to secure messages.
Signed parts Description

keyword Adds signed parts using keywords. WebSphere Application Server supports the following
keywords for signed parts:

v BODY

v ADDRESSING_HEADERS

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds the required signed parts by using an XPath expression.

header Adds the header, specified by QName, as a signed part.

timestamp Adds a WSSTimestamp object as a signed part. If specified, the timestamp information specifies
when the message is generated and when it expires.

Different message parts can be specified in the message protection for request on the generator side.
WSSSignPart allows for adding a transform algorithm, setting a digest method, setting objects as targets,
specifying whether an element, and the signed parts, such as: the SOAP body, the WS-Addressing
header, and timestamp information.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignPart API is
to use the default behavior (see the example code). The signed parts default behaviors include:

Table 235. Default behavior of signed parts. Several signed part characteristics are configured by default.
Signature decisions Default behavior

Which SOAP message parts to sign WebSphere Application Server supports the following SOAP message parts to be signed and
used for message protection:

v WSSSignature.BODY

v WSSSignature.ADDRESSING_HEADERS

v WSSSignature.TIMESTAMP

Which digest method to use Sets the digest algorithm method. The digest method algorithm that is specified within the
<DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following pre-configured digest methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

Which transform algorithms to use Adds the transform method. The transform algorithm is specified within the <Transform>
element and specifies the transform algorithm for the signature.

WebSphere Application Server supports the following pre-configured transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-
exc-c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

Use this transform method to ensure compliance with the Basic Security Profile (BSP).

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

Procedure

1. To enable Web Services Security by using the WSS API (WSSSignPart), first ensure that the
application server is installed.

Chapter 34. Developing web services - Security (WS-Security) 1555

2. Use the WSSSignPart API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signed parts follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken.

e. Creates WSSSignPart from the WSSFactory instance.

f. Sets the part to be signed and the digest method or transform method specified by step g or step h
if the default is not appropriate.

g. Sets the digest method if the default is not appropriate.

h. Sets the transform method if the default is not appropriate.

i. Adds WSSSignPart to WSSSignature. After any WSSSignPart is set to WSSSignature, the default
parts to be signed, which are specified in WSSSignature, are ignored.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signed parts for the generator section of the bindings files.
If there is an error condition, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses all of methods that are defined in the WSSSignPart
API:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token used to the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

// Generate WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();

// Set the part specified by WSSSignPart (step: f)
sigPart.setSignPart(WSSSignature.BODY);

// Set the digest method specified by WSSSignPart (step: g)
sigPart.setDigestMethod(WSSSignPart.SHA256);

// Set the transform method specified by WSSSignPart (step: h)
sigPart.setTransformMethod(WSSSignPart.TRANSFORM_STRT10);

// Add the part specified by WSSSignPart (step: i)
sig.addSignPart(sigPart);

// Add the WSSSignature to the WSSGenerationContext (step: j)

1556 Developing WebSphere applications

gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Use the WSSVerifyPart API or configure policy sets using the administrative console to verify the signed
parts on the consumer side.

Configuring request signing methods for the client:

Use the WSSSignature and WSSSignPart APIs to choose the signing methods. The request signing
methods include the signature, canonicalization, digest, and transform methods.

Before you begin

First, you must have specified which parts of the message sent by the client must be digitally signed using
the WSS APIs or configuring policy sets using the administrative console.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following website http://www.w3.org/TR/xmldsig-core.

Table 236. Signing methods. Use the signing methods to secure messages.
Name of method Description

Canonicalization algorithm Canonicalizes the <SignedInfo> element before the information is digested as part of the
signature operation.

Signature algorithm Calculates the signature value of the canonicalized <SignedInfo> element. The algorithm
selected for the client request sender configuration must match the algorithm selected in the
server request receiver configuration.

Transform method Transforms the parts to be signed before the information is digested as part of the signature
operation.

Digest method Calculates the digest value of the transformed parts. The algorithm selected for the client
request sender configuration must match the algorithms selected in the server request
receiver configuration.

You can use the WSS APIs or configure policy sets using the administrative console to configure the
signing algorithm methods. If using the WSS APIs, use the WSSSignature and WSSSignPart APIs to
specify which message parts to digitally sign when configuring the client for request signing.

The WSSSignature and WSSSignPart APIs complete the following steps to configure the signature and
signed part algorithm methods:

Procedure

1. For the generator binding, the WSSSignature API specifies the signature method. WebSphere
Application Server supports the following pre-configured signature methods:

v WSSSignature.RSA_SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 digital signature
method, http://www.w3.org/2000/09/xmldsig#dsa-sha1.

2. For the generator binding, the WSSSignature API specifies the canonicalization method. WebSphere
Application Server supports the following pre-configured canonicalization algorithms:

Chapter 34. Developing web services - Security (WS-Security) 1557

http://www.w3.org/TR/xmldsig-core

v WSSSignature.EXC_C14N (the default value): The exclusive canonicalization algorithm,
http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: The inclusive canonicalization algorithm, http://www.w3.org/2001/10/xml-c14n#

3. For the generator binding, the WSSSignPart API specifies the digest method. WebSphere Application
Server supports the following pre-configured digest methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

4. For the generator binding, the WSSSignPart API specifies the transform method. WebSphere
Application Server supports the following pre-configured transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

Results

Using the WSS APIs, you have specified which algorithm methods are used to digitally sign a message
when the client sends a message to a server.

Example

The following example is sample code for specifying the signature information, HMAC_SHA1 as signature
method, C14N as a canonicalizaion method, SHA256 as a digest method, and EXC_C14N and
TRANSFORM_STRT10 as the transform methods:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod(WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

1558 Developing WebSphere applications

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the digest method
// DEFAULT: WSSSignPart.SHA1
sigPart.setDigestMethod(WSSSignPart.SHA256);

//add the transform method
// DEFAULT: WSSSignPart.TRANSFORM_EXC_C14N
sigPart.addTransformMethod(WSSSignPart.TRANSFORM_EXC_C14N);
sigPart.addTransformMethod(WSSSignPart.TRANSFORM_STRT10);

// add the WSSSignPart to the WSSSignature
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

What to do next

After you configure the client to digitally sign the message and to choose the algorithm methods, you must
configure the server to verify the digital signature for request signing and to choose the algorithm methods.

Configure policy sets using the administrative console to configure the signature verification information
and methods on the server.

Digital signing methods using the WSSSignature API:

You can configure the signing information for the generator binding using the WSS API. To configure the
client for request signing, choose the digital signing methods. The algorithm methods include the signing
and canonicalization methods.

You must configure generator signing information to protect message integrity by digitally signing SOAP
messages. Integrity refers to digital signature while confidentiality refers to encryption. Integrity decreases
the risk of data modification when you transmit data across a network.

After you have specified which message parts to digitally sign, you must specify which method is used to
digitally sign the message.

Methods

Methods that are used for the signing information include the:

Signature method
Sets the signature algorithm method.

Canonicalization method
Sets the canonicalization algorithm method.

Signature algorithms

The signature algorithms specify the algorithm that is used to sign the certificate. The signature algorithms
specify the Uniform Resource Identifiers (URI) of the signature method. WebSphere Application Server
supports the following pre-configured algorithms:

Table 237. Signature algorithms. The algorithms include the signing methods.
Algorithm Description

WSSSignature.HMAC_SHA1 A URI of the signature algorithm, HMAC: http://www.w3.org/2000/09/
xmldsig#hmac-sha1

WSSSignature.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA: http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Chapter 34. Developing web services - Security (WS-Security) 1559

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 algorithm,
http://www.w3.org/2000/09/xmldsig#dsa-sha1

The signing algorithm that is specified for the request generator configuration must match the algorithm
that is specified for the request consumer configuration.

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization
method. WebSphere Application Server supports the following pre-configured algorithms:

Table 238. Signature canonicalization algorithms. The algorithms include the canonicalization methods.
Algorithm Description

WSSSignature.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm EXC_C14N:
http://www.w3.org/2001/10/xml-exc-c14n#

WSSSignature.C14N A URI of the inclusive canonicalization algorithm, C14N:
http://www.w3.org/2001/10/xml-c14n#

The canonicalization algorithm that is specified for the request generator configuration must match the
algorithm that is specified for the request consumer configuration.

The following example provides sample WSS API code that specifies the HMAC_SHA1 as a signature
method and C14n as a canonicalization method:

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod(WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

Signed parts methods using the WSSSignPart API:

You can configure the signed parts information for the generator binding using the WSS API. The
algorithms include the digest and transform methods.

You can protect message integrity by configuring signed parts and key information. Integrity refers to
digital signature while confidentiality refers to encryption. Integrity decreases the risk of data modification
when you transmit data across a network.

1560 Developing WebSphere applications

Methods

Methods that are used for the signed parts include the:

Digest method
Sets the digest algorithm method.

Transform algorithm
Sets the transform algorithm method.

Digest algorithms

The digest method algorithm specified within the element is used in the element. WebSphere Application
Server supports the following pre-configured algorithms:

Table 239. Signed parts digest methods. The methods are used for the signed parts.
Digest method Description

WSSSignPart.SHA1 (the default value) A URI of the digest algorithm, SHA1: http://www.w3.org/2000/09/
xmldsig#sha1

WSSSignPart.SHA256 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha256

WSSSignPart.SHA512 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha512

Transform algorithms

The transform method algorithm specified within the element is used in the element. WebSphere
Application Server supports the following pre-configured algorithms:

Table 240. Signed parts transform methods. The methods are used for the signed parts.
Digest method Description

WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE A URI of the transform algorithm, enveloped signature:
http://www.w3.org/2000/09/xmldsig#enveloped-signature

WSSSignPart.TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform: http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform

WSSSignPart.TRANSFORM_EXC_C14N (the default value) A URI of the transform algorithm, Exc-C14N: http://www.w3.org/2001/10/
xml-exc-c14n#

WSSSignPart.TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter: http://www.w3.org/2002/
06/xmldsig-filter2

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm
for the signed part.

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

The following example provides sample WSS API code for specifying the signature and signed parts,
setting the signing key and adding the STR-Transform transform algorithm as signed parts:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(

Chapter 34. Developing web services - Security (WS-Security) 1561

"",
"dsig-sender.ks",
"jks",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the part specified by WSSSignPart
sigPart.setSignPart(WSSSignature.BODY);

//set the digest method specified by WSSSignPart
sigPart.setDigestMethod(WSSSignPart.SHA256);

//set the transform method specified by WSSSignPart
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

//set the part specified by WSSSignPart
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

Attaching the generator token using WSS APIs to protect message authenticity:

When you specify the token generator, the information is used on the generator side to generate the
security token.

Before you begin

The token processing and pluggable token architecture in the Web Services Security run time reuses the
same security token interface and Java Authentication and Authorization Service (JAAS) Login Module
from the Web Services Security APIs (WSS API). The same implementation of token creation and
validation can be used in both the WSS API and the WSS SPI in the Web Services Security run time.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface is not used with
JAX-WS web services. If you are using JAX-RPC web services, this interface is still valid.

Note that the key name (KeyName) element is not supported in the application server because there is no
KeyName policy assertion defined in the current OASIS Web Services Security draft specification.

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible
for creating the security token on the generator side and validating (authenticating) the security token on
the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using
the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username
SecurityToken object and passes it to the Web Services Security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for
validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the
Web Services Security run time to the LoginModule. After the token is authenticated, a Username
SecurityToken object is created and passed it to the Web Services Security run time.

1562 Developing WebSphere applications

Note: WebSphere Application Server does not support a stackable login module with the WebSphere
Application Server default login module implementation, meaning adding the login module before or
after the WebSphere Application Server login module implementation. If you want to stack the login
module implementations, you must develop the required login modules because there is no default
implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server
includes support for these classes:

v Security token (SecurityTokenImpl)

v Binary security token (BinarySecurityTokenImpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security
tokens:

v Derived key token

v Security context token (SCT)

v Username token

v LTPA token propagation

v LTPA token

v X509PKCS7 token

v X509PKIPath token

v X509v3 token

v Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message
authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS API and WSS SPI are only supported on the client. To specify the security token type on the
generator side, you can also configure policy sets using the administrative console. You can also use the
WSS APIs or policy sets for matching consumer security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both
a generator and a consumer part. To use the default implementations, select the appropriate generator
and consumer security token in a pair. For example, select system.wss.generate.x509 in the token
generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the generator-side security token, use the appropriate pre-configured token generator
interface from the WSS APIs to complete the following token configuration process steps:

Procedure

1. Generate the wssFactory instance.

2. Generate the wssGenerationContext instance.

The WSSGenerationContext interface stores the components for generating Web Services Security
(WS-Security), such as the signing and encryption information, the security token, and the time
stamp. When the generate() method is called, all of these components are generated.

3. Create the generator-side components, such as the WSSSignature and the WSSEncryption objects.

4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java
Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS
configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not
remove the predefined system or application login configurations. However, within these
configurations, you can add module class names and specify the order in which WebSphere
Application Server loads each module.

Chapter 34. Developing web services - Security (WS-Security) 1563

5. Specifiy a token generator class name. The token generator class name specifies the required
information to generate the SecurityToken. The Username token, the X.509 tokens, and the LTPA
tokens are used by default for message authenticity.

6. Specifiy the settings for the callback handler by specifying a callback handler class name and also
specifies the callback handler keys. This class name is the name of the callback handler
implementation class that is used for the plug-in to the security token framework.

The callback handler implementation obtains the required security token and passes it to the token
generator. The token generator inserts the security token in the Web Services Security header within
the SOAP message. Also, the token generator is a plug-in point for the pluggable security token
framework. Service providers can provide their own implementation, but the implementation must use
the WSSGenerationContext interface.

WebSphere Application Server provides the following default callback handler implementations for the
generator side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback
This class is a callback for handling the name-value pair in elements in the Web Services
Security (WS-Security) configuration XMI files.

com.ibm.websphere.wssecurity.callbackhandler.UNTGUIPromptCallbackHandler
This class is a callback handler for the Username token with the GUI prompt on the generator
side. This instance is used to set the WSSGenerationContext object to generate a Username
token.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
This class is a callback handler for the Username token on the generator side. This instance
is used to set into WSSGenerationContext object to attach a Username token. Use this
implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
This class is a callback handler that is used to generate the X.509 certificate that is inserted
in the Web Services Security header within the SOAP message as a binary security token on
the generator side. This instance is used to generate the WSSSignature and WSSEncryption
objects, set the objects into the WSSGenerationContext object to generate the X.509 binary
security tokens. A keystore and a key definition are required for this callback handler. If you
use this implementation, a key store password, path, and type must be provided on the
generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler
This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens
on the generator side. This instance is used to generate WSSSignature object and
WSSEncryption object to generate a LTPA token.

This callback handler is used to validate the LTPA security token inserted in the Web Services
Security header within the SOAP message as a binary security token. However, if the user
name and password are specified, WebSphere Application Server authenticates the user
name and password to obtain the LTPA security token rather than obtaining it from the Run
As Subject. Use this callback handler only when the web service is acting as a client on the
application server. It is recommended that you do not use this callback handler on a Java EE
application client. If you use this implementation, a basic authentication user ID and password
must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler
This class is a callback handler for the Kerberos v5 token on the generator side. This
instance is used to set the WSSGenerationContext object to generate the Kerberos v5
AP-REQ as a binary security token. The instance is also used to generate the WSSSignature
and WSSEncryption objects to use the Kerberos session key or derived key in the SOAP
message signature and encryption.

7. If a X.509 token is specified, additional token information is also specified.

1564 Developing WebSphere applications

Table 241. Information for X.509 token. Use the X.509 token for signing and encryption.
Token Information Description

storeRef The reference name of the keystore.

storePath The keystore file path from which the keystore is loaded, if needed. It is recommended that you use the
${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application Server path
on your machine. This path is required when you use the X.509 tokens callback handler implementations.

storePassword The password that is used to check the integrity of the keystore, or the keystore password that is used to
unlock the keystore and to access the keystore file. The keystore and its configuration are used for some of
the default callback handler implementations that are provided by WebSphere Application Server.

storeType The keystore type of keystore that is used for the key locator. This selection indicates the format that is
used by the keystore file. The following values are available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the software development kit
(SDK). The default IBM JCE is configured in WebSphere Application Server. This option
provides stronger protection for stored private keys by using Triple DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format might
contain RSA keys on cryptographic hardware or might encrypt keys that use cryptographic
hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

alias The key alias name. The key alias is used by the key locator to find the key within the keystore file.

keyPassword The key password that is used for recovering the key. This password is needed to access the key object
within the keystore file.

keyName The name of the key. For digital signatures, the key name is used by the request generator or response
consumer signing information to determine which key is used to digitally sign the message. For encryption,
the key name is used to determine the key used for encryption. The key name must be a fully qualified,
distinguished name (DN). For example, CN=Bob,O=IBM,C=US.

certStores A list of certificate stores. A collection certificate store includes a list of untrusted, intermediary certificates
and certificate revocation lists (CRLs). This step configures a collection certificate store and certificate
revocation lists for the generator bindings.

identityAssertion Specifies whether identity assertion is used. Selects this item if identity assertion is defined. This option
indicates that only the identity of the initial sender is required and inserted into the Web Services Security
header within the SOAP message. For an X.509 token generator, the application server sends the original
signer certification only.

requestorCertificate Specifies whether the certificate of the requestor is used.

The following can be specified for a X.509 token:

a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted
root certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. For example, when you select the trust anchor or the certificate
store of a trusted certificate, you must configure the trust anchor and the certificate store before
setting the certificate path.

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The
keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to
access the keystore file. Keystore objects within trust anchors contain trusted root certificates that
are used by the CertPath API to validate the trustworthiness of a certificate chain.

d. With keystore that is used for the key locator and the trust anchor.

e. With a map that includes key-value pairs. For example, you might specify the value type name
and the value type Uniform Resource Identifier (URI). The value type specifies the namespace
URI of the value type for the generated token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3

Specifies an X.509 certificate token.

Chapter 34. Developing web services - Security (WS-Security) 1565

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler
is used to create X.509 certificates encoded with the PkiPath format. The certificate is
inserted in the Web Services Security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by
the callback handler; therefore, the collection certificate store is not required or used. If
you use this implementation, you must provide a key store password, path, and type on
this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#PKCS7

Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web Services Security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value
type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For an LTPA token, you can use LTPA for the value type local name. This local name
causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for
the value type Uniform Resource Identifier (URI).

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local
name. This local name causes http://www.ibm.com/websphere/appserver/tokentype to
be specified for the value type Uniform Resource Identifier (URI).

8. If the Username token is specified as the token generator class name, the following token information
can be specified:

a. Whether to use IdentityAssertion option. This option is selected if identity assertion is defined.
This option indicates that only the identity of the initial sender is required and inserted into the
Web Services Security header within the SOAP message. For example, WebSphere Application
Server sends only the user name of the original caller for a Username token generator.

b. Whether to use RunAsSubject identity option. This option is used if an identity assertion is defined
and you want to use the Run As identity instead of the initial caller identity for identity assertion in
a downstream call. This option is valid only if you have configured the Username token as the
token generator.

c. Whether to use sendRealm.

d. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token generator. Nonce is a unique,
cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of
Username tokens. Nonce is valid only when the generated token type is a Username token, and it
is available only for the request generator binding.

e. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in
the Username token. The time stamp is valid only when the incorporated token type is a
Username token.

f. Specifies a map that includes key-value pairs. For example, you might specify the value type
name and the value type Uniform Resource Identifier (URI). The value type specifies the
namespace URI of the value type for the generated token, and represents the token type of this
class:

1566 Developing WebSphere applications

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

Specifies a Username token.

9. If the Kerberos v5 token is specified as the token generator class name, the following token
information can be specified:

Token Information Description Default Value

name Kerberos client principal name

password Kerberos client password

realm Kerberos realm associated with the
Kerberos client

Default realm name in Kerberos
configuration file.

Specify null to use the default value.

targetService Kerberos service name associated
with the target web services.

targetHost Kerberos realm name associated with
the Kerberos service name.

tokenValueType Kerberos token value type in QName
defined by Oasis Kerberos Token
Profile v1.1 specification.

http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

targetRealm Kerberos realm name associated with
the Kerberos service name.

Default realm name in the Kerberos
configuration file

prompt A boolean value to enable the login
prompt.

false

supportTokenRequireSHA1 A boolean value to require a SHA1
key that is used in subsequent
request messages when the Kerberos
token is used as a supporting token.

false

SHA1 key is consumed only if the
supporting Kerberos token is
protected. If set to true, the SHA1 key
is always consumed.

alwaysAPREQ A boolean value to indicate that the
client should always send the
Kerberos AP_REQ token in the
request messages.

false

The SHA1 key is used instead in the
subsequent messages. If set to true,
the Kerberos AP_REQ token is
always used.

requireDKT A boolean value to require a derived
key for message protection.

false

clabel The client label for the derived key. WS-SecureConversation

Specify null to use the default value.

slabel The service label for the derived key. WS-SecureConversation

Specify null to use the default value.

keylen The length of the derived key. 16

Specify zero to use the default value

noncelen The length of the nonce. 16

Specify zero to use the default value

Chapter 34. Developing web services - Security (WS-Security) 1567

Token Information Description Default Value

encComponent An instance of WSSEncryption. Set encComponent and
sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

sigComponent An instance of WSSSignature. Set encComponent and
sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.
Specify the token value type as the local name. It is not necessary to specify the value type URI for
the Kerberos v5 token.

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

10. If Secure Conversation is used for message protection, the following information must be specified:

Information Description

bootstrapWSSGenerationContext The bootstrap configuration used to secure the
RequestSecurityToken (RST) token.

bootstrapWSSConmingContext The bootstrap configuration used for consuming a
secured RequestSecurityTokenResponse (RSTR).

ENDPOINT_URL The service end point URL.

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssGenerationContext object.

12. Invoke the wssGenerationContext.process() method.

Results

Using the Web Services Security API (WSS API) process, you can configured the token generator.

What to do next

Next, you must specify a similar token consumer configuration.

Configuring generator security tokens using the WSS API:

1568 Developing WebSphere applications

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.
To configure the token on the generator side, use the Web Services Security APIs (WSS API). The
generator security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same
framework from the WSS API can be reused. The same implementation of creating and validating security
token can be used both for the Web Services Security runtime and for the WSS API application code. The
redesigned framework also simplifies the SPI programming model and will make it easier to add security
token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To
configure tokens, you must complete the following token tasks:

v Configure the generator tokens.

v Configure the consumer tokens.

About this task

The JAAS CallbackHandler and JAAS LoginModule are responsible for creating the security token on the
generator side.

On the generator side, the token is created by using the JAAS LoginModule and by using JAAS
CallbackHandler to pass authentication data. Then, the JAAS LoginModule creates the securityToken
object, such as the UsernameToken, and passes it to the Web Services Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.
then the JAAS CallbackHandler is used to pass authentication data from the Web Services Security
runtime to the LoginModule. After the token is authenticated, a security token object is created, and the
token is passed it to the Web Services Security runtime.

When using the WSS API for generator token creation, certain default behaviors occur. The simplest way
to use the WSS API is to use the default behavior (see the example code). The WSS API provide default
values for the token type, the token value, and the JAAS confirmation name. The default token behaviors
include:

Table 242. Token decisions and default behaviors. Several token characteristics are configured by default.
Generator token decisions Default behavior

Which token type to use The token type specifies which type of token to use for message integrity, message confidentiality, or
message authenticity.

WebSphere Application Server provides the following pre-configured generator token types for message
integrity and message confidentiality:

v Derived key token

v X509 tokens

You can also create custom token types, as needed.

WebSphere Application Server also provides the following pre-configured generator token types for the
message authenticity:

v Username token

v LTPA tokens

v X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration name to
specify

The JAAS login configuration name specifies which JAAS login configuration name to use.

Which configuration type to use The JAAS login module specifies the configuration type. Only the pre-configured generator
configuration types can be used for generator token types.

Chapter 34. Developing web services - Security (WS-Security) 1569

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token
class and represents the security token that has methods to get the identity, the XML format, and the
cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the
SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature
and one for encryption, respectively.

The following tokens types are subclasses of the generic security token class:

Table 243. Subclasses of the SecurityToken. Use the subclasses to represent the security token.
Token type JAAS login configuration name

Username token system.wss.generate.unt

Security context token system.wss.generate.sct

Derived key token system.wss.generate.dkt

The following tokens types are subclasses of the binary security token class:

Table 244. Subclasses of the BinarySecurityToken. Use the subclasses to represent the binary security token.
Token type JAAS login configuration name

LTPA token system.wss.generate.ltpa

LTPA propagation token system.wss.generate.ltpaProp

X.509 token system.wss.generate.x509

X.509 PKI Path token system.wss.generate.pkiPath

X.509 PKCS7 token system.wss.generate.pkcs7

Note:

v For each JAAS login token generator configuration name, there is a respective token consumer
configuration name. For example, for the Username token, the respective token consumer
configuration name is system.wss.consume.unt.

v The LTPA and LTPA propagation tokens are only available to a requester that is running as a
server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6
or Java EE application client.

Procedure

1. To configure the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure
that the application server is installed.

2. Use the Web Services Security token generator process to configure the tokens. For each token type,
the process is similar to the following process that demonstrates the UsernameToken token generator
process:

a. Use WSSFactory.getInstance() to get the WSS API implementation instance.

b. Create the WSSGenerationContext instance from the WSSFactory instance.

c. Create a JAAS CallbackHandler. The authentication data, such as the user name and password
are specified as part of the CallbackHandler. For example, the following code specifies Chris as the
user name and sirhC as the password: UNTGenerationCallbackHandler("Chris", "sirhC");

d. Call any JAAS CallbackHandler parameters and review the token class information for which
parameters are required or optional. For example, for the UsernameToken, the following
parameters can be configured also:

Nonce
Indicates whether a nonce is included in the user name token for the token generator.
Nonce is a unique, cryptographic number that is embedded in a message to help stop
repeat, unauthorized attacks of user name tokens. The nonce value is valid only when the
generated token type is a UsernameToken and only when it applies to the request
generator binding.

1570 Developing WebSphere applications

Created timestamp
Indicates whether to insert a time stamp into the UsernameToken. The timestamp value is
valid only when the generated token type is a UsernameToken and only when it applies to
the request generator binding.

e. Create the SecurityToken from WSSFactory.

By default, the UsernameToken API specifies the ValueType as: "http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken"

By default, the UsernameToken API provides the QName of this class and specifies the
NamespaceURI as http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd and also specifies the LocalPart as UsernameToken.

f. Optional: Specify the JAAS login module configuration name. On the generator side, the
configuration type is always generate (for example, system.wss.generate.unt).

g. Add the SecurityToken to the WSSGenerationContext.

h. Call WSSGenerationContext.process() and generate the WS-Security header.

Results

If there is an error condition, a WSSException is provided. If successful, the WSSGenerationContext
process() is called, and the security token for the generator binding is attached.

Example

The following example code shows how to use WSS APIs to create a Username security token, attach the
Username token to the SOAP message, and configure the Username token in the generator binding.
// import the packages
import javax.xml.ws.BindingProvider;
import com.ibm.websphere.wssecurity.wssapi.*;
import com.ibm.websphere.wssecurity.callbackhandler.*;
...

// obtain the binding provider
BindingProvider bp = ... ;

// get the request context
Map<String, Object> reqContext = bp.getRequestContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler
UNTGenerateCallbackHandler untCallbackHandler =
new UNTGenerateCallbackHandler("Chris", "sirhC");

// generate the username token
SecurityToken unt = factory.newSecurityToken(UsernameToken.class, untCallbackHandler);

// add the SecurityToken to the WSSGenerationContext
gencont.add(unt);

// generate the WS-Security header
gencont.process(reqContext);

The following example code shows how to modify the preceding Username token sample to create an
LTPAv2 token from the runAs identity on the current thread. The two lines of code that instantiate the
callback handler and create the security token are replaced with the following two lines of code:
// generate callback handler
LTPAGenerateCallbackHandler ltpaCallbackHandler = new LTPAGenerateCallbackHandler(null, null);

// generate the LTPAv2 token
SecurityToken ltpa = wssfactory.newSecurityToken(LTPAv2Token.class, ltpaCallbackHandler);

The instantiation of the LTPAGenerateCallbackHandler object with (null, null) indicates that the LTPA token
should be generated from the current runAs identity. If the callback handler is instantiated with basicAuth
information, ("userName", "password"), a new LTPA token is created using the specified basicAuth
information.

Chapter 34. Developing web services - Security (WS-Security) 1571

The following example shows how to use secure conversation with the WSS APIs to configure the
generator tokens, as well as the consumer tokens. In this example, the SecurityContextToken token is
created using the WS-SecureConversation draft namespace: http://schemas.xmlsoap.org/ws/2005/02/
sc/sct. To use the WS-SecureConversation version 1.3 namespace, http://docs.oasis-open.org/ws-sx/
ws-secureconversation/200512/sct, specify SecurityContextToken13.class instead of
SecurityContextToken.class.
// import the packages
import javax.xml.ws.BindingProvider;
import com.ibm.websphere.wssecurity.wssapi.*;
import com.ibm.websphere.wssecurity.callbackhandler.*;
...

// obtain the binding provider
BindingProvider bp = ... ;

// get the request context
Map<String, Object> reqContext = bp.getRequestContext();

// generate WSSFactory instance
WSSFactory wssFactory = WSSFactory.getInstance();

WSSGenerationContext bootstrapGenCon = wssFactory.newWSSGenerationContext();

// Create a Timestamp
...
// Add Timestamp
...

// Sign the SOAP Body, WS-Addressing headers, and Timestamp
X509GenerateCallbackHandler btspReqSigCbHandler = new X509GenerateCallbackHandler(...);
SecurityToken btspReqSigToken = wssFactory.newSecurityToken(X509Token.class,

btspReqSigCbHandler);
WSSSignature bootstrapReqSig = wssFactory.newWSSSignature(btspReqSigToken);
bootstrapReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);

// Add Sign Parts
...
bootstrapGenCon.add(bootstrapReqSig);

// Encrypt the SOAP Body and the Signature
X509GenerateCallbackHandler btspReqEncCbHandler = new X509GenerateCallbackHandler(...);
SecurityToken btspReqEncToken = wssFactory.newSecurityToken(X509Token.class,

btspReqEncCbHandler);
WSSEncryption bootstrapReqEnc = wssFactory.newWSSEncryption(btspReqEncToken);
bootstrapReqEnc.setEncryptionMethod(WSSEncryption.AES128);
bootstrapReqEnc.setKeyEncryptionMethod(WSSEncryption.KW_RSA15);

// Add Encryption parts
...
bootstrapGenCon.add(bootstrapReqEnc);
WSSConsumingContext bootstrapConCon = wssFactory.newWSSConsumingContext();
X509ConsumeCallbackHandler btspRspVfyCbHandler = new X509ConsumeCallbackHandler(....);
WSSVerification bootstrapRspVfy = wssFactory.newWSSVerification(X509Token.class,

btspRspVfyCbHandler);
bootstrapRspVfy.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Add Verify parts
...
bootstrapConCon.add(bootstrapRspVfy);
X509ConsumeCallbackHandler btspRspDecCbHandler = new X509ConsumeCallbackHandler(...);
WSSDecryption bootstrapRspDec = wssFactory.newWSSDecryption(X509Token.class,

btspRspDecCbHandler);
bootstrapRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);
bootstrapRspDec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_RSA15);

// Add Decryption parts
...
bootstrapConCon.add(bootstrapRspDec);
SCTGenerateCallbackHandler sctgch = new SCTGenerateCallbackHandler(bootstrapGenCon,

bootstrapConCon,
ENDPOINT_URL,
WSSEncryption.AES128);

SecurityToken[] scts = wssFactory.newSecurityTokens(new Class[]{SecurityContextToken.class},
sctgch);

SecurityContextToken sct = (SecurityContextToken)scts[0];

// Use the SCT to generate DKTs for Secure Conversation
// Signature algorithm and client and service labels
DerivedKeyToken dktSig = sct.getDerivedKeyToken(WSSSignature.HMAC_SHA1,

"WS-SecureConversation",
"WS-SecureConversation");

// Encryption algorithm and client and service labels
DerivedKeyToken dktEnc = sct.getDerivedKeyToken(WSSEncryption.AES128,

"WS-SecureConversation",
"WS-SecureConversation");

1572 Developing WebSphere applications

// Create the application generation context for the request message
WSSGenerationContext applicationGenCon = wssFactory.newWSSGenerationContext();

// Create and add Timestamp
...

// Add the derived key token and Sign the SOAP Body and WS-Addressing headers
WSSSignature appReqSig = wssFactory.newWSSSignature(dktSig);
appReqSig.setSignatureMethod(WSSSignature.HMAC_SHA1);
appReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);
...
applicationGenCon.add(appReqSig);

// Add the derived key token and Encrypt the SOAP Body and the Signature
WSSEncryption appReqEnc = wssFactory.newWSSEncryption(dktEnc);
appReqEnc.setEncryptionMethod(WSSEncryption.AES128);
appReqEnc.setTokenReference(SecurityToken.REF_STR);
appReqEnc.encryptKey(false);
...
applicationGenCon.add(appReqEnc);

// Create the application consuming context for the response message
WSSConsumingContext applicationConCon = wssFactory.newWSSConsumingContext();

//client and service labels and decryption algorithm
SCTConsumeCallbackHandler sctCbHandler = new SCTConsumeCallbackHandler("WS-SecureConversation",

"WS-SecureConversation",
WSSDecryption.AES128);

// Derive the token from SCT and use it to Decrypt the SOAP Body and the Signature
WSSDecryption appRspDec = wssFactory.newWSSDecryption(SecurityContextToken.class,

sctCbHandler);
appRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);
appRspDec.encryptKey(false);
...
applicationConCon.add(appRspDec);

// Derive the token from SCT and use it to Verify the
// signature on the SOAP Body, WS-Addressing headers, and Timestamp
WSSVerification appRspVfy = wssFactory.newWSSVerification(SecurityContextToken.class,

sctCbHandler);
...
applicationConCon.add(appRspVfy);
...
applicationGenCon.process(reqContext);
applicationConCon.process(reqContext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,
specify the similar consumer tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by
signing the SOAP message or by encrypting the message, as needed. You can use either the WSS APIs
or the administrative console to secure the SOAP messages.

Sending self-issued SAML bearer tokens using WSS APIs:

You can create self-issued SAML tokens with the bearer subject confirmation method and then send these
tokens with Web services request messages using the Java API for XML-Based Web Services (JAX-WS)
programming model and Web Services Security APIs (WSS API).

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings.

About this task

You can build your web services client to use SAML tokens with the bearer subject confirmation method in
SOAP request messages using the Web Services Security programming interfaces. Using the
programming interfaces in a web services client to specify the use of SAML tokens with bearer subject
confirmation is an alternative approach to using policy sets and binding configurations.

Chapter 34. Developing web services - Security (WS-Security) 1573

You can create a self-issued SAML token and then send the SAML token in web services request
messages from a web services client. The web services application client used in this task is a modified
version of the client code that is contained in the JaxWSServicesSamples sample application that is
available for download. Code snippets from the sample are described in the procedure section, and a
complete, ready-to-use web services client sample is provided in the Example section.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to add the Web Services Security API to pass
SAML tokens in SOAP request messages programmatically using WSS APIs, complete the following
steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS Web services thin client; however,
you can also use a managed client.

2. Attach the SAML20 Bearer WSHTTPS default policy set to the web services provider. This policy set is
used to protect messages using HTTPS transport. Read about configuring client and provider bindings
for the SAML Bearer token for details on how to attach the SAML20 Bearer WSHTTPS default policy
set to the Web services provider. The example in this procedure uses self-issued SAML tokens. When
you configure the provider bindings, the truststore configuration and certificate must match the signing
key of the self-issued token.

3. Assign the SAML Bearer Provider sample default general bindings to the sample web services
provider. Read about configuring client and provider bindings for the SAML bearer token for details on
assigning the SAML Bearer Provider sample default general bindings to your web services application.

4. Create the self-issued SAML token. The following code snippet illustrates creating the SAML token:
// Create the SAML token.
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

a. Use the CallService() method to specify the Web services security configuration parameters that
are required to invoke a target Web services provider using a self-issued SAML token.

The CallService() method sets the configuration parameters that are required by the Web Services
Security runtime environment via the
com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext custom property to generate a
self-issued SAMLToken.

1574 Developing WebSphere applications

Read about configuring a SAML token during token creation for more information about how you
can specify configuration properties to control how the token is configured.

b. Add the Thin Client for JAX-WS JAR file to the class path. Add the app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the class path. See the testing web services-enabled
clients information for more information about adding this JAR file to the class path.

c. Use the WSSFactory newSecurityToken method to specify how to create the SAML token.

Specify the following method to create the SAML token:
WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Creating a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Use the PolicyTool to add the following policy
statement to the Java security policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken

The SAMLToken.class parameter specifies the type of security token to create.

The callbackHandler object contains parameters that define the characteristics of the SAMLToken
that you are creating. This object points to a SAMLGenerateCallbackHandler object that specifies
the configuration parameters described in the following table:

Table 245. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the bearer subject confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the Bearer confirmation method. Yes

SamlConstants.TOKEN_TYPE Uses the constant value, WSSConstants.SAML.SAML20_VALUE_TYPE, to
specify a SAML 2.0 token type.

When a web services client has policy set attachments, this property is
not used by Web Services Security runtime environment. In this scenario,
specify the token value type by the valueType attribute of the
tokenGenerator binding configuration.

The example in this procedure uses a SAML 2.0 token; however, you can
also use the WSSConstants.SAML.SAML11_VALUE_TYPE value.

Yes

SamlConstants.SAML_NAME_IDENTIFIER Specifies a user identity such as myname as the NameID value in the
SAML token.

If you do not define this parameter when using the Thin Client for
JAX-WS, the NameID value does not contain useful information.

If you are using a web services managed client, such a Java Platform,
Enterprise Edition (Java EE) application making a web services request
invocation, the Web Services Security runtime environment tries to
extract user security information from the security context. Similarly, if you
do not define this parameter for a managed web services client, the
NameID value contains an UNAUTHENTICATED name identifier.

This property is not used if your web services client has policy set
attachments. Read about sending SAML tokens to learn more about
sending the SAML token identity and attributes.

No

SamlConstants.SIGNATURE_REQUIRED Specifies whether the issuer is required to digitally sign the SAML token.

A true value specifies that issuer is required to digitally sign the SAML
token. This value is the default.

No

The system.wss.generate.saml parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the SAML token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in
the sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf ");

d. Obtain the token identifier of the created SAML token.

Chapter 34. Developing web services - Security (WS-Security) 1575

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

5. Add the SAML token to the SOAP security header of a Web services request messages.

a. Initialize the web services client and configure the SOAPAction properties. The following code
snippet illustrates these actions:

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

b. Initialize the WSSGenerationContext. The following code illustrates the use of the
WSSGenerationContext interface to initialize a generation context and enable you to insert the
SAMLToken into the web services request message:

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

Specifically, the gencont.add(samlToken) method call specifies to put the SAML token into a
request message. Use the PolicyTool to add the following policy statement to the Java security
policy file or the application client was.policy file:

“permission javax.security.auth.AuthPermission "modifyPrivateCredentials"

c. Add the timestamp element in the SOAP messages security header. The SAML20 Bearer
WSHTTPS default policy set requires web services requests and response messages to carry a
timestamp element in SOAP messages Security header. In the following code snippet, the
factory.newWSSTimestamp() method call generates the timestamp, and the
gencont.add(timestamp) method call specifies the timestamp to put into a request message:

// Add a timestamp to the request message.
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);

gencont.process(requestContext);

d. Attach WSSGenerationContext object to the web services RequestContext object. The
WSSGenerationContext object now contains all the security information that is required to format a
request message. The gencont.process(requestContext) method call attaches the
WSSGenerationContext object to the web services RequestContext object to enable the Web
Services Security runtime environment to format the required SOAP security header; for example:

// Attaches WSSGenerationContext object to the web services RequestContext object.
gencont.process(requestContext);

e. Specify SSL transport level message protection using JVM properties.

The SAML20 Bearer WSHTTPS default policy set requires transport-level message protection
using SSL. Specify SSL transport-level message protection using the following JVM property:

-Dcom.ibm.SSL.ConfigURL=file:profile_root\properties\ssl.client.props

Alternatively, you can define the SSL configuration file using a Java system property in the sample
client code; for example:

System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

Results

You have created a self-issued SAML token with the bearer subject confirmation method and then sent
this token with web services request messages using the JAX-WS programming model and WSS APIs.

Example

The following code sample is a web services client application that demonstrates how to create a
self-issued SAML token and send that SAML token in web services request messages. If your usage

1576 Developing WebSphere applications

scenario requires SAML tokens, but does not require your application to pass the SAML tokens using web
services messages, you only need to use the first part of the following sample code, up through the //
Initialize web services client section.
/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/

package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;

import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.util.Map;
import java.util.HashMap;

import javax.xml.ws.BindingProvider;

/**
* SampleClient
* main entry point for thin client JAR sample
* and worker class to communicate with the services
*/
public class SampleClient {

private String urlHost = "localhost";
private String urlPort = "9443";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "https://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {
SampleClient sample = new SampleClient();
sample.CallService();

}

/**
* CallService Parms were already read. Now call the service proxy classes
*
*/
void CallService() {
String response = "ERROR!:";
try {
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf ");
System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

// Initialize WSSFactory object
WSSFactory factory = WSSFactory.getInstance();
// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap<Object, Object> customProps = new HashMap<Object,Object>();

customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties

Chapter 34. Developing web services - Security (WS-Security) 1577

// Create SAMLToken
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);

SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

gencont.add(samlToken);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);

gencont.process(requestContext);

// Build the input object
EchoStringInput echoParm =
new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();

echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Prepare to consume timestamp in response message.
WSSConsumingContext concont = factory.newWSSConsumingContext();
concont.add(WSSConsumingContext.TIMESTAMP);
concont.process(requestContext);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);

} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();

}
}

}

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _191EBC44865015D9AB1270745072344
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to https://localhost:9443/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Inserting SAML attributes using WSS APIs:

You can insert custom attributes into self-issued SAML tokens by using the Java API for XML-Based Web
Services (JAX-WS) programming model and Web Services Security APIs (WSS APIs).

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings. Complete
the following actions before you begin this task:

v Read about propagating self-issued SAML bearer tokens by using WSS APIs.

v Read about propagating self-issued SAML sender-vouches tokens by using WSS APIs with message
level protection.

1578 Developing WebSphere applications

v Read about propagating self-issued SAML sender-vouches tokens by using WSS APIs with SSL
transport protection.

v Read about propagating self-issued SAML holder-of-key tokens with symmetric key by using WSS APIs.

v Read about propagating self-issued SAML holder-of-key tokens with asymmetric key by using WSS
APIs.

About this task

This task shows example code that inserts custom attributes into self-issued SAML security tokens. This
particular example uses the bearer subject confirmation method. You can add attributes to any SAML
security tokens, and the same code can be used with other subject confirmation methods.

Procedure

Insert custom attributes when creating SAML security tokens; for example:
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;
import com.ibm.wsspi.wssecurity.saml.data.SAMLAttribute;

WSSFactory factory = WSSFactory.getInstance();
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");
map.put(SamlConstants.Token_REQUEST, "issue");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
String groups[] = {"IBMer", "Texan"};
SAMLAttribute sattribute = new SAMLAttribute("Membership", groups, null,null, null, null);
al.add(sattribute);
String gender[] = {"Female"};
sattribute = new SAMLAttribute("Gender", gender, null,null, null, null);
al.add(sattribute);
map.put(SamlConstants.SAML_ATTRIBUTES, al);
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler,

"system.wss.generate.saml");

Results

You have inserted custom attributes to a SAML security token.

Example

The following example shows the custom attributes in the SAML Assertion:
<saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

Version="2.0"
ID="_E62A1CA3C2F21D9A9B1287772824570"
IssueInstant="2010-10-22T18:40:24.531Z">

<saml2:Issuer>example.com</samls2:Issuer>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
...
</ds:Signature>
<saml2:Subject>

<saml2:NameID>Alice</saml2:NameID>
<saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"></saml2:SubjectConfirmation>

</saml2:Subject>
<saml2:Conditions NotBefore="2010-10-22T18:40:24.531Z"

NotOnOrAfter="2010-10-22T19:40:24.531Z">
</saml2:Conditions>
<saml2:AttributeStatement>

<saml2:Attribute Name="Membership">
<saml2:AttributeValue>IBMer</saml2:AttributeValue>
<saml2:AttributeValue>Texan</saml2:AttributeValue>

</saml2:Attribute>

Chapter 34. Developing web services - Security (WS-Security) 1579

<saml2:Attribute Name="Gender">
<saml2:AttributeValue>Female</saml2:AttributeValue>

</saml2:Attribute>
</saml2:AttributeStatement>

</saml2:Assertion>

What to do next

Merge the code with the example code listed in the “Propagating self-issued SAML bearer tokens by using
WSS APIs” topic to generate SAML security tokens. You can see SAML attributes in the SAML Assertions.

Sending self-issued SAML sender-vouches tokens using WSS APIs with message level protection:

You can create self-issued SAML tokens with the sender-vouches subject confirmation method and then
use the Java API for XML-Based Web Services (JAX-WS) programming model and Web Services Security
APIs (WSS APIs) to send these tokens with web services request messages with message level
protection.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings.

About this task

You can protect SOAP request messages and SAML tokens by using the Web Services Security
programming interface to satisfy the sender-vouches subject confirmation method validation requirements
with message level protection. Using the programming interfaces in web services client is an alternative
approach to using policy set and binding configuration.

You can create a self-issued SAML token and then send the SAML token in web services request
messages from a web services client. The web services application client used in this task is a modified
version of the client code that is contained in the JaxWSServicesSamples sample application that is
available for download. Code snippets from the sample are described in the procedure section, and a
complete, ready-to-use web services client sample is provided in the Example section.

This product does not provide a default policy set that requires SAML tokens with sender-vouches subject
confirmation method. Read about configuring client and provider bindings for the SAML sender-vouches
token to learn more about how to create a Web Services Security policy to require SAML tokens with
sender-vouches subject confirmation and how to create a custom binding configuration. You must attach
the policy and binding to the web services provider. The code sample described in this task assumes that
the web services provider policy requires that both the SAML tokens and the message bodies are digitally
signed by using an X.509 security token.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to add the Web Services Security API to pass
SAML sender-vouches tokens in SOAP request messages programmatically using WSS APIs,
complete the following steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

1580 Developing WebSphere applications

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS Web services thin client; however,
you can also use a managed client.

2. Use the CallService() method to specify the Web services security configuration parameters that are
required to invoke a target Web services provider using a self-issued SAML token.

The CallService() method sets configuration parameters that are required by the Web Services
Security runtime environment via the com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext
custom property to generate a self-issued SAMLToken.

The following code snippet illustrates using the CallService() method to set the
SamlConstants.SAML_SELF_ISSUER_CONFIG system property:

public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();

}

/**
* CallService Parms were already read. Now call the service proxy classes
*
*/
void CallService() {
String response = "ERROR!:";
try {
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas.conf");

Read about configuring a SAML token during token creation for more information about how you can
specify configuration properties to control how the token is configured.

3. Add the Thin Client for JAX-WS JAR file to the class path. Add app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the class path. See the testing web services-enabled clients
information for more information about adding this JAR file to the class path.

4. Create the self-issued SAML token. The following code snippet illustrates creating the SAML token:
// Create SAMLToken
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");
System.out.println("SAMLToken id = " + samlToken.getId());

a. Use the WSSFactory newSecurityToken method to specify how to create the SAML token.

Specify the following method to create the SAML token:
WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Creating a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Add the following policy statement to the Java security
policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken

The SAMLToken.class parameter specifies the type of security token to create.

The callbackHandler object contains parameters that define the characteristics of the SAMLToken
that you are creating. This object points to a SAMLGenerateCallbackHandler object that specifies
the following configuration parameters described in the following table:

Chapter 34. Developing web services - Security (WS-Security) 1581

Table 246. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the sender-vouches confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the sender-vouches confirmation method. Yes

SamlConstants.TOKEN_TYPE Uses the constant value, WSSConstants.SAML.SAML20_VALUE_TYPE to
specify a SAML 2.0 token type.

When a web services client has policy set attachments, this property is
not used by Web Services Security runtime environment. In this
scenario, specify the token value type by the valueType attribute of the
tokenGenerator binding configuration.

The example in this procedure uses a SAML 2.0 token; however, you
can also use the WSSConstants.SAML.SAML11_VALUE_TYPE value.

Yes

SamlConstants.SAML_NAME_IDENTIFIER Specifies a user identity such as myname as the NameID value in the
SAMLToken.

If you do not define this parameter when using the Thin Client for
JAX-WS, the NameID value does not contain useful information.

If you are using a web services managed client, such a Java Platform,
Enterprise Edition (Java EE) application making a web services
request invocation, the Web Services Security runtime environment
tries to extract user security information from the security context.
Similarly, if you do not define this parameter for a managed web
services client, the NameID value contains an UNAUTHENTICATED
name identifier.

This property is not used if your web services client has policy set
attachments. Read about sending SAML tokens to learn more about
sending the SAML token identity and attributes.

No

SamlConstants.SIGNATURE_REQUIRED Specifies whether the issuer is required to digitally sign the SAML
token.

A true value specifies that issuer is required to digitally sign the SAML
token. This value is the default.

No

The system.wss.generate.saml parameter specifies to use a Java Authentication and Authorization
Service (JAAS) login configuration and specifies the login module that is invoked to create the
SAML token. You must specify a JVM property to define a JAAS configuration file that contains the
required JAAS login configuration; for example:

Djava.security.auth.login.config=profile_root/properties/wsjaas.conf

Alternatively, you can specify a JAAS login configuration file using a Java system property in the
sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas.conf");

b. Obtain the token identifier of the created SAML token.

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

5. Add the SAML token to the SOAP security header of web services request messages.

a. Initialize the web services client and configure the SOAPAction properties. The following code
example illustrates these actions:

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

1582 Developing WebSphere applications

b. Initialize the WSSGenerationContext. The following code snippet illustrates the use of the
gencont.object of the WSSGenerationContext type to initialize a generation context to enable you
to insert the SAMLToken into a web services request message:

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

Specifically, the gencont.add(samlToken) method call specifies to put the SAML token into a
request message. This operation requires the client code to have the following Java 2 Security
permission:

“permission javax.security.auth.AuthPermission "modifyPrivateCredentials"

6. Add an X.509 token for message protection.

This sample code uses the dsig-sender.ks key file and the SOAPRequester sample key. You must not
use the sample key in a production environment. The following code snippet illustrates adding an
X.509 token for message protection:

// Add an X.509 Token for message protection
X509GenerateCallbackHandler x509callbackHandler = new X509GenerateCallbackHandler(

null,
"profile_root/etc/ws-security/samples/dsig-sender.ks",
"JKS",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

SecurityToken x509 = factory.newSecurityToken(X509Token.class,
x509callbackHandler, "system.wss.generate.x509");

WSSSignature sig = factory.newWSSSignature(x509);
sig.setSignatureMethod(WSSSignature.RSA_SHA1);

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);
sig.addSignPart(sigPart);
sig.addSignPart(WSSSignature.BODY);

a. Create a WSSSignature object with the X509 token. The following line of code creates a
WSSSignature object with the X509 token:

WSSSignature sig = factory.newWSSSignature(x509);

b. Add the signed part to use for message protection. The following line of code specifies to add
WSSSignature.BODY as the signed part:

sig.addSignPart(WSSSignature.BODY);

c. Add the timestamp element in the SOAP messages security header. The SAML20 SenderVouches
WSHTTPS and SAML11 SenderVouches WSHTTPS policy sets require web services requests and
response messages to carry a timestamp element in the SOAP messages Security header. In the
following code snippet, the factory.newWSSTimestamp() method call generates the timestamp, and
the gencont.add(timestamp) method call adds the timestamp into the request message:

// Add Timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);
sig.addSignPart(WSSSignature.TIMESTAMP);

gencont.add(sig);

WSSConsumingContext concont = factory.newWSSConsumingContext();

d. Configure the verification of the digital signature in the response message.

A separate WSSSignPart is needed to specify the SecurityTokenReference transformation
algorithm that is represented by the WSSSignPart.TRANSFORM_STRT10 attribute. A SAML Token
cannot be digitally signed directly. This attribute enables the Web Services Security runtime
environment to generate a SecurityTokenReference element to reference the SAMLToken and to
digitally sign the SAMLToken using the SecurityTokenReference transformation. The following line
of code specifies to use the WSSSignPart.TRANSFORM_STRT10 attribute:

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

e. Attach the WSSGenerationContext object to the web services RequestContext object. The
WSSGenerationContext object now contains all the security information that is required to format a

Chapter 34. Developing web services - Security (WS-Security) 1583

request message. The gencont.process(requestContext) method call attaches the
WSSGenerationContext object to the web services RequestContext object to enable the Web
Services Security runtime environment to format the required SOAP security header; for example:

// Attaches the WSSGenerationContext object to the web services RequestContext object.
gencont.process(requestContext);

7. Use the X.509 token to validate the digital signature and the integrity of the response message. If the
provider policy requires the response message to be digitally signed, you must initialize the X.509
token.

a. A X509ConsumeCallbackHandler object is initialized with a truststore, dsig-receiver.ks, and a
certificate path object to validate the provider digital signature. The following line of code is used to
initialize the X509ConsumeCallbackHandler object:

X509ConsumeCallbackHandler callbackHandlerVer = new X509ConsumeCallbackHandler(
"profile_root/etc/ws-security/samples/dsig-receiver.ks",
"JKS",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath"));

b. A WSSVerification object is created and the message body is added to the verification object so
that the Web Services Security runtime environment validates the digital signature.

The following line of code is used to initialize the WSSVerification object:
WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandlerVer);

The WSSConsumingContext object now contains all the security information that is required to
format a request message. The concont.process(requestContext) method call attaches the
WSSConsumingContext object to the response method; for example:

// Attaches the WSSConsumingContext object to the web services RequestContext object.
concont.process(requestContext);

Results

You have created a self-issued SAML token with the sender-vouches confirmation method and then sent
this token with web services request messages using the JAX-WS programming model and WSS APIs.

Example

The following code sample is a complete, ready-to-use web services client application that demonstrates
how to create a self-issued SAML sender-vouches token and send that SAML token in web services
request messages. This sample code illustrates the procedure steps described previously.
/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/
package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler;
import com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.WSSException;
import com.ibm.websphere.wssecurity.wssapi.signature.WSSSignPart;
import com.ibm.websphere.wssecurity.wssapi.signature.WSSSignature;
import com.ibm.websphere.wssecurity.wssapi.verification.WSSVerification;
import com.ibm.websphere.wssecurity.wssapi.token.X509Token;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.security.InvalidAlgorithmParameterException;

1584 Developing WebSphere applications

import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.cert.CertStore;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.CollectionCertStoreParameters;
import java.security.cert.X509Certificate;
import java.util.HashSet;
import java.util.Set;
import java.util.HashMap;
import java.util.Map;

import javax.xml.ws.BindingProvider;

public class SampleSamlSVClient {
private String urlHost = "localhost";
private String urlPort = "9081";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "http://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();

}

/**
* CallService Parms were already read. Now call the service proxy classes.
*
*/
void CallService() {
String response = "ERROR!:";
try {
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas.conf");

// Initialize WSSFactory object
WSSFactory factory = WSSFactory.getInstance();
// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap<Object, Object> customProps = new HashMap<Object,Object>();

customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties

// Create SAMLToken
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);

SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client.
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();

Chapter 34. Developing web services - Security (WS-Security) 1585

gencont.add(samlToken);

// Add X.509 Tokens for message protection
X509GenerateCallbackHandler x509callbackHandler = new X509GenerateCallbackHandler(

null,
"profile_root/etc/ws-security/samples/dsig-sender.ks",
"JKS",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

SecurityToken x509 = factory.newSecurityToken(X509Token.class,
x509callbackHandler, "system.wss.generate.x509");

WSSSignature sig = factory.newWSSSignature(x509);
sig.setSignatureMethod(WSSSignature.RSA_SHA1);

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);
sig.addSignPart(sigPart);
sig.addSignPart(WSSSignature.BODY);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);
sig.addSignPart(WSSSignature.TIMESTAMP);

gencont.add(sig);

WSSConsumingContext concont = factory.newWSSConsumingContext();

// Prepare to consume timestamp in response message
concont.add(WSSConsumingContext.TIMESTAMP);

// Prepare to verify digital signature in response message
X509Certificate x509cert = null;
try {
InputStream is = new FileInputStream("profile_root/etc/ws-security/samples/intca2.cer");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate) cf.generateCertificate(is);

} catch (FileNotFoundException e1) {
throw new WSSException(e1);

} catch (CertificateException e2) {
throw new WSSException(e2);

}
Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);

java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new CollectionCertStoreParameters(eeCerts);

CertStore cert = null;
try {
cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");

} catch (NoSuchProviderException e1) {
throw new WSSException(e1);

} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);

} catch (NoSuchAlgorithmException e3) {
throw new WSSException(e3);

}
if (certList != null) {
certList.add(cert);

}

X509ConsumeCallbackHandler callbackHandlerVer = new X509ConsumeCallbackHandler(
"profile_root/etc/ws-security/samples/dsig-receiver.ks",
"JKS",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath"));

WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandlerVer);

ver.addRequiredVerifyPart(WSSVerification.BODY);
concont.add(ver);

gencont.process(requestContext);
concont.process(requestContext);

// Build the input object
EchoStringInput echoParm =

new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

1586 Developing WebSphere applications

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);

} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();

}
}

}

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _6CDDF0DBF91C044D211271166233407
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to http://localhost:9080/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Sending self-issued SAML sender-vouches tokens using WSS APIs with SSL transport protection:

You can create self-issued SAML tokens with the sender-vouches subject confirmation method and then
use the Java API for XML-Based Web Services (JAX-WS) programming model and Web Services Security
APIs (WSS APIs) to send these tokens with web services request messages with transport protection.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, SSL transport protection, and the use of policy sets to configure and administer web
services settings.

About this task

You can build your web services client to use SAML tokens with the sender-vouches subject confirmation
method in SOAP request messages using the Web Services Security programming interfaces. Using the
programming interfaces in a web services client to specify the use of SAML tokens with sender-vouches
subject confirmation using message protection at the transport level is an alternative approach to using
policy sets and binding configurations.

You can create a self-issued SAML token and then send the SAML token in web services request
messages from a web services client. The web services client application used in this task is a modified
version of the client code that is contained in the JaxWSServicesSamples sample application that is
available for download. Code examples from the sample are described in the procedure section, and a
complete, ready-to-use web services client sample is provided in the Example section.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to use the Web Services Security API to pass
SAML sender-vouches tokens in SOAP request messages programmatically using WSS APIs,
complete the following steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

Chapter 34. Developing web services - Security (WS-Security) 1587

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS Web services thin client; however,
you can also use a managed client.

2. Create a copy of either the SAML20 Bearer WSHTTPS default policy set or the SAML11 Bearer
WSHTTPS default policy set.

Provide a name for the copy of the policy set; for example SAML20 SenderVouches WSHTTPS or
SAML11 SenderVouches WSHTTPS to help you identify that this new policy set uses the
sender-vouches confirmation method.

No additional change is required to the new policy file because the subject confirmation method is
specified in the binding configuration and not in the policy.

The new policy file contains either SAMLToken20Bearer or the SAMLToken11Bearer as the policy
identifiers. Change the identifier of the SAMLToken20Bearer policy to SAMLToken20SV or change the
identifier of the SAMLToken11Bearer policy to SAMLToken11SV to specify a more descriptive name.
Changing the identifier of the policy does not change the policy enforcement in any way; however,
adding a descriptive identifier helps you to identify that these policy identifiers use the sender-vouches
confirmation method.

If you want to view the settings of these policies, use the administrative console to complete the
following actions:

a. Click Services > Policy sets > Application policy sets > policy_set_name.

b. Click the WS-Security policy in the policies table.

c. Click the Main policy link or the Bootstrap policy link.

d. Click Request token policies from the Policy Details section.

3. Attach the new SAML20 SenderVouches WSHTTPS or SAML11 SenderVouches WSHTTPS policy set
to the web services provider application. Read about configuring client and provider bindings for the
SAML sender-vouches token for details on attaching this policy set to your web services provider
application.

4. Create a copy of the SAML Bearer Provider sample default general bindings.

a. For the new copy of the default policy set, provide a name that includes sender-vouches, such as
SAML Sender-vouches provider binding.

b. Change the value of the confirmationMethod property to sender-vouches in the token consumer
configuration for the intended SAML token version. Read about configuring client and provider
bindings for the SAML sender-vouches token for details on modifying the sender-vouches bindings
to satisfy the vouching requirement.

5. Assign the new provider binding to the JaxWSServicesSamples provider sample. Read about
configuring client and provider bindings for the SAML sender-vouches for details on assigning the
SAML sender-vouches provider sample, default general bindings to your web services provider
application.

6. Enable the web services provider SSL configuration attribute, clientAuthentication, to require X.509
client certificate authentication.

The clientAuthentication attribute determines whether SSL client authentication is required. To specify
the clientAuthentication attribute, use the administrative console to complete the following actions:

a. Click Security > SSL certificates and key management > Manage endpoint security
configurations > {Inbound | Outbound} > SSL_configuration.

b. Click the WC_defaulthost_secure link.

c. Under Related Items, click the SSL_configurations link.

1588 Developing WebSphere applications

d. Select the NodeDefaultSSLSettings resource.

e. Click Quality of protection (QoP) settings link.

f. Select Required from the menu to specify client authentication.

Read about creating a secure sockets layer configuration to learn more about configuring the
clientAuthentication attribute.

7. In the web services client code, use the CallService() method to specify the properties file that contains
configuration parameters required to generate a self-issued SAML token.

The CallService() method specifies configuration parameters that are required by the Web Services
Security runtime environment to generate a self-issued SAMLToken.

The following code snippet illustrates using the CallService() method to specify Web services security
configuration parameters:

public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();
}

/**
* CallService Parms were already read. Now call the service proxy classes
*
*/
void CallService() {
String response = "ERROR!:";
try {
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf ");
// Initialize WSSFactory object
WSSFactory factory = WSSFactory.getInstance();

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap <Object, Object> customProps = new HashMap<Object,Object>();

customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties

Read about configuring a SAML token during token creation for more information about how you can
specify configuration properties to control how the token is configured.

8. Add the Thin Client for JAX-WS JAR file to the classpath. Add app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the classpath. See the testing web services-enabled clients
information for more information about adding this JAR file to the classpath.

9. Create the self-issued SAML token. The following code snippet illustrates creating the SAML
sender-vouches token:

// Create SAMLToken
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");
System.out.println("SAMLToken id = " + samlToken.getId());

a. Use the WSSFactory newSecurityToken method to specify how to create the SAML token.

Specify the following method to create the SAML token:
WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Creating a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Use the PolicyTool to add the following policy
statement to the Java security policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken

The SAMLToken.class parameter specifies the type of security token to create.

Chapter 34. Developing web services - Security (WS-Security) 1589

The callbackHandler object contains parameters that define the characteristics of the SAMLToken
that you are creating. This object points to a SAMLGenerateCallbackHandler object that specifies
the configuration parameters described in the following table:

Table 247. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the sender-vouches confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the sender-vouches confirmation method. Yes

SamlConstants.TOKEN_TYPE Uses the constant value, WSSConstants.SAML.SAML20_VALUE_TYPE to
specify a SAML 2.0 token type.

When a web services client has policy set attachments, this
property is not used by Web Services Security runtime environment.
In this scenario, specify the token value type by the valueType
attribute of the tokenGenerator binding configuration.

The example in this procedure uses a SAML 2.0 token; however,
you can also use the WSSConstants.SAML.SAML11_VALUE_TYPE value.

Yes

SamlConstants.SAML_NAME_IDENTIFIER Specifies a user identity such as myname as the NameID value in the
SAMLToken.

If you do not define this parameter when using the Thin Client for
JAX-WS, the NameID value does not contain useful information.

If you are using a web services managed client, such a Java
Platform, Enterprise Edition (Java EE) application making a web
services request invocation, the Web Services Security runtime
environment tries to extract user security information from the
security context. Similarly, if you do not define this parameter for a
managed web services client, the NameID value contains an
UNAUTHENTICATED name identifier.

This property is not used if your web services client has policy set
attachments. Read about sending SAML tokens to learn more about
sending the SAML token identity and attributes.

No

SamlConstants.SIGNATURE_REQUIRED Specifies whether the issuer is required to digitally sign the SAML
token.

A true value specifies that issuer is required to digitally sign the
SAML token. This value is the default.

No

The system.wss.generate.saml parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the SAML token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in
the sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf ");

b. Obtain the token identifier of the created SAML token.

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

Results

You have created a self-issued SAML token with the sender-vouches confirmation method with transport
protection and then sent this token with web services request messages using the JAX-WS programming
model and WSS APIs.

Example

The following code sample is a complete, ready-to-use web services client application that demonstrates
how to create a self-issued SAML sender-vouches token and send that SAML token in web services
request messages. This sample code illustrates the procedure steps described previously.

1590 Developing WebSphere applications

/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/
package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;

import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.util.Map;
import java.util.HashMap;

import javax.xml.ws.BindingProvider;

public class SampleSamlSVClient {
private String urlHost = "localhost";
private String urlPort = "9081";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "http://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();

}

/**
* CallService Parms were already read. Now call the service proxy classes.
*
*/
void CallService() {
String response = "ERROR!:";
try {
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf ");

// Initialize WSSFactory object
WSSFactory factory = WSSFactory.getInstance();
// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap<Object, Object> customProps = new HashMap<Object,Object>();

customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties

// Create SAMLToken
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client

Chapter 34. Developing web services - Security (WS-Security) 1591

EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

gencont.add(samlToken);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);

gencont.process(requestContext);

// Build the input object
EchoStringInput echoParm =

new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Prepare to consume timestamp in response message
WSSConsumingContext concont = factory.newWSSConsumingContext();
concont.add(WSSConsumingContext.TIMESTAMP);
concont.process(requestContext);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);

} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();

}
}

}

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _6CDDF0DBF91C044D211271166233407
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to http://localhost:9443/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Sending self-issued SAML holder-of-key tokens with symmetric key using WSS APIs:

You can create self-issued SAML tokens with the holder-of-key subject confirmation method and then use
the Java API for XML-Based Web Services (JAX-WS) programming model and Web Services Security
APIs (WSS APIs) to send these tokens with web services request messages.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings. Complete
the following actions before you begin this task:

v Read about sending self-issued SAML bearer tokens by using WSS APIs.

v Read about sending self-issued SAML sender-vouches tokens by using WSS APIs with message level
protection.

About this task

This task focuses on using the symmetric key that is embedded in SAML security tokens to generate a
digital signature of selected SOAP message elements in order to satisfy holder-of-key subject confirmation
method security requirements. The Web Services Security policy attached to the web services provider is
that of the SAML20 HoK Symmetric WSSecurity default policy set that is shipped in WebSphere
Application Server 7.0.0.7 and later releases.

1592 Developing WebSphere applications

Procedure

1. Create a SAML security token that contains holder-of-key subject confirmation method; for example:
WSSFactory factory = WSSFactory.getInstance();
// Initialize WSSGenerationContext
com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap<Object, Object> customProps = new HashMap<Object,Object>();

customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "holder-of-key");
map.put(SamlConstants.Token_REQUEST, "issue");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
map.put(SamlConstants.SERVICE_ALIAS, "soaprecipient");
map.put(SamlConstants.KEY_TYPE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey");
map.put(SamlConstants.SAML_APPLIES_TO, "http://localhost:9080/your_Web_service");
map.put(RequesterConfiguration.RSTT.ENCRYPTIONALGORITHM,

"http://www.w3.org/2001/04/xmlenc#aes256-cbc");
map.put(SamlConstants.KEY_SIZE, "256");
SAMLGenerateCallbackHandler callbackHandler = new

SAMLGenerateCallbackHandler(map);
SAMLToken samlToken = (SAMLToken) factory.newSecurityToken(SAMLToken.class,

callbackHandler, "system.wss.generate.saml");

The embedded proof key in the SAML security token is encrypted for the target Web service. The
public key of the target service that encrypts the proof key is specified by the
SamlConstants.SERVICE_ALIAS property which specifies a public certificate in the trust file. The trust file
location is specified by a com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext custom
property. In this example, you must import the Java Cryptography Extension (JCE) policy file because
encryption uses 256 bit key size. For more information, read about using the unrestricted JCE policy
files in the "Tuning Web Services Security applications" topic.

If you prefer to use derived keys for digital signing and for encryption instead of using symmetric key
directly, add the following name-value pair:

map.put(SamlConstants.REQUIRE_DKT, "true");

2. Use the WSSGenerationContext object to prepare for request message security header processing; for
example:

gencon.add(samlToken); //this line of code can be omitted

WSSTimestamp timestamp = factory.newWSSTimestamp();
gencon.add(timestamp);

WSSSignature sig = factory.newWSSSignature(samlToken);

sig.setSignatureMethod(WSSSignature.HMAC_SHA1);
sig.setCanonicalizationMethod(WSSSignature.EXC_C14N);
sig.addSignPart(WSSSignature.BODY);
sig.addSignPart(WSSSignature.TIMESTAMP);
sig.addSignPart(WSSSignature.ADDRESSING_HEADERS);
sig.setTokenReference(SecurityToken.REF_KEYID);
//If the gencon.add(samlToken); line of code is omitted, or DerivedKey is used
//the above line of code must be replaced with
//sig.setTokenReference(SecurityToken.REF_STR);

gencon.add(sig);

WSSEncryption enc = factory.newWSSEncryption(samlToken);

enc.setEncryptionMethod(WSSEncryption.AES256);
enc.setTokenReference(SecurityToken.REF_KEYID);
//If the gencon.add(samlToken); line of code is omitted, or DerivedKey is used
//the above line of code must be replaced with
//enc.setTokenReference(SecurityToken.REF_STR);

Chapter 34. Developing web services - Security (WS-Security) 1593

enc.encryptKey(false);
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);
enc.addEncryptPart(WSSEncryption.SIGNATURE);
gencon.add(enc);

3. Create the WSSConsumingContext object to prepare for response message, security header processing;
for example:

WSSConsumingContext concont = factory.newWSSConsumingContext();

HashMap<Object, Object> map = new HashMap<Object, Object>();

SAMLConsumerCallbackHandler callbackHandler = new
SAMLConsumerCallbackHandler(map);

WSSDecryption dec = factory.newWSSDecryption(SAMLToken.class, callbackHandler,
"system.wss.consume.saml");

dec.addAllowedEncryptionMethod(WSSDecryption.AES256);
dec.encryptKey(false);
dec.addRequiredDecryptPart(WSSDecryption.BODY_CONTENT);

concont.add(dec);

callbackHandler = new SAMLConsumerCallbackHandler(map);
WSSVerification ver = factory.newWSSVerification(SAMLToken.class, callbackHandler,

"system.wss.consume.saml");
ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);
ver.addRequiredVerifyPart(WSSVerification.BODY);
ver.addRequiredVerifyPart(WSSVerification.TIMESTAMP);

concont.add(ver);

4. Use the JDK keytool utility to generate the saml-provider.jceks and recipient.jceksfiles that are
used to test the example code; for example:

keytool -genkey -alias samlissuer -keystore saml-provider.jceks -dname "CN=SAMLIssuer, O=ACME" -storepass issuerstorepass
-keypass issuerkeypass -storetype jceks -validity 5000 -keyalg RSA -keysize 2048

keytool -genkey -alias soaprecipient -keystore recipient.jceks -dname "CN=SOAPRecipient, O=ACME" -storepass reciptstorepass
-keypass reciptkeypass -storetype jceks -validity 5000 -keyalg RSA -keysize 2048

keytool -export -alias soaprecipient -file reciptpub.cer -keystore recipient.jceks -storepass reciptstorepass -storetype jceks

keytool -import -alias soaprecipient -file reciptpub.cer -keystore saml-provider.jceks -storepass issuerstorepass -storetype jceks
-keypass issuerkeypass -noprompt

Results

You have learned key building blocks to create a web services client application to send a SAML security
token in a SOAP message and to use the symmetric key that is embedded in SAML security in message
level protection.

Sending self-issued SAML holder-of-key tokens with asymmetric key using WSS APIs:

You can create self-issued SAML tokens with the holder-of-key subject confirmation method and then use
the Java API for XML-Based Web Services (JAX-WS) programming model and Web Services Security
APIs (WSS APIs) to send these tokens with web services request messages.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings. Complete
the following actions before you begin this task:

v Read about sending self-issued SAML bearer tokens by using WSS APIs.

v Read about sending self-issued SAML sender-vouches tokens by using WSS APIs with message level
protection.

1594 Developing WebSphere applications

About this task

This task focuses on using the asymmetric key that is identified by SAML security tokens to generate a
digital signature of selected SOAP message elements in order to satisfy holder-of-key subject confirmation
method security requirements. The X.509 certificate of the sender is embedded in the SAML security
token. The sender signs selected parts of request message elements by using its corresponding private
key and encrypts the request message by using the public key of the recipient. The recipient signs the
selected elements of the response message by using the private key of the recipient, and encrypts
selected elements of the response message by using the public key of the sender in SAML security
tokens. The Web services security policy attached to the web services provider is provided for your
reference.

Procedure

1. Create a SAML security token that contains the holder-of-key subject confirmation method; for
example:

WSSFactory factory = WSSFactory.getInstance();
// Initialize WSSGenerationContext
com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext gencont = factory.newWSSGenerationContext();
// Initialize SAML issuer configuration via custom properties
HashMap<Object, Object> customProps = new HashMap<Object,Object>();
customProps.put(SamlConstants.ISSUER_URI_PROP, "example.com");
customProps.put(SamlConstants.TTL_PROP, "3600000");
customProps.put(SamlConstants.KS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.KS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.KS_PW_PROP, "{xor}LCswLTovPiws");
customProps.put(SamlConstants.KEY_ALIAS_PROP, "samlissuer");
customProps.put(SamlConstants.KEY_NAME_PROP, "CN=SAMLIssuer, O=EXAMPLE");
customProps.put(SamlConstants.KEY_PW_PROP, "{xor}NDomLz4sLA==");
customProps.put(SamlConstants.TS_PATH_PROP, "keystores/saml-provider.jceks");
customProps.put(SamlConstants.TS_TYPE_PROP, "JCEKS");
customProps.put(SamlConstants.TS_PW_PROP, "{xor}LCswLTovPiws");
gencont.add(customProps); //Add custom properties
HashMap<Object, Object> map = new HashMap<Object, Object>();
map.put(SamlConstants.CONFIRMATION_METHOD, "holder-of-key");
map.put(SamlConstants.Token_REQUEST, "issue");
map.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
map.put(SamlConstants.SAML_NAME_IDENTIFIER, "Alice");
map.put(SamlConstants.SIGNATURE_REQUIRED, "true");
map.put(SamlConstants.KEY_TYPE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey");
map.put(SamlConstants.SAML_APPLIES_TO, "http://localhost:9080/your_Web_service");
map.put(SamlConstants.KEY_ALIAS, "soapinitiator");
map.put(SamlConstants.KEY_NAME, "CN=SOAPInitator, O=ACME");
map.put(SamlConstants.KEY_PASSWORD, "keypass");
map.put(SamlConstants.KEY_STORE_PATH, "keystores/initiator.jceks");
map.put(SamlConstants.KEY_STORE_PASSWORD, "storepass");
map.put(SamlConstants.KEY_STORE_TYPE, "jceks");
SAMLGenerateCallbackHandler callbackHandler = new SAMLGenerateCallbackHandler(map);
SAMLToken samlToken = (SAMLToken) factory.newSecurityToken(SAMLToken.class,

callbackHandler, "system.wss.generate.saml");

The private key of the sender is specified by the SamlConstants.KEY_ALIAS property and is used to
sign selected elements of the request message.

2. Use the WSSGenerationContext object to prepare for request message security header processing; for
example:

gencon.add(samlToken); //this line of code can be omitted
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencon.add(timestamp);
WSSSignature sig = factory.newWSSSignature(samlToken);
sig.setTokenReference(SecurityToken.REF_KEYID);
//If the gencon.add(samlToken); line of code is omitted,
//the above line of code must be replaced with
//sig.setTokenReference(SecurityToken.REF_STR);

sig.setSignatureMethod(WSSSignature.RSA_SHA1);
sig.setCanonicalizationMethod(WSSSignature.EXC_C14N);
sig.addSignPart(WSSSignature.BODY);
sig.addSignPart(WSSSignature.TIMESTAMP);
sig.addSignPart(WSSSignature.ADDRESSING_HEADERS);
gencon.add(sig);

Chapter 34. Developing web services - Security (WS-Security) 1595

X509GenerateCallbackHandler x509callbackHandler2 = new X509GenerateCallbackHandler(
null,
"keystores/initiator.jceks",
"jceks",
"storepass".toCharArray(),
"soaprecipient",
null,
"", null);

SecurityToken st2 = factory.newSecurityToken(X509Token.class, x509callbackHandler2);
WSSEncryption enc = factory.newWSSEncryption(st2);
enc.addEncryptPart(WSSEncryption.BODY_CONTENT);
enc.addEncryptPart(WSSEncryption.SIGNATURE);
enc.setEncryptionMethod(WSSEncryption.AES256);
enc.setKeyEncryptionMethod(WSSEncryption.KW_RSA_OAEP);
gencon.add(enc);

In this example, encryption uses a 256 bit key size so you must import the Java Cryptography
Extension (JCE) policy file. For more information, read about using the unrestricted JCE policy files in
the “Tuning Web Services Security applications” topic.

3. Create the WSSConsumingContext object to prepare for response message security header processing;
for example:

WSSConsumingContext concont = factory.newWSSConsumingContext();

HashMap<Object, Object> map = new HashMap<Object, Object>();

SAMLConsumerCallbackHandler callbackHandler = new SAMLConsumerCallbackHandler(map);
WSSDecryption dec = factory.newWSSDecryption(SAMLToken.class, callbackHandler,

"system.wss.consume.saml");
dec.addAllowedEncryptionMethod(WSSDecryption.AES256);
dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_RSA_OAEP);
dec.encryptKey(false);
dec.addRequiredDecryptPart(WSSDecryption.BODY_CONTENT);
concont.add(dec);
X509ConsumeCallbackHandler verHandler = new X509ConsumeCallbackHandler(null,

"keystores/initiator.jceks",
"jceks",
"storepass".toCharArray(),
"soaprecipient",
null, null);

WSSVerification ver = factory.newWSSVerification(X509Token.class, verHandler);
ver.addRequiredVerifyPart(WSSVerification.BODY);
concont.add(ver);

4. Use the JDK keytool utility to generate the saml-provider.jceks, initiator.jceks, and
recipient.jceksfiles that are used to test the example code; for example:

keytool -genkey -alias samlissuer -keystore saml-provider.jceks -dname "CN=SAMLIssuer, O=ACME" -storepass storepass -keypass keypass
-storetype jceks -validity 5000 -keyalg RSA -keysize 2048

keytool -genkey -alias soaprecipient -keystore recipient.jceks -dname "CN=SOAPRecipient, O=ACME" -storepass storepass -keypass keypass
-storetype jceks -validity 5000 -keyalg RSA -keysize 2048

keytool -genkey -alias soapinitiator -keystore initiator.jceks -dname "CN=SOAPInitator, O=ACME" -storepass storepass -keypass keypass
-storetype jceks -validity 5000 -keyalg RSA -keysize 2048

keytool -export -alias samlissuer -file issuerpub.cer -keystore saml-provider.jceks -storepass storepass -storetype jceks
keytool -export -alias soaprecipient -file reciptpub.cer -keystore recipient.jceks -storepass storepass -storetype jceks
keytool -export -alias soapinitiator -file initatpub.cer -keystore initiator.jceks -storepass storepass -storetype jceks

keytool -import -alias samlissuer -file issuerpub.cer -keystore initiator.jceks -storepass storepass -storetype jceks -keypass keypass -noprompt
keytool -import -alias soaprecipient -file reciptpub.cer -keystore initiator.jceks -storepass storepass -storetype jceks -keypass keypass -noprompt

keytool -import -alias samlissuer -file issuerpub.cer -keystore recipient.jceks -storepass storepass -storetype jceks -keypass keypass -noprompt
keytool -import -alias soapinitiator -file initatpub.cer -keystore recipient.jceks -storepass storepass -storetype jceks -keypass keypass -noprompt

keytool -import -alias soapinitiator -file initatpub.cer -keystore saml-provider.jceks -storepass storepass -storetype jceks -keypass keypass -noprompt

Results

You have learned key building blocks to create a web services client application to send a SAML security
token in a SOAP message and to use the asymmetric key that is embedded in SAML security in message
level protection.

1596 Developing WebSphere applications

Example

The following example illustrates the web services provider Web services security policy:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:spe="http://www.ibm.com/xmlns/prod/websphere/200605/ws-securitypolicy-ext">
<wsp:Policy wsu:Id="response:app_encparts">

<sp:EncryptedElements>
<sp:XPath>/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’Signature’]</sp:XPath>
<sp:XPath>/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Envelope’]/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’Signature’]</sp:XPath>

</sp:EncryptedElements>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>

</wsp:Policy>
<wsp:Policy wsu:Id="request:req_enc">

<sp:EncryptedParts>
<sp:Body/>

</sp:EncryptedParts>
</wsp:Policy>
<wsp:Policy wsu:Id="request:app_signparts">

<sp:SignedParts>
<sp:Body/>
<sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>

</sp:SignedParts>
<sp:SignedElements>

<sp:XPath>/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd’
and local-name()=’Timestamp’]</sp:XPath>
<sp:XPath>/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Envelope’]/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd’
and local-name()=’Timestamp’]</sp:XPath>

</sp:SignedElements>
</wsp:Policy>
<wsp:Policy wsu:Id="response:resp_sig">

<sp:SignedParts>
<sp:Body/>

</sp:SignedParts>
</wsp:Policy>
<sp:AsymmetricBinding>

<wsp:Policy>
<sp:InitiatorToken>

<wsp:Policy>
<spe:CustomToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/Always"/>

<wsp:Policy>
<spe:WssCustomToken localname="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"/>

</wsp:Policy>
</spe:CustomToken>

</wsp:Policy>
</sp:InitiatorToken>
<sp:AlgorithmSuite>

<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:IncludeTimestamp/>
<sp:RecipientToken>

<wsp:Policy>
<sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/Always"/>

<wsp:Policy>
<sp:WssX509V3Token11/>

</wsp:Policy>
</sp:X509Token>

<wsp:Policy>
<sp:RecipientToken>
<sp:Layout>

<wsp:Policy>
<sp:Strict/>

</wsp:Policy>
</sp:Layout>

<wsp:Policy>
<sp:AsymmetricBinding>

</wsp:Policy>

Chapter 34. Developing web services - Security (WS-Security) 1597

Requesting SAML bearer tokens from an external STS using WSS APIs and transport level protection:

You can request SAML tokens with the bearer subject confirmation method from an external Security
Token Service (STS). After obtaining the SAML bearer token, you can then send these tokens with web
services request messages using the Java API for XML-Based Web Services (JAX-WS) programming
model and Web Services Security APIs (WSS API).

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings.

About this task

You can request a SAML token with the bearer subject confirmation method from an external STS and
then send the SAML token in web services request messages from a web services client using WSS APIs.

The web services application client used in this task is a modified version of the client code that is
contained in the JaxWSServicesSamples sample application that is available for download. Code snippets
from the sample are described in the procedure section, and a complete, ready-to-use web services client
sample is provided in the Example section.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to add the Web Services Security API to pass
SAML tokens in SOAP request messages programmatically using WSS APIs, complete the following
steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS web services thin client; however,
you can also use a managed client.

2. Attach the SAML20 Bearer WSHTTPS default policy set to the web services provider. This policy set is
used to protect messages using HTTPS transport. Read about configuring client and provider bindings
for the SAML Bearer token for details on how to attach the SAML20 Bearer WSHTTPS default policy
set to the web services provider.

3. Assign the SAML Bearer Provider sample default general bindings to the sample web services
provider. Read about configuring client and provider bindings for the SAML bearer token for details on
assigning the SAML Bearer Provider sample default general bindings to your web services application.

1598 Developing WebSphere applications

4. Verify that the trustStoreType, trustStorePassword and trustStorePath custom properties correspond to
the trust store containing the STS signer certificate. Using the administrative console, complete the
following steps:

a. Click Services > Policy sets > General provider policy set bindings > Saml Bearer Provider
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. In the Custom Properties section, ensure that the trustStoreType, trustStorePassword and
trustStorePath custom properties correspond to the trust store containing the STS signer certificate.

5. Request the SAML token from an external STS. The following code snippet illustrates how to request
the SAML token and assumes that an external STS is configured to accept a UsernameToken, and to
issue a SAML 2.0 token after validation:

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

a. Add the Thin Client for JAX-WS JAR file to the class path. Add the app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the class path. See the testing web services-enabled
clients information for more information about adding this JAR file to the class path.

b. Use the WSSFactory newSecurityToken method to request a SAML token from an external STS.

Specify the following method to request the SAML token:
WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Requesting a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Use the Policy Tool to add the following policy
statement to the Java security policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken"

The SAMLToken.class parameter specifies the type of security token to create.

The callbackHandler object contains parameters that define the characteristics of the SAML token
that you are requesting and other parameters required to reach the STS and obtain the SAML
token. The SAMLGenerateCallbackHandler object specifies the configuration parameters described
in the following table:

Table 248. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the bearer subject confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the Bearer confirmation method. Yes

Chapter 34. Developing web services - Security (WS-Security) 1599

Table 248. SAMLGenerateCallbackHandler properties (continued). This table describes the configuration
parameters for the SAMLGenerateCallbackHandler object using the bearer subject confirmation method.
Property Description Required

SamlConstants.TOKEN_TYPE Specifies the token type.

When a web services client has policy set attachments,
this property is not used by Web Services Security runtime
environment.

Specify the token value type by using the valueType
attribute of the tokenGenerator binding configuration.

The example in this procedure uses a SAML 2.0 token;
however, you can also use the
WSSConstants.SAML.SAML11_VALUE_TYPE value.

Yes

SamlConstants.STS_ADDRESS Specifies the Security Token Service address.

For the example used in this task topic, the value of this
property is set to https to specify to use SSL to protect the
SAML Token request.

You must set the -Dcom.ibm.SSL.ConfigURL property to
enable the use of SSL to protect the SAML token request
with the STS.

Yes

SamlConstants.SAML_APPLIES_TO Specifies the target STS address for where you want to
use the SAML token.

No

SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST Specifies whether to request from the STS a single token
that is enclosed in a RequestSecurityToken (RST) element
or multiple tokens in a collection of RST elements that are
enclosed in a single RequestSecurityTokenCollection
(RSTC) element.

The default behavior is to request a single token that is
enclosed in a RequestSecurityToken (RST) element from
the STS.

Specifying a true value for this property indicates to
request multiple tokens in a collection of RST elements that
are enclosed in a single RequestSecurityTokenCollection
(RSTC) element from the STS.

No

SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE Specifies the WS-Trust namespace that is included in the
WS-Trust request.

No

A WSSGenerationContext instance and a WSSConsumingContext instance are also set in the
SAMLGenerateCallbackHandler object. The WSSGenerationContext instance must contain a
UNTGenerateCallbackHandler object with the information to create the UsernameToken that you
want to send to the STS.

The system.wss.generate.saml parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the SAML token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in
the sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");

c. Obtain the token identifier of the created SAML token.

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

6. Add the SAML token to the SOAP security header of a web services request messages.

a. Initialize the web services client and configure the SOAPAction properties. The following code
snippet illustrates these actions:

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

1600 Developing WebSphere applications

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

b. Initialize the WSSGenerationContext. The following code illustrates the use of the
WSSGenerationContext interface to initialize a generation context and enable you to insert the
SAMLToken into the web services request message:

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

Specifically, the gencont.add(samlToken) method call specifies to put the SAML token into a
request message. Use the Policy Tool to add the following policy statement to the Java security
policy file or the application client was.policy file:

permission javax.security.auth.AuthPermission "modifyPrivateCredentials"

c. Add the timestamp element in the SOAP messages security header. The SAML20 Bearer
WSHTTPS default policy set requires web services requests and response messages to carry a
timestamp element in SOAP messages Security header. In the following code snippet, the
factory.newWSSTimestamp() method call generates the timestamp, and the
gencont.add(timestamp) method call specifies the timestamp to put into a request message:

// Add a timestamp to the request message.
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);

gencont.process(requestContext);

d. Attach WSSGenerationContext object to the web services RequestContext object. The
WSSGenerationContext object now contains all the security information that is required to format a
request message. The gencont.process(requestContext) method call attaches the
WSSGenerationContext object to the web services RequestContext object to enable the Web
Services Security runtime environment to format the required SOAP security header; for example:

// Attaches WSSGenerationContext object to the web services RequestContext object.
gencont.process(requestContext);

e. Specify SSL transport level message protection using JVM properties.

The SAML20 Bearer WSHTTPS default policy set requires transport-level message protection
using SSL. In addition, you can use this same property to enable protection of the SAML token
request to the STS using SSL. Specify SSL transport-level message protection using the following
JVM property:

-Dcom.ibm.SSL.ConfigURL=file:profile_root\properties\ssl.client.props

Alternatively, you can define the SSL configuration file using a Java system property in the sample
client code; for example:

System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

Results

You have requested a SAML token with the bearer subject confirmation method with transport level
protection from an external STS. After obtaining the token, you sent the token with web services request
messages using the JAX-WS programming model and WSS APIs.

If you want to request a SAML token with the bearer subject confirmation method with message level
protection from an external STS, see the documentation for requesting SAML sender-vouches tokens from
an external STS using WSS APIs and message level protection. To use message level protection for
SAML tokens with the bearer subject confirmation method, in the step to request the SAML token from an
external STS, specify a confirmation method of Bearer instead of sender-vouches; for example:
//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);

Chapter 34. Developing web services - Security (WS-Security) 1601

cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML11_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

Additionally, the step to configure the verification of the digital signature in the response message is
optional in the case of the bearer token.

Example

The following code sample is a web services client application that demonstrates how to request a SAML
token from an external STS and send that SAML token in web services request messages. If your usage
scenario requires SAML tokens, but does not require your application to pass the SAML tokens using web
services messages, you only need to use the first part of the following sample code, up through the //
Initialize web services client section.
/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/

package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;

import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.UsernameToken;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.util.Map;
import java.util.HashMap;

import javax.xml.ws.BindingProvider;

/**
* SampleClient
* main entry point for thin client JAR sample
* and worker class to communicate with the services
*/
public class SampleClient {

private String urlHost = "localhost";
private String urlPort = "9443";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "https://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/

1602 Developing WebSphere applications

public static void main(String[] args) {
SampleClient sample = new SampleClient();
sample.CallService();
}

/**
* CallService Parms were already read. Now call the service proxy classes
*
*/
void CallService() {
String response = "ERROR!:";
try {

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");
System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML20_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "Bearer");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();

gencont.add(samlToken);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();

gencont.add(timestamp);

gencont.process(requestContext);

// Build the input object
EchoStringInput echoParm =
new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Prepare to consume timestamp in response message.
WSSConsumingContext concont = factory.newWSSConsumingContext();

concont.add(WSSConsumingContext.TIMESTAMP);
concont.process(requestContext);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);
} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();
}
}
}

Chapter 34. Developing web services - Security (WS-Security) 1603

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _191EBC44865015D9AB1270745072344
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to https://localhost:9443/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Requesting SAML sender-vouches tokens from an external STS using WSS APIs and message level
protection:

You can request SAML tokens with the sender-vouches subject confirmation method from an external
Security Token Service (STS). After obtaining the SAML sender-vouches token, you can then send these
tokens with web services request messages using the Java API for XML-Based Web Services (JAX-WS)
programming model and Web Services Security APIs (WSS API) with message level protection.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, SSL transport protection, X.509 security token, and the use of policy sets to configure
and administer web services settings.

About this task

You can request a SAML token with the sender-vouches subject confirmation method from an external
STS and then send the SAML token in web services request messages from a web services client using
WSS APIs with message level protection.

This product does not provide a default policy set that requires SAML tokens with sender-vouches subject
confirmation method. Read about configuring client and provider bindings for the SAML sender-vouches
token to learn more about how to create a Web Services Security policy to require SAML tokens with
sender-vouches subject confirmation and how to create a custom binding configuration. You must attach
the policy and binding to the web services provider. The code sample described in this task assumes that
the web services provider policy requires that both the SAML tokens and the message bodies are digitally
signed by using an X.509 security token.

The web services client application used in this task is a modified version of the client code that is
contained in the JaxWSServicesSamples sample application that is available for download. Code
examples from the sample are described in the procedure, and a complete, ready-to-use web services
client sample is provided.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to add the Web Services Security API to pass
SAML sender-vouches tokens in SOAP request messages programmatically using WSS APIs,
complete the following steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

1604 Developing WebSphere applications

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS web services thin client; however,
you can also use a managed client.

2. Specify to use SSL message-level message protection. Use the following JVM property to specify to
use SSL to protect the SAML token request with the STS:

-Dcom.ibm.SSL.ConfigURL=file:profile_root\properties\ssl.client.props

Alternatively, you can define the SSL configuration file using a Java system property in the sample
client code; for example:

System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

3. Add the Thin Client for JAX-WS JAR file to the class path. Add the app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the class path. See the testing web services-enabled clients
information for more information about adding this JAR file to the class path.

4. Request the SAML token from an external STS. The following code snippet illustrates how to request
the SAML sender-vouches token and assumes that an external STS is configured to accept a
Username token, and to issue a SAML 2.0 token using sender-vouches after validation:

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML11_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

a. Use the WSSFactory newSecurityToken method to specify how to request the SAML token from an
external STS.

Specify the following method to create the SAML token:
WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Requesting a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Use the Policy Tool to add the following policy
statement to the Java security policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken"

The SAMLToken.class parameter specifies the type of security token to create.

The callbackHandler object contains parameters that define the characteristics of the SAMLToken
that you are requesting and other parameters required to reach the STS and obtain the SAML
token. The SAMLGenerateCallbackHandler object specifies the configuration parameters described
in the following table:

Chapter 34. Developing web services - Security (WS-Security) 1605

Table 249. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the sender-vouches confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the sender-vouches confirmation
method.

Yes

SamlConstants.TOKEN_TYPE Specifies the token type.

When a web services client has policy set attachments,
this property is not used by the Web Services Security
runtime environment.

Specify the token value type by using the valueType
attribute of the tokenGenerator binding configuration.

The example in this procedure uses a SAML 1.1 token;
however, you can also use the
WSSConstants.SAML.SAML20_VALUE_TYPE value.

Yes

SamlConstants.STS_ADDRESS Specifies the Security Token Service address.

For the example used in this task topic, the value of this
property is set to https to specify to use SSL to protect
the SAML Token request.

You must set the -Dcom.ibm.SSL.ConfigURL property to
enable the use of SSL to protect the SAML token
request with the STS.

Yes

SamlConstants.SAML_APPLIES_TO Specifies the target STS address for where you want to
use the SAML token.

No

SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST Specifies whether to request from the STS a single
token that is enclosed in a RequestSecurityToken (RST)
element or multiple tokens in a collection of RST
elements that are enclosed in a single
RequestSecurityTokenCollection (RSTC) element.

The default behavior is to request a single token that is
enclosed in a RequestSecurityToken (RST) element
from the STS.

Specifying a true value for this property indicates to
request multiple tokens in a collection of RST elements
that are enclosed in a single
RequestSecurityTokenCollection (RSTC) element from
the STS.

No

SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE Specifies the WS-Trust namespace that is included in
the WS-Trust request.

The default value is WSTrust 1.3.

No

A WSSGenerationContext instance and a WSSConsumingContext instance are also set in the
SAMLGenerateCallbackHandler object. The WSSGenerationContext instance must contain a
UNTGenerateCallbackHandler object with the information to create the UsernameToken that you
want to send to the STS.

The system.wss.generate.saml parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the SAML token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in
the sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");

b. Obtain the token identifier of the created SAML token.

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

5. Add the SAML token to the SOAP security header of web services request messages.

1606 Developing WebSphere applications

a. Initialize the web services client and configure the SOAPAction properties. The following code
example illustrates these actions:

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

b. Initialize the WSSGenerationContext. The following code snippet illustrates the use of the
gencont.object of the WSSGenerationContext type to initialize a generation context to enable you
to insert the SAMLToken into a web services request message:

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(samlToken);

Specifically, the gencont.add(samlToken) method call specifies to put the SAML token into a
request message. This operation requires the client code to have the following Java 2 Security
permission:

permission javax.security.auth.AuthPermission "modifyPrivateCredentials"

6. Add an X.509 token for message protection using the Web Services Security API.

This sample code uses the dsig-sender.ks key file and the SOAPRequester sample key. You must not
use the sample key in a production environment. The following code snippet illustrates adding an
X.509 token for message protection:

// Add an X.509 Token for message protection
X509GenerateCallbackHandler x509callbackHandler = new X509GenerateCallbackHandler(

null,
"profile_root/etc/ws-security/samples/dsig-sender.ks",
"JKS",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

SecurityToken x509 = factory.newSecurityToken(X509Token.class,
x509callbackHandler, "system.wss.generate.x509");

WSSSignature sig = factory.newWSSSignature(x509);
sig.setSignatureMethod(WSSSignature.RSA_SHA1);

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);
sig.addSignPart(sigPart);
sig.addSignPart(WSSSignature.BODY);

a. Create a WSSSignature object with the X509 token. The following line of code creates a
WSSSignature object with the X509 token:

WSSSignature sig = factory.newWSSSignature(x509);

b. Add the signed part to use for message protection. The following line of code specifies to add
WSSSignature.BODY as the signed part:

sig.addSignPart(WSSSignature.BODY);

c. Add the timestamp element in the SOAP messages security header. The SAML20 SenderVouches
WSHTTPS and SAML11 SenderVouches WSHTTPS policy sets require web services requests and
response messages to carry a timestamp element in the SOAP messages Security header. In the
following code snippet, the factory.newWSSTimestamp() method call generates the timestamp, and
the gencont.add(timestamp) method call adds the timestamp into the request message:

// Add Timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();

gencont.add(timestamp);
sig.addSignPart(WSSSignature.TIMESTAMP);

gencont.add(sig);

WSSConsumingContext concont = factory.newWSSConsumingContext();

Chapter 34. Developing web services - Security (WS-Security) 1607

d. Configure the SAML token signature using STR-Transform transform algorithm.

A separate WSSSignPart is needed to specify the SecurityTokenReference transformation
algorithm that is represented by the WSSSignPart.TRANSFORM_STRT10 attribute. A SAML Token
cannot be digitally signed directly. This attribute enables the Web Services Security runtime
environment to generate a SecurityTokenReference element to reference the SAMLToken and to
digitally sign the SAMLToken using the SecurityTokenReference transformation. The following line
of code specifies to use the WSSSignPart.TRANSFORM_STRT10 attribute:

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

e. Attach the WSSGenerationContext object to the web services RequestContext object. The
WSSGenerationContext object now contains all the security information that is required to format a
request message. The gencont.process(requestContext) method call attaches the
WSSGenerationContext object to the web services RequestContext object to enable the Web
Services Security runtime environment to format the required SOAP security header; for example:

// Attaches the WSSGenerationContext object to the web services RequestContext object.
gencont.process(requestContext);

7. Use the X.509 token to validate the digital signature and the integrity of the response message. If the
provider policy requires the response message to be digitally signed, you must initialize the X.509
token.

a. A X509ConsumeCallbackHandler object is initialized with a truststore, dsig-receiver.ks, and a
certificate path object to validate the provider digital signature. The following line of code is used to
initialize the X509ConsumeCallbackHandler object:

X509ConsumeCallbackHandler callbackHandlerVer = new X509ConsumeCallbackHandler(
"profile_root/etc/ws-security/samples/dsig-receiver.ks",

"JKS",
"server".toCharArray(),
certList,

java.security.Security.getProvider("IBMCertPath"));

b. A WSSVerification object is created and the message body is added to the verification object so
that the Web Services Security runtime environment validates the digital signature.

The following line of code is used to initialize the WSSVerification object:
WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandlerVer);

The WSSConsumingContext object now contains all the security information that is required to
format a request message. The concont.process(requestContext) method call attaches the
WSSConsumingContext object to the response method; for example:

// Attaches the WSSConsumingContext object to the web services RequestContext object.
concont.process(requestContext);

Results

You have requested a SAML token with the sender-vouches confirmation method from an external STS.
After obtaining the token, you sent the token with web services request messages using message level
protection using the JAX-WS programming model and WSS APIs.

Example

The following code sample is a complete, ready-to-use web services client application that demonstrates
how to request a SAML token from an external STS and send that SAML token in web services request
messages with message level protection. This sample code illustrates the procedure steps described
previously.
/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/
package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;

1608 Developing WebSphere applications

import com.ibm.was.wssample.sei.echo.EchoStringInput;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.UsernameToken;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler;
import com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.WSSException;
import com.ibm.websphere.wssecurity.wssapi.signature.WSSSignPart;
import com.ibm.websphere.wssecurity.wssapi.signature.WSSSignature;
import com.ibm.websphere.wssecurity.wssapi.verification.WSSVerification;
import com.ibm.websphere.wssecurity.wssapi.token.X509Token;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.security.InvalidAlgorithmParameterException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.cert.CertStore;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.CollectionCertStoreParameters;
import java.security.cert.X509Certificate;
import java.util.HashSet;
import java.util.Set;
import java.util.HashMap;
import java.util.Map;

import javax.xml.ws.BindingProvider;

public class SampleSamlSVClient {
private String urlHost = "localhost";
private String urlPort = "9080";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "http://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();
}

/**
* CallService Parms were already read. Now call the service proxy classes.
*
*/
void CallService() {
String response = "ERROR!:";
try {

System.setProperty("com.ibm.SSL.ConfigURL", "profile_root/properties/ssl.client.props");
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas.conf");

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML11_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

Chapter 34. Developing web services - Security (WS-Security) 1609

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client.
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();

gencont.add(samlToken);

// Add X.509 Tokens for message protection
X509GenerateCallbackHandler x509callbackHandler = new X509GenerateCallbackHandler(
null,
"profile_root/etc/ws-security/samples/dsig-sender.ks",
"JKS",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

SecurityToken x509 = factory.newSecurityToken(X509Token.class,
x509callbackHandler, "system.wss.generate.x509");

WSSSignature sig = factory.newWSSSignature(x509);
sig.setSignatureMethod(WSSSignature.RSA_SHA1);

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(samlToken);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);
sig.addSignPart(sigPart);
sig.addSignPart(WSSSignature.BODY);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();

gencont.add(timestamp);
sig.addSignPart(WSSSignature.TIMESTAMP);

gencont.add(sig);

WSSConsumingContext concont = factory.newWSSConsumingContext();

// Prepare to consume timestamp in response message
concont.add(WSSConsumingContext.TIMESTAMP);

// Prepare to verify digital signature in response message
X509Certificate x509cert = null;
try {

InputStream is = new FileInputStream("profile_root/etc/ws-security/samples/intca2.cer");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate) cf.generateCertificate(is);

} catch (FileNotFoundException e1) {
throw new WSSException(e1);

} catch (CertificateException e2) {
throw new WSSException(e2);

}
Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);

java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new CollectionCertStoreParameters(eeCerts);

CertStore cert = null;
try {

cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");
} catch (NoSuchProviderException e1) {

throw new WSSException(e1);
} catch (InvalidAlgorithmParameterException e2) {

throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {

throw new WSSException(e3);
}
if (certList != null) {

certList.add(cert);
}

1610 Developing WebSphere applications

X509ConsumeCallbackHandler callbackHandlerVer = new X509ConsumeCallbackHandler(
"profile_root/etc/ws-security/samples/dsig-receiver.ks",
"JKS",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath"));

WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandlerVer);

ver.addRequiredVerifyPart(WSSVerification.BODY);
concont.add(ver);

gencont.process(requestContext);
concont.process(requestContext);

// Build the input object
EchoStringInput echoParm =
new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);
} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();
}
}
}

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _6CDDF0DBF91C044D211271166233407
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to http://localhost:9443/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Requesting SAML sender-vouches tokens from an external STS using WSS APIs and transport level
protection:

You can request SAML tokens with the sender-vouches subject confirmation method from an external
Security Token Service (STS). After obtaining the SAML sender-vouches token, you can then send these
tokens with web services request messages using the Java API for XML-Based Web Services (JAX-WS)
programming model and Web Services Security APIs (WSS API) with transport level protection.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, SSL transport protection, and the use of policy sets to configure and administer web
services settings.

About this task

You can request a SAML token with the sender-vouches subject confirmation method from an external
STS and then send the SAML token in web services request messages from a web services client using
WSS APIs with transport level protection.

The web services client application used in this task is a modified version of the client code that is
contained in the JaxWSServicesSamples sample application that is available for download. Code
examples from the sample are described in the procedure, and a complete, ready-to-use web services
client sample is provided.

Procedure

1. Identify and obtain the web services client that you want to use to invoke a web services provider.

Use this client to insert SAML tokens in SOAP request messages programmatically using WSS APIs.

Chapter 34. Developing web services - Security (WS-Security) 1611

The web services client used in this procedure is a modified version of the client code that is contained
in the JaxWSServicesSamples web services sample application.

To obtain and modify the sample web services client to add the Web Services Security API to pass
SAML sender-vouches tokens in SOAP request messages programmatically using WSS APIs,
complete the following steps:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code.

For example purposes, this procedure uses a modified version of the Echo thin client sample that
is included in the JaxWSServicesSamples sample. The web services Echo thin client sample file,
SampleClient.java, is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli
directory. The sample class file is included in the WSSampleClientSei.jar file.

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web services client code against
the sample application.

Instead of using the web services client sample, you can choose to add the code snippets to pass
SAML tokens in SOAP request messages programmatically using WSS APIs in your own web services
client application. The example in this procedure uses a JAX-WS Web services thin client; however,
you can also use a managed client.

2. Create a copy of either the SAML20 Bearer WSHTTPS default policy set or the SAML11 Bearer
WSHTTPS default policy set.

Provide a name for the copy of the policy set; for example SAML20 SenderVouches WSHTTPS or
SAML11 SenderVouches WSHTTPS to help you identify that this new policy set uses the
sender-vouches confirmation method.

No additional change is required to the new policy file because the subject confirmation method is
specified in the binding configuration and not in the policy.

The new policy file contains either SAMLToken20Bearer or the SAMLToken11Bearer as the policy
identifiers. Change the identifier of the SAMLToken20Bearer policy to SAMLToken20SV or change the
identifier of the SAMLToken11Bearer policy to SAMLToken11SV to specify a more descriptive name.
Changing the identifier of the policy does not change the policy enforcement in any way; however,
adding a descriptive identifier helps you to identify that these policy identifiers use the sender-vouches
confirmation method.

If you want to view the settings of these policies, use the administrative console to complete the
following actions:

a. Click Services > Policy sets > Application policy sets > policy_set_name.

b. Click the WS-Security policy in the policies table.

c. Click the Main policy link or the Bootstrap policy link.

d. Click Request token policies from the Policy Details section.

3. Attach the new SAML20 SenderVouches WSHTTPS or SAML11 SenderVouches WSHTTPS policy set
to the web services provider application. Read about configuring client and provider bindings for the
SAML sender-vouches token for details on attaching this policy set to your web services provider
application.

4. Create a copy of the SAML Bearer Provider sample default general bindings.

a. For the new copy of the default policy set, provide a name that includes sender-vouches, such as
SAML Sender-vouches provider binding.

b. In the callback handler of your SAML11 or SAML20 token consumer, change the value of the
confirmationMethod property to sender-vouches in the token consumer configuration for the
intended SAML token version. Ensure that the custom properties trustStoreType,
trustStorePassword and trustStorePath correspond to the trust store containing the STS signer

1612 Developing WebSphere applications

certificate. Read about configuring client and provider bindings for the SAML sender-vouches token
for details on modifying the sender-vouches bindings to satisfy the vouching requirement.

5. Assign the new provider binding to the JaxWSServicesSamples provider sample. Read about
configuring client and provider bindings for the SAML sender-vouches for details on assigning the
SAML sender-vouches provider sample, default general bindings to your web services provider
application.

6. Enable the web services provider SSL configuration attribute, clientAuthentication, to require X.509
client certificate authentication.

The clientAuthentication attribute determines whether SSL client authentication is required. To specify
the clientAuthentication attribute, use the administrative console to complete the following actions:

a. Click Security > SSL certificates and key management > Manage endpoint security
configurations > {Inbound | Outbound} > SSL_configuration.

b. Click the WC_defaulthost_secure link in the inbound topology.

c. From Related Items, click the SSL_configurations link.

d. Select the NodeDefaultSSLSettings resource.

e. Click Quality of protection (QoP) settings link.

f. Select Required from the menu to specify client authentication.

Read about creating a secure sockets layer configuration to learn more about configuring the
clientAuthentication attribute.

7. Specify to use SSL transport-level message protection. Use the following JVM property to specify to
use SSL to protect the SAML token request with the STS:

-Dcom.ibm.SSL.ConfigURL=file:profile_root\properties\ssl.client.props

Alternatively, you can define the SSL configuration file using a Java system property in the sample
client code; for example:

System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

8. Add the Thin Client for JAX-WS JAR file to the class path. Add the app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar file to the class path. See the testing web services-enabled clients
information for more information about adding this JAR file to the class path.

9. Request the SAML token from an external STS. The following code snippet illustrates how to request
the SAML sender-vouches token and assumes that an external STS is configured to accept a
UsernameToken, and to issue a SAML 1.1 token using sender-vouches after validation:

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML11_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

a. Use the WSSFactory newSecurityToken method to specify how to request the SAML token from an
external STS.

Specify the following method to create the SAML token:

Chapter 34. Developing web services - Security (WS-Security) 1613

WSSFactory newSecurityToken(SAMLToken.class, callbackHandler, "system.wss.generate.saml")

Requesting a SAML token requires the Java security permission
wssapi.SAMLTokenFactory.newSAMLToken. Use the Policy Tool to add the following policy
statement to the Java security policy file or the application client was.policy file:

permission java.security.SecurityPermission "wssapi.SAMLTokenFactory.newSAMLToken"

The SAMLToken.class parameter specifies the type of security token to create.

The callbackHandler object contains parameters that define the characteristics of the SAMLToken
that you are requesting and other parameters required to reach the STS and obtain the SAML
token. The SAMLGenerateCallbackHandler object specifies the configuration parameters described
in the following table:

Table 250. SAMLGenerateCallbackHandler properties. This table describes the configuration parameters for the
SAMLGenerateCallbackHandler object using the sender-vouches confirmation method.
Property Description Required

SamlConstants.CONFIRMATION_METHOD Specifies to use the sender-vouches confirmation method. Yes

SamlConstants.TOKEN_TYPE Specifies the token type.

When a web services client has policy set attachments, this property is not
used by the Web Services Security runtime environment.

Specify the token value type by using the valueType attribute of the
tokenGenerator binding configuration.

The example in this procedure uses a SAML 1.1 token; however, you can
also use the WSSConstants.SAML.SAML20_VALUE_TYPE value.

Yes

SamlConstants.STS_ADDRESS Specifies the Security Token Service address.

For the example used in this task topic, the value of this property is set to
https to specify to use SSL to protect the SAML Token request.

You must set the -Dcom.ibm.SSL.ConfigURL property to enable the use of
SSL to protect the SAML token request with the STS.

Yes

SamlConstants.SAML_APPLIES_TO Specifies the target STS address for where you want to use the SAML
token.

No

SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST Specifies whether to request from the STS a single token that is enclosed
in a RequestSecurityToken (RST) element or multiple tokens in a collection
of RST elements that are enclosed in a single
RequestSecurityTokenCollection (RSTC) element.

The default behavior is to request a single token that is enclosed in a
RequestSecurityToken (RST) element from the STS.

Specifying a true value for this property indicates to request multiple
tokens in a collection of RST elements that are enclosed in a single
RequestSecurityTokenCollection (RSTC) element from the STS.

No

SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE Specifies the WS-Trust namespace that is included in the WS-Trust
request.

The default value is WSTrust 1.3.

No

A WSSGenerationContext instance and a WSSConsumingContext instance are also set in the
SAMLGenerateCallbackHandler object. The WSSGenerationContext instance must contain a
UNTGenerateCallbackHandler object with the information to create the UsernameToken that you
want to send to the STS.

The system.wss.generate.saml parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the SAML token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in
the sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");

b. Obtain the token identifier of the created SAML token.

1614 Developing WebSphere applications

Use the following statement as a simple test for the SAML token that you created:
System.out.println("SAMLToken id = " + samlToken.getId())

Results

You have requested a SAML token with the sender-vouches confirmation method from an external STS.
After obtaining the token, you sent the token with web services request messages using transport
protection using the JAX-WS programming model and WSS APIs.

Example

The following code sample is a complete, ready-to-use web services client application that demonstrates
how to request a SAML token from an external STS and send that SAML token in web services request
messages with transport level protection. This sample code illustrates the procedure steps described
previously.
/**
* The following source code is sample code created by IBM Corporation.
* This sample code is provided to you solely for the purpose of assisting you in the
* use of the technology. The code is provided ’AS IS’, without warranty or condition of
* any kind. IBM shall not be liable for any damages arising out of your use of the
* sample code, even if IBM has been advised of the possibility of such damages.
*/
package com.ibm.was.wssample.sei.cli;

import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;

import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.UsernameToken;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.saml.config.SamlConstants;

import java.util.Map;
import java.util.HashMap;

import javax.xml.ws.BindingProvider;

public class SampleSamlSVClient {
private String urlHost = "localhost";
private String urlPort = "9443";
private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "https://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {
SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();
}

/**
* CallService Parms were already read. Now call the service proxy classes.
*
*/
void CallService() {
String response = "ERROR!:";
try {

System.setProperty("com.ibm.SSL.ConfigURL", "profile_root//properties/ssl.client.props");
System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";

Chapter 34. Developing web services - Security (WS-Security) 1615

String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(SamlConstants.TRUST_CLIENT_WSTRUST_NAMESPACE, "http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(SamlConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(SamlConstants.TOKEN_TYPE, WSSConstants.SAML.SAML11_VALUE_TYPE);
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "sender-vouches");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);

// Add UNT to trust request
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);

gencont1.add(ut);

cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class, cbHandler1, "system.wss.generate.saml");

System.out.println("SAMLToken id = " + samlToken.getId());

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();

gencont.add(samlToken);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();

gencont.add(timestamp);

gencont.process(requestContext);

// Build the input object
EchoStringInput echoParm =
new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);
System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Prepare to consume timestamp in response message
WSSConsumingContext concont = factory.newWSSConsumingContext();

concont.add(WSSConsumingContext.TIMESTAMP);
concont.process(requestContext);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);
} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();
}

}
}

When this web services client application sample runs correctly, you receive messages like the following
messages:
SAMLToken id = _6CDDF0DBF91C044D211271166233407
Retrieving document at ’file:profile_root/.../wsdl/’.
>> CLIENT: SEI Echo to http://localhost:9443/WSSampleSei/EchoService12
>> CLIENT: SEI Echo invocation complete.
>> CLIENT: SEI Echo response is: SOAP12==>>HELLO

Requesting SAML holder-of-key tokens with symmetric key from external security token service using
WSS APIs:

1616 Developing WebSphere applications

You can request an external security token service (STS) to issue SAML tokens with the holder-of-key
subject confirmation method with symmetric key that is encrypted for a target service. Use the Java API for
XML-Based Web Services (JAX-WS) programming model and Web Services Security APIs (WSS APIs) to
complete this task.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings. Complete
the following actions before you begin this task:

v Read about propagating self-issued SAML holder-of-key tokens with symmetric key by using WSS APIs.

v Become familiar with using embedded key materials in SAML tokens for message protection by using
WSS APIs. Your usage scenario requires requesting SAML tokens from an external STS instead of
using self-issued SAML tokens.

v Read about requesting SAML sender-vouches tokens from an external STS to propagate by using WSS
APIs with message level protection.

v Read about requesting SAML sender-vouches tokens from an external STS to propagate by using WSS
APIs with transport level protection.

v Read about requesting SAML bearer tokens from an external STS to propagate by using WSS APIs
with transport level protection.

v Be familiar with accessing an external STS by using WSS APIs.

About this task

This task shows example code to request SAML tokens from an external STS, with holder-of-key subject
confirmation method and embedded symmetric key that is encrypted for the target service by using WSS
APIs. This task focuses on sending a WS-Trust request message to an external STS to request SAML
holder-of-key tokens with symmetric keys.

Procedure

1. Specify an STS from which to request a SAML security token that contains holder-of-key subject
confirmation method; for example:

com.ibm.websphere.wssecurity.wssapi.WSSFactory factory =
com.ibm.websphere.wssecurity.wssapi.WSSFactory.getInstance();

WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, "https://www.example.com/sts"); //STS URL
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, "http://myhost:9080/myService"); //Target Service
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_SOAP_VERSION, "1.1");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST,

"true"); //RST or RSTC
cbackMap1.put(SamlConstants.TOKEN_TYPE,

"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0");
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "holder-of-key");

To request a holder-of-key SAML security token from the STS, you must specify whether to embed a
symmetric key or a public key by way of a KeyType element in a trust request. This example requires a
symmetric key type as shown in the next step.

2. Specify the symmetric key to be embedded in SAML security tokens; for example:
cbackMap1.put(SamlConstants.KEY_TYPE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);
cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);

SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class,
cbHandler1, "system.wss.generate.saml");

Chapter 34. Developing web services - Security (WS-Security) 1617

The requested SAML token contains a symmetric key that is encrypted for the target service. The STS
also returns the unencrypted symmetric key through the WS-Trust RequestedProofToken element. See
the following example.

<wst:RequestedProofToken>
<wst:BinarySecret
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="_27325D34CE4BCC83141288966548620">n68rFQba+XTZLNBfEc4prg==</wst:BinarySecret>

</wst:RequestedProofToken>

The RequestedProofToken element is shown here for your information. The detailed processing is not
exposed to WSS APIs users. The RequestedProofToken element and the symmetric key are handled by
the Web Services Security runtime environment, or more precisely by the SAMLGenerateLoginModule
that is specified in the system.wss.geenrate.saml JAAS login configuration.

Results

You have learned key building blocks for requesting SAML tokens with holder-of-key subject confirmation
method and symmetric key from an external STS by using WSS APIs. To use the SAML token to sign
request messages, review the example code in the “Propagating self-issued SAML holder-of-key tokens
with symmetric key by using WSS APIs” topic.

Requesting SAML holder-of-key tokens with asymmetric key from External Security Token Service using
WSS APIs:

You can request an external Security Token Service (STS) to issue SAML tokens with the holder-of-key
subject confirmation method with a public key in an X.509 certificate with the Java API for XML-Based
Web Services (JAX-WS) programming model and Web Services Security APIs (WSS APIs).

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
SAML concepts, and the use of policy sets to configure and administer web services settings. Complete
the following actions before you begin this task:

v Read about propagating self-issued SAML holder-of-key tokens with asymmetric key by using WSS
APIs.

v Become familiar with using embedded key materials in SAML tokens for message protection by using
WSS APIs. Your usage scenario requires requesting SAML tokens from an external STS instead of
using self-issued SAML tokens.

v Read about requesting SAML sender-vouches tokens from an external STS to propagate by using WSS
APIs with message level protection.

v Read about requesting SAML sender-vouches tokens from an external STS to propagate by using WSS
APIs with transport level protection.

v Read about requesting SAML bearer tokens from an external STS, which you propagate by using WSS
APIs with transport level protection.

v Become familiar with accessing an external STS by using WSS APIs.

About this task

This task shows example code to request SAML tokens with the holder-of-key subject confirmation method
and the embedded public key in an X.509 certificate by using WSS APIs, from an external STS. This task
focuses on sending an X.509 certificate to an external STS when requesting SAML holder-of-key tokens.

Procedure

1. Specify an STS from which to request a SAML security token that contains holder-of-key subject
confirmation method; for example:

1618 Developing WebSphere applications

com.ibm.websphere.wssecurity.wssapi.WSSFactory factory =
com.ibm.websphere.wssecurity.wssapi.WSSFactory.getInstance();

WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(SamlConstants.STS_ADDRESS, "https://www.example.com/sts");
cbackMap1.put(SamlConstants.SAML_APPLIES_TO, "http://myhost:9080/myService");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_SOAP_VERSION, "1.1");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST,

"true"); //RST or RSTC
cbackMap1.put(SamlConstants.TOKEN_TYPE,

"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0");
cbackMap1.put(SamlConstants.CONFIRMATION_METHOD, "holder-of-key");

For the holder-of-key subject confirmation method, you must specify whether a public key or a
symmetric key is embedded in SAML tokens. This example specifies a public key type. It then
specifies the location of a certificate that contains the public key, and the location of the corresponding
private key for the sender to digitally sign elements of SOAP messages to satisfy the holder-of-key
subject confirmation requirements.

2. Specify the location of an X.509 certificate to embed in SAML tokens and a corresponding private key
for using to digitally sign message elements; for example:

cbackMap1.put(SamlConstants.KEY_TYPE,
"http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey");

cbackMap1.put(SamlConstants.KEY_ALIAS, "soapinitiator");
cbackMap1.put(SamlConstants.KEY_NAME, "CN=SOAPInitator, O=Example");
cbackMap1.put(SamlConstants.KEY_PASSWORD, "keypass");
cbackMap1.put(SamlConstants.KEY_STORE_PATH, "keystores/initiator.jceks");
cbackMap1.put(SamlConstants.KEY_STORE_PASSWORD, "storepass");
cbackMap1.put(SamlConstants.KEY_STORE_TYPE, "jceks");

SAMLGenerateCallbackHandler cbHandler1 = new SAMLGenerateCallbackHandler(cbackMap1);
cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);

SecurityToken samlToken = factory.newSecurityToken(SAMLToken.class,
cbHandler1, "system.wss.generate.saml");

The specified X.509 certificate is sent in WS-Trust requests to the external STS in the trust:UseKey
element. For more information read about SAML assertions defined in the SAML Token Profile
standard. SSL is used to protect integrity and confidentiality of WS-Trust request and response
messages in this example.

Results

You have learned key building blocks to request SAML tokens with the holder-of-key subject confirmation
method and asymmetric key from an external STS using WSS APIs. To use the SAML token to sign
request messages, become familiar with the example code in the "Propagating self-issued SAML
holder-of-key tokens with asymmetric key by using WSS APIs” topic.

Sending a security token using WSSAPIs with a generic security token login module:

You can request an authentication token from an external Security Token Service (STS), and then send
the token with web service request messages using the Java API for XML-Based Web Services (JAX-WS)
programming model and Web Services Security APIs (WSS API), with message or transport level
protection.

Before you begin

This task assumes that you are familiar with the JAX-WS programming model, the WSS API interfaces,
WebSphere web service security generic security token login modules, SSL transport protection, message
level protection, and the use of policy sets to configure and administer web services settings.

Chapter 34. Developing web services - Security (WS-Security) 1619

About this task

The web service client application used in this task is a modified version of the client code that is
contained in the JaxWSServicesSamples sample application that is available for download. Code
examples from the sample are described in the procedure, and a complete, ready-to-use web service
client sample is provided.

Complete the following steps to request a SAML Bearer authentication token from an external STS and
send the token:

Procedure

1. Identify and obtain the web service client that you want to use to invoke a web service provider. Use
this client to request and to insert authentication tokens in the SOAP request messages
programmatically using WSS APIs. The web service client used in this procedure is a modified version
of the client code that is contained in the JaxWSServicesSamples web service sample application.

Complete the following steps to obtain and modify the sample web service client to add the Web
Services Security API to pass a security token in the SOAP request message programmatically using
WSS APIs:

a. Download the JaxWSServicesSamples sample application. The JaxWSServicesSamples sample is
not installed by default.

b. Obtain the JaxWSServicesSamples client code. For the purpose of this example, the procedure
uses a modified version of the Echo thin client sample that is included in the
JaxWSServicesSamples sample. The web service Echo thin client sample file, SampleClient.java,
is located in the src\SampleClientSei\src\com\ibm\was\wssample\sei\cli directory. The sample
class file is included in the WSSampleClientSei.jar file.

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are
located in the installableApps directory within the JaxWSServicesSamples sample application.

c. Deploy the JaxWSServicesSamples.ear file onto the application server. After you deploy the
JaxWSServicesSamples.ear file, you are ready to test the sample web service client code against
the sample application.

Instead of using the PolicySet for the protection of the web service client sample, you can choose
to add the code snippets to pass authentication tokens in the SOAP request message
programmatically using WSS APIs in your own web service client application. The example in this
procedure uses a JAX-WS web service thin client; however, you can also use a managed client.

d. Attach the SAML11 Bearer WSHTTPS default policy set to the web services provider. This policy
set is used to protect messages using HTTPS transport. Read about configuring client and provider
bindings for the SAML Bearer token for details on how to attach the SAML11 Bearer WSHTTPS
default policy set to the web services provider.

e. Assign the SAML Bearer Provider sample default general bindings to the sample web services
provider. Read about configuring client and provider bindings for the SAML bearer token for details
on assigning the SAML Bearer Provider sample default general bindings to your web services
application.

f. Verify that the trustStoreType, trustStorePassword and trustStorePath custom properties correspond
to the trust store containing the STS signer certificate. Complete the following steps by using the
administrative console:

1) Click Services > Policy sets > General provider policy set bindings > Saml Bearer
Provider sample > WS-Security > Authentication and protection.

2) Click con_saml11token in the Authentication tokens table.

3) Click Callback handler.

4) In the Custom Properties section, ensure that the trustStoreType, trustStorePassword and
trustStorePath custom properties correspond to the trust store containing the STS signer
certificate.

1620 Developing WebSphere applications

2. If you are using SSL Transport-level protection to protect the web service request or the WS-Trust
request, use the following Java virtual machine (JVM) property to set up the SSL configuration.

-Dcom.ibm.SSL.ConfigURL=file:<profile_root>\properties\ssl.client.props

Alternatively, you can define the SSL configuration file using a Java system property in the sample
client code:

System.setProperty("com.ibm.SSL.ConfigURL", "file:profile_root/properties/ssl.client.props");

3. Add the JAR file for the JAX-WS thin client to the class path: app_server_root/runtimes/
com.ibm.jaxws.thinclient_8.5.0.jar. See the testing web service-enabled clients information for
more information about adding this JAR file to the class path.

4. Request the authentication token from an external STS. The following code snippet illustrates how to
request the authentication token to be used with WebSphere generic SecurityToken login module, and
assumes that an external STS is configured to accept a Username token as authentication token, and
to issue a SAML 1.1 token.

//Request SecurityToken from external STS:
WSSFactory factory = WSSFactory.getInstance();
//STS URL that issues the requested token
String STS_URI = "https://externalstsserverurl:port/TrustServerWST13/services/RequestSecurityToken";
//Web services endpoint that receives the issued token
String ENDPOINT_URL = "http://localhost:9080/WSSampleSei/EchoService";

//Begin sample code 1 (Using WS-Trust Issue to request the token from
//the STS in which authentication token is send over WS-Security head):
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(IssuedTokenConfigConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(IssuedTokenConfigConstants.APPLIES_TO, ENDPOINT_URL);
//The following property specifies that the ws-trust request should be
//compliance with WS-Trust 1.3 spec
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE,
"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
//This request is made with WS-TRust Issue only (without the use of
//WS-Trust Validate)
cbackMap1.put(IssuedTokenConfigConstants.USE_RUN_AS_SUBJECT, "false");

GenericIssuedTokenGenerateCallbackHandler cbHandler1 =
new GenericIssuedTokenGenerateCallbackHandler (cbackMap1);

//Create the context object for WS-Trust request:
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
// Use UNT for trust request authentication
UNTGenerateCallbackHandler utCallbackHandler = new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);
gencont1.add(ut);
cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);
//End of sample code 1.

//Begin sample code 2 (using WS-Trust Validate to request a token by
//exchanging a token in RunAs Subject).
//If web service client has RunAs Subject , for example an
//authenticated intermediate server acts as a client to invoke the
//downstream service, you can program the client to use the token from
//the RunAs subject to exchange with the STS by using WS-Trust validate.
//To do so, you replace sample code 1 with the following:
HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(IssuedTokenConfigConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(IssuedTokenConfigConstants.APPLIES_TO, ENDPOINT_URL);
//This request is made with WS-Trust 1.3
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE,
"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");

//add the next line if you do not want to fallback to WS-Trust Issue if
//token exchange fails.
cbackMap1.put(IssuedTokenConfigConstants.USE_RUN_AS_SUBJECT_ONLY, "true");

//add the next line to specify the token type in the RunAs subject that
//will be used to exchange the requested token. For example, you use
//the LTPA token to exchange for a SAML token. If the exchanged token
//in the RunAs subject has the same value type as the requested token,
//setting IssuedTokenConfigConstants.USE_TOKEN is not required.
cbackMap1.put(IssuedTokenConfigConstants.USE_TOKEN, LTPAToken.ValueType);

GenericIssuedTokenGenerateCallbackHandler cbHandler1 =
new GenericIssuedTokenGenerateCallbackHandler (cbackMap1);

//The following codes are added if Authentication token in ws-security
//head or Message level security protection is required. If there is no
//Message level protection or additional authentication token for
//WS-Trust Validate, do not create the context object shown below.
//Context object for WS-Trust request:

Chapter 34. Developing web services - Security (WS-Security) 1621

WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();
// Use UNT for trust request authentication
UNTGenerateCallbackHandler utCallbackHandler =

new UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);
gencont1.add(ut);
cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);

//End of sample code 2.

GenericSecurityToken token = (GenericSecurityToken) factory.newSecurityToken
(GenericSecurityToken.class, cbHandler1, "system.wss.generate.issuedToken");

//The following step to set ValueType is required..
//The parameter is always the QName of the requested token’s valueType.
//QName for SAML1.1:
QName Saml11ValueType = new QName(WSSConstants.SAML.SAML11_VALUE_TYPE);

token.setValueType(Saml11ValueType);

//This article includes QName definitions for SAML11, SAML20, TAM
//token, and Pass ticket token.
//QName for SAML 2.0:
QName Saml20ValueType = new QName(WSSConstants.SAML.SAML20_VALUE_TYPE);
token.setValueType(Saml11ValueType);
//QName for TAM token:
QName TamValueType = new QName("http://ibm.com/2004/01/itfim/ivcred");
//QName for PassTicket token:
QName PassTicketValueType = new QName("http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken");

//You can use the Token interface to get the token ValueType QName for
//all other tokens. For example, a Username Token’s QName is //UsernameToken.ValueType.

The GenericIssuedTokenGenerateCallbackHandler object contains parameters that define the
characteristics of the security token that you are requesting, as well as other parameters required to
reach the STS and to obtain the security token. The GenericIssuedTokenGenerateCallbackHandler
object specifies the configuration parameters described in the following table:

Table 251. GenericIssuedTokenGenerateCallbackHandler properties. This table describes the configuration
parameters for the GenericIssuedTokenGenerateCallbackHandler object, and specifies whether or not the property is
required.
Property Description Required

IssuedTokenConfigConstants.STS_ADDRESS Specifies the http address of the STS.

When communication to the STS is protected with SSL,
you must set the -Dcom.ibm.SSL.ConfigURL property. SSL
connection to the STS is indicated with an https://
address prefix.

Yes

IssuedTokenConfigConstants.APPLIES_TO Specifies the target service address for where you want to
use the token.

No

IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST Specifies whether to request a single token from the STS
that is enclosed in a RequestSecurityToken (RST) element
or multiple tokens in a collection of RST elements that are
enclosed in a single RequestSecurityTokenCollection
(RSTC) element.

The default behavior is to request a single token that is
enclosed in a RequestSecurityToken (RST) element from
the STS.

Specifying a true value for this property indicates a
request for multiple tokens in a collection of RST elements
that are enclosed in a single
RequestSecurityTokenCollection (RSTC) element from the
STS.

The default value is false.

No

IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE Specifies the WS-Trust namespace that is included in the
WS-Trust request.

The default value is WSTrust 1.3.

No

1622 Developing WebSphere applications

Table 251. GenericIssuedTokenGenerateCallbackHandler properties (continued). This table describes the
configuration parameters for the GenericIssuedTokenGenerateCallbackHandler object, and specifies whether or not
the property is required.
Property Description Required

IssuedTokenConfigConstants.USE_RUN_AS_SUBJECT Specify if you want WS-Security to use the token from the
RunAs subject to exchange the requested token first by
using WS-Trust Validate. If set to false, WS-Security will
use WS-Trust Issue to request the token.

The default value is true.

No

IssuedTokenConfigConstants.USE_RUN_AS_SUBJECT_ONLY Specify if you do not want WS-Security to use WS-Trust
Issue to the requested token if token exchange fails.

The default value is false.

No

IssuedTokenConfigConstants.USE_TOKEN Use this value to choose a token from the RunAs subject
to exchange the requested token.

The default value is the requested token's ValueType.

No

A WSSGenerationContext instance and a WSSConsumingContext instance are also set in the
GenericIssuedTokenGenerateCallbackHandler object. In this example, the WSSGenerationContext
instance contains a UNTGenerateCallbackHandler object with the information to create the
UsernameToken that you want to send to the STS.

The system.wss.generate.issuedToken parameter specifies the Java Authentication and Authorization
Service (JAAS) login module that is used to create the generic security token. You must specify a JVM
property to define a JAAS configuration file that contains the required JAAS login configuration; for
example:

-Djava.security.auth.login.config=profile_root/properties/wsjaas_client.conf

Alternatively, you can specify a JAAS login configuration file by setting a Java system property in the
sample client code; for example:

System.setProperty("java.security.auth.login.config", "profile_root/properties/wsjaas_client.conf");

5. Add the requested authentication token from the STS to the SOAP security header of web services
request messages.

a. Initialize the web service client and configure the SOAPAction properties. The following code
illustrates these actions:

// Initialize web service client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(token);

b. Initialize the WSSGenerationContext object. The following code illustrates using the
WSSFactory.newWSSGenerationContext method to obtain a WSSGenerationContext object. The
WSSGenerationContext object is then used to insert the token into a web service request message:

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(token);

The WSSGenerationContext.add method requires the client code to have the following Java 2
Security permission:

permission javax.security.auth.AuthPermission "modifyPrivateCredentials"

6. Add an X.509 token for message protection (skip this step if the web service is protected with SSL
Transport level protection only). The following sample code uses the dsig-sender.ks key file and the

Chapter 34. Developing web services - Security (WS-Security) 1623

SOAPRequester sample key. You must not use the sample key in a production environment. The
following code illustrates adding an X.509 token for message protection:

//Add an X.509 Token for message protection
X509GenerateCallbackHandler x509callbackHandler = new X509GenerateCallbackHandler(

null,
"profile_root/etc/ws-security/samples/dsig-sender.ks",
"JKS",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

SecurityToken x509 = factory.newSecurityToken(X509Token.class,
x509callbackHandler, "system.wss.generate.x509");

WSSSignature sig = factory.newWSSSignature(x509);
sig.setSignatureMethod(WSSSignature.RSA_SHA1);

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(token);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);
sig.addSignPart(sigPart);
sig.addSignPart(WSSSignature.BODY);

a. Create a WSSSignature object with the X.509 token. The following line of code creates a
WSSSignature object with the X.509 token:

WSSSignature sig = factory.newWSSSignature(x509);

b. Add the signed part to use for message protection. The following line of code specifies to add
WSSSignature.BODY as the signed part:

sig.addSignPart(WSSSignature.BODY);

c. Add the Timestamp element in the SOAP Security header. The SAML20 SenderVouches WSHTTPS and
SAML11 SenderVouches WSHTTPS policy sets require web service requests and responses to contain
a Timestamp element in the SOAP Security header. In the following code, the
WSSFactory.newWSSTimestamp() method generates a Timestamp element, and the
WSSGenerationContext.add(timestamp) method adds the Timestamp element to the request
message:

// Add Timestamp element
WSSTimestamp timestamp = factory.newWSSTimestamp();

gencont.add(timestamp);
sig.addSignPart(WSSSignature.TIMESTAMP);

gencont.add(sig);

WSSConsumingContext concont = factory.newWSSConsumingContext();

d. Skip this step if token signature is not required. If the requested security token needs to be signed
with the STR Dereference Transform reference option, follow step 1. Otherwise, follow step 2. The
STR Dereference Transform reference option is commonly known as STR-Transform.

Step 1: Some tokens, including SAML Tokens, cannot be digitally signed directly. You must sign the
token using STR-Transform. In order for a token to be signed with STR-Transform, it must be
referenced by a <wsse:SecurityTokenReference> element in the <wsse:Security> header block. To
sign a security token with STR-Transform, a separate WSSSignPart is created to specify the
SecurityTokenReference with a transformation algorithm that is represented by the
WSSSignPart.TRANSFORM_STRT10 attribute. This attribute enables the WS-Security runtime
environment to generate a SecurityTokenReference element to reference the token, and to digitally
sign the token using the STR Dereference reference option. The following code illustrates the use
of the WSSSignPart.TRANSFORM_STRT10 attribute:

WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart(token);
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

Step 2: If the requested signed token is not a SAML token, or STR-Transform is not used, use the
following code instead:

sig.addSignPart(token);

e. Attach the WSSGenerationContext object to the web service RequestContext object. The
WSSGenerationContext object now contains all of the security information required to format a
request message. The WSSGenerationContext.process(requestContext) method attaches the

1624 Developing WebSphere applications

WSSGenerationContext object to the web service RequestContext object to enable the WS-Security
runtime environment to format the required SOAP Security header; for example:

// Attaches the WSSGenerationContext object to the web service RequestContext object.
gencont.process(requestContext);

7. Use the X.509 token to validate the digital signature and the integrity of the response message if the
provider policy requires the response message to be digitally signed. Skip this step if using SSL
Transport level protection.

a. An X509ConsumeCallbackHandler object is initialized with a trust store and a List of certificate path
objects to validate the digital signature in a response message. The following code initializes the
X509ConsumeCallbackHandler object with dsig-receiver.ks trust store and a certificate path object
called certList:

ArrayList certList = new ArrayList();
java.security.cert.CertStore certStore = java.security.cert.CertStore.getDefaultType();
certList.add(certStore);

X509ConsumeCallbackHandler callbackHandlerVer = new
X509ConsumeCallbackHandler("profile_root/etc/ws-security/samples/dsig-receiver.ks",
"JKS",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath"));

b. A WSSVerification object is created and the message body is added to the verification object so
that the WS-Security runtime environment validates the digital signature. The following code is
used to initialize the WSSVerification object:

WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandlerVer);

The WSSConsumingContext object now contains all the security information that is required to format
a request message. The WSSConsumingContext.process(requestContext) method attaches the
WSSConsumingContext object to the response method; for example:

// Attaches the WSSConsumingContext object to the web service RequestContext object.
concont.process(requestContext);

Results

You have requested a security token from an external STS. After obtaining the token, you sent the token
with web services request messages using message level protection using the JAX-WS programming
model and WSS APIs.

Example

The following code example is a web service client application that demonstrates how to request a SAML
Bearer token from an external STS and send that SAML token in a web service request message. If your
usage scenario requires SAML tokens, but does not require your application to pass the SAML tokens
using web service messages, you only need to use the first part of the following sample code, up through
the // Initialize web service client section.
package com.ibm.was.wssample.sei.cli;
import com.ibm.was.wssample.sei.echo.EchoService12PortProxy;
import com.ibm.was.wssample.sei.echo.EchoStringInput;
import com.ibm.websphere.wssecurity.wssapi.WSSConsumingContext;
import com.ibm.websphere.wssecurity.wssapi.WSSFactory;
import com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext;
import com.ibm.websphere.wssecurity.wssapi.WSSTimestamp;
import com.ibm.websphere.wssecurity.wssapi.token.SecurityToken;
import com.ibm.websphere.wssecurity.wssapi.token.UsernameToken;
import com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler;
import com.ibm.wsspi.wssecurity.core.token.config.WSSConstants;
import com.ibm.wsspi.wssecurity.core.config.IssuedTokenConfigConstants;
import com.ibm.websphere.wssecurity.callbackhandler.GenericIssuedTokenGenerateCallbackHandler;
import com.ibm.websphere.wssecurity.wssapi.token.GenericSecurityToken;
import javax.xml.namespace.QName;
import java.util.HashMap;
import java.util.Map;

import javax.xml.ws.BindingProvider;

public class SampleSamlSVClient {
private String urlHost = "yourhost";
private String urlPort = "9444";

Chapter 34. Developing web services - Security (WS-Security) 1625

private static final String CONTEXT_BASE = "/WSSampleSei/";
private static final String ECHO_CONTEXT12 = CONTEXT_BASE+"EchoService12";
private String message = "HELLO";
private String uriString = "https://" + urlHost + ":" + urlPort;
private String endpointURL = uriString + ECHO_CONTEXT12;
private String input = message;

/**
* main()
*
* see printusage() for command-line arguments
*
* @param args
*/
public static void main(String[] args) {

SampleSamlSVClient sample = new SampleSamlSVClient();
sample.CallService();

}

/**
* CallService Parms were already read. Now call the service proxy classes
*
*/
void CallService() {

String response = "ERROR!:";
try {

System.setProperty("java.security.auth.login.config",
"file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/properties/wsjaas_client.conf ");

System.setProperty("com.ibm.SSL.ConfigURL",
"file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/properties/ssl.client.props");

//Request the SAML Token from external STS
WSSFactory factory = WSSFactory.getInstance();
String STS_URI = "https://yourhost:9443/TrustServerWST13/services/RequestSecurityToken";
String ENDPOINT_URL = "http://localhost:9081/WSSampleSei/EchoService12";

HashMap<Object, Object> cbackMap1 = new HashMap<Object, Object>();
cbackMap1.put(IssuedTokenConfigConstants.STS_ADDRESS, STS_URI);
cbackMap1.put(IssuedTokenConfigConstants.APPLIES_TO, ENDPOINT_URL);
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_WSTRUST_NAMESPACE,

"http://docs.oasis-open.org/ws-sx/ws-trust/200512");
cbackMap1.put(IssuedTokenConfigConstants.TRUST_CLIENT_COLLECTION_REQUEST, "false");
cbackMap1.put(IssuedTokenConfigConstants.USE_RUN_AS_SUBJECT, "false");

GenericIssuedTokenGenerateCallbackHandler cbHandler1 =
new GenericIssuedTokenGenerateCallbackHandler (cbackMap1);

//Context object for WS-Trust request:
WSSGenerationContext gencont1 = factory.newWSSGenerationContext();
WSSConsumingContext concont1 = factory.newWSSConsumingContext();

// Use UNT for trust request authentication
UNTGenerateCallbackHandler utCallbackHandler = new

UNTGenerateCallbackHandler("testuser", "testuserpwd");
SecurityToken ut = factory.newSecurityToken(UsernameToken.class, utCallbackHandler);
gencont1.add(ut);
cbHandler1.setWSSConsumingContextForTrustClient(concont1);
cbHandler1.setWSSGenerationContextForTrustClient(gencont1);

//get generic security token
GenericSecurityToken token = (GenericSecurityToken) factory.newSecurityToken

(GenericSecurityToken.class, cbHandler1, "system.wss.generate.issuedToken");
QName Saml11ValueType = new QName(WSSConstants.SAML.SAML11_VALUE_TYPE);
token.setValueType(Saml11ValueType);
System.out.println("SAMLToken id = " + token.getId());

// Initialize web services client
EchoService12PortProxy echo = new EchoService12PortProxy();
echo._getDescriptor().setEndpoint(endpointURL);

// Configure SOAPAction properties
BindingProvider bp = (BindingProvider) (echo._getDescriptor().getProxy());
Map<String, Object> requestContext = bp.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, "echoOperation");

// Initialize WSSGenerationContext
WSSGenerationContext gencont = factory.newWSSGenerationContext();
gencont.add(token);

// Add timestamp
WSSTimestamp timestamp = factory.newWSSTimestamp();
gencont.add(timestamp);
gencont.process(requestContext);

// Build the input object
EchoStringInput echoParm =

new com.ibm.was.wssample.sei.echo.ObjectFactory().createEchoStringInput();
echoParm.setEchoInput(input);

1626 Developing WebSphere applications

System.out.println(">> CLIENT: SEI Echo to " + endpointURL);

// Prepare to consume timestamp in response message.
WSSConsumingContext concont = factory.newWSSConsumingContext();
concont.add(WSSConsumingContext.TIMESTAMP);
concont.process(requestContext);

// Call the service
response = echo.echoOperation(echoParm).getEchoResponse();

System.out.println(">> CLIENT: SEI Echo invocation complete.");
System.out.println(">> CLIENT: SEI Echo response is: " + response);

} catch (Exception e) {
System.out.println(">> CLIENT: ERROR: SEI Echo EXCEPTION.");
e.printStackTrace();

}
}

}

Securing messages at the response consumer using WSS APIs:

You can secure SOAP messages with signature verification, decryption, and consumer tokens to protect
message integrity, confidentiality, and authenticity, respectively. The response consumer (client-side)
configuration defines the Web Services Security requirements for the incoming SOAP response.

About this task

To secure web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. You must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

The response consumer (client-side) configuration requirements involve verifying that the integrity parts are
signed and that the signature is verified, verifying that the required confidential parts are encrypted and
that the parts are decrypted; and validating the security tokens.

You can use the following methods to configure Web Services Security and to define policy types to
secure the SOAP messages:

v Use the administrative console to configure policy sets.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

The following high-level steps use the WSS APIs:

Procedure

v Verify consumer signing information to protect message integrity.

v Configure decryption to protect message confidentiality.

v Validate consumer tokens to protect message authenticity.

Results

After completing these procedures, you have secured messages at the response consumer level.

What to do next

Next, if not already configured, secure messages with signing information, encryption, and generator
tokens at the response (client-side) generator level.

Configuring decryption methods to protect message confidentiality using the WSS APIs:

You can configure decryption method information for the response consumer (client side) section of the
binding file. Decryption information is used to specify how the consumers (receivers) decrypt incoming

Chapter 34. Developing web services - Security (WS-Security) 1627

SOAP messages. To configure decryption, specify which message parts to decrypt and specify which
algorithm methods and security tokens are to be used for decryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone understanding the message flowing across the Internet. With confidentiality specifications, the
message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to
configuring decryption, familiarize yourself with XML encryption.

About this task

For decryption, you must specify the following:

v Which parts of the message are to be decrypted.

v Which decryption algorithms to specify.

To configure decryption and decrypted parts on the client side, use the WSSDecryption and
WSSDecryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

WebSphere Application Server uses decryption information for the default consumer to decrypt parts of the
SOAP message. The WSSDecryption API configures the following required parts as decrypted parts.

Table 252. Required decrypted parts. Use the decryption information to specify how incoming messages are
decrypted.
Decryption parts Description

Keywords Keywords are used to add the decrypted parts to the SOAP message.

XPath expression XPath expressions are used to add the decrypted parts to the SOAP message.

WSSDencryptPart object This object adds the decrypted parts to the SOAP message.

WSSVerification object This object adds the signature verification component as a decrypted part.

Header This part adds the header in the SOAP header, specified by QName, as a decrypted part.

Security token object This object adds the security token as a decrypted part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when
Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the SOAP
message that are to be decrypted. WebSphere Application Server supports the use of the following
keywords:

Table 253. Supported decryption keywords. Use the keywords to decrypt incoming messages.
Keyword References

BODY_CONTENT The keyword for the body contents of the SOAP message body as a decryption target.

SIGNATURE The keyword for the signature element as a decryption target.

USERNAME_TOKEN, The keyword for the Username token element as a decryption target.

If configuring using the WSS APIs, the WSSDecryption and WSSDecryptPart APIs complete these
high-level steps:

Procedure

1. Use the WSSDecryption API to configure encryption. The WSSDecryption API performs these tasks by
default:

1628 Developing WebSphere applications

a. Generates the callback handler.

b. Generates the consumer security token object.

c. Adds the security token reference type.

d. Adds the WSSEncryptPart object.

e. Adds the parts to be encrypted. Adds the default parts for decryption by using keywords and XPath
expressions.

f. Adds the verification component.

g. Adds the header in the SOAP message, specified by QName.

h. Sets the default data encryption method.

i. Specifies whether the key is to be decrypted using a Boolean value. Calls this method when the
shared key is encrypted.

j. Sets the default key encryption method.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The
WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.

b. Sets the encrypted parts specified by an XPath expression.

c. Sets the signature component object, WSSSignature.

d. Sets the header in the SOAP message, specified by QName.

e. Sets the generator security token.

f. Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could
change one or more of the following items:

v Add USERNAME_TOKEN as a target of decryption.

v Change the data encryption algorithm from the default value of AES 128.

v Change the key encryption algorithm from the default value of KW_RSA_OAEP.

v Specify to not encrypt the encryption key (false).

v Change the security token type from the default value of X.509 token.

v Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

Results

The decryption information is configured for the consumer binding.

Example

The following is an example of the WSSDecryption API:
WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();

X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();
// see X509ConsumeCallbackHandler

WSSDecryption dec = factory.newWSSDecryption(X509Token.class,
callbackhandler);

concont.add(dec);

What to do next

You must configure similar encryption information for the client-side request generator (sender) bindings, if
you have not already configured the information.

Next, review the WSSDecryption API process.

Decrypting SOAP messages using the WSSDecryption API:

Chapter 34. Developing web services - Security (WS-Security) 1629

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the client for decryption on the response (client) consumer
side, use the WSSDecryption API to decrypt the SOAP messages. The WSSDecryption API specifies
which request SOAP message parts to decrypt when configuring the client.

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable decryption and add
consumer security tokens in the SOAP message. To secure SOAP messages, you must have completed
the following decryption tasks:

v Encrypted the SOAP message.

v Chosen the decryption method.

About this task

The decryption information on the consumer side is used for decrypting an incoming SOAP message for
the response consumer (client side) bindings. The client consumer configuration must match the
configuration for the provider generator.

Confidentiality settings require that confidentiality constraints be applied to generated messages.

The following decryption parts can be configured:

Table 254. Decryption parts. Use the decryption parts to secure messages.
Decryption parts Description

part Adds the WSSDecryptPart object as a target of the decryption part.

keyword Adds the decryption part using keywords. WebSphere Application Server supports the following keywords:

v BODY_CONTENT

v SIGNATURE

v USERNAME_TOKEN

xpath Adds the decryption part using an XPath expression.

verification Adds the WSSVerification instance as a target of the decryption part.

header Adds the SOAP header, specified by QName, as a target of the decryption part.

For decryption, certain default behaviors occur. The simplest way to use the WSS API for decryption is to
use the default behavior (see the example code). WSSDecryption provides defaults for the key encryption
algorithm, the data encryption algorithm, and the decryption parts such as the SOAP body content and the
signature. The decryption default behaviors include:

Table 255. Decryption decisions. Several decryption part characteristics are configured by default.
Decryption decisions Default behavior

Which parts to decrypt The default decryption parts are the BODY_CONTENT and SIGNATURE. WebSphere Application
Server supports using these keywords:

v WSSDecryption.BODY_CONTENT

v WSSDecryption.SIGNATURE

v WSSDecryption.USERNAME_TOKEN

After you specify which message parts to decrypt, you must specify which method to use when
decrypting the consumer request message. For example, if both signature and body content are
applied for encryption, then the SOAP message parts that are decrypted include the same parts.

Whether to encrypt the key (isEncrypt) The default value is to encrypt the key (true).

1630 Developing WebSphere applications

Table 255. Decryption decisions (continued). Several decryption part characteristics are configured by default.
Decryption decisions Default behavior

Which data decryption algorithm to choose
(method)

The default data decryption algorithm method is AES128. WebSphere Application Server
supports these data encryption methods:

v WSSDecryption.AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

v WSSDecryption.AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

v WSSDecryption.AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

v WSSDecryption.TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Which key decryption method to choose (algorithm) The default key decryption algorithm method is key wrap RSA OAEP. WebSphere Application
Server supports these key encryption methods:

v WSSDecryption.KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v WSSDecryption.KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

v WSSDecryption.KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

v WSSDecryption.KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v WSSDecryption.KW_RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v WSSDecryption.KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Which security token to specify The default security token type is the X509 token. WebSphere Application Server provides the
following pre-configured consumer token types:

v Derived key token

v X509 tokens

Procedure

1. To decrypt the SOAP message using the WSSDecryption API, first ensure that the application server is
installed.

2. The WSS API process for decryption performs these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. The
WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the callback handler for the consumer side.

d. Creates WSSDecryption with the class for the security token and the callback handler from the
WSSFactory instance. The default behavior of WSSDecryption is to assume that the body content
and the signature are encrypted.

e. Adds the parts to be decrypted, if the default is not appropriate.

f. Adds the candidates of the data encryption methods to use for decryption.

g. Adds the candidates of the key encryption methods to use for decryption.

h. Adds the candidates of the security token to use for decryption.

i. Calls WSSDecryption.encryptKey(false) if the application does not want the key to be encrypted in
the incoming message.

j. Adds WSSDecryption to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAPMessageContext

Results

If there is an error condition during decryption, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code for decrypting the SOAP message body content:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

Chapter 34. Developing web services - Security (WS-Security) 1631

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),

"CN=Alice, O=IBM, C=US");

// Generate the WSSDecryption instance (step: d)
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

callbackHandler);

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)
dec.addRequiredDecryptPart(WSSDecryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)
dec.addRequiredDecryptHeader(new

QName("http://www.w3.org/2005/08/addressing",
"MessageID"));

// Set the part specified by WSSVerification (step: e)
X509ConsumeCallbackHandler verifyCallbackHandler =

getCallbackHandler();
WSSVerification ver = factory.newWSSVerification(X509Token.class,

verifyCallbackHandler);
dec.addRequiredDecryptPart(ver);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

dec.addRequiredDecryptPartByXPath(sb.toString());

// Set the part in the SOAP header to be decrypted specified by QName (step: e)
dec.addRequiredDecryptHeader(new

QName("http://www.w3.org/2005/08/addressing",
"MessageID"));

// Set the candidates for the data encryption method (step: f)
// DEFAULT : WSSDecryption.AES128

dec.addAllowedEncryptionMethod(WSSDecryption.AES128);
dec.addAllowedEncryptionMethod(WSSDecryption.AES192);

// Set the candidates for the key encryption method (step: g)
// DEFAULT : WSSDecryption.KW_RSA_OAEP

dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

// Set the candidate security token to used for the decryption (step: h)
X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();

dec.addToken(X509Token.class, callbackHandler2);

// Set whether or not the key should be encrypted in the incoming SOAP message (step: i)
// DEFAULT: true

dec.encryptKey(true);

// Add the WSSDecryption to the WSSConsumingContext (step: j)
concont.add(dec);

// Validate the WS-Security header (step: k)
concont.process(msgcontext);

What to do next

Next, use the WSSDecryptPart API or configure the policy sets using the administrative console to add
decrypted parts for the consumer message.

Choosing decryption methods for the consumer binding:

1632 Developing WebSphere applications

To configure the client for response decryption for the consumer binding, specify which data and transform
algorithm methods to use when the client decrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting
and decrypting SOAP messages.

To complete decryption configuration to secure SOAP messages, you must complete the following tasks:

v Configure decryption of the SOAP message parts

v Specify the decryption methods.

You can configure the decryption methods using the WSSDecryption and WSSDecryptPart APIs. Or you
can also configure policy sets using the administrative console to configure the decryption methods.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following
information defines some data encryption-related terms:

Data encryption method algorithm
Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data
encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength
ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,
you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

Key encryption method algorithm
Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key
encryption method. The algorithm represents public key encryption algorithms that are specified for
encrypting and decrypting keys.

By default, the RSA_OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or
SHA512 message digest algorithm by specifying a key encryption algorithm property. The property
name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the
following URIs of the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA_OAEP algorithm uses a null string for the optional encoding octet string for
the OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded
value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side
only. On the consumer side, these properties are read from the incoming SOAP
message.

For the KW_AES256 and the KW_AES192 key encryption algorithms, you must download the
unrestricted JCE policy files from the following website: http://www.ibm.com/developerworks/java/
jdk/security/index.html.

Chapter 34. Developing web services - Security (WS-Security) 1633

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and
its policies concerning the import, possession, use, and re-export of encryption
software, to determine if it is permitted.

To complete the decryption configuration, you must specify the algorithm uniform resource identifier (URI)
and its usage type. If the URI is used for multiple usage types, then you must define the URI to each
usage type. WebSphere Application Server supports the following decryption usage types:

Table 256. Decryption usage types. These decryption types are supported by WebSphere Application Server.
Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data. Encrypts and decrypts
data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

To configure the decryption and decrypted part algorithms, use the WSSDecryption and WSSDecryptPart
APIs, or configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with web services endpoints that use policy sets.

If you are using the WSS APIs, the WSSDecryption and WSSDecryptPart APIs specify which algorithm
methods are used when the client decrypts the SOAP messages.

v Use the WSSDecryption API to configure the data encryption algorithm and the key encryption algorithm
methods.

v Use the WSSDecryptPart API to configure a transform algorithm method.

The WSS API process completes the following high-level steps to specify which decryption and decrypted
part algorithm methods to use when configuring the client for response decryption:

Procedure

1. Using the WSSDecryption API, adds the required data encryption algorithm. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message. Data decryption algorithms
specify the algorithm uniform resource identifier (URI) of the data encryption method.

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI
of the data encryption algorithm, is http://www.w3.org/2001/04/xmlenc#aes128-cbc. WebSphere
Application Server supports the following pre-configured data decryption algorithms:

v AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

The AES 128 algorithm is the default data algorithm method.

v AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

1634 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

2. As needed, changes the WSSEncryption API method to specify another data encryption algorithm. For
example, you might add the following code to change from the default AES 128 algorithm to the Triple
DES algorithm:

dec.addAllowedKeyEncryptionMethod(WSSDecryption.TRIPLE_DES);

3. Using the WSSDecryption API, adds the required key encryption algorithm. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP
message. If no key for encrypting the data is needed, then you must specify
WSSDecryption.encryptKey(false).

The key encryption algorithm that you select for the consumer side must match the key encryption
method that you select for the generator side.

The default key encryption algorithm value is key wrap RSA_OAEP. The key encryption name is
KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key
encryption algorithms:

v KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

v KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java
Cryptography Extension (JCE) policy file from the following website: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

v KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

The KW_RSA_OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this algorithm. This algorithm appears in the list of supported key
transport algorithms when running with SDK Version 1.5. See more information at
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v KW_RSA_15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition
key-related information, such as the:
v algorithmName
v keyLength

4. As needed, uses the WSSDecryption API method to change to other key encryption algorithms. For
example, you might add the following code to change from the default key encryption algorithm
KW_RSA_OAEP to the TRIPLE_DES algorithm:

dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

5. Using the WSSDecryptPart API, adds a transform algorithm, as needed. There is no default transform
algorithm. However, WebSphere Application Server provides a pre-configured decrypted part,
WSSDecryptPart.TRANSFORM_ATTACHMENT_CIPHERTEXT, that can be added.

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the
WSSConsumerContext.process() method, the WS-Security header is validated, and the SOAP message is
now secured using Web Services Security.

Chapter 34. Developing web services - Security (WS-Security) 1635

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Example

The following example provides sample WSS API code for decrypting the body content as well as
changing the data encryption and key encryption algorithms from the default values:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, O=IBM, C=US");

// Generate WSSDecryption instance
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

callbackHandler);

// Set the candidates for the data encryption method
// DEFAULT : WSSDecryption.AES128

dec.addAllowedEncryptionMethod(WSSDecryption.AES128);
dec.addAllowedEncryptionMethod(WSSDecryption.AES192);

// Set the candidates for the key encryption method
// DEFAULT : WSSDecryption.KW_RSA_OAEP

dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

// Add the WSSDecryption to WSSConsumingContext
concont.add(dec);

// Validate the WS-Security header
concont.process(msgcontext);

Adding decrypted parts using the WSSDecryptPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure decrypted parts for the response consumer (client side)
bindings, use the WSSDecryptPart API to define and add to the listing of elements in the decrypted part.
WSSDecryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.decryption
package.

Before you begin

You can use either the WSS APIs or configure the policy sets using the administrative console to configure
and add new encrypted parts. To secure SOAP messages using the WSSDecryptPart APIs, you must
configure the decrypted parts for the response consumer bindings.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted and
decrypted, and which message parts to attach encrypted elements to.

The WSSDecryptPart API specifies information related to decryption and sets the decrypted parts that
have been added for message confidentiality protection. Use the WSSDecryptPart to set the transform
method and to specify the part to which the transform method is to be applied. Sets the transform method
only if using SOAP with Attachments. The WSSDecryptPart is usually not needed except, in some case for
tasks such as setting the transform method.

The decrypted parts displayed in the following table are used to protect the confidentiality of messages.

1636 Developing WebSphere applications

Table 257. Decrypted Parts. Use the decrypted parts to secure messages.
Decrypted parts Description

keyword Sets the decrypted part using keywords. The default decrypted parts that you can add using keywords are
the BODY_CONTENT and SIGNATURE. WebSphere Application Server supports the following keywords:

v BODY_CONTENT

v SIGNATURE

v USERNAME_TOKEN

xpath Sets the decrypted part by using an XPath expression.

verification Sets the WSSVerification component as a decrypted part.

The WSSVerification part is applicable only if the SOAP message contains a signature element.

header Sets the header, specified by QName, as a decrypted part.

For decrypted parts, certain default behaviors occur. The simplest way to use the WSSDecryptPart API is
to use the default behavior (see the example code).

WSSDecryptPart provides defaults for setting the transform algorithm, adding a transform method, setting
objects as targets, whether an element, and the encrypted parts, such as: the SOAP body content and the
signature.

Table 258. Decrypted part decisions. Several characteristics of decrypted parts are configured by default.
Decryption decisions Default behavior

Which SOAP message parts to decrypt using
keywords

Specifies which keywords to use for the decrypted parts. WebSphere Application Server sets
the following SOAP message parts by default for decryption:

v WSSDecryption.BODY_CONTENT

v WSSDecryption.SIGNATURE

Which transform algorithm to use (algorithm) WebSphere Application Server does not specify any transform algorithm by default. Specify a
transform method only if using SOAP with Attachments.

Procedure

1. To decrypt the SOAP message parts using the WSSDecryptPart API, first ensure that the application
server is installed.

2. The WSS API process using WSSDecryptPart follows these steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure decryption.

d. Creates WSSDecryption from the WSSFactory instance using SecurityToken.

e. Creates WSSDecryptPart from the WSSFactory instance. The default behavior of WSSDecryptPart
is to assume that the body content and signature are encrypted.

f. Adds the parts to be decrypted and to be applied with the transform in WSSDecryptPart.
WebSphere Application Server sets these encrypted parts by default for WSSDecryptPart: the
BODY_CONTENT and SIGNATURE. After you add other decrypted parts, the default values are no
longer valid. For example, if you call addDecryptPart(securityToken, false), only the security token is
encrypted, and not the signature and body content. So if you want to decrypt the security token, the
signature, and the body content, you must call addDecryptPart(securityToken, false),
addDecryptPart(WSSDecryption.SIGNATURE), and
addDecryptPart(WSSDecryption.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSDecryptPart to WSSDecryption.

i. Adds WSSDecryption to WSSConsumingContext.

j. Calls WSSConsumingContext.process() with the SOAPMessageContext

Chapter 34. Developing web services - Security (WS-Security) 1637

Results

If there is an error condition when decrypting the message, a WSSException is provided. If successful, the
API calls the WSSConsumingContext.process(), the WS-Security header is generated, and the SOAP
message is now secured using Web Services Security.

What to do next

After enabling decrypted parts for the response consumer (client side) binding, specify the generator and
consumer tokens, if the security tokens have not already been specified.

Decryption methods:

The decryption algorithms specify the data and key encryption algorithms that are used to decrypt the
SOAP message. The WSS API for decryption (WSSDecryption) specifies the algorithm uniform resource
identifier (URI) of the data and key encryption methods. The WSSDecryption interface is part of the
com.ibm.websphere.wssecurity.wssapi.decryption package.

Data encryption algorithms

The data encryption algorithms are the algorithms that are used to encrypt and decrypt data. This
algorithm type is used for encrypting data to encrypt and decrypt various parts of the message, including
the body content and the signature.

Data decryption algorithms specify the algorithm uniform resource identifier (URI) of the data encryption
method. WebSphere Application Server supports the following pre-configured data decryption algorithms:

Table 259. Supported pre-configured data decryption algorithms. The algorithms are used to decrypt SOAP
messages.
WSS API URI

WSSDecryption.AES128 (the default value) A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/
xmlenc#aes128-cbc

WSSDecryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/
xmlenc#aes192-cbc

WSSDecryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/
xmlenc#aes256-cbc

WSSDecryption.TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES: http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following website: http://www.ibm.com/developerworks/
java/jdk/security/index.html.

The data encryption algorithm must match the data decryption algorithm that is configured for the
consumer.

1638 Developing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Key encryption algorithms

The key encryption algorithms are the algorithms that are used to encrypt and decrypt keys.

This key information is used to specify the configuration that is needed to generate the key for digital
signature and encryption. The signing information and encryption information configurations can share the
key information. The key information on the consumer side is used for specifying the information about the
key that is used for validating the digital signature in the received message or for decrypting the encrypted
parts of the message. The request generator is configured for the client.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption
method. WebSphere Application Server supports the following pre-configured key encryption algorithms:

Table 260. Supported pre-configured key encryption algorithms. The algorithms are used to decrypt SOAP
messages.
WSS API URI

WSSDecryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128: http://www.w3.org/2001/04/
xmlenc#kw-aes128

WSSDecryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192: http://www.w3.org/2001/04/
xmlenc#kw-aes192
Restriction: Do not use the 192-bit key encryption algorithm if you want your
configured application to be in compliance with the Basic Security Profile (BSP).

WSSDecryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

WSSDecryption.KW_RSA_OAEP (the default value) A URI of key encryption algorithm, key wrap RSA OAEP: http://www.w3.org/2001/
04/xmlenc#rsa-oaep-mgf1p

WSSDecryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5: http://www.w3.org/2001/04/
xmlenc#rsa-1_5

WSSDecryption.KW_TRIPLE_DES A URI of data encryption algorithm, key wrap TRIPLE DES: http://www.w3.org/2001/
04/xmlenc#kw-tripledes

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest
algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of
the digest method: http://www.w3.org/2001/04/xmlenc#sha256 http://www.w3.org/2001/04/
xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm
property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams.
The property value is the base 64-encoded value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only. On
the consumer side, these properties are read from the incoming SOAP message.

For the kw-aes256 and the kw-aes192 key encryption algorithms, you must download the unrestricted JCE
policy files from the following website: http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm for the generator and the consumer must match.

The following example provides a sample of the WSS API code for the default algorithms that are used for
WebSphere Application Server decryption:
WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Required to attach username token into the message.
X509ConsumeCallbackHandler callbackHandler =

new X509ConsumeCallbackHandler("",
"enc-sender.jceks",

Chapter 34. Developing web services - Security (WS-Security) 1639

http://www.ibm.com/developerworks/java/jdk/security/index.html

"JCEKS",
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, O=IBM, C=US");

// Set the decrypt component.
// Default encrypted part: Body-Content
// Default data encryption algorithm: AES128
// Default key encryption algorithm: KW-RSA-OAEP
WSSDecryption dec = factory.newWSSDecryption(X509Token.Type,
callbackHandler);
concont.add(dec);

// validate the WS-Security header.
concont.process(msgctx);

Verifying consumer signing information to protect message integrity using WSS APIs:

You can verify the signing information to protect message integrity for the response (client side) consumer
binding. Signing information includes the signature and the signed parts for the generator side as well as
signature verification and verify parts for the consumer side. To keep the integrity of the message, digital
signatures are typically applied.

Before you begin

Ensure that the signature and signed parts information has been configured. The signature verification
information must match what was configured on the generator side.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying
a digital signature to a SOAP message. To configure the signing information to protect message integrity,
you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the
risk of data modification when you transmit data across a network.

Also, message integrity is provided by verifying the digitally signed body, time stamp, and WS-Addressing
headers using the signature verification algorithm methods. The WSS APIs specify which algorithm is to be
used to verify the certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the
signature verification method. WebSphere Application Server supports several pre-configured verification
algorithm methods.

You can use the following interfaces to configure Web Services Security and to protect SOAP message
integrity:

v Use the administrative console to configure policy sets for signature verification.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

Perform the following verification tasks, using the WSS APIs, to configure the signing information and to
protect message integrity for the consumer binding.

Procedure

v Configure the signing information using the WSSSignature API. Configure the signature verification
information for the consumer binding using the WSSVerification API. Signature verification information is
used to verify parts of a message including the SOAP body, the time stamp, and the WS-Addressing
headers. Both verifying and decryption can be applied to the same message parts, such as the SOAP
body.

v Add or change verify parts using the WSSVerifyPart API.

1640 Developing WebSphere applications

v Configure the client for request signing methods using the WSSVerification or WSSVerifyPart APIs. To
configure the client for response verification, choose the verification methods. Use the WSSVerification
API to configure the canonicalization and signature methods. Use the WSSVerifyPart API to configure
the digest and transform methods.

Results

By completing the steps in these tasks, you have configured the consumer verification information to
protect the integrity of messages.

Verifying signing information for the consumer binding using the WSS APIs:

You can configure the signing information for the client-side response consumer (receiver) bindings.
Signing information is used to sign and validate parts of a message including the SOAP body, the
timestamp information, and the Username token.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,
and SHA1. XML signature defines many methods for describing key information and enables the definition
of a new method. Prior to completing these steps, read the information about XML digital signature to
become familiar with signing and verifying digital signatures for digital content.

By including XML signature in SOAP messages, the following issues are realized: message integrity and
authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity
decreases the risk of data modification while the data is transmitted across the Internet.

Before you can verify the signature and SOAP message signed parts, you must have completed the
following tasks:

v Configured the signature.

v Added signed parts, as needed.

v Chosen the signature and signed parts methods.

About this task

Use the Web Services Security APIs (WSS API) to configure the signing verification information for the
response consumer (client side) section of the bindings file. Use the WSSVerification or WSSVerifyPart
APIs to configure the client for request signature verification and to specify which digitally signed message
parts to verify.

WebSphere Application Server uses the signing information on the consumer side to verify the integrity of
the received SOAP message by validating that the message parts (such as the body, time stamp, and
Username token) are signed.

On the client side, use the WSS APIs, or configure policy sets using the administrative console to specify
which parts of the message are signed and to configure the key information that is referenced by the key
information references. To verify the signature and signed parts, use the WSSVerification and
WSSVerifyPart APIs.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

The WSSVerification and WSSVerifyPart APIs complete the following steps to specify which digitally
signed message parts to verify when configuring the client for response consumer signing:

Chapter 34. Developing web services - Security (WS-Security) 1641

Procedure

1. The WSSVerification API adds the required verify parts of the SOAP message.

The part reference refers to the message part that is digitally signed. The part attribute refers to the
name of the <Integrity> element when the <PartReference> element is specified for the signature. You
can specify multiple <PartReference> elements within the <SigningInfo> element. The
<PartReference> element has two child elements when it is specified for the signature:
<DigestTransform> and <Transform>.

The WSSVerification API configures the following parts as verification parts:

Verification part Description

Security token Adds information for the security token that is used for
the signature verification.

SOAP header and the QName as a target Adds the SOAP header, specified by QName, as a
verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the
message are to be verified. WebSphere Application Server supports the use of the following keywords:

Keyword References

WSSVerification.ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

WSSVerification.BODY The SOAP message body. The body is the user data
portion of the message.

WSSVerification.TIMESTAMP The creation and expiration timestamp information.

2. The WSSVerification API adds the required header to the SOAP message. The header, specified by
QName, is a required verification header.

3. The WSSVerification API adds a security token. Adds information about the security token that is to be
used for the signature verification, such as:

v The class for security token.

v The callback handler

v The name of the JAAS login configuration.

4. The WSSVerification API adds the signature method algorithm. The signature method is the algorithm
that is used to convert the canonicalized <SignedInfo> element in the binding file into the
<SignatureValue> element. The algorithm that is specified for the consumer, which is the response
consumer configuration, must match the algorithm specified for the request generator configuration.
WebSphere Application Server supports the following pre-configured signature algorithms:

v WSSVerification.RSA_SHA1:http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSVerification.HMAC_SHA1:http://www.w3.org/2000/09/xmldsig#hmac-sha1

WebSphere Application Server does not support the following algorithm for DSA-SHA1:
http://www.w3.org/2000/09/xmldsig#dsa-sha1. You cannot use the DSA-SHA1 algorithm if you want to
be compliant with the Basic Security Profile (BSP).

5. The WSSVerification API adds a canonicalization method. The canonicalization method algorithm is
used to canonicalize the <SignedInfo> element before it is incorporated as part of the digital signature
operation. The canonicalization algorithm that you specify for the generator must match the algorithm
for the consumer.

WebSphere Application Server supports the following pre-configured canonicalization algorithms:

v WSSVerification.EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/TR/xml-c14n

6. The WSSVerification API verifies whether a signature confirmation is required. The OASIS Web
Services Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If
you are using WS-Security Version 1.0, this function is not available.

1642 Developing WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/TR/xml-c14n

The signature confirmation value is stored in order to validate the signature confirmation with it after
the receiving message is returned. This method is called if the response message is expected to
attach the signature confirmation into the SOAP message.

7. The WSSVerifyPart API adds a digest method. For each part reference in the signing information, the
API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured digest algorithms:

v WSSVerifyPart.SHA1: http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

8. The WSSVerifyPart API adds a transform method. For each part reference in the signing information,
the API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured transform algorithms:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/TR/1999/REC-xpath-19991116

The transform algorithm for the consumer must match the transform algorithm for the generator.

Results

You have completed the steps to configure the signing information for the client-side response consumer
sections of the bindings files.

Example

The following example shows WSS API sample code to verify the signature and to verify the X.509 token
type as the security token:
WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();
// Generate the X.509 Callback Handler on the consumer side

X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();
WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackhandler);
concont.add(ver);

What to do next

If not already configured, specify a similar signing information configuration for the generator bindings.

Next, if already configured, configure the encryption and decryption information, or configure the consumer
and generator tokens.

Verifying the signature using the WSSVerification API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To verify the signing information for the consumer binding sections for
the client side request, use the WSSVerification API. You must also specify which algorithm methods and
which signature parts of the SOAP message are to be verified. The WSSVerification API is part of the
com.ibm.websphere.wssecurity.wssapi.verification package.

Chapter 34. Developing web services - Security (WS-Security) 1643

Before you begin

Use the WSS APIs, or configure the policy sets by using the administrative console to verify the signing
information. To secure SOAP messages, you must complete the following signature tasks:

v Configure the signature information.

v Choose the algorithm methods for signature and signature verification.

v Verify the signature information.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new
method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be
represented in various ways within serialized XML documents. The C14N process is used to canonicalize
XML information. Select an appropriate C14N algorithm because the information that is canonicalized
depends on this algorithm.

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined.

Table 261. Signature verification parts. Use the signature verification parts to secure messages.
Verification parts Description

keywords Adds required signature parts as targets of verification by using keywords . Different message
parts can be specified in the message protection for request on the generator side. Use the
following keywords for the required signature verification parts:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds verification parts by using an XPath expression.

part Adds the WSSVerifyPart object as a verification part.

header Adds the header, specified by QName, as a verification part.

For signature verification information, certain default behaviors occur. The simplest way to use the
WSSVerification API is to use the default behavior.

The default values are defined by the WSS API for the digest method, the transform method, the security
token, and the required verification parts.

Table 262. Signature verification default behaviors. Several characteristics of the signature verification parts are
configured by default.
Signature verification decisions Default behavior

Which signature method to use (algorithm) Sets the signature algorithm method. Both the data encryption and the signature and the
canonicalization can be specified. The default signature method is RSA SHA1. WebSphere
Application Server supports the following pre-configured signature methods:

v WSSVerification.RSA_SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSVerification.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/xmldsig#dsa-sha1) is not
supported.

Which canonicalization method to use (algorithm) Sets the canonicalization algorithm method. Both the data encryption and the signature and the
canonicalization can be specified. The default signature method is EXC_C14N. WebSphere
Application Server supports the following pre-configured canonicalization methods:

v WSSVerification.EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/2001/10/xml-c14n#

1644 Developing WebSphere applications

Table 262. Signature verification default behaviors (continued). Several characteristics of the signature verification
parts are configured by default.
Signature verification decisions Default behavior

Whether signature confirmation is required If the WSSSignature API specifies that signature confirmation is required, then the
WSSVerification API verifies the signature confirmation value in the response message that has
the signature confirmation value attached to it when received. Signature confirmation is defined
in the OASIS Web Services Security Version 1.1 specification.

The default signature confirmation is false.

Which security token to specify (securityToken) Adds the securityToken object as a signature part. WebSphere Application Server sets the token
information to use for verification.

WebSphere Application Server supports the following pre-configured tokens for signing:

v X.509 Token

v Derived Key Token

Information required for tokens include the class for the token, the callback handler information,
and the name of the JAAS login module.

Procedure

1. To verify the signature in a SOAP message by using the WSSVerification API, first ensure that the
application server is installed.

2. Use the WSSVerification API to set the message parts to be verified and to specify the algorithms in a
SOAP message. The WSS API process for signature verification follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance.

c. Ensures that WSSConsumingContext is called in the JAX-WS Provider implementation class. Due
to the nature of the JAX-WS programming model, a JAX-WS provider needs to be implemented
and must call the WSSConsumingContext to verify the SOAP message signature.

d. Creates WSSVerification from the WSSFactory instance.

e. Adds the part to be verified. If the digest method or the transform method are changed, create
WSSVerifyPart and set it into WSSVerification.

f. Sets the candidates of the canonicalization method, if the default is not appropriate.

g. Sets the candidates of the signature method, if the default is not appropriate.

h. Sets the candidate security token, if the default is not appropriate.

i. Calls the requireSignatureConfirmation(), if the signature confirmation is applied.

j. Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAP message context.

Results

You have completed the steps to verify the signature for the consumer section of the bindings. If there is
an error condition, a WSSException is provided. If successful, the WSSConsumingContext.process() is
called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses methods that are defined in the WSSVerification
API:
// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext concont = factory.newWSSConsumingContext();

Chapter 34. Developing web services - Security (WS-Security) 1645

// Generate the certificate list
String certpath = "c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";

// The location of the X509 certificate file
X509Certificate x509cert = null;

try {
InputStream is = new FileInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException e1){
throw new WSSException(e1);
} catch (CertificateException e2) {
throw new WSSException(e2);
}
Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);

// Create the certificate store
java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new CollectionCertStoreParameters(eeCerts);
CertStore cert = null;
try {
cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");
} catch (NoSuchProviderException e1) {
throw new WSSException(e1);
} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);
}
if(certList != null){
certList.add(cert);
}

// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"jks",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath")

);

// Generate the WSSVerification instance (step: d)
WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandler);

// Set the part to be verified (step: e)
// DEFAULT: WSSVerification.BODY, WSSSignature.ADDRESSING_HEADERS,
// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP header to be specified by QName (step: e)
ver.addRequiredVerifyHeader(new QName("http://www.w3.org/2005/08/addressing", "MessageID"));

// Set the part to be specified by the keyword (step: e)
ver.addRequiredVerifyPart(WSSVerification.BODY);

// Set the part to be specified by WSSVerifyPart (step: e)
WSSVerifyPart verPart = factory.newWSSVerifyPart();

verPart.setRequiredVerifyPart(WSSVerification.BODY);
verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);
ver.addRequiredVerifyPart(verPart);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]");

sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Body’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Ping’]");

sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’
and local-name()=’Text’]");

ver.addRequiredVerifyPartByXPath(sb.toString());

// Set one or more canonicalization method candidates for verification (step: f)
// DEFAULT : WSSVerification.EXC_C14N

ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);
ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Set one or more signature method candidates for verification (step: g)
// DEFAULT : WSSVerification.RSA_SHA1

ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

// Set the candidate security token to used for the verification (step: h)
X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();
ver.addToken(X509Token.class, callbackHandler2);

// Set the flag to require the signature confirmation (step: i)
ver.requireSignatureConfirmation();

1646 Developing WebSphere applications

// Add the WSSVerification to the WSSConsumingContext (step: j)
concont.add(ver);

//Validate the WS-Security header (step: k)
concont.process(msgcontext);

What to do next

After verifying the signature and setting algorithm methods for the SOAP message, you can set either the
digest method or the transform method. If you want to set these methods, use the WSSVerifyPart API, or
configure policy sets using the administrative console.

Verifying signed parts using the WSSVerifyPart API:

To secure SOAP messages on the consumer side, use the Web Services Security APIs (WSS API) to
configure the verify parts information for the consumer binding on the response consumer (client side). You
can specify which algorithm methods and which parts of the SOAP message are to be verified. Use the
WSSVerifyPart API to change the digest method or the transform method. The WSSVerifyPart API is part
of the com.ibm.websphere.wssecurity.wssapi.verification package.

Before you begin

To secure SOAP messages using the signing verification information, you must complete one of the
following tasks:

v Configure the signature verification information using the WSSVerification API.

v Configure verify parts using the WSSVerifyPart API, as needed.

The WSSVerifyPart is used for specify the transform or digest methods for the verification. Use the
WSSVerifyPart API or configure policy sets using the administrative console.

About this task

WebSphere Application Server uses the signing information for the default consumer to verify the signed
parts of the message. The WSSVerifyPart API is only supported on the response consumer (requester).

The following table shows the required verification parts when the digital signature security constraint
(integrity) is defined:

Table 263. Verify parts information. Use the verify parts to secure messages with signing verification information.
Verify parts information Description

keyword Sets the verify parts using the following keywords:

v BODY

v ADDRESSING_HEADERS

v TIMESTAMP

The WS-Addressing headers are not decrypted but can be signed and verified.

xpath Sets the verify parts using an XPath expression.

header Sets the header, specified by QName, as a required verify part.

For signature verification, certain default behaviors occur. The simplest way to use the WSSVerification
API is to use the default behavior (see the example code). The default values are defined by the WSS API
for the signing algorithm and the canonicalization algorithm, and the verify parts.

Chapter 34. Developing web services - Security (WS-Security) 1647

Table 264. Verify parts default behaviors. Several characteristics of verify parts are configured by default.
Verify parts decisions Default behavior

Which keywords to specify The different SOAP message parts to be signed and used for message protection. WebSphere
Application Server supports the following keywords:

v WSSVerification.BODY

v WSSVerification.ADDRESSING_HEADERS

v WSSVerification.TIMESTAMP

Which transform method to use (algorithm) Adds the transform method. The transform algorithm is specified within the <Transform>
element and specifies the transform algorithm for the signature. The default transform method is
TRANSFORM_EXC_C14N.

WebSphere Application Server supports the following pre-configured transform algorithms:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-
exc-c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

Use this transform method to ensure compliance with the Basic Security Profile (BSP).

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

Which digest method to use (algorithm) Sets the digest algorithm method. The digest method algorithm that is specified within the
<DigestMethod> element is used in the <SigningInfo> element. The default digest method is
SHA1.

WebSphere Application Server supports the following digest method algorithms:

v WSSVerifyPart.SHA1: http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

Procedure

1. To verify signed parts by using the WSSVerifyPart API, first ensure that the application server is
installed.

2. Use the Web Services Security API to verify the verification in a SOAP message. The WSS API
process for verifying the signature follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Ensures that
WSSConsumingContext is called in the JAX-WS Provider implementation class. Due to the nature
of the JAX-WS programming model, a JAX-WS provider needs to be implemented and must call
the WSSConsumingContext to verify the SOAP message signature.

c. Creates the CallbackHandler to use for verification.

d. Create the WSSVerification object from the WSSFactory instance.

e. Creates WSSVerifyPart from the WSSFactory instance.

f. Sets the part to be verified, if the default is not appropriate.

g. Sets the candidates for the digest method, if the default is not appropriate.

h. Sets the candidates for the transform method, if the default is not appropriate.

i. Adds WSSVerifyPart to WSSVerification.

j. Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAPMessageContext.

Results

You have completed the steps to verify to verify the signed parts on the consumer side. If there is an error
condition when verifying the signing information, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and Web Services Security is verified for the SOAP message.

1648 Developing WebSphere applications

Example

The following example provides sample code for the WSSVerification API process for verifying the signing
information in a SOAP message:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list
String certpath =
"c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";

// The location of the X509 certificate file
X509Certificate x509cert = null;

try {
InputStream is = new FileInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);

} catch(FileNotFoundException e1){
throw new WSSException(e1);

} catch (CertificateException e2) {
throw new WSSException(e2);

}

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);

// create certStore
java.util.List<CertStore> certList = new

java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new

CollectionCertStoreParameters(eeCerts);
CertStore cert = null;
try {

cert = CertStore.getInstance("Collection",
certparam, "IBMCertPath");

} catch (NoSuchProviderException e1) {
throw new WSSException(e1);

} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);

} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);

}
if(certList != null){
certList.add(cert);
}

// generate callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"jks",
"server".toCharArray(),
certList,

java.security.Security.getProvider("IBMCertPath")
);

// Generate the WSSVerification instance (step: d)
WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackHandler);

// Set the part to be specified by WSSVerifyPart (step: e)
WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword (step: f)
verPart.setRequiredVerifyPart(WSSVerification.BODY);

// Set the candidates for the digest method for verification (step: g)
// DEFAULT : WSSVerifyPart.SHA1

verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

// Set the candidates for the transform method for verification (step: h)
// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N : String

verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

// Set WSSVerifyPart to WSSVerification (step: i)
ver.addRequiredVerifyPart(verPart);

// Add WSSVerification to WSSConsumingContext (step: j)
concont.add(ver);

//Validate the WS-Security header (step: k)
concont.process(msgcontext);

Chapter 34. Developing web services - Security (WS-Security) 1649

What to do next

You have completed configuring the signed part to be verified.

Configuring response signature verification methods for the client:

Use the WSSVerification and WSSVerifyPart APIs to choose the signing verification methods. The request
signing verification methods include the digest algorithm and the transport methods.

Before you begin

To complete configuration of the signature verification information to secure SOAP messages, you must
perform the following algorithm tasks:

v Use the WSSVerification API to configure the canonicalization and signature methods.

v Use the WSSVerifyPart API to configure the digest and transform methods.

to configure the algorithm methods to use when configuring the client for request signing.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following website http://www.w3.org/TR/xmldsig-core.

Table 265. Signing verification methods. Use signing verification information to secure messages.
Name of method Purpose

Digest algorithm Applies to the data after transforms are applied, if specified, to yield the
<DigestValue> element. Signing the <DigestValue> element binds the
resource content to the signer key. The algorithm selected for the client
request sender configuration must match the algorithm selected in the
client request receiver configuration.

Transform algorithm Applies to the <Transform> element.

Signature algorithm Specifies the Uniform Resource Identifiers (URI) of the signature
verification method.

Canonicalization algorithm Specifies the Uniform Resource Identifiers (URI) of the canonicalization
method.

After configuring the client to digitally sign the message, you must configure the client to verify the digital
signature. You can use the WSS APIs or configure policy sets using the administrative console to verify
the digital signature and to choose the verification and verify part algorithms. If using the WSS APIs to
configure, use the WSSVerification and WSSVerifyPart APIs to specify which digitally signed message
parts to verify and to specify which algorithm methods to use when configuring the client for request
signing.

The WSSVerification and WSSVerifyPart APIs perform the following steps to configure the signature
verification and verify parts algorithm methods:

Procedure

1. For the consumer binding, the WSSVerification API specifies the signature methods to allow for the
signature verification. WebSphere Application Server supports the following pre-configured signature
methods:

v WSSVerification.RSA_SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSVerification.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/xmldsig#dsa-sha1) is not
supported.

1650 Developing WebSphere applications

http://www.w3.org/TR/xmldsig-core

2. For the consumer binding, the WSSVerification API specifies the canonicalization method to allow for
the signature verification. WebSphere Application Server supports the following pre-configured
canonicalization methods by default:

v WSSVerification.EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/2001/10/xml-c14n#

3. For the consumer binding, the WSSVerifyPart API specifies the digest method, as needed. WebSphere
Application Server supports the following digest method algorithms for signed parts verification:

v WSSVerifyPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

4. For the consumer binding, the WSSVerifyPart API specifies the transform method. WebSphere
Application Server supports the following transform algorithms for verify parts:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/TR/1999/REC-xpath-19991116

Results

You have specified which method to use when verifying a digital signature when the client sends a
message.

Example

The following example provides sample WSS API code that specifies the verification information, the body
as a part to be verified, the HMAC_SHA1 as a signature method, C14N and EXC_C14N as the candidates
of canonicalization methods, TRANSFORM_STRT10 as a transform method, and SHA256 as a digest
method.
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list
String certpath = "intca2.cer";

// The location of the X509 certificate file
X509Certificate x509cert = null;
try {

InputStream is = new FileInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);

} catch(FileNotFoundException e1){
throw new WSSException(e1);

} catch (CertificateException e2) {
throw new WSSException(e2);

}

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);

// Create the certStore
java.util.List<CertStore> certList = new

java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new

Chapter 34. Developing web services - Security (WS-Security) 1651

CollectionCertStoreParameters(eeCerts);
CertStore cert = null;

try {
cert = CertStore.getInstance("Collection",

certparam,
"IBMCertPath");

} catch (NoSuchProviderException e1) {
throw new WSSException(e1);

} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);

} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);

}
if(certList != null){

certList.add(cert);
}

// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"jks",
"server".toCharArray(),
certList,
java.security.Security.getProvider(

"IBMCertPath")
);

// Generate the WSSVerification instance
WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackHandler);

// Set one or more candidates of the signature method used for
// verification (step. 1)
// DEFAULT : WSSVerification.RSA_SHA1

ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

// Set one or more candidates of the canonicalization method used for
// verification (step. 2)
// DEFAULT : WSSVerification.EXC_C14N

ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);
ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Set the part to be specified by WSSVerifyPart
WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword
verPart.setRequiredVerifyPart(WSSVerification.BODY);

// Set the candidates of digest methods to use for verification (step. 3)
// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N : String

verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

// Set the candidates of digest methods to use for verification (step. 4)
// DEFAULT : WSSVerifyPart.SHA1

verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

// Set WSSVerifyPart to WSSVerification
ver.addRequiredVerifyPart(verPart);

// Add the WSSVerification to the WSSConsumingContext
concont.add(ver);

// Validate the WS-Security header
concont.process(msgcontext);

What to do next

You have completed configuring the signature verification algorithms. Next, configure the encryption or
decryption algorithms, if not already configured. Or, configure the security token information, as needed.

Signature verification methods using the WSSVerification API:

You can verify the signing or signature information using the WSS API for the consumer binding. The
signature and canonicalization algorithm methods are used for the generator binding. The WSSVerification
API is provided in the com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer signing information to protect message integrity, you must first digitally sign and
then verify the signature for the SOAP messages. Integrity refers to digital signature while confidentiality
refers to encryption. Integrity decreases the risk of data modification when you transmit data across a
network.

1652 Developing WebSphere applications

Methods

Methods that are used for the signature verification include the:

Signature method
Sets the signature algorithm method.

Canonicalization method
Sets the canonicalization algorithm method.

The algorithm that is specified for the request generator configuration must match the algorithm that is
specified for the response consumer configuration.

Signature algorithms

The signature algorithms specify the signature verification algorithm that is used to sign the certificate. The
signature algorithms specify the Uniform Resource Identifiers (URI) of the signature verification method.
WebSphere Application Server supports the following pre-configured algorithms:

Table 266. Signature verification algorithms. The algorithms include the signature methods.
Algorithm Description

WSSVerification.HMAC_SHA1 A URI of the signature algorithm, HMAC: http://www.w3.org/2000/09/
xmldsig#hmac-sha1

WSSVerification.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA: http://www.w3.org/2000/09/
xmldsig#rsa-sha1

WebSphere Application Server does not support the algorithm for DSA-SHA1: http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization
method. WebSphere Application Server supports the following pre-configured algorithms:

Table 267. Verification canonicalization algorithms. The algorithms include the canonicalization methods.
Algorithm Description

WSSVerification.C14N A URI of the inclusive canonicalization algorithm, C14N:
http://www.w3.org/2001/10/xml-c14n#

WSSVerification.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm EXC_C14N:
http://www.w3.org/2001/10/xml-exc-c14n#

The following example provides sample WSS API code that specifies the X.509 token security token for
signature verification:
WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();

// X509ConsumeCallbackHandler
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler("dsig-receiver.ks",
"jks",
"server".toCharArray(),
certList,

java.security.Security.getProvider("IBMCertPath")46);

// Set the verification component
// DEFAULT verification parts: Body, WS-Addressing header, and Timestamp
// DEFAULT data encryption algorithm: RSA-SHA1
// DEFAULT digest algorithm: SHA1
// DEFAULT canonicalization algorithm: exc-c14n
WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackhandler);
concont.add(ver);

// Validate the WS-Security header
concont.validate(msgctx);

Chapter 34. Developing web services - Security (WS-Security) 1653

Choosing the verify parts methods using the WSSVerifyPart API:

You can configure the signing verification information for the consumer binding using the WSS API. The
transform algorithm and digest methods are used for the consumer binding. Use the WSSVerifyPart API to
configure the algorithm methods. The WSSVerifyPart API is provided in the
com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer verify parts information to protect message integrity, you must first digitally sign and
then verify the signature and signed parts for the SOAP messages. Integrity refers to digital signature
while confidentiality refers to encryption. Integrity decreases the risk of data modification when you
transmit data across a network.

Methods

Methods that are used for the signing information include the:

Digest method
Sets the digest method.

Transform method
Sets the transform algorithm method.

Digest algorithms

The digest method algorithm is specified within the element is used in the <Digest> element. WebSphere
Application Server supports the following pre-configured digest algorithms:

Table 268. Verify parts digest methods. Use the verify parts to protect message integrity.
Digest method Description

WSSVerifyPart.SHA1 (the default value) A URI of the digest algorithm, SHA1: http://www.w3.org/2000/09/
xmldsig#sha1

WSSVerifyPart.SHA256 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha256

WSSVerifyPart.SHA512 A URI of the digest algorithm, SHA256: http://www.w3.org/2001/04/
xmlenc#sha512

Transform algorithms

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm
for the signed part. WebSphere Application Server supports the following pre-configured transform
algorithms:

Table 269. Verify parts transform methods. Use the verify parts to protect message integrity.
Digest method Description

WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE A URI of the transform algorithm, enveloped signature:
http://www.w3.org/2000/09/xmldsig#enveloped-signature

WSSVerifyPart.TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform: http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

WSSVerifyPart.TRANSFORM_EXC_C14N (the default value) A URI of the transform algorithm, Exc-C14N: http://www.w3.org/2001/10/
xml-exc-c14n#

WSSVerifyPart.TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter: http://www.w3.org/2002/06/
xmldsig-filter2

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

1654 Developing WebSphere applications

The following example provides sample WSS API code that verifies the body using SHA256 as the digest
method and TRANSFORM_EXC_14N and TRANSFORM_STRT10 as the transform methods:

// get the message context
Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSConsumingContext instance
WSSConsumingContext concont = factory.newWSSConsumingContext();

// generate the cert list
String certpath = "intca2.cer";// The location of the X509

certificate file X509Certificate x509cert = null;
try {
InputStream is = new FileInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException e1){
throw new WSSException(e1);
} catch (CertificateException e2) {
throw new WSSException(e2);
}

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);
// create certStore
java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new

CollectionCertStoreParameters(eeCerts);
CertStore cert = null;
try {
cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");
} catch (NoSuchProviderException e1) {
throw new WSSException(e1);
} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);
}
if(certList != null){
certList.add(cert);
}

// generate callback handler
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"jks",
"server".toCharArray(),
certList,
java.security.Security.getProvider("IBMCertPath")

);

//generate WSSVerification instance
WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackHandler);

//set one or more candidates of the signature method used for the
//verification (step. 1)
// DEFAULT : WSSVerification.RSA_SHA1
ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

//set one or more candidates of the canonicalization method used
//for the verification (step. 2)
// DEFAULT : WSSVerification.EXC_C14N
ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);
ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

//set the part to be specified by WSSVerifyPart
WSSVerifyPart verPart = factory.newWSSVerifyPart();

//set the part to be specified by the keyword
verPart.setRequiredVerifyPart(WSSVerification.BODY);

//set the candidates of digest methods to use for verification (step. 3)
// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N
verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_EXC_C14N);
verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

//set the candidates of digest methods to use for verification (step. 4)
// DEFAULT : WSSVerifyPart.SHA1
verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

//set WSSVerifyPart to WSSVerification
ver.addRequiredVerifyPart(verPart);

Chapter 34. Developing web services - Security (WS-Security) 1655

//add the WSSVerification to the WSSConsumingContext
concont.add(ver);

//validate the WS-Security header
concont.process(msgcontext);

Validating the consumer token to protect message authenticity:

The token consumer information is used on the consumer side to incorporate and validate the security
token. The Username token, X509 tokens, and LTPA tokens by default are used for message authenticity.

Before you begin

The token processing and pluggable token architecture in the Web Services Security run time reuses the
same security token interface and Java Authentication and Authorization Service (JAAS) Login Module
from the Web Services Security APIs (WSS API). The same implementation of token creation and
validation can be used in both the WSS API and the WSS SPI in the Web Services Security run time.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenConsumingComponent interface is not used with
JAX-WS web services. If you are using JAX-RPC web services, this interface is still valid.

Note that the key name (KeyName) element is not supported because there is no KeyName policy
assertion defined in the current OASIS Web Services Security draft specification.

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible
for creating the security token on the generator side and validating (authenticating) the security token on
the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using
the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username
SecurityToken object and passes it to the Web Services Security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for
validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the
Web Services Security run time to the LoginModule. After the token is authenticated, a Username
SecurityToken object is created and passed it to the Web Services Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere
Application Server default login module implementation, meaning adding the login module before or
after the WebSphere Application Server login module implementation. If you want to stack the login
module implementations, you must develop the required login modules because there is no default
implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server
includes support for these classes:

v Security token (SecurityTokenImpl)

v Binary security token (BinarySecurityTokenImpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security
tokens:

v Derived key token

v Security context token (SCT)

v Username token

v LTPA token propagation

1656 Developing WebSphere applications

v LTPA token

v X509PKCS7 token

v X509PKIPath token

v X509v3 token

v Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message
authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS API and WSS SPI are only supported on the client. To specify the security token type on the
consumer side, you can also configure policy sets using the administrative console. You can also use the
WSS APIs or policy sets for matching generator security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both
a generator and a consumer part. To use the default implementations, select the appropriate generator
and consumer security token in a pair. For example, select system.wss.generate.x509 in the token
generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the consumer-side security token, use the appropriate pre-configured token consumer
interface from the WSS APIs to complete the following token configuration process steps:

Procedure

1. Generate the wssFactory instance.

2. Generate the wssConsumingContext instance.

The WSSConsumingContext interface stores the components for consuming Web Services Security
(WS-Security), such as verification, decryption, the security token, and the time stamp. When the
validate() method is called, all of these components are validated.

3. Create the consumer-side components, such as the WSSVerification and the WSSDecryption objects.

4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java
Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS
configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not
remove the predefined system or application login configurations. However, within these
configurations, you can add module class names and specify the order in which WebSphere
Application Server loads each module.

5. Specify a token consumer class name. The token consumer class name specifies the required
information to validate the SecurityToken. The Username token, the X.509 tokens, and the LTPA
tokens are used by default for message authenticity.

6. Specify the settings for the callback handler by specifying a callback handler class name and also
specifies the callback handler keys. This class name is the name of the callback handler
implementation class that is used for the plug-in to the security token framework.

WebSphere Application Server provides the following default callback handler implementations for the
consumer side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback
This class is a callback for handling the name-value pair in elements in the Web Services
Security (WS-Security) configuration XMI files.

ccom.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler
This class is a callback handler for the Username token on the consumer side. This instance
is used to set into WSSConsumingContext object to validate a Username token. Use this
implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler
This class is a callback handler that is used to validate the X.509 certificate that is inserted in

Chapter 34. Developing web services - Security (WS-Security) 1657

the Web Services Security header within the SOAP message as a binary security token on
the consumer side. This instance is used to generate the WSSVerification object and
WSSDecryption objects, set the objects into WSSConsumingContext object to validate the
X.509 binary security tokens. A keystore and a key definition are required for this callback
handler. If you use this implementation, a key store password, path, and type must have been
provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler
This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens
on the consumer side. This instance is used to generate the WSSVerification and
WSSDecryption objects to validate an LTPA token.

This callback handler is used to validate the LTPA security token inserted in the Web Services
Security header within the SOAP message as a binary security token. However, if the user
name and password are specified, WebSphere Application Server authenticates the user
name and password to obtain the LTPA security token rather than obtaining it from the Run
As Subject. Use this callback handler only when the web service is acting as a client on the
application server. It is recommended that you do not use this callback handler on a Java EE
application client. If you use this implementation, a basic authentication user ID and password
must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler
This class is a callback handler for the Kerberos v5 token on the consumer side. This
instance is used to set the WSSConsumingContext object to consume the Kerberos v5
AP-REQ as a binary security token. The instance is also used to generate the
WSSVerification and WSSDecryption objects to use the Kerberos session key or derived key
in the SOAP message verification and decryption.

7. If a X.509 token is specified, additional token information is also specified.

Table 270. Information for the X.509 token. Use the X.509 token to authenticate messages.
Token Information Description

keyStoreRef The reference name of the keystore that is used for the key locator.

keyStorePath The keystore file path from which the keystore is loaded, if needed. It is recommended that you use the
${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application Server path
on your machine. This path is required when you use the X.509 tokens callback handler implementations.

keyStorePassword The password that is used to check the integrity of the keystore, or the keystore password that is used to
unlock the keystore and to access the keystore file. The keystore and its configuration are used for some of
the default callback handler implementations that are provided by WebSphere Application Server.

keyStoreType The keystore type of keystore that is used for the key locator. This selection indicates the format that is
used by the keystore file. The following values are available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the software development kit
(SDK). The default IBM JCE is configured in WebSphere Application Server. This option
provides stronger protection for stored private keys by using Triple DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format might
contain RSA keys on cryptographic hardware or might contain encrypt keys that use
cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

alias The key alias name. The key alias is used by the key locator to find the key within the keystore file.

keyPassword The key password that is used for recovering the key. This password is needed to access the key object
within the keystore file.

keyName The name of the key. For digital signatures, the key name is used by the request generator or response
consumer signing information to determine which key is used to digitally sign the message. For encryption,
the key name is used to determine the key used for encryption. The key name must be a fully qualified,
distinguished name (DN). For example, CN=Bob,O=IBM,C=US.

trustAnchorPath The file path from which the trust anchor is loaded.

1658 Developing WebSphere applications

Table 270. Information for the X.509 token (continued). Use the X.509 token to authenticate messages.
Token Information Description

trustAnchorType The type of trust anchor.

trustAnchorPassword The password that is used to check the integrity of the trust anchor or the password used to unlock the
keystore.

certStores A list of certificate stores. A collection certificate store includes a list of untrusted, intermediary certificates
and certificate revocation lists (CRLs). The collection certificate store is used to validate the certificate path
of the incoming X.509-formatted security tokens.

provider The security provider.

The following can be specified for a X.509 token:

a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted
root certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. For example, when you select the trust anchor or the certificate
store of a trusted certificate, you must configure the trust anchor and the certificate store before
setting the certificate path.

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The
keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to
access the keystore file. Keystore objects within trust anchors contain trusted root certificates that
are used by the CertPath API to validate the trustworthiness of a certificate chain. The names of
the trust anchor and the collection certificate store are created in the certificate path under your
token consumer.

d. With a keystore that is used for the key locator and the trust anchor.

e. With a map that includes key-value pairs. For example, you might specify the value type name
and the value type Uniform Resource Identifier (URI). The value type specifies the namespace
URI of the value type for the consumer token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3

Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler
is used to create X.509 certificates encoded with the PkiPath format. The certificate is
inserted in the Web Services Security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by
the callback handler; therefore, the collection certificate store is not required or used. If
you use this implementation, you must provide a key store password, path, and type on
this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#PKCS7

Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web Services Security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value
type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For an LTPA token, you can use LTPA for the value type local name. This local name

Chapter 34. Developing web services - Security (WS-Security) 1659

causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for
the value type Uniform Resource Identifier (URI).

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local
name. This local name causeshttp://www.ibm.com/websphere/appserver/tokentype to be
specified for the value type Uniform Resource Identifier (URI).

8. If the Username token is specified as the token consumer class name, the following token information
can be specified:

a. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token consumer. Nonce is a unique,
cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of
Username tokens. Nonce is valid only when the validating token type is a Username token, and it
is available only for the response consumer binding.

b. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in
the Username token. The time stamp is valid only when the incorporated token type is a
Username token.

c. Specifies a map that includes key-value pairs. For example, you might specify the value type
name and the value type Uniform Resource Identifier (URI). The value type specifies the
namespace URI of the value type for the consumer token, and represents the token type of this
class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

Specifies a Username token.

9. If a Kerberos v5 token is specified as the token generator class name, the following token information
can be specified:

Token Information Description Default Value

tokenValueType Kerberos token value type in QName
defined by Oasis Kerberos Token
Profile v1.1 specification.

http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

requireDKT A boolean value to require a derived
key for message protection.

false

clabel The client label for the derived key. WS-SecureConversation

Specify null to use the default value.

slabel The service label for the derived key. WS-SecureConversation

Specify null to use the default value.

keylen The length of the derived key. 16

Specify zero to use the default value

supportTokenRequireSHA1 A boolean value to require a SHA1
key that is used in subsequent
request messages when the Kerberos
token is used as a supporting token.

false

SHA1 key is consumed only if the
supporting Kerberos token is
protected. If set to true, the SHA1 key
is always consumed.

1660 Developing WebSphere applications

Token Information Description Default Value

decComponent An instance of WSSDecryption . Set decComponent and
verComponent to null to initialize this
first for either the decryption or
verification component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

verComponent An instance of WSSVerfication. Set decComponent and
verComponent to null to initialize this
first for either the decryption or
verification component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.
Specify the token value type as the local name. It is not necessary to specify the value type URI for
the Kerberos v5 token.

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

10. If secure conversation is used for message protection, then the following information must be
specified:

Information Description

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssConsumingContext object.

12. Invoke the wssConsumingContext.process() method.

Results

Using the WSS APIs, you have configured the token consumer.

What to do next

You must specify a similar token generator configuration, if not already completed.

Configuring the consumer security tokens using the WSS API:

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.
To configure the token on the consumer side, use the Web Services Security APIs (WSS API). The
consumer security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Chapter 34. Developing web services - Security (WS-Security) 1661

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same
framework from the WSS API can be reused. The same implementation of creating and validating security
token can be used both for the Web Services Security run time and for the WSS API application code. The
redesigned framework also simplifies the SPI programming model and will make it easier to add security
token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To
configure tokens, you must have completed the following token task: configure the generator tokens, as
needed.

About this task

On the generator side, the JAAS CallbackHandler and JAAS LoginModule are responsible for creating the
security token. The token is created by using the JAAS LoginModule and by using JAAS CallbackHandler
to pass authentication data. Then, the JAAS LoginModule creates the securityToken object, such as the
UsernameToken, and passes it to the Web Services Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.
then the JAAS CallbackHandler is used to pass authentication data from the Web Services Security run
time to the LoginModule. After the token is authenticated and a security token object is created, then the
token is passed it to the Web Services Security run time.

When using the WSS API for consumer token validation, certain default behaviors occur. The simplest way
to use the WSS API is to use the default JAAS login module and callback handler. The example uses the
default for them so the example does not specify the JAAS login module name.

The simplest way to use the WSS API is to use the default behavior (see the example code). The WSS
API provide defaults for the token type, the token value, and the JAAS configuration name. The default
token behaviors include:

Table 271. Default token behaviors. Several token characteristics are configured by default.
Consumer token decisions Default behavior

Which token type to use The token type specifies which type of token to use for signing and validating messages. The
X.509 token is the default token type.

WebSphere Application Server provides the following pre-configured consumer token types:

v Security context token

v Derived key token

v X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration name to specify The JAAS login configuration name specifies which JAAS login configuration name to use.

Which configuration type to use The JAAS login module configuration type. Only the pre-configured consumer configuration types
can be used for consumer token types.

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token
class and represents the security token that has methods to get the identity, XML format, and
cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the
SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature
and one for encryption, respectively.

The following token types are subclasses of the generic security token class:

1662 Developing WebSphere applications

Table 272. Subclasses of the SecurityToken. Use the subclasses to represent the security token.
Token type JAAS login configuration name

Security context token system.wss.consume.sct

Derived key token system.wss.consume.dkt

The following token types are subclasses of the binary security token class:

Table 273. Subclasses to the BinarySecurityToken. Use the subclasses to represent the binary security token.
Token type JAAS login configuration name

X.509 token system.wss.consume.x509

X.509 PKI Path token system.wss.consume.pkiPath

X.509 PKCS7 token system.wss.consume.pkcs7

Note:

v For each JAAS login token consumer configuration name, there is a respective token generator
configuration name. For example, for the X509Token, the respective token generator
configuration name is system.wss.generate.x509.

v The LTPA and LTPA propagation tokens are only available to a requester that is running as a
server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6
or Java EE application client.

To validate the X509Token to the SOAP message on the consumer side, the <X509Token> element must
be in the <wsse:Security> element.

Procedure

1. To validate the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure that
the application server is installed.

2. If using the default values, configures the tokens for the Web Services Security token consumer
process. , for each token type, the process is similar to the following token consumer process:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates a JAAS CallbackHandler with information that is required to validate the security token.
Review the token class information for which parameters are required or optional. For example, for
an X.509 token, you could configure the following:

Table 274. X.509 token options. Use the X.509 configuration options to control the behavior of the token.
Token Information Description

keyStoreRef Indicates the reference name of the keystore that is stored in the cryptographic card. It can be
specified when the card is set to the hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the keyStorePath if the
keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

keyStoreType Indicates the type of keystore file.

alias Indicates the alias of the key.

keyPassword Indicates the password of the key.

keyName Indicates the subject name of the key.

d. Sets the callback handler into WSSDecryption, WSSVerification, or WSSConsumingContext.

e. If the callback handler is set into the WSSDecryption or WSSVerification, adds either one into
WSSConsumingContext.

f. Calls WSSConsumingContext.process().

Chapter 34. Developing web services - Security (WS-Security) 1663

3. If using other than the default values, configures the tokens for the Web Services Security token
consumer process. For each token type, the process is similar to the following token consumer
process:

a. If you do not use the default JAAS login module and callback handler, you need to prepare a
custom one and register the name of JAAS login configuration using the administrative console in
advance.

b. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

c. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

d. Creates a callback handler with information that is required to validate the security token. Review
the token class information for which parameters are required or optional. For example, for a X.509
token, you can configure the following:

Table 275. X.509 token options. Use the X.509 configuration options to control the behavior of the token.
Token Information Description

keyStoreRef Indicates the reference name of the keystore that is stored in the cryptographic card. It can be
specified when the card is set to the hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the keyStorePath if the
keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

keyStoreType Indicates the type of keystore file.

alias Indicates the alias of the key.

keyPassword Indicates the password of the key.

keyName Indicates the subject name of the key.

e. Sets JAAS configuration name and callback handler into WSSDecryption or WSSVerification, or
WSSConsumingContext.

f. If JAAS configuration name and callback handler are set into the WSSDecryption or
WSSVerification, adds either one into WSSConsumingContext.

g. Calls WSSConsumingContext.process().

Results

If there is an error condition, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and the security token on the consumer side is validated
(authenticated).

Example

The following sample code provides the WSS API example code for decryption using the default JAAS
login module and callback handler:
// Get the message context

Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new

X509ConsumeCallbackHandler(
"",
"enc-sender.jceks",
"jceks",
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, O=IBM, C=US");

// Generate the WSSDecryption instance (step: d)
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

1664 Developing WebSphere applications

callbackHandler);

// Add WSSDecryption to WSSConsumingContext (step: e)
concont.add(dec);

// Validate the WS-Security header (step: f)
concont.process(msgcontext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,
specify the similar generator tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages at the
response consumer using the WSS APIs or configure the tokens using the administrative console.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by
verifying the signature or by decrypting the message, as needed. You can use either the WSS APIs or the
administrative console to secure the SOAP messages.

Configuring Web Services Security using the WSS APIs:

The Web Services Security application programming interfaces (WSS API) provide support for securing
SOAP message.

Before you begin

Web Service Security supports the following programming models:

v Programming API for securing SOAP message with Web Services Security (WSS API).

The API programming model design has been redesigned. The new design is an interface-based
programming model and is based on Web Services Security Version 1.1 standards but the design also
includes support for Web Services Security Version 1.0 for securing the SOAP message. The WSS API
programming model implementation is a simplified version, which is based on an early draft proposal of
JSR-183, which is the JSR for defining Java API binding for Web Services Security. By design, because
the application code is programmed to the interface, any application code that is programmed with the
open source implementation should be able to run on the WebSphere Application Server with minimal
changes or no changes at all.

v Service Programming Interfaces (SPI) for a service provider

Similarly, the Web Services Security run time token generation and token consuming SPI have been
redesign so that the same security token interface and JAAS Login Module implementation can be used
for both the WSS API and the SPI. The WSS SPI for the service provider extend the security token
types and provide keys and deriving keys for signing, signature verification, encryption and decryption.

Usage statement: You must use the IBM implementation of the WS-Security standards in the context of
web services.

About this task

These programming models extend the following functions :

v Security token types and deriving keys for signing

v Signature and verification

v Encryption and decryption

The following figure demonstrates how to use the simplified WSS APIs to secure a SOAP message by
using XML digital signature and XML encryption.

Chapter 34. Developing web services - Security (WS-Security) 1665

The configuration model for web services has also been redesigned from a deployment descriptor model
to a policy set model. The configuration programming model is based on configuring policy sets using a
security policy to specify security constraints.

The functions provided by the policy set configurations are the same as the functions supported by the
WSS API for the Web Services Security run time. However, the security policy that is defined using policy
sets has a higher priority over the WSS API. When the WSS API and the policy set are both used in the
application, the default behavior is for the security policy from the policy set to be enforced and the WSS
API to be ignored. To use the WSS API in the application, you must make sure that there is no policy set
attached to the application or to the application resources, or make sure there is no security policy in the
attached policy set.

Web Service Security can be enabled by either using a policy set that is configured by using the
administrative console, or by using the WSS API for configuration.

Using the WSS API, complete the following high-level steps to secure the SOAP message:

Procedure

1. Use the WSSSignature API to configure the signing information for the request generator (client side)
binding. Different message parts can be specified in the message protection for a request on the
generator side. The default required parts are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature
for message protection. The default signature method is RSA_SHA1. The default canonicalization
method is EXC_C14N.

2. Use the WSSSignPart API if you want to add or change the signed parts to be used for message
protection. The default signed parts are WSSSignature.BODY,
WSSSignature.ADDRESSING_HEADERS, and WSSSignature.TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or
changed the signed parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the
signature for the SOAP message using the SHA256 digest method instead of the default value of
SHA1.

3. Use the WSSEncryption API to configure the encryption information on the request generator side.
The encryption information on the generator side is used for encrypting an outgoing SOAP message
for the request generator (client side) bindings. The default targets of encryption are
BODY_CONTENT and SIGNATURE

The WSSEncryption API also specifies the different algorithm methods to be used to protect message
confidentiality. The default data encryption method is AES128. The default key encryption method is
KW_RSA_OAEP.

4. Use the WSSEncryptPart API if you want to add or change the encrypted parts to be used for
message confidentiality. For example, if you want to change the data encryption method from the
default value of AES128 to TRIPLE_DES.

No algorithm methods are required for encrypted parts.

5. Use the WSS API to attach the token on the generator side. The requirements for the security token
depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are responsible
for creating the security token on the generator side. Different stand-alone tokens can be sent in
request or response. The default token is the X509Token. The other token that can be used for
signing is the DerivedKeyToken, which is used only with Web Services Secure Conversation
(WS-SecureConversation).

6. Use the WSSVerification API to verify the signature for the response consumer (client side) binding.
Different message parts can be specified in the message protection for a response on the consumer
side. The required targets for verification are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

1666 Developing WebSphere applications

The WSSVerification API also specifies the different algorithm methods to be used for verifying the
signature and for message protection. The default signature method is RSA_SHA1. The default
canonicalization method is EXC_C14N.

7. Use the WSSVerifyPart API to add or change the verify signed parts to be used for message
protection. The required verify parts are WSSVerification.BODY,
WSSVerification.ADDRESSING_HEADERS, and WSSVerification.TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or
changed the verification parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N.

8. Use the WSSDecryption API to configure the decryption information for the response consumer (client
side) binding. The decryption information on the consumer side is used for decrypting an incoming
SOAP message. The default targets of decryption are BODY_CONTENT and SIGNATURE. The
default data encryption method is AES128. The default key encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.

9. Use the WSSDecryptPart API if you want to add or change the decrypted parts to be used for
message confidentiality. For example, if you want to change the data encryption method from the
default value of AES128 to TRIPLE_DES.

No algorithm methods are required for decrypted parts.

10. Use the WSS API to configure the token on the consumer side. The requirements for the security
token depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are
responsible for validating (authenticating) the security token on the consumer side. Different
stand-alone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default
token is X509Token.

Results

What to do next

The Web Services Security run time token generation and token consuming Service Programming
Interfaces (SPI) have been redesign so that the same Security Token interface and JAAS Login Module
implementation can be used in both the WSS API and the SPI. See the SPI information for detail
descriptions.

Web Services Security APIs:

The Web Services Security programming model provides application programming interfaces (WSS API)
for securing the SOAP message. The WSS API model is based on Web Services Security Version 1.1
standards but also includes support for Web Services Security Version 1.0.

The Web Services Security APIs (WSS APIs) can generate and process the following SOAP-related
bindings for XML security:

v XML signature and signature verification

v XML encryption and decryption

The token processing and pluggable token architecture in the Web Service Security run time has been
redesign to reuse the same Security Token interface and the JAAS Login Module as those used for the
WSS APIs.

The following table lists the WSS API interfaces that are provided with WebSphere Application Server and
used to configure signing and encryption information in the SOAP bindings for the generator and
consumer bindings.

Chapter 34. Developing web services - Security (WS-Security) 1667

Table 276. WSS API interfaces. Use the interfaces to configure security information in the bindings.
WSS API interfaces Description

WSSDecryption Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for specifying decryption. The default values for decryption include:

v Targets: BODY_CONTENT, SIGNATURE

v Data encryption method: AES128

v Key encryption method: KW_RSA_OAEP

v Security token: X.509

WSSDecryptPart Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for adding decrypted parts, as needed. If specified, the default values for
decrypted parts include:

v Security token: X.509

v Transform method: N/A (not applicable)

WSSEncryption Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for the encryption component. The default values for encryption include:

v Targets: BODY_CONTENT, SIGNATURE

v Data encryption method: AES128

v Key encryption method: KW_RSA_OAEP

v Security token: X.509

v refType: SecurityToken.REF_KEYID

v mtomOptimize: false

WSSEncryptPart Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for adding encrypted parts, as needed. If specified, the default values for
encrypted parts include:

v Transform method: N/A (not applicable)

WSSSignature Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for specifying the signature. The default values for signature include:

v Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP

v Signature method: RSA_SHA1

v Canonicalization method: EXC_C14N

v Security token: X.509

v Type of token reference: SecurityToken.REF_STR

WSSSignPart Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for adding signed parts, as needed. If specified, the default values for signed
parts include:

v Transform method : TRANSFORM_EXC_C14N

v Digest method: SHA1

WSSVerification Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for specifying the signature verification. The default values for verification
include:

v Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP

v Signature method: RSA_SHA1

v Canonicalization method: EXC_C14N

v Security token: X.509

WSSVerifyPart Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for adding verify parts, as needed. If specified, the default values for verify parts
include:

v Digest method: SHA1

v Transform method: TRANSFORM_EXC_C14N

Also see the information about pre-configured generator and consumer tokens.

Web Services Security configuration considerations when using the WSS API:

1668 Developing WebSphere applications

To secure Web Services Security for WebSphere Application Server, you can specify several different
configurations using the Web Services Security APIs (WSS API). The Web Services Security specification
provides a flexible way to secure web services messages using XML digital signature, XML encryption,
and attaching security tokens. You can enable Web Services Security by either configuring a policy set or
by using the Web Services Security APIs (WSS API). The implementation for WSS API has default values
for which message parts are to be signed or encrypted. The default values for the WSS APIs help end
users to enable Web Services Security quickly.

Different message parts can be specified in the message protection for request or response, and different
stand-alone tokens can be sent in request or response. However, there is only one symmetric or one
asymmetric binding assertion to describe the token type and the algorithm that is used for message
protection.

Using the WSS API, you can override any default values. However, when you alter the protection parts,
note that all the default protection parts are cleared. For example, if you specify that you want to encrypt
the Username token instead of the default X.509 token, all the default values of the encrypting protection
parts are cleared.

The following table shows an example of the relationships between each of the configurations:

Table 277. Request generator and response consumer configurations. Use the table to determine the mapping
between the configurations and the default values.
Type of configuration Configuration name Configurations and default values

Request generator Signing information
v Canonicalization method: WSSSignature.EXC_C14N

v Signature method: WSSSignature.RSA_SHA1

v Digest method: WSSSignPart.SHA1

v Transform method: WSSSignPart.TRANSFORM_EXC_C14N

v Signed part - Body: WSSSignature.BODY

v Signed part - Addressing: WSSSignature.ADDRESSING_HEADERS

v Signed part - Timestamp: WSSSignature.TIMESTAMP

v Token reference: SecurityToken.REF_STR

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.generate.x509

Response consumer Signature verification
information

v Canonicalization method: WSSVerification.EXC_C14N

v Signature method: WSSVerification.RSA_SHA1

v Transform method: WSSVerifyPart.TRANSFORM_EXC_C14N

v Signed part - Body: WSSVerification.BODY

v Signed part - Addressing: WSSVerification.ADDRESSING_HEADERS

v Signed part - Timestamp: WSSVerification.TIMESTAMP

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.consume.x509

Request generator Encryption information
v Encrypted key: true

v Key encryption method: WSSEncryption.KW_RSA_OAEP

v Data encryption method: WSSEncryption.AES128

v Encryption part: WSSEncryption.BODY_CONTENT

v Token reference: SecurityToken.REF_KEYID

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.generate.x509

Response consumer Decryption information
v Encrypted key: true

v Key decryption method: WSSDecryption.KW_RSA_OAEP

v Data decryption method: WSSDecryption.AES128

v Decryption part: WSSDecryption.BODY_CONTENT

v Token - Value type: 509Token.ValueType

v Token - JAAS login configuration name: system.wss.consume.x509

Chapter 34. Developing web services - Security (WS-Security) 1669

Encrypted SOAP headers:

The encrypted header element provides a standard way of encrypting SOAP headers. As one of the
extensions to the OASIS SOAP message security specification, the encrypted header element indicates
that the responder has processed the request. Encrypting SOAP headers and parts help to provide more
secure message-level security.

The EncryptedHeader or <wsse11:EncryptedHeader> element is a part of the updated Web Services
Security Version 1.1 standard and enables interoperability with other vendors that support the Version 1.1
standards, such as Microsoft .NET.

Use the EncryptedHeader element for encrypting SOAP header blocks. The EncryptedHeader element
allows Web Services Security to be compliant with the SOAP mustUnderstand processing guidelines and
to prevent disclosure of information that is contained in attributes on a SOAP header block.

The <wsse11:EncryptedHeader> element must contain one <xenc:EncryptedData> element. Only one
<xenc:EncryptedData> element per encrypted header element is permitted.

Encrypted data element

Normally, the programming model, such as JAX-WS, deserializes the SOAP message to a Java binding
object before dispatching the call to the application code. However, if the SOAP message is encrypted, the
deserialization fails because, before encryption, the original content is replaced with the EncryptedData
XML element from the XML Encryption standard.

In certain cases, it might be desirable for the token that is included in the <wsse:Security> header to be
encrypted for the recipient processing role.

Follow these guidelines when using the EncryptedData element:

v The EncryptedHeader element must contain one EncryptedData element.

v The <xenc:EncryptedData> element may be used to contain a security token and include it in the
<wsse:Security> header.

v The <xenc:EncryptedData> must not include an XML ID for referencing the contained security token.

v All <xenc:EncryptedData> tokens must either have an embedded encryption key or must be referenced
by a separate encryption key.

v If compliance with Basic Security Profile 1.1 is desired, the <xenc:EncryptedData> element must have
an Id attribute.

Policy assertion for encrypted parts

The EncryptedParts policy assertion specifies which header is to be encrypted in the security policy. The
following table describes the elements and attributes that can be used for EncryptedParts.

Table 278. Attributes and elements of the EncryptedParts element. Use encrypted parts to provide more secure
message-level security.
Element or attribute Description

/sp:EncryptedParts/sp:Header Optional. Presence of this optional element indicates that a specific SOAP header (or set of such
headers) must be protected. You can have multiple sp:Header elements within a single
EncryptedParts element.

Each header (or set of headers) must be encrypted, and this encryption will encrypt the elements
by using Web Services Security Version 1.1 encrypted headers. As such, if WS-Secuirty 1.1
Encrypted Headers are not supported by a service, then the headers cannot be encrypted by
using message-level security.

If multiple SOAP headers with the same local name but different namespace names are to be
encrypted, multiple sp:Header elements are required, either as part of a single sp:EncryptedParts
assertion or as part of separate sp:EncryptedParts assertions.

1670 Developing WebSphere applications

Table 278. Attributes and elements of the EncryptedParts element (continued). Use encrypted parts to provide more
secure message-level security.
Element or attribute Description

/sp:EncryptedParts/sp:Header/@Name Optional. This attribute indicates the local name of the SOAP header to be confidentiality
protected. If this attribute is not specified, all SOAP headers whose namespace matches the
Namespace attribute are to be protected.

/sp:EncryptedParts/sp:Header/@Namespace Required. This attribute indicates the namespace of the SOAP headers to be confidentiality
protected.

The following message example shows what the EncryptedHeader element looks like on a message
where the EncryptedParts policy assertion for the encrypted header has been specified on the policy:
<S:Envelope xmlns:S="..." xmlns:wsse="..." xmlns:wsse11="..." xmlns:wsu="..."

xmlns:xenc="..." xmlns:ds="...">
<S:Header>
<wsse:Security>
<!-- Tokens etc. -->
<xenc:EncryptedKey>
<xenc:EncryptionMethod Algorithm="..."/>
<ds:KeyInfo>
... ...

</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
<xenc:ReferenceList>
<xenc:DataReference URI="#hdrID"/>

</xenc:ReferenceList>
</xenc:EncryptedKey>

</wsse:Security>
<wsse11:EncryptedHeader wsu:Id="hdrID">
<xenc:EncryptedData Id="encDataID">
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
...

</xenc:EncryptedData>
</wsse11:EncryptedHeader>

</S:Header>
<S:Body>
...

</S:Body>
</S:Envelope>

To encrypt headers in the Web Services Security Version 1.0 specification format, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.0 property with a value of true on the
<encryptionInfo> element in the binding. When this property is specified, the target header for encryption is
replaced by an <EncryptedData> element, instead of an <EncryptedHeader> element that contains an
<EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server
versions prior to version 7.0, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.1.pre.V7 property with a value of true on the
<encryptionInfo> element in the binding. When this property is specified, the <EncryptedHeader> element
includes a wsu:Id parameter and the <EncryptedData> element omits the Id parameter. This property
should only be used if compliance with Basic Security Profile 1.1 is not required.

For complete information about the EncryptedHeader element and the EncryptedData element, see the
Web Services Security Version 1.1 specification.

Signature confirmation:

Web Services Security signature confirmation is an enhanced XML digital signature, and it is included in
the Web Services Security standard. XML digital signature is used for signing elements of the SOAP
envelope.

Chapter 34. Developing web services - Security (WS-Security) 1671

As one of the extensions to the OASIS SOAP message security specification, the signature confirmation
element incorporates the elements that are needed within the response message in order to confirm the
signature that is contained in a request message. XML digital signature and signature confirmation help to
provide more secure message-level security.

Web Services Security Version 1.0 for SOAP message security did not provide any guidance on how to
confirm mutual understanding of the request that prompted this response. The SignatureConfirmation or
<wsse11:SignatureConfirmation> element has been added to the Web Services Security Version 1.1
specification. The <wsse11:SignatureConfirmation> element ensures that the signature is processed by the
intended recipient and indicates that the responder has processed the signature in the request. The
signature confirmation element is part of the updated Web Services Security standard and enables
interoperability with other vendors that support the Version 1.1 standards, such as Microsoft .NET.

Because of the stateless nature of web services and due to different message exchange patterns (MEPs),
consider the following assumptions:

v Assume that session affinity is enabled if a cluster is enabled for the clients that are running in
WebSphere Application Server. When session affinity is enabled, it implies that the response is sent
back to the initiating client of the server.

v Assume WS-Addressing is enabled for asynchronous message exchange patterns. When
WS-Addressing is enabled, it allows the run time to relate the response back to the request. An
asynchronous response is sent back to the application of the initiating WebSphere Application Server.

Syntax

The SignatureConfirmation element indicates that the responder has processed the signature in the
request. When this element is not present in a response, the initiator interprets that the responder is not
compliant.

The format for the signature confirmation element is as follows:
<wsse11:SignatureConfirmation wsu:Id="..." Value="..." />

where:

wsu:Id
The identifier that is used when referencing this element in the <ds:SignedInfo> reference list of
the signature of the associated response message. This attribute is required so that unambiguous
references are made to this <wsse11:SignatureConfirmation> element.

Value This attribute is optional and contains the contents of a <ds:SignatureValue> that is copied from
the associated request. If the request is unsigned, this attribute must not be present. If this
attribute is specified without a value (empty), the initiator interprets this as incorrect behavior and
processes it accordingly. When this attribute is not present, the initiator interprets this to mean that
the response is based on a request that was not signed.

Configuration

To configure signature confirmation, configure the policy file using the administrative console, and select
Require signature confirmation. To process Signature Confirmation correctly, the initiator of the request
needs to preserve the signatures during request generator processing and later needs to retrieve the
signatures for confirmation checks.

1672 Developing WebSphere applications

Response generation rules

Additional SOAP security elements for the SOAP responder are used to confirm that the response is in
relationship to a particular request. The responder must include the contents of the <ds:SignatureValue>
element of the request signature as the value of the @Value attribute of the
<wsse11:SignatureConfirmation> element.

The following response generation rules apply when using the SignatureConfirmation policy assertion:

v If there are no signatures on the request, the response contains one SignatureConfirmation element,
without a value. For MEPs where there are multiple requests (all without signatures) and one response,
the response contains one SignatureConfirmation element without a value.

v If there are signatures on the request, the response contains a SignatureConfirmation element for each
signature, with a value that matches the signature value on the request. For MEPs where there are
multiple requests, with at least one containing a signature, and one response, the response contains a
SignatureConfirmation element for each signature that is found on the requests, with a value that
matches the signature value on the request.

v For MEPs where there is one request and multiple responses, each response contains the appropriate
SignatureConfirmation elements as noted in the first and second bullets.

v If the SOAP request contains multiple signatures, the requester will find all of the signature confirmation
elements contained in the response, and will check the values of the value fields of the signature
confirmation elements against the values of the signatures in the original SOAP request.

Developing JAX-WS based web services client applications that retrieve security
tokens
The security handlers are responsible for propagating security tokens. These security tokens are
embedded in the SOAP security header and passed to downstream servers.

About this task

This information applies only to Java API for XML-based Web Services (JAX-WS) .

The security tokens are encapsulated in the implementation classes for the
com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token data from either a
server application or a client application.

With a client application, the application serves as the request generator and the response consumer and
runs as the Java Platform, Enterprise Edition (Java EE) client application. The consumer component for
Web Services Security stores the security tokens that it receives in one of the properties of the
MessageContext object for the current web services call. You can retrieve a set of token objects through
the javax.xml.rpc.Stub interface of that web services call. You must know which security tokens to retrieve
and their token IDs in case multiple security tokens are included in the SOAP security header. Complete
the following steps to retrieve the security token data from a client application:

Procedure
1. Use the com.ibm.wsspi.wssecurity.token.tokenPropergation key string to obtain the Hashtable for the

tokens through a property value in the javax.xml.ws.Stub interface. The following example shows how
to obtain the Hashtable:

java.util.Hashtable t;

javax.xml.ws.Service serv = ...;
serv.addPort(...);
javax.xml.ws.Dispatch<Object> dispatch = svc.createDispatch(...);

Map<String, Object> requestContext = dispatch.getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ..);
requestContext.put(BindingProvider.SOAPACTION_USE_PROPERTY, ..);

Chapter 34. Developing web services - Security (WS-Security) 1673

requestContext.put(BindingProvider.SOAPACTION_URI_PROPERTY, ..);

String response = dispatch.invoke(body.toString());

Map<String, Object> responseContext = dispatch.getResponseContext();

t = (Hashtable) responseContext.get(
com.ibm.wsspi.wssecurity.Constants.WSSECURITY_TOKEN_PROPERGATION);

2. Search the targeting token objects in the Hashtable. Each token object in the Hashtable is set with its
token ID as a key. You must have prior knowledge of the security token IDs to retrieve the security
tokens. The following example shows how to retrieve a username token from the security header with
a certain token ID value:
com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;
if (t != null) {

unt = (com.ibm.wsspi.wssecuty.auth.token.UsernameToken)t.get(“...”);
}

Results

After completing these steps, you have retrieved the security tokens that are processed by the Web
Services Security handler in a client application.

Developing JAX-WS based web services server applications that retrieve security
tokens
With a server application, the application acts as the request consumer, and the response generator is
deployed and runs in the Java Platform, Enterprise Edition (Java EE) container. The consumer component
for Web Services Security stores the security tokens that it receives in the Java Authentication and
Authorization Service (JAAS) Subject of the current thread. You can retrieve the security tokens from the
JAAS Subject that is maintained as a local thread in the container.

About this task

This information applies only to Java API for XML-based Web Services (JAX-WS).

The security handlers are responsible for propagating security tokens. These security tokens are
embedded in the SOAP security header and passed to downstream servers. The security tokens are
encapsulated in the implementation classes for the com.ibm.wsspi.wssecurity.auth.token.Token interface.
You can retrieve the security token data from either a server application or a client application.

Complete the following steps to retrieve the security token data from a server application:

Procedure
1. Obtain the JAAS Subject of the current thread using the WSSubject API. If you enable Java 2 Security

on the Global security panel in the administrative console, access to the JAAS Subject is denied if the
application code is not granted the javax.security.auth.AuthPermission("wssecurity.getCallerSubject")
permission. The following code sample shows how to obtain the JAAS subject:
javax.security.auth.Subject subject;

try {
subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();
} catch (com.ibm.websphere.security.WSSecurityException e) {

...
}

2. Obtain a set of private credentials from the Subject. For more information, see the application
programming interface (API) com.ibm.websphere.security.auth.WSSubject class through the
information center . To access this information within the information center, click Reference >

1674 Developing WebSphere applications

Developer > API Documentation > Application Programming Interfaces. In the Application
Programming Interfaces article, click com.ibm.websphere.security.auth > WSSubject.

Attention: When Java 2 Security is enabled, you might need to use the AccessController class to
avoid a security violation that is caused by operating the security objects in the Java EE container.

The following code sample shows how to set the AccessController class and obtain the private
credentials:
Set s = (Set) AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {
return subj.getPrivateCredentials();
}

});

3. Search the targeting token class in the private credentials. You can search the targeting token class by
using the java.util.Iterator interface. The following example shows how to retrieve a username token
with a certain token ID value in the security header. You can also use other method calls to retrieve
security tokens. For more information, see the application programming interface (API) documents for
the com.ibm.wsspi.wssecurity.auth.token.Token interface or custom token classes.
com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;
Iterator it = s.iterator();
while (it.hasNext()) {

Object obj = it.next();
if (obj != null &&

obj instanceOf com.ibm.wsspi.wssecurity.auth.token.UsernameToken) {
unt =(com.ibm.wsspi.wssecurity.auth.token.UsernameToken) obj;

if (unt.getId().equals(“...”)) break;
else continue;

}
}

Results

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a server
application.

Developing message-level security for JAX-RPC web services
IBM® WebSphere® Application Server supports the Java™ API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.

Developing web services clients that retrieve tokens from the JAAS Subject in an
application
The security handlers are responsible for propagating security tokens. These security tokens are
embedded in the SOAP security header and passed to downstream servers.

About this task

This information applies only to Java API for XML-based RPC (JAX-RPC) Web services.

The security tokens are encapsulated in the implementation classes for the
com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token data from either a
server application or a client application.

With a client application, the application serves as the request generator and the response consumer and
runs as the Java Platform, Enterprise Edition (Java EE) client application. The consumer component for
Web Services Security stores the security tokens that it receives in one of the properties of the
MessageContext object for the current Web services call. You can retrieve a set of token objects through
the javax.xml.rpc.Stub interface of that web services call. You must know which security tokens to retrieve
and their token IDs in case multiple security tokens are included in the SOAP security header. Complete
the following steps to retrieve the security token data from a client application:

Chapter 34. Developing web services - Security (WS-Security) 1675

Procedure
1. Use the com.ibm.wsspi.wssecurity.token.tokenPropergation key string to obtain the Hashtable for the

tokens through a property value in the javax.xml.rpc.Stub interface. The following example shows how
to obtain the Hashtable:
java.util.Hashtable t;
javax.xml.rpc.Service serv = ...;
MyWSPortType pt = (MyWSPortType)serv.getPort(MyWSPortType.class);
t = (Hashtable)((javax.xml.rpc.Stub)pt)._getProperty(
com.ibm.wsspi.wssecurity.Constants.WSSECURITY_TOKEN_PROPERGATION);

2. Search the targeting token objects in the Hashtable. Each token object in the Hashtable is set with its
token ID as a key. You must have prior knowledge of the security token IDs to retrieve the security
tokens. The following example shows how to retrieve a username token from the security header with
a certain token ID value:
com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;
if (t != null) {

unt = (com.ibm.wsspi.wssecuty.auth.token.UsernameToken)t.get(“...”);
}

Results

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a client
application

Developing web services applications that retrieve tokens from the JAAS Subject
in a server application
With a server application, the application acts as the request consumer, and the response generator is
deployed and runs in the Java Platform, Enterprise Edition (Java EE) container. The consumer component
for Web Services Security stores the security tokens that it receives in the Java Authentication and
Authorization Service (JAAS) Subject of the current thread. You can retrieve the security tokens from the
JAAS Subject that is maintained as a local thread in the container.

About this task

This information applies only to Java API for XML-based RPC (JAX-RPC) Web services.

The security handlers are responsible for propagating security tokens. These security tokens are
embedded in the SOAP security header and passed to downstream servers. The security tokens are
encapsulated in the implementation classes for the com.ibm.wsspi.wssecurity.auth.token.Token interface.
You can retrieve the security token data from either a server application or a client application.

Complete the following steps to retrieve the security token data from a server application:

Procedure
1. Obtain the JAAS Subject of the current thread using the WSSubject utility class. If you enable Java 2

Security on the Global security panel in the administrative console, access to the JAAS Subject is
denied if the application code is not granted the
javax.security.auth.AuthPermission("wssecurity.getCallerAsSubject") permission. The following code
sample shows how to obtain the JAAS subject:
javax.security.auth.Subject subj;
try {
subj = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();
} catch (com.ibm.websphere.security.WSSecurityException e) {

...
}

2. Obtain a set of private credentials from the Subject. For more information, see the application
programming interface (API) com.ibm.websphere.security.auth.WSSubject class through the
information center . To access this information within the information center, click Reference >

1676 Developing WebSphere applications

Developer > API Documentation > Application Programming Interfaces. In the Application
Programming Interfaces article, click com.ibm.websphere.security.auth > WSSubject.

Attention: When Java 2 Security is enabled, you might need to use the AccessController class to
avoid a security violation that is caused by operating the security objects in the Java EE container.

The following code sample shows how to set the AccessController class and obtain the private
credentials:
Set s = (Set) AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {
return subj.getPrivateCredentials();
}

});

3. Search the targeting token class in the private credentials. You can search the targeting token class by
using the java.util.Iterator interface. The following example shows how to retrieve a username token
with a certain token ID value in the security header. You can also use other method calls to retrieve
security tokens. For more information, see the application programming interface (API) documents for
the com.ibm.wsspi.wssecurity.auth.token.Token interface or custom token classes.
com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;
Iterator it = s.iterator();
while (it.hasNext()) {

Object obj = it.next();
if (obj != null &&

obj instanceOf com.ibm.wsspi.wssecurity.auth.token.UsernameToken) {
unt =(com.ibm.wsspi.wssecurity.auth.token.UsernameToken) obj;

if (unt.getId().equals(“...”)) break;
else continue;

}
}

Results

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a server
application

Web Services Security service provider programming interfaces
Several Service Provider Interfaces (SPIs) are provided to extend the capability of the Web Services
Security runtime.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

The following list contains the SPIs that are available for WebSphere Application Server:

Procedure
v com.ibm.wsspi.wssecurity.config.KeyLocator is an abstract for obtaining the keys for digital signature

and encryption. The following list contains the default implementations:

1. com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator implements the Java key store.

2. com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator povides a mapping of the
authenticated identity to a key for encryption or, the implementation uses the default key that is
specified.

3. com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator Provides the capability of using the
signer key for encryption in the response message. This implementation is typically used in the
response sender configuration.

Chapter 34. Developing web services - Security (WS-Security) 1677

v com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator is an interface that is used to evaluate the trust for
identity assertion. The default implementation is com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl,
which enables you to define a list of trusted identities.

v The Java Authentication and Authorization Service (JAAS) CallbackHandler application programming
interfaces (APIs) are used for token generation by the request sender. This interface can be extended to
generate a custom token that can be inserted in the Web Services Security header. The following list
contains the default implementations that are provided by WebSphere Application Server:

1. com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler presents a login prompt to
gather the basic authentication data. Use this implementation in the client environment only.

2. com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler collects the basic
authentication data in the standard in (stdin) prompt. Use this implementation in the client
environment only.

Restriction: If you have a multi-threaded client and multiple threads attempt to read from standard
in at the same time, all the threads will not successfully obtain the user name and
password information. Therefore, you cannot use the
com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler implementation
with a multi-threaded client where multiple threads might attempt to obtain data from
standard in concurrently.

3. com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler reads the basic authentication
data from the application binding file. This implementation might be used on the server side to
generate a user name token.

4. com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler Generates a Lightweight Third
Party Authentication (LTPA) token in the Web Services Security header as a binary security token. If
basic authentication data is defined in the application binding file, it is used to perform a login, to
extract the LTPA token from the WebSphere credentials, and to insert the token in the Web Services
Security header. Otherwise, it will extract the LTPA security token from the invocation credentials
(RunAs identity) and insert the token in the Web Services Security header.

What to do next

The JAAS LoginModule API is used for token validation on the request receiver side of the message. You
can implement a custom LoginModule API to perform validation of the custom token on the request
receiver of the message. After the token is verified and validated, the token is set as the caller and then
run as the identity in the WebSphere Application Server runtime. The identity is used for authorization
checks by the containers before a Java Platform, Enterprise Edition (Java EE) resource is invoked. The
following list presents the default AuthMethod configurations provided by WebSphere Application Server:

BasicAuth
Validates a user name token.

Signature
Maps the distinguished name (DN) of a verified certificate to a Java Authentication and
Authorization Service (JAAS) subject.

IDAssertion
Maps a trusted identity to a JAAS subject.

LTPA Validates an LTPA token that is received in the message and creates a JAAS subject.

Configuring Web Services Security during application assembly
If you configure Web Services Security with an assembly tool, the Web Services Security binding
information is modified

1678 Developing WebSphere applications

Configuring HTTP outbound transport level security with an assembly
tool
You can configure the HTTP outbound transport level security with an assembly tool.

Before you begin

You can configure HTTP outbound transport level security with assembly tools provided with WebSphere
Application Server.

This task is one of several ways that you can configure the HTTP outbound transport level security for a
web service acting as a client to another web service server. You can also configure the HTTP outbound
transport level security with the administrative console or by using the Java properties. If you do not
configure the HTTP outbound transport level security, the web services runtime defers to the Java
Platform, Enterprise Edition (Java EE) security runtime in the WebSphere product for an effective Secure
Sockets Layer (SSL) configuration. If there is no SSL configuration with the Java EE security runtime in
the WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

About this task

If you configure the HTTP outbound transport level security with assembly tool or with the administrative
console, the Web Services Security binding information is modified. If you have not yet installed the web
services application into WebSphere Application Server, you can configure the HTTP SSL configuration
with an assembly tool. This task assumes that you have not deployed the web services application into the
WebSphere product.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,
the properties are configured as system properties. The configuration that is specified in the binding takes
precedence over the Java properties. However, the configurations that are specified by the Java EE
security programming model, or are associated with the Dynamic selection, have a higher precedence.

To learn more, see the secure communications using Secure Sockets Layer information.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer documentation.

4. Configure the HTTP outbound transport level security. Read about enabling web service endpoints in
the Rational Application Developer documentation.

Results

You have configured the HTTP outbound transport level security for a web service acting as a client to
another web service with an assembly tool.

Chapter 34. Developing web services - Security (WS-Security) 1679

Configuring HTTP basic authentication for JAX-RPC web services with
an assembly tool
You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) web services
with an assembly tool.

Before you begin

You can configure HTTP basic authentication with assembly tools provided with WebSphere Application
Server.

About this task

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with the administrative console or by modifying the HTTP properties
programmatically.

If you choose to configure the HTTP basic authentication with an assembly tool or with the administrative
console, the Web Services Security binding information is modified. You can use an assembly tool to
configure HTTP basic authentication before you deploy or install the web services application into
WebSphere Application Server. This task assumes that you have not deployed the web services
application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or
Call instance. The values set programmatically take precedence over the values defined in the binding.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

To configure HTTP basic authentication, use the WebSphere Application Server tools to modify the binding
information.

Procedure
1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer

documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate the web application archive (WAR) files that are created with the Assembly Toolkit, Application
Assembly Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate
files, import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly
tool in the Rational Application Developer documentation.

4. Configure the HTTP basic authentication in the Web Services Client Port Binding page for a web
service or a web service client. The Web Services Client Port Binding page is available after
double-clicking the client deployment descriptor file. Read about Web Services Client Port Bindings in
the Rational Application Developer documentation.

Configuring XML digital signature for Version 5.x web services with an
assembly tool
XML digital signature is one of the methods WebSphere® Application Server provides to secure your web
services. It provides message integrity and authentication capabilities when used with SOAP messages.

1680 Developing WebSphere applications

Configuring trust anchors using an assembly tool
Use an assembly tool to configure trust anchors (that specify keystores which contain trusted root
certificates to validate the signer certificate) or trust stores at the application level.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not
describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application
level have a higher precedence over trust anchors defined at the server or cell level. You can configure an
application-level trust anchor using an assembly tool or the administrative console. This document
describes how to configure the application-level trust anchor using an assembly tool.

About this task

A trust anchor specifies keystores that contain trusted root certificates, which validate the signer certificate.
These keystores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi file) and the
response receiver (as defined in the application-client.xml file when web services are acting as client)
to validate the signer certificate of the digital signature. The keystores are critical to the integrity of the
digital signature validation. If they are tampered with, the result of the digital signature verification is
doubtful and comprised. Therefore, it is recommended that you secure these keystores. The binding
configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the binding
configuration for the response receiver in the application-client.xml file.

Complete the following steps to configure trust anchors using an assembly tool.

Procedure
1. Configure an assembly tool to work with a Java Platform, Enterprise Edition (Java EE) enterprise

application. For more information, see the related information on Assembly Tools.

2. Create a web services-enabled Java EE enterprise application.

3. Configure the client-side response receiver, which is defined in the ibm-webservicesclient-bnd.xmi
bindings extensions file.

a. Use an assembly tool to import your Java EE application.

b. Click Window > Open Perspective > Other > J2EE.

c. Click Application Client projects > application_name > appClientModule > META-INF

d. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor,
and click the WS Binding tab. The Client Deployment Descriptor is displayed.

e. Locate the Port qualified name binding section and either select an existing entry or click Add, to
add a new port binding. The web services client port binding editor displays for the selected port.

f. Locate the Trust anchor section and click Add. The Trust anchor window is displayed.

1) Enter a unique name within the port binding for the Trust anchor name.

The name is used to reference the trust anchor that is defined.

2) Enter the keystore password, path, and keystore type.

The supported keystore types are the Java Cryptography Extension (JCE) and Java
Cryptography Extension Keystores (JCEKS) types.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

Chapter 34. Developing web services - Security (WS-Security) 1681

When you start the application, the configuration is validated in the run time while the binding
information is loading.

g. Save the changes.

4. Configure the server-side request receiver, which is defined in the ibm-webservices-bnd.xmi bindings
extensions file.

a. Click Window > Open perspective > J2EE.

b. Select the web services enabled Enterprise JavaBeans (EJB) or web module.

c. In the Package Explorer window, click the META-INF directory for an EJB module or the WEB-INF
directory for a web module.

d. Right-click the webservices.xml file, select Open with > Web services editor, and click the
bindings tab. The web services bindings editor is displayed.

e. Locate the web service description bindings section and either select an existing entry or click Add
to add a new web services descriptor.

f. Click Binding configurations. The web services binding configurations editor is displayed for the
selected web services descriptor.

g. Locate the Trust anchor section and click Add. The Trust anchor dialog box is displayed.

1) Enter a unique name within the binding for the Trust anchor name.

This unique name is used to reference the trust anchor defined.

2) Enter the keystore password, path, and keystore type. The supported keystore types are JCE
and JCEKS.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

When you start the application, the configuration is validated in the run time while the binding
information is loading.

h. Save the changes.

Results

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if
the web services is acting as client) to verify the signer certificate.

Example

The request receiver or the response receiver (if the web service is acting as a client) uses the defined
trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

What to do next

To complete the signing information configuration process for request receiver, complete the following
tasks:

1. “Configuring the server for request digital signature verification: Verifying the message parts” on page
1691

2. “Configuring the server for request digital signature verification: choosing the verification method” on
page 1692

To complete the process for the response receiver, if the web services is acting as a client, complete the
following tasks:

1. “Configuring the client for response digital signature verification: verifying the message parts” on page
1698

2. “Configuring the client for response digital signature verification: choosing the verification method” on
page 1700

1682 Developing WebSphere applications

Configuring the client-side collection certificate store using an assembly tool
You can configure the client-side collection certificate store using the assembly tool.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a
digitally signed SOAP message.

You can configure the collection certificate either by using an assembly tool or the WebSphere Application
Server administrative console. Complete the following steps to configure the client-side collection
certificate store using the assembly tool.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and
click the WS Binding tab, which is located at the bottom of deployment descriptor editor within the
assembly tool. The Client Deployment Descriptor is displayed.

5. Click the Port binding tab in deployment descriptor editor within the assembly tool. The web services
client port binding window is displayed.

6. Select one of the port-qualified name binding entries.

7. Expand the Security response receiver binding configuration > certificate store list > Collection
certificate store section.

8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or
click Remove to delete an existing certificate store.

9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in the
Signing info dialog box.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:
${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. If you have additional certificate store
paths, click Add to add the paths.

12. Click OK when you finish adding paths.

Configuring the server-side collection certificate store using an assembly tool
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collections of CA certificates and CRLs are used to check the signature of a
digitally signed SOAP message. You can configure the server-side collection certificate store by using an
assembly tool.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Chapter 34. Developing web services - Security (WS-Security) 1683

You can configure the collection certificate either by using an assembly tool or by using the WebSphere
Application Server administrative console. Complete the following steps to configure the server-side
collection certificate store using an assembly tool.

Procedure
1. Start an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, select Open with > Web Services Editor.

5. Click the Binding configurations tab in the web services editor within the assembly tool. The Web
Service Binding Configuration window is displayed.

6. Select one of the web service description binding entries under the Port Component Binding section.

7. Expand the Request receiver binding configuration details > Certificate store list > Collection
certificate store section.

8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or
click Remove to delete an existing certification store.

9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in
the Signing info dialog.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:
${USER_INSTALL_ROOT]/etc/ws-security/samples/intca2.cer. If you have additional certificate store
paths, click Add to add the paths.

12. Click OK when you finish adding paths.

Configuring key locators using an assembly tool
The following information provides instructions on how to configure key locators using an assembly tool.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

You can configure key locators in various locations within the assembly tool. The following procedure
provides instructions on how to configure key locators at any of these locations because the concept is the
same.

Procedure
1. Start an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and
click the WS Binding tab. The Client Deployment Descriptor is displayed.

5. Click the WS Binding tab in deployment descriptor editor within the assembly tool or the Binding
configurations tab in the Web services editor within the assembly tool.

6. Expand one of the Binding configuration sections.

7. Expand the Key locators section.

1684 Developing WebSphere applications

8. Click Add to create a new key locator, click Edit to edit an existing key locator, or click Remove to
delete an existing key locator.

9. Enter a key locator name. The name entered for the Key locator name is used to refer to the key
locator from the Encryption information and Signing Information sections.

10. Enter a key locator class. The key locator class is the implementation of the KeyLocator interface.
When using default implementations, select a class from the menu.

11. Determine whether to click Use key store. Select this option when you use the default
implementations as they use key stores. If you click Use key store, complete the following steps:

a. Enter a value in the key store storepass field. The key store storepass is the password used to
access the key store.

b. Enter a path name in the key store path field. The key store path is the location on the file system
where the key store resides. Make sure that the location can be found wherever you deploy the
application.

c. Enter a type value in the key store type field. The valid types to enter are JKS and JCEKS. JKS is
used when you are not using the Java Cryptography Extensions (JCE) policy. JCEKS is used
when you are using JCE. Although the JCEKS type is more secure, it might decrease
performance.

d. Click Add to create an entry for a key in the key store.

1) Enter a value in the Alias field.

The key alias is a reference to this particular key from the Signing Information section.

2) Enter a value in the Key pass field.

The key pass is the password associated with the certificate which is created using the Java
SE Development Kit 6 keytool.exe file.

3) Enter a value in the Key name field.

The key name refers to the alias of the certificate as found in the key store.

12. Click Add to create a custom property. The property can be used by custom key locator
implementations. For example, you can use properties with the WSIdKeyStoreMapKeyLocator default
implementation. The key locator implementation has the following property names:

v id_, which maps to a credential user ID.

v mappedName_ , which maps to the key alias to use for this user name.

v default, which maps to a key alias to use when a credential does not have an associated id_ entry.

A typical set of properties for this key locator might be: id_1=user1, mappedName_1=key1, id_2=user2,
mappedName_2=key2, default=key3. If user1 or user2 authenticates, then the associated key1 or key2 is
used, respectively. However, if none of the user properties authenticate or the user is not user1 or
user2, then key3 is used.

a. Enter a name in the Name field. The name entered is the property name.

b. Enter a value in the Value field. This value entered is the property value.

Securing web services for Version 5.x applications using XML digital signature
XML digital signature is one of the methods WebSphere Application Server provides to secure your web
services. It provides message integrity and authentication capabilities when used with SOAP messages.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Chapter 34. Developing web services - Security (WS-Security) 1685

WebSphere Application Server provides several different methods to secure your web services; XML digital
signature is one of these methods. You can secure your web services by using any of the following
methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

About this task

XML digital signature provides both message integrity and authentication capabilities when it is used with
SOAP messages. A message receiver can verify that attackers or accidents have not altered parts of the
message after the message was signed by a key. If a message has a digital certificate issued by a
certificate authority (CA) and a signature in the message is validated successfully by a public key in the
certificate, it is proof that the signer has the corresponding private key. To use XML digital signature to
secure web services, complete the following steps:

Procedure
1. Define the security constraints or extensions. To configure the security constraints, you must use an

assembly tool. For more information, see the related information on Assembly Tools.

a. Configure the client to digitally sign a message request. To configure the client, complete the
following steps to specify which parts of the SOAP message to digitally sign and define the method
used to digitally sign the message. The client in these steps is the request sender.

1) Specify the message parts by following the steps found in “Configuring the client for request
signing: digitally signing message parts” on page 1687.

2) Select the method used to digitally sign the request message. You can select the digital
signature method by following the steps in “Configuring the client for request signing: choosing
the digital signature method” on page 1689.

b. Configure the server to verify the digital signature that is used in the message request. To
configure the server, you must specify which parts of the SOAP message, sent by the request
sender, contain digitally signed information and which method was used to digitally sign the
message. The settings chosen for the request receiver, or the server in this step, must match the
settings chosen for the request sender in the previous step.

1) Define the message parts by following the steps found in “Configuring the server for request
digital signature verification: Verifying the message parts” on page 1691.

2) Select the same method used by the request sender to digitally sign the message. You can
select the digital signature method by following the steps in “Configuring the server for request
digital signature verification: choosing the verification method” on page 1692

c. Configure the server to digitally sign a message response. To configure the server, complete the
following steps to specify which parts of the SOAP message to digitally sign and define the method
used to digitally sign the message. The sender in these steps is the response sender.

1) Specify which message parts to digitally sign by following the steps found in “Configuring the
server for response signing: digitally signing message parts” on page 1695.

2) Select the method used to digitally sign the response message. You can select the digital
signature method by following the steps in “Configuring the server for response signing:
choosing the digital signature method” on page 1697

d. Configure the client to verify the digital signature that is used in the message response. To
configure the client, you must specify which parts of the SOAP message sent by the response
sender contain digitally signed information and which method was used to digitally sign the

1686 Developing WebSphere applications

message. The settings chosen for the response receiver, or client in this step, must match the
settings chosen for the response sender in the previous step.

1) Define the message parts by following the steps found in “Configuring the client for response
digital signature verification: verifying the message parts” on page 1698

2) Select the same method used by the response sender to digitally sign the message. You can
select the digital signature method by following the steps in “Configuring the client for response
digital signature verification: choosing the verification method” on page 1700

2. Define the client security bindings. To configure the client security bindings, complete the steps in
either of the following topics:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

3. Define the server security bindings. To configure the server security bindings, complete the steps in
either of the following topics:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

Results

After completing these steps, you have secured your web services using XML digital signature.

Configuring the client for request signing: digitally signing message parts
To configure the client for request signing, specify which message parts to digitally sign when configuring
the client.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security
Extensions tab and the Port Binding tab in the Web Services Client Editor within an assembly tool.

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

About this task

Complete the following steps to specify which message parts to digitally sign when configuring the client
for request signing:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Click Window > Open perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and
click the WS Extension tab. The Client Deployment Descriptor is displayed.

5. Expand Request sender configuration > Integrity. Integrity refers to digital signature while
confidentiality refers to encryption. Integrity decreases the risk of data modification while the data is
transmitted across the Internet.

Chapter 34. Developing web services - Security (WS-Security) 1687

6. Indicate which parts of the message to sign by clicking Add and selecting body, timestamp, or
SecurityToken. The following list contains descriptions of the message parts

body The body is the user data portion of the message.

timestamp
The time stamp determines if the message is valid based on the time that the message is sent
and then received. If timestamp is selected, proceed to the next step and select Add created
time stamp to add a time stamp to a message.

SecurityToken
The security token authenticates the client. If this option is selected, the message is signed.

You can choose to digitally sign the message using a time stamp if Add created time stamp is
selected and configured. You can digitally sign the message using a security token if a login
configuration authentication method is selected.

7. Optional: Expand the Add created time stamp section and select this option if you want a time stamp
added to the message. You can specify an expiration time for the time stamp, which helps defend
against replay attacks. The lexical representation for duration is the [ISO 8601] extended format
PnYnMnDTnHnMnS, where:

v nY represents the number of years

v nM represents the number of months

v nD represents the number of days

v T is the date and time separator

v nH represents the number of hours

v nM represents the number of minutes

v nS represents the number of seconds. The number of seconds can include decimal digits to
arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format
is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes, for
example, 10 minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date
values.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when executing the client, you might need to configure the actor. You can
configure the actor in the following locations on the client in the Web Services Client Editor
within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the Actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The Actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as

1688 Developing WebSphere applications

a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server Actor fields are synchronized.

What to do next

After you have specified which message parts to digitally sign, you must specify which method is used to
digitally sign the message. See “Configuring the client for request signing: choosing the digital signature
method” for more information.

Configuring the client for request signing: choosing the digital signature method
To configure the client for request signing, specify which message parts to digitally sign when configuring
the client.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security
extensions tab and the Port binding tab in the web services client editor within an assembly tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively. You must specify which parts of the message sent by the client must be
digitally signed. See “Configuring the client for request signing: digitally signing message parts” on page
1687 for more information.

About this task

Complete the following steps to specify which message parts to digitally sign when configuring the client
for request signing:

Procedure
1. Launch an assembly tool. For more information, see the related information on assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and
click the WS Binding tab. The Client Deployment Descriptor is displayed.

5. Expand Security request sender binding configuration > Signing information.

6. Select Edit to view the signing information and select a digital signature method from the Signature
method algorithm field. The following table describes the purpose of this information. Some of these
definitions are based on the XML-Signature specification, which is located at the following website
http://www.w3.org/TR/xmldsig-core.

Chapter 34. Developing web services - Security (WS-Security) 1689

http://www.w3.org/TR/xmldsig-core

Table 279. Digital signature methods. The digital signature method information is stored in the client deployment
descriptor.
Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the information is digested as part of the signature
operation.

Digest method algorithm Applies to the data after transforms are applied, if specified, to yield the <DigestValue> element.
Signing the <DigestValue> element binds the resource content to the signer key. The algorithm
selected for the client request sender configuration must match the algorithm selected in the server
request receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the <SignatureValue> element. The algorithm
selected for the client request sender configuration must match the algorithm selected in the server
request receiver configuration.

Signing key name Represents the key entry associated with the signing key locator. The key entry refers to an alias of the
key, which is found in the key store and is used to sign the request.

Signing key locator Represents a reference to a key locator implementation class that locates the correct hey store where
the alias and the certificate exist.

7. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Digest method algorithm and Signature method algorithm drop-down
lists. Use this option if you expect this application to be run on a WebSphere Application Server that
has set the Use the United States Federal Information Processing Standard (FIPS) algorithms
option in the SSL certificate and key management panel of the WebSphere administrative console.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations on the client in the web services client editor
within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations in the
web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The Actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which method is used to digitally sign a message when the client sends a message to
a server.

1690 Developing WebSphere applications

What to do next

After you configure the client to digitally sign the message, you must configure the server to verify the
digital signature. See “Configuring the server for request digital signature verification: Verifying the
message parts” for more information.

Configuring the server for request digital signature verification: Verifying the
message parts
Configure the server for request digital signature verification by modifying the extensions to indicate which
parts of the request to verify.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions
tab and the Binding Configurations tab in the web services editor within the assembly tools:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

You can use these two tabs to configure the Web Services Security extensions and the Web Services
Security bindings, respectively. Also, you must specify which parts of the message sent by the client must
be digitally signed. See “Configuring the client for request signing: digitally signing message parts” on page
1687 to determine which message parts are digitally signed. The message parts specified for the client
request sender must match the message parts specified for the server request receiver.

About this task

Complete the following steps to configure the server for request digital signature verification. The steps
describe how to modify the extensions to indicate which parts of the request to verify.

Procedure
1. Launch an assembly tool. For more information, see the related information on assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab in the web services editor.

6. Expand the Request receiver service configuration details > Required integrity section. Required
integrity refers to the parts of the message that require digital signature verification. The purpose of
digital signature verification is to make sure that the message parts have not been modified while
transmitting across the Internet.

7. Indicate parts of the message to verify by clicking Add, and selecting one of the following three parts:
body, Timestamp, or SecurityToken. You can determine which parts of the message to verify by
looking at the web service request sender configuration in the client application. To view the web
service request sender configuration information in the web services client editor, click the Security
extensions tab and expand Request sender configuration > Integrity. The following includes a list
and description of the message parts:

Body This is the user data portion of the message.

Chapter 34. Developing web services - Security (WS-Security) 1691

Timestamp
The time stamp determines if the message is valid based on the time that the message is sent
and then received. If Timestamp is selected, proceed to the next step to Add Created Time
Stamp to the message.

SecurityToken
The security token authenticates the client. If SecurityToken is selected, the message is
signed.

8. Optional: Expand the Add received time stamp section. The Add Received Time Stamp value
indicates to validate the Add Created Time Stamp option configured by the client. You must select this
option if you selected the Add Created Time Stamp on the client. The time stamp ensures message
integrity by indicating the timeliness of the request. This option helps defend against replay attacks.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the server when the
client sends a message to a server.

What to do next

After you specify which message parts contain a digital signature that must be verified by the server, you
must configure the server to recognize the digital signature method used to digitally sign the message.
See “Configuring the server for request digital signature verification: choosing the verification method” for
more information.

Configuring the server for request digital signature verification: choosing the
verification method
To configure the server for request digital signature verification, use an assembly tool to modify the
extensions and indicate which digital signature method the server will use during verification.

1692 Developing WebSphere applications

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions
tab and the Binding Configurations tab in the Web Services Editor within the IBM assembly tools:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

You can use these two tabs to configure the Web Services Security extensions and Web Services Security
bindings, respectively. You must specify which message parts contain digital signature information that
must be verified by the server. See “Configuring the server for request digital signature verification:
Verifying the message parts” on page 1691. The message parts specified for the client request sender
must match the message parts specified for the server request receiver. Likewise, the digital signature
method chosen for the client must match the digital signature method used by the server.

About this task

Complete the following steps to configure the server for request digital signature verification. The steps
describe how to modify the extensions to indicate which digital signature method the server will use during
verification.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand the Security request receiver binding configuration details > Signing information section.

7. Click Edit to edit the signing information. The signing information dialog is displayed, select or enter
the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Use certificate path reference

v Trust anchor reference

v Certificate store reference

v Trust any certificate

For more conceptual information on digitally signing SOAP messages, see XML digital signature. The
following table describes the purpose for each of these selections. Some of the following definitions are
based on the XML-Signature specification, which is located at the following web address:
http://www.w3.org/TR/xmldsig-core.

Table 280. Digital signature methods. The digital signature method is part of the binding configuration.
Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before it is digested as part of
the signature operation. The algorithm selected for the server request
receiver configuration must match the algorithm selected in the client
request sender configuration.

Chapter 34. Developing web services - Security (WS-Security) 1693

http://www.w3.org/TR/xmldsig-core

Table 280. Digital signature methods (continued). The digital signature method is part of the binding configuration.
Name Purpose

Digest method algorithm Applies to the data after transforms are applied, if specified, to yield the
<DigestValue> element. The signing of the <DigestValue> element binds
resource content to the signer key. The algorithm selected for the server
request receiver configuration must match the algorithm selected in the
client request sender configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the
<SignatureValue> element. The algorithm selected for the server request
receiver configuration must match the algorithm selected in the client
request sender configuration.

Use certificate path reference or Trust any certificate Validates a certificate or signature sent with a message. When a message
is signed, the public key used to sign it is sent with the message. This
public key or certificate might not be validated at the receiving end. By
selecting User certificate path reference, you must configure a trust
anchor reference and a certificate store reference to validate the certificate
sent with the message. By selecting Trust any certificate, the signature
is validated by the certificate sent with the message without the certificate
itself being validated.

Use certificate path reference: Trust anchor reference Refers to a key store that contains trusted, self-signed certificates and
certificate authority (CA) certificates. These certificates are trusted
certificates that you can use with any applications in your deployment.

Use certificate path reference: Certificate store reference Contains a collection of X.509 certificates. These certificates are not
trusted for all applications in your deployment, but might be used as an
intermediary to validate certificates for an application.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Signature method algorithm and Digest method algorithm dropdown lists.
Use this option if you expect this application to be run on a WebSphere Application Server that has set
the Use the United States Federal Information Processing Standard (FIPS) algorithms option in
the SSL certificate and key management panel of the administrative console.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations on the client:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified the method that the server uses to verify the digital signature in the message parts.

1694 Developing WebSphere applications

What to do next

After you configure the client for request signing and the server for request digital signature verification,
you must configure the server and the client to handle the response. Next, specify the response signing for
the server. See “Configuring the server for response signing: digitally signing message parts” for more
information.

Configuring the server for response signing: digitally signing message parts
Use an assembly tool to specify which message parts to digitally sign when configuring the server for
response signing.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this topic supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions
tab and the Binding configurations tab in the web services editor within the IBM assembly tools:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

About this task

Complete the following steps to specify which message parts to digitally sign when configuring the server
for response signing:

Procedure
1. Launch an assembly tool. For more information, see the related information on assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click EJB Projects > application _name > ejbModule > META-INF.

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the
assembly tool.

6. Expand Response sender service configuration details > Integrity. Integrity refers to digital
signature while confidentiality refers to encryption. Integrity decreases the risk of data modification
while the data is transmitted across the Internet. For more information on digitally signing SOAP
messages, see XML digital signature.

7. Indicate the parts of the message to sign by clicking Add, and selecting Body, Timestamp, or
SecurityToken.

The following list contains descriptions of the message parts:

Body The body is the user data portion of the message.

Timestamp
The time stamp determines if the message is valid based on the time that the message is sent
and then received. If this option if selected, proceed to the next step and click Add Created
Time Stamp, which indicates that the time stamp is added to the message.

Chapter 34. Developing web services - Security (WS-Security) 1695

SecurityToken
The security token is used for authentication. If this option is selected, the authentication
information is added to the message.

8. Optional: Expand the Add created time stamp section. Select this option if you want a time stamp
added to the message. You can specify an expiration time for the time stamp, which helps defend
against replay attacks. The lexical representation for duration is the ISO 8601 extended format,
PnYnMnDTnHnMnS, where:

v nY represents the number of years.

v nM represents the number of months.

v nD represents the number of days.

v T is the date and time separator.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds. The number of seconds can include decimal digits to
arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format
is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes. 10
minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date values.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts to digitally sign when the server sends a response to the client.

What to do next

After you specifying which message parts to digitally sign, you must specify which method is used to
digitally sign the message. See “Configuring the server for response signing: choosing the digital signature
method” on page 1697 for more information.

1696 Developing WebSphere applications

Configuring the server for response signing: choosing the digital signature
method
Use an assembly tool to specify which digital signature method to use when configuring the server for
response signing.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions
tab and the Binding configurations tab in the web services editor within the IBM assembly tools:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

About this task

Complete the following steps to specify which digital signature method to use when configuring the server
for response signing:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application _name > ejbModule > META-INF.

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand Response sender binding configuration details > Signing information.

7. Click Edit to choose a signing method. The signing info dialog is displayed and either select or enter
the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Signing key name

v Signing key locator

The following table describes the purpose of this information. Some of these definitions are based on
the XML-Signature specification, which is located at the following address: http://www.w3.org/TR/
xmldsig-core.

Table 281. Digital signature methods. Use the methods to configure the server for response signing.
Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the information is digested
as part of the signature operation. Use the same algorithm on the client
response receiver. The algorithm selected for the server response sender
configuration must match the algorithm selected in the client response
receiver configuration.

Chapter 34. Developing web services - Security (WS-Security) 1697

http://www.w3.org/TR/xmldsig-core.html
http://www.w3.org/TR/xmldsig-core.html

Table 281. Digital signature methods (continued). Use the methods to configure the server for response signing.
Name Purpose

Digest method algorithm Applies to the data after transforms are applied, if specified, to yield the
<DigestValue> element. Signing the <DigestValue> element binds
resource content to the signer key. The algorithm selected for the server
response sender configuration must match the algorithm selected in the
client response receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the
<SignatureValue> element. The algorithm selected for the server response
sender configuration must match the algorithm selected in the client
response receiver configuration.

Signing key name Represents the key entry associated with the signing key locator. The key
entry refers to an alias of the key, which is found in the key store and is
used to sign the request.

Signing key locator Represents a reference to a key locator implementation class that locates
the correct key store where the alias and certificate exists. For more
information on configuring key locators, see the following file:

v “Configuring key locators using an assembly tool” on page 1684

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Signature method algorithm and Digest method algorithm dropdown lists.
Use this option if you expect this application to be run on a WebSphere Application Server that has set
the Use the United States Federal Information Processing Standard (FIPS) algorithms option in
the SSL certificate and key management panel of the administrative console for WebSphere
Application Server.

Results

You have specified which method is used to digitally sign a message when the server sends a message to
a client.

What to do next

After you configure the server to digitally sign the response message, you must configure the client to
verify the digital signature contained in the response message. See “Configuring the client for response
digital signature verification: verifying the message parts” for more information.

Configuring the client for response digital signature verification: verifying the
message parts
To configure the Web Services Security extensions and the Web Services Security bindings, use the WS
Extension tab and the WS Binding tab in the Client Deployment Descriptor within an assembly tool.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to becomes familiar with the WS
Extension tab and the WS Binding tab in the Client Deployment Descriptor within the assembly tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

You can use these two tabs to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

1698 Developing WebSphere applications

About this task

Complete the following steps to configure the client for response digital signature verification. The steps
describe how to modify the extensions to indicate which parts of the response to verify.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file and click Open With > Deployment descriptor editor.

5. Click the WS extension tab.

6. Expand the Response receiver configuration > Required integrity section. Required integrity refers
to parts that require digital signature verification. Digital signature verification decreases the risk that
the message parts have been modified while the message is transmitted across the Internet.

7. Indicate the parts of the message that must be verified. You can determine which parts of the message
to verify by looking at the web service response sender configuration. Click Add and select one of the
following parts:

Body The body is the user data portion of the message.

Timestamp
The time stamp determines if the message is valid based on the time that the message is sent
and then received. If the timestamp option is selected, proceed to the next step to add a
received time stamp to the message.

Securitytoken
The security token authenticates the client. If the Securitytoken option is selected, the
message is signed.

8. Optional: Expand the Add received time stamp section. Select Add received time stamp to add the
received time stamp to the message.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations on the client in the web services client editor
within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations in the
web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure

Chapter 34. Developing web services - Security (WS-Security) 1699

that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the client when the
server sends a response message to the client.

What to do next

After you specify which message parts contain a digital signature that must be verified by the client, you
must configure the client to recognize the digital signature method used to digitally sign the message. See
“Configuring the client for response digital signature verification: choosing the verification method” for more
information.

Configuring the client for response digital signature verification: choosing the
verification method
You can configure the Web Services Security extensions and Web Services Security bindings using the
WS extension tab and the WS binding tab in the web services editor within an assembly tool.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS
extension tab and the WS binding tab in the web services editor within the IBM assembly tools:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

You can use these two tabs to configure the Web Services Security extensions and Web Services Security
bindings, respectively. Also, you must specify which message parts contain digital signature information
that must be verified by the client. See “Configuring the client for response digital signature verification:
verifying the message parts” on page 1698 to specify which message parts are digitally signed by the
server and must be verified by the client. The message parts specified for the server response sender
must match the message parts specified for the client response receiver. Likewise, the digital signature
method chosen for the server must match the digital signature method used by the client.

About this task

Complete the following steps to configure the client for response digital signature verification. The steps
describe how to modify the extensions to indicate which digital signature method the client will use during
verification.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
perspective > Other > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab.

1700 Developing WebSphere applications

6. Expand the Security response receiver binding configuration > Signing information section.

7. Click Edit to select a digital signature method. The signing info dialog displays and either select or
enter the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Signing key name

v Signing key locator

For more conceptual information on digitally signing SOAP messages, see XML digital signature. The
following table describes the purpose for each of these selections. Some of the following definitions are
based on the XML-Signature specification, which can be found at: http://www.w3.org/TR/xmldsig-core.

Table 282. Digital signature methods. Use the methods to configure the client for response digital signature
verification.
Name Purpose

Canonicalization method algorithm The canonicalization method algorithm is used to canonicalize the <SignedInfo> element
before it is digested as part of the signature operation.

Digest method algorithm The digest method algorithm is the algorithm applied to the data after transforms are
applied, if specified, to yield the <DigestValue>. The signing of the <DigestValue> binds
resource content to the signer key. The algorithm selected for the client response receiver
configuration must match the algorithm selected in the server response sender
configuration.

Signature method algorithm The signature method is the algorithm that is used to convert the canonicalized
<SignedInfo> element into the <SignatureValue> element. The algorithm selected for the
client response receiver configuration must match the algorithm selected in the server
response sender configuration.

Use certificate path reference or Trust any certificate When a message is signed, the public key used to sign it is transmitted with the
message. To validate this public key at the receiving end, configure a certificate path
reference. By selecting User certificate path reference, you must configure a trust
anchor reference and certificate store reference to validate the certificate sent with the
message. By selecting Trust any certificate, the signature is validated by the certificate
sent with the message without the certificate itself being validated.

Use certificate path reference: Trust anchor reference A trust anchor is a configuration that refers to a keystore that contains trusted, self-signed
certificates and certificate authority (CA) certificates. These certificates are trusted
certificates that you can use with any applications in your deployment.

Use certificate path reference: Certificate store
reference

A certificate store is a configuration that has a collection of X.509 certificates. These
certificates are not trusted for all applications in your deployment, but might be used as
an intermediary to validate certificates for an application.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Signature method algorithm and Digest method algorithm dropdown lists.
Use this option if you expect this application to be run on a WebSphere Application Server that has set
the Use the United States Federal Information Processing Standard (FIPS) algorithms option in
the SSL certificate and key management panel of the administrative console for WebSphere
Application Server.

Results

Important: If you configure the client and server signing information correctly, but receive a Soap body
not signed error when running the client, you might need to configure the actor. You can
configure the actor in the following locations on the client in the web services client editor
within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor
information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the
actor information in the Actor field.

Chapter 34. Developing web services - Security (WS-Security) 1701

http://www.w3.org/TR/xmldsig-core

You must configure the same actor strings for the web service on the server, which processes
the request and sends the response back. Configure the actor in the following locations in the
web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details
and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When
the actor fields on the client and server match, the request or response is acted upon instead
of being forwarded downstream. The actor fields might be different when you have web
services acting as a gateway to other web services. However, in all other cases, make sure
that the actor information matches on the client and server. When web services are acting as
a gateway and they do not have the same actor configured as the request passing through
the gateway, web services do not process the message from a client. Instead, these web
services send the request downstream. The downstream process that contains the correct
actor string processes the request. The same situation occurs for the response. Therefore, it is
important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which method the client uses to verify the digital signature in the message parts.

What to do next

After you configure the server for response signing and the client for request digital signature verification,
verify that you have configured the client and the server to handle the message request.

Configuring the client security bindings using an assembly tool
Use the web services client editor within an assembly tool to include the binding information, that
describes how to run the security specifications found in the extensions, in the client enterprise archive
(EAR) file.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

When configuring a client for Web Services Security, the bindings describe how to run the security
specifications found in the extensions. Use the web services client editor within an assembly tool to
include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a web service or from a web
service accessing a downstream web service. This document focuses on the pure client situation.
However, the concepts, and in most cases the steps, also apply when a web service is configured to
communicate downstream to another web service that has client bindings. Complete the following steps to
edit the security bindings on a pure client (or server acting as a client) using an assembly tool:

Procedure
1. Import the web services client EAR file into an assembly tool. When you edit the client bindings on a

server acting as a client, the same basic steps apply. For more information, see the related information
on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

1702 Developing WebSphere applications

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor. The
Client Deployment Descriptor is displayed.

5. Click the WS Extension tab and select the port QName bindings that you want to configure. The Web
Services Security extensions are configured for outbound requests and inbound responses. You need
to configure the following information for Web Services Security extensions. These topics are
discussed in more detail in other sections of the documentation.

Request sender configuration details

Details
“Configuring the client for request signing: digitally signing message parts” on page 1687

Integrity
“Configuring the client for request signing: digitally signing message parts” on page 1687

Confidentiality
“Configuring the client for request encryption: Encrypting the message parts” on page 1709

Login Config

BasicAuth
“Configuring the client for basic authentication: specifying the method” on page 1720

IDAssertion
“Configuring the client for identity assertion: specifying the method” on page 1728

Signature
“Configuring the client for signature authentication: specifying the method” on page
1735

LTPA “Configuring the client for LTPA token authentication: specifying LTPA token
authentication” on page 1744

ID assertion
“Configuring the client for identity assertion: specifying the method” on page 1728

Add created time stamp
“Configuring the client for request signing: digitally signing message parts” on page 1687

Response receiver configuration details

Required integrity
“Configuring the client for response digital signature verification: verifying the message parts”
on page 1698

Required confidentiality
“Configuring the client for response decryption: decrypting the message parts” on page 1716

Add received time stamp
“Configuring the client for response digital signature verification: verifying the message parts”
on page 1698

6. Click the WS binding tab and select the port qualified name binding that you want to configure. The
Web Services Security bindings are configured for outbound requests and inbound responses. You
need to configure the following information for Web Services Security bindings. These topics are
discussed in more details in other sections of the documentation.

Security request sender binding configuration

Signing information
“Configuring the client for request signing: choosing the digital signature method” on page
1689

Encryption information
“Configuring the client for request encryption: choosing the encryption method” on page 1710

Chapter 34. Developing web services - Security (WS-Security) 1703

Key locators
“Configuring key locators using an assembly tool” on page 1684

Login binding

BasicAuth
“Configuring the client for basic authentication: collecting the authentication
information” on page 1722

ID assertion
“Configuring the client for identity assertion: collecting the authentication method” on
page 1729

Signature
“Configuring the client for signature authentication: collecting the authentication
information” on page 1736

LTPA “Configuring the client for LTPA token authentication: collecting the authentication
method information” on page 1745

Security response receiver binding configuration

Signing information
“Configuring the client for response digital signature verification: choosing the verification
method” on page 1700

Encryption information
“Configuring the client for response decryption: choosing a decryption method” on page 1717

Trust anchor
“Configuring trust anchors using an assembly tool” on page 1681

Certificate store list
“Configuring the client-side collection certificate store using an assembly tool” on page 1683

Key locators
“Configuring key locators using an assembly tool” on page 1684

What to do next

Important: When configuring the security request sender binding configuration, you must synchronize the
information used to perform the specified security with the security request receiver binding
configuration, which is configured in the server EAR file. These two configurations must be
synchronized in all respects because there is no negotiation during run time to determine the
requirements of the server.

For example, when configuring the encryption information in the security request sender binding
Configuration, you must use the public key from the server for encryption. Therefore, the key locator that
you choose must contain the public key from the server configuration. The server must contain the private
key to decrypt the message. This example illustrates the important relationship between the client and
server configuration. Additionally, when configuring the security response receiver binding configuration,
the server must send the response using security information known by this client security response
receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request
sender and the server request receiver are relative configurations that must be synchronized with each
other. The server response sender and the client response receiver are related configurations that must be
synchronized with each other. Note that the related configurations are end points for any request or
response. One end point must communicate its actions with the other end point because run time
requirements are not negotiated.

1704 Developing WebSphere applications

Table 283. Related configurations. The configurations must be synchronized with each other.
Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

Configuring the server security bindings using an assembly tool
Use an assembly tool to edit bindings for a web service after these bindings are deployed on a server.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to importing the web services enterprise archive (EAR) file into the assembly tool, make sure that
you have already run the WSDL2Java command on your web service to enable your Java Platform,
Enterprise Edition (Java EE) application. You must import the Web services EAR file into the assembly
tool.

About this task

Create an Enterprise JavaBeans (EJB) file Java archive (JAR) file or a web application archive (WAR) file
containing the security binding file (ibm-webservices-bnd.xmi) and the security extension file
(ibm-webservices-ext.xmi). If this archive is acting as a client to a downstream service, you also need
the client-side binding file (ibm-webservicesclient-bnd.xmi) and the client-side extension file
(ibm-webservicesclient-ext.xmi). These files are generated using the WSDL2Java command. For more
information, read about the WSDL2Java command for JAX-RPC applications. You can edit these files using
the web services editor in the assembly tool.

When configuring server-side security for Web Services Security, the security extensions configuration
specifies what security is performed, the security bindings configuration indicates how to perform what is
specified in the security extensions configuration. You can use the defaults for some elements at the cell
and server levels in the bindings configuration, including key locators, trust anchors, the collection
certificate store, trusted ID evaluators, and login mappings and reference these elements from the WAR
and JAR binding configurations.

Open the web services editor in an assembly tool to begin editing the server security extensions and
bindings. The following steps can locate the server security extensions and bindings. Other tasks specify
how to configure each section of the extensions and bindings in more detail.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java EE perspective. Click Window > Open Perspective > J2EE.

3. Configure the server for inbound requests and outbound responses security configuration. To configure
the server for inbound requests and outbound responses, complete the following steps:

a. Click EJB Projects > application_name > ejbModule > META-INF.

b. Right-click the webservices.xml file and click Open with > Web services editor. The
webservices.xml file represents the server-side (inbound) web services configuration. The
webservicesclient.xml file represents the client-side (outbound) web services configuration.

4. In the web services editor (for the webservices.xml file and inbound requests and outbound responses
web services configuration), there are several tabs at the bottom of the editor including Web Services,

Chapter 34. Developing web services - Security (WS-Security) 1705

Port Components, Handlers, Security Extensions, Bindings, and Binding Configurations. The security
extensions are edited using the Security Extensions tab. The security bindings are edited using the
Security Bindings tab.

a. Click the WS Extensions tab and select the port component binding to edit. The Web Services
Security extensions are configured for inbound requests and outbound responses. You need to
configure the following information for Web Services Security extensions. These topics are
discussed in more detail in other topics in the documentation.

Request receiver service configuration details

Required integrity
“Configuring the server for request digital signature verification: Verifying the message
parts” on page 1691

Required confidentiality
“Configuring the server for request decryption: decrypting the message parts” on page
1711

Login config

BasicAuth
“Configuring the server to handle basic authentication information” on page 1725

ID assertion
“Configuring the server to handle identity assertion authentication” on page 1730

Signature
“Configuring the server to support signature authentication” on page 1738

LTPA “Configuring the server to handle LTPA token authentication information” on page
1746

Add received time stamp
“Configuring the server for request digital signature verification: Verifying the message
parts” on page 1691

Response sender service configuration details

Details
“Configuring the server for response signing: digitally signing message parts” on page 1695

Integrity
“Configuring the server for response signing: digitally signing message parts” on page 1695

Confidentiality
“Configuring the server for response encryption: encrypting the message parts” on page
1714

Add created time stamp
“Configuring the server for response signing: digitally signing message parts” on page 1695

b. Click the Binding Configurations tab and select the port component binding to edit. The Web
Services Security bindings are configured for inbound requests and outbound responses. You need
to configure the following information for Web Services Security bindings. These topics are
discussed in more details in other topics in the documentation.

Response receiver binding configuration details

Signing Information
“Configuring the server for request digital signature verification: choosing the verification
method” on page 1692

Encryption Information
“Configuring the server for request decryption: choosing the decryption method” on page
1712

1706 Developing WebSphere applications

Trust Anchor
“Configuring trust anchors using an assembly tool” on page 1681

Certificate Store List
“Configuring the server-side collection certificate store using an assembly tool” on page
1683

Key Locators
“Configuring key locators using an assembly tool” on page 1684

Login Mapping

Basic auth
“Configuring the server to validate basic authentication information” on page 1726

ID assertion
“Configuring the server to validate identity assertion authentication information” on
page 1732

Signature
“Configuring the server to validate signature authentication information” on page
1739

LTPA “Configuring the server to validate LTPA token authentication information” on page
1747

Trusted ID evaluator

Trusted ID evaluator reference

Response sender binding configuration details

Signing information
“Configuring the server for response signing: choosing the digital signature method” on
page 1697

Encryption information
“Configuring the server for response encryption: choosing the encryption method” on page
1715

Key locators
“Configuring key locators using an assembly tool” on page 1684

What to do next

Configure the client for outbound requests and inbound responses security configuration by right-clicking
the webservicesclient.xml file and clicking Open With > Deployment descriptor editor. For more
information, see “Configuring the client security bindings using an assembly tool” on page 1702.

Configuring XML encryption for Version 5.x web services with an
assembly tool
XML encryption is one method that WebSphere® Application Server provides to secure your web services.
It enables you to encrypt an XML element, the content of an XML element, or arbitrary data such as an
XML document.

Securing web services for Version 5.x applications using XML encryption
XML encryption is one method that WebSphere Application Server provides to secure your web services. It
enables you to encrypt an XML element, the content of an XML element, or arbitrary data such as an XML
document.

Chapter 34. Developing web services - Security (WS-Security) 1707

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your web services. XML
encryption is one of these methods. You can secure your web services using any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

About this task

XML encryption enables you to encrypt an XML element, the content of an XML element, or arbitrary data
such as an XML document. Like XML digital signature, a message is sent by the client as the request
sender to the server as the request receiver. The response is sent by the server as the response sender
to the client as the request receiver. Unlike XML digital signature, which verifies the authenticity of the
sender, XML encryption scrambles the message content using a key, which can be unscrambled by a
receiver that possesses the same key. You can use XML encryption in conjunction with XML digital
signature to scramble the content while verifying the authenticity of the message sender.

To use XML encryption to secure web services, you must use an assembly tool. For more information, see
the related information on Assembly Tools.

To securing web services for Version 5.x applications using XML encryption, complete the following steps:

Procedure
1. Specify the encryption settings for the request sender. The message parts and the encryption method

settings chosen for the request sender on the client must match the message parts and the method
settings chosen for the request receiver on the server. To specify the encryption settings for the
request sender:

a. “Configuring the client for request encryption: Encrypting the message parts” on page 1709.

b. “Configuring the client for request encryption: choosing the encryption method” on page 1710.

2. Specify the encryption settings for the request receiver. The decryption settings chosen for the request
receiver must match the encryption settings chosen for the request sender.

To specify the decryption settings for the request receiver:

a. “Configuring the server for request decryption: decrypting the message parts” on page 1711.

b. “Configuring the server for request decryption: choosing the decryption method” on page 1712.

3. Specify the encryption settings for the response sender. The message parts and the encryption method
settings chosen for the response sender on the server must match the message parts and the method
settings chosen for the response receiver on the client. To specify the encryption settings for the
response sender:

a. “Configuring the server for response encryption: encrypting the message parts” on page 1714.

b. “Configuring the server for response encryption: choosing the encryption method” on page 1715.

4. Specify the encryption settings for the response receiver.

1708 Developing WebSphere applications

Remember: The decryption settings chosen for the response receiver must match the encryption
settings chosen for the response sender.

To specify the decryption settings for the response receiver, complete the following steps:

a. “Configuring the client for response decryption: decrypting the message parts” on page 1716.

b. “Configuring the client for response decryption: choosing a decryption method” on page 1717.

Results

After completing these steps, you have secured your web services using XML encryption.

Configuring the client for request encryption: Encrypting the message parts
To configure the client for request encryption, specify which message parts to encrypt when configuring the
client.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS
Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly
tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

About this task

Complete the following steps to specify which message parts to encrypt when configuring the client for
request encryption:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS extensions tab, which is located at the bottom of Client Deployment Descriptor Editor
within the assembly tool.

6. Expand Request sender configuration > Confidentiality. Confidentiality refers to encryption while
integrity refers to digital signing. Confidentiality reduces the risk of someone understanding the
message flowing across the Internet. With confidentiality specifications, the message is encrypted
before it is sent and decrypted when it is received at the correct target. For more information on
encrypting , see XML encryption.

7. Select the parts of the message that you want to encrypt by clicking Add. You can select one of the
following parts:

Bodycontent
User data portion of the message

Chapter 34. Developing web services - Security (WS-Security) 1709

Usernametoken
Basic authentication information, if selected

What to do next

After you specify which message parts to encrypt, you must specify which method to use to encrypt the
request message. See “Configuring the client for request encryption: choosing the encryption method” for
more information.

Configuring the client for request encryption: choosing the encryption method
To configure the client for request encryption, specify which encryption method to use when configuring the
client.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS
Extensions tab and the WS Binding tab in the Client Deployment Descriptor editor within an assembly
tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

About this task

Complete the following steps to specify which encryption method to use when configuring the client for
request encryption:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS binding tab, which is located at the bottom of the Client Deployment Descriptor editor
within the assembly tool.

6. Expand Security request sender binding configuration > Encryption information.

7. Select an encryption option and click Edit to view the encryption information or click Add to add
another option. The following table describes the purpose of this information. Some of these definitions
are based on the XML-Encryption specification, which is located at the following web address:
http://www.w3.org/TR/xmlenc-core

Encryption name
Refers to the name of the encryption information entry.

Data encryption method algorithm
Encrypts and decrypts data in fixed size, multiple octet blocks.

1710 Developing WebSphere applications

http://www.w3.org/TR/xmlenc-core

Key encryption method algorithm
Represents public key encryption algorithms that are specified for encrypting and decrypting
keys.

Encryption key name
Represents a Subject (Owner field of the certificate) from a public key certificate found by the
encryption key locator, which is used by the key encryption method algorithm to encrypt the
private key. The private key is used to encrypt the data.

The key chosen must be a public key of the target. Encryption must be done using the public
key and decryption must be done by the target using the private key (the personal certificate of
the target).

Encryption key locator
Represents a reference to a key locator implementation class that locates the correct key store
where the alias and the certificate exist. For more information on configuring key locators, see
“Configuring key locators using an assembly tool” on page 1684 and Configuring key locators
using the administrative console.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Data Encryption method algorithm and Key Encryption method
algorithm dropdown lists. Use this option if you expect this application to be run on a WebSphere
Application Server that has set the Use the United States Federal Information Processing
Standard (FIPS) algorithms option in the SSL certificate and key management panel of the
WebSphere administrative console.

Results

For more information, see “Configuring key locators using an assembly tool” on page 1684 and
Configuring key locators using the administrative console.

What to do next

You must specify which parts of the request message to encrypt. See “Configuring the client for request
encryption: Encrypting the message parts” on page 1709 if you have not previously specified this
information.

Configuring the server for request decryption: decrypting the message parts
Use the WS Extensions tab and the WS Binding configurations tab to specify which parts of the request
message must be decrypted by the server.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Complete this task to specify which parts of the request message must be decrypted by the server. You
must know which parts of the request message the client encrypts because the server must decrypt the
same message parts.

Prior to completing these steps, read either of the following topics to become familiar with the WS
Extensions tab and the WS Binding configurations tab:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

Chapter 34. Developing web services - Security (WS-Security) 1711

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

About this task

Complete the following steps to configure the request receiver extensions:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the web services editor within the
assembly tool.

6. Expand the Request receiver service configuration details > Required confidentiality section.

7. Select the parts of the message to decrypt. The message parts selected for the request decryption on
the server must match the message parts selected for the message encryption on the client. Click Add
and select either of the following message parts:

bodycontent
The user data section of the message.

usernametoken
This token is the basic authentication information.

What to do next

After you specify which parts of the request message to decrypt, you must specify the method to use
decrypt the message. See “Configuring the server for request decryption: choosing the decryption method”
for more information.

Configuring the server for request decryption: choosing the decryption method
You can use an assembly tool and the administrative console to configure the Web Services Security
extensions and Web Services Security bindings.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS
Extensions tab and the WS Bindings tab:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

1712 Developing WebSphere applications

About this task

Complete this task to specify which decryption method is used by the server to decrypt the request
message. You must know which decryption method the client uses because the server must use the same
method.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the web services editor within
the assembly tool.

6. Expand the Request receiver binding configuration details > Encryption information section.

7. Click Edit to view the encryption information. The following table describes the purpose for each of
these selections. Some definitions are taken from the XML-Encryption specification , which is located
at the following web address: http://www.w3.org/TR/xmlenc-core

Encryption name
Represents the name of this encryption information entry; an alias for the entry.

Data encryption method algorithm
Encrypts and decrypts data in fixed size, multiple octet blocks. This algorithm must be the
same as the algorithm selected in the client request sender configuration.

Key encryption method algorithm
Represents algorithms specified for encrypting and decrypting keys. This algorithm must be the
same as the algorithm selected in the client request sender configuration.

Encryption key name
Represents a Subject from a personal certificate, which is typically a distinguished name (DN)
that is found by the encryption key locator. The subject is used by the key encryption method
algorithm to decrypt the secret key, and the secret key is used to decrypt the data.

The key chosen must be a private key in the key store configured by the key locator. The key
requires the same Subject used by the client to encrypt the data. Encryption must be done
using the public key and decryption by using the private key (personal certificate). To ensure
that the client encrypts the data with the correct public or private key, you must extract the
public key from the server key store and add it to the key store specified in the encryption
configuration information for the client request sender.

For example, the personal certificate of a server is CN=Bob, O=IBM, C=US. Therefore the server
contains the public and private key pair. The client sending the request should encrypt the data
using the public key for CN=Bob, O=IBM, C=US. The server decrypts the data using the private
key for CN=Bob, O=IBM, C=US.

Encryption key locator
Represents a reference to a key locator implementation class that finds the correct keystore
where the alias and the certificate exist. For more information on configuring key locators, go
to the following sections: “Configuring key locators using an assembly tool” on page 1684 and
Configuring key locators using the administrative console.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Data Encryption method algorithm and Key Encryption method algorithm
dropdown lists. Use this option if you expect this application to be run on a WebSphere Application

Chapter 34. Developing web services - Security (WS-Security) 1713

http://www.w3.org/TR/xmlenc-core

Server that has set the Use the United States Federal Information Processing Standard (FIPS)
algorithms option in the SSL certificate and key management panel of the administrative console for
WebSphere Application Server.

Results

It is important to note that for decryption, the encryption key name chosen must refer to a personal
certificate that can be located by the key locator of the server referenced in the encryption information.
Enter the Subject of the personal certificate here, which is typically a Distinguished Name (DN). The
Subject uses the default key locator to find the key. If a custom key locator is written, the encryption key
name can be anything used by the key locator to find the correct encryption key. The encryption key
locator references the implementation class that finds the correct key store where this alias and certificate
exist. Refer to “Configuring key locators using an assembly tool” on page 1684 and Configuring key
locators using the administrative console for more information.

What to do next

You must specify which parts of the request message to decrypt. See “Configuring the server for request
decryption: decrypting the message parts” on page 1711 if you have not previously specified this
information.

Configuring the server for response encryption: encrypting the message parts
You can specify which parts of the response message to encrypt when configuring the server for response
encryption.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS
Extensions tab and the WS Bindings tab in the Web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

About this task

Complete the following steps to specify which parts of the response message to encrypt when configuring
the server for response encryption:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the
assembly tool.

1714 Developing WebSphere applications

6. Expand Response sender service configuration details > Confidentiality. Confidentiality refers to
encryption while integrity refers to digital signing. Confidentiality reduces the risk of someone
understanding the message flowing across the Internet. With confidentiality specifications, the
response is encrypted before it is sent and decrypted when it is received at the correct target.

7. Select the parts of the response that you want to encrypt by clicking Add and selecting Bodytoken or
Usernametoken. The following information describes the message parts:

Bodycontent
User data portion of the message.

Usernametoken
Basic authentication information, if selected.

A user name token does not appear in the response so you do not need to select this option
for the response. If you select this option, make sure that you also select it for the client
response receiver. If you do not select this option, make sure that you do not select it for the
client response receiver.

What to do next

After you specify which message parts to encrypt, you must specify which method to use message
encryption. See the task for choosing the encryption method when configuring the server for response
encryption.

Configuring the server for response encryption: choosing the encryption method
You can specify which method the server uses to encrypt the response message.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions
tab and the Binding configurations tab in the web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

About this task

Complete the following steps to specify which method the server uses to encrypt the response message:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web Services Editor
within the assembly tool.

6. Expand Response sender binding configuration details > Encryption information.

Chapter 34. Developing web services - Security (WS-Security) 1715

7. Click Edit to view the encryption information. The following table describes the purpose of this
information. Some of these definitions are based on the XML-Encryption specification, which is located
at the following web address: http://www.w3.org/TR/xmlenc-core

Encryption name
Refers to the name of the encryption information entry.

Data encryption method algorithm
Encrypts and decrypts data in fixed size, multiple octet blocks. The algorithm selected for the
server response sender configuration must match the algorithm selected in the client response
receiver configuration.

Key encryption method algorithm
Represents public key encryption algorithms that are specified for encrypting and decrypting
keys. The algorithm selected for the server response sender configuration must match the
algorithm selected in the client response receiver configuration.

Encryption key name
Represents a Subject from a public key certificate typically distinguished name (DN) that is
found by the encryption key locator and used by the key encryption method algorithm to
encrypt the private key. The private key is used to encrypt the data.

The key name chosen in the server response sender encryption information must be the public
key of the key configured in the client response receiver encryption information. Encryption by
the response sender must be done using the public key and decryption must be done by the
response receiver using the associated private key (the personal certificate of the response
receiver).

Encryption key locator
The encryption key locator represents a reference to a key locator implementation class that
finds the correct key store where the alias and the certificate exist. For more information, see
the tasks for configuring key locators.

8. Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant algorithms to be
shown in the Data Encryption method algorithm and Key Encryption method algorithm drop-down lists.
Use this option if you expect this application to be run on a WebSphere Application Server that has set
the Use the United States Federal Information Processing Standard (FIPS) algorithms option in
the SSL certificate and key management panel of the administrative console for WebSphere
Application Server.

Results

The encryption key name chosen must refer to a public key of the response receiver. For the encryption
key name, use the Subject of the public key certificate, typically a Distinguished Name (DN). The name
chosen is used by the default key locator to find the key. If you write a custom key locator , the encryption
key name might be anything that is used by the key locator to find the correct encryption key (a public
key). The encryption key locator references the implementation class that finds the correct key store where
the alias and certificate exist.

What to do next

You must specify which parts of the response message to encrypt. See the task for configuring the server
for response encryption if you have not previously specified this information.

Configuring the client for response decryption: decrypting the message parts
To configure the client for response decryption, specify which response message parts to decrypt when
configuring the client. The server response encryption and client response decryption configurations must
match.

1716 Developing WebSphere applications

http://www.w3.org/TR/xmlenc-core

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS
Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly
tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

These two tabs are used to configure the Web Services Security extensions and the Web Services
Security bindings, respectively.

About this task

Complete the following steps to specify which response message parts to decrypt when configuring the
client for response decryption. The server response encryption and client response decryption
configurations must match.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within
the assembly tool.

6. Expand the Response receiver configuration > Required confidentiality section.

7. Select the parts of the message that you must decrypt by clicking Add and selecting either
Bodycontent or Usernametoken. The following information describes these message parts:

Bodycontent
The user data portion of the message.

Usernametoken
The basic authentication information, if selected.

The information selected in this step is encrypted by the server in the response sender.

Important: A Username Token is typically not sent in the response. Thus, you usually do not need to
select username token.

What to do next

After you specify which message parts to decrypt, you must specify which method to use when decrypting
the response message. See “Configuring the client for response decryption: choosing a decryption
method” for more information.

Configuring the client for response decryption: choosing a decryption method
To configure the client for response decryption, specify which decryption method to use when the client
decrypts the response message. The server response encryption and client response decryption
configurations must match.

Chapter 34. Developing web services - Security (WS-Security) 1717

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS
Extensions tab and the WS Bindings tab in the Client Deployment Descriptor Editor within an assembly
tool:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

These two tabs are used to configure the Web Services Security extensions and Web Services Security
bindings, respectively.

About this task

Complete the following steps to specify which decryption method to use when the client decrypts the
response message. The server response encryption and client response decryption configurations must
match.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the
assembly tool.

6. Expand the Security response receiver binding configuration > Encryption information section.
For more information on encrypting and decrypting SOAP messages, see XML encryption.

7. Click Edit to view the encryption information. The following table describes the purpose for this
information. Some of these definitions are based on the XML-Encryption specification, which is located
at the following web address: http://www.w3.org/TR/xmlenc-core

Encryption name
Refers to the alias that is used for the encryption information entry.

Data encryption method algorithm
Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption method algorithm
Represents public key encryption algorithms specified for encrypting and decrypting keys.

Encryption key name
Represents a Subject from a personal certificate, which is typically a distinguished name (DN)
that is found by the encryption key locator. The Subject is used by the key encryption method
algorithm to decrypt the secret key. The secret key is used to decrypt the data.

Important: The key chosen must be a private key of the client. Encryption must be done
using the public key and decryption must be done by the private key (personal
certificate). For example, the personal certificate of the client is: CN=Alice, O=IBM,
C=US. Therefore, the client contains the public and private key pair. The target

1718 Developing WebSphere applications

http://www.w3.org/TR/xmlenc-core

server that sends the response encrypts the secret key by using the public key for
CN=Alice, O=IBM, C=US. The client decrypts the secret key by using the private
key for CN=Alice, O=IBM, C=US.

Encryption key locator
Represents a reference to a key locator implementation class that finds the correct key store
where the alias and the certificate exist. For more information on configuring key locators, see
“Configuring key locators using an assembly tool” on page 1684 and Configuring key locators
using the administrative console.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant
algorithms to be shown in the Data Encryption method algorithm and Key Encryption method algorithm
dropdown lists. Use this option if you expect this application to be run on a WebSphere Application
Server that has set the Use the United States Federal Information Processing Standard (FIPS)
algorithms option in the SSL certificate and key management panel of the administrative console for
WebSphere Application Server.

Results

For decryption, the encryption key name chosen must refer to a personal certificate that can be located by
the client key locator. The Subject (owner field of the certificate) of the personal certificate should be
entered in the Encryption key name, this is typically a Distinguished Name (DN). The default key locator
uses the Encryption key name to find the key within the keystore. If you write a custom key locator, the
encryption key name can be anything used by the key locator to find the correct encryption key. The
encryption key locator references the implementation class that locates the correct key store where this
alias and certificate exists. For more information, see “Configuring key locators using an assembly tool” on
page 1684 and Configuring key locators using the administrative console.

What to do next

You must specify which parts of the request message to decrypt. See the topic“Configuring the client for
response decryption: decrypting the message parts” on page 1716 if you have not previously specified this
information.

Configuring XML basic authentication for Version 5.x web services
with an assembly tool
With the basic authentication (BasicAuth) authentication method, the request sender generates a
BasicAuth security token using a callback handler. The request receiver retrieves the BasicAuth security
token from the SOAP message and validates it using a Java™ Authentication and Authorization Service
(JAAS) login module. Trust is established by using user name and password validation.

Securing web services for Version 5.x applications using basic authentication
With the basic authentication (BasicAuth) authentication method, the request sender generates a
BasicAuth security token using a callback handler. The request receiver retrieves the BasicAuth security
token from the SOAP message and validates it using a Java Authentication and Authorization Service
(JAAS) login module. Trust is established by using user name and password validation.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Chapter 34. Developing web services - Security (WS-Security) 1719

WebSphere Application Server provides several different methods to secure your web services. BasicAuth
authentication is one of these methods. You might also secure your web services using any of the
following methods:

v XML digital signature

v XML encryption

v BasicAuth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

To use BasicAuth authentication to secure web services, complete the following tasks:

Procedure
1. Secure the client for BasicAuth authentication.

a. Configure the client for basic authentication: specifying the method

b. Configure the client for basic authentication: collecting the authentication information

2. Secure the server for BasicAuth authentication.

a. Configure the server to handle basic authentication

b. Configure the server to validate basic authentication information

Results

After completing these steps, you have secured your web services using BasicAuth authentication.

Configuring the client for basic authentication: specifying the method
Basic authentication (BasicAuth) refers to the user ID and password of a valid user in the registry of the
target server. BasicAuth information can be collected in many ways, including through an administrative
console prompt, a standard in (Stdin) prompt, or specified in the bindings that prevents user interaction.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

For more information on BasicAuth authentication, see: “BasicAuth authentication method” on page 1721.

About this task

Attention: WebSphere Application Server supports nonce (randomly generated token) with BasicAuth
authentication. For more information, see Nonce.

Complete the following steps to specify BasicAuth as the authentication method:

Procedure
1. Launch an assembly tool. See more information on the assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

1720 Developing WebSphere applications

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within
the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The only valid login
configuration choices for a pure client are BasicAuth and Signature.

7. Select BasicAuth to authenticate the client using a user ID and a password. This user ID and
password must be specified in the target user registry. The other choice, Signature, attempts to
authenticate the client using the certificate used to digitally sign the message.

What to do next

For more information on getting started with the web services client editor within the assembly tool, see
either of the following topics:

v “Configuring the client security bindings using an assembly tool” on page 1702

v Configuring the security bindings on a server acting as a client using the administrative console

After you specify the BasicAuth authentication method, you must specify how to collect the authentication
information. See “Configuring the client for basic authentication: collecting the authentication information”
on page 1722.

BasicAuth authentication method:

When you use the BasicAuth authentication method, the security token that is generated is a
<wsse:UsernameToken> element with <wsse:Username> and <wsse:Password> elements.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

WebSphere Application Server supports text passwords but not password digest because passwords are
not stored and cannot be retrieved from the server. On the request sender side, a callback handler is
invoked to generate the security token. On the request receiver side, a Java Authentication and
Authorization Service (JAAS) login module is used to validate the security token. These two operations,
token generation and token validation, are described in the following sections.

BasicAuth token generation
The request sender generates a BasicAuth security token using a callback handler. The security
token returned by the callback handler is inserted in the SOAP message. The callback handler
that is used is specified in the <LoginBinding> element of the bindings file, ibm-
webservicesclient-bnd.xmi. The following callback handler implementations are provided with
WebSphere Application Server and can be used with the BasicAuth authentication method:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You can add your own callback handlers that implement the
javax.security.auth.callback.CallbackHandler method.

BasicAuth token validation
The request receiver retrieves the BasicAuth security token from the SOAP message and validates
it using a JAAS login module. The <wsse:Username> and <wsse:Password> elements in the
security token are used to perform the validation. If the validation is successful, the login module
returns a JAAS Subject. This Subject is set as the identity of the running thread. If the validation
fails, the request is rejected with a SOAP fault exception.

The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.
Default bindings are specified in the ws-security.xml file. However, you can override these

Chapter 34. Developing web services - Security (WS-Security) 1721

bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information
consists of a CallbackHandlerFactory and a ConfigName value. The CallbackHandlerFactory
option specifies the name of a class that is used for creating the JAAS CallbackHandler object.
WebSphere Application Server provides the
com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory
implementation. The ConfigName value specifies a JAAS configuration name entry. WebSphere
Application Server searches the security.xml file for a matching configuration name entry. If a
match is not found, it searches the wsjaas.conf file for a match. WebSphere Application Server
provides the WSLogin default configuration entry, which is suitable for the BasicAuth authentication
method.

Configuring the client for basic authentication: collecting the authentication
information
The basic authentication (BasicAuth) method refers to the user ID and the password of a valid user in the
registry of the target server. Collection of BasicAuth information can occur in many ways including through
a user interface prompt, a standard in (Stdin) prompt, or specified in the bindings, which prevents user
interaction.

About this task

Note: There is an important distinction between Version 5.x and Version 6.0.x and later applications. The
information in this article supports Version 5.x applications only that are used with WebSphere
Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x and later
applications.

For more information on BasicAuth authentication, see “BasicAuth authentication method” on page 1721.

Complete this task to specify the authentication information needed for BasicAuth authentication:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of deployment descriptor editor within the
assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit or Enable to view the login binding information. The login binding information displays and
enter the following information:

Authentication method
Specifies the type of authentication. Select BasicAuth to use basic authentication.

Token value type URI and Token value type local name
When you select BasicAuth, you cannot edit the token value type URI and the local name
values. Specifies values for custom authentication types. For BasicAuth authentication, leave
these values blank.

Callback handler
Specifies the Java Authentication and Authorization Server (JAAS) callback handler
implementation for collecting the BasicAuth information. You can use the following default
implementations for the callback handler:

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This implementation is used for non-user interface console prompts.

1722 Developing WebSphere applications

Restriction: This implementation prompts for the user name and password and reads
them into the configuration from standard in. If you have a multi-threaded
client and multiple threads attempt to read from standard in at the same
time, all the threads will not successfully obtain the user name and
password information. Therefore, you cannot use the
com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
implementation with a multi-threaded client where multiple threads might
attempt to obtain data from standard in concurrently.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This implementation is used for user interface panel prompts.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation is used when you plan to always enter the user ID and password
in the BasicAuth user ID and password section that follows.

Basic Authentication user ID and Basic Authentication password
Specifies values for the BasicAuth user ID and password, regardless of the default callback
handler indicated previously, these user ID and password values are used to authenticate to
the server for the Web Services Security authentication. If you leave these values blank, use
either the GUIPromptCallbackHandler or the StdinPromptCallbackHandler implementation, but
only on a pure client. Always fill-in these values for any web service that acts as a client to
another web service that you want to specify for BasicAuth for authentication downstream. If
you want the client identity of the originator to flow downstream, configure the web service
client to use either ID assertion or Lightweight Third Party Authentication (LTPA).

Property
Specifies properties with name and value pairs for custom callback handlers to use. For
BasicAuth authentication, you do not need to enter any information. To enter a new property,
click Add and enter the new property and value.

Results

Other basic authentication entries: There is a basic authentication entry in the Port Qualified Name
Binding Details section. This entry is used for HTTP transport authentication, which might be required if
the router servlet is protected.

Information specified in the Web Services Security basic authentication section overrides the basic
authentication information specified in the Port Qualified Name Binding Details section for authorizing the
web service.

For a server that acts as a client, do not specify a user interface or non-user interface prompt callback
handler. To configure BasicAuth authentication from one web service to a downstream web service, select
the com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHander implementation and explicitly
specify the BasicAuth user ID and password. If you want the client identity of the originator to flow
downstream, configure the web service client to use ID assertion.

What to do next

To use the BasicAuth authentication method, you must specify the method in the Login configuration
section of the assembly tool . See “Configuring the client for basic authentication: specifying the method”
on page 1720 if you have not previously specified this information.

Identity assertion authentication method:

When using the identity assertion (IDAssertion) authentication method, the security token generated is a
<wsse:UsernameToken> element that contains a <wsse:Username> element.

Chapter 34. Developing web services - Security (WS-Security) 1723

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The
information in this article supports Version 5.x applications only that are used with WebSphere
Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x
applications.

On the request sender side, a callback handler is invoked to generate the security token. On the request
receiver side, the security token is validated. These two operations, token generation and token validation
operations, are described in the following sections.

Identity assertion token validation:

The request receiver retrieves the IDAssertion security token from the SOAP message and validates it
using a Java Authentication and Authorization Service (JAAS) login module. With identity assertion, special
processing is required to establish trust before asserting the identity as the established identity of the
running thread. This special processing is defined by the <IDAssertion> element in the deployment
descriptor file, ibm-webservices-ext.xmi. If all the validation checks are successful, the asserted identity is
set as the identity of the running thread. If the validation fails, the request is rejected with a SOAP fault
exception.

The JAAS login configuration is specified in the<LoginMapping> element of the bindings file. Default
bindings are specified in the ws-security.xml file. However, you can override these bindings using the
application specific ibm-webservices-bnd.xmi file. The configuration information consists of
CallbackHandlerFactory and a ConfigName. CallbackHandlerFactory specifies the name of a class that is
used for creating the JAAS CallbackHandler object. WebSphere Application Server provides the
com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory
implementation. ConfigName specifies a JAAS configuration name entry.

WebSphere Application Server searches the security.xml file for a matching configuration name entry. If a
match is not found it searches the wsjaas.conf file. WebSphere Application Server provides the
system.wssecurity.IDAssertion default configuration entry, which is suitable for the identity assertion
authentication method.

The <IDAssertion> element in the ibm-webservices-ext.xmi deployment descriptor file specifies the
special processing required when using the identity assertion authentication method. The <IDAssertion>
element is composed of two sub-elements: <IDType> and <TrustMode>.

The <IDType> element specifies the method for asserting the identity. The supported values for asserting
the identity are:

v Username

v Distinguished name (DN)

v X.509 certificate

When <IDType> is username, a username token (for example, Bob) is provided. This user name is
mapped to a user in the user registry and is the asserted identity after successful trust validation. When
the <IDType> value is DN, a user name token containing a distinguished name is provided (for example,
cn=Bob Smith, o=ibm, c=us). This DN is mapped to a user in the user registry and this user is the
asserted identity after successful trust validation. When the <IDType> is X509Certificate, a binary security
token containing an X509 certificate is provided and the SubjectDN value from the certificate (for example,
cn=Bob Smith, o=ibm, c=us) is extracted. This SubjectDN value is mapped to a user in the user registry
and this user is the asserted identity after successful trust validation.

The <TrustMode> element specifies how the trust authority, or asserting authority, provides trust
information. The supported values are:

v Signature

v BasicAuth

1724 Developing WebSphere applications

v No value specified

When the <TrustMode> value is Signature, the signature is validated. Then, the signer (for example,
cn=IBM Authority, o=ibm, c=us) is mapped to an identity in the user registry (for example, IBMAuthority).
To ensure that the asserting authority is trusted, the mapped identity (for example, IBMAuthority) is
validated against a list of trusted identities. When the <TrustMode> element is BasicAuth, there is a user
name token with a user name and password, which is the user name and password of the asserting
authority.

The user name and password are validated. If they are successfully validated, that user name (for
example, IBMAuthority) is validated against a list of trusted identities. If a value is not specified for
<TrustMode>, trust is presumed and additional trust validation is not performed. This type of identity
assertion is called presumed trust mode. Use the presumed trust mode only in an environment where the
trust is established using some other mechanism.

If all the validations described previously succeed, the asserted identity (for example, Bob) is set as the
identity of the running thread. If any of the validations fail, the request is rejected with a SOAP fault
exception.

Configuring the server to handle basic authentication information
Basic authentication (BasicAuth) refers to the user ID and the password of a valid user in the registry of
the target server. After a request is received that contains basic authentication information, the server
needs to log in to form a credential. The credential is used for authorization.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

About this task

Complete the following steps to configure the server to handle BasicAuth authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the web services editor within an assembly
tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can
select the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

7. Select BasicAuth to authenticate the client with a user ID and a password. The client must specify a
valid user ID and password in the server user registry. If the user ID and the password supplied are
not valid, an exception is provided, and the request ends without invoking the resource.

Chapter 34. Developing web services - Security (WS-Security) 1725

You can select multiple login configurations, which means that different types of security information
might be received at the server. The order in which the login configurations are added decides the
order in which they are processed when a request is received. Problems can occur if you have multiple
login configurations added that have security tokens in common. For example, ID assertion contains a
BasicAuth token. For ID assertion to work properly, list ID assertion ahead of BasicAuth in the
processing list or the BasicAuth processing overrides the IDAssertion processing.

What to do next

After you specify how the server handles BasicAuth authentication information, you must specify how the
server validates the authentication information. See the task for configuring the server to validate
BasicAuth authentication if you have not previously specified this information.

Configuring the server to validate basic authentication information
Basic authentication (BasicAuth) refers to the user ID and the password of a valid user in the registry of
the target server. You can specify how the server validates the BasicAuth information.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

After a request is received that contains basic authentication information, the server needs to log in to form
a credential. The credential is used for authorization. If the user ID and the password supplied is invalid,
an exception is thrown and the request ends without invoking the resource.

About this task

Complete the following steps to specify how the server validates the BasicAuth authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the web services editor within
an assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information or click Add to add new login mapping information.
The login mapping dialog is displayed. Select or enter the following information:

Authentication method
Specifies the type of authentication that occurs. Select BasicAuth to use basic authentication.

Configuration name
Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.
For the BasicAuth authentication method, enter WSLogin for the JAAS login Configuration
name.

Use token valid type
Determines if you want to specify a custom token type. For the default authentication method
selections, you do not need to specify this option.

1726 Developing WebSphere applications

Token value type URI and Token value type URI local name
When you select BasicAuth, you cannot edit the token value type URI and local name values.
Specifies custom authentication types. For BasicAuth authentication leave these fields blank.

Callback handler factory class name
Creates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

Callback handler factory property name and Callback handler factory property value
Specifies callback handler properties for custom callback handler factory implementations. You
do not need to specify any properties for the default callback handler factory implementation.
For BasicAuth, you do not need to enter any property values.

Login mapping property name and Login mapping property value
Specifies properties for a custom login mapping. For the default implementations including
BasicAuth, leave these fields blank.

What to do next

You must specify how the server handles the BasicAuth authentication method. See the task for
configuring the server to handle basic authentication if you have not previously specified this information.

Configuring identity assertion for Version 5.x web services with an
assembly tool
With the identity assertion authentication method, the security token generates a <wsse:UsernameToken>
element that contains a <wsse:Username> element. On the request sender side, a callback handler is
invoked to generate the security token. On the request receiver side, the security token is validated. Trust
is established through the use of a security token rather than through user name and password validation.

Securing web services for Version 5.x applications using identity assertion
authentication
With the identity assertion authentication method, the security token generates a <wsse:UsernameToken>
element that contains a <wsse:Username> element. On the request sender side, a callback handler is
invoked to generate the security token. On the request receiver side, the security token is validated. Unlike
BasicAuth authentication, trust is established through the use of a security token rather than through user
name and password validation.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your web services. Identity
assertion authentication is one of these methods. You might also secure your web services using any of
the following methods:

v XML digital signature

v XML encryption

v BasicAuth authentication

Chapter 34. Developing web services - Security (WS-Security) 1727

v Identity assertion authentication

v Signature authentication

v Pluggable token

About this task

To use identity assertion authentication to secure web services, complete the following tasks:

Procedure
1. Secure the client for identity assertion authentication.

a. “Configuring the client for identity assertion: specifying the method”

b. “Configuring the client for identity assertion: collecting the authentication method” on page 1729

2. Secure the server for identity assertion authentication.

a. “Configuring the server to handle identity assertion authentication” on page 1730

b. “Configuring the server to validate identity assertion authentication information” on page 1732

Results

After completing these steps, you have secured your web services by using identity assertion
authentication.

Configuring the client for identity assertion: specifying the method
You can configure identity assertion authentication. The purpose of identity assertion is to assert the
authenticated identity of the originating client from a web service to a downstream web service.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to
assert the authenticated identity of the originating client from a web service to a downstream web service.
Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you
configure on the client-side of a web service acting as a client to a downstream web service.

In order for the downstream web service to accept the identity of the originating client (just the user name),
you must supply a special trusted BasicAuth credential that the downstream web service trusts and can
authenticate successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID
evaluator on the downstream web service configuration. See topics about trusted ID evaluators.

Complete the following steps to specify identity assertion as the authentication method:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within
the assembly tool.

6. Expand the Request sender configuration > Login configuration section.

1728 Developing WebSphere applications

7. Select IDAssertion as the authentication method. For more conceptual information on identity
assertion authentication, see Identity assertion in a SOAP message.

8. Expand the IDAssertion section.

9. For the ID type, select Username. This value works with all registry types and originating
authentication methods.

10. For the trust mode, select either BasicAuth or Signature.

v By selecting BasicAuth, you must include basic authentication information (user ID and password),
which the downstream web service has specified in the trusted ID evaluator as a trusted user ID.
See “Configuring the client for signature authentication: collecting the authentication information” on
page 1736 to specify the user ID and password information.

v By selecting Signature the certificate configured in the signature information section used to sign
the data also is that is used as the trusted subject. The Signature is used to create a credential
and user ID, which the certificate mapped to the downstream registry, is used in the trusted ID
evaluator as a trusted user ID.

What to do next

See “Configuring the client security bindings using an assembly tool” on page 1702 for more information
on the web services client editor within the assembly tool.

After you specify identity assertion as the authentication method used by the client, you must specify how
to collect the authentication information. See “Configuring the client for identity assertion: collecting the
authentication method” for more information.

Configuring the client for identity assertion: collecting the authentication method
You can configure identity assertion authentication. The purpose of identity assertion is to assert the
authenticated identity of the originating client from a web service to a downstream web service.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to
assert the authenticated identity of the originating client from a web service to a downstream web service.
Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you
configure on the client-side of a web service acting as a client to a downstream web service.

In order for the downstream web service to accept the identity of the originating client (just the user name),
you must supply a special trusted BasicAuth credential that the downstream web service trusts and can
authenticate successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID
evaluator on the downstream web service configuration. See the information on trusted ID evaluators.

Complete the following steps to specify how the client collects the authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

Chapter 34. Developing web services - Security (WS-Security) 1729

5. Click the WS Binding tab, which is located at the bottom of the Deployment Descriptor Editor within
an assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select IDAssertion. The login binding dialog is
displayed. Select or enter the following information:

Authentication method
The authentication method specifies the type of authentication that occurs. Select IDAssertion
to use identity assertion.

Token value type URI and Token value type Local name
When you select IDAssertion, you cannot edit the token value type Universal Resource
Identifier (URI) and the local name. Specifies custom authentication types. For IDAssertion
authentication, leave these values blank.

Callback handler
Specifies the Java Authentication and Authorization Service (JAAS) callback handler
implementation for collecting the BasicAuth information. Specify the
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation for
IDAssertion.

Basic authentication User ID and Basic authentication Password
In this field, the trust mode entered in the extensions is BasicAuth. Specifies the trusted user
ID and password in these fields. The user ID specified must be an ID that is trusted by the
downstream web service. The web service trusts the user ID if it is entered as a trusted ID in a
trusted ID evaluator in the downstream web service bindings. If the trust mode entered in the
extensions is Signature, you do not need to specify any information in this field.

Property name and Property value
Specifies properties with name and value pairs, for use by custom callback handlers. For
IDAssertion, you do not need to specify any information in this field.

What to do next

To use the identity assertion authentication method, you must specify the method in the Security
extensions section of an assembly tool. See “Configuring the client for identity assertion: specifying the
method” on page 1728 if you have not previously specified this information.

Configuring the server to handle identity assertion authentication
The purpose of identity assertion is to assert the authenticated identity of the originating client from a web
service to a downstream web service. You can configure identity assertion authentication for the server. Do
not attempt to configure identity assertion from a pure client.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

For the downstream web service to accept the identity of the originating client (user name only), you must
supply a special trusted BasicAuth credential that the downstream web service trusts and can authenticate
successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on
the downstream web service configuration. For more information on trusted ID evaluators, see Trusted ID
evaluator. The server side passes the special BasicAuth credential into the trusted ID evaluator, which
returns true or false that this ID is trusted. After it is trusted, the user name of the client is mapped to the
credential, which is used for authorization.

1730 Developing WebSphere applications

Complete the following steps to configure the server to handle identity assertion authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the web services editor within the
assembly tool.

6. Expand the Request receiver service configuration details > Login configuration section. The
options you can select are:

v BasicAuth

v Signature

v ID assertion

v LTPA (Lightweight Third Party Authentication)

7. Select IDAssertion to authenticate the client using the identity assertion data provided.

The user ID of the client must be in the target user registry or repository, which is configured on the
Security > Global security panel in the administrative console for WebSphere Application Server. You
can select multiple login configurations, which means that different types of security information can be
received at the server. The order in which the login configurations are added determines the
processing order when a request is received. Problems can occur if you have multiple login
configurations added that have common security tokens. For example, ID assertion contains a
BasicAuth token, which is the trusted token. For ID assertion to work properly, you must list ID
assertion ahead of BasicAuth in the list or BasicAuth processing overrides ID assertion processing.

8. Expand the IDAssertion section and select both the ID Type and the Trust Mode.

a. For ID Type, the options are:

v Username

v DN (distinguished name)

v X509certificate

These choices are just preferences and are not guaranteed. Most of the time the Username option
is used. You must choose the same ID Type as the client.

b. For Trust Mode, the options are:

v BasicAuth

v Signature

The Trust Mode refers to the information sent by the client as the trusted ID.

1) If you select BasicAuth, the client sends basic authentication data (user ID and password).
This BasicAuth data is authenticated to the configured user registry. When the authentication
occurs successfully, the user ID must be part of the trusted ID evaluator trust list.

2) If you select Signature, the client signing certificate is sent. This certificate must be mappable
to the configured user registry. For Local OS, the common name (CN) of the distinguished
name (DN) is mapped to a user ID in the registry. For Lightweight Directory Access Protocol
(LDAP), the DN is mapped to the registry for the ExactDN mode. If it is in the CertificateFilter
mode, attributes are mapped accordingly. In addition, the user name from the credential
generated must be in the Trusted ID Evaluator trust list.

Chapter 34. Developing web services - Security (WS-Security) 1731

What to do next

For more information on getting started with the Web Services Editor within an assembly tool, see
“Configuring the server security bindings using an assembly tool” on page 1705.

After you specify how the server handles identity assertion authentication information, you must specify
how the server validates the authentication information. See the task for configuring the server to validate
identity assertion authentication information.

Configuring the server to validate identity assertion authentication information
The purpose of identity assertion is to assert the authenticated identity of the originating client from a web
service to a downstream Web service.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

Use this task to configure identity assertion authentication. Do not attempt to configure identity assertion
from a pure client.

For the downstream web service to accept the identity of the originating client (user name only), you must
supply a special trusted BasicAuth credential that the downstream web service trusts and can authenticate
successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on
the downstream web service configuration. For more information on trusted ID evaluators, see the topic
about the trusted ID evaluator. The server side passes the special BasicAuth credential into the trusted ID
evaluator, which returns a true or false response that this ID is trusted. After it is trusted, the user name
of the client is mapped to the credential, which is used for authorization.

Complete the following steps to validate the identity assertion authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the web services editor within
the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information. Click Add to add new login mapping information.
The login mapping dialog is displayed. Select or enter the following information:

Authentication method
Specifies the type of authentication that occurs. Select IDAssertion to use basic
authentication.

Configuration name
Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.
For the IDAssertion authentication method, enter system.wssecurity.IDAssertion for the
Java Authentication and Authorization Service (JAAS) login configuration name.

1732 Developing WebSphere applications

Use token value type
Determines if you want to specify a custom token type. For the default authentication method
selections, you do not need to specify this option.

Token value type URI and Token value type local name
When you select ID assertion, you cannot edit the token value type URI and local name
values. Specifies custom authentication types. For the ID assertion authentication method,
leave these values blank.

Callback handler factory class name
Ccreates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use
the callback handler factory default implementation. Enter the following class name for any of
the default Authentication methods including IDAssertion:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and Callback handler factory property value
Specifies callback handler properties for custom callback handler factory implementations.
The default callback handler factory implementation does not need any specified properties.
For ID assertion, leave these values blank.

Login mapping property name and Login mapping property value
Specifies properties for a custom login mapping. For the default implementations including
IDAssertion, leave these values blank.

8. Expand the Trusted ID evaluator section.

9. Click Edit to see a dialog that displays all the trusted ID evaluator information. The following table
describes the purpose of this information.

Class name
Refers to the implementation of the trusted ID evaluator that you want to use. Enter the
default implementation as

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

If you want to implement your own trusted ID evaluator, you must implement the
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Property name
Represents the name of this configuration. Enter BasicIDEvaluator.

Property value
Defines the name and value pairs that can be used by the trusted ID evaluator
implementation. For the default implementation, the trusted list is defined here. When a
request comes in and the trusted ID is verified, the user ID, as it appears in the user registry,
must be listed in this property. Specify the property as a name and value pair where the
name is trustedId_n. n is an integer starting from 0 and the value is the user ID associated
with that name. An example list with the trusted names include two properties.

For example: trustedId_0 = user1, trustedId_1 = user2. The previous example means that
both user1 and user2 are trusted. user1 and user2 must be listed in the configured user
registry

10. Expand the Trusted ID evaluator reference section.

Chapter 34. Developing web services - Security (WS-Security) 1733

11. Click Enable to add a new entry. The text you enter for the Trusted ID evaluator reference must be
the same as the name entered previously in the Trusted ID evaluator. Make sure that the name
matches exactly because the information is case sensitive. If an entry is already specified, you can
change it by clicking Edit.

What to do next

You must specify how the server handles the identity assertion authentication method. See “Configuring
the server to handle identity assertion authentication” on page 1730 if you have not previously specified
this information.

Configuring signature authentication for Version 5.x web services with
an assembly tool
With the signature authentication method, the request sender generates a signature security token using a
callback handler. The security token returned by the callback handler is inserted in the SOAP message.
The request receiver retrieves the Signature security token from the SOAP message and validates it using
a Java™ Authentication and Authorization Service (JAAS) login module.

Securing web services for version 5.x applications using signature authentication
WebSphere Application Server provides several different methods to secure your web services. XML digital
signature is one of these methods.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

You can secure your web services by using any of the following methods:

v XML digital signature

v XML encryption

v BasicAuth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

About this task

With the signature authentication method, the request sender generates a signature security token using a
callback handler. The security token returned by the callback handler is inserted in the SOAP message.
The request receiver retrieves the Signature security token from the SOAP message and validates it using
a Java Authentication and Authorization Service (JAAS) login module. To use signature authentication to
secure Web services, complete the following tasks:

Procedure
1. Secure the client for signature authentication.

a. “Configuring the client for signature authentication: specifying the method” on page 1735.

b. “Configuring the client for signature authentication: collecting the authentication information” on
page 1736.

2. Secure the server for signature authentication.

a. “Configuring the server to support signature authentication” on page 1738.

1734 Developing WebSphere applications

b. “Configuring the server to validate signature authentication information” on page 1739.

Results

After completing these steps, you have secured your web services using signature authentication.

Configuring the client for signature authentication: specifying the method
Signature authentication, the use of an X.509 certificate to login on the target server, can be configured.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task is used to configure signature authentication. A signature refers to the use of an X.509 certificate
to login on the target server. For more information on signature authentication, see “Signature
authentication method.”

Complete the following steps to specify signature as the authentication method:

Procedure
1. Launch an assembly tool. For more information, read about assembly tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF .

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within
the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The following login
configuration options are valid for a managed client and Web services acting as a client are:

BasicAuth
Use this option for a managed client.

Signature
Use this option for a managed client.

IDAssertion
Use this option for web services acting as a client.

7. Select Signature to authenticate the client using the certificate used to digitally sign the request.

Results

For more information on getting started with the web services client editor within the assembly tool, see
“Configuring the client security bindings using an assembly tool” on page 1702.

After you specify signature as the authentication method, you must specify how to collect the
authentication information. See “Configuring the client for signature authentication: collecting the
authentication information” on page 1736 for more information.

Signature authentication method:

Chapter 34. Developing web services - Security (WS-Security) 1735

Signature authentication refers to an X.509 certificate that is sent by the client to the server. The certificate
is used to authenticate to the user registry that is configured at the server. When using the signature
authentication method, the security token is generated with a ds:Signature and a
wsse:BinarySecurityToken element.

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

On the request sender side, a callback handler is invoked to generate the security token. On the request
receiver side, a Java Authentication and Authorization Service (JAAS) login module is used to validate the
security token. These two operations, token generation and token validation, are described in the following
sections.

Signature token generation
The request sender generates a Signature security token using a callback handler. The security
token returned by the callback handler is inserted in the SOAP message. The callback handler is
specified in the <LoginBinding> element of the bindings file, ibm-webservicesclient-bnd.xmi.
WebSphere Application Server provides the following callback handler implementation that can be
used with the Signature authentication method:
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You can add your own callback handlers that implement the
javax.security.auth.callback.CallbackHandler implementation.

Security token validation
The request receiver retrieves the Signature security token from the SOAP message and validates
it using a JAAS login module. The <ds:Signature> and <wsse:BinarySecurityToken> elements in
the security token are used to perform the validation. If the validation is successful, the login
module returns a Java Authentication and Authorization Service (JAAS) Subject. This Subject then
is set as the identity of the running thread. If the validation fails, the request is rejected with a
SOAP fault exception.

The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.
Default bindings are specified in the ws-security.xml file. However, you can override these
bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information
consists of a CallbackHandlerFactory and a ConfigName. The CallbackHandlerFactory specifies
the name of a class that is used for creating the JAAS CallbackHandler object. WebSphere
Application Server provides the
com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImp CallbackHandlerFactory
implementation. The ConfigName specifies a JAAS configuration name entry. WebSphere
Application Server searches in the security.xml file for a matching configuration name entry. If a
match is not found, it searches the wsjaas.conf file. WebSphere Application Server provides the
system.wssecurity.Signature default configuration entry, which is suitable for the signature
authentication method.

Configuring the client for signature authentication: collecting the authentication
information
Signature authentication refers to an X.509 certificate that is sent by the client to the server. The certificate
is used to authenticate to the user registry that is configured at the server. The client collects the
authentication information for signature authentication.

1736 Developing WebSphere applications

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

You can configure signature authentication. A signature refers to the use of an X.509 certificate to login on
the target server.

Complete the following steps to specify how the client collects the authentication information for signature
authentication:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the
assembly tool.

6. Expand the Security request sender binding configuration > Signing information and click Edit to
modify the signing key name and signing key locator. To create new signing information, click Enable.
The certificate that is sent to log in at the server is the one configured in the Signing Information
section. Review the key locator information to understand how the signing key name maps to a key
within the key locator entry.

The following list describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following web address: http://www.w3.org/TR/
xmldsig-core

Canonicalization method algorithm
Canonicalizes the <SignedInfo> element before it is digested as part of the signature
operation.

Digest mehod algorithm
Represents the algorithm that is applied to the data after transforms are applied, if specified, to
yield the <DigestValue> element. The signing of the <DigestValue> element binds the resource
content to the signer key. The algorithm selected for the client request sender configuration
must match the algorithm selected in the server request receiver configuration.

Signature method algorithm
Represents the algorithm that is used to convert the canonicalized <SignedInfo> element value
into the <SignatureValue> value. The algorithm selected for the client request sender
configuration must match the algorithm selected in the server request receiver configuration.

Signing key name
Represents the key entry that is associated with the signing key locator. The key entry refers
to an alias of the key, which is used to sign the request.

Signing key locator
Represents a reference to a key locator implementation.

7. Expand the Security request sender binding configuration > Login binding section.

8. Click Edit to view the login binding information. Select or enter the following information:

Authentication method
Specifies the type of authentication that occurs. Select Signature to use signature
authentication.

Chapter 34. Developing web services - Security (WS-Security) 1737

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xmldsig-core

Token value type URI and Token value type URI local name
When you select Signature, you cannot edit token value type Uniform Resource Identifier
(URI) and local name values. Specifies custom authentication types. For signature
authentication, leave these fields blank.

Callback handler
Specifies the Java Authentication and Authorization Server (JAAS) callback handler
implementation for collecting signature information. Enter the following callback handler for
signature authentication:
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler is used because the signature method does not require user interaction.

Basic authentication user ID and Basic authentication password
Leave the BasicAuth fields blank when signature authentication is used.

Property name and property value
This field enables you to enter properties and name and value pairs for use by custom
callback handlers. For signature authentication, do not enter any information.

What to do next

Other customization entries: There is a basic authentication entry in the Port Qualified Name Binding
Details section. This entry is used for HTTP transport authentication, which might be required if the router
servlet is protected.

Information specified in the Web Services Security signature authentication section overrides the basic
authentication information specified in the Port Qualified Name Binding Details section for authorizing the
Web service.

To use the signature authentication method, you must specify the authentication method in the Login
configuration section of an assembly tool.

Configuring the server to support signature authentication
Signature authentication refers to an X.509 certificate sent by the client to the server. The certificate is
used to authenticate to the user registry configured at the server. After a request is received by the server
that contains the certificate, the server needs to log in to form a credential. The credential is used for
authorization. You can configure signature authentication at the server.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

If the certificate supplied cannot be mapped to an entry in the user registry, an exception is provided and
the request ends without invoking the resource.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective by clicking Window > Open
perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the
assembly tool.

1738 Developing WebSphere applications

6. Expand the Request receiver service configuration details > Login configuration section. You can
select from the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

7. Select Signature to authenticate the client using an X509 certificate. The certificate that is sent from
the client is the certificate that issued for signing the message. You must be able to map this certificate
to the configured user registry. For Local operating system (OS) registries, the common name (cn) of
the distinguished name (DN) is mapped to a user ID in the registry. For Lightweight Directory Access
Protocol (LDAP), you can configure multiple mapping modes:

v EXACT_DN is the default mode that directly maps the DN of the certificate to an entry in the LDAP
server.

v CERTIFICATE_FILTER is the mode that provides the LDAP advanced configuration with a place to
specify a filter that maps specific attributes of the certificate to specific attributes of the LDAP server.

What to do next

For more information on getting started with the web services editor within the assembly tool, see
“Configuring the server security bindings using an assembly tool” on page 1705.

After you specify how the server handles signature authentication information, you must specify how the
server validates the authentication information. See the task for configuring the server to validate signature
authentication.

Configuring the server to validate signature authentication information
Signature authentication refers to an X.509 certificate sent by the client to the server. The certificate is
used to authenticate to the user registry configured at the server. After a request is received by the server
that contains the certificate, the server needs to log in to form a credential. The credential is used for
authorization. You can validate signature authentication at the server.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

If the certificate supplied cannot be mapped to an entry in the user registry, an exception is thrown and the
request ends without invoking the resource.

Complete the following steps to configure the server to validate signature authentication:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective by clicking Window > Open
perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the web services editor within
the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

Chapter 34. Developing web services - Security (WS-Security) 1739

7. Click Edit to view the login mapping information or click Add to add new login mapping information.
The login mapping dialog is displayed and you select (or enter) the following information:

Authentication method
Specifies the type of authentication. Select Signature to use signature authentication.

Configuration name
Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.
For the signature authentication method, enter system.wssecurity.Signature for the JAAS
login configuration name. This specification logs in with the
com.ibm.wsspi.wssecurity.auth.module.SignatureLoginModule JAAS login module.

Use token value type
Determines if you want to specify a custom token type. For the default authentication method
selections, you can leave this field blank.

URI and local name
When you select Signature method, you cannot edit the token value type URI and local name
values. Specifies custom authentication types. For signature authentication, you can leave
this field blank.

Callback handler factory class name
Creates a JAAS CallbackHandler implementation that understands the following callback
handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use the
callback handler factory default implementation. Enter the following class name for any of the
default authentication methods including signature:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and callback handler factory property value
Specifies callback handler properties for custom callback handler factory implementations. You
do not need to specify any properties for the default callback handler factory implementation.
For signature, you can leave this field blank.

Login mapping property name and login mapping property value
Specifies properties for a custom login mapping to use. For the default implementations
including signature, you can leave this field blank.

What to do next

Specify how the server handles the signature authentication method. See “Configuring the server to
support signature authentication” on page 1738 if you have not previously specified this information.

Configuring pluggable tokens for Version 5.x web services with an
assembly tool
WebSphere Application Server provides several different methods to secure your web services, including
the pluggable token method. To use pluggable tokens to secure your web services, you must configure
both the client request sender and the server request receiver.

1740 Developing WebSphere applications

Securing web services for version 5.x applications using a pluggable token
To use pluggable tokens to secure your web services, you must configure both the client request sender
and the server request receiver. You can configure your pluggable tokens using the WebSphere
Application Server administrative console.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your web services. A
pluggable token is one of these methods. You might secure your Web services by using any of the
following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

Complete the following steps to secure your web services using a pluggable token:

Procedure
1. Generate a security token using the Java Authentication and Authorization Service (JAAS)

CallbackHandler interface. The Web Services Security runtime uses the JAAS CallbackHandler
interface as a plug-in to generate security tokens on the client side or when web services are acting as
a client.

2. Configure your pluggable token. For more information, see the following tasks:

v “Configuring pluggable tokens using an assembly tool”

v Configuring pluggable tokens using the administrative console

Configuring pluggable tokens using an assembly tool
The following information describes how to configure a pluggable token using an assembly tool.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver
(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

The pluggable token is required for the request sender and request receiver because they are a pair. The
request sender and the request receiver must match for the receiver to accept a request.

Prior to completing these steps, it is assumed that you have already created a web service that is based
on the Java Platform, Enterprise Edition (Java EE) specification. See either of the following topics for an
introduction of how to manage Web Services Security binding information for the server:

Chapter 34. Developing web services - Security (WS-Security) 1741

v “Configuring the server security bindings using an assembly tool” on page 1705

v Configuring the server security bindings using the administrative console

About this task

You must specify the security constraints in the ibm-webservicesclient-ext.xmi and the
ibm-webservices-ext.xmi files for the required tokens using an IBM assembly tool.

Complete the following steps to configure the request sender using the ibm-webservicesclient-ext.xmi
and ibm-webservicesclient-bnd.xmi files:

Procedure
1. Launch an assembly tool. For more information, read about assembly tools.

2. Switch to the Java EE perspective. Click Window > Open Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab. The web service client security extensions editor is displayed.

a. Under Service References, select an existing service reference or click Add to create a new
reference.

b. Under Port Qname Bindings, select an existing port qualified name for the selected service
reference or click Add to create a new port name binding.

c. Under Request Sender Configuration: Login Configuration, select an exiting authentication method
or type in a new one in the editable list box (Lightweight Third Party Authorization (LTPA) is a
supported token generation when web services are acting as client).

d. Click File > Save to save the changes.

6. Click the Web services client binding tab. The web services client binding editor is displayed.

a. Under Port qualified name binding, select an existing entry or click Add to add a new port name
binding. The web services client binding editor displays for the selected port.

b. Under Login binding, click Edit or Enable. The Login Binding dialog box is displayed.

1) In the Authentication Method field, enter the authentication method. The authentication method
that you enter in this field must match the authentication method defined on the Security
Extension tab for the same web service port. This field is mandatory.

2) (Optional) Enter the token value type information in the URI and Local name fields. These
fields are ignored for the BasicAuth, Signature, and IDAssertion authentication methods, but
required for other authentication methods. The token value type information is inserted into the
<wsse:BinarySecurityToken>@ValueType element for binary security token and is used as the
namespace for the XML-based token.

3) Enter an implementation of the Java Authentication and Authorization Service (JAAS)
javax.security.auth.callback.CallbackHandler interface. This field is mandatory.

4) Enter the basic authentication information in the User ID and Password fields. The basic
authentication information is passed to the construct of the CallbackHandler implementation.
The use of the basic authentication information depends on the implementation of
CallbackHandler.

5) In the Property field, add name and value pairs. These pairs are passed to the construct of the
CallbackHandler implementation as java.util.Map values.

6) Click OK.

Click Disable under Login binding on the Web services client port binding tab to remove the
authentication method login binding.

c. Click File > Save to save the changes.

1742 Developing WebSphere applications

7. In the Package Explorer window, right-click the webservices.xml file and click Open with > Web
services editor. The Web Services window displays.

a. Click the Security extensions tab. The Web Service Security extensions editor is displayed.

1) Under Web Services Description Extension, select an existing service reference or click Add to
create a new extension.

2) Under Port Component Binding, select an existing port qualified name for the selected service
reference or click Add to create a new one.

3) Under Request Receiver Service Configuration Details: Login Configuration, select an exiting
authentication method or click Add and enter a new method in the Add AuthMethod field that
displays. You can select multiple authentication methods for the request receiver. The security
token of the incoming message is authenticated against the authentication methods in the order
that they are specified in the list. Click Remove to remove the selected authentication method
or methods.

b. Click File > Save to save the changes.

c. Click the Bindings tab. The web services bindings editor is displayed.

1) Under web service description bindings, select an existing entry or click Add to add a new web
services descriptor.

2) Click the Binding configurations tab. The web services binding configurations editor is
displayed for the selected web services descriptor.

3) Under Request receiver binding configuration details: login mapping, click Add to create a new
login mapping or click Edit to edit the selected login mapping. The Login mapping dialog is
displayed.

a) In the Authentication method field, enter the authentication method. The information entered
in this field must match the authentication method defined on the Security Extensions tab
for the same web service port. This field is mandatory.

b) In the Configuration name field, enter a JAAS login configuration name. This field is
mandatory. You must define the JAAS login configuration name in the WebSphere
Application Server administrative console under Security > Global security. Under
Authentication, click Java Authentication and Authorization Service > Application
logins. For more information, read about configuring programmatic logins for Java
Authentication and Authorization Service.

c) (Optional) Select Use Token value type and enter the token value type information in the
URI and Local name fields. This information is optional for BasicAuth, Signature and
IDAssertion authentication methods, but required for any other authentication method. The
token value type is used to validate the <wsse:BinarySecurityToken>@ValueType element
for binary security tokens and to validate the namespace of the XML-based token.

d) Under Callback Handler Factory, enter an implementation of the
com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface in the Class
name field. This field is mandatory.

e) Under Callback Handler Factory property, click Add and enter the name and value pairs for
the Callback Handler Factory Property. These name and value pairs are passed as
java.util.Map to the
com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init() method. The
use of these name and value pairs is determined by the CallbackHandlerFactory
implementation.

f) Under Login Mapping Property, click Add and enter the name and value pairs for the Login
mapping property. These name and value pairs are available to the JAAS Login Modules
through the com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback
interface. Click Remove to delete the selected login mapping.

g) Click OK.

d. Click File > Save to save the changes.

Chapter 34. Developing web services - Security (WS-Security) 1743

Results

The previous steps define how to configure the request sender to create security tokens in the SOAP
message and to configure the request receiver to validate the security tokens found in the incoming SOAP
message. WebSphere Application Server supports pluggable security tokens.

You can use the authentication method defined in the login bindings and login mappings to generate
security tokens in the request sender and validate security tokens in the request receiver.

What to do next

After you configure pluggable tokens, you must configure both the client and the server to support
pluggable tokens. See the following topics to configure the client and the server:

v Configuring the client for LTPA token authentication: Specifying LTPA token authentication

v Configuring the client for LTPA token authentication: Collecting the authentication information

v Configuring the server to handle LTPA token authentication

v Configuring the server to validate LTPA token authentication information

Configuring the client for LTPA token authentication: specifying LTPA token
authentication
To configure Lightweight Third-Party Authentication (LTPA) token authentication, specify LTPA token
authentication. Only configure the client for LTPA token authentication if the authentication mechanism
configured in WebSphere Application Server is LTPA.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Only
configure the client for LTPA token authentication if the authentication mechanism configured in
WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,
the credential created contains an LTPA token. When a web service calls a downstream web service, you
can configure the first web service to send the LTPA token from the originating client. Do not attempt to
configure LTPA from a pure client. LTPA works only when you configure the client-side of a web service
acting as a client to a downstream web service. For the downstream web service to validate the LTPA
token, the LTPA keys on both servers must be the same.

Complete the following steps to specify LTPA token as the authentication method:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the Extensions tab, which is located at the bottom of the deployment descriptor editor within the
assembly tool.

6. Expand the Request sender configuration > Login configuration section.

7. Select LTPA as the authentication method. For more conceptual information on LTPA authentication,
see “Lightweight Third Party Authentication” on page 1748.

1744 Developing WebSphere applications

What to do next

After you specify LTPA token as the authentication method, you must specify how to collect the LTPA
token information. See “Configuring the client for LTPA token authentication: collecting the authentication
method information” for more information.

Configuring the client for LTPA token authentication: collecting the authentication
method information
To configure Lightweight Third-Party Authentication (LTPA) token authentication, collect the LTPA token
authentication information. Do not configure the client for LTPA token authentication unless the
authentication mechanism configured in WebSphere Application Server is LTPA.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Do not
configure the client for LTPA token authentication unless the authentication mechanism configured in
WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,
the credential created contains an LTPA token. When a web service calls a downstream web service, you
can configure the first web service to send the LTPA token from the originating client. Do not attempt to
configure LTPA from a pure client. LTPA works only when you configure the client-side of a web service
acting as a client to a downstream web service. In order for the downstream web service to validate the
LTPA token, the LTPA keys on both servers must be the same.

Complete the following steps to specify how to collect the LTPA token authentication information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Bindings tab, which is located at the bottom of the deployment descriptor editor within
the assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select LTPA. If LTPA is not already there, enter it
as an option. The login binding dialog is displayed. Select or enter the following information:

Authentication method
Specifies the type of authentication that occurs. Select LTPA to use identity assertion.

Token value type URI and token value type local name
When you select LTPA, you must edit the token value type URI (Uniform Resource Identifier)
and the local name fields. Specifies values for custom authentication types, which are
authentication methods not mentioned in the specification. For the token value type URI field,
enter the following string: http://www.ibm.com/websphere/appserver/tokentype/5.0.2. For the
local name field, enter the following string: LTPA.

Callback handler
Specifies the Java Authentication and Authorization Service (JAAS) callback handler

Chapter 34. Developing web services - Security (WS-Security) 1745

implementation for collecting the LTPA information. Specify the
com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler implementation for
LTPA.

Basic authentication user ID and basic authentication password
For LTPA, you can leave these fields empty. However, when you omit this information, the
LTPA CallbackHandler implementation attempts to obtain the LTPA token from the invocation
(RunAs) credential. If an invocation (RunAs) credential does not exist, then the LTPA token is
not propagated.

Property name and property value
For LTPA, you can leave these fields blank.

What to do next

See “Configuring the client for LTPA token authentication: specifying LTPA token authentication” on page
1744 if you have not previously specified this information.

Configuring the server to handle LTPA token authentication information
Lightweight Third-Party Authentication (LTPA) is a type of authentication mechanism in WebSphere
Application Server security that defines a particular token format. The purpose of the LTPA token
authentication is to flow the LTPA token from the first web service, which authenticated the originating
client, to the downstream web service. You can configure the server for LTPA token authentication.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task is used to configure LTPA. Do not attempt to configure LTPA from a pure client. After the
downstream web service receives the LTPA token, it validates the token to verify that the token has not
been modified and has not expired. For validation to be successful, the LTPA keys that are used by both
the sending and receiving servers must be the same.

Complete the following steps to specify that LTPA is the authentication method. The authentication method
indicated in these steps must match the authentication method that is specified for the client.

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java Platform, Enterprise Edition (Java EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the web services editor within the assembly
tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can
select from the following options:

v BasicAuth

v Signature

v ID assertion

v LTPA

7. Select LTPA to authenticate the client using the LTPA token received from the request.

1746 Developing WebSphere applications

What to do next

After you specify the authentication method, you must specify the information that the server must validate.
See “Configuring the server to validate LTPA token authentication information” for more information.

Configuring the server to validate LTPA token authentication information
Lightweight Third-Party Authentication (LTPA) is a type of authentication mechanism in WebSphere
Application Server security that defines a particular token format. The purpose of the LTPA token
authentication is to flow the LTPA token from the first web service, which authenticated the originating
client, to the downstream web service. You can configure the server to validate LTPA token authentication.

About this task

Important: There is an important distinction between Version 5.x and Version 6.0.x and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task is used to configure LTPA. Do not attempt to configure LTPA from a pure client. After the
downstream web service receives the LTPA token, it validates the token to verify that the token has not
been modified and has not expired. For validation to be successful, the LTPA keys used by both the
sending and receiving servers must be the same.

Complete the following steps to specify how the server must validate the LTPA token authentication
information:

Procedure
1. Launch an assembly tool. For more information, see the related information on Assembly Tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open
Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the web services editor within
the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information. The login mapping information is displayed. Select or
enter the following information:

Authentication method
Specifies the type of authentication that occurs. Select LTPA to use LTPA token authentication.

Configuration name
Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.
For the LTPA authentication method, enter WSLogin for the JAAS login configuration name. This
configuration understands how to validate an LTPA token.

Use token value type
Determines if you want to specify a custom token type. For LTPA authentication, you must
select this option because LTPA is considered a custom type. LTPA is not in the Web Services
Security Specification.

Token value type URI and local name
Specifies custom authentication types. If you select Use Token value type you must enter
data into the Token value Type URI (Uniform Resource Identifier) and local name fields. For

Chapter 34. Developing web services - Security (WS-Security) 1747

the token value type URI field, enter the following string: http://www.ibm.com/websphere/
appserver/tokentype/5.0.2. For the local name, enter the following string: LTPA

Callback handler factory class name
Creates a JAAS CallbackHandler implementation that understands the following callback
handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, Signature, and LTPA),
use the callback handler factory default implementation. Enter the following class name for any
of the default authentication methods including LTPA:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

This implementation creates the correct callback handler for the default implementations.

Callback handler factory property
Specifies callback handler properties for custom callback handler factory implementations.
Default callback handler factory implementation does not any property specifications. For
LTPA, leave this field blank.

Login mapping property
Specifies properties for a custom login mapping. For default implementations including LTPA,
leave this field blank.

What to do next

See the task for configuring the server to handle LTPA token authentication information if you have not
previously specified this information.

Lightweight Third Party Authentication:

When you use the lightweight third party authentication (LTPA) method, the <wsse:BinarySecurityToken>
security token is generated. On the request sender side, the security token is generated by invoking a
callback handler. On the request receiver side, the security token is validated by a Java Authentication and
Authorization Service (JAAS) login module.

Important: The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

The following information describes token generation and token validation operations.

LTPA token generation
The request sender uses a callback handler to generate an LTPA security token. The callback
handler returns a security token that is inserted in the SOAP message. Specify the appropriate
callback handler in the <LoginBinding> element of the bindings file (ibm-webservicesclient-
bnd.xmi). The following callback handler implementation can be used with the LTPA authentication
method:

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

You can add your own callback handlers that implement the
javax.security.auth.callback.CallbackHandler property.

1748 Developing WebSphere applications

When using the LTPA authentication method (or any authentication method other than BasicAuth,
Signature or IDAssertion), the TokenValueType attribute of the <LoginBinding> element in the
bindings file (ibm-webservicesclient-bnd.xmi) must be specified. The values to use for the LTPA
TokenValueType attribute are:

v uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

v localName="LTPA"

LTPA token validation
The request receiver retrieves the LTPA security token from the SOAP message and validates the
message using a JAAS login module. The <wsse:BinarySecurityToken> security token is used to
perform the validation. If the validation is successful, the login module returns a JAAS Subject.
Subsequently, this Subject is set as the identity of the running thread. If the validation fails, the
request is rejected with a SOAP fault.

The appropriate JAAS login configuration to use is specified in the bindings file <LoginMapping>
element. Default bindings specified in the ws-security.xml file, but these can be overridden using
the application-specific ibm-webservices-bnd.xmi file. The configuration information consists of a
CallbackHandlerFactory, a ConfigName and a TokenValueType attribute. The
CallbackHandlerFactory specifies the name of a class to use to create the JAAS CallbackHandler
object. A CallbackHandlerFactory implementation is provided
(com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl). The ConfigName
attribute specifies a JAAS configuration name entry. The Web Services Security run time first
searches the security.xml file for a matching entry and if a matching entry is not found, the run
time searches the wsjaas.conf file. A default configuration entry suitable for the LTPA
authentication method is provided (WSLogin). An appropriate TokenValueType element is located in
the LTPA LoginMapping section of the default ws-security.xml file.

Chapter 34. Developing web services - Security (WS-Security) 1749

1750 Developing WebSphere applications

Chapter 35. Developing web services - Transaction support
(WS-Transaction)

WS-Transaction is an interoperability standard that includes the WS-AtomicTransaction,
WS-BusinessActivity, and WS-Coordination specifications. The Web Services Atomic Transaction (WS-AT)
support in the application server provides transactional quality of service to the web services environment.
Distributed web services applications, and the resources they use, can take part in distributed global
transactions. With Web Services Business Activity (WS-BA) support in the application server, web services
on different systems can coordinate activities that are more loosely coupled than atomic transactions. Such
activities can be difficult or impossible to roll back atomically, and therefore require a compensation
process if an error occurs. Web Services Coordination (WS-COOR) specifies a CoordinationContext and a
Registration service with which participant web services can enlist to take part in the protocols that are
offered by specific coordination types.

Creating an application that uses the Web Services Business Activity
support
To create an application component that uses the business activity support, you must set Run EJB
methods under a Business Activity scope in the deployment descriptor of the relevant application
component, and if required, create and specify a compensation handler for the application to use if there is
an error. You then build the component into the application and deploy the application onto a server that
has the business activity support enabled. The application component can be either an enterprise bean or
a web service that is implemented as an enterprise bean.

Before you begin

For information about editing deployment descriptors by using Rational Application Developer, refer to the
Rational Application Developer information.

About this task

Complete this task for an application that runs on a business-activity-enabled sever to use the business
activity support at run time, and to undertake work that might later be compensated by a compensation
handler. If the application requires compensation when a business activity scope ends, the application
passes the data that is required by the compensation process to a compensation handler indirectly, by
using the business activity API. The data that is required by the compensation process can be in the form
of either a serializable object or a Service Data Object (SDO).

Procedure
1. Design the application component that requires the business activity support. In particular, define the

application component requirements for compensation and close activities. If the application
component requires compensation, define the nature of the data in the serializable object or the SDO
that the application component passes to the compensation handler.

2. Using the information from your application design, create the compensation handler for the application
component, if required. This handler defines the close and compensation logic that runs upon
completion of a business activity scope that has the handler added to it through an application
component.

a. Open your chosen WebSphere Application Server assembly tool.

b. Create a new Java class that implements the appropriate interface, depending on the format of the
data that is required by the compensation process:

v For a serializable object, implement the
com.ibm.websphere.wsba.serializable.CompensationHandler interface.

v For an SDO, implement the com.ibm.websphere.wsba.CompensationHandler interface.

© Copyright IBM Corp. 2012 1751

c. Implement the close and compensate methods on the new compensation handler object, to take
appropriate actions depending on the serializable or SDO data that passes to the handler when it is
invoked.

The compensation handler class is now ready for the application component to reference, and for
assembly into an application.

3. Open the application component in the assembly tool.

4. Open the deployment descriptor for the application component in the deployment descriptor viewer.

5. Scroll to the Compensation section and select the Run EJB methods under a Business Activity
scope check box.

6. In the Compensation handler class text field, type the fully qualified class name of the compensation
handler class that you created earlier.

7. Save the deployment descriptor.

8. Build the application, including both the application component and the compensation handler. If the
application is a web service, the application must be compliant with the Java Specification Request
(JSR) 109 standard.

9. Deploy the application onto an application server that is business-activity-enabled.

Results

The application is now business-activity-enabled, and can use the business activity support at run time
through the business activity API. The application component has a compensation handler associated with
it, and can therefore call the setCompensationDataImmediate and setCompensationDataAtCommit
methods at run time to add the compensation handler to the business activity scope. For more information
about these methods, see the topics about the Business activity API. If the unit of work with which the
business activity scope is associated fails, the compensation handler performs actions to compensate for
the error.

What to do next

Ensure that the compensation handler class is on the application class path for the WebSphere Application
Server runtime environment.

Business activity API
Use the business activity application programming interface (API) to create business activities and
compensation handlers for an application component, and to log data that is required to compensate an
activity if there is a failure in the overall business activity.

Overview

The business activity support provides a UserBusinessActivity API and two interfaces: a
serializable.CompensationHandler interface and a CompensationHandler interface. Each interface has two
exceptions: RetryCompensationHandlerException and CompensationHandlerFailedException. You can look
up the UserBusinessActivity interface from the application server Java Naming and Directory Interface
(JNDI) at java:comp/websphere/UserBusinessActivity. For example:
InitialContext ctx = new InitialContext();
UserBusinessActivity uba = (UserBusinessActivity) ctx.lookup("java:comp/websphere/UserBusinessActivity");

You can use the getId method to access the unique identifier for the business activity that is currently
associated with the calling thread. The identifier is the same as the one that is generated for the business
activity scope at run time and that is used for information, warning, and error messages. For example, the
application can use the identifier in audit or diagnostic messages, and it is possible to correlate between
application-generated and runtime-generated messages.

1752 Developing WebSphere applications

InitialContext initialContext = new InitialContext();
UserBusinessActivity uba = initialContext.lookup("java:comp/websphere/UserBusinessActivity");
...
String activityId = uba.getId();
if (activityId == null)
// No activity on the thread
else
// Output audit message including activity id

If an application component runs work that might require compensating upon failure in the business
activity, you must provide a compensation handler class that is assembled as part of the deployed
application. This Java class must implement one of the following interfaces:

v com.ibm.websphere.wsba.serializable.CompensationHandler, which takes a takes a parameter of a
serializable object

v com.ibm.websphere.wsba.CompensationHandler, which takes a parameter of a Service Data Object
(SDO)

Typically, applications that already have their data available in DataObject format will use the
CompensationHandler interface, and applications that do not will use the
serializable.CompensationHandler interface. Both interfaces support the close and compensate methods.

An application must register a compensation handler implementation that works with the type of
compensation data (serializable object or SDO) that the application uses. If there is a mismatch between
the type of data that the application component uses and the compensation handler implementation, there
is an error.

During normal application processing, the application can make one or more invocations to the
setCompensationDataImmediate or setCompensationDataAtCommit methods, passing in either a serializable
object or an SDO that represents the current state of the work performed.

When the underlying unit of work (UOW) that the root business activity is associated with completes, all
registered compensators are coordinated to complete. During completion, either the compensate or the
close method is called on the compensation handler, passing in the most recent compensation data logged
by the application component as a parameter. Your compensation handler implementation must be able to
understand the data that is stored in either the serializable object or the SDO DataObject; when using this
data, the compensation handler must be able to determine the nature of the work performed by the
enterprise bean and compensate or close in an appropriate way, for example by undoing changes made to
database rows if there is a failure in the business activity. You associate the compensation handler with an
application component by using the assembly tooling, such as Rational Application Developer.

Active and inactive compensation handlers

You implement the serializable.CompensationHandler or CompensationHandler interface for any
application component that executes code that might have to be compensated within a business activity
scope. Compensation handler objects are registered implicitly with the business activity scope under which
the application runs, whenever the application calls the UserBusinessActivity API to specify compensation
data. Compensation handlers can be in one of two states, active or inactive, depending on any
transactional UOW under which they are registered. A compensation handler that is registered within a
transactional UOW might initially be inactive until the transaction commits, at which point the compensation
handler becomes active (see the following section). A compensation handler that is registered outside a
transactional UOW always becomes active immediately.

When a business activity completes, it drives only active compensation handlers. Any inactive
compensation handlers that are associated with the business activity are discarded and never driven.

Chapter 35. Developing web services - Transaction support (WS-Transaction) 1753

Logging compensation data

The business activity API specifies two methods that allow the application to log compensation data. This
data is made available to the compensation handlers during their processing when the business activity
completes. The application calls one of these methods, depending on whether it expects transactions to be
part of the business activity.

setCompensationDataAtCommit()

Call the setCompensationDataAtCommit method when the application expects a global transaction
on the thread.

v If a global transaction is present on the thread, the CompensationHandler object is initially
inactive. If the global transaction fails, it rolls back any transactional work done within its
transaction context in an atomic manner, and drives the business activity to compensate other
completed UOWs. The compensation handler does not have to be involved. If the global
transaction commits successfully, the compensation handler becomes active because if the
overall business activity fails, the compensation handler is required to compensate the durable
work that is completed by the global transaction. The setCompensationDataAtCommit method
configures the CompensationHandler instance to undertake this compensation function.

v If a global transaction is not present when the setCompensationDataAtCommit method is called,
the compensation handler becomes active immediately.

For example, for an SDO, and using the same business activity instance as in the previous
example:

DataObject compensationData = doWorkWhichWouldNeedCompensating();
uba.setCompensationDataAtCommit(compensationData);

setCompensationDataImmediate()

Call the setCompensationDataImmediate method when the application does not expect a global
transaction on the thread.

The setCompensationDataImmediate method makes a CompensationHandler instance active
immediately, regardless of the current UOW context at the time that the method is invoked. The
compensation handler is always able to participate during completion of the business activity.

The role of the setCompensationDataImmediate method is to compensate any non-transactional
work, in other words, work that can be performed either inside or outside a global transaction, but
that is not governed by the transaction. An example of this type of work is sending an email. The
compensation handler must be active immediately so that if a failure occurs in a business activity,
this non-transactional work is always compensated.

For example, for a serializable object, and using the same business activity instance as in the
previous example:

Serializable compensationData = new MyCompensationData();
uba.setCompensationDataImmediate(compensationData);

Although these two compensation data logging methods, if called in the same enterprise bean, use the
same compensation handler class, they create two separate instances of the compensation handler class
at run time. Therefore, the actions of the methods are mutually exclusive; calling one of the methods does
not overwrite any work carried out by the other method.

If a compensation handler instance is already added to the Business Activity by using one of these
methods, and then the same method is called, passing in null as a parameter, that compensation handler
instance is removed from the business activity, and is not driven to close or compensate during completion
of the business activity.

As described previously, the business activity support adds a compensation handler instance to the
business activity when a compensation data logging method is called for the first time by the enterprise
bean that uses that business activity. At the same time, a snapshot of the enterprise application context is

1754 Developing WebSphere applications

taken and logged with the compensation data. When the business activity competes, all the compensation
handlers that were added to the business activity are driven to compensate or close. The code that you
create in the CompensationHandler or serializable.CompensationHandler class is guaranteed to run in the
same enterprise application context that was captured in the earlier snapshot.

For details about the methods available in the business activity API, see the topic about additional APIs.

Chapter 35. Developing web services - Transaction support (WS-Transaction) 1755

1756 Developing WebSphere applications

Chapter 36. Developing web services - Transports

Transport chains represent a network protocol stack that is used for I/O operations within an application
server environment. Transport chains are part of the channel framework function that provides a common
networking service for all components.

Configuring the SOAP over JMS transport for JAX-WS web services

SOAP over JMS protocol
The web services engine supports the use of an emerging industry standard SOAP over Java Message
Service (JMS)-compliant messaging transport as an alternative to HTTP for communicating SOAP
messages between clients and servers.

Note: This product supports an emerging industry standard SOAP over JMS protocol. The SOAP over
JMS specification provides a standard set of interoperability guidelines for using a JMS-compliant
transport with SOAP messages to enable interoperability between the implementations of different
vendors. Using this standard, a mixture of client and server components from different vendors can
interoperate when exchanging SOAP request and response messages over the JMS transport for
both Java API for XML Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) web
services. By using the JMS transport, your enterprise beans based web service clients and servers
can communicate through JMS queues and topics instead of through HTTP connections.

IBM and other vendors have been working on the proposed SOAP over JMS specification since 2005. The
specification has been submitted to W3C and a working group is established. The current member
submission of this draft specification was jointly published in October, 2007. Refer to the SOAP over JMS
specification for details of this industry standard.

This topic provides a summary of the emerging industry-standard SOAP over JMS protocol. Use this
SOAP over JMS transport protocol if you need to provide implementations for the client or server
components. Also, you need to make sure that the implementations are interoperable with the client and
server components provided by the web services engine in WebSphere Application Server.

The client component is responsible for sending SOAP request messages and receiving SOAP response
messages while adhering to the following protocol constraints:

v The client must use a javax.jms.BytesMessage object or a javax.jms.TextMessage object to transmit the
SOAP request message to the server.

v The client must set the following properties on the JMS request message before sending the message
to the destination queue or topic:

– SOAPJMS_contentType: This property is similar to the Content-Type header found in an HTTP
message and is used to describe the content type of the message. A text-only SOAP message, for
example, a message with no attachments, has the following value set for this JMS message
property:

text/xml; charset="UTF-8"

For a SOAP message containing attachments, use the following code to set the
SOAPJMS_contentType property on the JMS message:

multipart/related; type="text/xml"; start="<...content-id_of_first_ part...>"

This example represents a multipart message, where the first part is of type text/xml and contains
the SOAP envelope. The other parts of the multipart message contain various attachments. The
HTTP 1.1 specification contains more information about the Content-Type header.

© IBM Corporation 2009 1757

– enableTransaction: Set this optional property to true on an outbound JMS request message if you
want the server component to process the web service request under the same transaction that was
used to receive the message from the destination queue or topic. This property is an IBM extension
to the SOAP over JMS specification.

Note: For client components, only set this property to true for one-way or two-way asynchronous
requests to avoid synchronization problems that can occur with two-way synchronous web
service requests. If this property is not set or is set to the default value of false, the server
suspends the transaction that was used to receive the request message from the destination
queue or topic prior to invoking the web services engine to process the request.

– SOAPJMS_requestURI: You must set this property to the JMS endpoint URL associated with the
request.

– SOAPJMS_soapAction: This optional property is set on an outbound JMS request message to indicate
the soapAction value associated with the web services request. This property is similar to the
SOAPAction HTTP header used when transporting web service requests over an HTTP transport.
The value of the soapAction property is a URI identifying the intent of the SOAP request. If the
SOAPJMS_soapAction property is specified, it is used by the server component to determine the
target of the request. The SOAP specification places no restrictions on the format or specificity of the
URI nor does the specification require that the URI is resolvable. Typically, this property is set to the
soapAction value from the WSDL document.

– SOAPJMS_targetService: You must set this property on an outbound JMS request message, and the
value must match the targetService property value that is found in the JMS endpoint URL for the
request. This value is used by the server component to determine the port component to which the
request is dispatched.

– SOAPJMS_bindingVersion: This property indicates the version number of the protocol used by the
client and server. Set the value to 1.0.

v If the request message represents a two-way request, meaning that a reply is expected, the client
component must set the JMS message JMSReplyTo property to specify the queue that is used for the
reply message. The JMS message setJMSReplyTo method is used to specify the queue. You can benefit
from configuring a permanent reply queue on the client to prevent the client from having to create a
temporary queue each time a web service request is made. Read about configuring a permanent reply
queue for web services using SOAP over JMS to learn more about creating this special queue.

v If the SOAP request message represents a one-way request, meaning that a reply message is not
expected, the client component must not set the JMS message JMSReplyTo property.

v The client component can assume that a reply message is a JMS BytesMessage object.

v The client component can assume that the reply message correlation ID matches the message ID of the
original request message.

The server component is responsible for receiving the SOAP request messages and sending the SOAP
response messages, while adhering to the following protocol constraints:

v The server component can expect to receive a JMS BytesMessage. If something other than a
BytesMessage is received by the server component, then a fault with the subcode,
unsupportedJMSMessageFormat, is returned to the client if a reply is expected.

v The server component can expect to receive a javax.jms.BytesMessage object or a
javax.jms.TextMessage object. If something other than a BytesMessage or TextMessage is received by
the server component, then a fault with the subcode, unsupportedJMSMessageFormat, is returned to the
client if a reply is expected.

v The server component must process the SOAP request properly to produce an appropriate SOAP reply
message.

v The server component must send a reply message back to the client only if the JMS request
message's JMSReplyTo property is set. The JMS message getJMSReplyTo method is used to retrieve
the JMSReplyTo property value from the JMS message. This property value indicates the reply
destination.

1758 Developing WebSphere applications

v When sending a reply message, the server component must use the same message type as the
request. If the request was received as a BytesMessage, the reply must be sent as a BytesMessage.
Similarly, if the request was received as a TextMessage, the reply must be sent as a TextMessage.

v The server component must set the following properties in the JMS reply message before sending the
message to the reply queue:

– SOAPJMS_contentType: This property is used to describe the content type of the message. See the
description for this property in the client responsibilities section in this topic.

– correlation ID: Set the correlation ID property of the JMS reply message to the message ID of the
original JMS request message. This correlation is done by calling the JMS message
setJMSCorrelationID method.

– SOAPJMS_bindingVersion: This property indicates the version number of the protocol used by the
client and server. Set the value to 1.0.

The following example displays the results from calling the JMS message toString method for a request
message without attachments:
JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: null
JMSTimestamp: -1
JMSCorrelationID: null
JMSDestination: null
JMSReplyTo: queue://_Q_7D6C2035383215AB00000000000F4241?busName=WsFvtBus
JMSRedelivered: false
JMS_IBM_MsgType: 1
SOAPJMS_contentType: text/xml; charset=UTF-8
SOAPJMS_targetService: MaelstromWsEndpoint
SOAPJMS_requestIRI: jms:jndi:jms/MyRequestQueue?jndiConnectionFactoryName=jms/MyConnFactory&targetService=MyPort1
SOAPJMS_soapAction: "getQuote"
SOAPJMS_bindingVersion: 1.0

3c3f786d6c2076657273696f6e3d22312e302220656e636f64696e673d227574662d38223f3e3c73
6f6170656e763a456e76656c6f706520786d6c6e733a736f6170656e763d22687474703a2f2f7363
68656d61732e786d6c736f61702e6f72672f736f61702f656e76656c6f70652f2220786d6c6e733a
7873643d22687474703a2f2f7777772e77332e6f72672f323030312f584d4c536368656d61222078
...

The following example displays the results from calling the JMS message toString method for a request
message with attachments:
JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: null
JMSTimestamp: -1
JMSCorrelationID: null
JMSDestination: null
JMSReplyTo: queue://_Q_F0940794C5CC2F84000000000044AA21?busName=WsFvtBus
JMSRedelivered: false
JMS_IBM_MsgType: 1
SOAPJMS_contentType: multipart/related;

boundary=MIMEBoundaryurn_uuid_B6BAFEADB1886ADC241205525550237;
type="text/xml"; start="<0.urn:uuid:B6BAFEADB1886ADC241205525550238@apache.org>"
SOAPJMS_targetService: MaelstromWsEndpoint
SOAPJMS_requestIRI: jms:jndi:jms/WebSvcsJMSQ?jndiConnectionFactoryName=
jms/WebSvcsJMS_CF&targetService=MaelstromWsEndpoint
SOAPJMS_soapAction: attachment
SOAPJMS_bindingVersion: 1.0

2d2d4d494d45426f756e6461727975726e5f757569645f4236424146454144423138383641444332
34313230353532353535303233370d0a436f6e74656e742d547970653a20746578742f786d6c3b20
636861727365743d5554462d380d0a436f6e74656e742d5472616e736665722d456e636f64696e67
3a20386269740d0a436f6e74656e742d49443a203c302e75726e3a757569643a4236424146454144
4231383836414443323431323035353235353530323338406170616368652e6f72673e0d0a0d0a3c
736f6170656e763a456e76656c6f706520786d6c6e733a736f6170656e763d22687474703a2f2f73
6368656d61732e786d6c736f61702e6f72672f736f61702f656e76656c6f70652f2220786d6c6e73
3a7873643d22687474703a2f2f7777772e77332e6f72672f323030312f584d4c536368656d612220
786d6c6e733a7873693d22687474703a2f2f7777772e77332e6f72672f323030312f584d4c536368
656d612d696e7374616e63652220786d6c6e733a736f6170656e633d22687474703a2f2f73636865
...

The following example displays the results from calling the JMS message toString method for a SOAP
reply message:

Chapter 36. Developing web services - Transports 1759

JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: null
JMSTimestamp: 0
JMSCorrelationID: ID:cdddb857f078a266eb9a972f110a134f0000000000000001
JMSDestination: null
JMSReplyTo: null
JMSRedelivered: false
contentType:
multipart/related;
type="text/xml";
start="<961368106530.1092112854745.IBM.WEBSERVICES@yackerjr>";
boundary="----=_Part_0_1655006754.1092112854745"

0d0a2d2d2d2d2d2d3d5f506172745f305f313635353030363735342e313039323131323835343734
350d0a436f6e74656e742d547970653a20746578742f786d6c3b20636861727365743d5554462d38
...

JMS endpoint URL syntax
As part of an emerging industry-standard SOAP over JMS protocol, a Java Message Service (JMS)
endpoint URL syntax has been defined. A JMS endpoint URL is used to access Java API for XML Web
Services (JAX-WS) or Java API for XML-based RPC (JAX-RPC) web services with the JMS transport. This
URL specifies the JMS destination and connection factory, as well as the port component name for the
Web service request. This endpoint URL is similar to the HTTP endpoint URL, which specifies the host
and port as well as the context root and port component name.

Note: This product supports an emerging industry standard SOAP over JMS protocol. The SOAP over
JMS specification provides a standard set of interoperability guidelines for using a JMS-compliant
transport with SOAP messages to enable interoperability between the implementations of different
vendors. Using this standard, a mixture of client and server components from different vendors can
interoperate when exchanging SOAP request and response messages over the JMS transport for
both Java API for XML Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) web
services. By using the JMS transport, your enterprise beans based web service clients and servers
can communicate through JMS queues and topics instead of through HTTP connections.

IBM and other vendors have been working on the W3C SOAP over JMS specification since 2005. The
specification has been submitted to W3C and a working group is established. The current member
submission of this document was jointly published in October, 2007. The application server supports the
current draft specification from W3C.

Note: A JMS endpoint URL has the following general form:
jms:jndi:<destination-jndi-name>?<property>=<value>&<property>=<value>&...

The URL consists of the jms: transport type, followed by the jndi: variant type, followed by the
JNDI name of the destination queue or topic, followed by the query string containing a list of
property and value pairs that are used to specify various JMS endpoint information. The jndi:
variant means that JNDI is used to locate object names in the endpoint URL string.

The properties supported in the URL string are described in the following tables:

Table 284. Destination-related properties (required). Use these properties to specify destination-related properties for
a JMS endpoint URL.
Property name Description

jndiConnectionFactoryName Specifies the JNDI name of the connection factory that is used by the client runtime to establish a connection to the
JMS messaging engine.

targetService Specifies the name of the port component to which the request is dispatched.

1760 Developing WebSphere applications

Table 285. JNDI-related properties (optional). Use these properties to specify JNDI-related properties for a JMS
endpoint URL.
Property name Description

jndiInitialContextFactory Specifies the name of the initial context factory class to use. This value maps to the java.naming.factory.initial
property.

jndiURL Specifies the JNDI provider URL. This value maps to the java.naming.provider.url property.

Table 286. JMS-related properties (optional). Use these properties to specify JMS-related properties for a JMS
endpoint URL.
Property name Description

deliveryMode Indicates whether the request message is persistent or not. The valid values are PERSISTENT and NON_PERSISTENT.
The default value is NON_PERSISTENT.

timeToLive Specifies the lifetime, in milliseconds, of the request message. A value of 0 indicates an infinite lifetime. If this
parameter is not specified, then the JMS-defined default value is used.

priority Specifies the JMS priority associated with the request message. Specify this value as a positive integer from 0, the
lowest priority, to 9, the highest priority. If this parameter is not specified, then the JMS-defined default value is
used.

replyToName Specifies the JNDI name of the JMS destination to which the response message is sent. Using this optional
property enables the client to use a previously defined, permanent queue rather than a temporary queue, for
receiving replies.

messageType Specifies the message type to use with the request message. A value of BYTES indicates the
javax.jms.BytesMessage object is used. A value of TEXT indicates javax.jms.TextMessage object is used. The default
value is BYTES.

The required properties jndiConnectionFactoryName and targetService must be in the JMS endpoint URL
string. The remaining properties are optional.

If you set values for the deliveryMode, timeToLive, and priority properties on the JMS request, these
values are propagated from the JMS request message to the corresponding JMS reply message.

See the SOAP over Java Message Service specification in the web services specifications and APIs
documentation to learn more about this industry standard.

IBM proprietary SOAP over JMS protocol (deprecated)
You can use a SOAP over Java Message Service (JMS) transport as an alternative to HTTP for
communicating SOAP messages between clients and servers. The web services engine supports the use
of an IBM proprietary implementation as well as the industry standard implementation.

Note: In earlier versions of the application server, an IBM proprietary SOAP over JMS protocol was
supported for Java API for XML-based RPC (JAX-RPC) applications. In WebSphere Application
Server 7.0 and later, this proprietary SOAP over JMS protocol is now deprecated in favor of an
emerging industry standard SOAP over JMS protocol. You can use the IBM proprietary SOAP over
JMS protocol with your Java API for XML Web Services (JAX-WS) or JAX-RPC web services;
however, take advantage of the emerging standard SOAP over JMS protocol. If your client
application invokes enterprise beans-based web services that are supported by an earlier version of
the WebSphere Application Server, you must continue to use the IBM proprietary SOAP over JMS
protocol to access those web services.

You can use a SOAP over JMS transport if you need to provide implementations for the client or server
components, and you need to make sure that the implementations are interoperable with the client and
server components provided by the web services engine in the application server. The IBM proprietary
SOAP over JMS protocol describes specific message exchange requirements for client and server
components so they can exchange SOAP request and response messages through the use of the JMS
APIs supported by the application server.

Chapter 36. Developing web services - Transports 1761

The client component is responsible for sending SOAP request messages and receiving SOAP response
messages while adhering to the following protocol constraints:

v The client must use either a JMS TextMessage object, for example, javax.jms.TextMessage, or a
BytesMessage object, for example, javax.jms.BytesMessage, to transmit the SOAP request message to
the server. If the request message contains attachments, a BytesMessage object must be used. If the
request message does not contain attachments, the client can use a TextMessage or a BytesMessage
object. The application server client implementation uses only a BytesMessage object for the request
message due to the potential need to transmit attachments.

v The client must set the following properties on the JMS request message before sending the message
to the destination queue or topic:

– contentType: This property is similar to the Content-Type header found in an HTTP message and is
used to describe the content type of the message. A text-only SOAP message, for example, a
message with no attachments, is written as follows:

text/xml; charset="UTF-8"

The contentType property in a SOAP request message that contains attachments must be set as
follows:

multipart/related; type="text/xml"; start="<...content-id of first part...>"

This example represents a multi-part message, where the first part is of type text/xml that contains
the SOAP message. The other parts of the multi-part message contain various attachments. The
HTTP 1.1 specification contains more information about the Content-Type header.

– enableTransaction: Set this optional property to true on the outgoing SOAP over JMS request
message if the server component should process the web service request under the same
transaction that was used to receive the message from the destination queue or topic. The client
component should only set this property to true for a one-way request to avoid synchronization
problems that can occur with a two-way web service request. If this property is not set or is set to
the default value of false, then the server will suspend the transaction that was used to receive the
request message from the destination queue or topic prior to invoking the web services engine to
process the request.

gotcha: The client component should only set this property to true for a one-way request. Setting
this property to true for a two-way web server request is not supported because of
synchronization problems.

– endpointURL: This property must be set to the JMS endpoint URL associated with the request.

– soapAction: This optional property is set on an outgoing SOAP over JMS request message to
indicate the soapAction value associated with the web services request. This property is similar to
the SOAPAction HTTP header used when transporting web service requests over an HTTP transport.
The value of the soapAction property is a URI identifying the intent of the SOAP request. If the
soapAction property is specified, it is used by the server component to determine the target of the
request. The SOAP specification places no restrictions on the format or specificity of the URI or that
it is resolvable. Typically, this property is set to the soapAction value from the WSDL document.

– targetService: This property must be set to the targetService property value that is found in the
JMS-style endpoint location URL for the request. This value is used by the server component to
determine the port component in the target when dispatching the request.

– transportVersion: This property indicates the version number of the protocol used by the client and
server. Set the value to 1 (one).

v If the SOAP request message represents a two-way request, the client component must set the JMS
message's replyTo property to specify the queue that is used for the reply message. The JMS message
setJMSReplyTo method is used for this. It can be beneficial to configure a permanent replyTo queue on
the client to prevent the client from having to set the JMS message's replyTo property each time a web
service request is made.

1762 Developing WebSphere applications

v If the SOAP request message represents a one-way request, the client component must not set the
JMS message's replyTo property.

v The client component must be prepared to handle a reply message that is a BytesMessage or a
TextMessage object, regardless of the type of JMS message used to transmit the SOAP request. The
application server component responds with the same type of JMS message that is received from the
client, unless the response contains attachments and a BytesMessage object must be used.

v The client component can assume that the reply message correlation ID matches the original request
message ID.

The server component is responsible for receiving the SOAP request messages and sending the SOAP
response messages while adhering to the following protocol constraints:

v The server must be prepared to receive a TextMessage or a BytesMessage. If the request contains
attachments, a ByteMessage must be used. The WebSphere product implementation of the server
component responds in kind when sending the reply message back to the client, unless the response
contains attachments and a BytesMessage is used.

v The server component must process the SOAP request properly to produce an appropriate SOAP reply
message.

v The server component must send a reply message back to the client only if the JMS request message's
replyTo property is set.

v The server component must set the following properties in the JMS reply message before sending the
message to the replyTo queue:

– contentType: See the description for this property in the client responsibilities section in this article.

– Set the correlation ID of the JMS reply message to the message ID of the original JMS request
message. This is done by calling the JMS message setJMSCorrelationID method.

– transportVersion: This property indicates the version number of the protocol used by the client and
server. Set the value to 1 (one).

The following example displays the results from calling the JMS message toString method for a request
message without attachments:
JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:d438eebf04cb124aa25c5821110a134f0000000000000001
JMSTimestamp: 1092110476167
JMSCorrelationID: null
JMSDestination: topic://NewsGroupTopic?topicSpace=FvtTopicSpace
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_System_MessageID: 6B6765B36943A18C_11000001
transportVersion: 1
JMSXUserID:
targetService: NGConsumerJMS
JMSXAppID: Service Integration Bus
endpointURL: jms:/topic?destination=jms/NewsGroupTopic&connectionFactory;
=jms/NewsGroupTCF&targetService;=NGConsumerJMS

contentType: text/xml; charset=utf-8
3c736f6170656e763a456e76656c6f706520786d6c6e733a736f6170656e763d22687474703a2f2f
736368656d61732e786d6c736f61702e6f72672f736f61702f656e76656c6f70652f2220786d6c6e
...

The following SOAP Version 1.1 example displays the payload from the previous message example:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<postMessage><ngName xsi:type="xsd:string">news.current.events</ngName>

Chapter 36. Developing web services - Transports 1763

<msg xsi:type="xsd:string">This is a sample news item.</msg>
</postMessage>
</soapenv:Body>
</soapenv:Envelope>

For SOAP Version 1.2, the encodingStyle parameter is not supported, so the example looks similar to the
following:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<postMessage><ngName xsi:type="xsd:string">news.current.events</ngName>
<msg xsi:type="xsd:string">This is a sample news item.</msg>
</postMessage>
</soapenv:Body>
</soapenv:Envelope>

The following example displays the results from calling the JMS message toString method for a request
message with attachments:
JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 1
JMSExpiration: 1092086312310
JMSPriority: 4
JMSMessageID: ID:4bb64ed64e7d813d59ba5fec110a134f0000000000000001
JMSTimestamp: 1092086012310
JMSCorrelationID: null
JMSDestination: queue://Logger_Q
JMSReplyTo: queue://_Q_6B6765B36943A18C_00000385
JMSRedelivered: false
JMS_IBM_System_MessageID: 6B6765B36943A18C_10000001
transportVersion: 1
JMSXUserID:
targetService: WSLoggerJMS
JMSXAppID: Service Integration Bus
endpointURL: jms:/queue?
destination=jms/Logger_Q&connectionFactory=jms/Logger_CF&targetService=WSLoggerJMS
contentType: multipart/related; type="text/xml";
start="<945414389.1092086011970.IBM.WEBSERVICES@myhost1>";
boundary="----=_Part_0_247953397.1092086011970"
0d0a2d2d2d2d2d2d3d5f506172745f305f3234373935333339372e31303932303836303131393730
0d0a436f6e74656e742d547970653a20746578742f786d6c3b20636861727365743d5554462d380d
...

The following displays the payload from the previous message example:
Content-Type: multipart/related; type="text/xml";

start="<945414389.1092086011970.IBM.WEBSERVICES@myhost1>";

boundary="----=_Part_0_247953397.1092086011970"

------=_Part_0_247953397.1092086011970
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: binary
Content-Id: <945414389.1092086011970.IBM.WEBSERVICES@myhost1>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<p499:InternationalizationContext soapenv:mustUnderstand="0"
xmlns:p499="http://www.ibm.com/webservices/InternationalizationContext">
<Locales>
<Locale>
<LanguageCode>en</LanguageCode>
<CountryCode>US</CountryCode>
</Locale>
</Locales>
<TimeZoneId>America/Chicago</TimeZoneId>
</p499:InternationalizationContext>
</soapenv:Header>

1764 Developing WebSphere applications

<soapenv:Body>
<sendJpegImage/>
</soapenv:Body>
<soapenv:Envelope>
------=_Part_0_247953397.1092086011970
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <jpegImageRequest=81380956150.1092086011880.IBM.WEBSERVICES@myhost1>
<...contents of jpeg image file...>

The following example displays the results from calling the JMS message toString method for a SOAP
reply message:
JMSMessage class: jms_bytes
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: null
JMSTimestamp: 0
JMSCorrelationID: ID:cdddb857f078a266eb9a972f110a134f0000000000000001
JMSDestination: null
JMSReplyTo: null
JMSRedelivered: false
contentType:
multipart/related;
type="text/xml";
start="<961368106530.1092112854745.IBM.WEBSERVICES@yackerjr>";
boundary="----=_Part_0_1655006754.1092112854745"

0d0a2d2d2d2d2d2d3d5f506172745f305f313635353030363735342e313039323131323835343734
350d0a436f6e74656e742d547970653a20746578742f786d6c3b20636861727365743d5554462d38
...

IBM proprietary JMS endpoint URL syntax (deprecated)
A Java Message Service (JMS) endpoint URL is used to access Java API for XML Web Services
(JAX-WS) or Java API for XML-based RPC (JAX-RPC) web services with the JMS transport. This
proprietary URL specifies the Java Message Service (JMS) destination and connection factory, as well as
the port component name for the web service request. This endpoint URL is similar to the HTTP endpoint
URL, which specifies the host and port as well as the context root and port component name.

Note: A JMS endpoint URL has the following general form:
jms:/[queue|topic]?<property>=<value>&<property>=<value>&...

The URL consists of the jms: transport type, followed by either /queue or /topic to indicate the
JMS destination type, followed by the query string containing a list of property and value pairs that
are used to specify the JMS endpoint information.

The properties supported in the URL string are described in the following tables:

Table 287. Destination-related properties (required). Use these properties to specify destination-related properties for
a JMS endpoint URL.
Property name Description

destination Specifies the Java Naming and Directory Interface (JNDI) name of the destination queue or topic.

connectionFactory Specifies the JNDI name of the connection factory.

targetService Specifies the name of the port component to which the request is dispatched.

Table 288. JNDI-related properties (optional). Use these properties to specify JNDI-related properties for a JMS
endpoint URL.
Property name Description

initialContextFactory Specifies the name of the initial context factory to use which is mapped to the java.naming.factory.initial property.

jndiProviderURL Specifies the JNDI provider URL, which is mapped to the java.naming.provider.url property.

Chapter 36. Developing web services - Transports 1765

Table 289. JMS-related properties (optional). Use these properties to specify JMS-related properties for a JMS
endpoint URL.
Property name Description

deliveryMode Indicates whether the request message is persistent or not. The valid values are 1 for nonpersistent and 2 for persistent.
The default value is 1.

timeToLive Specifies, in milliseconds, the lifetime of the JMS request message. The default value of 0 indicates an infinite lifetime.
However, when you are using web services, this property is bounded by the value that is specified for the synchTimeout
property. The setting for the synchTimeout property determines how long a client waits for a response from the server.
This bounding prevents the JMS message from remaining active after the client has stopped waiting for a response from
the server.

priority Specifies the JMS priority associated with the request message. Valid values are between 0 to 9. The default value is 4. A
value of 0 is the lowest priority and a value of 9 is the highest priority.

replyToDestination Specifies the JNDI name of a queue to be used to receive reply messages. Using this optional property enables the client
to use a permanent queue, rather than a temporary queue, for receiving replies.

If you set values for the deliveryMode, timeToLive, and priority properties on the JMS request, these
values are propagated from the JMS request message to the corresponding JMS reply message.

The required properties, destination, connectionFactory, and targetService must be contained in the JMS
endpoint URL string. The rest of the properties are optional.

You can set any of the properties on the client Stub object. The various properties can be specified by
including them as part of the endpoint URL or you can set these properties programmatically by the client
on the Stub object. Properties specified on the client Stub object take precedence over properties that are
specified as part of a JMS endpoint URL string.

Invoking web service requests transactionally using SOAP over JMS
transport
Use the enableTransactionalOneWay property to ensure that one-way and two-way asynchronous web
service requests using the industry standard SOAP over JMS transport will be sent to the destination
queue or topic transactionally.

About this task

When using JMS to transport Java API for XML Web Services (JAX-WS) or Java API for XML-based RPC
(JAX-RPC) web service requests, the default behavior is for the SOAP message to be added to the
destination queue or topic non-transactionally or outside of the client application's transaction. Adding the
SOAP message to the destination queue or topic is done outside of the transaction to avoid
synchronization problems that can occur with two-way synchronous web service requests. However, you
can choose to enable one-way and two-way asynchronous requests to be processed as part of a
transaction. You can use the enableTransactionalOneWay property to ensure that one-way and two-way
asynchronous web service requests that use the JMS transport are sent to the destination queue or topic
transactionally. When the client application invokes the web service request, the resulting SOAP request
message is added to the destination queue or topic as part of the client application's transaction.

Use one of the following ways to enable the enableTransactionalOneWay property.

Procedure
v Set the enableTransactionalOneWay property programmatically. The value of the property is a Boolean.

– For JAX-WS clients, set the property on the client JAX-WS RequestContext object. For example:
((BindingProvider) port).getRequestContext().put
(com.ibm.websphere.webservices.Constants.ENABLE_TRAN_ONEWAY,
new Boolean(true));

– For JAX-RPC clients, set the property on the client JAX-RPC Stub or Call object. For example:
stub._setProperty(com.ibm.websphere.webservices.Constants.ENABLE_TRAN_ONEWAY,
new Boolean(true));

1766 Developing WebSphere applications

v For JAX-RPC clients, set the enableTransactionalOneWay property as a custom property in the
ibm-webservicesclient-bnd.xmi deployment descriptor file by using the wsadmin command.

For more information about the wsadmin tool options, see the options for the AdminApp object install,
installInteractive, edit, editInteractive, update, and updateInteractive commands information..

Use the $AdminApp object along with the -WebServicesClientCustomProperty option to set the value of
the property within the client binding file, ibm-webservicesclient-bnd.xmi. The value of the custom
property, enableTransactionalOneWay, is either true or false.
– Using Jacl:

$AdminApp edit MyApplication {-WebServicesClientCustomProperty {{MyEJBJar.jar MyEJB
service/MyServiceRef MyPort enableTransactionalOneWay true}}}

– Using Jython:

AdminApp.edit(’MyApplication’, [’-WebServicesClientCustomProperty’, [[’MyEJBJar.jar’,
’MyEJB’, ’service/MyServiceRef ’, ’MyPort’, ’enableTransactionalOneWay’, ’true’]]])

Results

You have a web services client application that is configured to invoke one-way and two-way
asynchronous requests transactionally when using the JMS transport.

What to do next

After you have enabled the enableTransactionalOneWay property, run the client application.

Invoking one-way JAX-RPC web service requests transactionally using
the JMS transport (deprecated)
Use the enableTransactionalOneWay property to ensure that one-way JAX-RPC web service requests
using the IBM proprietary JMS transport will be sent to the destination queue or topic transactionally.

About this task

Note: Beginning with WebSphere Application Server 7.0, the IBM proprietary SOAP over JMS protocol is
deprecated in favor of the emerging industry standard protocol. You can use the IBM proprietary
SOAP over JMS protocol with your Java API for XML Web Services (JAX-WS) or JAX-RPC web
services, however, you are encouraged to take advantage of the SOAP over JMS protocol
standard. This task describes configuring a permanent replyTo queue when using the IBM
proprietary SOAP over JMS transport. To learn more about the SOAP over JMS standard, see the
using SOAP over JMS to transport web services documentation.

When using JMS to transport web service requests, the default behavior is for the SOAP message to be
added to the destination queue or topic non-transactionally or outside of the client application's transaction.
Adding the SOAP message to the destination queue or topic is done outside of the transaction to avoid
synchronization problems that can occur with two-way web service requests. However, you can choose to
enable one-way requests to be processed as part of the transaction. The enableTransactionalOneWay
property can be used to ensure that one-way web service requests that use the JMS transport will be sent
to the destination queue or topic transactionally. When the client application invokes the one-way web
service request, the resulting SOAP request message is added to the destination queue or topic as part of
the client application's transaction.

Use one of the following ways to enable the enableTransactionalOneWay property.

Procedure
v Set the enableTransactionalOneWay property programmatically on the client JAX-RPC Stub or Call

object.

Chapter 36. Developing web services - Transports 1767

When using a static Stub to invoke the web service operation, set the enableTransactionalOneWay
property on the Stub object before invoking the web service method. When using a Call object to invoke
the web service operation, set the enableTransactionalOneWay property on the Call object before
invoking the invokeOneWay() method.

Service service = /* Obtain the desired service */
MyStub stub = service.getPort();

/* Set enableTransactionalOneWay property on Stub */
stub._setProperty(com.ibm.websphere.webservices.Constants.ENABLE_TRAN_ONEWAY, new Boolean(true));

/* Invoke the one-way operation */
stub.myOneWayOperation("Parm1");

The value of the property is Boolean.

v Set the enableTransactionalOneWay property as a custom property in the ibm-webservicesclient-
bnd.xmi deployment descriptor file by using the wsadmin command.

For more information about the wsadmin tool options, see the options for the AdminApp object install,
installInteractive, edit, editInteractive, update, and updateInteractive commands information.

Use the $AdminApp object along with the -WebServicesClientCustomProperty option to set the value of
the property within the client binding file, ibm-webservicesclient-bnd.xmi. The value of the custom
property, enableTransactionalOneWay, is either true or false.
– Using Jacl:

$AdminApp edit MyApplication {-WebServicesClientCustomProperty {{MyEJBJar.jar MyEJB
service/MyServiceRef MyPort enableTransactionalOneWay true}}}

– Using Jython:

AdminApp.edit(’MyApplication’, [’-WebServicesClientCustomProperty’, [[’MyEJBJar.jar’,
’MyEJB’, ’service/MyServiceRef ’, ’MyPort’, ’enableTransactionalOneWay’, ’true’]]])

Results

You have a web service client application that is configured to invoke one-way requests transactionally
while using the JMS transport.

What to do next

After you have enabled the enableTransactionalOneWay property, run the client application.

Configuring SOAP over JMS message types
You can configure your SOAP over Java Message Service (JMS) request or response messages to use
either BytesMessage or TextMessage objects.

Before you begin

A web service must be implemented as an enterprise bean for accessibility through the JMS transport.

About this task

For your web services that use the emerging industry standard SOAP over JMS protocol, you can
configure the SOAP over JMS requests and responses to specify whether the messages are transmitted
within JMS BytesMessage (javax.jms.BytesMessage) or TextMessage (javax.jms.TextMessage) objects.
The default message type is BytesMessage.

If the JMS message is a BytesMessage, the body of the JMS message is binary data.

If the JMS message is a TextMessage, the body of the JMS message is string data. For example, consider
configuring text messages if you want to implement an audit or logging facility that requires JMS
messages that are human readable.

1768 Developing WebSphere applications

When using SOAP over JMS as a transport for web services request and response messages, it is
important to understand the following performance considerations when deciding whether to use
BytesMessage or TextMessage objects:

v Memory usage -

The payload within a TextMessage is string-based and because the individual characters are based on
the UTF-16 character encoding, the payload within a TextMessage is likely to occupy twice as many
bytes as an equivalent BytesMessage. For request and response messages with small payloads, this
difference in memory usage between TextMessages and BytesMessages might not be important, but for
large payloads, the difference in memory usage might become more important to consider for your
business environment.

v Binary attachments -

When a JMS TextMessage is used to transport request and response messages, any binary
attachments that are included along with the SOAP message body must be base64-encoded because
the underlying message payload is string-based. When binary attachments are base64-encoded,
additional processing time and memory are required to perform the transformation on that data. As a
result, it is possible that the base64-encoded binary attachment might be up to one-third larger than the
original unencoded version of the attachment. In this case, if this larger encoded attachment part is then
transported in a string-based message payload, the memory usage required to transport the binary
attachment part might be almost three times the memory size of the original unencoded binary
attachment within a BytesMessage.

Procedure
v Specify the JMS message type for JAX-WS applications.

You can configure the JMS message type to specify BYTES or TEXT in the following ways when using
JAX-WS applications. The JAX-WS Web services engine searches for the messageType property in the
order of this list and uses the first setting that it finds.

– Set the messageType property in the JMS endpoint location URL string; for example:
jms:jndi:jms/MyQueue&....&messageType=TEXT

See the JMS endpoint URL syntax information for details on how to set this property using this
method.

– Set the com.ibm.websphere.webservices.transport.jms.messageType custom property in the JMS
transport policy binding in the administrative console. See the JMS transport bindings information for
details on how to set this property using the administrative console.

– Set the com.ibm.websphere.webservices.transport.jms.messageType property programmatically on
the RequestContext object of the JAX-WS BindingProvider.

– Set the com.ibm.websphere.webservices.transport.jms.messageType global system property in the
JVM process under which the application server is running. See the Java virtual machine custom
properties information for details on how to set this property using this method.

v Specify the JMS message type for JAX-RPC applications.

You can configure the JMS message type to specify BYTES or TEXT in the following ways when using
JAX-RPC applications. The JAX-RPC Web services engine searches for the messageType property in
the order of this list and uses the first setting that it finds.

– Set the messageType property in the JMS endpoint location URL string; for example:
jms:jndi:jms/MyQueue&....&messageType=TEXT

See the JMS endpoint URL syntax information for details on how to set this property using this
method.

– Set the com.ibm.websphere.webservices.transport.jms.messageType property programmatically on
the Stub or Call object of the client application..

– Set the com.ibm.websphere.webservices.transport.jms.messageType custom property in the client
binding file, META-INF/ibm-webservicesclient-bnd.xmi.

Chapter 36. Developing web services - Transports 1769

– Set the com.ibm.websphere.webservices.transport.jms.messageType global system property in the
JVM process under which the application server is running. See the Java virtual machine custom
properties information for details on how to set this property using this method.

Results

You have configured a web service client to use either TextMessage or BytesMessage objects when using
the SOAP over JMS protocol to transmit request and response messages.

1770 Developing WebSphere applications

Chapter 37. Developing web services - UDDI registry

The Universal Description, Discovery, and Integration (UDDI) specification defines a way to publish and
discover information about web services. The UDDI specification defines a standard for the visibility,
reusability, and manageability that are essential for a service-oriented architecture (SOA) registry service.
The UDDI registry is a directory for web services that is implemented using the UDDI specification. It is a
component of WebSphere® Application Server.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Developing with the UDDI registry
You can access the UDDI registry in several ways; the UDDI registry user interface, application
programming interfaces (APIs), or the Java API for XML Registries (JAXR).

About this task

You can access the UDDI registry programmatically by using several application programming interfaces
(APIs).

You can also explore the UDDI registry by using the UDDI registry user interface (also referred to as the
UDDI registry user console), which is a graphical interface.

You can access both UDDI (Version 2 only) and ebXML registries by using the Java API for XML
Registries (JAXR). This Java client API is part of the Java EE specification.

Procedure
v “UDDI registry client programming”

v “Using the UDDI registry user interface” on page 1786

v “Using the JAXR provider for UDDI” on page 1792

UDDI registry client programming
The UDDI registry provides several application programming interfaces (APIs) that you can use to access
the UDDI registry programmatically.

About this task

The UDDI Version 3 registry supports multiple versions of UDDI. It supports UDDI Version 1, Version 2,
and Version 3.

For details of the Version 1 and Version 2 API, refer to the UDDI Version 2 Specifications.

For details of the UDDI Version 3.0.2 API, refer to the UDDI Version 3.0.2 Specification.

The UDDI registry information in this information center defines the support that the UDDI registry provides
for the UDDI Version 3.0.2 specification and associated addenda.

The following UDDI Version 3 API sets are supported:
v The UDDI V3 Inquiry API
v The UDDI V3 Publish API
v The UDDI V3 Custody and Ownership Transfer API

© IBM Corporation 2009 1771

v The UDDI V3 Security API

Restriction: In DB2 for zSeries® Version 7, the length of publish and inquiry strings are limited to 255
characters. If this limit is exceeded, error 10500 (E_Fatal) is returned. If you use a character
set that uses multiple byte characters, it is easy to exceed this limit. Therefore, use care if
you use this type of character set.

Procedure
1. Learn about the standard aspects of the UDDI APIs by using the following topics.

v “UDDI registry Version 3 entity keys” on page 1778 explains UDDI entity keys, and the capability
with UDDI Version 3 to save UDDI entities with publisher-assigned keys.

v “Digital signatures and the UDDI registry” on page 1781 explains the support for digital signing of
UDDI entities, and for validation of signatures.

2. Access the APIs programmatically. The recommended client API is the UDDI Version 3 Client, which
allows access to the UDDI Version 3 APIs from Java client code.

Other client APIs are provided for compatibility with previous versions of the UDDI registry:

v The UDDI4J programming interface provides Java class libraries for accessing UDDI Version 1 and
Version 2 APIs. These class libraries are both deprecated in this release, and are replaced by the
UDDI Version 3 Client for Java.

v The UDDI EJB Interface provides an Enterprise JavaBeans (EJB) interface to the UDDI Version 2
APIs. The UDDI EJB interface is deprecated in this release.

Although the recommended programmatic access to the UDDI APIs is through the UDDI Version 3
Client for Java, it is also valid to use the UDDI APIs directly by using SOAP. To use the SOAP API,
construct a properly-formed UDDI message in the body of a SOAP request, and send it by using HTTP
POST to the appropriate SOAP endpoint for the UDDI service. The response is returned in the body of
the HTTP reply.

The UDDI registry samples include samples that demonstrate how to program directly to the SOAP
API. The samples are written in Java code, but you can use other programming languages to create
your SOAP client, provided that you still send requests that are compliant to the SOAP specification.
Valid UDDI requests must conform to the UDDI schema, as detailed in the UDDI specification

Support is also provided to use HTTP GET to return XML representations of UDDI entities: see “HTTP
GET services for UDDI registry data structures” on page 1782 for details.

Inquiry API for the UDDI Version 3 registry
The Inquiry API provides four forms of query that follow broadly used conventions that match the needs of
software that is traditionally used in registries.

The four forms of query are:
v The browse pattern
v The drilldown pattern
v The invocation pattern
v Inquiry API functions

Browse pattern for the UDDI registry

Software that is used to explore and examine data, especially hierarchical data, requires browse
capabilities. The browse pattern characteristically involves starting with some broad information, performing
a search, finding general result sets, then selecting more specific information for drill-down patterns.

The UDDI API specifications accommodate the browse pattern with the find_xx API calls. These calls form
the search capabilities that the API provides. The calls are matched with summary return messages that
return overview information about the registered information that is associated with the inquiry message
type and the search criteria specified in the inquiry.

1772 Developing WebSphere applications

A typical browse sequence might involve finding whether there is any information registered for a business
you know about. This sequence starts with a call to find_business, perhaps passing the first characters of
the business name that you know. This action returns a businessList result. This result is overview
information, including keys, names, and descriptions, that is derived from the registered businessEntity
information, matching on the name fragment that you provide. If the business you are looking for is in this
list, you can use the find_service API call to drill down into the corresponding businessService information,
and look for specific technical models, such as purchasing or shipping. Similarly, if you know the technical
fingerprint, that is, the tModel signature, of a particular software interface, and you want to see if the
business you are looking for provides a web service that supports that interface, you can use the
find_binding inquiry message.

Drilldown pattern for the UDDI registry

When you have a key for one of the four main data types that a UDDI registry manages, you can use that
key to access the full registered details of a specific data instance. The UDDI data types are
businessEntity, businessService, bindingTemplate, and tModel. You can access the full registered
information for any of these structures by passing a relevant key type to one of the get_xx API calls.

Continuing the example from the previous section, one data item that is returned by all of the find_x return
sets is key information. For the business you are interested in, the businessKey value that is returned in
the contents of a businessList structure can be passed as an argument to the get_businessDetail
message. The successful return to this message is a businessDetail message that contains the full
registered information for the entity with the key value that is passed. This information will be a full
businessEntity structure.

Invocation pattern for the UDDI registry

For an application to take advantage of a remote web service that is registered in the UDDI registry by
other businesses or entities, you must prepare that application to use the information found in the registry
for the specific service being invoked.

The bindingTemplate data that is obtained from the UDDI registry represents the specific details about an
instance of a given interface type, including the location at which a program starts interacting with the
service. The calling application or program caches this information and uses it to contact the service at the
registered address whenever the calling application needs to communicate with the service instance.

In remote procedure technologies that were previously popular, tools automate the tasks that are
associated with caching, or hard coding, location information. However, there are problems when a remote
service moves and the callers do not know about the move. There are many reasons why a remote
service might move, for example, a server upgrade, disaster recovery, service acquisition, or a change to
the business name.

When a call fails using cached information previously obtained from a UDDI registry, the correct behavior
is to query the UDDI registry for fresh bindingTemplate information. If the data that is returned is different
from the cached information, the service invocation can automatically try the invocation again, using the
fresh information. If the result of this retry is successful, the new information replaces the cached
information.

By using this pattern with web services, a business that uses a UDDI registry can automate the recovery
of a large number of partners without unneccessary communication and coordination costs. For example, if
a business activates a disaster recovery site, most of the calls from partners fail when they try to invoke
services at the failed site. By updating the UDDI information with the new address for the service, partners
who use the invocation pattern automatically locate the new service information and recover without further
administrative action.

Inquiry API functions in the UDDI registry:

Chapter 37. Developing web services - UDDI registry 1773

You can use the Inquiry API set to locate and obtain details about entries in a UDDI registry.

The Inquiry API is split into a number of functions, where each function requires some mandatory and
some optional arguments.

The find_xx API functions can accept an optional findQualifiers argument.

To access all API calls and arguments that are supported by the UDDI Version 3 registry programmatically,
use the UDDI Version 3 Client for Java. To access the API functions graphically, you can use the UDDI
user interface, but not all functions are available with this method.

The UDDI Version 3 registry supports the following Inquiry API calls:
find_binding

Locates specific bindings in a registered businessService. Returns a bindingDetail message that
contains zero or more bindingTemplate structures that match the criteria specified in the argument
list.

find_business
Locates information about one or more businesses. Returns a businessList message that matches
the conditions specified in the arguments.

find_relatedBusinesses
Locates information about businessEntity registrations that are related to a specific business entity
whose key is passed in the inquiry. The related businesses feature is used to manage registration
of business units and subsequently relate them based on organizational hierarchies or business
partner relationships. Returns a relatedBusinessList message that contains results that match the
conditions specified in the argument list.

find_service
Locates specific services in a registered businessEntity. Returns a serviceList message that
matches the conditions specified in the arguments.

find_tModel
Locates a list of tModel entities that match a set of specified criteria. The response is a list of
abbreviated information about registered tModel data that matches the specified criteria. The result
is returned in a tModelList message.

get_bindingDetail
Requests the runtime bindingTemplate information for the purpose of invoking a registered
business API. Returns a bindingDetail message.

get_businessDetail
Returns complete businessEntity information for one or more specified businessEntity registrations
that match the specified businessKey values. Returns a businessDetail message.

get_opertionalInfo
Gets full operational information pertaining to one or more entities in the registry. Returns an
operationalInfos structure.

get_serviceDetail
Requests full information about a known businessService structure. Returns a serviceDetail
message.

get_tModelDetail
Gets full details for a given set of registered tModel data. Returns a tModelDetail message.

For details of the query syntax, refer to the UDDI Version 3 API specification.

FindQualifier values for API functions in the UDDI registry:

The find_xx API functions (find_business, find_service, find_binding, find_tModel and
find_relatedBusinesses) accept an optional findQualifiers argument, which can contain multiple
findQualifier values.

1774 Developing WebSphere applications

The following list contains the findQualifier short names, a brief description, and the appropriate find
function.
andAllKeys

Specifies that the identifierBag element uses AND behavior with keys, rather than OR behavior.
This behavior is the default for the categoryBag and tModelBag elements. This value applies to
the find_business, find_service, find_binding, and find_tModel functions. This value does not apply
to the find_relatedBusinesses function.

approximateMatch
Specifies that wildcard search behavior is required. This is no longer the default behavior; the
default behavior is specified by the exactMatch value. This value applies to the find_business,
find_service, find_binding, find_tModel, and find_relatedBusiness functions.

binarySort
Specifies a faster sort by using a binary sort by name, as represented in Unicode codepoints. This
value applies only to the find_business, find_service and find_tModel functions.

bindingSubset
This value is used only with a categoryBag element in the find_business or find_services
functions.

caseInsensitiveMatch
Specifies that the matching behavior for name, keyValue, and keyName, where applicable, is not
case-sensitive. By default, the matching behavior is case-sensitive. This value applies to the
find_business, find_service, and find_tModel functions.

caseInsensitiveSort
Specifies that the sorting behavior for name, keyValue, and keyName, where applicable, is not
case-sensitive. By default, the sorting behavior is case-sensitive.

caseSensitiveMatch
Specifies that the matching behavior for name, keyValue, and keyName, where applicable, is
case-sensitive. This is the default behavior. This value applies to the find_business, find_service,
find_binding, find_tModel, and find_relatedBusinesses functions.

caseSensitiveSort
Specifies that the sorting behavior for the result set is case-sensitive. This is the default behavior.
This value applies to the find_business, find_service, and find_tModel functions.

combineCategoryBags
For a find_business function, specifies that the categoryBag entries for the full businessEntity
element behave as though all categoryBag elements found at the businessEntity level and in all
contained or referenced businessService elements and bindingTemplate elements are combined.

For a find_service function, specifies that the categoryBag entries for the full businessService
element behave as though all categoryBag elements found at the businessService level and in all
contained or referenced elements in the bindingTemplate elements are combined.

This value applies only to the find_business and find_service functions.
diacriticInsensitiveMatch

Specifies that the matching behavior for name, keyValue, and keyName, where applicable, is
performed without regard to diacritics, for example accent marks. This is an optional value that
applies to the find_business, find_service, find_binding, find_tModel, and find_relatedBusinesses
functions.

diacriticSensitiveMatch
Specifies that the matching behavior for name, keyValue, and keyName, where applicable, is
performed with regard to diacritics, for example accent marks. This is the default behavior. This
value applies to the find_business, find_service, find_binding, find_tModel, and
find_relatedBusinesses functions.

exactMatch
Specifies that only entries with names, keyValues, and keyNames, where applicable, that exactly
match the name argument passed in, after normalization, are returned. The matching behavior is
sensitive to case and diacritics, where applicable, and is the default behavior. This value applies to
the find_business, find_service, find_binding, find_tModel, and find_relatedBusinesses functions.

Chapter 37. Developing web services - UDDI registry 1775

signaturePresent
Specifies that the result set is restricted to either entities that contain an XML digital signature
element, or entities that are contained in an entity that contains an XML digital signature element.
This value applies to the find_business, find_service, find_binding, find_tModel, and
find_relatedBusinesses functions.

orAllKeys
Specifies that the tModelBag and categoryBag elements use OR behavior with the keys in a bag,
rather than AND behavior. It is not possible to use OR behavior with the categories and retain the
default AND behavior of the tModel entities. For the find_business function, this is the default
behavior for the identifierBag element. This value applies to the find_service, find_binding (for
categoryBag and tModelBag) and find_tModel functions, where it is the default behavior for the
identifierBag element and applies to the categoryBag element.

orLikeKeys

Specifies that when a categoryBag or identifierBag element contains multiple keyedReference
elements, the elements use OR behavior with any keyedReference filters that come from the same
namespace, that is, the filters have the same tModelKey value, rather than AND behavior. This
value applies to the find_business, find_service, find_binding, and find_tModel functions.

serviceSubset
Specifies that the component of the search that involves categorization uses only the categoryBag
elements from contained or referenced businessService elements in the registered data, and
ignores any entries found in the categoryBag that are not direct descendent elements of registered
businessEntity elements. This value applies only to the find_business function with the
categoryBag element.

sortByNameAsc
Specifies that the result set that a find or get inquiry API returns is sorted on the name field in
ascending order. This value takes precedence over sortByDateAsc and sortByDateDesc values,
but if a sortByDateXxx value is used without a sortByNameXxx value, the result set is sorted by
date, regardless of the name field. This value applies to the find_business, find_service,
find_tModel, and find_relatedBusinesses functions.

sortByNameDesc
Specifies that the result set that a find or get inquiry API returns is sorted on the name field in
descending order. This value takes precedence over sortByDateAsc and sortByDateDesc values,
but if a sortByDateXxx value is used without a sortByNameXxx value, the result set is sorted by
date, regardless of the name field. This value applies to the find_business, find_service,
find_tModel, and find_relatedBusinesses functions.

sortByDateAsc
Specifies that the result set that a find or get inquiry API returns is sorted on the most recent date
when each entity, or any entities that they contain, were last updated, in ascending chronological
order, that is, the oldest entity is returned first. If this value is used with a sortByNameXxx value,
the name-based sort takes precedence over the date-based sort, that is, the results are sorted by
name, then within names by date, oldest to newest. This is the default behavior for the
find_binding function. This value applies to the find_business, find_service, find_tModel, and
find_relatedBusinesses functions.

sortByDateDesc
Specifies that the result set that a find or get inquiry API returns is sorted on the most recent date
when each entity, or any entities that they contain, were last updated, in descending chronological
order, that is, the most recently changed entity is returned first. If this value is used with a
sortByNameXxx value, the name-based sort takes precedence over the date-based sort, that is,
the results are sorted by name, then within names by date, newest to oldest. This value applies to
the find_business, find_service, find_binding, find_tModel and find_relatedBusinesses functions.

suppressProjectedServices
Specifies that a find_service or find_business function must not return service projections. This
value is enabled by default whenever the find_service function is used without a businessKey key.
This value applies to the find_business and find_service functions.

1776 Developing WebSphere applications

For further details on the findQualifiers, refer to the UDDI Version 3 Specification documentation.

Publish API for the UDDI Version 3 registry
Use the UDDI Publish API to publish, delete, and update information that is contained in a UDDI registry.
The messages that are defined in this section all behave synchronously.

To access all API calls and arguments that are supported by the UDDI Version 3 registry programmatically,
use the UDDI Version 3 Client for Java. To access the API functions graphically, you can use the UDDI
user interface, but not all functions are available with this method.

The UDDI Version 3 registry supports the following Publish API calls:
add_publisherAssertions

Adds one or more publisherAssertions to the assertion collection of an individual publisher.
delete_binding

Deletes one or more instances of bindingTemplate data from the UDDI registry.
delete_business

Removes one or more business registrations and all direct contents from a UDDI registry.
delete_publisherAssertions

Removes one or more publisherAssertion elements from an assertion collection of a publisher.
delete_service

Removes one or more businessService elements from the UDDI registry and from its containing
businessEntity parent.

delete_tModel
Logically deletes one or more tModel structures. Logical deletion hides the deleted tModel entities
from find_tModel result sets, but does not physically delete them, so they are returned on a
get_registeredInfo request.

get_assertionStatusReport
Provides administrative support to determine the status of current and outstanding publisher
assertions that involve any of the business registrations that the individual publisher account
manages. A publisher can use this message to see the status of assertions that they have made,
and to see assertions that others have made that involve businessEntity structures that the calling
publisher account controls.

get_publisherAssertions
Obtains the full set of publisher assertions that are associated with an individual publisher account.
Publisher assertions are used to control publicly visible business relationships.

get_registeredInfo
Obtains an abbreviated list of all businessEntity and tModel data that are controlled by the
individual that is associated with the credentials that are passed.

save_binding
Saves or updates a complete bindingTemplate element. This message can be used to add or
update one or more bindingTemplate elements as well as the container or contained relationship
that each bindingTemplate has with one or more existing businessService elements.

save_business
Saves or updates information about a complete businessEntity element. This API has the broadest
scope of all the save_xx API calls in the publisher API, and can be used to make comprehensive
changes to the published information for one or more businessEntity elements that an individual
controls.

save_service
Adds or updates one or more businessService elements that a specified businessEntity exposes.

save_tModel
Adds or updates one or more registered tModel entities.

set_publisherAssertions
Manages all the tracked relationship assertions that are associated with an individual publisher
account.

For full details of the Publish API syntax, refer to the UDDI Version 3 API specification.

Chapter 37. Developing web services - UDDI registry 1777

Custody and Ownership Transfer API for the UDDI Version 3 registry
Use the UDDI Custody and Ownership Transfer API to transfer custody or ownership of one or more
entities that are contained in a UDDI Version 3 registry. The UDDI Version 3 registry supports only
intra-node ownership transfer; it does not support inter-node custody transfer.

To access all API calls and arguments that are supported by the UDDI Version 3 registry programmatically,
use the UDDI Version 3 Client for Java. To access the API functions graphically, you can use the UDDI
user interface, but not all functions are available with this method.

The UDDI Version 3 registry supports the following Custody and Ownership Transfer API calls:
discard_transferToken

Discards a transferToken that is obtained through the get_transferToken API.
get_transferToken

Initiates the transfer of ownership of one or more businessEntity or tModel entities from one
publisher to another. When the API is invoked, no transfer takes place. Instead, the relinquishing
publisher uses this API to obtain permission from the custodial node, in the form of a
transferToken, to undertake the transfer. The relinquishing publisher gives the transferToken to the
recipient publisher, who must invoke the transfer_entities API to transfer the entities.

transfer_entities
Performs the transfer of entities when called by the recipient publisher. The recipient publisher
must specify an unexpired transferToken on the call.

For details of the query syntax, refer to the UDDI Version 3 API specification.

Security API for the UDDI Version 3 registry
The UDDI Version 3 registry has an independent Security API, unlike UDDI Version 1 and Version 2,
where the Security API is part of the Publish API.

To access all API calls and arguments that are supported by the UDDI Version 3 registry programmatically,
use the UDDI Version 3 Client for Java. To access the API functions graphically, you can use the UDDI
user interface, but not all functions are available with this method.

The UDDI Version 3 registry supports the following Security API calls:
discard_authToken

Informs a node that a previously obtained authentication token is no longer required and is no
longer valid if it is used after this message is received. The token is discarded and the session is
effectively ended.

get_authToken
Requests an authentication token in the form of an authInfo element from a UDDI node.

For full details of the Security API syntax, refer to the UDDI Version 3 API specification.

UDDI registry Version 3 entity keys
The UDDI Version 3 specification expands the space available for keys. Entity keys can be any Universal
Resource Identifier (URI) that follows the recommended UDDI scheme. Depending on registry policy, both
the UDDI registry and the publisher of the entity can assign keys.

Entity keys are identifiers that are used to address entities in a UDDI registry. Each businessEntity,
businessService, bindingTemplate, or tModel entity has a unique identifier that is generated or assigned
when it is first published in the UDDI registry. In a particular registry, a key must be unique. For UDDI
Version 1 and Version 2, the space is limited to a universal unique identifier (UUID). For UDDI Version 3,
entity keys can be any URI that follows the recommended UDDI scheme.

For UDDI Version 3, depending on registry policy, not only can the UDDI registry assign keys, but also the
publisher of the entity. These differences raise issues for maintaining key uniqueness and managing key
space.

1778 Developing WebSphere applications

UDDI Scheme

The UDDI Version 3 registry implements the recommended UDDI scheme, as detailed in Section 4.4 of
the UDDI Version 3 Specification. (http://uddi.org/pubs/uddi_v3.htm). This scheme defines the format of the
keys, the valid characters, and the concept of key space.

In the UDDI Version 3 registry, a key is any URI and is limited to 255 characters. The following diagram
shows the different types of keys in the UDDI key scheme:

All keys are composed of a set of tokens that are separated by colons (:). The first token for all keys that
follow the UDDI scheme is uddi. There are three types of keys:

v The uuidKey keys contain two tokens, the mandatory uddi and a <UUID>. These keys ensure
uniqueness through the UUID algorithm.

v The domainKey keys contain two tokens, the mandatory uddi and a domain name. These keys are for
creating additional mutually exclusive key spaces.

v The derivedKey keys are composite keys that are based on a subkey, which is any uddiKey, and an
additional token, kss, which is a key-specific string that differentiates keys. A publisher can assign the
kss token, or the kss token can be calculated algorithmically (UUID).

Another concept that is included in the UDDI key scheme is a key generator. A key generator represents a
key space. A publisher can save entities by using keys from a certain key space only if that publisher owns
the key generator that represents the key space. This feature helps to secure unique keys. The key
generator is a tModel entity, with a key that is in the form <subkey>:keygenerator. By owning this tModel
entity, a publisher can assign keys in the form <subkey>:<kss>. The publisher can also publish new key
generator tModel entities in the form <subkey>:<kss>:keygenerator.

Key uniqueness and registry root key space

You can configure instances of the UDDI registry as a root registry or as an affiliate registry.

Root registries define their own root key space by defining their own root key generator. This action
defines the total key space that the registry manages. All keys that the registry generates are in this key
space. If the policy allows, publishers can request subdivisions of this key space by publishing new key
generator tModel entities in the form <rootkeygenerator>:<subdivisionIdentifier>:keygenerator. Publishers
can then include publisher-supplied keys in subsequent publish requests that are in their allocated key
space subdivision, <rootkeygenerator>:<subdivisionIdentifier>:<kss>.

To avoid key collisions, affiliate registries must establish their root key generator by first submitting a
tModel:keygenerator request to the root registry they want to be an affiliate of, and then using this

Chapter 37. Developing web services - UDDI registry 1779

http://uddi.org/pubs/uddi_v3.htm

subdivision of the key space of the root registry as their own root key generator. This process ensures that
there are no collisions between keys that are generated or accepted by an affiliate registry, and other keys
in the root registry key space.

To maintain key uniqueness, simple rules are applied. The registry generates new keys only in the key
space that is defined by its own root key generator. The registry only accepts publisher-supplied keys that
are in subdivisions of key space that the publisher owns, that is, as the result of a previous successful
tModel tModel:keygenerator publish request.

Simple example for a private root registry:
with a Root keygenerator:

uddi:aPrivateRegistryKeySpaceIdentifier:keygenerator

generates Entity Keys of format:

uddi:aPrivateRegistryKeySpaceIdentifier:<uuid>

depending on Policy, accepts tModel:keygenerator requests from Publishers for
'top-level’ subdivisions of format:

uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:
keygenerator

Publishing tModel:keygenerator requests for subdivisions of key space

Depending on policy, a publisher can submit a request for a top-level subdivision of the key space in the
root registry for its own use. The policy can specify whether the registry supports publisher-supplied keys
and whether the user entitlements of particular publisher allow the publisher to submit requests for key
space.

As well as top-level subdivisions of the key space in the root registry, a publisher can also create
additional subdivisions of key space.

The following simple example is a continuation of the previous example and requests the subdivision a:
uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:
a:keygenerator

For a request for a further subdivision to be successful, the publisher that requested, and owns, the tModel
entity for the previous subdivision must make the request. In the previous example, this publisher is
uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:keygenerator).

Publishing with a publisher-supplied key

After a publisher successfully requests a subdivision of the key space in a root registry, that publisher must
establish and maintain its own scheme to ensure that the keys that are generated for use as
publisher-supplied keys in subsequent publish requests are unique in the subdivision.

Valid schemes need to generate keys that are unique derived keys in the allocated key space subdivision,
for example by including a unique (incremented) numeric index.

The following simple example continues from the previous example. For a key space subdivision that
results from the tModel:keygenerator request:
uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:
a:keygenerator

valid keys are:

uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:a:1

uddi:aPrivateRegistryKeySpaceIdentifier:aPublisherSubdivisionIdentifier:a:2

1780 Developing WebSphere applications

Digital signatures and the UDDI registry
In UDDI Version 3, publishers can digitally sign UDDI elements while they are publishing. The UDDI
Version 3 schema supports the signing of businessEntity, businessServices, bindingTemplate, tModel, and
publisherAssertion elements.

You can validate UDDI elements that are digitally signed to prove that they have not been modified or
tampered with, and that their integrity is intact.

For full details about signing UDDI entities and verifying signatures, see Appendix I: Support for XML
Digital Signatures in the UDDI Version 3.0.2. specification.

The UDDI registry does not validate signatures when signed elements are published. When the signed
elements are retrieved, the retrieving client is responsible for validating the signature and providing a
mechanism to ensure that the signer certificate is signed by a Certificate Authority (CA) that the client
approves and trusts. If a signature is decrypted successfully by using the signer public key, it indicates that
only the owner of the corresponding private key can have signed and published this element.

Signature generation

The attributes of an element are included in the generation of an element signature. Therefore, all entity
keys must be available when the signature is generated. Publishers can generate publisher-assigned keys
for all the keys of an element before signing. Alternatively, if publishers publish the element without keys,
the registry node generates the required entity keys and then retrieves, signs, and republishes the signed
element.

Signature validation

The signature element to validate is in the top-level element that a call to the getXXDetails method returns.
The client is responsible for the validation. The client must have previously imported the X509.3 certificate
of the publisher, and validated that certificate based on the CA it trusts. In this way, the client has access
to the public validation key of the publisher that corresponds to the private signing key that the publisher
used to sign the entity before publishing it.

You can use the UDDI Version 3 Client to construct Java API for XML-based RPC (JAX-RPC) objects and
to invoke the UDDI Version 3 web service. As part of this client, you can use a helper class,
com.ibm.uddi.v3.client.apilayer.xmldig.SignatureUtilities, to create and validate digital signatures on the
UDDI Version 3 entities that support them. For details of application programming interfaces (APIs) in this
helper class and the SignatureUtilitiesException exception, see the API information.

For UDDI, digital signatures are used to sign the data. They are not used to authenticate the SOAP
message.

UDDI Version 3 Client
You can use the UDDI Version 3 Client for Java to access the UDDI Version 3 application programming
interfaces (APIs) from Java client code.

The UDDI Version 3 Client for Java is a Java API for XML-based RPC (JAX-RPC) class library that
provides an API that client programs can use to interact with a Version 3 UDDI registry. This class library
can be used to construct UDDI JAX-RPC objects and to invoke the UDDI Version 3 web service.

This client also contains an XML digital signature utility class called SignatureUtilities, which is provided to
construct and validate digital signatures on UDDI elements.

Chapter 37. Developing web services - UDDI registry 1781

Multiple language encoding support

The UDDI Version 3 API supports both UTF-8 and UTF-16 encoding. Internally, UTF-16 characters are
stored as UTF-8 characters. This behavior is not apparent to the user application.

Client JAR file

WebSphere Application Server provides the class library uddiv3client.jar, which contains the JAX-RPC
UDDI Version 3 types and UDDI WebService invocation classes. This Java archive (JAR) file is in
app_server_root/UDDIReg/clients.

The UDDI Version 3 client provides port types that map onto the UDDI Version 3 SOAP Inquiry, Publish,
Custody Transfer, and Security APIs. These APIs are protected by access control mechanisms, for
example role mappings. A client program that uses the UDDI Version 3 client gets the appropriate port
type for the request that is issued, for example, the UDDI_Publication_PortType for a save_business
request. If the role mappings are such that the request requires a WebSphere Application Server
authenticated user ID, the client program passes the user ID and password by setting the relevant
properties on the JAX-RPC stub for that port.

UDDI Version 3 Client samples

The following UDDI registry samples illustrate the use of the Version 3 Client. To access the samples, see
the Samples for WebSphere Application Server and use the UDDI Registry link.

UDDIv3ClientBindingSample.java
An example of how to save and find binding templates.

UDDIv3ClientBusinessSample.java
An example of how to save and find business entities.

UDDIv3ClientServiceSample.java
An example of how to save and find business services.

UDDIv3ClientSignedBusinessSample.java
An example of how to sign and verify a business entity.

UDDIv3ClientTModelSample.java
An example of how to save and find TModel entities.

UDDIv3ClientSignedTModelSample.java
An example of how to sign and verify TModel entities.

These classes contain details on how to compile and run the samples.

HTTP GET services for UDDI registry data structures
The UDDI registry offers an HTTP GET service for access to the XML representations of the
businessEntity, businessService, bindingTemplate, and tModel UDDI data structures. The Uniform
Resource Locators (URLs) at which these structures are accessible use the entity key as a URL
parameter. The XML element that is returned is a businessDetail, serviceDetail, bindingDetail or
tModelDetail element, according to the type of entity key that is supplied.

XML for both UDDI Version 2 and Version 3 can be retrieved, each at different URLs. The URLs to send
the HTTP GET requests to are in the following formats:

For UDDI Version 2:
http://server:port/uddisoap/get?entityKey_type=v2_entityKey

For UDDI Version 3:
http://server:port/uddiv3soap/get?entityKey_type=v3 entityKey

1782 Developing WebSphere applications

For example, if the server is myserver.com and the port is 9080, you can access the uddi-org:types tModel
entity at the following URLs:

UDDI Version 2:
http://myserver.com:9080/uddisoap/get?tModelKey=uuid:c1acf26d-9672-4404-9d70-39b756e62ab4

UDDI Version 3:
http://myserver.com:9080/uddiv3soap/get?tModelKey=uddi:uddi.org:categorization:types

A number of UDDI node property and policy settings relate to the HTTP GET services:

v Version 3 HTTP GET for UDDI entities

– Node supports HTTP GET

– URL prefix for Version 3 GET servlet

– Node generates discovery URLs

v Version 2 HTTP GET for discovery URLs

– Prefix for generated discovery URLs

– Node generates discovery URLs

UDDI registry SOAP service end points
UDDI Version 3 supports multiple versions of SOAP API services. Depending on the security settings for
WebSphere Application Server and the user data constraint transport guarantee settings for the UDDI
SOAP service, UDDI Version 3 supports different end points for different services.

The following list of default context root and Uniform Resource Locator (URL) values apply when
WebSphere Application Server security is enabled and you and do not change the default supplied
security settings. If you do not use the default security settings, the context root and URL values might
differ.

In the following URLs, the variables have the following values:

v host_name is the name of the machine that is running the relevant profile.

v http_port is the internal HTTP port for the profile, for example 9080.

v ssl_port is the internal secure sockets layer (SSL) port for the profile, for example 9443.

v Version 1 and Version 2 SOAP API services

Inquiry service
Default (soap.war) context-root='/uddisoap' and url-pattern = 'inquiryAPI' or 'inquiryapi'.

Default URL: http://host_name:http_port/uddisoap/inquiryapi

Publish service
Default (soap.war) context-root='/uddisoap' and url-pattern = 'publishAPI' or 'publishapi'.

Default URL: https://host_name:ssl_port/uddisoap/publishapi or http://host_name:http_port/
uddisoap/publishapi

v Version 3 SOAP API services

Inquiry service
Default (soap.war) context-root='/uddiv3soap' and url-pattern = '/services/UDDI_Inquiry_Port'

Default URL: http://host_name:http_port/uddiv3soap/services/UDDI_Inquiry_Port

Publish service
Default (soap.war) context-root='/uddiv3soap' and url-pattern = '/services/UDDI_Publish_Port'

Default URL: https://host_name:ssl_port/uddiv3soap/services/UDDI_Publish_Port or
http://host_name:http_port/uddiv3soap/services/UDDI_Publish_Port

Custody transfer service
Default (soap.war) context-root='/uddiv3soap' and url-pattern = '/services/UDDI_Custody_Port'

Chapter 37. Developing web services - UDDI registry 1783

Default URL: https://hostname:9443/uddiv3soap/services/UDDI_Custody_Port or
http://hostname:9080/uddiv3soap/services/UDDI_Custody_Port

Security service
Default (soap.war) context-root='/uddiv3soap' and url-pattern = '/services/UDDI_Security_Port'

Default URL: https://host_name:ssl_port/uddiv3soap/services/UDDI_Security_Port or
http://host_name:http_port/uddiv3soap/services/UDDI_Security_Port

An endpoint is available for using HTTP GET to return XML representations of UDDI entities. See the
information about HTTP GET services for UDDI registry data structures.

If you configure the UDDI registry to use WebSphere Application Server security, and you do not change
the default data confidentiality settings for the UDDI SOAP service, services with default end point URLs
with HTTPS and a SSL port require that their data is transported confidentially. Requests that do not use
HTTPS are rejected.

If you configure the UDDI registry to use WebSphere Application Server security and you change the data
confidentiality setting for the UDDI SOAP service to NONE, or you disable WebSphere Application Server
security, services with default end point URLs with HTTPS and a SSL port can also use HTTP and a
HTTP port.

To understand how access to the SOAP APIs is protected, see the information about access control for
UDDI registry interfaces.

UDDI4J programming interface (Deprecated)
The UDDI4J Version 2 APIs are deprecated in this version of WebSphere Application Server. The UDDI
Version 3 Client for Java is the preferred API for accessing UDDI through Java code.

WebSphere Application Server provides UDDI4J classes in the com.ibm.uddi.jar file. This file contains
classes that support Version 1 and Version 2 of the UDDI specification, providing compatability with earlier
versions of WebSphere Application Server. The UDDI4J classes in this file are deprecated.

The UDDI4J methods map onto the UDDI Version 1 and Version 2 SOAP Inquiry and Publish APIs. These
APIs are protected by access control mechanisms, for example role mappings. If the role mappings for
these APIs are such that requests to these interfaces require a WebSphere Application Server
authenticated user ID, a client program that uses UDDI4J must pass the user name and password, by
setting the system properties http.basicAuthUserName and http.basicAuthPassword. A UDDI4J client
program can also specify details for a proxy server, including a user name and password, by using the
following system properties:

v http.proxyHost

v http.proxyPort

v http.proxyUserName

v http.proxyPassword

Using the UDDI EJB Interface (Deprecated)
Use the Enterprise JavaBeans (EJB) application programming interface (API) of the UDDI registry
component to publish, find, and delete UDDI entries. However, the UDDI EJB interface is deprecated and
supports UDDI version 2 API requests only.

Before you begin

Both WebSphere Application Server and the UDDI registry must be installed, and must both be running.
You cannot use the EJB client from a machine that does not have WebSphere Application Server installed.

1784 Developing WebSphere applications

About this task

Note: The UDDI EJB interface is deprecated in WebSphere Application Server Version 6.0.

The client classes that are required for the EJB interface are contained in app_server_root/UDDIReg/
clients/uddiejbclient.jar. For the Java documentation for these classes, see the information about additional
APIs.

The EJB API is contained in two stateless session beans, one for the inquiry API
(com.ibm.uddi.ejb.InquiryBean) and one for the publish API (com.ibm.uddi.ejb.PublishBean), whose public
methods form an EJB interface for the UDDI registry. All the public methods on the InquiryBean class
correspond to UDDI Version 2 inquiry API functions, and all the public methods on the PublishBean class
correspond to UDDI Version 2 publish API functions. Not all UDDI Version 2 API functions are
implemented, for example get_authToken, discard_authToken, and get_businessDetailExt.

In each interface, there are groups of overloaded methods that correspond to the operations in the UDDI
2.0 specification. There is a separate method for each major variation in function. For example, the single
UDDI operation find_business is represented by ten variations of findBusiness methods, with different
variations to find by arguments such as name or categoryBag.

The arguments for the EJB interface methods are Java objects in the com.ibm.uddi.datatypes package.
Generally, there is a one-to-one correspondence between classes in this package and elements of the
UDDI Version 2 XML schema. There are exceptions to this correspondence, for example, where UDDI
XML elements can be represented by a single string. For more information, see the Java documentation
for the package com.ibm.uddi.datatypes in the information about additional APIs.

The methods on the EJB InquiryBean class map to the EJB inquiry role, and those of the EJB
PublishBean class map to the EJB publish role. The EJB inquiry and publish roles protect the EJB
interface, as described in information about access control for UDDI registry interfaces. If the role mapping
is such that a method requires a WebSphere Application Server authenticated user ID, a client program
can supply the user ID and password, either when prompted by WebSphere Application Server, or by
providing application code that logs in to the default realm using the user ID and password. Use the
sas.client.props configuration file to determine how to specify the user ID and password when you
configure security.

To use the EJB client, use the following steps.

Procedure
1. Set up your environment to communicate with WebSphere Application Server:

. app_server_root/bin/setupCmdLine.sh

app_server_root/bin/setupCmdLine.bat

Notice that a single space character follows the period
(.)

2. Ensure that your CLASSPATH includes the uddiejbclient.jar file (from the app_server_root/UDDIReg/
clients directory), and the code for your client.

3. Compile your EJB client programs:
$JAVA_HOME/bin/javac -extdirs $WAS_EXT_DIRS:$JAVA_HOME/jre/lib/ext
-classpath $WAS_CLASSPATH:$CLASSPATH yourcode.java

%JAVA_HOME%/bin/javac -extdirs $WAS_EXT_DIRS:%JAVA_HOME%/jre/lib/ext
-classpath %WAS_CLASSPATH%:%CLASSPATH% yourcode.java

Chapter 37. Developing web services - UDDI registry 1785

4. Run the compiled programs:
$JAVA_HOME/bin/java -Djava.ext.dirs=$WAS_EXT_DIRS:$JAVA_HOME/jre/lib/ext
-Dwas.install.root=$WAS_HOME -Dserver.root=$WAS_HOME $CLIENTSAS $CLIENTSOAP
-cp $WAS_CLASSPATH:$WAS_HOME/UDDIReg/clients/uddiejbclient.jar:$CLASSPATH
<class name> <args>

%JAVA_HOME%\bin\java -Djava.ext.dirs=%WAS_EXT_DIRS%;%JAVA_HOME%\jre\lib\ext
-Dwas.install.root=%WAS_HOME% -Dserver.root=%WAS_HOME% %CLIENTSAS% %CLIENTSOAP%
-cp %WAS_CLASSPATH%;%WAS_HOME%\UDDIReg\clients\uddiejbclient.jar:%CLASSPATH%
<class name> <args>

Ensure that your PATH statement starts with app_server_root/java/bin.

Using the UDDI registry user interface
The UDDI registry user interface (also referred to as the UDDI registry user console) is a graphical
interface that you can use to issue inquiry requests and explore the UDDI registry.

Before you begin

If you require multiple language encoding, the UDDI user console supports only Universal Transformation
Format (UTF)-8 encoding. For UTF-8 encoding support, configure the application server that hosts the
UDDI registry for UCS transformation format. The UDDI user console does not support UTF-16 encoding.

About this task

The UDDI user console provides a graphical user interface to most of the UDDI Version 3 API. The user
console does not support the full API set, but provides a way to issue inquiry requests and to familiarize
yourself with general UDDI concepts. Explanatory text on the screens provides help. The following list
describes areas that are not supported through the user console, and other known restrictions in the user
console.
v You cannot specify maximum rows on find queries. You can set the “Single maximum rows” value for

the registry by using the “Maximum inquiry result set size” general property on the administrative
console.

v The identifier feature is not supported in the find business area or the find technical model (tModel)
area.

v In the add business area, adding discovery URLs, identifiers or digital signatures is not supported.
v In the add technical model (tModel) area, adding identifiers or digital signatures is not supported.

The exact behavior of the user console depends on the following configurable factors:

v Whether WebSphere Application Server security is enabled.

v How the UDDI registry GUI role mappings are set. The UDDI registry supports two security roles for the
user console:

– GUI_Publish_User

– GUI_Inquiry_User.

v How the UDDI registry GUI secure sockets layer (SSL) transport guarantee constraints are set. The
UDDI registry supports the configuration of SSL settings, including two settings for the user console.

The following table summarizes the behavior of the UDDI registry user console.

1786 Developing WebSphere applications

Table 290. Behavior of the UDDI user console. The table lists the URLs used for the different UDDI registry settings,
along with a description of the behavior associated with each setting.

WebSphere
Application Server
security status

URL used to access the
UDDI user console

Behavior of the UDDI user console

Enabled http://host_name:http_port/
uddigui

Inquiry requests do not require authentication; they use the HTTP URL and are
not secure. Publish requests require WebSphere Application Server
authentication. When you access the publish pane, you are dynamically
redirected to use HTTPS, and are prompted for a user ID and password. For a
successful request, the authenticated user must be registered as a UDDI
publisher.

If the GUI_Inquiry_User role is mapped to all authenticated users, and the
transport guarantee in the user data constraint section for that role is set to
CONFIDENTIAL, all requests, including inquiry, require authentication and use
of HTTPS.

https://host_name:ssl_port/
uddigui

Requests are secure; you are prompted to authenticate with a user ID and
password. For a successful request, the authenticated user must be registered
as a UDDI publisher.

Disabled http://host_name:http_port/
uddigui

No requests, either publish or inquire, are authenticated and the data flow is
not secure (non- SSL). Even though SSL transport-guarantee settings are
defined, they are not enforced if security is disabled. All publish operations are
performed using a user ID of UNAUTHENTICATED, or a value that can be
configured by using the administrative console or the Java Management
Extensions (JMX) management interface (this applies to new requests only).

https://host_name:ssl_port/
uddigui

No requests, either publish or inquire, are authenticated, but the data flow is
secure because the SSL URL and port are used explicitly. All publish
operations are performed using a user ID of UNAUTHENTICATED, or a value
that can be configured by using the administrative console or the JMX
management interface (this applies to new requests only).

The variables in the table have the following values:

v host_name is the name of the machine that is running the relevant profile.

v http_port is the internal HTTP port for the profile, for example 9080.

v ssl_port is the internal SSL port for the profile, for example 9443.

To display the UDDI registry user console, use the following procedure.

Procedure
1. Start the UDDI application, if it is not already running.

2. Open a browser window and ensure that cookies are enabled.

3. Access the UDDI registry user console through one of the following default URLs.

v http://host_name:http_port/uddigui

v https://host_name:ssl_port/uddigui

4. Optional: To change the appearance and operation of the UDDI registry user console, modify the
appropriate .css stylesheet files. You can edit style class definitions in the stylesheet files, including
font attributes, layout, and colors. The stylesheet files are in the following directory:

profile_root/installedApps/cell_name/
UDDIRegistry.node_name.server_name.ear/v3gui.war/theme

After you change a stylesheet file, refresh the browser window for the changes to take effect.

Results

The user console displays the default frameset, which contains the following items:

v The header frame.

v The navigation frame, which shows find options.

v The details frame.

Chapter 37. Developing web services - UDDI registry 1787

What to do next

You can now use the UDDI user console to find, edit, or publish UDDI information.

Finding an entity by using the UDDI registry user interface
You can use the UDDI registry user interface to find services, businesses, and technical models.

Before you begin

Ensure that the UDDI registry application is started and the UDDI registry user console is displayed.

About this task

To use the UDDI registry user interface (also referred to as the UDDI registry user console) to find
services, businesses, and technical models, use the following procedure.

Procedure
1. In the UDDI registry console, activate the Find pane. Either click the Find tab, or click the Find link at

the top of the page or on the Welcome page.

2. Optional: For a simple search without any find qualifiers, use the following steps:

a. In the Quick Find section of the Find tab, select the kind of entity that you want to find; service,
business, or technical model.

b. In the Starting with field, enter the name of the entity. Use the percent (%) wildcard character to
search for a partial name.

c. Click Find.

The results are displayed.

3. Optional: For advanced search, use the following steps:

a. In the Advanced Find section of the Find tab, click the appropriate link for the kind of entity that
you want to find; service, business, or technical model. The advanced search form is displayed in
the frame.

b. Enter your search criteria in the advanced search form, and select any find qualifiers that you
require.

You must enter at least one name to search for, by using the Add Name link. You can use this link
to enter multiple names.

You can also add multiple categorizations. To add a categorization, use the Show category tree
link in the Categorizations section to display, a tree of categories (or taxonomies) that define the
types of item to find according to various classification systems. Expand the tree to find the
category that you want, click the category to add the information to the advanced search form, then
use the Add Categorization link to include the category in the search.

c. Click Find entities.

The results are displayed in the detail frame.

Publishing an entity by using the UDDI registry user interface
You can use the UDDI registry user interface to publish businesses and technical models.

Before you begin

Ensure that the UDDI registry application is started and the UDDI registry user console is displayed.

1788 Developing WebSphere applications

About this task

You can use the UDDI registry user interface (also referred to as the UDDI registry user console) to
publish businesses and technical models.

To publish a service, publish a business, and then edit the entity to add a service to that business.

Procedure
1. In the UDDI registry console, activate the Publish pane. Either click the Publish tab, or click the

Publish link at the top of the page or on the Welcome page.

2. Optional: To publish an entity by name only, use the Quick publish section and the following steps:

a. In the Quick Publish section of the Publish tab, select the kind of entity that you want to publish;
business or technical model.

b. In the Name field, enter the name of the entity.

c. Click Publish.

The details of the published entity are displayed.

3. Optional: To publish an entity with more information, use the following steps:

a. In the Advanced Publish section of the Publish tab, click the appropriate link for the kind of entity
you want to publish; business or technical model. The advanced publish form is displayed.

a. Enter the details for the entity in the advanced publish form. You can enter multiple names,
descriptions, contacts, or categorizations by using the relevant Add link.

To add a categorization, use the Show category tree link in the Categorizations section to
display a tree of categories (or taxonomies) that define the types of item to publish according to
various classification systems. Expand the tree to find the category that you want, click the
category to add the information to the advanced publish form, then click the Add Categorization
link.

b. Click Publish entity to publish the business or technical model to the UDDI registry.

Editing or deleting an entity by using the UDDI registry user interface
You can use the UDDI registry user interface to edit or delete the businesses and technical models that
you own, for example, to add services to businesses.

Before you begin

Ensure that the UDDI registry application is started and the UDDI registry user console is displayed.

About this task

To use the UDDI registry user interface (also referred to as the UDDI registry user console) to edit or
delete the businesses and technical models that you own, or add services to businesses, use the following
steps.

Procedure
1. In the UDDI registry console, activate the Publish pane. Either click the Publish tab, or click the

Publish link at the top of the page or on the Welcome page.

2. In the Registered Information section on the Publish tab, click Show owned entities to show the
businesses and technical models that you registered in the UDDI registry.

3. Optional: To delete a business or a technical model, click Delete in the Actions column for that entity.
When you delete a technical model, it is hidden, rather than physically deleted, as specified by the
UDDI Version 3.0 specification. If you click Shown owned entities, the technical model is still
displayed, but if you use the Find function, the technical model is not displayed. All other entities are
deleted from the UDDI registry in the usual way.

Chapter 37. Developing web services - UDDI registry 1789

4. Optional: To edit a business or technical model, click Edit in the Actions column for that entity, enter
the required details, then click Update entity to save the changes in the UDDI registry.

5. Optional: To add a service to a business, click Add service in the Actions column for that business.
Enter the details, then click Add Service to publish the service to the UDDI registry. The service
details are displayed.

Creating business relationships by using the UDDI registry user interface
If your business has an association with another business in the UDDI registry, for example a preferred
supplier, you can describe this association in the UDDI registry by creating a business relationship.

Before you begin
v The UDDI registry contains the following default relationship types:

Parent-child
A hierarchical relationship exists between the two business entities, which might represent, for
example, a large organization and a subsidiary.

Peer-peer
The two business entities represent peer organizations, for example a company and its supplier.

Identity
The two business entities represent the same organization.

If you require a different relationship type, create a user-defined value set to represent the relationship
type that you require, as described in the topic about user-defined value set support in the UDDI
registry.

v Each business that is involved in the relationship must already exist in the UDDI registry.

v Ensure that the UDDI registry application is started and the UDDI registry user console is displayed.

About this task

Complete this task when you want to publicize an association between two businesses in the UDDI
registry. For example, your organization, represented by a business entity in the UDDI registry, might have
several departments, each one represented by a different business entity in the UDDI registry. You might
want to declare these departments as being linked to the parent organization, by creating parent-child
relationships between the appropriate business entities.

Procedure
1. Activate the Publish tab by clicking it, or by clicking the Publish link at the top of the page or on the

Welcome page.

2. Under Registered Information, click Show owned entities. The entities that you own are displayed
in the detail frame on the right.

3. In the section for the businesses that you own, find the business that you want to link from, and click
the Add relationship link for that business. The Add Business Relationship pane is displayed. The
business key for the business that you selected is already listed in the From section.

4. Click Add to add the second business, the business that you want to link to. The advanced find pane
is displayed.

5. Find the second business, as described in the advanced find step of “Finding an entity by using the
UDDI registry user interface” on page 1788.

6. Click Select to add the second business to the relationship. If you want to change the positions of the
businesses, click Swap.

7. Select the type of relationship from the Type list.

8. If required, type a description in the Usage field.

1790 Developing WebSphere applications

9. Click Add relationship to create the relationship. If you own both businesses, no further action is
required. The relationship is displayed as a publisher assertion in the list of entities that you own. The
status of the assertion is complete.

10. If you do not own the second business, the status of the assertion is pending. The owner of the
second business must create a relationship from their business to yours, for the relationship to be
complete and visible to other parties. The relationship type must match the type that you chose
earlier.

Results

The business relationship is published to the UDDI registry. The UDDI user interface only shows publisher
assertions for entities that you own. To view other relationships, use the UDDI inquiry API provided.

What to do next

For more information about publisher assertions, refer to the UDDI specification.

To remove an assertion that you own, display your owned entities and click the Delete link for the relevant
publisher assertion. If the business in the To field is owned by someone else, the status of the assertion
becomes pending, and the relationship is no longer visible to other parties.

Example: Publishing a business, service, and technical model using the UDDI
registry user interface
This example describes how to use the UDDI registry user interface to publish a used car business called
Modern Cars to the UDDI registry, and how to publish a service and technical model for the business.

Before you begin, ensure that the UDDI registry application is started and the UDDI registry user console
is displayed.

Adding the business
1. Click the Publish tab to activate the Publish pane.

2. Under Advanced Publish, click Add a business. The advanced publish form is displayed.

3. Type Modern Cars in the Name field for the business. Select the language of the business name from
the list, then click Add Name to add the name to the business.

4. Type a description for the business, for example Used cars for sale in the Description field. Select
the language of the description from the list, then click Add Description to add the description to the
business. You can add multiple descriptions in a variety of languages as required.

5. In the Contact section, type your name as a contact for customers of the business. Select the
language as before, and click Add Contact. The business contact form is displayed. Enter the details,
using the Add entity links to add the information as you reach the end of each subsection. All the text
fields in the form are cleared when you click an Add entity link. Click Add Contact to save the
contact information into the Modern Cars business.

6. Use the Categorizations section to describe the Modern Cars business according to the NAICS 2002
categorization system:

a. Click Show category tree to display the various categorization systems.

b. Expand the NAICS 2002 tree, then expand Retail Trade [44] > Motor Vehicle and Parts Dealers
[441] > Automobile Dealers [4411] > Used Car Dealers [44112]. Click the Used Car Dealers
[441120] category to add the category type, key name, and key value to the advanced publish
form.

c. Click Add Categorization to add the information to the business.

d. Close the category tree by clicking Close .

7. Click Publish Business to publish the Modern Cars business to the UDDI registry. The details of the
business are displayed.

Chapter 37. Developing web services - UDDI registry 1791

Adding a service to the business
1. Click the Publish tab to activate the Publish pane.

2. Under Registered Information, click Show owned entities to display the Modern Cars business and
any other entities that you own.

3. Click Add service in the Actions column of the Modern Cars business. The publish service page is
displayed.

4. Add a name and description for the service, in the same way as for the business itself.

5. Click Add a Service Binding to display the service binding form.

a. Enter an access point (the URL for the service on the network) and a description for the service
binding.

b. Click Add Technical Model Instance Information to display a page where you can describe and
publish a technical model instance for the service binding.

c. In the technical model information page, click Add Technical Model.

d. Search for the technical model that the instance uses, select the technical model from the results,
then click Add.

e. Complete the other fields on the form and click Add Technical Model Instance.

f. Click Add Binding to save the information into the service.

Enter an access point (the URL for the service on the network) and a description for the service
binding.

6. Add a categorization in the same way as for the business.

7. Click Add Service to publish the service to the UDDI registry.

Adding a technical model
1. In the Advanced Publish section, click Add a technical model to display the publish technical model

form.

2. Add a name and description for the technical model, in the same way as for the business and the
service.

3. Click Add an Overview Document to display the overview document form. The overview document
describes the technical model.

a. Type the location of the overview document in the Overview URL field.

b. Click Add Overview Document URL.

c. Add a description and click Add Overview Document to save the information in the technical
model.

4. Add a categorization in the same way as for the business.

5. Click Publish Technical Model to publish the technical model to the UDDI registry.

Using the JAXR provider for UDDI
To get started with the Java API for XML Registries (JAXR) provider, you can use a sample program. You
also need to consider class libraries, authentication and security, internal taxonomies, and logging and
messages.

About this task

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

1792 Developing WebSphere applications

Procedure
v To obtain the ConnectionFactory instance, create a connection to the registry, and save an organization

in the registry, see the following sample program.
import java.net.PasswordAuthentication;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.Properties;
import java.util.Set;

import javax.xml.registry.BulkResponse;
import javax.xml.registry.BusinessLifeCycleManager;
import javax.xml.registry.Connection;
import javax.xml.registry.ConnectionFactory;
import javax.xml.registry.JAXRException;
import javax.xml.registry.RegistryService;
import javax.xml.registry.infomodel.Key;
import javax.xml.registry.infomodel.Organization;

public class JAXRSample
{

public static void main(String[] args) throws JAXRException
{

//Tell the ConnectionFactory to use the JAXR provider for UDDI
System.setProperty("javax.xml.registry.ConnectionFactoryClass",

"com.ibm.xml.registry.uddi.ConnectionFactoryImpl");
ConnectionFactory connectionFactory = ConnectionFactory.newInstance();

//Set the URLs for the UDDI inquiry and publish APIs.
//These must be the URLs of the UDDI version 2 APIs.
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

"http://localhost:9080/uddisoap/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"http://localhost:9080/uddisoap/publishapi");
connectionFactory.setProperties(props);

//Create a Connection to the UDDI registry accessible at the above URLs.
Connection connection = connectionFactory.createConnection();

//Set the user ID and password used to access the UDDI registry.
PasswordAuthentication pa = new PasswordAuthentication("Publisher1",

new char[] { ’p’, ’a’, ’s’, ’s’, ’w’, ’o’, ’r’, ’d’ });
Set credentials = new HashSet();
credentials.add(pa);
connection.setCredentials(credentials);

//Get the javax.xml.registry.BusinessLifeCycleManager interface,
//which contains methods corresponding to UDDI publish API calls.
RegistryService registryService = connection.getRegistryService();
BusinessLifeCycleManager lifeCycleManager =

registryService.getBusinessLifeCycleManager();

//Create an Organization (UDDI businessEntity) with name
//"Organization 1".
Organization org =

lifeCycleManager.createOrganization("Organization 1");

//Add the Organization to a Collection, ready to be saved in the UDDI
//registry.
Collection orgs = new ArrayList();
orgs.add(org);

//Save the Organization in the UDDI registry.
BulkResponse bulkResponse = lifeCycleManager.saveOrganizations(orgs);

//Obtain the Organization Key (the UDDI businessEntity
//businessKey) from the response.
if (bulkResponse.getExceptions() == null)
{
//1 Organization was saved, so 1 key will be returned in the
//response collection

Collection responses = bulkResponse.getCollection();
Key organizationKey = (Key)responses.iterator().next();
System.out.println("\nOrganization Key = " +

Chapter 37. Developing web services - UDDI registry 1793

organizationKey.getId());
}

}
}

v Ensure that the class path is set.

The class libraries of the JAXR provider for UDDI are in the com.ibm.uddi_1.0.0.jar file, in the
app_server_root/plugins directory. When you use the JAXR API from a Java EE application running
under WebSphere Application Server, all required classes are automatically on the class path. When
you use the JAXR API from outside this environment, the following .jar files must be on the Java class
path:

– app_server_root/lib/bootstrap.jar

– app_server_root/plugins/com.ibm.uddi_1.0.0.jar

– app_server_root/plugins/com.ibm.ws.runtime_6.1.0

v To use the JAXR provider for UDDI, first you must specify the name of the ConnectionFactory
implementation class. Set the javax.xml.registry.ConnectionFactoryClass system property to
com.ibm.xml.registry.uddi.ConnectionFactoryImpl.

If you do not set this system property, the value defaults to
com.sun.xml.registry,common.ConnectionFactoryImpl, which cannot be found and causes a
JAXRException exception when the ConnectionFactory.newInstance() method is called.

The JAXR provider for UDDI does not support lookup of the ConnectionFactory using Java Naming and
Directory Interface (JNDI).

v To specify connection-specific properties, set a java.util.Properties object on the JAXR
ConnectionFactory before you obtain a connection.

The full list of these properties is in the JAXR specification. The following table lists the three most
important properties, and what values they take to use the JAXR provider for UDDI to access the UDDI
registry.

Table 291. Connection-specific properties required to use the JAXR provider for UDDI to access the UDDI
registry. The table lists the different properties along with a description for each one.

Property Description

javax.xml.registry.queryManagerURL The URL for the Inquiry API of the UDDI registry for UDDI Version 2. Typically, this
property is in the form: http://hostname:port/uddisoap/inquiryapi. This property is
required.

javax.xml.registry.lifeCycleManagerURL The URL for the Publish API of the UDDI registry for UDDI Version 2. Typically, this
property is in the form: http://hostname:port/uddisoap/publishapi.

If you do not specify this property, it defaults to the value of the
javax.xml.registry.queryManagerURL property. However, the UDDI registry typically has
different URLs for the Inquiry and Publish APIs, so it is advisable to specify both
properties.

javax.xml.registry.authenticationMethod The method of authentication to use when authenticating with the registry. This can
take one of two values, UDDI_GET_AUTHTOKEN and HTTP_BASIC. If you do not
specify a value, the default value is UDDI_GET_AUTHTOKEN. See the following step
for more information.

The only required connection property is javax.xml.registry.queryManagerURL. However, it is advisable
to set javax.xml.registry.lifeCycleManagerURL and understand the default value of
javax.xml.registry.security.authenticationMethod. The other connection properties that are defined in the
JAXR specification are optional, and their values are not specific to the UDDI registry. The JAXR
provider for UDDI does not define any additional provider-specific properties.

v To determine which method the JAXR provider uses to authenticate with the UDDI registry, set the
javax.xml.registry.authenticationMethod connection property.

The javax.xml.registry.authenticationMethod connection property determines which method the JAXR
provider uses to authenticate with the UDDI registry. Two values of this property are supported:

– UDDI_GET_AUTHTOKEN

1794 Developing WebSphere applications

The JAXR provider uses the UDDI V2 get_authToken API to authenticate with the registry. The JAXR
provider makes the get_authToken call automatically when the connection credentials are set. The
JAXR provider saves the UDDI V2 authToken that the call returns to use on subsequent UDDI
publish API calls.

– HTTP_BASIC

The JAXR provider uses HTTP basic authentication to authenticate with the registry. WebSphere
Application Server supports HTTP basic authentication when security is enabled. The JAXR provider
does not make a get_authToken call. Instead, whenever there is a UDDI API call (both Inquiry and
Publish), the user name and password are sent in the HTTP headers, using HTTP basic
authentication. If the UDDI registry does not require HTTP basic authentication, the credentials are
ignored.

The JAXR provider for UDDI does not support the CLIENT_CERTIFICATE or MS_PASSPORT methods
of authentication.

If you do not set this property, the default authentication method is UDDI_GET_AUTHTOKEN.

v To use Secure Sockets Layer (SSL) to encrypt HTTP traffic between the JAXR provider for UDDI and
the UDDI registry, see “Using SSL with the UDDI JAXR provider” on page 1796.

v To supply a custom internal taxonomy, see “Creating a custom internal taxonomy for the JAXR provider”
on page 1797.

v To switch on UDDI4J logging, set the org.uddi4j.logEnabled system property to true. The JAXR provider
for UDDI uses UDDI4J Version 2 to communicate with the UDDI registry, and UDDI4J has its own
logging.

Java API for XML Registries (JAXR) provider for UDDI
The Java API for XML Registries (JAXR) is a Java client API for accessing both UDDI (Version 2 only) and
ebXML registries. It is part of the Java Platform, Enterprise Edition (Java EE) specification.

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

The JAXR API comprises the Java EE packages javax.xml.registry and javax.xml.registry.infomodel. Java
EE API documentation is at Web Services Reference.

The preferred UDDI Java client APIs are:

v UDDI4J Version 2, for UDDI Version 2

v UDDI Version 3 Client for Java, for UDDI Version 3

JAXR provider

The current JAXR specification (Version 1.0) defines a JAXR provider as an implementation of the JAXR
API. Generally, a JAXR provider can be a JAXR provider for UDDI, a JAXR provider for ebXML, or a
pluggable provider that supports both UDDI and ebXML. The JAXR provider for UDDI is a provider for
UDDI only.

UDDI versions

A JAXR provider for UDDI accesses a UDDI registry that uses the UDDI Version 2 SOAP APIs only. The
UDDI registry for UDDI Version 3 in this version of WebSphere Application Server supports the UDDI
Version 1, 2 and 3 SOAP APIs. Therefore you can use the JAXR provider for UDDI to access this registry.
You can also use the JAXR provider to access the UDDI registry for UDDI Version 2 in WebSphere
Application Server Version 5.x.

Chapter 37. Developing web services - UDDI registry 1795

http://java.sun.com/webservices/reference/apis-docs/

To work with the UDDI Version 3 SOAP APIs, use the UDDI Version 3 Client for Java; you cannot use
JAXR.

Capability level

The JAXR specification defines two capability profiles, capability level 0 and capability level 1. The JAXR
API documentation categorizes each JAXR method as either level 0 or level 1. Generally, a JAXR provider
for UDDI has capability level 0 and supports all level 0 methods, whereas a JAXR provider for ebXML has
capability level 1 and supports all level 0 and level 1 methods. The JAXR provider for UDDI is a capability
level 0 provider, and supports only level 0 methods.

Authentication and security

The javax.xml.registry.authenticationMethod connection property determines which method the JAXR
provider uses to authenticate with the UDDI registry.

The JAXR provider uses UDDI Version 2 SOAP Inquiry and Publish APIs. These APIs are protected, as
described in the topic about access control for UDDI registry interfaces.

You can use Secure Sockets Layer (SSL) to encrypt HTTP traffic between the JAXR provider for UDDI
and the UDDI registry.

Using SSL with the UDDI JAXR provider
You can use Secure Sockets Layer (SSL) to encrypt HTTP traffic between the Java API for XML Registries
(JAXR) provider for UDDI and the UDDI registry.

About this task

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

To use SSL, set the JAXR client program as follows.

Procedure
1. For the javax.xml.registry.queryManagerURL and javax.xml.registry.lifeCycleManagerURL connection

properties, specify a URL with the protocol https and the appropriate port to use SSL to access the
UDDI registry. The default port of the UDDI registry for HTTPS is 9443. Often, only the
lifeCycleManager URL, that is, the UDDI Publish API URL, requires SSL.

2. Add a new security provider to the java.security.Security object, according to the Java Secure Sockets
Extension (JSSE) implementation that is used. If running under the JVM provided in WebSphere
Application Server, the JSSE that is provided by IBM is on the classpath automatically. Use the
following code to add the IBM security provider:

java.security.Security.addProvider(new com.ibm.jsse.JSSEProvider());

3. Set the javax.net.ssl.trustStore system property to the file name of the client trust store file. The client
trust store file is a Java key store (.jks) file and must contain the server certificate of the UDDI registry.
To manage key store files, you can use the iKeyman tool.

4. Set the javax.net.ssl.trustStorePassword system property. This property is the password used to open
the client trust store file.

5. Optional: If you use a JVM version that is earlier than the version that is provided with WebSphere
Application Server, you might need to set the java.protocol.handler.pkgs system property to
com.ibm.net.ssl.internal.www.protocol.

1796 Developing WebSphere applications

What to do next

For more information about SSL and the iKeyman tool, see the topic about secure communications using
SSL.

Creating a custom internal taxonomy for the JAXR provider
You can create a custom internal taxonomy and make it available to the Java API for XML Registries
(JAXR) provider.

About this task

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

The JAXR provider for UDDI supplies a number of internal taxonomies. You can also supply a custom
internal taxonomy. To create a new custom internal taxonomy and make it available to the JAXR provider,
use the following procedure.

Procedure
1. Create a text file that contains the taxonomy element data. You can use the iso3166-2003-data.txt

file in plugins/com.ibm.uddi_1.0.0 as an example. This file is the taxonomy data file for the supplied
ISO 3166 taxonomy. The first few lines are:

iso3166#--#World#--
iso3166#AD#Andorra#--
iso3166#AE#United Arab Emirates#--
iso3166#AE-AJ#’Ajm?n#AE
iso3166#AE-AZ#Ab? Z?aby[Abu Dhabi]#AE
iso3166#AE-DU#Dubayy [Dubai]#AE
iso3166#AE-FU#Al Fujayrah#AE
iso3166#AE-RK#Ra’s al Khaymah#AE
iso3166#AE-SH#Ash Sh?riqah [Sharjah]#AE
iso3166#AE-UQ#Umm al Qaywayn#AE
iso3166#AF#Afghanistan#--
iso3166#AF-BAL#Balkh#AF
iso3166#AF-BAM#B?m??n#AF

Each line represents one element of the taxonomy, or one concept in the taxonomy concept tree. Each
line has the following format:

<taxonomy ID>#<element value>#<element name>#<parent element value>

The following table describes the tokens in the format.

Table 292. Tokens in the format of the taxonomy element data file. The table lists the different tokens along with a
description for each one.

Token Description

<taxonomy ID> The taxonomy ID is the same for every element of a taxonomy.

<element value> The concept value (UDDI keyValue).

<element name> The concept name (UDDI keyName).

<parent element value> The value of the parent element of the current element in the taxonomy tree. Except for the root
element, for every element in the data file, there must be another line that defines a parent element.
The root element is denoted by defining itself as its own parent. There must be only one root element,
and no elements without parents.

The delimiter character. You can define this character for each taxonomy in the
taxonomyConfig.properties file; the delimiter does not have to be the number sign (#).

2. Save a ClassificationScheme (UDDI tModel entity) in the UDDI registry to represent the new internal
taxonomy. To do this, use the
javax.xml.registry.BusinessLifeCycleManager.saveClassificationSchemes() method.

Chapter 37. Developing web services - UDDI registry 1797

3. Add the new taxonomy to the taxonomyConfig.properties file

a. Copy the supplied taxonomyConfig.properties file from the root of the com.ibm.uddi_1.0.0.jar
file. The content of the supplied taxonomyConfig.properties file is:

naics-1997 = UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2, naics-1997-data.txt, #
naics-2002 = UUID:1FF729F2-1948-46CF-B660-31EC107F1663, naics-2002-data.txt, #
unspsc = UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384, unspsc-data.txt, #
unspsc7_data = UUID:CD153257-086A-4237-B336-6BDCBDCC6634, unspsc7-data.txt, #
iso3166-2003 = UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88, iso3166-2003-data.txt,#

This file has one line for each internal taxonomy that is supplied. Each line has the following
format:

<taxonomy ID> = <tModelKey>,<data filename>,<data file delimiter>

The following table describes the tokens in the format.

Table 293. Tokens in the format of the taxonomyConfig.properties file. The table lists the different tokens along with
a description for each one.

Token Description

<taxonomy ID> The JAXR provider uses this value internally to identify each taxonomy. This value does not have to be
the same as the taxonomy ID in the corresponding taxonomy data file.

<tModelKey> The tModelKey element of the corresponding UDDI tModel entity, which is the id of the corresponding
JAXR ClassificationScheme.

<data filename> The name of the corresponding taxonomy data file.

<data file delimiter> The delimiter character used in the taxonomy data file. All internal taxonomies that are supplied use
the number sign (#), but user-supplied internal taxonomies might use different delimiter characters.

b. Add a new line for the new taxonomy to the copy of the taxonomyConfig.properties file. Do not
remove any existing taxonomies from the file, because this makes them unavailable to the JAXR
provider.

4. Add the copied taxonomyConfig.properties file to the Java class path, ahead of the jaxruddi.jar file.

5. If there are any JAXR client programs still running that were started before you added the new
taxonomy to the taxonomyConfig.properties file, create a new connection to pick up the new
taxonomy.

JAXR provider for UDDI internal taxonomies
The Java API for XML Registries (JAXR) provider for UDDI supplies a number of internal taxonomies.

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

The following table shows the internal taxonomies that the JAXR provider for UDDI supplies.

Table 294. JAXR provider for UDDI internal taxonomies. The table lists the different internal taxonomies as well as
their ClassificationScheme name and ClassificationScheme identification numbers.

Taxonomy
ClassificationScheme name (UDDI
tModel name) ClassificationScheme id (UDDI Version 2 tModelKey)

NAICS 1997 ntis-gov:naics:1997 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

NAICS 2002 ntis-gov:naics:2002 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

UNSPSC 3.1 unspsc-org:unspsc:3-1 UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384

UNSPSC 7 unspsc-org:unspsc UUID:CD153257-086A-4237-B336-6BDCBDCC6634

ISO3166 2003 ubr-uddi-org:iso-ch:3166-2003 UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88

1798 Developing WebSphere applications

The tModel entities that correspond to all these taxonomies are available in the UDDI Version 3 registry. If
you use the JAXR provider to access a UDDI Version 2 registry, only the tModel entities that correspond to
the NAICS 1997, UNSPSC 3.1, and ISO3166 taxonomies are available.

Each internal taxonomy is loaded into memory once for each JAXR Connection. The classification scheme
of the taxonomy is created when the connection is created. At this time, the associated UDDI tModel entity
is obtained from the registry and used to populate the ClassificationScheme attributes. The concept object
tree of the taxonomy is not created until the first time the user requests the ClassificationScheme object.
All subsequent requests for the same internal taxonomy that use the same connection return the same
object tree.

Do not modify any part of the concept object tree programmatically. There is only one classification
scheme and concept object tree for each internal taxonomy for each connection, and if you modify the
concept tree programmatically, all future requests for this taxonomy that use the same connection return
the modified objects, which might not be valid. If you modify the concept tree programmatically, the
associated taxonomy data file does not change. To change the values in a user-defined internal taxonomy,
change the taxonomy data file, then create a new connection to pick up the changes in a new concept
tree.

Similarly, do not modify an internal classification scheme programmatically, except to modify and then save
a user-defined internal classification scheme. A new connection is not required to pick up programmatic
changes.

JAXR provider logging and messages
The Java API for XML Registries (JAXR) provider for UDDI uses UDDI4J logging, commons logging, and
some standard messages.

Note: From WebSphere Application Server Version 8.0, Java API for XML Registries (JAX-R) APIs are
deprecated. The Java Platform, Enterprise Edition (Java EE) 6 platform began the deprecation
process for JAX-R because it is based on Universal Description, Discovery and Integration (UDDI)
2 technology, which is no longer relevant. If your applications use JAX-R, then you might consider
using UDDI 3.

UDDI4J Logging
The JAXR provider for UDDI uses UDDI4J Version 2 to communicate with the UDDI registry.
UDDI4J has its own logging. To switch on UDDI4J logging, set the org.uddi4j.logEnabled system
property to true. The XML request and response bodies of every UDDI request are sent to the
standard error log.

Trace Entry, exit, exception, warning, and debug trace is provided by Commons Logging (JCL). Trace is
created only if the JAXR client configures it. Entry, exit, and debug trace uses the debug level of
logging. Exception and warning trace uses the information level of logging. Additionally,
information-level logging is provided before each UDDI4J request is made.

Standard error log messages

The InternalTaxonomyManager, EnumerationManager, and PostalSchemeManager objects send
warning messages to the System.err log if there is an error condition that does not justify an
exception, but does require an information message. For example, warning messages are sent if a
file contains a line that is not valid, or if a tModel entity that corresponds to an internal taxonomy
cannot be found in the registry.

Chapter 37. Developing web services - UDDI registry 1799

1800 Developing WebSphere applications

Chapter 38. Developing Work area

This page provides a starting point for finding information about work areas, a WebSphere extension for
improving developer productivity.

Work areas provide a capability much like that of global variables. They enable efficient sharing of
information across a distributed application.

For example, you might want to add profile information as each customer enters your application. By
placing this information in a work area, it is available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Developing applications that use work areas

Developing applications that use work areas
Applications interact with the work area service by implementing the UserWorkArea interface. This
interface defines all of the methods used to create, manipulate, and terminate work areas.

About this task
package com.ibm.websphere.workarea;

public interface UserWorkArea {
void begin(String name);
void complete() throws NoWorkArea, NotOriginator;

String getName();
String[] retrieveAllKeys();
void set(String key, java.io.Serializable value)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
void set(String key, java.io.Serializable value, PropertyModeType mode)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
java.io.Serializable get(String key);
PropertyModeType getMode(String key);
void remove(String key)

throws NoWorkArea, NotOriginator, PropertyFixed;
}

Attention: Enterprise JavaBeans (EJB) applications can use the UserWorkArea interface only within the
implementation of methods in either the remote or local interface, or both; likewise, servlets can use the
interface only within the service method of the HTTPServlet class. Use of work areas within any life cycle
method of a servlet or enterprise bean is considered a deviation from the work area programming model
and is not supported.

The work area service defines the following exceptions for use with the UserWorkArea interface:
NoWorkArea

Raised when a request requires an associated work area but none is present.
NotOriginator

Raised when a request attempts to manipulate the contents of an imported work area.
PropertyReadOnly

Raised when a request attempts to modify a read-only or fixed read-only property.
PropertyFixed

Raised by the remove method when the designated property has one of the fixed modes.

Procedure
1. Access a partition by either:

v Accessing the UserWorkArea partition, to access the UserWorkArea partition.

© Copyright IBM Corp. 2012 1801

v Accessing a user-defined work area partition, to access a user-defined work area.

The following steps use the UserWorkArea partition as an example; however, you can use a
user-defined partition in the same way.

2. Begin a new work area.

Use the begin method to create a new work area and associate it with the calling thread. A work area
is scoped to the thread that began the work area and is not accessible by multiple threads. The begin
method takes a string as an argument; the string is used to name the work area. The argument must
not be null, which causes the java.lang.NullPointer exception to be raised. In the following code
example, the application begins a new work area with the name SimpleSampleServlet:
public class SimpleSampleServlet {
...

try {
...
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
...

userWorkArea.begin("SimpleSampleServlet");
...

}

The begin method is also used to create nested work areas; if a work area is associated with a thread
when the begin method is called, the method creates a new work area nested within the existing work
area.

The work area service makes no use of the names associated with work areas; You can name work
areas in any way that you choose. Names are not required to be unique, but the usefulness of the
names for debugging is enhanced if the names are distinct and meaningful within the application.
Applications can use the getName method to return the name associated with a work area by the
begin method.

3. Set properties in the work area.

An application with a current work area can insert properties into the work area and retrieve the
properties from the work area. The UserWorkArea interface provides two set methods for setting
properties and a get method for retrieving properties. The two-argument set method inserts the
property with the property mode of normal. The three-argument set method takes a property mode as
the third argument. Both set methods take the key and the value as arguments. The key is a String;
the value is an object of the type java.io.Serializable. None of the arguments can be null, which causes
the java.lang.NullPointer exception to be raised.

The SimpleSample application below uses objects of two classes, the SimpleSampleCompany class
and the SimpleSampleProperty class, as values for properties. The SimpleSampleCompany class is
used for the site identifier, and the SimpleSamplePriority class is used for the priority. These classes
are shown in following code example:
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");

try {
// Set the site-identifier (default is Main).
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);

// Set the priority.
userWorkArea.set("priority", SimpleSamplePriority.Silver);

}

catch (PropertyReadOnly e) {
// The company was previously set with the read-only or
// fixed read-only mode.
...

}

catch (NotOriginator e) {

1802 Developing WebSphere applications

// The work area originated in another process,
// so it can’t be modified here.
...

}

catch (NoWorkArea e) {
// There is no work area begun on this thread.
...

}

// Do application work.
...

}

The get method takes the key as an argument and returns a Java Serializable object as the value
associated with the key. For example, to retrieve the value of the company key from the work area, the
code example above uses the get method on the work area to retrieve the value.

Setting property modes. The two-argument set method on the UserWorkArea interface takes a key
and a value as arguments and inserts the property with the default property mode of normal. To set a
property with a different mode, applications must use the three-argument set method, which takes a
property mode as the third argument. The values used to request the property modes are as follows:
v Normal: PropertyModeType.normal
v Fixed normal: PropertyModeType.fixed_normal
v Read-only: PropertyModeType.read_only
v Fixed read-only: PropertyModeType.fixed_readonly

4. Manage local work with a work area.

5. Complete the work area.

After an application has finished using a work area, it must complete the work area by calling the
complete method on the UserWorkArea interface. This terminates the association with the calling
thread and destroys the work area. If the complete method is called on a nested work area, the nested
work area is terminated and the parent work area becomes the current work area. If there is no work
area associated with the calling thread, a NoWorkArea exception is created. Every work area must be
completed, and work areas can be completed only by the originating process. For example, if a server
attempts to call the complete method on a work area that originated in a client, a NotOriginator
exception is created. Work areas created in a server process are never propagated back to an
invoking client process.

Attention: The work area service claims full local-remote transparency. Even if two beans happen to
be deployed in the same server, and therefore the same JVM and process, a work area begun on an
invocation from another is completed and the bean in which the request originated is always in the
same state after any remote call.

The following code example shows the completion of the work area created in the client application.
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);
userWorkArea.set("priority", SimpleSamplePriority.Silver);
...

// Do application work.
...

// Terminate the work area.
try {

userWorkArea.complete();
}

catch (NoWorkArea e) {
// There is no work area associated with this thread.
...

}

catch (NotOriginator e) {
// The work area was imported into this process.

Chapter 38. Developing Work area 1803

...
}
...

}

The following code example shows the sample application completing the nested work area that it
created earlier in the remote invocation.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

// Complete all nested work areas before returning.
try {
userWorkArea.complete();

}
catch (NoWorkArea e) {
}
catch (NotOriginator e) {
}

}
}

Example
v Work area object types

v Using the work area partition manager

Work area object types. In the following example, the client creates a work area and inserts two
properties into the work area: a site identifier and a priority. The site-identifier is set as a read-only
property; the client does not allow recipients of the work area to override the site identifier. This property
consists of the key company and a static instance of a SimpleSampleCompany object. The priority
property consists of the key priority and a static instance of a SimpleSamplePriority object. The object
types are defined as shown in the following code example:
public static final class SimpleSampleCompany {

public static final SimpleSampleCompany Main;
public static final SimpleSampleCompany NewYork_Sales;
public static final SimpleSampleCompany NewYork_Development;
public static final SimpleSampleCompany London_Sales;
public static final SimpleSampleCompany London_Development;

}

public static final class SimpleSamplePriority {
public static final SimpleSamplePriority Platinum;
public static final SimpleSamplePriority Gold;
public static final SimpleSamplePriority Silver;
public static final SimpleSamplePriority Bronze;
public static final SimpleSamplePriority Tin;

}

The client then makes an invocation on a remote object. The work area is automatically propagated; none
of the methods on the remote object take a work area argument. On the remote side, the request is first
handled by the SimpleSampleBean; the bean first reads the site identifier and priority properties from the

1804 Developing WebSphere applications

work area. The bean then intentionally attempts, and fails, both to write directly into the imported work
area and to override the read-only site-identifier property.

The SimpleSampleBean successfully begins a nested work area, in which it overrides the client's priority,
then calls another bean, the SimpleSampleBackendBean. The SimpleSampleBackendBean reads the
properties from the work area, which contains the site identifier set in the client and priority set in the
SimpleSampleBean. Finally, the SimpleSampleBean completes its nested work area, writes out a message
based on the site-identifier property, and returns.

Using the work area partition manager. The following code example illustrates the use of the work area
partition manager interface. The sample illustrates how to create and retrieve a work area partition
programmatically`. Please note that programmatically creating a work area partition is only available on the
Java Platform, Enterprise Edition (Java EE) client. To create a work area partition on the server one must
use the administrative console. Refer to the Work area partition service article for configuration parameters
available to configure a partition.
import com.ibm.websphere.workarea.WorkAreaPartitionManager;
import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.PartitionAlreadyExistsException;
import com.ibm.websphere.workarea.NoSuchPartitionException;
import java.lang.IllegalAccessError;
import java.util.Properties;
import javax.naming.InitialContext;

//This sample demonstrates how to retrieve an instance of the
//WorkAreaPartitionManager implementation and how to use that
//instance to create a WorkArea partition and retrieve a partition.
//NOTE: Creating a partition in the way listed below is only available
//on a J2EE client. To create a partition on the server use the
//WebSphere administrative console. Retrieving a WorkArea
//partition is performed in the same way on both client and server.

public class Example {

//The name of the partition to create/retrieve
String partitionName = "myPartitionName";
//The name in java naming the WorkAreaPartitionManager instance is bound to
String jndiName = "java:comp/websphere/WorkAreaPartitionManager";

//On a J2EE client a user would create a partition as follows:
public UserWorkArea myCreate(){

//Variable to hold our WorkAreaPartitionManager reference
WorkAreaPartitionManager partitionManager = null;
//Get an instance of the WorkAreaPartitionManager implementation
try {

InitialContext initialContext = new InitialContext();
partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

} catch (Exception e) { }

//Set the properties to configure our WorkArea partition
Properties props = new Properties();
props.put("maxSendSize","12345");
props.put("maxReceiveSize","54321");
props.put("Bidirectional","true");

props.put("DeferredAttributeSerialization","true");

//Variable used to hold the newly created WorkArea Partition
UserWorkArea myPartition = null;

try{
//This is the way to create a partition on the J2EE client. Use the
//WebSphere Administrative Console to create a WorkArea Partition
//on the server.
myPartition = partitionManager.createWorkAreaPartition(partitionName,props);

}
catch (PartitionAlreadyExistsException e){ }
catch (IllegalAccessException e){ }

Chapter 38. Developing Work area 1805

return myPartition;
}

//. . . .

//In order to retrieve a WorkArea partition at some time later or
//from some other class, do the following (from client or server):
public UserWorkArea myGet(){

//Variable to hold our WorkAreaPartitionManager reference
WorkAreaPartitionManager partitionManager = null;
//Get an instance of the WorkAreaPartitionManager implementation
try {

InitialContext initialContext = new InitialContext();
partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

} catch (Exception e) { }

//Variable used to hold the retrieved WorkArea partition
UserWorkArea myPartition = null;
try{

myPartition = partitionManager.getWorkAreaPartition(partitionName);
}catch(NoSuchPartitionException e){ }

return myPartition;
}

}

What to do next

For additional information about work area, see the com.ibm.websphere.workarea package in the API. The
generated API documentation is available in the information center table of contents from the path
Reference > APIs - Application programming interfaces.

Configuring work area partitions

Configuring work area partitions
About this task

The work area partition service extends the work area service by allowing the creation of multiple work
areas with more configuration options than what is available to the UserWorkArea partition. Follow these
steps to create and configure a work area partition:

Procedure
1. Create a user defined partition on the server.

a. Start the administrative console.

b. Click Servers > Server Types > WebSphere application servers > server_name > Business
process services > Work area partition service.

c. Click New.

d. On the settings page for work area partitions, specify values such as the partition name,
maxSendSize and maxReceiveSize, then click OK.

e. Save the new configuration.

f. Restart the server to apply the new configuration.

2. Create a user defined partition on the client. Use the createWorkAreaPartition method described in the
The Work area partition manager interface article to programmatically create a partition. Refer to the
Example: Using the work area partition manager article for an example of using this method.

Results

You have created a work area partition.

1806 Developing WebSphere applications

What to do next

Retrieve the partition through the work area partition manager interface and use it as defined by the work
area service and the UserWorkArea interface. Refer to the Example: Using the work area partition
manager article for an example.

Work area partition service
The work area partition service is an extension of the work area service that enables the creation of
multiple custom work areas. The work area partition service is an optional service to users. Any user that
currently uses the work area service and the UserWorkArea partition can continue using it in the same
manner. The UserWorkArea partition is created automatically (if it has not been disabled) by the work area
partition service. By allowing a user the option to create their own work area partition through the work
area partition service, they can have more control over configuration and access to their partition.

The work area partition service is essentially a factory for creating instances of the UserWorkArea
interface. Applications interact with work areas by using the UserWorkArea interface and its
implementation. This interface defines all of the methods used to create, manipulate, and complete work
areas. The work area partition service allows users to create their own named instance of the
UserWorkArea interface. Each named instance is called a user-defined work area partition, or partition for
short. Each instance of the UserWorkArea interface (partition) is separate from other user-defined
partitions. Furthermore, you can configure a partition with various options to provide qualities of service
that are unique to a use case for an individual user. Any configuration option made within the work area
partition service panel does not affect the work area service.

Unlike the UserWorkArea partition, which is publicly known, work areas created by the work area partition
service are accessible to, and known only by, the creator. However, the work area partition service does
not strictly enforce that a partition is accessed and/or operated on exclusively by the partition creator.
There are no limitations should the creator want to publish their work area partition and make it publicly
available by binding their partition reference in Java naming or by other means. However, the work area
partition service does try to hide a partition as much as possible should a user not want others to know
about a certain partition. The work area partition service does not enable a person to determine or query
the names of all the partitions that have been created; however, it does not restrict the partitions from
being accessed by users other than the creator of that partition. The context of a partition, such as the
UserWorkArea partition or a user-defined partition, is scoped to a single thread and is not accessible by
multiple threads.

The work area partition reference that is returned to a user implements javax.naming.Referenceable and
com.ibm.websphere.UserWorkArea, therefore a user can bind their partition into a name to make their
partition publicly available. An alternative to using Java naming to bind and access the partition is to use
the work area partition manager interface. Anyone can access the work area partition manager interface;
therefore, if a user wants to make their partition publicly available, they simply need to publish their
partition name. Other users can then call the getWorkAreaPartition method on the work area partition
manager interface with the published name.

The WorkAreaPartitionManager.createWorkAreaPartition method can only be used from a Java Platform,
Enterprise Edition (Java EE) client. To create a work area partition on the server side, one must use the
administrative console. On the server side a work area partition must be created during server startup
because each partition needs to be register with the appropriate Web and Enterprise JavaBeans (EJB)
collaborators before the server has started. Custom work area partitions are created by the work area
partition service and defined by the UserWorkArea interface.

The work area partition service also allows a user to configure partitions with additional properties that are
not available on the UserWorkArea partition, such as bidirectional propagation of work area partition
context and deferred attribute serialization. These properties are available as configuration properties when
creating a partition. For a complete list of the configuration properties that are available when creating a

Chapter 38. Developing Work area 1807

partition, see the "Configurable Work Area Partition Properties" section in the Work area partition manager
interface article. The properties are defined as follows:

Bidirectional propagation of work area context

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is
automatically propagated to the target object, which can use or ignore the information in the work area as
necessary. If the calling application has a nested work area associated with it, a copy of the nested work
area and all its ancestors are propagated to the target application. The target application can locally
modify the information, as allowed by the property modes, by creating additional nested work areas; this
information is propagated to any remote objects that it invokes.

Whether context changes propagate back to a calling application from a remote application depends on
the configuration of the work area partition. If a user creates a partition to be bidirectional by selecting the
Bidirectional property during partition creation, changes made by a remote application propagate back to
the calling application, meaning that changes made to the work area context by a downstream process will
propagate back upstream. The UserWorkArea partition is not configured (and can never be configured) to
be bidirectional, therefore context changes only flow to downstream processes and do not propagate back
upstream.

Example: Bidirectional propagation of work area context

Whether context changes propagate back to a calling application from a remote application depends on
the configuration of the work area partition. If a user creates a bidirectional partition, changes made by a
remote application propagate back to the calling application. Changes made to the work area context by a
downstream process propagate back upstream. The figure Distribution of work area context when
configured for bidirectional propagation illustrates this relationship during a remote call to the server. For
this illustration, the client and server must have created a partition with the same name.

1808 Developing WebSphere applications

When the client makes a remote call to the server, the server receives the context set by the client
process. The server then can make changes to this context or add to it. In this illustration, the server
overwrites the value at key1, removes the property at key2, and adds two new properties at key5 and
key6. When the server application returns to the client, the work area context is propagated back to the
client and unmarshalled. The current work area is then updated with the new context. Note that if the
partition is not configured as bidirectional and the server tries to change or remove context in Work Area 1,
it receives a com.ibm.websphere.workarea.NotOriginator exception because the client was the originator of
the work area. The server can retrieve the context in Work Area 1. This is the main distinction between
bidirectional propagation of context and non-bidirectional propagation.

Example: Bidirectional propagation of nested work area context

If a remote application needs to add context to a work area that is only used by itself or any other remote
objects, the remote application must begin another work area. By beginning a new work area, the
additional context is scoped to that application and does not flow back to the calling application. The major
benefit of nesting work areas is that nesting work areas allows an application to scope work area context
to a given application. Taking the illustration one step further, if the server has begun a work area before
overwriting the value at key1, removing the property at key2, or adding new properties at key5 and key6;

Figure 5. Distribution of work area context when configured for bidirectional propagation. This figure illustrates the
distribution of work area context when the service is configured for bidirectional propagation.

Chapter 38. Developing Work area 1809

those changes would not have propagated back to the client. This is shown in the figure Distribution of
nested work area context when configured for bidirectional propagation. You can also see from this figure
that the client does not receive the context from the nested work area started by the server.

Deferred attribute serialization of work area context

By default, on each set operation the attribute set into a work area is automatically serialized by the work
area service. On each subsequent get operation on that same attribute it is deserialized and returned to
the requester. This gives the work area service complete control of the attribute such that any changes to
a mutable object are not reflected in the work area's copy of the attribute unless a user specifically resets
the attribute into the work area. However, this can potentially lead to excessive serialization and
deserialization.

Excessive serialization and deserialization can result in observable performance degradation under heavy
load. The deferred attribute serialization configuration property is a caching feature that reduces
serialization and deserialization operations. When deferred attribute serialization is enabled in a client or
server process by selecting the Deferred Attribute Serialization field during the creation of the work area,
attributes set into the work area service are not automatically serialized during the set operation. Rather, a

Figure 6. Distribution of nested work area context when configured for bidirectional propagation. This figure illustrates
the distribution of nested work area context when the service is configured for bidirectional propagation.

1810 Developing WebSphere applications

reference to the attribute is stored in the work area. If the attribute is mutable, then changes to the object
are reflected in the work area's reference to that attribute. When a get operation is performed on that
attribute, the reference to that object is returned and no deserialization is performed.

Attributes are not serialized until the thread with which the attribute is associated makes a remote IIOP
invocation. At that point, the attribute is serialized and the serialized form of the attribute is cached. If the
attribute is not reset into the work area, changes to the original attribute are still reflected within the
attribute contained within the work area because the work area still holds a cached reference to the
original object. However, if the work area has not been told that the attribute has changed by resetting the
attribute into the work area, subsequent remote requests continue to use the cached serialized version of
the attribute and direct changes to the mutable attribute are not propagated. This is an important
distinction between enabling and not enabling the deferred attribute serialization configuration property,
and a user must pay close attention to this difference and how mutable objects are handled when enabling
deferred attribute serialization. The work area service releases cached references and cached serialized
versions of attributes when any of the following conditions occur:

v An attribute is reset or removed.

v The work area is explicitly completed by the application.

v Server component ends execution of the request during which the work area was begun.

v Client process which began the work area terminates.

Partition context propagation across process boundaries

Work area context automatically propagates from client to server when a client makes a remote call to a
server. For example, if a client is configured with three different work area partitions when it makes a
remote call to a server, server1, the context associated with each partition on the client thread propagates
to server1. If the same three partitions have been created on server1, the context is unmarshalled to the
appropriate partition. However, if none or only a few of the three partitions have been created on server1,
only the context associated with a partition that is resident on both the client and server is unmarshalled.
The context associated with a partition that is not resident on server1 is still resident on server1 but is not
accessible. The context associated with partitions that are not resident on server1 must remain resident on
server1 in case another remote call is made to a different server. Going one step further, if server1 makes
a call to another server, server2, that has the same partitions as the client, server2 receives the context for
the partitions that were not resident on server1. Any partitions that reside on server1 that did not reside on
the client now have their context propagated to server2.

For more information about work area, see the com.ibm.websphere.workarea package in the Application
Programming Interface (API). The generated API documentation is available in the information center table
of contents from the path Reference > APIs - Application Programming Interfaces.

The Work area partition manager interface
Applications interact with the work area partition service by using the work area partition manager
interface. A user can retrieve an instance of the work area partition manager interface out of naming and
use the methods that are defined in the following section.

An implementation of the work area partition manager interface is bound in Java naming at
java:comp/websphere/WorkAreaPartitionManager. This interface is responsible for creating, retrieving, and
manipulating work area partitions:
package com.ibm.websphere.workarea;

import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.PartitionAlreadyExistsException;
import com.ibm.websphere.workarea.NoSuchPartitionException;
import java.util.Properties;

public interface WorkAreaPartitionManager {

Chapter 38. Developing Work area 1811

//Returns an instance of a work area partition for the given name, or throws an exception if the
//partition name doesn’t exists.
public UserWorkArea getWorkAreaPartition(String partitionName) throws NoSuchPartitionException;

//Returns a new instance of a work area partition (an implementation of the UserWorkArea interface)
//or throws an exception if the partition name already exists. The createWorkAreaPartition should
//only be used within a Java EE platform client and NOT on the
//server. To create a work area partition on the server, use the WebSphere administrative
//console.
public UserWorkArea createWorkAreaPartition(String partitionName, Properties props) throws

PartitionAlreadyExistsException, java.lang.IllegalAccessException;
}

}

EJB applications can use the work area partition manager interface only within the implementation of
methods in either the remote or local interface, or both; likewise, servlets can use the interface only within
the service method of the HTTPServlet class. Use of work areas within any life cycle method of a servlet
or enterprise bean is considered a deviation from the work area programming model and is not supported.

Programmatically creating a work area partition through the createWorkAreaPartition method is only
available on the Java EE client. To create a work area partition on the server, use the WebSphere
administrative console as described in the Configuring work area partitions article. All partitions in a server
process must be created before server startup is complete so that the work area service can register with
the appropriate container collaborators. Therefore, calling the createWorkAreaPartition method in a server
process after the server starts results in a java.lang.IllegalAccessException exception. The
createWorkAreaPartition method can be called in a Java EE application client at any time.

Configurable Work Area Partition Properties

This section applies to the use of the createWorkAreaPartition method on the WorkAreaPartitionManager
interface. As is described above, this method should only be used on a Java EE client. To create a
partition on the server, please see Configuring work area partitions.

The "createWorkAreaPartition" method on the WorkAreaPartitionManager interface takes a
java.util.Properties objects. This Properties object, and the properties it contains, is used to define the work
area partition. Below is an example of creating a Properties object and setting a property:

Attention: A more detailed example of the usage of the WorkAreaPartitionManager can be found in
Example: Using the work area partition manager.
java.util.Properties props = new java.util.Properties():
props.put("maxSendSize","12345");

Acceptable key/values pairs (properties) for defining a partition are as follows:

v maxSendSize - Indicates the maximum size (bytes) of a work area that can be sent on a remote call.
Acceptable values are:

– "-1" = Uses the default size of 32767.

– "0" = Unlimited size, this value will not be policed which might help performance a bit depending on
the number of work area an application has.

– "1" = Integer.MAX_VALUE

v maxReceiveSize - Indicates the maximum size (bytes) of a work area that can be received. Acceptable
values are:

– "-1" = Uses the default size of 32767.

– "0" = Unlimited size, this value will not be policed which might help performance a bit depending on
the number of work area an application has.

– "1" = Integer.MAX_VALUE

1812 Developing WebSphere applications

v Bidirectional - Indicates if work area context that is changed by a downstream process should be
propagated back upstream to the originator of that context. For a more complete description of this
property, refer to the "Bidirectional propagation of work area context" in the Work area partition service
article. Acceptable values are:

– "true" = Context changes will be returned from a remote call.

– "false" = Context changes will not be returned from a remote call.

Attention: The default setting is "false."

v DeferredAttributeSerialization - Indicates if the serialization of attribute should be optimized to occur
exactly once per process. For a more complete description of this property, refer to the "Deferred
attribute serialization of work area context" section in the Work area partition service article. Acceptable
values are:

– "true"

- When an attribute is set into the work area, it will not be serialized until a remote request is made.

- If the value is unchanged by response, the serialized form will be used for subsequent requests;
the live object will be retrieved via getters.

- When requests are made during a remote request, a value is deserialized on demand exactly
once. The serialized form is used for subsequent requests from this remote process on this
distributed thread; subsequent requests in process for the same attribute returns the already
deserialized value. There are risks with concurrency with DeferredAttributeSerialization. After
serialization in a client process, updates to the attribute are no longer reflected in the work area's
copy until the value is explicitly reset through the UserWorkArea interface. Changes made to a
retrieved reference in a downstream process are not propagated to subsequent downstream
requests (or returned on the reply as a changed value) unless explicitly reset through the
UserWorkArea interface.

– "false"

- When an attribute is set into the work area, it is immediately serialized and the bytes are stored.

- When an attribute is retrieved from the work area, it is always deserialized from stored bytes.

Attention: The default value is "false."

v EnableWebServicePropagation - Indicates if work area context must propagate on a WebService call.
Acceptable values are:

– "true" = Context propagates on a WebService call.

– "false" = Context does not propagate on a WebService call.

Attention: The default value is "false."

Exceptions

The work area partition service defines the following exceptions for use with the work area partition
manager interface:
PartitionAlreadyExistsException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager
implementation if a user tries to create a work area partition with a partition name that already
exists. Partition names must be unique.

NoSuchPartitionException
This exception is raised by the getWorkAreaPartition method on the WorkAreaPartitionManager
implementation if a user requests a work area partition with a partition name that does not exist.

java.lang.IllegalAccessException
This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager
implementation if a user tries to create a work area partition during run time on a server process.
This method can only be used on a Java EE client process. In the server process, a partition must
be created using the administrative console.

Chapter 38. Developing Work area 1813

For additional information about work area, see the com.ibm.websphere.workarea package in the
application programming interface (API). The generated API documentation is available in the information
center table of contents from the path Reference > APIs - Application Programming Interfaces.

Example: Using the work area partition manager

The example below demonstrates the use of the work area partition manager interface. The sample
illustrates how to create and retrieve a work area partition programmatically`. Please note that
programmatically creating a work area partition is only available on the Java Platform, Enterprise Edition
(Java EE) client. To create a work area partition on the server one must use the administrative console.
Refer to the Work area partition service article for configuration parameters available to configure a
partition.
import com.ibm.websphere.workarea.WorkAreaPartitionManager;
import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.PartitionAlreadyExistsException;
import com.ibm.websphere.workarea.NoSuchPartitionException;
import java.lang.IllegalAccessError;
import java.util.Properties;
import javax.naming.InitialContext;

//This sample demonstrates how to retrieve an instance of the
//WorkAreaPartitionManager implementation and how to use that
//instance to create a WorkArea partition and retrieve a partition.
//NOTE: Creating a partition in the way listed below is only available
//on a J2EE client. To create a partition on the server use the
//WebSphere administrative console. Retrieving a WorkArea
//partition is performed in the same way on both client and server.

public class Example {

//The name of the partition to create/retrieve
String partitionName = "myPartitionName";
//The name in java naming the WorkAreaPartitionManager instance is bound to
String jndiName = "java:comp/websphere/WorkAreaPartitionManager";

//On a J2EE client a user would create a partition as follows:
public UserWorkArea myCreate(){

//Variable to hold our WorkAreaPartitionManager reference
WorkAreaPartitionManager partitionManager = null;
//Get an instance of the WorkAreaPartitionManager implementation
try {

InitialContext initialContext = new InitialContext();
partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

} catch (Exception e) { }

//Set the properties to configure our WorkArea partition
Properties props = new Properties();
props.put("maxSendSize","12345");
props.put("maxReceiveSize","54321");
props.put("Bidirectional","true");

props.put("DeferredAttributeSerialization","true");

//Variable used to hold the newly created WorkArea Partition
UserWorkArea myPartition = null;

try{
//This is the way to create a partition on the J2EE client. Use the
//WebSphere Administrative Console to create a WorkArea Partition
//on the server.
myPartition = partitionManager.createWorkAreaPartition(partitionName,props);

}
catch (PartitionAlreadyExistsException e){ }
catch (IllegalAccessException e){ }

1814 Developing WebSphere applications

return myPartition;
}

//. . . .

//In order to retrieve a WorkArea partition at some time later or
//from some other class, do the following (from client or server):
public UserWorkArea myGet(){

//Variable to hold our WorkAreaPartitionManager reference
WorkAreaPartitionManager partitionManager = null;
//Get an instance of the WorkAreaPartitionManager implementation
try {

InitialContext initialContext = new InitialContext();
partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

} catch (Exception e) { }

//Variable used to hold the retrieved WorkArea partition
UserWorkArea myPartition = null;
try{

myPartition = partitionManager.getWorkAreaPartition(partitionName);
}catch(NoSuchPartitionException e){ }

return myPartition;
}

}

Work area partition collection
Use this page to manage the work area service.

The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Business Process Services > Work area partition service.

Name
Specifies the name of the work area partition that is used to retrieve the partition. This name must be
unique.

Description
Specifies the description of the work area partition.

Enable service at server startup
Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional
Permits applications to modify the context of a work area that is imported by a Java EE request; modified
properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size
Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

A value of 0 means there is no limit to the data sent. The default value of -1 represents 32768 bytes of
data sent.

Chapter 38. Developing Work area 1815

Maximum receive size
Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =
default)

A value of 0 means there is no limit to the data received. The default value of -1 represents 32768 bytes
of data received.

Deferred attribute serialization
Specifies whether attribute serialization is deferred until the work area is propagated on a remote
invocation.

Enable Web service propagation
Specifies whether the work area partition is propagated on Web service requests. This option is disabled
by default.

Work area partition settings
Use this page to modify the work area partition settings.

The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Container Settings, expand Business Process Services then click Work
area partition service. Click on a work_area_partition_name.

Name
Specifies the name of the work area partition that is used to retrieve the partition. This name must be
unique.

Description
Specifies the description of the work area partition.

Enable service at server startup
Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional
Permits applications to modify the context of a work area that is imported by a Java EE request; modified
properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size
Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

Information Value
Data type Integer
Units Bytes
Default 32768
Range -1, 0 (no limit) and 1 to 2147483647

Maximum receive size
Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =
default)

Information Value
Data type Integer
Units Bytes

1816 Developing WebSphere applications

Information Value
Default 32768
Range -1, 0 (no limit) and 1 to 2147483647

Deferred attribute serialization
Specifies whether attribute serialization is deferred until the work area is propagated on a remote
invocation. This option is disabled by default.

Enable Web service propagation
Specifies whether the work area partition is propagated on Web service requests. This option is disabled
by default.

Accessing a user defined work area partition
About this task

The work area partition service provides a Java Naming and Directory Interface (JNDI) binding to an
implementation of the work area partition manager interface under the name java:comp/websphere/
WorkAreaPartitionManager. Applications that need to access their partition can perform a lookup on that
JNDI name and then use the getWorkAreaPartition method on the work area partition manager, as shown
in the following code example:

Example
import com.ibm.websphere.workarea.*;
import javax.naming.*;

public class SimpleSampleServlet {
...

//Variable to hold our WorkAreaPartitionManager implementation
WorkAreaPartitionManager partitionManager = null;
try {

InitialContext initialContext = new InitialContext();
partitionManager = (WorkAreaPartitionManager)
initialContext.lookup("java:comp/websphere/WorkAreaPartitionManager");

} catch (Exception e) {...}

//Variable used to hold the retrieved WorkArea Partition
UserWorkArea myPartition = null;
try{

myPartition = partitionManager.getWorkAreaPartition(partitionName);
}catch(NoSuchPartitionException e){...}

}

What to do next

The next step is to use the begin method to create a new work area and associate it with the calling
thread, as described in the Beginning a new work area topic.

Propagating work area context over Web services
WebSphere Application Server Version 6.1 introduces the option to propagate work area context on a Web
service call. Prior to WebSphere Application Server Version 6.1, work area context was only propagated
over RMI/IIOP calls. The work area application programming interfaces (APIs) have not changed to
implement this propagation. You can use the work area APIs as they have in the past and as outlined in
the work area documentation. However, by default, work area context is not propagated on a Web service
call, you must enable this option.

Chapter 38. Developing Work area 1817

Procedure
1. Enable a server to propagate work area context on a Web service call.

a. Start the administrative console.

b. Select Servers > Server Types > WebSphere application servers > server_name > Business
Process Services .

v To enable the work area service, (the UserWorkArea partition) to propagate its context on a Web
service call:

– Select Work area service.

v To enable an individual partition to propagate its context on a Web service call:

– Select Work area partition service.

– Select a partition.

c. Check the EnableWebServicePropagation field to enable Web service propagation.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable a client to propagate work area context on a Web service call:

Note: The steps below are for the work area service (the UserWorkArea partition). For user defined
partitions the EnableWebServicePropagation property must be set when creating a partition on
the client, refer to the The Work area partition manager interface article.

a. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation to true when
invoking the launchClient script found in the $WAS_HOME/bin directory. For example, to set this
property to true, add the following system properties to the launchClient invocation as needed:
-CCDcom.ibm.websphere.workarea.EnableWebServicePropagation=true

b. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation in a property file that
is used by the launchClient script. Refer to the Running a Java EE client application with
launchClient for additional information.

1818 Developing WebSphere applications

Chapter 39. XML applications

This page provides a starting point for finding information about XML applications.

Overview of XML support
You can use the XML support provided with this product to work with web applications that process data
using standard XML technologies like Extensible Stylesheet Language Transformations (XSLT), XML Path
Language (XPath), and XML Query Language (XQuery).

XML-structured data has become the predominant format for data interchange. XML data is navigated,
queried, or transformed in almost every existing WebSphere application.

Since first being standardized, XML usage in application-development environments has grown
significantly to include many scenarios. WebSphere Application Server is a leading platform for the latest
application development standards, including XML.

Note: IBM WebSphere Application Server Version 8.5 delivers critical technology that provides application
developers with support for the following key World Wide Web Consortium (W3C) XML standards:

v Extensible Stylesheet Language Transformations (XSLT) 2.0

v XML Path Language (XPath) 2.0

v XML Query Language (XQuery) 1.0

These new and updated W3C XML standards offer application developers numerous advanced
capabilities for building XML applications. Specific benefits delivered in the XPath 2.0, XSLT 2.0,
and XQuery 1.0 standards include the following:

v Simpler XML application development and improved developer productivity

v Improved ability to query large amounts of data stored in XML outside of a database with XQuery
1.0

v Improved XML-application performance through new features introduced in the W3C
specifications to address previous shortcomings

v Improved XML-application reliability with new support for XML schema-aware processing and
validation

Note: If you want to use XPath 1.0 or XSLT 1.0 (not in backwards-compatibility mode), continue to use
Java API for XML Processing (JAXP) in Java 2 Platform, Standard Edition (J2SE) 6.0 and 7.0.

For more information about these W3C XML standards, go to W3C XQuery 1.0 and XSLT 2.0 Become
Standards: Tools to Query, Transform, and Access XML and Relational Data.

The product provides the IBM XML Application Programming Interface in support of these standards. This
application programming interface invokes a runtime engine that is capable of executing XPath 2.0, XSLT
2.0, and XQuery 1.0 as well as manipulating the returned XML data.

The product also includes the IBM Thin Client for XML with WebSphere Application Server. The thin client
allows access to the same XML API and runtime functionality (XPath 2.0, XSLT 2.0, and XQuery 1.0)
available in the full product. The thin client can be copied to multiple clients running Java SE in support of
a WebSphere Application Server Version 8.5 installation.

XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions
Valuable features have been added to XPath 2.0, XSLT 2.0, and XQuery 1.0 reflecting productivity and
feature improvements beyond the XPath 1.0 and XSLT 1.0 standards.

© Copyright IBM Corp. 2012 1819

http://www.w3.org/2007/01/qt-pressrelease
http://www.w3.org/2007/01/qt-pressrelease

XPath 2.0
v XPath 2.0 has been improved to support the XPath 2.0 and XQuery 1.0 Data Model (XDM), which is

based on sequences of heterogeneous items including nodes and primitive types. This replaces and
improves on the XPath 1.0 node-set support and becomes the foundation of XSLT 2.0 and XQuery 1.0
data navigation.

v XPath 2.0 adds an extensive collection of functions and operators to allow for an easier programming
experience, replacing the XPath 1.0 requirement for proprietary extension mechanisms. These functions
and operators help with date and time handling, enhance the string manipulation, support regular
expression matching and tokenization, extend the number handling, and add functions for sequence
manipulation.

v XPath 2.0 supports schema-aware processing, which allows for data navigation based on XML schema
information for not only built-in schema types, but also user-defined schema types.

v XPath 2.0 adds condition (if/then/else branches), iterative (for loops), and quantified expressions (some
and every tests) typical of other languages.

v XPath 2.0 adds named collations across multiple functions allowing for locale-specific operation.

v XPath 2.0 provides a backwards-compatibility mode to run most XPath 1.0 expressions unchanged.

XSLT 2.0
v XSLT 2.0 is based on XPath 2.0, allowing XSLT 2.0 to take advantage of all new XPath 2.0 features.

Temporary trees have been added to allow navigation of constructed trees during transformation.
User-defined functions can be defined in the XSLT language and are callable using XPath 2.0.

v XSLT 2.0 can write to multiple result documents in a single stylesheet execution.

v XSLT 2.0 supports regular expressions to analyze and separate strings.

v XSLT 2.0 allows variables and parameters to be typed, therefore improving the reliability of stylesheets
and functions.

v XSLT 2.0 supports schema-aware processing, which allows XSLT 2.0 to check for valid input, temporary
trees, and output documents.

v XSLT 2.0 supports initial named templates, which allows the processor to start with a defined template
instead of having to match the input document, a feature commonly used with loading documents
programmatically using the XPath 2.0 collection and document functions.

v Comparisons in sorting, grouping, and keys are supported with any data type and can use
locale-specific named collations.

v XHTML has been added to XSLT 2.0 as a valid output format.

v The next-match instruction allows the same node to be processed with multiple templates.

v The character-map instruction allows fine grained control of serialization of characters.

v XSLT 2.0 added addition instructions for transforming and formatting dates and times.

v XSLT 2.0 added support for tunnel parameters, which allows parameters to be passed through multiple
template calls without having to declare the parameter in each template call.

v XSLT 2.0 added multiple mode support to allow templates to apply to specific modes of processing
within a stylesheet.

v Unparsed text can be incorporated into the data processed by a stylesheet, which then can be
tokenized with the new regular expression support.

v XSLT 2.0 provides a backwards-compatibility mode to run most XSLT 1.0 stylesheets unchanged.

XQuery 1.0
v XQuery 1.0 is based on XPath 2.0, allowing XQuery 1.0 to take advantage of all new XPath 2.0

features. XQuery 1.0 builds on XPath 2.0 to provide full XML Query capability.

1820 Developing WebSphere applications

v XQuery's FLOWR (For, Let, Order by, Where, Return) expression allows for complicated joins across
XML datasets. FLOWR allows for query of large documents or collections of documents. XQuery allows
for the mixture of direct XML construction along with computed content returned from FLOWR
expressions.

v XQuery has the ability to define functions and variables with syntax that is familiar to users of other
languages, allowing larger programs to be defined around the data-query operations.

v XQuery 1.0 supports schema-aware processing, which allows input and constructed documents and
elements to be validated.

v XQuery module support allows queries to be broken up into reusable fragments.

Overview of the XML Samples application
The XML Samples application is written to be used with the XML specifications and other documents.
However, the most important function that these samples provide is a place to begin experimenting with
the XML API and the supported specifications.

Limitations

The XML Samples application is not intended for deployment to production servers. It is for development
and educational purposes only. All source code is provided as is for you to use, copy, and modify without
royalty payment when you develop applications that run with WebSphere software. You can use the
sample code either for your own internal use, for redistribution as part of an application, or in your
products.

Content
v The simple API invocation examples included in the samples are intended as simple examples of using

the major new features of XPath 2.0, XSLT 2.0, and XQuery 1.0.

– XPath 2.0 examples

- Sample 1: Simple XPath invocation

Shows how to invoke XPath

- Sample 2: Invoking XPath 1.0 under an XPath 2.0 run time in backwards compatibility mode

Shows an example that demonstrates differences between XPath 1.0 and XPath 2.0 as well as
how to run existing XPath 1.0 statements under XPath 2.0 in backwards-compatibility mode

- Sample 3: Invoking schema aware XPath 2.0 expressions

Shows how to run schema-aware expressions; shows how to load schema documents, how to
validate input documents, and how to declare namespace prefixes

- Sample 4: XPath 2.0 - document function (relative URIs) with input and output documents

Shows how to invoke XPath using the document function with relative URIs

- Sample 5: XPath running in compiled mode

Shows how to invoke XPath in compiled mode

- Sample 6: XPath running in pre-compiled mode

Shows how to invoke XPath in pre-compiled mode

- Sample 7: XPath 2.0 collation support

Shows how to invoke XPath with collation support

– XSLT 2.0 examples

- Sample 1: Simple XSLT invocation

Shows how to invoke XSLT

- Sample 2: Invoking XSLT 1.0 under an XSLT 2.0 run time in backwards compatibility mode

Shows differences between XPath 1.0 and XPath 2.0 and how to run existing XSLT 1.0
stylesheets under a XSLT 2.0 processor in backwards-compatibility mode

Chapter 39. XML applications 1821

- Sample 3: XSLT 2.0 updated for-each support

Shows how to use the XSLT 2.0 for-each functionality

- Sample 4: XSLT 2.0 grouping support

Shows how to use the capability offered by xsl:for-each-group

- Sample 5: XSLT 2.0 regular expression support

Shows how to use XSLT 2.0 regular-expression support to work with data in structured legacy
formats within XML strings

- Sample 6: XSLT 2.0 date formatting

Shows how to use XSLT 2.0 date formatting with internationalization

- Sample 7: XSLT 2.0 multiple results

Shows how to use an XSLT 2.0 result-document instruction to write to multiple outputs
simultaneously

- Sample 8: XSLT 2.0 tunnel parameters

Shows how to use XSLT 2.0 tunnel parameters to allow values to be set and accessible during
stylesheet processing

- Sample 9: XSLT 2.0 stylesheet functions

Shows how to use the XSLT 2.0 stylesheet functions

- Sample 10: XSLT 2.0 initial template

Shows how to use the XSLT 2.0 initial-template functionality

- Sample 11: XSLT 2.0 template with multiple modes

Shows how to use the XSLT 2.0 template with multiple modes functionality

- Sample 12: XSLT 2.0 XHTML support - no output method specified

Shows how to use XSLT 2.0 XHTML support with the XHTML output method

- Sample 13: XSLT 2.0 XHTML support - output method specified

Shows how to use XSLT 2.0 XHTML support with the XHTML output method

- Sample 14: XSLT 2.0 character maps

Shows how to use XSLT 2.0 character maps functionality

- Sample 15: XSLT 2.0 "as" attribute

Shows how to use the XSLT 2.0 "as" attribute functionality

- Sample 16: XSLT 2.0 embedded stylesheets

Shows how to use the XSLT 2.0 embedded stylesheets functionality

- Sample 17: XSLT 2.0 running in compiled mode

Shows how to run XSLT in compiled mode

- Sample 18: XSLT 2.0 running in pre-compiled mode

Shows how to run XSLT in pre-compiled mode

- Sample 19: XSLT 2.0 undeclare-prefixes serialization parameter

Shows how to use the XSLT undeclare-prefix parameter when producing XML output that is
Version 1.1 or higher

- Sample 20: XSLT 2.0 next-match

Shows how to use the XSLT next-match functionality

- Sample 21: XSLT 2.0 usage of XPath 2.0 collection function

Shows how to use the collection function

- Sample 22: XSLT 2.0 schema awareness - input validation (valid)

Shows how to use the stylesheets and schemas to validate input documents

- Sample 23: XSLT 2.0 schema awareness - input validation (invalid)

Shows how to use the stylesheets and schemas to validate input documents

1822 Developing WebSphere applications

- Sample 24: XSLT 2.0 schema awareness - temporary tree (valid)

Shows how to use the validation attribute to validate temporary trees

- Sample 25: XSLT 2.0 schema awareness - temporary tree (invalid)

Shows how to use the validation attribute to validate temporary trees

- Sample 26: XSLT 2.0 schema awareness - output document (valid)

Shows how to use the validation attribute to validate the main output document

- Sample 27: XSLT 2.0 schema awareness - output document (invalid)

Shows how to use the validation attribute to validate the main output document

- Sample 28: XSLT 2.0 schema awareness - element(*, T) function

Shows how to use the stylesheets and schemas to match on element types instead of names

- Sample 29: XSLT 2.0 use-when

Shows how to use the use-when functionality

- Sample 30: XSLT 2.0 collation support

Shows how to use the for-each-group functionality with collations

- Sample 31: Using stylesheet-declared external functions

Shows how to declare external functions within a stylesheet

– XQuery 1.0 examples

- Sample 1: Simple XQuery invocation

Shows how to invoke simple XQuery FLOWR expressions

- Sample 2: XQuery FLWOR support - using doc function and cross document joins

Shows how to invoke an XQuery that joins data from multiple documents

- Sample 3: XQuery declare functions and variables

Shows how to define and use XQuery functions and variables

- Sample 4: XQuery TypeDeclaration support

Shows how to use the TypeDeclaration functionality

- Sample 5: XQuery running in compiled mode

Shows how to run XQuery functions in compiled mode

- Sample 6: XQuery running in pre-compiled mode

Shows how to invoke XQuery in pre-compiled mode

- Sample 7: XQuery operations on types (typeswitch, cast as)

Shows how to use operations on types

- Sample 8: XQuery schema awareness - input validation (valid)

Shows how to validate the input document passed to the query

- Sample 9: XQuery schema awareness - input validation (invalid)

Shows how to validate the input document passed to the query

- Sample 10: XQuery schema awareness - node validation (valid)

Shows how to validate an element using the validate expression

- Sample 11: XQuery schema awareness - node validation (invalid)

Shows how to validate an element using the validate expression

- Sample 12: XQuery schema awareness - element(*, T) function

Shows how to use schema awareness to match on element types instead of names

- Sample 13: XQuery modules support

Shows how commonly used functions and variables can be put in a reusable library module

- Sample 14: XQuery modules support with schema

Shows how modules interact with schema support

Chapter 39. XML applications 1823

- Sample 15: Using query-declared external functions

Shows how to declare external functions within a query

v The Blog Comment Checker examples show how you can search all or your Blogger™ web publishing
service blogs for questionable comments. They are examples of high-level applications that use XPath
2.0, XSLT 2.0, and XQuery 1.0.

– XPath Blog Checker

– XSLT Blog Checker

– XQuery Blog Checker

– Database Integration Checker

Using the XML API to perform operations
You can use the IBM XML Application Programming Interface (API) to perform operations that use the new
and updated W3C XML standards.

Before you begin

Limitations of the processor:

v When using the namespace axis, only the namespaces declared on the
current node are accessible through the namespace axis (rather than
all of the namespaces that are in scope for the current node) if the
input document supplied is a StreamSource, SAXSource, or
StAXSource.

v When evaluating some string functions and operations, the processor
might not handle Unicode characters with code points above #xFFFF
correctly; it might incorrectly treat the surrogate pair in the UTF-16
encoding of the character as two separate characters.

v Whitespace text nodes might not be stripped from elements that have
complex type with element-only content. When matching children of
such an element, use a sequence type that matches only elements
such as element() to avoid processing these text nodes.

v The column number reported in an error message relating to an
operator expression might not point to the operand that is actually in
error. Consider both operands when determining the cause of the error.

v Using a variable declared in an XQuery typeswitch clause as an
operand in an arithmetic expression might cause an error.

When using the variable declared in an XQuery typeswitch clause in an
arithmetic expression such as in the following example, the processor
might incorrectly report a type error.
typeswitch (.)
case $a as xs:integer return ($a + 1)
default return 17

To work around this limitation, cast the variable to the expected type.
For example:
typeswitch (.)
case $a as xs:integer return (($a cast as xs:integer) + 1)
default return 17

Procedure
v Perform basic operations.

v Precompile.

v Use resolvers.

1824 Developing WebSphere applications

v Use external variables and functions.

v Create items and sequences.

v Work with collations.

v Execute using the command-line tools.

v Use a message handler and manage exceptions.

Building and running a sample XML application
You can use the IBM WebSphere Application Server XML thin client, the
com.ibm.xml.thinclient_8.5.0.jar file, to build a sample XML application. You can also use the API
documentation to improve your understanding of the XML API.

Before you begin
1. Install the product.

2. Locate the com.ibm.xml.thinclient_8.5.0.jar file.

You can find the com.ibm.xml.thinclient_8.5.0.jar file in your installation tree; for example:

v app_server_root\runtimes\com.ibm.xml.thinclient_8.5.0.jar

v app_server_root/runtimes/
com.ibm.xml.thinclient_8.5.0.jar

To see how to build and use an application, refer to the sample application that is packaged with the
product.

About this task

Follow this procedure when you build and run a sample XML application.

Procedure
1. For build time, include the com.ibm.xml.thinclient_8.5.0.jar file in the build-time class path while

developing your sample XML application.

Also, attach the API documentation from the javadoc directory that is inside the
com.ibm.xml.thinclient_8.5.0.jar file.

Chapter 39. XML applications 1825

The results of these actions are shown in the following image:

When complete, your application should compile; and when using context completion, you should have
access to the API documentation as shown here:

1826 Developing WebSphere applications

2. Deploy your application.

Running the IBM Thin Client for XML
The IBM Thin Client for XML with WebSphere Application Server allows applications to take advantage of
IBM XML technology components in a simple Java environment. Such applications can directly access the
XML API to process XPath, XQuery, and XSL in a Java SE runtime environment. You can bundle the Thin
Client for XML library with your application by using the WebSphere Application Server installation. The
Thin Client for XML also extends the choice of Java SE runtime environment. It can be run in IBM Java
Runtime Environments (JREs) packaged with WebSphere Application Server as well as in the Windows
and Linux JREs from Oracle Corporation, the JREs that are downloaded from the Oracle Corporation
website, or the JRE that is downloaded from the HP website.

Before you begin

Before you can use the API provided by the Thin Client for XML you must obtain the Thin Client for XML
Java archive (JAR) file. This can be accomplished by installing WebSphere Application Server. The Thin
Client for XML JAR file, com.ibm.xml.thinclient_8.5.0.jar, is located in the app_server_root\runtimes
directory.

Copy the JAR file, com.ibm.xml.thinclient_8.5.0.jar, to other machines to enable access to the XML
API. Copies of the Thin Client for XML are subject to the terms and conditions of the license agreement for
the WebSphere Application Server Version 8.5 product from which you obtained the Thin Client for XML.
Refer to the license agreements for correct usage and other limitations.

The Thin Client for XML with WebSphere Application Server runs on distributed operating systems with
Java SE Development Kit (JDK) support, including Java 6.0 and Java 7.0.

About this task

Run the Thin Client for XML by completing this procedure.

Procedure

Invoke the client application.
Run the following Java command:

Chapter 39. XML applications 1827

java_install_root\bin\java
-classpath com.ibm.xml.thinclient_8.5.0.jar;list_of_your_application_jars_and_classes
fully_qualified_class_name_to_run

java_install_root/bin/java
-classpath com.ibm.xml.thinclient_8.5.0.jar:list_of_your_application_jars_and_classes
fully_qualified_class_name_to_run

Performing basic operations
You can use this information to help you to perform basic XPath, XSLT, and XQuery operations.

Procedure
v Perform basic XPath operations.

v Perform basic XSLT operations.

v Perform basic XQuery operations.

v View the results.

v Serialize the results.

v Navigate with XSequenceCursor.

v Navigate with XTreeCursor.

Overview of the XML API
The product provides the IBM XML Application Programming Interface in support of the XML standards.
This application programming interface invokes a runtime engine that is capable of executing XPath 2.0,
XSLT 2.0, and XQuery 1.0 as well as manipulating the returned XML data.

Supported input and result types:

The API supports standard implementations of Java API for XML Processing (JAXP) input and result
types.

The following standard implementations of the JAXP Source interface are supported as the input to the
execute methods of an executable object (XPathExecutable, XQueryExecutable, and XSLTExecutable) as
well as to other methods that take a Source object such as XItemFactory.item(Source),
XDynamicContext.bind(QName, Source), and so on. They are also accepted for the stylesheet parameter
to the XFactory.prepareXSLT methods. These classes are all included in the Java 6.0 and Java 7.0
versions of the JRE. Refer to the Java API documentation for more information.

v javax.xml.transform.stream.StreamSource

v javax.xml.transform.dom.DOMSource

v javax.xml.transform.sax.SAXSource

v javax.xml.transform.stax.StAXSource

The XSourceResolver.getSource method can return any of the previous implementations of source as well
as a further implementation, XItemSource, provided by the API. This allows results from a previous query
or transformation to be used as input to a new query or transformation without first serializing to a DOM or
stream. The XItemSource can simply be initialized with the XItemView instance and returned by the
XSourceResolver implementation.

The following standard implementations of the JAXP Result interface are supported for those execute
methods that take a result as well as other methods that take a result object such as the export methods
on XItemView and XSequenceCursor. These classes are included in the Java 6.0 and Java 7.0 versions of
the JRE. Refer to the Java API documentation for more information.

v javax.xml.transform.stream.StreamResult

v javax.xml.transform.dom.DOMResult

1828 Developing WebSphere applications

v javax.xml.transform.sax.SAXResult

v javax.xml.transform.stax.StAXResult

A further implementation of the Result interface, XSequenceCursorResult, is provided by the API to allow a
result to be returned as an XSequenceCursor. The execute methods on the executable objects that do not
take a result object return the result as an XSequenceCursor already; therefore, this is primarily for use
with XSLT multiple result documents. An implementation of XResultResolver can return an
XSequenceCursorResult to the processor and the processor will populate the XSequenceCursorResult
with the XSequenceCursor and the associated output parameters during processing. After the
transformation is complete the XSequenceCursor can be retrieved by the application by calling the
getSequenceCursor method on the XSequenceCursorResult object. The output parameters can be
retrieved by calling the getOutputParameters method. The output parameters then can be used on a call
to the XSequenceCursor exportSequence method.

The XFactory class:

This is a quick overview of the methods that the XFactory class provides. The individual methods are
discussed in detail in other articles in the information center.

The XFactory class is the main factory class for creating executables for XPath, XQuery, and XSLT. It is
also the means for creating instances of other classes and factories such as the XStaticContext,
XDynamicContext, XItemFactory, and XSequenceTypeFactory classes. An instance of XFactory maintains
a set of registered schemas as well and can be validating or non-validating. A validating factory produces
schema-aware executables and ensures that source documents get validated against the set of registered
schemas before they are processed. If different sets of stylesheets or expressions need different sets of
schemas, these can be kept separate by using more than one XFactory instance. An XFactory instance
can be created by calling the static newInstance() method on the XFactory class. The instance is thread
safe as long as the settings remain stable.

Here is an example of using the XFactory class.
// Create a new XFactory
XFactory factory = XFactory.newInstance();

// Create an XPath executable
XPathExecutable executable = factory.prepareXPath("/something/bar[2]");

// Create a new XStaticContext
XStaticContext staticContext = factory.newStaticContext();

// Create an XPath executable that is compiled in backwards
// compatibility mode
staticContext.setXPathCompatibilityMode(XStaticContext.XPATH1_0_BC_COMPATIBILITY);
XPathExecutable bcExecutable = factory.prepareXPath("/something/bar[2]", staticContext);

// Set validating
factory.setValidating(true);

// Register a schema
factory.registerSchema(new StreamSource("myschema.xsd"));

// Create a schema aware XPath executable
staticContext = factory.newStaticContext();
staticContext.declareNamespace("something", "http://myschema/something");
XPathExecutable schemaExecutable =

factory.prepareXPath("/something:something/bar[2] instance of element(bar, something:barType)", staticContext);

// Get the item factory for this XFactory (the two are related
// since the item factory depends on the schemas that are
// registered with XFactory).
XItemFactory itemFactory = factory.getItemFactory();

Relationship of the processor to the Java API for XML Processing (JAXP):

In most cases, you will need to migrate any of your applications that used the Java API for XML
Processing (JAXP) to use the current API.

Chapter 39. XML applications 1829

The XSLT and XPath processing portions of JAXP are defined with reference to XSLT 1.0 and XPath 1.0.
JAXP does not have provisions for XSLT 2.0 and XPath 2.0 processing. In particular, there are situations
in which an XSLT 2.0 or an XPath 2.0 processor must produce a result that is different from that produced
by an XSLT 1.0 or an XPath 1.0 processor given identical input and an identical stylesheet or expression.
Therefore, it is not possible to instantiate the current processor using JAXP.

JAXP also does not have support for sequences, XQuery 1.0, or the many current data types that are
available in XSLT 2.0, XPath 2.0, and XQuery 1.0. JAXP also is limited in the forms that input and output
can take. All these things make it a poor fit for processing XSLT 2.0 stylesheets as well as XPath 2.0 and
XQuery 1.0 expressions.

The following examples demonstrate common migration scenarios and how to write code using the current
API that is equivalent to code that you might have written using JAXP.

Processing an XSLT stylesheet using the API

The following example demonstrates how to process an XSLT stylesheet and apply it to some input to
produce an instance of the javax.xml.transform.Result interface.
XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
style.execute(new StreamSource("input.xml"), new StreamResult(System.out));

Processing an XPath expression using the API

The following example demonstrates how to process an XPath expression and apply it to some input.
XFactory factory = XFactory.newInstance();
XPathExecutable pathExpr = factory.prepareXPath("/doc/child[@id=’N1378’]");

// Process input from a StreamSource
XSequenceCursor result1 = pathExpr.execute(new StreamSource("input.xml"));

// Process input from a DOM node
XSequenceCursor result2 = pathExpr.execute(new DOMSource(node));

Resolving URI references

If you used instances of the JAXP URIResolver interface to resolve references to the XSLT document()
function, you can now use the XSourceResolver interface to accomplish the same thing. To resolve
references to the document() function or the fn:doc() function, you can set an instance of the
XSourceResolver interface on an instance of the XDynamicContext interface; to resolve references to
stylesheets imported through xsl:import and xsl:include declarations, you can set an instance of the
XSourceResolver interface on an instance of the XStaticContext interface.

The following example shows how you might set up an instance of the XSourceResolver interface that
treats input documents as XSLT stylesheets and uses them to generate the input data for reference to the
doc or document functions in another XSLT stylesheet.
final XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
XDynamicContext dContext = factory.newDynamicContext();

// Create and set an instance of an anonymous inner class as the
// XSourceResolver
dContext.setSourceResolver(new XSourceResolver() {

// Create an item to use as the initial context node for
// transformations in the getSource method
private XItemView fDummyNode =

factory.getItemFactory()
.item(new StreamSource(

new StringReader("<doc/>")));

// Resolve URIs by loading the resource as an XSLT stylesheet
// and evaluating it - return the result as the Source to use
public Source getSource(String href, String base) {

java.net.URI baseURI;
try {

// Get base URI object
baseURI = new java.net.URI(base);

1830 Developing WebSphere applications

} catch (java.net.URISyntaxException use) {
throw new RuntimeException(use);

}
// Resolved relative reference against base URI
String resolvedURI = baseURI.resolve(href).toString();

// Prepare and execute the stylesheet
XItemView transformResult =

factory.prepareXSLT(new StreamSource(resolvedURI))
.execute(fDummyNode);

return new XItemSource(transformResult);
}

});

XSequenceCursor result = style.execute(new StreamSource("input.xml"), dContext);

Defining extension functions and external functions

Using JAXP for XPath expression evaluation, you could register an instance of the XPathFunctionResolver
interface to supply the implementations of extension functions that your XPath expressions might call. The
XSLT portion of JAXP does not have an equivalent mechanism.

With the current API, you can declare extension functions on an instance of the XStaticContext interface,
specifying the expected types of the arguments and the expected type of the result of calling the function,
and you can register the implementations of extension functions on an instance of the XDynamicContext
interface. Your XSLT stylesheet and XPath and XQuery expressions can call any extension functions that
you register.

Setting the values of stylesheet parameters and external variables

Using JAXP, you could supply the initial values of stylesheet parameters by calling the
Transformer.setParameter method and you could supply the values of variables for XPath expressions by
supplying an instance of the XPathVariableResolver interface. Using the API, you can declare variables
using the declareVariable() methods of the XStaticContext interface, specifying a variable name and the
expected type of the variable. You can supply the values of stylesheet parameters, XPath variables, and
XQuery external variables through one of the bind() methods of the XDynamicContext interface.

The following example shows how you might use a variable in an XPath expression to look up product
entries in a catalog based on the product identifier.
XFactory factory = XFactory.newInstance();
XStaticContext sContext = factory.newStaticContext();

// Declare the XPath variable "query-id" in the static context
QName queryIdVar = new QName("query-id");
sContext.declareVariable(queryIdVar, XTypeConstants.STRING_QNAME);

// Prepare the XPath expression
XItemFactory itemFactory = factory.getItemFactory();
XPathExecutable expr =

factory.prepareXPath("/catalog/product[id eq $query-id]", sContext);

XItemView catalog = itemFactory.item(new StreamSource("catalog.xml"));
XDynamicContext dContext = factory.newDynamicContext();

// Set the value of the "query-id" variable, and evaluate the
// expression with that variable value
dContext.bind(queryIdVar, "ID43785");
XSequenceCursor product1 = expr.execute(catalog, dContext);

// Set the value of the "query-id" variable, and evaluate the
// expression with the new variable value
dContext.bind(queryIdVar, "ID18574");
XSequenceCursor product2 = expr.execute(catalog, dContext);

Identity transformation

Another operation that is frequently used in JAXP is the identity transformation. This is a convenient way
of transforming data from one form to another—for example, serializing a DOM tree, or producing a DOM
tree from SAX events. It is possible to perform identity transformations using the API. See “Performing
basic XSLT operations” on page 1857 for an example.

Chapter 39. XML applications 1831

Prepare-time and execution-time configuration

In JAXP you supply much of the runtime configuration information for XSLT stylesheets – the values of
stylesheet parameters, URIResolvers, and so on—directly on the objects that are used to perform
transformations – instances of the Transformer interface and the TransformerHandler interface. Similarly,
you supply configuration information for the preparation of stylesheets and XPath expressions directly on
instances of the TransformerFactory and XPathFactory classes in JAXP.

With the API, you can supply configuration information that is needed at the time a stylesheet or an
expression is prepared—namespace bindings, the types of external functions or variables, and so
on—using an instance of the XStaticContext interface. Similarly, you can provide any configuration
information that is needed to evaluate a stylesheet or expression—the values of variables, settings of
output parameters, and so on—on an instance of the XDynamicContext interface, which you can pass as
an argument to the execute methods of the XExecutable interface and its subinterfaces.

This separation of the configuration information into a separate object makes the API more thread safe.
Your application can use the same instance of the XExecutable interface on different threads without any
synchronization. This stands in contrast to JAXP, where instances of the Transformer, TransformerHandler
and XPathExpression interfaces are not thread safe; every thread that uses them has to synchronize
access to shared instances of those objects or create distinct copies that are specific to each thread.

Handling errors

In JAXP, you could supply an instance of the ErrorHandler interface to control how the processor should
respond to errors. In the API, you can achieve this by supplying an instance of the XMessageHandler
interface on an instance of the XStaticContext interface for preparation-time errors or the
XDynamicContext interface for execution-time errors.

Performance tips:

Follow these tips to improve performance when using XPath, XQuery, and XSLT.

Table 295. Performance tips. Follow these tips to improve performance.
Language Tip

XPath Using // can be an expensive operation. Making the path more explicit
(a/b/c rather than a//c) can improve performance. This is especially
important when the path starts at or near the root of a large document.

The last() function, because it requires fully evaluating the sequence to
count the items, can be an expensive operation.

Positional predicates with constant values, such as [3], are usually more
efficient than those with values that are computed or that are retrieved
from variables.

XQuery Consider calling the registerImportedSchemas method on the
XQueryExecutable instance if the query imports one or more schemas
and the same query will be executed more than once. If
registerImportedSchemas is not called, the imported schemas will be
loaded every time one of the execute methods is called. By default,
imported schemas can only be used to validate result trees; but calling
this method has the same effect as registering the schemas with the
XFactory, which means that they will be used to validate input documents.

1832 Developing WebSphere applications

Table 295. Performance tips (continued). Follow these tips to improve performance.
Language Tip

XSLT Parameters are slower to access than variables. If you do not need to
supply the value of the parameter externally, use a variable.

Using xsl:key elements and the key() function can be an efficient way to
retrieve node sets.

Pattern matching and apply-templates dispatch are usually faster than the
xsl:if or xsl:when statements.

Positional predicates in match patterns are usually expensive.

In general, simpler match patterns such as "address" are less expensive
to process than complicated ones such as "/purchaseorder/shipping/
customer/postal/address". Take advantage of your knowledge of the
document's structure and your stylesheet's behavior to avoid
unnecessarily overspecifying.

For some data models, the xsl:skip-space operation must be applied
during document navigation rather than during document load. This can
add some execution-time overhead.

Consider calling the registerImportedSchemas method on the
XSLTExecutable instance if the stylesheet imports one or more schemas
and the same stylesheet will be executed more than once. If
registerImportedSchemas is not called, the imported schemas will be
loaded every time one of the execute methods is called. By default,
imported schemas can only be used to validate result trees; but calling
this method has the same effect as registering the schemas with the
XFactory, which means that they will be used to validate input documents.

XPath, XQuery, and XSLT Decoding and encoding is expensive. Generally, UTF-8 and UTF-16 can
be read and written more quickly than other encodings.

XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-specific behaviors:

Table 296. Implementation-defined behaviors.

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

multi preserve-strip-space matched It is a recoverable dynamic
error if an element in the
source document matches
both an xsl:strip-space and an
xsl:preserve-space declaration.

XSLT 2.0

Section 4.4

XTRE0270 The processor does not return an error and recovers by
selecting the xsl:strip-space or xsl:preserve-space declaration
that occurs last in declaration order.

pattern evaluation Any dynamic error or type
error that occurs during the
evaluation of a pattern against
a particular node is treated as
a recoverable error even if the
error would not be recoverable
under other circumstances.
The optional recovery action is
to treat the pattern as not
matching that node.

XSLT 2.0

Section 5.5.4

The processor does not return an error and recovers by treating
the pattern as not matching that node.

multiple templates matched It is a recoverable dynamic
error if the conflict resolution
algorithm for template rules
leaves more than one
matching template rule. The
optional recovery action is to
select, from the matching
template rules that are left, the
one that occurs last in
declaration order.

XSLT 2.0

Section 6.4

XTRE0540 The processor does not return an error and recovers by
selecting the template that occurs last in declaration order.

invalid value-xml space It is a recoverable dynamic
error if the name of a
constructed attribute is
xml:space and the value is not
either default or preserve. The
optional recovery action is to
construct the attribute with the
value as requested. This
applies whether the attribute is
constructed using a literal
result element or by using the
xsl:attribute, xsl:copy, or
xsl:copy-of instructions.

XSLT 2.0

Section 11.1.2

XTRE0795 The processor does not return an error and constructs the
attribute with the value as requested.

Chapter 39. XML applications 1833

http://www.w3.org/TR/xslt20/#strip
http://www.w3.org/TR/xslt20/#pattern-errors
http://www.w3.org/TR/xslt20/#conflict
http://www.w3.org/TR/xslt20/#attributes-for-lres

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

invalid fragment in document uri When a URI reference
supplied to the document
function contains a fragment
identifier, it is a recoverable
dynamic error if one of the
following is true:

v the media type is not one
that is recognized by the
processor

v the fragment identifier does
not conform to the rules for
fragment identifiers for that
media type

v if the fragment identifier
selects something other
than a sequence of nodes (if
it selects a range of
characters within a text
node, for example)

The optional recovery action is
to ignore the fragment identifier
and return the document node.
(Note that the recovery option
is different from that in XSLT
1.0)

XSLT 2.0

Section 16.1

XTRE1160 The processor ignores the fragment identifier and returns the
document node. No warning is returned.

same resource for multiple results It is a recoverable dynamic
error for a transformation to
generate two or more final
result trees with URIs that
identify the same physical
resource. The optional
recovery action is
implementation-dependent
because it may be impossible
for the processor to detect the
error.

XSLT 2.0

Section 19.1

XTRE1495 The processor returns an error.

read and write to same resource It is a recoverable dynamic
error for a stylesheet to write
to an external resource and
read from the same resource
during a single transformation,
whether or not the same URI
is used to access the resource
in both cases. The optional
recovery action is
implementation-dependent;
implementations are not
required to detect the error
condition.

XSLT 2.0

Section 19.1

XTRE1500 The processor does not attempt to detect this error condition.

disable output escaping not supported It is a recoverable dynamic
error if an xsl:value-of or
xsl:text instruction specifies
that output escaping is to be
disabled and the
implementation does not
support this. The optional
recovery action is to ignore the
disable-output-escaping
attribute.

XSLT 2.0

Section 20.2

XTRE1620 The processor does not provide the ability to disable output
escaping and ignores the disable-output-escaping attribute
without warning.

disable output escaping for not serialized It is a recoverable dynamic
error if an xsl:value-of or
xsl:text instruction specifies
that output escaping is to be
disabled when writing to a final
result tree that is not being
serialized. The optional
recovery action is to ignore the
disable-output-escaping
attribute.

XSLT 2.0

Section 20.2

XTRE1630 The processor does not provide the ability to disable output
escaping and ignores the disable-output-escaping attribute
without warning.

1834 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#document
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#disable-output-escaping
http://www.w3.org/TR/xslt20/#disable-output-escaping

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

integer overflow On overflow and underflow
situations during xs:integer
arithmetic operations,
implementations that support
limited-precision integer
operations must select from
the following options:

v Always raising an error
(FOAR0002)

v Providing an
implementation-defined
mechanism that allows
users to choose between
raising an error and
returning a result that is
modulo the largest
representable integer value

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2

FOAR0002 The processor provides a mechanism to enable overflow
detection for integer operations through the
com.ibm.xml.xapi.XStaticContext.setIntegerMathMode(int)
method, which can be called with the constants
INTEGER_MATH_MODE_OVERFLOW_DETECTION or
INTEGER_MATH_MODE_LIMITED_PRECISION (defined on the
XStaticContext interface) to choose between the two options. A
third option, INTEGER_MATH_MODE_ARBITRARY_PRECISION, is
provided to allow arbitrary precision integers.

double float overflow For xs:float and xs:double
arithmetic operations, overflow
behavior must conform to IEEE
754-1985, which allows the
following options:

v Raising an error
(FOAR0002) using an
overflow trap

v Returning INF or -INF

v Returning the largest
(positive or negative)
non-infinite number

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2

The processor returns INF or -INF.

double float underflow For xs:float and xs:double
arithmetic operations,
underflow behavior must
conform to IEEE 754-1985,
which allows the following
options:

v Raising an error
(FOAR0002) using an
underflow trap

v Returning INF or -INF

v Returning 0.0E0, +/-
2**Emin, or a denormalized
value where Emin is the
smallest possible xs:float or
xs:double exponent

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2

The processor returns 0.0E0.

invalid use of doctype-system or
standalone attr

It is a serialization error to
specify the doctype-system
parameter or to specify the
standalone parameter with a
value other than omit if the
instance of the data model
contains text nodes or multiple
element nodes as children of
the root node. The serializer
must either signal the error or
recover by ignoring the request
to output a document type
declaration or standalone
parameter.

SR

Section 5

SEPM0004 The processor returns a serialization error.

invalid xml output encoding A serialization error occurs if
the output method is XML and
an output encoding other than
UTF-8 or UTF-16 is requested
and the serializer does not
support that encoding. The
serializer must return the error
(SESU0007) or recover by
using UTF-8 or UTF-16
instead.

SR

Section 5.1.2

SESU0007 The processor returns a serialization error.

Chapter 39. XML applications 1835

http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xslt-xquery-serialization/#xml-output
http://www.w3.org/TR/xslt-xquery-serialization/#XML_ENCODING

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

error or recovery Some dynamic errors are
classed as recoverable errors.
When a recoverable error
occurs, the processor may
signal the error (by reporting
the error condition and
terminating execution) or take
a defined recovery action and
continue processing.

XSLT 2.0

Section 2.9

The processor recovers from many of the recoverable errors but
signals an error in some cases. Consult this table to determine
the implementation-defined behavior of each type of recoverable
error.

signal type errors statically Whether or not type errors are
signaled statically is
implementation defined.

XSLT 2.0

Section 2.9

The processor detects type errors statically whenever possible;
but there are cases where the error cannot be detected at
compile time. In these cases, the error is detected at run time.

handling serialization errors The handling of serialization
errors is implementation
defined.

XSLT 2.0

Section 20

Error messages are sent to a
com.ibm.xml.xapi.XMessageHandler implementation that has
been registered using the setXMessageHandler method on the
com.ibm.xml.xapi.XDynamicContext interface.

base output URI The way in which a base
output URI is established is
implementation defined.

XSLT 2.0

Section 2.3�

Users can set the base output URI using the setBaseOutputURI
method on the com.ibm.xml.xapi.XDynamicContext interface.

extension attributes Implementations may allow
extension attributes to modify
the behavior of extension
functions and extension
instructions or to influence the
behavior of the serialization
methods xml, xhtml, html, or
text to the extent that the
behavior of the serialization
method is implementation
defined or
implementation-dependent.

XSLT 2.0

Section 3.3

The processor recognizes the indent-amount attribute on
xsl:output declarations to specify how many spaces are used for
each indentation level when indentation is enabled. The attribute
must be from one of the following namespaces:

v http://www.ibm.com/xmlns/prod/xltxe-j

v http://xml.apache.org/xalan

v http://xml.apache.org/xslt

See the additional serialization params item later in the table.

user-defined data elements An implementation may attach
an implementation-defined
meaning to user-defined data
elements that appear in
particular namespaces. The
set of namespaces that are
recognized for such data
elements is implementation
defined.

XSLT 2.0

Section 3.6.2

The processor does not recognize any user-defined data
elements.

user-defined types Support for additional
user-defined or
implementation-defined types
is implementation defined.

XPath 2.0 Data
Model

Section 2.6

A schema-aware processor is supported.

undefined type behavior Some typed values in the data
model are undefined.
Attempting to access an
undefined property is always
an error. Behavior in these
cases is implementation
defined and the host language
is responsible for determining
the result.

XPath 2.0 Data
Model

Section 2.5.2,
Bullet 4.d

FOTY0012 The processor returned an error. Error messages are sent to a
com.ibm.xml.xapi.XMessageHandler implementation that has
been registered using the setXMessageHandler method on the
com.ibm.xml.xapi.XDynamicContext interface.

namespace node representation Representation of
namespaces, that is whether
or not they are represented as
nodes, is implementation
dependent.

XPath 2.0 Data
Model

Section 6.4

The namespace axis is supported.

locate stylesheet module After resolving against the
base URI, the way in which the
URI reference from the href
attribute of an xsl:include or
xsl:import declaration is used
to locate a representation of a
stylesheet module and the way
in which the stylesheet module
is constructed from that
representation are
implementation defined. In
particular, which URI schemes
are supported, whether
fragment identifiers are
supported, and what media
types are supported are
implementation defined.

XSLT 2.0

Section 3.10.1

Users may provide an com.ibm.xml.xapi.XSourceResolver
implementation through the com.ibm.xml.xapi.XStaticContext.
setSourceResolver(XSourceResolver) method. The
XSourceResolver is used by the processor to resolve URIs from
xsl:include and xsl:import declarations (therefore, the user may
decide which URIs to support), and its getSource(String,
String) method must return a JAXP Source object.

If no XSourceResolver is given, the processor handles the file
URI scheme and those supported by the
java.net.URL.openConnection() method. A URI fragment may
be used to select an embedded stylesheet module within a
source XML document. The fragment must identify an
xsl:stylesheet element in the document by using the value of one
of its attributes that is an xml:id attribute or is defined in a DTD
as being of type ID or is defined in a schema as being of type
xs:ID. There is no built-in support for non-XML media types, but
users may use an XSourceResolver implementation to provide
the processor with an XML representation of non-XML data.

1836 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#errors
http://www.w3.org/TR/xslt20/#errors
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt20/#initiating
http://www.w3.org/TR/xslt20/#extension-attributes
http://www.w3.org/TR/xslt20/#user-defined-top-level
http://www.w3.org/TR/xpath-datamodel/#types
http://www.w3.org/TR/xpath20/#id-typed-value
http://www.w3.org/TR/xpath20/#id-typed-value
http://www.w3.org/TR/xpath-datamodel/#NamespaceNode
http://www.w3.org/TR/xslt20/#locating-modules

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

extension functions Extension functions

The XSLT 2.0 specification
defines how extension
instructions and extension
functions are invoked, but the
facilities for creating new
extension instructions and
extension functions are
implementation defined.

XSLT 2.0

Section 18.1

Extension functions are supported through the processor's
XStaticContext.declareFunction and
XDynamicContext.bindFunction methods. Alternatively, it is also
possible to declare extension functions directly within a
stylesheet or query. The old style of extension functions
supported in the parser and the processor are also supported for
backwards compatibility; however, only 1.0 types are supported
with the old style. See the API documentation for more
information. It is recommended that you declare extension
functions directly in your stylesheet or through the API for
extension functions whenever possible rather than use the old
style.

extension instructions Extension instructions

The XSLT 2.0 specification
defines how extension
instructions and extension
functions are invoked, but the
facilities for creating new
extension instructions and
extension functions are
implementation defined.

XSLT 2.0

Section 18.2

XTDE1450 User-defined extension instructions are not supported. Extension
instructions must be protected with a fallback instruction;
otherwise, the stylesheet will fail to compile. The redirect
extension is supported for backwards compatibility; however, it is
recommended that you use the XSLT 2.0 xsl:result-document
instruction because this is more portable.

backwards-compatiblility Whether a particular XSLT 2.0
implementation supports
backwards-compatible
behavior is implementation
defined.

XSLT 2.0

Section 3.8

The backwards-compatibility feature as described in the XSLT
2.0 specification is supported.

in-scope collations for use-when In-scope collations for
use-when expressions

XSLT 2.0

Section 3.12

The only collation available during the evaluation of a use-when
is the Unicode code-point collation.

current date time for use-when Current date and time for
use-when expressions

XSLT 2.0

Section 3.12

The current date time is the current date time of the system as
retrieved by calling the java.util.GregorianCalendar
getInstance() method.

implicit timezone for use-when Implicit time zone for use-when
expressions

XSLT 2.0

Section 3.12

The implicit time zone is the time zone of the system as
retrieved by calling the java.util.TimeZone getDefault()
method.

maximum number of decimal digits Maximum number of total
digits in decimal digits is
implementation defined , but
they must be at least 18 digits.

XSLT 2.0

Section 4.6

The implementation uses the java.math.BigDecimal class, which
supports nearly unlimited precision, except that the number of
digits to the right of the decimal place is limited to
Integer.MAX_VALUE. Truncation is only required in the case of
division, where there is the possibility of non-terminating
decimals. The precision of the fractional part of the result is
limited to 18 digits. The rounding mode in this case is
ROUND_HALF_UP, where discarded fractions of 0.5 or later are
rounded up (away from zero) and lesser fractions are rounded
down.

year component values For the xs:date, xs:time,
xs:dateTime, xs:gYear, and
xs:gYearMonth types: the
range of values of the year
component (which must be at
least +0001 to +9999), and the
maximum number of fractional
second digits (which must be
at least 3)

XSLT 2.0

Section 4.6

The year component of the xs:date, xs:dateTime, xs:gYear, and
xs:gYearMonth types has the range -(10^9-1) to (10^9)-1. The
maximum number of fractional seconds digits supported for the
xs:time and xs:dateTime types is three.

duration For the xs:duration type: the
maximum absolute values of
the years, months, days,
hours, minutes, and seconds
components

XSLT 2.0

Section 4.6

The maximum absolute values for the duration components are:

v year: 178956970

v month: 2147483647

v day: 106751991167

v hour: 2562047788015

v minute: 153722867280912

v second: 9223372036854775

Three digits of precision are supported for milliseconds.

year month duration For the xdt:yearMonthDuration
type: the maximum absolute
value expressed as an integer
number of months

XSLT 2.0

Section 4.6

The maximum absolute value for the xs:yearMonthDuration type
is 2147483647 months.

day time duration For the xdt:dayTimeDuration
type: the maximum absolute
value expressed as a decimal
number of seconds

XSLT 2.0

Section 4.6

The maximum absolute value for the xs:dayTimeDuration type is
9223372036854775 seconds.

Chapter 39. XML applications 1837

http://www.w3.org/TR/xslt20/#extension-functions
http://www.w3.org/TR/xslt20/#extension-instruction
http://www.w3.org/TR/xslt20/#backwards
http://www.w3.org/TR/xslt20/#conditional-inclusion
http://www.w3.org/TR/xslt20/#conditional-inclusion
http://www.w3.org/TR/xslt20/#conditional-inclusion
http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#limits

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

value maximum length For the xs:string, xs:hexBinary,
xs:base64Binary, xs:QName,
xs:anyURI, xs:NOTATION
types and types derived from
them: the maximum length of
the value

XSLT 2.0

Section 4.6

The theoretical maximum length is 2^31 - 1; however, the
system is likely to run out of memory long before that limit is
reached.

sequence length Maximum number of items in a
sequence

XSLT 2.0

Section 4.6

The theoretical maximum number of items is 2^31 - 1; however,
the system is likely to run out of memory long before that limit is
reached.

statically known collations Set of in-scope collations XSLT 2.0

Section 5.4.1

XPath 2.0

Section 2.1.1

XQuery 1.0

Section 2.1.1

Any URI is considered to be in the set of in-scope collations.
Every URI that is used as a collation URI must be associated
with a Java Collator at execution time.

implicit timezone Implicit time zone XSLT 2.0

Section 5.4.3.2

XPath 2.0

Section 2.1.2

XQuery 1.0

Section 2.1.2

The implicit time zone can be set using the
XDynamicContext.setImplicitTimeZone(Duration) method in the
processor. If the implicit time zone is not set, the system time
zone is used as retrieved through the
java.util.TimeZone.getDefault() method.

default collection Default collection

This is the sequence of nodes
that would result from calling
the fn:collection function with
no arguments. The value of
the default collection may be
initialized by the
implementation.

XSLT 2.0

XPath 2.0

Section 2.1.2

FODC0004 The default collection is determined by the XCollectionResolver
registered with the XDynamicContext. If no XCollectionResolver
is registered an error is returned and the empty sequence is
used. For more information about the XCollectionResolver
interface, refer to the API documentation.

stylesheet parameter Supply stylesheet parameter
value when executing a
transformation

A top-level xsl:param element
declares a stylesheet
parameter. A stylesheet
parameter is a global variable
with the additional property
that its value can be supplied
by the caller when a
transformation is initiated.

XSLT 2.0

Section 9.5

If a value for a parameter is bound in the XDynamicContext, that
value is used; otherwise, the default value specified in the
stylesheet for the parameter is used.

To bind values to parameters, use the XDynamicContext.bind()
methods.

1838 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#limits
http://www.w3.org/TR/xslt20/#static-context
http://www.w3.org/TR/xpath20/#static_context
http://www.w3.org/TR/xquery/#dt-static-collations
http://www.w3.org/TR/xslt20/#evaluation-context
http://www.w3.org/TR/xpath20/#eval_context
http://www.w3.org/TR/xquery/#dt-timezone
http://www.w3.org/TR/xpath20/#eval_context
http://www.w3.org/TR/xslt20/#global-variables

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

stylesheet function override mechanism Override a stylesheet function
to a function provided by the
implementer; pertains to the
xsl:function element

The optional override attribute
defines what happens if this
function has the same name
and arity as a function
provided by the implementer or
made available in the static
context using an
implementation-defined
mechanism. If the override
attribute has the value yes, this
function is used in preference;
if it has the value no, the other
function is used in preference.
The default value is yes.
Specifying override="yes"
ensures interoperable
behavior—the same code will
execute with all processors.
Specifying override="no" is
useful when writing a fallback
implementation of a function
that is available with some
processors but not others—it
allows the vendor's
implementation of the function
(or a user's implementation
written as an extension
function) to be used in
preference to the stylesheet
implementation.

XSLT 2.0

Section 10.3

If the override attribute had the value of yes, stylesheet functions
can override the following:

v extension functions declared in the XStaticContext using the
XStaticContext.declareFunction() methods and bound in
the XDynamicContext using the
XDynamicContext.bindFunction() methods

v old style extension functions supported in XSLT4J and XL
TXE-J 1.0

See Using extension functions.

v EXSLT extension functions implemented by the processor

Stylesheet functions cannot be made to override any of the core
functions defined in the XSLT 2.0 specification or the XQuery 1.0
and XPath 2.0 Functions and Operators specification.

normalize copied xml id When an xml:id attribute is
copied using either the
xsl:copy or xsl:copy-of
instruction, it is implementation
defined whether the value of
the attribute is subjected to
attribute value
normalization—that is,
effectively applying the
normalize-space XQuery 1.0
and XPath 2.0 Functions and
Operators function.

XSLT 2.0

Section 11.9

Neither the xsl:copy and xsl:copy-of instructions apply the
normalize-space function on xml:id attributes; so all white spaces
are preserved.

numbering sequences supported Numbering sequences
supported

Which numbering sequences,
additional to those listed
previously, are supported is
implementation defined. If an
implementation does not
support a numbering sequence
represented by the given
token, it must use a format
token of 1.

XSLT 2.0

Section 12.3

The processor only supports the standard sets of numbering
sequences.

bounds on range of numbers Lower and upper bounds on
the range of numbers

For the standard numbering
sequences, any upper bound
imposed by the implementation
must not be less than 1000
(one thousand) and any lower
bound must not be greater
than 1. Numbers that fall
outside this range must be
formatted using the format
token 1. The numbering
sequence associated with the
format token 1 has a lower
bound of 0 (zero).

XSLT 2.0

Section 12.3

v Alphabet values: arbitrary precision when in integer arbitrary
precision mode, otherwise 0 to 2^63 - 1

v Digit values: arbitrary precision when in integer arbitrary
precision mode, otherwise 0 to 2^63 - 1

v Roman values: 0 - 9999

v Word number: 0 - 19999

Chapter 39. XML applications 1839

http://www.w3.org/TR/xslt20/#stylesheet-functions
http://xml.apache.org/xalan-j/extensions.html#ext-functions
http://www.w3.org/TR/xslt20/#copying
http://www.w3.org/TR/xslt20/#convert
http://www.w3.org/TR/xslt20/#convert

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

default language for numbering Default language for
numbering

The lang attribute specifies
which language's conventions
are to be used; it has the
same range of values as
xml:lang (see the XML 1.0
specification). If no lang value
is specified, the language that
is used is implementation
defined.

The set of languages for which
numbering is supported is
implementation defined. If a
language is requested that is
not supported, the processor
uses the language that it would
use if the lang attribute were
omitted.

XSLT 2.0

Section 12.3

The default language for number formatting is always set to
en-US.

languages for numbering Set of languages for
numbering

Many numbering sequences
are language sensitive.

XSLT 2.0

Section 12.3

The languages supported are based on International Component
Unicode (ICU) and languages supported by the JVM.

combinations for numbering Combinations of values of the
format token, the language,
and the ordinal attribute for
numbering

XSLT 2.0

Section 12.3

The processor only supports the ordinal value of yes. Any other
values for the ordinal attribute are ignored as if the ordinal
attribute was not specified.

data-type for sort Effect of the data-type attribute
for xsl:sort

If this has the effective value
text, the atomized sort key
values are converted to strings
before being compared. If it
has the effective value number,
the atomized sort key values
are converted to doubles
before being compared. The
conversion is done by using
the string-FO or number-FO
function as appropriate. If the
data-type attribute has any
other effective value, the value
must be a lexical QName with
a non-empty prefix and the
effect of the attribute is
implementation defined.

XSLT 2.0

Section 13.1.2

The supported values for the data-type attribute are 'text' and
'number'. For any other valid values, a warning message is
issued and the data-type attribute is ignored.

collation uri Manner in which the URI is
associated with an actual
collation rule or algorithm

The lang and case-order
attributes are ignored if a
collation attribute is present.
But in the absence of a
collation attribute, these
attributes provide input to an
implementation-defined
algorithm to locate a suitable
collation.

Facilities in XSLT 2.0 and
XPath 2.0 that require strings
to be ordered rely on the
concept of a named collation.
A collation is a set of rules that
determine whether two strings
are equal and, if not, which of
them is to be sorted before the
other. A collation is identified
by a URI, but the manner in
which this URI is associated
with an actual rule or algorithm
is implementation defined

XSLT 2.0

Section 13.1.3

Collation URIs are associated with a Java Collator through the
API using one of the XDynamicContext.bindCollation methods.

1840 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#convert
http://www.w3.org/TR/xslt20/#convert
http://demo.icu-project.org/icu-bin/locexp
http://demo.icu-project.org/icu-bin/locexp
http://java.sun.com/j2se/1.4.2/docs/guide/intl/locale.doc.html
http://www.w3.org/TR/xslt20/#convert
http://www.w3.org/TR/xslt20/#comparing-sort-keys
http://www.w3.org/TR/xslt20/#collating-sequences

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

lang case-order determine collation Which lang and case-order
attributes determine a collation
algorithm for sort

XSLT 2.0

Section 13.1.3

The processor retrieves a locale based on the value of the lang
attribute. It then creates a Java collator using the
java.text.Collator.getInstance(Locale) method. The
compare method of the collator is overridden to handle the
case-order attribute if specified. If the lang attribute was not
specified, the processor proceeds as previous using the default
locale returned by the Java method Locale.getDefault().

default collation for sort Default collation for sort

If none of the collation, lang or
case-order attributes is present
in xsl:sort, the collation is
chosen in an
implementation-defined way. It
is not required that the default
collation for sorting should be
the same as the default
collation used when evaluating
XPath expressions. (see
Section 5.4.1: Initializing the
Static Context and Section
3.6.1: The default-collation
attribute)

XSLT 2.0

Section 13.1.3

The processor uses the default locale returned by the Java
method Locale.getDefault() to create a Java collator using the
java.text.Collator.getInstance(Locale) method.

recognized media types Set of media types recognized
by a processor

XSLT 2.0

Section 16.1

The processor only supports XML files.

picture fallback in date formatting Fallback representation for
picture string in the date
formatting functions; the format
token n, N, or Nn, that
indicates that the value of the
component is to be output by
name, in lowercase,
uppercase, or title-case
respectively

Components that can be
output by name include (but
are not limited to) months,
days of the week, time zones,
and eras. If the processor
cannot output these
components by name for the
chosen calendar and
language, it must use an
implementation-defined
fallback representation.

XSLT 2.0

Section 16.5.1

The processor will output [Calendar: AD] as the fallback.

set supported in date formatting functions Languages, calendars, and
countries that are supported in
the date-formatting functions

XSLT 2.0

Section 16.5.2,
first paragraph

v Supported calendars: AD, ISO, BE

v Supported languages and locales: those returned by
java.util.Locale.getAvailableLocales()

defaults in date formatting functions Default language, calendar,
and country in the
date-formatting functions if
arguments are omitted or
empty

XSLT 2.0

Section 16.5.2,
first paragraph

v Default calendar: AD

v Default language and locale: those specified by
java.util.Locale.getDefault()

default language in date formatting
functions

Default language in the
date-formatting functions

If the language argument is
omitted, set to an empty
sequence, or set to an invalid
value or a value that the
implementation does not
recognize, the processor uses
an implementation-defined
language.

XSLT 2.0

Section 16.5.2,
fourth
paragraph

See defaults in date formatting functions.

names abbrev in language in date
formatting functions

Names and abbreviations in
the date-formatting functions

XSLT 2.0

Section 16.5.2,
seventh
paragraph

The International Components for Unicode (ICU) website has a
Locale Explorer that contains links to tables for each supported
locale. The processor uses the short names for the names of the
days of the week and the months specified in those tables as
the abbreviated forms, and it uses the long names as the
unabbreviated forms.

calendar behavior in date formatting
functions

Behavior of calendar in
date-formatting functions

XSLT 2.0

Section 16.5.2,
tenth
paragraph

The processor does not support any calendars with a non-null
namespace URI. If the QName supplied has a prefix, the AD
calendar will be used.

Chapter 39. XML applications 1841

http://www.w3.org/TR/xslt20/#collating-sequences
http://www.w3.org/TR/xslt20/#collating-sequences
http://www.w3.org/TR/xslt20/#document
http://www.w3.org/TR/xslt20/#date-picture-string
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://demo.icu-project.org/icu-bin/locexp
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

default calendar in date formatting
functions

Default calendar in
date-formatting functions

XSLT 2.0

Section 16.5.2,
eleventh
paragraph

See defaults in date formatting functions.

supported calendars in date formatting
functions

Set of calendars supported in
date-formatting functions

XSLT 2.0

Section 16.5.2,
first paragraph
following table
of calendars

See set supported in date formatting functions.

system property values Actual values returned from
system properties

XSLT 2.0

Section 16.5.5,
second
paragraph
following the
bulleted list

The value of the system property:

v xsl:version is 2.0

v xsl:vendor is IBM Corporation

v xsl:vendor-url is http://www.ibm.com/

v xsl:product-name is XL Transform and Query Engine for Java

v xsl:product-version is 2.0

v xsl:is-schema-aware is yes

v xsl:supports-serialization is yes

v xsl:supports-backwards-compatibility is yes

v xsl:supports-namespace-axis is yes

set of system properties Set of system properties XSLT 2.0

Section 16.6.5
and Erratum
XT.E14

The processor supports the following:

v All the system properties defined in Section 16.6.5 of the
XSLT 2.0 specification

v New optional xsl:supports-namespace-axis property defined
by XSLT Erratum XT.E14

xslmessage Way in which an xsl:message
instruction sends a message

XSLT 2.0

Section 17,
first paragraph

According to Section 17 of the XSLT 2.0 specification,
xsl:message sends a message in an implementation-defined
way to an implementation-defined destination. The processor
uses the string value of the document node created by the
xsl:message instruction as the message.

If the user did not supply an instance of
com.ibm.xml.xapi.XMessageHandler on the
com.ibm.xml.xapi.XDynamicContext for the transformation, the
message is written to the System.err output stream; and if the
effective value of the terminate attribute was yes, the
transformation throws an exception. If the user supplied an
instance of com.ibm.xml.xapi.XMessageHandler, the message is
passed on that object's report() method. See the API
documentation for more information.

xslmessage destination Output destination for
document created by an
xsl:message instruction

XSLT 2.0

Section 17,
first paragraph

See xslmessage.

error handling in ext functions Consequences of an error for
an extension function to return
a string containing characters
that are not XML

XSLT 2.0

Section 18.1.2,
paragraph
following the
third note

Section 18.1.2 of the XSLT 2.0 specification� permits several
behaviors when an extension function returns a string containing
characters that are not permitted in XML, including treating them
as if they were permitted. That is the behavior that the processor
implements.

external objects Way in which external objects
are represented in the type
system

XSLT 2.0

Section 18.1.3,
second
paragraph

Data objects whose values are of types that do not map to
built-in types as described in “Mapping XML types to Java types”
on page 1852 are not supported.

1842 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#lang-cal-country
http://www.w3.org/TR/xslt20/#system-property
http://www.w3.org/TR/xslt20/#system-property
http://www.w3.org/TR/xslt20/#system-property
http://www.w3.org/TR/xslt20/#system-property
http://www.w3.org/TR/xslt20/#system-property
http://www.w3.org/TR/xslt20/#function-system-property
http://www.w3.org/XML/2007/qt-errata/xslt-errata.html#E14
http://www.w3.org/XML/2007/qt-errata/xslt-errata.html#E14
http://www.w3.org/TR/xslt20/#message
http://www.w3.org/TR/xslt20/#message
http://www.w3.org/TR/xslt20/#message
http://www.w3.org/TR/xslt20/#message
http://www.w3.org/TR/xslt20/#calling-extension-functions
http://www.w3.org/TR/xslt20/#calling-extension-functions
http://www.w3.org/TR/xslt20/#calling-extension-functions
http://www.w3.org/TR/xslt20/#calling-extension-functions
http://www.w3.org/TR/xslt20/#external-objects
http://www.w3.org/TR/xslt20/#external-objects
http://www.w3.org/TR/xslt20/#external-objects

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

final result tree delivery Way in which a final result tree
is delivered to an application

XSLT 2.0

Section 19,
third paragraph

As described in Section 19.1 of the XSLT 2.0 specification, an
implementation may allow a final result tree to be serialized or
provide additional mechanisms through which they may be
processed.

In the processor, a final result tree may be serialized or it may
delivered to an application in the form of a
java.xml.transform.Result object or a
com.ibm.xml.xapi.XSequenceCursor object. If the URI of the final
result tree is not equal to the base output URI, and:

v the user supplied a com.ibm.xml.xapi.XResultResolver on
the com.ibm.xml.xapi.XDynamicContext, the result tree will be
delivered to the application in the form of the
javax.xml.transform.Result object returned by
com.ibm.xml.xapi.XResultResolver.getResult();

v otherwise, the result tree is serialized to the location specified
by the URI using java.net.URL.openConnection().

A final result tree whose URI is equal to the base output URI
is delivered to the application using any
javax.xml.transform.Result object specified on the
com.ibm.xml.xapi.XExecutable.execute method used to
invoke the transformation, or as the
com.ibm.xml.xapi.XSequenceCursor returned from the
com.ibm.xml.xapi.XExecutable.execute() method if that
method's signature contains no javax.xml.transform.Result
argument.

If the result tree is delivered in the form of a
javax.xml.transform.stream.StreamResult, it is serialized to
the location specified by the StreamResult; if it is delivered as
an instance of any other subclass of Result or as an
XSequenceCursor, the result tree is delivered in the form
appropriate for that API.

Refer to the API documentation for additional information.

URI restriction Restrictions on form of
absolute URI used in an href

XSLT 2.0

Section 19.1,
third paragraph
following the
second note

As described in Section 19.1 of the XSLT 2.0 specification, an
implementation may place implementation-defined limitations on
an absolute URI that is the value of an href attribute on an
xsl:result-document instruction. With the processor,

v If the user supplies an com.ibm.xml.xapi.XResultResolver on
the com.ibm.xml.xapi.XDynamicContext in which the
stylesheet is evaluated, there are no limitations on the form of
such an absolute URI.

v If there is no user-supplied XResultResolver, the only
restrictions are that if the href attribute is an absolute URI
that:

– uses the file protocol, the user must have permission to
open an output stream to that file

– uses some other protocol, the user must have permission
to create an output stream to the URI, using the Java
equivalent new
java.net.URL(href).openConnection().getOutputStream()

final result tree location Location to which final result
trees are serialized

XSLT 2.0

Section 2.3
see base
output URI

By default, final result tree URIs will be interpreted relative to the
base URI of the main output document. If another location is
desired, an XResultResolver implementation can be registered
with the dynamic context to implement user-defined behaviors.
Use the XDynamicContext.setResultResolver() method to
register the XResultResolver implementation. The base URI that
is used can also be changed by calling the
XDynamicContext.setBaseOutputURI() method.

default output encoding Default value of the encoding
attribute in xsl:output

XSLT 2.0

Section 20

The default output encoding is UTF-8.

byte-order-mark for UTF-8 Byte-order-mark for UTF-8 XSLT 2.0

Section 20

The default value is no, meaning that no BOM is produced at
the start of UTF-8 files.

additional normalization form Additional normalization form
for serialization

XSLT 2.0 and
XQuery 1.0
Serialization

Section 19.1

Section 20

Section 5.1.8

No implementation-defined normalization forms are provided.

Chapter 39. XML applications 1843

http://www.w3.org/TR/xslt20/#result-trees
http://www.w3.org/TR/xslt20/#result-trees
http://www.w3.org/TR/xslt20/#dt-base-output-uri
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#initiating
http://www.w3.org/TR/xslt20/#initiating
http://www.w3.org/TR/xslt20/#initiating
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt20/#creating-result-trees
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt-xquery-serialization/#XML_NORMALIZATION-FORM

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

output version Permitted and default value of
the version attribute in
xsl:output

XSLT 2.0

Section 20

The default for XML or XHTML is 1.0; users may explicitly
specify 1.0 or 1.1. For HTML, the default is 4.0.

static-typing in stylesheet Interaction of XSLT 2.0
stylesheets with the static
typing feature of XPath 2.0

XSLT 2.0 and
XPath 2.0

XSLT 2.0
Section 21

XPath 2.0
Section F.1

This XSLT processor does not currently have a mechanism for
requesting that its XPaths perform static typing.

built in types Type definitions available
within a stylesheet

XSLT 2.0

Section 3.13

The processor is schema aware as defined in Section 3.13 of
the XSLT 2.0 specification.

namespace for additional error codes Namespace that is used if
additional error QNames are
defined by the implementation

XSLT 2.0

Section 2.9

When appropriate, the processor does include the specified error
code or code(s) in the text of its messages within square
brackets. Additional errors are generally expressed similarly but
without a specification prefix on the error identifier.

Error conditions are not presented as QNames; applications that
wish to respond to errors programmatically must parse these
error identifiers off the front of the error-message strings.

unparsed text encoding Mechanism for determining
encoding of an external source

XSLT 2.0

Section 16.2

The processor does not implement any additional heuristics.
Encoding resolution proceeds immediately to step 5, and UTF-8
is assumed.

available documents Mechanism for obtaining a
document node and a media
type given an absolute URI

XSLT 2.0

Section 2.3

Section 16.1

The default source resolution behavior for documents loaded
using the XPath fn:doc function is to resolve relative URIs based
on the base URI from the static context. If the base URI is not
available, the current working directory is used. Absolute URIs
are used unchanged. The default source resolution behavior for
documents loaded using the XSLT document function is
described in the XSLT 2.0 specification Multiple Source
Documents. If no base URI is available, the current working
directory is used. If the application needs to either constrain or
extend these behaviors, it is possible to plug in an
implementation of XSourceResolver to the XDynamicContext
through the setSourceResolver() method.

additional output methods Support for
implementation-defined output
method

XSLT 2.0 and
XQuery 1.0
Serialization

Section 3

The processor does not implement any additional output
methods.

additional serialization params Effect of additional serialization
parameters on the output of
the serializer

XSLT 2.0 and
XQuery 1.0
Serialization

Section 3

XSLT 2.0
Section 20

The processor implements the following additional serialization
parameters:

v INDENT AMOUNT:

Specifies the number of spaces to use when the indent
serialization parameter is enabled. Use the
XOutputParameters.setIndentAmount() method or the
xalan:indent-amount can be specified in the xsl:output
element of an XSL stylesheet using the indent-amount
attribute.

v BC MODE:

Enables backwards-compatibility mode for the serializer. If
enabled and no output method is specified, XML will be used
as a default. If disabled, the rules of XSLT 2.0 will be followed
when no output method is specified. Use the
XOutputParameters.setBackwardsCompatible() method to
enable. For XSL stylesheets where the version is less than
2.0, backwards-compatibility mode is enabled by default.

additional normalization-form Support for additional Unicode
Normalization form

XSLT 2.0 and
XQuery 1.0
Serialization

Section 5.1.8

No implementation-defined normalization forms are provided.

option in encoding phase Effect of an option that allows
the encoding phase to be
skipped so that the result of
serialization is a stream of
Unicode characters

XSLT 2.0 and
XQuery 1.0
Serialization

Section 4

No such option is provided by the processor.

1844 Developing WebSphere applications

http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt20/#conformance
http://www.w3.org/TR/xslt20/#conformance
http://www.w3.org/TR/xpath20/#id-xpath-static-typing
http://www.w3.org/TR/xpath20/#id-xpath-static-typing
http://www.w3.org/TR/xslt20/#built-in-types
http://www.w3.org/TR/xslt20/#errors
http://www.w3.org/TR/xslt20/#unparsed-text
http://www.w3.org/TR/xslt20/#initiating
http://www.w3.org/TR/xslt20/#document
http://www.w3.org/TR/xslt20/#function-document
http://www.w3.org/TR/xslt20/#function-document
http://www.w3.org/TR/xslt-xquery-serialization/#serparam
http://www.w3.org/TR/xslt-xquery-serialization/#serparam
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt20/#serialization
http://www.w3.org/TR/xslt-xquery-serialization/#XML_NORMALIZATION-FORM
http://www.w3.org/TR/xslt-xquery-serialization/#serphases

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

cdata sec mechanism Alternative mechanism
requested by the user to
create CDATA sections

SR

Section 5.1.4
of XSLT 2.0
and XQuery
1.0
Serialization

The processor does not provide an alternative mechanism for
creating CDATA sections.

unicode version Supported version of Unicode XPath 2.0

Appendix D

XQuery 1.0

Appendix D

The processor supports the version of Unicode supported by the
host JRE—namely, Unicode Standard Version 4.0 for Java 6 and
Unicode Standard Version 6.0 for Java 7.

trace function Trace function

The destination of the trace
output is implementation
defined.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 4

When using the fn:trace() function, the result will be passed to
the com.ibm.xml.xapi.XMessageHandler (formerly
com.ibm.xml.xapi.XErrorHandler). It is up to the user to specify
their own XMessageHandler to handle the trace results reported
by the processor. Trace-message type is indicated by
XMessageHandler.TRACE.

recovery for under overflow integer
operations

Mechanism that allows users
to choose between raising an
error and returning a result that
is modulo the largest
representable integer value
during overflow or underflow
arithmetic operations

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2

The processor provides a mechanism to enable overflow
detection for integer operations through the
com.ibm.xml.xapi.XStaticContext.setIntegerMathMode(int)
method, which can be called with the constants
INTEGER_MATH_MODE_OVERFLOW_DETECTION or
INTEGER_MATH_MODE_LIMITED_PRECISION to choose
between the two options. A third option is provided to allow
arbitrary precision integers.

digits truncation If the number of digits in the
result of a numeric operation
exceeds the number of digits
that the implementation
supports, the result is
truncated or rounded in an
implementation-defined
manner.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2

Section 3.2.3
of XML
Schema Part
2: Datatypes
Second Edition

The implementation uses the java.math.BigDecimal class, which
supports nearly unlimited precision except that the number of
digits to the right of the decimal place is limited to
Integer.MAX_VALUE. Truncation is only required in the case of
division, where there is the possibility of non-terminating
decimals. The precision of the fractional part of the result is
limited to 18 digits. The rounding mode in this case is
ROUND_HALF_UP, where discarded fractions of 0.5 or later are
rounded up (away from zero) and lesser fractions are rounded
down.

collation abilities Ability of specified collation to
decompose strings into
collation units suitable for
substring matching is an-
implementation-defined-
property of a collation.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 7.5

If the Java Collator specified in a call to the bindCollation
method of the XDynamicContext interface is an instance of the
RuleBasedCollator class, the associated collation URI can be
used with one of the functions that performs collation-based
substring matching.

year value limits Maximum number of digits for
year values.

All minimally conforming
processors must support year
values with a minimum of 4
digits (YYYY) and a minimum
fractional second precision of 1
millisecond or three digits
(s.sss); however, conforming
processors may set larger
implementation-defined-limits
on the maximum number of
digits that they support in
these two situations.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 10.1.1

The year component of the types xs:date, xs:dateTime, xs:gYear,
and xs:gYearMonth has the range -(10^9-1) to (10^9)-1.

fractional second precision Maximum number of digits for
fractional second values

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 10.1.1

The maximum number of fractional seconds digits supported for
the xs:time and xs:dateTime types is 3.

Chapter 39. XML applications 1845

http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xpath20/#id-impl-defined-items
http://www.w3.org/TR/xquery/#id-impl-defined-items
http://www.w3.org/TR/xpath-functions/#func-trace
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://www.w3.org/TR/xpath-functions/#substring.functions
http://www.w3.org/TR/xpath-functions/#date-time-duration-conformance
http://www.w3.org/TR/xpath-functions/#date-time-duration-conformance

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

doc function Various aspects of the
processing provided by fn:doc
are implementation defined.
Implementations may provide
external configuration options
that allow any aspect of the
processing to be controlled by
the user.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 15.5.4

Users may provide an com.ibm.xml.xapi.XSourceResolver
implementation through the com.ibm.xml.xapi.XDynamicContext.
setSourceResolver(XSourceResolver) method. The
XSourceResolver is used by the fn:doc implementation to resolve
URIs (thus the user may decide which URIs to support), and its
getSource(String, String) method must return a JAXP Source
object. If no XSourceResolver is given, the processor handles
the file URI scheme and those supported by the
java.net.URL.openConnection() method. It does not process
URI fragments. There is no built-in support for non-XML media
types, but users may use an XSourceResolver implementation to
provide the processor with an XML representation of non-XML
data.

DTD validation and schema validation may be applied to the
source document depending on the validation setting. The
validation setting may be set on com.ibm.xml.xapi.XFactory
instances using the setValidating method, and this setting is
inherited by objects created by the XFactory. If a
com.ibm.xml.xapi.XDynamicContext instance is provided to the
execute or executeToList method of a
com.ibm.xml.xapi.XExecutable instance, its validation setting is
used; otherwise, the setting of the XExecutable instance itself is
used. The processor does not provide a recovery mechanism for
errors in retrieving the resource or parsing or validating its
content.

The processor does not provide an option to relax the
requirement for the fn:doc function to return stable results.

decimal operator precision For xs:decimal values, the
number of digits of precision
returned by the numeric
operators is implementation
defined.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 6.2,
last paragraph

The number of digits of precision is the minimum required to
represent the exact result without rounding, except in the case of
division, where the number of digits of precision for the fractional
part of the result is limited to 18.

collection doc stability User option to evaluate the
function without a guarantee of
stability in addition to the
manner in which such user
options are provided

XQuery 1.0
and XPath 2.0
Functions and
Operators

Sections
15.5.4 and
15.5.6

The processor does not provide an option to relax the
requirement for the fn:doc or fn:collection functions to return
stable results.

decimal precision Number of decimal digits
supported in xs:decimal

The result of casting a string to
xs:decimal when the resulting
value is not too large or too
small but nevertheless has too
many decimal digits to be
accurately represented, is
implementation defined.

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 17.1.1

The implementation uses the java.math.BigDecimal class, which
supports nearly unlimited precision, except that the number of
digits to the right of the decimal place is limited to
Integer.MAX_VALUE. Memory would be exhausted before this
limit is reached.

returns warning Circumstances in which
warnings are returned, and the
ways in which warnings are
handled

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 2.3

XPath 2.0

Section 2.3.1

XQuery 1.0

Section 2.3.1

The user can provide an implementation of
com.ibm.xml.xapi.XMessageHandler using the
setMessageHandler()(XMessageHandler) method on either
com.ibm.xml.xapi.XStaticContext or
com.ibm.xml.xapi.XDynamicContext for static and dynamic
warnings respectively. The report(int, String,
XSourceLocation, Exception) method of XMessageHandler will
be called for each warning, with the first argument equal to
XMessageHandler.WARNING.

If no XMessageHandler is provided, warnings are printed to the
standard error output stream.

Warnings are returned in situations where the processor takes
some action to avoid an error condition, such as substituting a
default value for an invalid value, that the user might want to
correct in the future.

1846 Developing WebSphere applications

http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xpath-functions/#op.numeric
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions/#casting-from-strings
http://www.w3.org/TR/xpath20/#errors
http://www.w3.org/TR/xpath20/#dt-warning
http://www.w3.org/TR/xquery/#dt-warning

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

report error Method by which errors are
reported to the external
processing environment

XQuery 1.0
and XPath 2.0
Functions and
Operators

Section 2.3

XPath 2.0

Section 2.3.2

XQuery 1.0

Section 2.3.2

The user can provide an implementation of
com.ibm.xml.xapi.XMessageHandler using the
setMessageHandler()(XMessageHandler) method on either
com.ibm.xml.xapi.XStaticContext or
com.ibm.xml.xapi.XDynamicContext for static and dynamic errors
respectively. The report(int, String, XSourceLocation,
Exception) method of XMessageHandler will be called for each
error, with the first argument equal to either
XMessageHandler.ERROR or XMessageHandler.FATAL_ERROR.

If no XMessageHandler is provided, errors are printed to the
standard error output stream.

XML 1.0 or XML 1.1 rules Whether the processor is
based on XML 1.0 or XML 1.1
rules for names and supported
characters

XPath 2.0

Appendix D
XQuery 1.0

Appendix D

The processor follows XML 1.1 rules for the definitions of
NCName and supported characters as well as for end-of-line
handling and attribute value normalization.

default order of empty sequences Whether the default handling
of empty sequences in "order
by" is "empty least" or "empty
greatest"

XQuery 1.0

Section 3.8.3

The processor uses the default set by a call to the
XStaticContext method setDefaultOrderForEmptySequences.
Otherwise, the default setting is "empty greatest".

pragmas supported The names and semantics of
any XQuery extension
expressions (pragmas)
supported

XQuery 1.0

Section 3.14

XQST0079 The processor does not recognize or support any extension
expressions.

options supported The names and semantics of
any XQuery option
declarations supported

XQuery 1.0

Section 4.16

The processor currently supports the java-extension option for
declaring extension functions within a query. See the API
documentation for more information.

external function parameter passing Protocols supported for
passing parameters to external
functions from XQuery and for
returning a result

XQuery 1.0

Section 4.15

Extension functions are supported through the processor's
XStaticContext.declareFunction and
XDynamicContext.bindFunction methods. See the API
documentation for more information.

invoking serialization The means by which
serialization is invoked for the
result of evaluating an XQuery
query

XQuery 1.0

Section 2.2.4

If an instance of the javax.xml.transform.stream.StreamResult
interface is supplied on an evaluate method of an
XQueryExecutable instance, the processor will serialize the result
of the query. You can also serialize an XSequenceCursor that
results from evaluating a query by calling one of the
exportSequence methods.

default serialization parameters The default values of the
byte-order-mark, encoding,
media-type,
normalization-form,
omit-xml-declaration,
standalone, and version
serialization parameters

XQuery 1.0

Section 2.2.4

Appendix C.3

The settings of the serialization parameters can be specified on
an instance of the XOutputParameters interface.

v The default setting of the byte-order-mark serialization
parameter is yes for the UTF-16 encoding, and it is no
otherwise.

v The default setting of the encoding serialization parameter is
UTF-8.

v The default setting of the media-type serialization parameter
is text/xml in the case of the xml output method, text/html in
the case of the html and xhtml output methods, and text/plain
in the case of the text output method.

v The default setting of the normalization-form serialization
parameter is none.

v The default setting of the omit-xml-declaration serialization
parameter is no.

v The default setting of the standalone serialization parameter is
no.

v The default setting of the version serialization parameter is
1.0 for the xml and xhtml output methods and 4.01 for the
html output method.

unsuccessful external function call The effect of an unsuccessful
call to an external function

XQuery 1.0

Appendix D

The processor will first report an error to any instance of the
XMessage handler interface that is supplied and will then throw an
exception if a call from XQuery to an external function is
unsuccessful for any of (but not limited to) the following reasons:

v because the function name is not bound to a function
definition using the XDynamicContext.bindFunction method

v the number or types of arguments supplied does not match
the number or types expected by the implementation of the
function

v some error or exception is thrown by the implementation of
the function

Chapter 39. XML applications 1847

http://www.w3.org/TR/xpath20/#errors
http://www.w3.org/TR/xpath20/#id-identifying-errors
http://www.w3.org/TR/xquery/#id-identifying-errors
http://www.w3.org/TR/xpath20/#id-impl-defined-items
http://www.w3.org/TR/xquery/#id-impl-defined-items
http://www.w3.org/TR/xquery/#id-orderby-return
http://www.w3.org/TR/xquery/#dt-extension-expression
http://www.w3.org/TR/xquery/#dt-option-declaration
http://www.w3.org/TR/xquery/#dt-external-function
http://www.w3.org/TR/xquery/#id-serialization
http://www.w3.org/TR/xquery/#id-serialization
http://www.w3.org/TR/xquery/#id-xq-serialization-parameters
http://www.w3.org/TR/xquery/#id-impl-defined-items

Table 296. Implementation-defined behaviors (continued).

This table lists XSLT 2.0, XPath 2.0, and XQuery 1.0 implementation-defined behaviors for the API.
Feature Description Specification Error Code Documented Behavior

locate module imports The process by which the
specific modules to be
imported by a module import
are identified if the Module
Feature is supported (including
processing of location hints if
any)

XQuery 1.0

Section 4.11

If an XModuleResolver is registered with the XStaticContext, it is
used to get Source objects for the modules. If no
XModuleResolver is registered or if it returns null, the processor
attempts to load one module for each location hint. Relative
URIs are resolved against the base URI from the static context if
available. If the base URI is not available, relative location hints
are interpreted as file paths relative to the current working
directory. Absolute location hints are used as is. If a module
cannot be loaded for a particular location hint, the processor
moves on to the next hint. An error message is emitted only if no
modules can be loaded for a namespace.

The following is implementation-specific information related to XSLT 1.0 support:

v The system-property function does not support Java system properties

v If the value of an attribute contains a tab, carriage return or line-feed character with the HTML output
method, the processor will serialize the actual character rather than a character reference as part of the
attribute value. Either is permitted by the XSLT 2.0 and XQuery 1.0 Serialization Recommendation and
by the HTML 4.01 Recommendation, but previous versions of IBM XSLT processors would serialize the
character as a character reference in such a context.

Conformance statements:

The processor is an implementation of the XSL Transformations (XSLT) Version 2.0 and the XQuery 1.0
W3C recommendations. See section 21 of the XSLT 2.0 recommendation and section 5 of the XQuery 1.0
recommendation for more information about conformance criteria for processors.

It implements the first editions of the XSLT 2.0, XQuery 1.0, and XPath 2.0 recommendations, with the
levels of conformance described in this article, as well as all errata published in the proposed edited
recommendations of the second editions of the XSLT 2.0, XQuery 1.0, XPath 2.0 and ancillary
recommendations.

v XSL Transformations (XSLT) Version 2.0 (Second Edition)

v XQuery 1.0: An XML Query Language (Second Edition)

v XML Path Language (XPath) 2.0 (Second Edition)

v XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition)

v XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition)

v XSLT 2.0 and XQuery 1.0 Serialization (Second Edition)

This includes support for the fn:element-with-id function and the XSLT xsl:supports-namespace-axis
system property.

XSLT 2.0 conformance

The processor conforms to XSLT 2.0 as a schema-aware XSLT processor. It also supports the following
optional features of XSLT 2.0:

v serialization feature

v backwards-compatibility feature

For a complete list of implementation-defined features, read “XSLT 2.0, XPath 2.0, and XQuery 1.0
implementation-specific behaviors” on page 1833.

XQuery 1.0 conformance

The processor has minimal conformance to XQuery 1.0. It also supports the following optional features of
XQuery 1.0:

1848 Developing WebSphere applications

http://www.w3.org/TR/xquery/#id-module-import
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/2009/PER-xslt20-20090421/
http://www.w3.org/TR/2009/PER-xquery-20090421/
http://www.w3.org/TR/2009/PER-xpath20-20090421/
http://www.w3.org/TR/2009/PER-xpath-functions-20090421/
http://www.w3.org/TR/2009/PER-xpath-datamodel-20090421/
http://www.w3.org/TR/2009/PER-xslt-xquery-serialization-20090421/

v full axis feature

v serialization feature

v schema-import feature

v schema-validation feature

v module feature

For a complete list of implementation-defined features, read “XSLT 2.0, XPath 2.0, and XQuery 1.0
implementation-specific behaviors” on page 1833.

Data Model conformance
The processor supports normative construction of an instance of the XQuery/XPath Data Model
from an Infoset or from a PSVI. By default, construction of the instance of the Data Model will be
from an Infoset. If the setValidating method of an XFactory instance is called with a value of true,
any instance of the Data Model that the processor creates will be constructed from PSVI.

For more information, “Performing basic XQuery operations” on page 1861.

The processor supports both XML 1.0 and XML 1.1.

Extension support

The processor supports the following additional extensions:

v indent-amount extension attribute of xsl:output

v selection of EXSLT extension functions

v redirect extension element

xalan:indent-amount extension attribute of xsl:output
If the value of the indent serialization parameter is yes for an explicit or an implicit
xsl:result-document instruction in an XSLT stylesheet, the processor will use the value of any
indent-amount extension attribute on the associated xsl:output declaration to determine the amount
by which indentation should be increased for every level of element nesting in the serialized result.

The indent-amount extension attribute is in the http://xml.apache.org/xalan namespace.

EXSLT extension functions
In order to facilitate migration of XSLT 1.0 stylesheets, the processor supports many extension
functions defined by the EXSLT community initiative. In many cases, these functions duplicate
functions that have been included in XSLT 2.0, XPath 2.0 and XQuery 1.0.

For more information about EXSLT, see the EXSLT website.

EXSLT common functions
The processor supports only the node-set common extension function. This function is
made redundant by the fact that XSLT 2.0 does not restrict the operations that can be
performed on temporary trees.

The EXSLT common functions are in the namespace http://exslt.org/common.

EXSLT dates-and-times functions
The EXSLT dates-and-times functions provide facilities for manipulating date and time
values. Most of these functions are redundant with the inclusion of the new date and time
data types from XML Schema in XSLT 2.0, XQuery 1.0, and XPath 2.0.

The EXSLT dates-and-times functions are in the namespace http://exslt.org/dates-and-
times.

EXSLT dynamic functions
The processor supports only the evaluate dynamic extension function.

The EXSLT dynamic functions are in the namespace http://exslt.org/dynamic.

Chapter 39. XML applications 1849

http://www.exslt.org

EXSLT math functions
The EXSLT math functions provide facilities for several commonly used mathematical
operations. Only the math:abs, math:max, math:min, and math:highest functions have
been made redundant in XSLT 2.0, XQuery 1.0, and XPath 2.0.

The EXSLT math functions are in the namespace http://exslt.org/math.

EXSLT set functions
The EXSLT set functions define facilities for performing set operations on sequences of
nodes. These have been made redundant by the new intersect and except set operations
and the << and >> node comparison operations introduced in XSLT 2.0, XQuery 1.0, and
XPath 2.0.

The EXSLT set functions are in the namespace http://exslt.org/sets.

EXSLT string functions
The EXSLT string functions provide facilities for string manipulation. The tokenize and split
functions have been made redundant by the new operations for string manipulation in
XSLT 2.0, XQuery 1.0, and XPath 2.0, including the fn:tokenize function and the
xsl:analyze-string instruction.

The EXSLT string functions are in the namespace http://exslt.org/strings.

xalan:redirect extension element
The redirect extension element provides a means of directing output from an XSLT stylesheet to
more than one output destination. This extension element is made redundant by the new
xsl:result-document instruction of XSLT 2.0.

The redirect extension element is in the http://xml.apache.org/xalan namespace.

Choosing between the compiler and the interpreter
You can use either the compiler and the interpreter for preparing and executing an XQuery expression,
XPath expression, or XSLT stylesheet. Choosing which one to use is very application specific and
depends on several factors.

About this task

This article is about choosing between the compiler and interpreter when you are preparing the
expression, query, or stylesheet during the application run time.

Expressions, queries, and stylesheets can also be prepared ahead of time (precompiled). This is the most
efficient option because the preparation is done ahead of time instead of during the application run time,
but precompiling might not be applicable to all applications. See the articles related to precompiling for
more details.

Procedure

Use the setUseCompiler(true) method on the XStaticContext to use the compiler, and use the
setUseCompiler(false) method to use the interpreter.
The default is to use the interpreter for preparing an XQuery expression, XPath expression, or XSLT
stylesheet.
It takes longer to prepare a compiled executable than an interpreted executable, but a compiled
executable generally runs faster; therefore, there is a trade off between the cost of preparing a compiled
executable and the improved execution-time efficiency.

1850 Developing WebSphere applications

Table 297. Differences between using the compiler and the interpreter.

Consider these factors when choosing between compiling and interpreting.
Factor Description

Number of input documents that the executable will be used to process If the executable will be used only to process a few input documents, it
might not be worth the extra time needed to create a compiled executable
because the improved efficiency of the executable might not make up for
the extra prepare time. If the executable will be used to process many
input documents, it might be worth the extra prepare time.

Size of the input documents Larger input documents take longer to process; therefore, it might be
worth the extra prepare time to create a compiled executable in order to
get a more efficient executable object to handle the larger documents.

Size of the expression, query, or stylesheet It takes longer to prepare a larger expression, query, or stylesheet;
therefore, this affects the preparation time and execution time trade off.

Example
// Create a new XFactory
XFactory factory = XFactory.newInstance();

// Create a new XStaticContext
XStaticContext staticContext = factory.newStaticContext();

//Use the compiler
sc.setUseCompiler(true);

//Use the interpreter
sc.setUseCompiler(false);

Using static and dynamic contexts
You can use the two context interfaces that the XML API provides—XStaticContext and XDynamicContext.

About this task

Static context
The static context is used to configure prepare-time characteristics.

Note: Prepare-time refers to the execution of one of the prepare methods on XFactory or the
execution of one of the compile methods on XCompilationFactory.

Static context defines items that are needed to prepare executables, items such as the names and
types of external variables and functions that will be available at run time as well as compilation
modes like backwards compatibility, math mode, and so on. These items do not change across
invocations.

Dynamic context
The dynamic context is used to configure execution-time characteristics.

Dynamic context defines items that are unique to each invocation of an executable, items such as
the values for external variables, external function implementations, and resolvers to external
inputs or results. These items might change across invocations.

Prepare-time characteristics are not set directly on the XFactory instance so that it can be thread safe.
The same is true for execution-time characteristics; they are kept in a separate object from the
XExecutable instance so that the executable object itself is thread safe.

The prepare and execute steps themselves are separate because preparation takes time and it would be
inefficient to prepare for every execution. Having separate steps allows an expression, query, or stylesheet
to be prepared once and the resulting executable object then can be used to process any number of input
documents.

Procedure
v Use the static context, XStaticContext, to configure prepare-time characteristics.

Chapter 39. XML applications 1851

Prepare-time characteristics are built directly into the executable object; therefore, after an executable
object has been created with a certain set of characteristics, they are fixed and cannot be changed. If
an executable object for the same expression, query, or stylesheet is required that has different
characteristics, a new one must be generated.

Examples of methods on XStaticContext used for setting prepare-time characteristics:

setUseCompiler
The executable object that is generated is very different for compiled and interpreted; therefore,
this is a prepare-time characteristic.

declareVariable
The type of a variable affects how the expression, query, or stylesheet gets compiled and
therefore is a prepare-time characteristic.

On the other hand, binding the value of a variable is an execution-time characteristic, and the
value can be different for each execution.

setSourceResolver
A source resolver registered at prepare time is used to resolve includes and imports.

A source resolver can also be registered at execution time, but it is used for a different purpose.

v Use the dynamic context, XDynamicContext, to configure execution-time characteristics.

Execution-time characteristics can be different on each call to the execute method of an executable
object.

Examples of methods on XDynamicContext used for setting execution-time characteristics:

bind methods
The bind methods on XDynamicContext interface are used to supply a value for a variable. The
value can be different for each execution.

setSourceResolver
A source resolver registered at execution time is used to resolve input documents loaded with
the XPath fn:doc function or the XSLT fn:document function.

setXSLTInitialTemplate
Identify the initial template to invoke for an XSL transformation.

What to do next

The XPath, XQuery, and XSLT specifications also have the concepts of static and dynamic context. For
more information, see the following web pages:

v XPath Static Context

v XPath Dynamic Context

v XQuery Static Context

v XQuery Dynamic Context

v XSLT Static Context

v XSLT Dynamic Context

The XStaticContext and XDynamicContext interfaces merge settings from all three languages (XPath,
XQuery, and XSLT). To find out which settings apply to which language refer to the “Performing Basic
Operations” article for that language in the related tasks listed below.

Mapping XML types to Java types
You can use this mapping between XML types and Java types when using external functions and
variables. They are recommended mappings only; other types might work subject to type promotion,
casting rules, and the range of values representable by the target type.

1852 Developing WebSphere applications

http://www.w3.org/TR/xpath20/#static_context
http://www.w3.org/TR/xpath20/#eval_context
http://www.w3.org/TR/xquery/#static_context
http://www.w3.org/TR/xquery/#eval_context
http://www.w3.org/TR/xslt20/#static-and-dynamic-context
http://www.w3.org/TR/xslt20/#static-and-dynamic-context

Procedure
v Use this table to map between built-in types and Java types when using external functions and

variables.

Table 298. Built-in and Java types. This table maps built-in types to Java types.
Built-in Types Java Types

xs:anyURI java.lang.String

xs:boolean boolean, java.lang.Boolean

xs:base64Binary byte[]

xs:hexBinary byte[]

xs:date javax.xml.datatype.XMLGregorianCalendar

xs:dateTime javax.xml.datatype.XMLGregorianCalendar

xs:time javax.xml.datatype.XMLGregorianCalendar

xs:duration javax.xml.datatype.Duration

xs:dayTimeDuration javax.xml.datatype.Duration

xs:yearMonthDuration javax.xml.datatype.Duration

xs:gDay javax.xml.datatype.XMLGregorianCalendar

xs:gMonth javax.xml.datatype.XMLGregorianCalendar

xs:gMonthDay javax.xml.datatype.XMLGregorianCalendar

xs:gYear javax.xml.datatype.XMLGregorianCalendar

xs:gYearMonth javax.xml.datatype.XMLGregorianCalendar

xs:decimal java.math.BigDecimal

xs:integer java.math.BigInteger

xs:nonPositiveInteger java.math.BigInteger

xs:negativeInteger java.math.BigInteger

xs:long long, java.lang.Long

xs:int int, java.lang.Integer

xs:short short, java.lang.Short

xs:byte byte, java.lang.Byte

xs:nonNegativeInteger java.math.BigInteger

xs:unsignedLong java.math.BigInteger

xs:unsignedInt long

xs:unsignedShort int

xs:unsignedByte short

xs:positiveInteger java.math.BigInteger

xs:double double, java.lang.Double

xs:float float, java.lang.Float

xs:QName javax.xml.namespace.QName

xs:NOTATION javax.xml.namespace.QName

xs:string java.lang.String

xs:normalizedString java.lang.String

xs:token java.lang.String

xs:language java.lang.String

xs:NMTOKEN java.lang.String

xs:Name java.lang.String

xs:NCName java.lang.String

xs:ID java.lang.String

xs:IDREF java.lang.String

xs:ENTITY java.lang.String

xs:untypedAtomic java.lang.String

List com.ibm.xml.xapi.XItemView[]

Union com.ibm.xml.xapi.XItemView

Chapter 39. XML applications 1853

Table 298. Built-in and Java types (continued). This table maps built-in types to Java types.
Built-in Types Java Types

All of the above-listed built-in types com.ibm.xml.xapi.XItemView

com.ibm.xml.xapi.XSequenceCursor

Complex types (types that represent nodes in the XML document) com.ibm.xml.xapi.XItemView

com.ibm.xml.xapi.XSequenceCursor

org.w3c.dom.Node

The mapping also applies to retrieving values from an XItemView. The XItemView getDoubleValue
method returns Java primitive double; the getDateValue, getTimeValue, and getDateTimeValue methods
all return an XMLGregorianCalendar; and so on.

If you want to use an external function in your XPath or XQuery expressions and it takes a built-in type
as the argument, the actual Java method signature can specify any of the indicated Java types. If you
want to use an external function, my:power(arg1 as xs:int, arg2 as xs:int) for example, to calculate the
value of the first argument raised to the power of the second argument, you could write a Java method
taking two Java primitive int arguments that performs the calculation.

v Use this table to map between sequence types and Java types when using external functions and
variables.

Table 299. Sequence and Java types. This table maps sequence types to Java types.
Sequence Types Java Types

All sequence types com.ibm.xml.xapi.XSequenceCursor

Sequence type known to be a singleton (a sequence containing only one
item)

com.ibm.xml.xapi.XItemView

One of the types listed in the built-in types to Java types mapping table

Sequence type known to contain only nodes and no atomic items org.w3c.dom.NodeList

org.w3c.dom.traversal.NodeIterator

Performing basic XPath operations
You can use the XPathExecutable instances that are created using XFactory.prepareXPath methods to
evaluate XPath expressions.

About this task

XPath expressions can be passed to the XFactory.prepareXPath method using a JAXP StreamSource
object or using a plain Java string object. The resulting XPathExecutable instance is thread safe and can
be reused to evaluate an XPath expression on multiple XML input documents.

Procedure
v Use the XStaticContext object with the prepareXPath method to pass in settings that affect how the

XPath expression is prepared.

If no XStaticContext object is provided, the default setting is used.

XStaticContext settings relevant to XPath:

declareFunction
Declare a Java extension function

declareNamespace
Declare a namespace prefix and associate it with a namespace URI to be used as part of an
XPath expression

declareVariable
Declare a variable externally to be used as part of an XPath expression

setBaseURI
Set the base URI used in the resolution of relative URIs (such as by the fn:resolve-uri function)

1854 Developing WebSphere applications

The default is the base URI of the expression, query, or stylesheet if the base URI is available.
If the base URI is not available, the current working directory is used.

setDefaultCollation
Set the default collation URI for string comparison operations

The default is the Unicode code point collation URI.

setDefaultElementTypeNamespace
Specify the URI of the default element or type namespace

Use an empty string to make it unspecified.

The default is an empty string.

setDefaultFunctionNamespace
Specify the URI of the default function namespace

Use an empty string to make it unspecified.

The default is "http://www.w3.org/2005/xpath-functions".

setIntegerMathMode
Set the integer math mode to one of the following:

INTEGER_MATH_MODE_LIMITED_PRECISION
Limit to 18-digit precision for xs:integer (default)

INTEGER_MATH_MODE_ARBITRARY_PRECISION
Allow users to have arbitrary precision for xs:integer

INTEGER_MATH_MODE_OVERFLOW_DETECTION
Generate an error if an overflow is detected

setMessageHandler()
Set the message handler for prepare-time errors

The default behavior is to print errors, warnings, and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error when compilation
cannot continue. If the message handler that is registered does not generate its own exception
in the case of an unrecoverable error, an XProcessException occurs.

setUseCompiler
Indicate whether to generate a compiled executable or an interpreted executable

A compiled executable takes longer to generate but runs faster than an interpreted executable.
The default is interpreted.

setXPathCompatibilityMode
Sets the compatibility mode to be used when evaluating XPath expressions

The options are as follows:

XPATH2_0_PURE_COMPATIBILITY (default)
Use the default behavior defined by XPath 2.0 in evaluating expressions.

XPATH1_0_BC_COMPATIBILITY
Use the backwards-compatibility behavior defined by XPath 2.0 that yields results that
are most consistent with those that would be produced by an XPath 1.0 processor.

XPATH_LATEST_VERSION
Use the default behavior defined by the most recent version of XPath supported by the
processor.

v Provide an XDynamicContext object that can be used to pass settings to the XPathExecutable.execute
method.

Chapter 39. XML applications 1855

These settings affect the behavior during the execution when the processor is evaluating an XPath
expression.

If no XDynamicContext object is provided, the default setting is used.

XDynamicContext settings relevant to XPath:

bind Bind a value to an external variable

bindCollation
Binds an instance of the java.text.Collator class to a particular collation URI for use in string
comparisons that use that collation URI

bindFunction
Bind an external function so that it can be used as part of an XPath expression

bindSequence
Bind a sequence value to an external variable

setCollectionResolver
Set the collection resolver used to resolve documents loaded with the XPath fn:collection
function

The default behavior is for references to the fn:collection function to return an empty sequence.

setImplicitTimeZone
Set the implicit time zone

The default is to use the system time zone as retrieved through the Java method
java.util.TimeZone.getDefault().

setMessageHandler()
Set the message handler for excution-time errors

The default behavior is to print errors, warnings and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error. If the message
handler that is registered does not generate its own exception in the case of an unrecoverable
error, an XProcessException occurs.

setSourceResolver
Set the source resolver used to resolve documents loaded with the XPath fn:doc function

The default behavior is to resolve documents based on the base URI from the static context. If
the base URI is not available, the current working directory is used.

v Use schemas with XPath expression evaluation.

For schema-aware XPath evaluation and validating the input XML file, schema files can be registered
using the XFactory.registerSchema() method or you can declare the xsi:schemaLocation directive in
their input XML files. In either case, validation needs to be enabled using the XFactory.setValidating()
method.

Example

The following is a basic example of preparing and executing an interpreted XPath expression.
// Create a string for the XPath expression
String expression = "/doc/something";

// Create the factory
XFactory factory = XFactory.newInstance();

// Create an XPath executable for the expression
XPathExecutable xPathExecutable = factory.prepareXPath(expression);

// Create the input XML source
String xml = "<doc><something>something is selected</something></doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xPathExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

1856 Developing WebSphere applications

The following is a basic example of preparing and executing a compiled XPath expression.
// Create a string for the XPath expression
String expression = "/doc/something";

// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context from the factory
XStaticContext xStaticContext = factory.newStaticContext();

// Set the mode to compile for the processor
xStaticContext.setUseCompiler(true);

// Create an XPath executable for the expression
XPathExecutable xPathExecutable = factory.prepareXPath(expression, xStaticContext);

// Create the input XML source
String xml = "<doc><something>something is selected</something></doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xPathExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

The following is a basic example of preparing and executing interpreted XPath expressions with schema
validation.
// Create a string for the XPath expression
String expression = "/doc/byte cast as my:derived1-byte-enumeration-Type";

// Create the factory
XFactory factory = XFactory.newInstance();

// Create the schema source
String schema = "<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’" +

" targetNamespace=’http://www.schematype.ibm.com/UDSimple’" +
" xmlns:my=’http://www.schematype.ibm.com/UDSimple’" +
" xmlns:smokey=’http://www.schematype.ibm.com/UDSimple’>"
+ " <xsd:simpleType name=’derived1-byte-enumeration-Type’>"
+ " <xsd:restriction base=’xsd:byte’>"
+ " <xsd:enumeration value=’1’ />"
+ " <xsd:enumeration value=’-1’ />"
+ " <xsd:enumeration value=’0’ />"
+ " <xsd:enumeration value=’127’ />"
+ " <xsd:enumeration value=’-128’ />"
+ " <xsd:enumeration value=’32’ />"
+ " <xsd:enumeration value=’-32’ />"
+ " <xsd:enumeration value=’8’ />"
+ " <xsd:enumeration value=’-8’ />"
+ " <xsd:enumeration value=’2’ />"
+ " <xsd:enumeration value=’-2’ />"
+ " </xsd:restriction>"
+ " </xsd:simpleType>"
+ "</xsd:schema>";

// Load schema
factory.registerSchema(new StreamSource(new ByteArrayInputStream(schema.getBytes())));

// Turn on validation
factory.setValidating(true);

// Create a new static context from the factory
XStaticContext xStaticContext = factory.newStaticContext();

// Add new namespace
xStaticContext.declareNamespace("my", "http://www.schematype.ibm.com/UDSimple");

// Create an XPath executable for the expression
XPathExecutable xPathExecutable = factory.prepareXPath(expression, xStaticContext);

// Create the input XML source
String xml = "<doc>" +

" <byte>1</byte>" +
"</doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xPathExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

Performing basic XSLT operations
You can use the XSLTExecutable instances that are created using XFactory.prepareXSLT methods to
perform XSLT transformations.

Chapter 39. XML applications 1857

About this task

XSLT stylesheets can be passed to the XFactory.prepareXSLT method using a JAXP Source object. The
resulting XSLTExecutable instance is thread safe and can be reused to transform multiple input
documents.

Procedure
v Use the XStaticContext object with the prepareXSLT method to pass in settings that affect how the

XSLT stylesheet is prepared.

If no XStaticContext object is provided, the default settings are used.

XStaticContext methods for changing settings relevant to XSLT:

declareFunction
Declare a Java extension function

setBaseURI
Set the base URI used in the resolution of relative URIs (such as by the fn:resolve-uri function)

The default is the base URI of the expression, query, or stylesheet if the base URI is available.
If the base URI is not available, the current working directory is used.

setSourceResolver
Set the source resolver used for includes and imports

The default source resolution behavior is to use the base URI of the expression, query, or
stylesheet if available to resolve imports and includes. If the base URI is not available, the
current working directory is used.

setMessageHandler
Set the message handler for prepare-time errors and other messages

The default behavior is to print errors, warnings, and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error when preparation
cannot continue. If the message handler that is registered does not generate its own exception
in the case of an unrecoverable error, an XProcessException occurs.

setIntegerMathMode
Set the integer math mode to one of the following:

INTEGER_MATH_MODE_LIMITED_PRECISION (default)
Use Java long to represent an integer value

INTEGER_MATH_MODE_ARBITRARY_PRECISION
Use Java BigInteger to represent an integer value

INTEGER_MATH_MODE_OVERFLOW_DETECTION
Use limited precision and generate execution-time errors when overflow is detected

See the XML API documentation for long and BigInteger for more information about the range
of values supported for these types.

setUseCompiler
Indicate whether to generate a compiled executable or an interpreted executable

A compiled executable takes longer to generate but runs faster than an interpreted executable.

The default is interpreted.

setDefaultCollation
Set the default collation used for string comparison operations when the comparison operation
does not specify a collation URI explicitly and there is no default collation URI declared within
the stylesheet that is in scope for the operation

1858 Developing WebSphere applications

The default is the Unicode code-point collation URI.

v Provide an XDynamicContext object that can be used to pass settings to the XSLTExecutable.execute
method.

The XDynamicContext object passed in to the XSLTExecutable.execute command defines the settings
for that execution.

If no XDynamicContext object is provided, the default settings are used.

XDynamicContext methods for changing settings relevant to XSLT:

bind Bind a value to an XSLT parameter

If no value is bound, the default value in the stylesheet is used.

bindSequence
Bind a sequence of values to an XSLT parameter

If no value is bound, the default value in the stylesheet is used.

bindFunction
Bind a Java method object to an extension function name as declared in the XStaticContext

setBaseOutputURI
Set the base output URI to be used when resolving result documents

The default is to use the base URI of the main result document if available. If the base URI is
not available, the current working directory is used.

setMessageHandler
Set the message handler for execution-time errors and other messages

The default behavior is to print errors, warnings and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error. If the message
handler that is registered does not generate its own exception in the case of an unrecoverable
error, an XProcessException occurs.

The message handler registered with the dynamic context is also used for calls to XPath
fn:trace and fn:error functions as well as the XSLT xsl:message instruction.

setImplicitTimeZone
Set the implicit time zone

The default is to use the system time zone as retrieved through the Java method
java.util.TimeZone.getDefault().

setResultResolver
Set the result resolver used to resolve the href specified in xsl:result-document instructions

The default behavior is to use the base output URI to resolve result documents.

setSourceResolver
Set the source resolver used to resolve documents loaded with the XPath fn:doc function and
the XSLT fn:document function

The default behavior is to resolve documents based on the base URI from the static context for
fn:doc and for fn:document if no base node is supplied. If the base URI is not available, the
current working directory is used.

setXSLTInitialMode
Set the initial mode

If no initial mode is specified, the unnamed default mode is used.

setXSLTInitialTemplate
Set the initial template rule

Chapter 39. XML applications 1859

If no initial template rule is specified, the initial template is chosen according to the rules of the
xsl:apply-templates instruction for processing the initial context node in the initial mode.

bindCollation
Bind a Java Collator object or a Locale to a collation URI

If the collation URI is referenced in the stylesheet but no Collator or Locale is bound to it (with
the exception of the Unicode code-point collation URI, which is bound by default), an error is
raised.

setCollectionResolver
Set the collection resolver used to resolve URIs specified in calls to the XPath fn:collection
function to a collection of nodes

If the fn:collection function is invoked and no collection resolver is registered an error is raised.

v Achieve an identity transformation by calling the exportItem method on an XItemView object created
from a source using the XItemFactory.

An identity XSLTExecutable cannot be created by preparing a null stylesheet.

v Achieve schema-aware transformations.

For schema-aware transformations, the processor picks up schemas registered with the XFactory
instance through the registerSchema method or through the registerImportedSchemas method of the
XSLTExecutable instance. But you should use the xsl:import-schema declaration to import them into the
stylesheet as well, because this makes the stylesheet more portable.

For validating input documents, the schemas can be registered with the XFactory instance or declared
in the XML file using the xsi:schemaLocation directive. In either case, validation needs to be enabled
using the XFactory class setValidating method

Example

The following is a basic example of preparing and executing an interpreted transformation.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create a StreamSource for the stylesheet
StreamSource stylesheet = new StreamSource("simple.xsl");

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(stylesheet);

// Create the input source
Source input = new StreamSource("simple.xml");

// Create the result
Result result = new StreamResult(System.out);

// Execute the transformation
executable.execute(input, result);

The following is a basic example of preparing and executing a compiled transformation.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create a StreamSource for the stylesheet
StreamSource stylesheet = new StreamSource("simple.xsl");

// Create a new static context
XStaticContext staticContext = factory.newStaticContext();

// Enable the compiler
staticContext.setUseCompiler(true);

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(stylesheet, staticContext);

// Create the input source
Source input = new StreamSource("simple.xml");

// Create the result

1860 Developing WebSphere applications

Result result = new StreamResult(System.out);

// Execute the transformation
executable.execute(input, result);

The following is a basic example of creating an identity transformation.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create the item factory
XItemFactory itemFactory = factory.getItemFactory();

// Create the input source
Source input = new StreamSource("simple.xml");

// Create the XItemView object from the input source
XItemView item = itemFactory.item(input);

// Create an XOutputParameters object
XOutputParameters params = factory.newOutputParameters();

// Set parameters
params.setMethod("xml");
params.setEncoding("UTF-8");
params.setIndent(true);

// Create the result
Result result = new StreamResult(System.out);

// Serialize to the result
item.exportItem(result, params);

The following is a basic example of creating a schema-aware transformation.
// Create the factory
XFactory factory = XFactory.newInstance();

// Enable validation
factory.setValidating(true);

// Create the schema source
StreamSource schema = new StreamSource("schema.xsd");

// Register the schema
factory.registerSchema(schema);

// Create the stylesheet source
StreamSource stylesheet = new StreamSource("schema.xsl");

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(stylesheet);

// Create the input source
StreamSource input = new StreamSource("schema.xml");

// Create the result
StreamResult result = new StreamResult(System.out);

// Execute the transformation
executable.execute(input, result);

Performing basic XQuery operations
You can use the XQueryExecutable instances that are created using XFactory.prepareXQuery methods to
evaluate XQuery expressions.

About this task

XQuery expressions can be passed to the XFactory.prepareXQuery method using a JAXP StreamSource
object or using a plain Java string object. The resulting XQueryExecutable instance is thread safe and can
be reused to evaluate an XQuery expression on multiple XML input documents.

Procedure
v Use the XStaticContext object with the prepareXQuery method to pass in settings that affect how the

XQuery expression is prepared.

If no XStaticContext object is provided, the default setting is used.

XStaticContext settings relevant to XQuery:

Chapter 39. XML applications 1861

declareFunction
Declare a Java extension function

declareNamespace
Declare a namespace prefix and associate it with a namespace URI to be used as part of an
XQuery expression

declareVariable
Declare a variable externally to be used as part of an XQuery expression

setBaseURI
Set the base URI used in the resolution of relative URIs (such as by the fn:resolve-uri function)

The default is the base URI of the expression, query, or stylesheet if the base URI is available.
If the base URI is not available, the current working directory is used.

setBoundarySpacePolicy
Specify whether to preserve or strip white space

The options are as follows:

BOUNDARY_SPACE_STRIP (default)

BOUNDARY_SPACE_PRESERVE

setConstructionMode
Specify whether to preserve the type of element and attribute nodes or strip them

The options are as follows:

CONSTRUCTION_MODE_PRESERVE (default)

CONSTRUCTION_MODE_STRIP

setCopyNamespacesModeInherit
Specify whether to inherit or ignore the namespace when copying element nodes

The options are as follows:

COPY_NAMESPACES_MODE_INHERIT (default)

COPY_NAMESPACES_MODE_NO_INHERIT

setCopyNamespacesModePreserve
Specify whether to preserve or strip the namespace when copying element nodes

The options are as follows:

COPY_NAMESPACES_MODE_PRESERVE (default)

COPY_NAMESPACES_MODE_NO_PRESERVE

setDefaultCollation
Set the default collation URI for string comparison operations

The default is the Unicode code point collation URI.

setDefaultElementTypeNamespace
Specify the URI of the default element or type namespace

Use an empty string to make it unspecified.

The default is an empty string.

setDefaultFunctionNamespace
Specify the URI of the default function namespace

Use an empty string to make it unspecified.

The default is "http://www.w3.org/2005/xpath-functions".

1862 Developing WebSphere applications

setDefaultOrderForEmptySequences
Set the behavior for default order on empty sequences to greatest or least

The options are as follows:

DEFAULT_ORDER_FOR_EMPTY_SEQUENCES_LEAST (default)

DEFAULT_ORDER_FOR_EMPTY_SEQUENCES_GREATEST

setIntegerMathMode
Set the integer math mode to one of the following:

INTEGER_MATH_MODE_LIMITED_PRECISION
Limit to 18-digit precision for xs:integer (default)

INTEGER_MATH_MODE_ARBITRARY_PRECISION
Allow users to have arbitrary precision for xs:integer

INTEGER_MATH_MODE_OVERFLOW_DETECTION
Generate an error if an overflow is detected

setMessageHandler()
Set the message handler for prepare-time errors

The default behavior is to print errors, warnings, and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error when compilation
cannot continue. If the message handler that is registered does not generate its own exception
in the case of an unrecoverable error, an XProcessException occurs.

setModuleResolver
Set the module resolver used for module imports

The default module resolution behavior is to attempt to locate one module for each location hint
specified in the module import. The default resolution behavior for each location hint is to
resolve relative URIs against the base URI from the static context, if the base URI is available,
or to interpret them as file paths relative to the current working directory, if the base URI is not
available. Absolute URIs are used unchanged. If a module cannot be located for a location hint,
the processor ignores it unless no modules can be loaded for the namespace, in which case the
processor emits an error message.

setOrderingMode
Specify whether the results returned by certain path expressions, union, intersect, and except
expressions as well as FLWOR expressions that have no order by clause are ordered or
unordered

The options are as follows:

ORDERING_MODE_ORDERED (default)

ORDERING_MODE_UNORDERED

setUseCompiler
Indicate whether to generate a compiled executable or an interpreted executable

A compiled executable takes longer to generate but runs faster than an interpreted executable.

The default is interpreted.

v Provide an XDynamicContext object that can be used to pass settings to the XQueryExecutable.execute
method.

These settings affect the behavior during the execution when the processor is evaluating an XQuery
expression.

If no XDynamicContext object is provided, the default setting is used.

XDynamicContext settings relevant to XQuery:

Chapter 39. XML applications 1863

bind Bind a value to an external variable

bindCollation
Binds an instance of the java.text.Collator class to a particular collation URI for use in string
comparisons that use that collation URI

bindFunction
Bind an external function so that it can be used as part of an XQuery expression

bindSequence
Bind a sequence value to an external variable

setCollectionResolver
Set the collection resolver used to resolve documents loaded with the XPath fn:collection
function

The default behavior is for references to the fn:collection function to return an empty sequence.

setImplicitTimeZone
Set the implicit time zone

The default is to use the system time zone as retrieved through the Java method
java.util.TimeZone.getDefault().

setMessageHandler()
Set the message handler for execution-time errors

The default behavior is to print errors, warnings and informational messages to System.err and
to generate an XProcessException in the case of an unrecoverable error. If the message
handler that is registered does not generate its own exception in the case of an unrecoverable
error, an XProcessException occurs.

setSourceResolver
Set the source resolver used to resolve documents loaded with the XPath fn:doc function

The default behavior is to resolve documents based on the base URI from the static context. If
the base URI is not available, the current working directory is used.

v Execute XQuery expressions with schema awareness.

To validate the input XML files with XQuery, schema files can be registered using the
XFactory.registerSchema() method or users can declare the xsi:schemaLocation directive in their input
XML files. In either case validation needs to be enabled using the XFactory.setValidating() method.
XQuery only supports validating the input XML file for now.

Example

The following is a basic example of preparing and executing an interpreted XQuery expression.
// Create a string for the XQuery expression
String expression = "/doc/name[@first=’David’]";

// Create the factory
XFactory factory = XFactory.newInstance();

// Create the XQueryExecutable
XQueryExecutable xQueryExecutable = factory.prepareXQuery(expression);

// Create the input XML source
String xml = "<doc<name first=’John’>Wrong</name><name first=’David’>Correct</name></doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xQueryExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

The following is a basic example of preparing and executing a compiled XQuery expression.
// Create a string for the XQuery expression
String expression = "/doc/name[@first=’David’]";

// Create the factory
XFactory factory = XFactory.newInstance();

1864 Developing WebSphere applications

// Create a new static context from the factory
XStaticContext xStaticContext = factory.newStaticContext();

// Set the mode to compile for the processor
xStaticContext.setUseCompiler(true);

// Create the XQueryExecutable
XQueryExecutable xQueryExecutable = factory.prepareXQuery(expression, xStaticContext);

// Create the input XML source
String xml = "<doc><name first=’John’>Wrong</name><name first=’David’>Correct</name></doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xQueryExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

The following is a basic example of preparing and executing interpreted XQuery expressions with schema
awareness.
// Create a string for the XQuery expression
String expression = "/my:doc/name[@first=’David’]/@first";

// Create the factory
XFactory factory = XFactory.newInstance();

// Create the schema source
String schema = "<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’" +

" targetNamespace=’http://www.schematype.ibm.com/UDSimple’" +
" xmlns:my=’http://www.schematype.ibm.com/UDSimple’" +
" xmlns:smokey=’http://www.schematype.ibm.com/UDSimple’>"

+" <xsd:element name=’doc’>"
+ "<xsd:complexType> "
+ "<xsd:sequence>"
+ "<xsd:element name=’name’ minOccurs=’0’ maxOccurs=’unbounded’>"
+ "<xsd:complexType>"
+ "<xsd:attribute name=’first’ type=’xsd:string’ use=’optional’/>"
+ "</xsd:complexType>"
+ "</xsd:element>"
+ "</xsd:sequence>"
+ "</xsd:complexType>"
+ "</xsd:element>"
+ "</xsd:schema>";

// Load the schema
factory.registerSchema(new StreamSource(new ByteArrayInputStream(schema.getBytes())));

// Turn on validation
factory.setValidating(true);

// Create a new static context from the factory
XStaticContext xStaticContext = factory.newStaticContext();

// Add a new namespace
xStaticContext.declareNamespace("my", "http://www.schematype.ibm.com/UDSimple");

// Create the XQueryExecutable
XQueryExecutable xQueryExecutable = factory.prepareXQuery(expression, xStaticContext);

// Create the input XML source
String xml = "<my:doc xmlns:my=’http://www.schematype.ibm.com/UDSimple’>" +

"<name first=’John’/><name first=’David’/></my:doc>";

// Execute the expression and store the results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xQueryExecutable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())));

Viewing the results
After your application has prepared or loaded the XExecutable object for an XPath expression (an
XPathExecutable object), an XSLT stylesheet (an XSLTExecutable object), or an XQuery expression (an
XQueryExecutable object), you apply the XExecutable object to some input and then do something with
the result. The source of the input that you provide and what you would like to do with the result determine
which of the execute methods you use.

Procedure
v View XPath results.

In the case of an XPath expression, the execute methods on the XPathExecutable interface return an
instance of the XSequenceCursor class that contains the sequence that results from evaluating the
expression with the given context item and dynamic context, if any.

There is also a set of executeToList methods on the XPathExecutable interface. These methods return
the sequence as an instance of the java.util.List<XItemView> interface, where each item in the

Chapter 39. XML applications 1865

sequence that results from evaluating the XPath expression is represented in the list as an instance of
the XItemView interface. The entries in that list are in the same order as in the sequence that resulted
from evaluating the XPath expression.

The following example shows how to get the cost of each item on a purchase order as an
XSequenceCursor.

XFactory factory = XFactory.newInstance();
XPathExecutable expr =

factory.prepareXPath(
"/purchaseOrder/item/(@unit-price * @quantity)");

XSequenceCursor exprResult = expr.execute(new StreamSource("input.xml"));

The following example shows how to get the cost of each item on a purchase order in an instance of
the java.util.List interface.

XFactory factory = XFactory.newInstance();
XPathExecutable expr =

factory.prepareXPath(
"/purchaseOrder/item/(@unit-price * @quantity)");

List<XItemView> exprResult =
expr.executeToList(new StreamSource("input.xml"));

v Use the XItemView interface.

You can access each item in a sequence using the methods on the XItemView interface. You can use
the XItemView.isAtomic() method to determine whether the item is an atomic value or a node. If the
item is an atomic value, you can use the getValueType() method on the XItemView interface. This
method returns an instance of the enumerated type XTypeConstants.Type. If the atomic value is an
instance of a built-in atomic type or a user-defined type derived from a built-in atomic type, the result of
the getValueType() method is the enumerated value corresponding to that type. For an atomic value
that could be of a user-defined derived type, you also might find it handy to use the
XItemView.getValueTypeName() method to determine the precise type of the value.

Given the type of an atomic value, you then can use the appropriate method to get the value.
XFactory factory = XFactory.newInstance();
XPathExecutable expr =

factory.prepareXPath(
"sum(/purchaseOrder/item/(@unit-price * @quantity))");

XItemView exprResult =
expr.execute(new StreamSource(purchaseOrder));

double totalCost = 0.0;

// Decide how to get result based on the type of the value
switch (exprResult.getValueType()) {
case DOUBLE: {

totalCost = exprResult.getDoubleValue();
break;

}
case FLOAT: {

totalCost = exprResult.getFloatValue();
break;

}
case INTEGER: {

totalCost = exprResult.getLongValue();
break;

}
case DECIMAL: {

totalCost = exprResult.getDecimalValue().doubleValue();
break;

}
default: {

System.err.println("Unexpected type for result");
}
}

The XItemView interface also extends the XNodeView interface, so if the result of calling the
XItemView.isAtomic() method is false – that is, the item is a node – you can use the methods inherited
from the XNodeView interface to access information about the node. The XNodeView.getNodeQName()
method will return the name of the node and the XNodeView.getKind() method will return a value of the
enumerated type XNodeView.Kind indicating what sort of node the item is: XNodeView.DOCUMENT,
XNodeView.ELEMENT, and so on.

XFactory factory = XFactory.newInstance();

// Prepare an expression to get the first node whose string value matches a given query string
XPathExecutable expr =

factory.prepareXPath(
"(/descendant-or-self::node()/(self::node()|@*)[. = ’search’])[1]");

XItemView exprResult =

1866 Developing WebSphere applications

expr.execute(new StreamSource(inputFile));

// Print the kind of node found and its name, if appropriate
switch (exprResult.getKind()) {
case ELEMENT: {

System.out.print("Element " + exprResult.getNodeQName().toString());
break;

}
case ATTRIBUTE: {

System.out.print("Attribute " + exprResult.getNodeQName().toString());
break;

}
case COMMENT: {

System.out.print("Comment ");
break;

}
case PROCESSING_INSTRUCTION: {

System.out.print("PI " + exprResult.getNodeQName().toString());
}
}

You can also explore the tree that contains a node using the XTreeCursor interface.

v View XSLT and XQuery results.

All the execute and executeToList methods available from the XPathExecutable interface are actually
inherited from the XExecutable interface, so they are available for use on instances of the
XSLTExecutable interface or the XQueryExecutable interface as well. In the case of an instance of the
XQueryExecutable interface, the object the method returns contains the sequence that resulted from
evaluating the query. In the case of the XSLTExecutable interface, the sequence contains the document
node of the primary result of evaluating the stylesheet, if there is any.

The XSLTExecutable and XQueryExecutable interfaces also define execute methods that accept an
instance of the javax.xml.transform.Result interface. The result object that your application supplies will
contain the primary result of evaluating the stylesheet, in the case of the XSLTExecutable interface, or
the result of evaluating your query, in the case of XQueryExecutable.

The following example produces a DOM tree as the result of a transformation, and stores the tree in the
instance of the DOMResult class that is passed as an argument to the XSLTExecutable.execute
method.

XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
DOMResult res = new DOMResult();
style.execute(new StreamSource("purchase.xml"), res);
Node node = res.getNode();

The following example produces an instance of the XSequenceCursor interface as the result of
transformation.

XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
XSequenceCursor xformResult =

style.execute(new StreamSource("purchase.xml"));

v Use the XResultResolver and XSLT.

An XSLT 2.0 stylesheet can produce more than one result document by using the xsl:result-document
instruction. The primary result of the transformation is produced for any result tree that the stylesheet
constructs that is not contained in an xsl:result-document instruction or that is contained in an
xsl:result-document instruction that has an href attribute whose effective value is a zero-length string.
The primary result is returned to your application using the various means described above.

If your stylesheet evaluates an xsl:result-document instruction that has an href attribute whose effective
value is not a zero-length string, by default that result is written to an output stream. The URI of the
output stream is determined by resolving the effective value of the href attribute against the setting of
the base output URI in the dynamic context.

You can override this default behavior by supplying an instance of the XResultResolver interface on the
XDynamicContext you use for the transformation. The getResult method on the XResultResolver
interface is called if any xsl:result-document instructions are invoked; the result of the getResult method
is an instance of the Result interface where the result of the xsl:result-document instruction is directed.
Using the XResultResolver interface allows your application to decide on a case by case basis where to
direct the result of all the xsl:result-document instructions in your stylesheets. If your application did not

Chapter 39. XML applications 1867

supply an instance of the Result interface for the primary result on the execute method of the
XSLTExecutable interface, the getResult method of XResultResolver is called for the primary result as
well.

If the getResult method of XResultResolver returns a null reference, the default behavior is restored for
that particular result—that is, the result is written to an output stream, in the case of a secondary result,
or returned from as the result of the execute method as an instance of the XSequenceCursor interface,
in the case of the primary result.

The following example uses an instance of the XResultResolver interface to capture all the results
produced by a stylesheet as instances of the XSequenceCursorResult class in the variable allResults.
The application then could extract the instance of the XSequenceCursor interface that each instance of
the XSequenceCursorResult class contains using the XSequenceCursorResult.getSequenceCursor()
method.

final ArrayList<XSequenceCursorResult> allResults =
new ArrayList<XSequenceCursorResult>();

XFactory factory = XFactory.newInstance();
XDynamicContext context = factory.newDynamicContext();

// Create XResultResolver that saves XSequenceCursorResult
// instances in allResults
context.setResultResolver(new XResultResolver() {

public Result getResult(String href, String base) {
XSequenceCursorResult result =

new XSequenceCursorResult();
allResults.add(result);
return result;

}
});

XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
style.execute(new StreamSource("purchase.xml"), context);

// All results, including the primary, are now available from the allResults variable.

Serializing the results
After your application has evaluated an XPath or XQuery expression or performed a transformation with an
XSLT stylesheet, you might want to write the output as an actual XML document represented as a file or
as a Java string. The process of rendering results as an XML document is known as serialization.

Procedure
v Serialize an XSequenceCursor.

Your application can call the XSequenceCursor.exportSequence method to serialize a sequence that is
represented by an instance of the XSequenceCursor interface. The arguments on this method are an
instance of the javax.xml.transform.Result interface and optionally an instance of the
XOutputParameters interface.

If the instance of the Result interface is also an instance of the javax.xml.transform.stream.StreamResult
class, the sequence is serialized as described in the XSLT 2.0 and XQuery 1.0 Serialization
Recommendation. The StreamResult object can contain an instance of the java.io.Writer class or the
java.io.OutputStream class, where the processor will write the serialized sequence.

You can create an instance of the XOutputParameters interface by calling
XFactory.newOutputParameters() and call the methods on that object to override the default serialization
parameter settings.

XFactory factory = XFactory.newInstance();
XPathExecutable expr = factory.prepareXPath("/purchaseOrder/item[@price > 1000]");
XSequenceCursor exprResult = expr.execute(new StreamSource(inputFile));

System.out.println("Items purchased costing more than $1000");
if (exprResult != null) {

// Set indenting in order to pretty-print result
XOutputParameters params = factory.newOutputParameters();
params.setIndent(true);
exprResult.exportSequence(new StreamResult(System.out), params);

} else {
System.out.println("None found");

}

You can also call one of the getOutputParameters() methods on an instance of the XSLTExecutable
interface to get the serialization parameters that are associated with a particular output definition in an

1868 Developing WebSphere applications

http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt20/#dt-output-definition

XSLT stylesheet. Use the XSLTExecutable.getOutputParameters(javax.xml.namespace.QName) method
to get the serialization parameters for a named output definition or the no-argument
XSLTExecutable.getOutputParameters() method to get those of the unnamed output definition. You
might want do this to perform some post-processing on the result of the transformation using the
instance of the XSequenceCursor interface that the transformation produces before serializing the
result. If you change the settings of the serialization parameters in the instance of the
XOutputParameters interface returned by one of the XSLTExecutable.getOutputParameters() methods, it
will not affect the output definition in the stylesheet.

XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
XSequenceCursor xformResult = style.execute(new StreamSource("purchase.xml");

XOutputParameters params = style.getOutputParameters(new QName("my-output-definition"));
params.setMethod(XOutputParameters.METHOD_XHTML);
xformResult.exportSequence(new StreamResult("output.html"), params);

Note that according to the XSLT 2.0 and XQuery 1.0 Serialization Recommendation, a serialization error
results if the sequence that is to be serialized contains attribute nodes or namespace nodes. If the
sequence that you need to serialize might contain attribute or namespace nodes, get the values of
those nodes as strings or some other appropriate type and serialize those values instead.

v Serialize a single item.

You can also serialize just the current item in an instance of the XSequenceCursor interface by using
one of the exportItem methods. The exportItem methods are inherited from the XItemView interface, so
they can be called on an instance of that interface as well.

As with the exportSequence method described above, the arguments of the exportItem method are an
instance of the javax.xml.transform.Result interface and optionally an instance of the
XOutputParameters interface. The effect of calling exportItem is identical to the effect of calling
exportSequence with a sequence that consists of just the current item.

v Serialize the result of a transformation or query directly.

Your application can also serialize the result of an XSLT transformation or XQuery expression directly by
supplying an instance of the javax.xml.transform.Result interface on the XSLTExecutable.execute
method or XQueryExecutable.execute method. The serialization parameter settings are determined by
the attributes of any applicable xsl:output declaration or xsl:result-document instruction in the case of an
XSLT stylesheet, and are always the default values in the case of the result of an XQuery expression.

XFactory factory = XFactory.newInstance();
XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));
style.execute(new StreamSource("purchase.xml"),

new StreamResult("output.xml"));

If your application supplies an instance of the XResultResolver interface on a transformation, your
application can direct each final result tree to a different destination.

v Use identity transformation.

You can use the XML API to transform XML data contained in an instance of javax.xml.transform.Source
directly to an instance of a javax.xml.transform.Result. This is often referred to as an identity
transformation. See “Performing basic XSLT operations” on page 1857 for an example.

Navigating with XSequenceCursor
The XSequenceCursor interface gives you a view of your sequence data.

About this task

A sequence in the XPath and XQuery Data Model contains zero or more atomic values, nodes, or a
mixture of both. An instance of the XSequenceCursor interface always contains at least one item. If a
sequence is empty, it is always represented by a null reference.

Chapter 39. XML applications 1869

http://www.w3.org/TR/xslt-xquery-serialization/

Procedure
v At any given time, an instance of the XSequenceCursor interface is positioned to give you access to

one of the items in a sequence. It is positioned initially at the first item in the sequence; and you can
move forward or backward in the sequence, one item at a time, using the toNext() or toPrevious()
methods, respectively.

If the toNext() method or toPrevious() method is able to position the XSequenceCursor instance to the
next or previous item in the sequence—that is, if there actually is a next or previous item—the method
returns true. If the XSequenceCursor instance is already positioned at the last item in the case of the
toNext() method or the first item in the case of the toPrevious() method, the method returns false and
the instance of the XSequenceCursor interface remains positioned at the same item as before the call.

The typical way of processing a sequence that is contained in an instance of the XSequenceCursor
interface is as shown in the following example:

XFactory factory = XFactory.newInstance();
XPathExecutable expr = factory.prepareXPath("1 to 10");
XSequenceCursor exprResult = expr.execute();
long sum = 0;

// If exprResult is null, it means the result sequence is empty
if (exprResult != null) {

do {
// Get each value as a primitive Java long value, and accumulate
sum = sum + exprResult.getLongValue();

// Advance exprResult to the next item in the sequence
} while (exprResult.toNext());

}

System.out.println("Sum is " + sum);

The XSequenceCursor interface extends the XItemView interface. You can use the methods inherited
from the XItemView interface to access the value and the type of the item in the sequence at which the
XSequenceCursor is currently positioned.

v If your application needs to refer to more than one item in the sequence at the same time, you can call
the method XSequenceCursor.getSingletonItem() to get an instance of the XItemView interface
containing the data associated with the current item in the instance of the XSequenceCursor interface.

If you change the position of that instance of the XSequenceCursor interface through a call to the
toNext() method or the toPrevious() method, the instance of the XItemView interface that was returned
by an earlier call to the XSequenceCursor.getSingletonItem() method will still refer to that earlier item.

Consider the following example, which counts the number of items in a sequence that have the same
type and value as the first item.

XFactory factory = XFactory.newInstance();

// Make a path expression whose result contains ordered part number as first item
// and all part numbers used by products in the catalog as the subsequent items
XPathExecutable expr =

factory.prepareXPath(
"string(/order/item/@part-num),doc(’catalog.xml’)/catalog/product/part/string(@part-num)");

// Read the invoice file
XSequenceCursor exprResult = expr.execute(new StreamSource(invoiceFile));

int sameAsFirstCount = 0;

// If exprResult is null, it means the result sequence is empty
if (exprResult != null) {

// Get the first item in the result sequence
XItemView firstItem = exprResult.getSingletonItem();

// currentItem always refers to the current item in the result sequence
XItemView currentItem = exprResult;
do {

// Get the type of the first item
XTypeConstants.Type itemType = firstItem.getValueType();

// Ensure the type of the first item is the same as the type of
// the current item, and compare their values as Java objects
if (itemType == currentItem.getValueType()

&& firstItem.getObjectValue(itemType)
.equals(currentItem.getObjectValue(itemType))) {

sameAsFirstCount++;
}

//Advance exprResult (and currentItem) to the next item in the sequence

1870 Developing WebSphere applications

} while (exprResult.toNext());
}

System.out.println("Number of items same as the first == "+(sameAsFirstCount-1));

The variable firstItem is created by the XSequenceCursor.getSingletonItem() method, so it always refers
to the first item in the sequence. The variable currentItem contains a reference to the XSequenceCursor
object, however, so it is always positioned at the current item in the sequence.

v If you ever need to access the items in the sequence non-sequentially, you might find it convenient to
use the exportAsList method on the XSequenceCursor interface.

This method returns an instance of the java.util.List<XItemView> interface that contains the items in
your sequence in sequence order.

Navigating with XTreeCursor
You can use the XTreeCursor interface to view your data.

About this task

Suppose the sequence that results from evaluating an XPath or XQuery expression or an XSLT stylesheet
contains nodes. You will find it very convenient to access the contents of those nodes by applying further
XPath or XQuery expressions to those nodes. However, you might also choose to navigate through the
tree structure associated with a node directly through the XML API.

Procedure
v If the result of calling the XItemView.isAtomic() method is false—that is, the context item is a

node—your application can call the XItemView.getXTreeCursor() method to gain direct access to the
tree that contains the node.

The XSequenceCursor interface extends XItemView, so calling the XSequenceCursor.getXTreeCursor()
method returns an instance of the XTreeCursor interface that you can use to access the node on which
the instance of the XSequenceCursor interface is positioned.

v The XTreeCursor interface also extends the XItemView interface; therefore, you can use the methods
inherited from the XItemView interface to access information about the node on which your instance of
the XTreeCursor interface is currently positioned.

In particular, you can use the XTreeCursor.getXTreeCursor() method to create another instance of the
XTreeCursor interface that you can use to navigate through the tree independently of the instance of
the XTreeCursor interface from which it was created.

Example

The following example shows how you can use the methods on the XTreeCursor interface to navigate
through the tree containing your XML data.
/* Contents of library.xml

<library>
<book title=’Ulysses’><author><first>James</first><last>Joyce</last></author></book>
<book title=’Ada’><author><first>Vladimir</first><last>Nabokov</last></author></book>

</library>
*/

XItemFactory factory = XFactory.newInstance().getItemFactory();
XItemView item = factory.item(new StreamSource("library.xml"));

// ’tree’ is initially positioned at the same node as
// ’item’ - that is, the document node of the input
XTreeCursor tree = item.getTreeCursor();

// Position tree cursor to "library" element
tree.toFirstChild();

// Position tree cursor to white-space text node
tree.toFirstChild();

// Position to first "book" element
tree.toNextSibling();

Chapter 39. XML applications 1871

// Position to white-space text node
tree.toNextSibling();

// Position to second "book" element
tree.toNextSibling();

// Create a second instance of XTreeCursor that is initially
// positioned at the same node as ’tree’ - that is, the
// second "book" element
XTreeCursor secondBook = tree.getTreeCursor();

// Position ’tree’ to "library" element
tree.toParent();

// Position ’secondBook’ to "title" attribute
secondBook.toFirstAttribute();

The following example navigates through all the nodes in a tree in a depth-first fashion.
XItemFactory factory = XFactory.newInstance().getItemFactory();
XItemView item = factory.item(new StreamSource("library.xml"));

XTreeCursor tree = item.getTreeCursor();
boolean hasMoreNodes = true;

do {
// Process current node

if (tree.toFirstAttribute()) {
do {

// Process attributes
} while (tree.toNextAttribute());
tree.toParent();

}

if (tree.toFirstNamespace()) {
do {

// Process namespaces
} while (tree.toFirstNamespace());
tree.toParent();

}

boolean foundNext = false;

// If the current node has a child, visit it next
// If there’s no child, go to the next sibling
if (tree.toFirstChild() || tree.toNextSibling()) {

foundNext = true;

// If there’s no child and no sibling, find an
// ancestor’s sibling instead.
} else {

do {
hasMoreNodes = tree.toParent();
if (hasMoreNodes) {

foundNext = tree.toNextSibling();
}

} while (hasMoreNodes && !foundNext);
}

} while (hasMoreNodes);

Precompiling
You can use this information to help you to precompile an expression, query, or stylesheet.

Procedure
v Precompile using the command-line tool.

v Precompile in Java.

v Load a precompiled executable.

Precompiling using the command-line tools
You can use the CompileXSLT tool to precompile one or more stylesheets, use the CompileXPath tool to
precompile one or more XPath expressions, and use the CompileXQuery tool to precompile one or more
XQuery expressions.

1872 Developing WebSphere applications

About this task

Note: See “Precompiling using ANT tasks” on page 1880 for information about using the
TaskCompileXPath, TaskCompileXQuery, and TaskCompileXSLT ANT tasks as alternatives to using
the CompileXPath, CompileXQuery, and CompileXSLT commands.

Procedure
v Compile XSLT

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\compileXSLT.bat

– app_server_root/bin/compileXSLT.sh

Syntax

compileXSLT.bat
-out output
-dir directory
-pkg package
[-func name=funcName type=funcType argtype=argType...] ...
-baseURI URI
-imm int
-v
-h
{ stylesheet... | -i }

./compileXSLT.sh
-out output
-dir directory
-pkg package
[-func name=funcName type=funcType argtype=argType...] ...
-baseURI URI
-imm int
-v
-h
{ stylesheet... | -i }

Parameters

-out output
Uses the name output as the base name for the generated classes

By default, the base name is XSLTModule.

This option is ignored if compiling multiple stylesheets.

-dir directory
Specifies a destination directory for the generated classes

The default is the current working directory.

-pkg package
Specifies a package name prefix for all generated classes

The default is the Java default package.

-func name=funcName type=funcType argtype=argType
Adds a function binding to the static context for a single item

This simply declares the function, and a method object for the function also must be
bound to the dynamic context at execution time.

funcName
Specifies the name of the function (expressed localPart,namespaceURI)

Chapter 39. XML applications 1873

funcType
Specifies the return type of the function (expressed localPart,namespaceURI)

argType
Specifies the types of the function arguments (expressed
localPart,namespaceURI) and is optional

This option can be used multiple times.

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

For example:
-func name=getId,http://example.org type=integer,http://www.w3.org/2001/XMLSchema argtype=string,http://www.w3.org/2001/XMLSchema

-baseURI URI
Specifies the base URI of the containing element

-imm int
Sets the integer math mode, which is a constant representing the level of precision
required and whether overflow detection is required when working with xs:integer values

Valid values include:

1 Values need only support the minimum precision required for a minimally
conforming processor (18 digits).

2 Values should support an arbitrary number of digits of precision; no overflow
should occur.

3 Values need only support the minimum precision required for a minimally
conforming processor (18 digits); but any overflow condition should be detected
and error FOAR0002 should be raised.

-i Forces the compiler to read the stylesheet from standard in

-v Prints the version of the compiler

-h Prints the usage statement

stylesheet
Full path to a file containing an XSL stylesheet to be compiled

The following is a basic example of compiling a stylesheet using the CompileXSLT tool:

– compileXSLT.bat -pkg com.examples -dir C:\stylesheets\output C:\stylesheets\
simple.xml

This compiles the C:\stylesheets\simple.xml stylesheet and places the resulting files in
C:\stylesheets\output\com\examples.

– ./compileXSLT.sh -pkg com.examples -dir
/var/stylesheets/output /var/stylesheets/simple.xml

This compiles the /var/stylesheets/simple.xml stylesheet and places the resulting files in
/var/stylesheets/output/com/examples.

v Compile an XPath expression

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\compileXPath.bat

– app_server_root/bin/compileXPath.sh

Syntax

1874 Developing WebSphere applications

compileXPath.bat
-out output
-dir directory
-pkg package
-cpm mode
-ns prefix=URI
-schema URI
[-func name=funcName type=funcType argtype=argType...] ...
[-var name=varName type=varType] ...
-baseURI URI
-dnet URI
-dnf URI
-imm int
-v
-h
{ xpathfile... | -i }

./compileXPath.sh
-out output
-dir directory
-pkg package
-cpm mode
-ns prefix=URI
-schema URI
[-func name=funcName type=funcType argtype=argType...] ...
[-var name=varName type=varType] ...
-baseURI URI
-dnet URI
-dnf URI
-imm int
-v
-h
{ xpathfile... | -i }

Parameters

-out output
Uses the name output as the base name for the generated classes

By default, the base is XPathModule.

This option is ignored if compiling multiple expressions.

-dir directory
Specifies a destination directory for the generated executable

The default is the current working directory.

-pkg package
Specifies a package name prefix for all generated classes

The default is the Java default package.

-cpm mode
Specifies an alternate XPath compatibility mode.

For example, use 1.0 for compatibility with XPath Version 1.0.

-ns prefix=URI
Specifies a namespace for use during static processing

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times. In the case of multiple -ns arguments with the
same prefix, the last one prevails.

-schema URI
Specifies any schema document that is used to populate the in-scope schema
definitions

This option can be used multiple times.

Chapter 39. XML applications 1875

-func name=funcName type=funcType argtype=argType
Adds a function binding to the static context for a single item

This simply declares the function, and a method object for the function also must be
bound to the dynamic context at execution time.

funcName
Specifies the name of the function (expressed localPart,namespaceURI)

funcType
Specifies the return type of the function (expressed localPart,namespaceURI)

argType
Specifies the types of the function arguments (expressed
localPart,namespaceURI) and is optional

This option can be used multiple times.

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

For example:
-func name=getId,http://example.org type=integer,http://www.w3.org/2001/XMLSchema argtype=string,http://www.w3.org/2001/XMLSchema

-var name=varName type=varType
Adds a variable binding to the static context for a single item

This simply declares the variable, and a value also must be bound to the
XDynamicContext at execution time.

varName
Specifies the name of the variable (expressed localPart[, namespaceURI])

If the variable is in no namespace, the namespace URI should be omitted.

Localpart is a required value.

varType
Specifies the type of the variable (expressed localPart,namespaceURI)

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

For example:
-var name=la,"http://www.ibm.com/Los Angeles" type=boolean,http://www.w3.org/2001/XMLSchema

-baseURI URI
Specifies the base URI of the containing element

-dnet URI
Specifies a default namespace URI for element and type names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where an element or type name is expected.

-dnf URI
Specifies a default namespace URI for function names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where a function name is expected.

-imm int
Sets the integer math mode, which is a constant representing the level of precision
required and whether overflow detection is required when working with xs:integer values

Valid values include:

1876 Developing WebSphere applications

1 Values need only support the minimum precision required for a minimally
conforming processor (18 digits).

2 Values should support an arbitrary number of digits of precision; no overflow
should occur.

3 Values need only support the minimum precision required for a minimally
conforming processor (18 digits); but any overflow condition should be detected
and error FOAR0002 should be raised.

-v Prints the version of the compiler

-h Prints the usage statement

xpathfile
Full path to a file containing an XPath expression to be compiled

-i Forces the compiler to read the XPath expression from standard in

The following is a basic example of compiling an XPath expression using the CompileXPath tool:

– compileXPath.bat -pkg com.examples -dir C:\XPath\output C:\XPath\simpleXPath.txt

This compiles the XPath expression provided in C:\XPath\simpleXPath.txt and places the resulting
files in C:\XPath\output\com\examples.

– ./compileXPath.sh -pkg com.examples -dir
/var/XPath/output /var/XPath/simpleXPath.txt

This compiles the XPath expression provided in /var/XPath/simpleXPath.txt and places the
resulting files in /var/XPath/output/com/examples.

v Compile an XQuery expression

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\compileXQuery.bat

– app_server_root/bin/compileXQuery.sh

Syntax

compileXQuery.bat
-out output
-dir directory
-pkg package
[-func name=funcName type=funcType argtype=argType...] ...
-baseURI URI
-dnet URI
-dnf URI
-imm int
-bsp int
-csm int
-cnmi int
-cnmp int
-eso int
-ordm int
-v
-h
{ xqueryfile... | -i }

./compileXQuery.sh
-out output
-dir directory
-pkg package
[-func name=funcName type=funcType argtype=argType...] ...
-baseURI URI
-dnet URI
-dnf URI
-imm int
-bsp int
-csm int

Chapter 39. XML applications 1877

-cnmi int
-cnmp int
-eso int
-ordm int
-v
-h
{ xqueryfile... | -i }

Parameters

-out output
Uses the name output as the base name for the generated classes

By default, the base name is XQueryModule.

This option is ignored if compiling multiple expressions.

-dir directory
Specifies a destination directory for the generated classes

The default is the current working directory.

-pkg package
Specifies a package name prefix for all generated classes

The default is the Java default package.

-func name=funcName type=funcType argtype=argType
Adds a function binding to the static context for a single item

This simply declares the function, and a method object for the function also must be
bound to the dynamic context at execution time.

funcName
Specifies the name of the function (expressed localPart,namespaceURI)

funcType
Specifies the return type of the function (expressed localPart,namespaceURI)

argType
Specifies the types of the function arguments (expressed
localPart,namespaceURI) and is optional

This option can be used multiple times.

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

For example:
-func name=getId,http://example.org type=integer,http://www.w3.org/2001/XMLSchema argtype=string,http://www.w3.org/2001/XMLSchema

-baseURI URI
Specifies the base URI of the containing element

-dnet URI
Specifies a default namespace URI for element and type names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where an element or type name is expected.

-dnf URI
Specifies a default namespace URI for function names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where a function name is expected.

1878 Developing WebSphere applications

-imm int
Sets the integer math mode, which is a constant representing the level of precision
required and whether overflow detection is required when working with xs:integer values

Valid values include:

1 Values need only support the minimum precision required for a minimally
conforming processor (18 digits).

2 Values should support an arbitrary number of digits of precision; no overflow
should occur.

3 Values need only support the minimum precision required for a minimally
conforming processor (18 digits); but any overflow condition should be detected
and error FOAR0002 should be raised.

-bsp int
Specifies the boundary space policy

Valid values include:

1 Preserve white spaces

2 Strip white spaces

This is the default value.

-csm int
Specifies the construction mode

Valid values include:

1 Preserve

The type of a constructed element node is xs:anyType, and all attribute and
element nodes copied during node construction retain their original types.

This is the default value.

2 Strip

The type of a constructed element node is xs:untyped, all element nodes copied
during node construction receive the type xs:untyped, and all attribute nodes
copied during node construction receive the type xs:untypedAtomic.

-cnmi int
Specifies the inherit part of the copy-namespaces

Valid values include:

1 Inherit

Inherit mode should be used in namespace binding assignment when an
existing element node is copied by an element constructor.

This is the default value.

2 No inherit

No-inherit mode should be used in namespace binding assignment when an
existing element node is copied by an element constructor.

-cnmp int
Specifies the preserve part of the copy-namespaces

Valid values include:

1 Preserve

Chapter 39. XML applications 1879

Preserve mode should be used in namespace binding assignment when an
existing element node is copied by an element constructor.

This is the default value.

2 No preserve

No-preserve mode should be used in namespace binding assignment when an
existing element node is copied by an element constructor.

-eso int
Specifies the empty sequence order

Valid values include:

1 Greatest

2 Least

This is the default value.

-ordm int
Specifies the ordering mode

Valid values include:

1 Ordered results are to be returned by certain path expressions, union, intersect,
and except expressions, as well as FLWOR expressions that have no order by
clause

This is the default value.

2 Unordered results are to be returned by certain path expressions, union,
intersect, and except expressions, as well as FLWOR expressions that have no
order by clause

-v Prints the version of the compiler

-h Prints the usage statement

xqueryfile
Full path to a file containing an XQuery expression to be compiled

-i Forces the compiler to read the stylesheet from standard in

The following is a basic example of compiling an XQuery expression using the CompileXQuery tool:

– compileXQuery.bat -pkg com.examples -dir C:\XQuery\output C:\XQuery\
simpleXQuery.txt

This compiles the XQuery expression provided in C:\XQuery\simpleXQuery.txt and places the
resulting files in C:\XQuery\output\com\examples.

– ./compileXQuery.sh -pkg com.examples -dir
/var/XQuery/output /var/XQuery/simpleXQuery.txt

This compiles the XQuery expression provided in /var/XQuery/simpleXQuery.txt and places the
resulting files in /var/XQuery/output/com/examples.

Precompiling using ANT tasks
You can use the TaskCompileXPath, TaskCompileXQuery, and TaskCompileXSLT ANT tasks as
alternatives to using the CompileXPath, CompileXQuery, and CompileXSLT commands.

About this task

ANT task elements:

1880 Developing WebSphere applications

argType
This element indicates the types of the function arguments expressed in terms of the localpart and
namespaceURI.

Parameters specified as nested elements:

localpart
A nested localpart element must be specified to provide the local part of the qualified
name.

namespaceURI
A nested namespaceURI element can be specified to indicate the namespaceURI.

Example:
<argType>
<localpart>boolean</localpart>
<namespaceURI>"http://www.w3.org/2001/XMLSchema"</namespaceURI>

</argType>

baseURI
This element specifies the base URI of the containing element.

Example:
<baseURI>"http://www.ibm.com/Los Angeles"</baseURI>

bsp This element specifies the Boundary Space Policy.

Valid values include:

v 1 = preserve white spaces

v 2 = strip white spaces

The default value is 2 (strip white spaces).

Example:
<bsp>1</bsp>

cnmi This element specifies the inherit part of the copy-namespaces.

Valid values include:

v 1 = inherit

Inherit mode should be used in namespace binding assignment when an existing element node
is copied by an element constructor.

v 2 = no inherit

No-inherit mode should be used in namespace binding assignment when an existing element
node is copied by an element constructor.

The default is 1 (inherit).

Example:
<cnmi>2</cnmi>

cnmp This element specifies the preserve part of the copy-namespaces.

Valid values include:

v 1 = preserve

Preserve mode should be used in namespace binding assignment when an existing element
node is copied by an element constructor.

v 2 = no preserve

No-preserve mode should be used in namespace binding assignment when an existing element
node is copied by an element constructor.

The default is 1 (preserve).

Example:

Chapter 39. XML applications 1881

<cnmp>2</cnmp>

cpm This element specifies an alternate XPath Compatibility Mode.

Valid values are:

v Latest

v 1.0

v 2.0

For example: use 1.0 for compatibility with XPath Version 1.0.

The default is 2.0.

Example:
<cpm>1.0</cpm>

csm This element specifies the Construction Mode.

Valid values include:

v 1 = preserve

The type of a constructed element node is xs:anyType, and all attribute and element nodes
copied during node construction retain their original types.

v 2 = strip

The type of a constructed element node is xs:untyped, all element nodes copied during node
construction receive the type xs:untyped, and all attribute nodes copied during node
construction receive the type xs:untypedAtomic.

The default value is 1 (preserve).

Example:
<csm>2</csm>

dir This element specifies a destination directory for the executables.

The default is the current working directory.

If the value contains a blank space, enclose it in quotation marks.

Example:
<dir>C:/precompiledXSLT</dir>

dnet This element specifies a default namespace URI for element and type names.

The namespace URI, if present, is used for any unprefixed QName appearing in a position where
an element or type name is expected.

Example:
<dnet>http://example.org/ibm</dnet>

dnf This element specifies a default namespace URI for function names.

The namespace URI, if present, is used for any unprefixed QName appearing in a position where
a function name is expected.

Example:
<dnf>http://my.org</dnf>

eso This element specifies the Empty Sequence Order.

Valid values include:

v 1 = greatest

v 2 = least

The default value is 2 (empty sequences least).

Example:

1882 Developing WebSphere applications

<eso>1</eso>

function
For the CompileXSLT, CompileXPath, and CompileXQuery tasks, this element defines and binds a
function to the static context for a single item. Note that this simply declares the function, and a
Method object for the function must also be bound to the dynamic context. Note: this element can
be specified multiple times.

Parameters specified as nested elements:

name A nested name element must be specified to indicate the name of the function.

type A nested type element must be specified to indicate the type of the function.

argType
A nested argType element can be specified to indicate the types of the function
arguments.

This element is optional and can be specified multiple times.

Example:
<function>
<name>
<localpart>la</localpart>
<namespaceURI>"http://www.ibm.com/Los Angeles"</namespaceURI>

</name>
<type>
<localpart>boolean</localpart>
<namespaceURI>http://www.w3.org/2001/XMLSchema</namespaceURI>

</type>
</function>

imm This element sets the integer math mode, which is a constant representing the level of precision
required and whether overflow detection is required when working with xs:integer values.

Valid values include:

v 1 = values need only support the minimum precision required for a minimally conforming
processor (18 digits)

v 2 = values should support an arbitrary number of digits of precision; no overflow should occur

v 3 = values need only support the minimum precision required for a minimally conforming
processor (18 digits) but any overflow condition should be detected and error FOAR0002 raised

Example:
<imm>2</imm>

inputfile
This element specifies the full path to a file containing an XSL, XPath, or XQuery to be compiled.

Example:
<inputfile>C:/XSLT/simple.xsl</inputfile>

localpart
This element indicates the local part of a qualified name.

Example:
<localpart>la</localpart>

name This element indicates the name of the function or variable (expressed in terms of the localpart
and namespaceURI).

In the case of a variable that is in no namespace the namespace URI should be omitted.

Parameters specified as nested elements:

localpart
A nested localpart element must be specified to provide the local part of the qualified
name.

Chapter 39. XML applications 1883

namespaceURI
A nested namespaceURI element can be specified to indicate the namespaceURI.

Example:
<name>
<localpart>la</localpart>
<namespaceURI>"http://www.ibm.com/Los Angeles"</namespaceURI>

</name>

namespaceURI
This element indicates the namespaceURI part of a qualified name.

If the value contains a blank space. enclose it in quotation marks.

Example:
<namespaceURI>"http://www.ibm.com/Los Angeles"</namespaceURI>

ns This element specifies a namespace for use during static processing.

The value should be specified as prefix=URI.

If the value contains a blank space, enclose it in quotation marks.

This element can be used multiple times.

Example:
<ns>my=http://www.example.com/examples</ns>

ordm This element specifies the Ordering Mode.

Valid values include:

v 1 = ordered results are to be returned by certain path expressions, union, intersect, and except
expressions, and FLWOR expressions that have no order by clause

v 2 = unordered results are to be returned by certain path expressions, union, intersect, and
except expressions, and FLWOR expressions that have no order by clause

The default value is 1 (ordered).

Example:
<ordm>2</ordm>

out This element specifies the name of the generated executable.

The default executable name is XSLTModule, XPathModule, or XQueryModule depending on the
corresponding task.

This option is ignored if compiling multiple files.

Example:
<out>sample</out>

dir This element specifies a destination directory for the executables. Default is the current working
directory.

If the value contains a blank space, enclose it in quotation marks.

Example:
<pkg>com.mycompany.precompiled</pkg>

schema
This element specifies a schema document that will be used to populate the in-scope schema
definitions.

This element can be used multiple times.

Example:
<schema>C:/samples/xpath/variousTypesNodeTest.xsd</schema>

1884 Developing WebSphere applications

type This element indicates the type of the function or variable expressed in terms of the localpart and
namespaceURI.

Parameters specified as nested elements:

localpart
A nested localpart element must be specified to provide the local part of the qualified
name.

namespaceURI
A nested namespaceURI element can be specified to indicate the namespaceURI.

Example:
<type>
<localpart>boolean</localpart>
<namespaceURI>"http://www.w3.org/2001/XMLSchema"</namespaceURI>

</type>

variable
This element defines and binds a variable to the static context for a single item.

This simply declares the variable, and a value must be bound to the dynamic context.

This element can be specified multiple times.

Parameters specified as nested elements:

name A nested name element must be specified to indicate the name of the variable.

type A nested type element must be specified to indicate the type of the variable.

Example:
<variable>
<name>
<localpart>booleanVar</localpart>

</name>
<type>
<localpart>boolean</localpart>
<namespaceURI>http://www.w3.org/2001/XMLSchema</namespaceURI>

</type>
</variable>

Procedure
v Use TaskCompileXPath

This task can be used to precompile one or more XPath expressions. The output will be a set of Java
classes that subsequently can be used to execute the expressions without the performance overhead of
dynamic compilation.

Parameters specified as nested elements:

out A nested out specifies the name of the generated executable.

The default executable name is XPathModule.

dir A nested dir specifies a destination directory for the executables.

The default is the current working directory.

pkg A nested pkg specifies a package name prefix for all generated classes.

The default is the Java default package.

cpm A nested cpm specifies an alternate XPath Compatibility Mode.

ns A nested ns specifies a namespace for use during static processing.

schema
A nested schema specifies a schema document that will be used to populate the in-scope
schema definitions.

Chapter 39. XML applications 1885

function
A nested function definition can be specified.

This will create a function binding to the static context for a single item.

variable
A nested variable definition can be specified.

This will add a variable binding to the static context for a single item.

baseURI
A nested baseURI specifies the base URI of the containing element.

dnet A nested dnet specifies a default namespace URI for element and type names.

dnf A nested dnf specifies a default namespace URI for function names.

imm A nested imm sets the integer math mode, which is a constant representing the level of
precision required and whether overflow detection is required when working with xs:integer
values.

inputfile
A nested inputfile specifies the full path to a file containing XPath expression to be compiled.

Note: This element is required and can be used multiple times.

Example:
<target name="testXPath">
<taskdef name="compileXPath" classname="com.ibm.xml.xapi.ant.TaskCompileXPath"/>
<compileXPath>
<out>sample</out>
<dir>"C:/precompiledXPath"</dir>
<pkg>com.mycompany.precompiled</pkg>
<variable>
<name>
<localpart>booleanVar</localpart>

</name>
<type>
<localpart>boolean</localpart>
<namespaceURI>http://www.w3.org/2001/XMLSchema</namespaceURI>

</type>
</variable>
<inputfile>C:/XPath/xpath.txt</inputfile>

</compileXPath>
</target>

v Use TaskCompileXQuery

This task can be used to precompile one or more XQuery expressions. The output will be a set of Java
classes that subsequently can be used to execute the expressions without the performance overhead of
dynamic compilation.

Parameters specified as nested elements:

out A nested out specifies the name of the generated executable.

The default executable name is XQueryModule.

dir A nested dir specifies a destination directory for the executables.

The default is the current working directory.

pkg A nested pkg specifies a package name prefix for all generated classes.

The default is the Java default package.

function
A nested function definition can be specified.

This will create a function binding to the static context for a single item.

baseURI
A nested baseURI specifies the base URI of the containing element.

1886 Developing WebSphere applications

dnet A nested dnet specifies a default namespace URI for element and type names.

dnf A nested dnf specifies a default namespace URI for function names.

imm A nested imm sets the integer math mode, which is a constant representing the level of
precision required and whether overflow detection is required when working with xs:integer
values.

bsp A nested bsp specifies the Boundary Space Policy.

csm A nested csm specifies the Construction Mode.

cnmi A nested cnmi specifies the inherit part of the copy-namespaces.

cnmp A nested cnmp specifies the preserve part of the copy-namespaces.

eso A nested eso specifies the Empty Sequence Order.

ordm A nested ordm specifies the Ordering Mode.

inputfile
A nested inputfile specifies the full path to a file containing an XQuery expression to be
compiled. Note: this element is required and can be used multiple times.

Example:
<target name="testXQuery">
<taskdef name="compileXQuery" classname="com.ibm.xml.xapi.ant.TaskCompileXQuery"/>
<compileXQuery>
<out>sample</out>
<dir>"C:/precompiledXQuery"</dir>
<pkg>com.mycompany.precompiled</pkg>
<inputfile>C:/XQuery/xquery.sq</inputfile>

</compileXQuery>
</target>

v Use TaskCompileXSLT

This task can be used to precompile one or more stylesheets. The output will be a set of Java classes
that subsequently can be used to execute transformations without the performance overhead of
dynamic compilation.

Parameters specified as nested elements:

out A nested out specifies the name of the generated executable.

The default executable name is XSLTModule.

This element is ignored if compiling multiple stylesheets.

dir A nested dir specifies a destination directory for the executables.

The default is the current working directory.

pkg A nested pkg specifies a package name prefix for all generated classes.

The default is the Java default package.

function
A nested function definition can be specified.

This will create a function binding to the static context for a single item.

baseURI
A nested baseURI specifies the base URI of the containing element.

imm A nested imm sets the integer math mode, which is a constant representing the level of
precision required and whether overflow detection is required when working with xs:integer
values.

inputfile
A nested inputfile specifies the full path to a file containing an XSL stylesheet to be compiled.

Chapter 39. XML applications 1887

Note: This element is required and can be used multiple times.

Example:
<target name="testXSLT">
<taskdef name="compileXSLT" classname="com.ibm.xml.xapi.ant.TaskCompileXSLT"/>
<compileXSLT>
<out>sample</out>
<dir>"C:/precompiledXSLT"</dir>
<pkg>com.mycompany.precompiled</pkg>
<function>
<name>
<localpart>la</localpart>
<namespaceURI>"http://www.ibm.com/Los Angeles"</namespaceURI>

</name>
<type>
<localpart>boolean</localpart>
<namespaceURI>http://www.w3.org/2001/XMLSchema</namespaceURI>

</type>
</function>
<inputfile>C:/XSLT/simple.xsl</inputfile>

</compileXSLT>
</target>

Precompiling in Java
You can use the XCompilationFactory interface and its various compile and load methods to compile an
expression, query, or stylesheet in advance. The Java classes can be loaded at execution time, therefore
avoiding the cost of compilation in the application run time.

Procedure
v Retrieve the XCompilationFactory by calling the getCompilationFactory method on the XFactory class.

An XCompilationFactory instance is associated with a particular XFactory instance, so they share
registered schemas. If a new schema is registered with the XFactory instance; therefore, it is visible to
the associated XCompilationFactory instance.

v Create a new XCompilationParameters instance by calling the XCompilationFactory
newCompilationParameters method, passing in the base class name to use for the generated classes.

Configure the parameters further by using the set methods described in this table.

Table 300. Valid set methods.

These set methods are defined in the XCompilationParameters interface and are valid for generating a precompiled
executable.
Set Methods Valid for Generating a
Precompiled Executable Description Default

setPackageName Specify the package name for the generated
classes.

The value must be a valid Java package name.

Java default package

setDirectoryName Specify the directory to which the generated
classes should be written.

The directory must exist.

Current working directory as retrieved by calling
the Java System.getProperty method with the
property user.dir

The setClassLoader method is only valid when loading the generated classes using one of the load
methods. If the class loader is set at compile time, it is ignored.

v Use one of the compile methods on the XCompilationFactory, passing in the XCompilationParameters,
to generate the precompiled executable.

The compile methods use the XStaticContext just like the XFactory prepare methods to configure
prepare-time settings. Note that compilation is implied when the compile methods are used; therefore,
changing the use-compiler setting through the XStaticContext setUseCompiler method has no effect on
these methods. If no static context is specified, the default settings are used.

Example

The following is a basic example of precompiling an XPath expression.

1888 Developing WebSphere applications

// Create the factory
XFactory factory = XFactory.newInstance();

// Get the compilation factory
XCompilationFactory compileFactory = factory.getCompilationFactory();

// Create the compilation parameters
XCompilationParameters params = compileFactory.newCompilationParameters("MyXPath");
params.setPackageName("org.example.myxpath");

// Generate the compiled classes
compileFactory.compileXPath("/doc/item[@id > 3000]", params);

Appropriate compile methods are available for XQuery and XSLT as well.

Loading a precompiled executable
You can use the XCompilationFactory interface and its various load methods to load a precompiled
expression, query, or stylesheet. These load methods load the Java classes and return an
XPathExecutable, XQueryExecutable, or XSLTExecutable object respectively.

Procedure
v Retrieve the XCompilationFactory by calling the getCompilationFactory method on the XFactory class.

An XCompilationFactory instance is associated with a particular XFactory instance, so they share
registered schemas. If a new schema is registered with the XFactory instance, therefore, it is visible to
the associated XCompilationFactory instance.

v Create a new XCompilationParameters instance by calling the XCompilationFactory
newCompilationParameters method, passing in the base class name of the classes to be loaded.

Configure the parameters further by using the set methods described in this table.

Table 301. Valid set methods.

These are set methods that are defined in the XCompilationParameters interface and are valid for loading a
precompiled executable.
Set Methods Valid for Loading a Precompiled
Executable Description Default

setPackageName Specify the package name of the classes to
load.

Java default package

setClassLoader Specify the class loader to use. Class loader that was used to load the
processor

The setDirectoryName method is not valid when loading a precompiled executable because the
classpath is used to search for the classes. If the directory name is set, it is ignored. The
setDirectoryName method can be used when generating precompiled executables to specify the
directory to which you want to write the classes.

v Use one of the load methods on the XCompilationFactory, passing in the XCompilationParameters, to
load the precompiled executable.

Example

The following is a basic example of loading a precompiled XPath expression.
// Create the factory
XFactory factory = XFactory.newInstance();

// Get the compilation factory
XCompilationFactory compileFactory = factory.getCompilationFactory();

// Create the compilation parameters
XCompilationParameters params = compileFactory.newCompilationParameters("MyXPath");
params.setPackageName("org.example.myxpath");

// Load the executable
XPathExecutable executable = compileFactory.loadXPath(params);

// Create the input source
StreamSource input = new StreamSource("simple.xml");

// Execute the XPath expression
XSequenceCursor cursor = executable.execute(input);

Chapter 39. XML applications 1889

Appropriate load methods are available for XQuery and XSLT as well.

Using resolvers
You can use this information to help you to use resolvers.

Procedure
v Use source and result resolvers.

v Register a collection resolver.

v Register a schema resolver.

v Use an unparsed text resolver.

v Use a module resolver.

Using source and result resolvers
You can use this information to help you to use source and result resolvers.

Procedure
v Use a source resolver at prepare time.

v Use a source resolver at execution time.

v Use a result resolver at execution time.

Using a source resolver at prepare time:

By specifying a source resolver at the time that an executable is being prepared, you can tell the
processor how to interpret the URIs referenced at that time.

Procedure

Specify a source resolver at the time an executable is being prepared.
This tells the processor how to interpret the URIs referenced at that time, in a stylesheet's xsl:import and
xsl:include directives for example.
The default source-resolution behavior is to interpret relative URIs in terms of the base URI of the
expression, query, or stylesheet if the base URI is available or to interpret them as file paths relative to the
current working directory if the base URI is not available. Absolute URIs are used unchanged.
To change this behavior, write a Java class that implements the XSourceResolver interface and register it
with the XStaticContext before preparing the stylesheet.
The following is a basic example of how to register the source resolver.
XFactory factory = XFactory.newInstance();

// Register the source resolver with the static context
XStaticContext staticContext = factory.newStaticContext();
XSourceResolver sourceResolver=new ASourceResolver(replacementBase);
staticContext.setSourceResolver(sourceResolver);

// Prepare the sylesheet
XSLTExecutable executable = factory.prepareXSLT(new StreamSource(stylesheetFile), staticContext);

XDynamicContext dynamicContext = factory.newDynamicContext();

// Execute the stylesheet
XSequenceCursor cursor = executable.execute(new StreamSource(inputFile), dynamicContext);

Using a source resolver at execution time:

By specifying a source resolver at the time that an executable is being executed, you can tell the
processor how to interpret the URIs referenced at that time.

1890 Developing WebSphere applications

Procedure

Specify a source resolver at the time that an executable is being executed.
This tells the processor how to interpret the URIs referenced at that time, in calls to the fn:doc() or
document() functions for example.
The default source-resolution behavior is to interpret relative URIs in terms of the base URI of the
expression, query, or stylesheet if the base URI is available or to interpret them as file paths relative to the
current working directory if the base URI is not available. Absolute URIs are used unchanged.
To change this behavior, write a Java class that implements the XSourceResolver interface and register it
with the XDynamicContext before executing the expression, query, or stylesheet.
The following is a basic example of how to register the source resolver.
XFactory factory = XFactory.newInstance();

XStaticContext staticContext = factory.newStaticContext();

// Prepare the stylesheet
XSLTExecutable executable = factory.prepareXSLT(new StreamSource(stylesheetFile), staticContext);

XDynamicContext dynamicContext = factory.newDynamicContext();
// Register the source resolver with the dynamic context
XSourceResolver sourceResolver=new ASourceResolver(replacementBase);
dynamicContext.setSourceResolver(sourceResolver);

// Execute the XPath expression
XSequenceCursor cursor = executable.execute(new StreamSource(inputFile), dynamicContext);

Using a result resolver at execution time:

By specifying a result resolver at execution time, you can tell the processor how to redirect output URIs
specified in the executable.

Procedure

To activate a result resolver, register it with the dynamic context before calling execute().
Result resolvers perform essentially the same function as source resolvers, but on the output side of the
processor. They allow you to intercept and redirect output URIs specified in the executable, such as
xsl:result-document directives in a stylesheet.
The default resolution behavior is to use the base output URI to resolve result documents if the URI
reference is relative. Absolute URIs are used unchanged.
The following is a basic example of a result resolver.
class AResultResolver implements XResultResolver
{

String _replacementBase;

public AResultResolver(String replacementBase)
{
_replacementBase=replacementBase;

}

// Resolve URIs by loading the resource as an XSLT stylesheet
// and evaluating it - return the result as the Source to use
public Result getResult(String href, String base) {
String rebasePrefix="rebase://";

if(href.startsWith(rebasePrefix))
{
href=href.substring(rebasePrefix.length());
base=_replacementBase;
}

java.net.URI baseURI;
Result result=null;
try {

// Get base URI object
baseURI = new java.net.URI(base);
// Resolved relative reference against base URI
URI resolvedURI = baseURI.resolve(href);
// Try to read...
result = new StreamResult(resolvedURI.toString());

} catch (java.net.URISyntaxException use) {
throw new RuntimeException(use);

}

Chapter 39. XML applications 1891

return result;
}

}

The following is a basic example of registering and using the resolver.
XFactory factory = XFactory.newInstance();

XStaticContext staticContext = factory.newStaticContext();

// Prepare the stylesheet
XSLTExecutable executable = factory.prepareXSLT(new StreamSource(stylesheetFile), staticContext);

XDynamicContext dynamicContext = factory.newDynamicContext();
// Register the result resolver with the dynamic context
XResultResolver resultResolver=new AResultResolver(replacementBase);
dynamicContext.setResultResolver(resultResolver);

// Execute the XPath expression
XSequenceCursor cursor = executable.execute(new StreamSource(inputFile), dynamicContext);

Registering a collection resolver
You can register implementations of the XCollectionResolver interface with the XDynamicContext.

Procedure

Register a collection resolver with the dynamic context.
The XCollectionResolver implementation registered with the XDynamicContext is used at execution time to
retrieve the collection of nodes associated with the URI provided in calls to the fn:collection method. If no
collection resolver is registered with the XDynamicContext then calls to fn:collection will result in a
recoverable error and the empty sequence is used for the collection.
Note that the collection resolver and the fn:collection function are not meant to resolve document URIs.
The source resolver and fn:doc function should be used for this purpose.

Example

The following is a basic example of using a collection resolver.
XFactory factory = XFactory.newInstance();

// Prepare the XPath expression
XPathExecutable executable = factory.prepareXPath("count(collection(’typeA-typeB’))"

// Register the collection resolver with the dynamic context
XCollectionResolver collectionResolver = new ACollectionResolver(factory);
XDynamicContext dynamicContext = factory.newDynamicContext();
dynamicContext.setCollectionResolver(collectionResolver);

// Execute the XPath expression
XSequenceCursor cursor = executable.execute(dynamicContext);

The following is a basic example of an XCollectionResolver implementation.
public class ACollectionResolver implements XCollectionResolver {

private XFactory m_factory;

public ACollectionResolver(XFactory factory) {
m_factory = factory;

}

public XSequenceCursor getCollection(String uri, String base) {

// Get the default collection
if (uri.equals("")) {

return getCollection("default", base);
}

// Get the requested collection
ArrayList<XItemView> list = new ArrayList<XItemView>();
StringTokenizer tokenizer = new StringTokenizer(uri, "-");
XSequenceCursor cursor = null;
while (tokenizer.hasMoreTokens()) {

String token = tokenizer.nextToken();
XSequenceCursor temp = getNodes(new StreamSource("collections.xml"), "/doc/" + token);
if (cursor == null) {

cursor = temp;
} else {

1892 Developing WebSphere applications

cursor = cursor.append(temp);
}

}
return cursor;

}

private XSequenceCursor getNodes(Source source, String expression) {
XPathExecutable executable = m_factory.prepareXPath(expression);
XSequenceCursor cursor = executable.execute(source);
return cursor;

}

}

Registering a schema resolver
The XSchemaResolver interface can be implemented and the implementation registered with the XFactory
to override the default schema resolution behavior. This includes resolution of imports for schemas
registered with XFactory using the registerSchema method and resolving schemas imported in XSLT
stylesheets using the xsl:import-schema declaration.

About this task

The default behavior for resolving imports within a schema is to use the base URI of the schema to
resolve the imported schema's location. The default behavior for XSLT schema imports is to use the base
URI of the xsl:import-schema declaration to resolve the location specified in the declaration.

Procedure

Use the setSchemaResolver method on the XFactory class to register a schema resolver.
The getSchema method returns an instance of the java.util.List interface. This is because the definitions of
the schema components for a particular namespace can be split across several distinct schema
documents. You can use the getSchema method to return all the schema documents for the particular
target namespace associated with all the specified location hints.

Example

The following is a basic example of using a schema resolver.
XFactory factory = XFactory.newInstance();

// Set validating to true.
factory.setValidating(true);

// Create the schema resolver and register it with the factory.
factory.setSchemaResolver(new ASchemaResolver(replacementBase));

// Prepare the stylesheet.
XSLTExecutable executable = factory.prepareXSLT(new StreamSource(stylesheetFile));

// Execute the transformation.
Source source = new StreamSource(inputFile);
Result result = new StreamResult(System.out);
executable.execute(source, result);

The following is a basic example of an XSchemaResolver implementation.
class ASchemaResolver implements XSchemaResolver
{

String _replacementBase;

public ASchemaResolver(String replacementBase)
{

_replacementBase=replacementBase;
}

// Resolve URI, returning the Source that URI represents.
// Implements the "rebase:" pseudo-scheme.
public List<? extends Source> getSchema(String namespace, List<String> locations, String baseURI) {

String rebasePrefix="rebase:";

List<StreamSource> list = new ArrayList<StreamSource>();
for (int i = 0; i < locations.size(); i++) {

String href = locations.get(i);
String base = baseURI;
if(href.startsWith(rebasePrefix)) {

Chapter 39. XML applications 1893

href=href.substring(rebasePrefix.length());
base=_replacementBase;

}

java.net.URI uri;
StreamSource source=null;
try {

// Get base URI object
uri = new java.net.URI(base);
// Resolved relative reference against base URI
URI resolvedURI = uri.resolve(href);
// Try to read...
source = new StreamSource(resolvedURI.toString());

} catch (java.net.URISyntaxException use) {
throw new RuntimeException(use);

}

list.add(source);
}
return list;

}
}

Using an unparsed text resolver
The XUnparsedTextResolver interface can be implemented and the implementation registered with the
XDynamicContext to override the default resolution behavior for resources loaded through the XSLT
unparsed-text function.

About this task

The default resolution behavior for resources loaded through the XSLT unparsed-text function is to resolve
relative URIs based on the base URI from the static context. If the base URI is not available, the current
working directory is used. Absolute URIs are used unchanged.

Procedure

Use the setUnparsedTextResolver method on the XDynamicContext interface to register an unparsed text
resolver.

Example

The following is a basic example of using an unparsed text resolver.
XFactory factory = XFactory.newInstance();

// Prepare the stylesheet.
XSLTExecutable executable = factory.prepareXSLT(new StreamSource(stylesheetFile));

// Create the dynamic context and set the unparsed text resolver.
XDynamicContext dynamicContext = factory.newDynamicContext();
AnUnparsedTextResolver resolver = new AnUnparsedTextResolver(replacementBase);
dynamicContext.setUnparsedTextResolver(resolver);

// Execute the transformation.
Source source = new StreamSource(inputFile);
Result result = new StreamResult(System.out);
executable.execute(source, dynamicContext, result);

The following is a basic example of an unparsed text resolver implementation.
class AnUnparsedTextResolver implements XUnparsedTextResolver
{

String _replacementBase;

public AnUnparsedTextResolver(String replacementBase)
{

_replacementBase=replacementBase;
}

// Resolve URI, returning the resource that URI represents.
// Implements the "rebase:" pseudo-scheme.
public String getResource(String href, String encoding, String base) {

String rebasePrefix="rebase:";

if (href.startsWith(rebasePrefix)) {
href = href.substring(rebasePrefix.length());
base = _replacementBase;

}

1894 Developing WebSphere applications

try {
// Get base URI object
URI uri = new java.net.URI(base);
// Resolved relative reference against base URI
URI resolvedURI = uri.resolve(href);
// Try to read...
URL url = resolvedURI.toURL();
URLConnection urlCon = url.openConnection();
BufferedInputStream stream = new BufferedInputStream(urlCon.getInputStream());
StringBuffer buffer = new StringBuffer();
int s;
while ((s = stream.read())!= -1) {

// Do any character manipulation here.
buffer.append((char)s);

}
return buffer.toString();

} catch (Exception e) {
throw new RuntimeException(e);

}
}

}

Using resolvers in a J2EE context
When loading artifacts in a Java 2 Platform, Enterprise Edition (J2EE) context, you should consider the
special implications that apply when loading resources from local deployment artifacts.

About this task

Loading local resources—through Class.getResource and Class.getResourceAsStream—from J2EE
deployment artifacts such as EARs, WARs, and library JAR files can introduce issues when loading
related XML artifacts. Loading an initial local resource using these mechanisms will succeed, but artifacts
loaded from the initial resource typically will fail to load without specific consideration.

Here is an example of loading documents at execution time from a stylesheet using the XPath fn:doc
function. In this case, the default behavior is to resolve documents based on the base URI from the static
context.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:variable name="names" select="doc(’names.xml’)"/>

<xsl:template name="loadnames">
<xsl:copy-of select="$names"/>
</xsl:template>

</xsl:stylesheet>

If this is loaded with the following Java code in a J2EE environment:
// create the factory
XFactory factory = XFactory.newInstance();

// load the XSLT file from a local resource within a J2EE deployment artifact
StreamSource source = new StreamSource(XSLTDocFunction.class.getResourceAsStream("/samplexslts/doc.xsl"));

// Create an XSL transform executable
XSLTExecutable xslTransform = factory.prepareXSLT(source);

// Create the result
Result result = new StreamResult(new ByteArrayOutputStream());

// Create a dynamic context specifying the XSLT initial template
XDynamicContext dc = factory.newDynamicContext();
dc.setXSLTInitialTemplate(new QName("loadnames"));

// Execute the transformation
xslTransform.execute(dc, result);

you will receive the following error:
IXJXE0364W: FATAL ERROR: IXJXE0774E: [ERR 0693][ERR FODC0005]
The URI string ’names.xml’ does not map to an available document.

Chapter 39. XML applications 1895

The reason for this error is that in loading the initial XML artifact (doc.xsl), no static content was
established for the base URI. In this case, the processor will fall back to looking in the current working
directory, which is meaningless in a J2EE environment.

There are three possible ways to fix this situation. Here are the first two:

v Set the baseURI in the static context.

Adjusting to set the baseURI on the static context would look like this example:
// create the factory
XFactory factory = XFactory.newInstance();

// set the baseURI in the static context
URL dataURL = XSLTSchemaAware.class.getResource("/samplexslts/doc.xsl");
XStaticContext staticContext = factory.newStaticContext();
staticContext.setBaseURI(dataURL.toString());

// load the XSLT file from a local resource within a J2EE deployment artifact
StreamSource source = new StreamSource(XSLTDocFunction.class.getResourceAsStream("/samplexslts/doc.xsl"));

// Create an XSL transform executable
XSLTExecutable xslTransform = factory.prepareXSLT(source, staticContext);

// Create the result
Result result = new StreamResult(new ByteArrayOutputStream());

// Create a dynamic context specifying the XSLT initial template
XDynamicContext dc = factory.newDynamicContext();
dc.setXSLTInitialTemplate(new QName("loadnames"));

// Execute the transformation
xslTransform.execute(dc, result);

v Load the resource in a way that allows the processor to know the baseURI.

Adjusting to load the resource in a way that allows the processor to know the baseURI by passing the
absolute URL to the StreamSource constructor would look like the following example:

// Create the factory
XFactory factory = XFactory.newInstance();

// Create the source from a URL
URL dataURL = XSLTSchemaAware.class.getResource("/samplexslts/doc.xsl");
StreamSource source = new StreamSource(dataURL.toString());

// Create an XSL transform executable for the expression
XSLTExecutable xslTransform = factory.prepareXSLT(source);

// Create the result
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Result result = new StreamResult(baos);

// Create a dynamic context specifying the XSLT initial template
XDynamicContext dc = factory.newDynamicContext();
dc.setXSLTInitialTemplate(new QName("loadnames"));

// Execute the transformation
xslTransform.execute(dc, result);

These two approaches described will work well when all XML artifacts are in a single J2EE deployment
unit, but they will fail if XML artifacts are split across J2EE deployment units because there is no single
baseURI for all of the XML artifacts.

To have complete control over XML artifact loading to support cases such as artifacts spread across
multiple deployment units, use resolvers to completely control loading behavior.

Procedure

Implement the appropriate resolvers and register those resolvers into the static or dynamic context as
appropriate.
These XML artifact loading recommendations apply within a J2EE context for all XML artifacts supported
by resolvers such as XML documents (fn:doc(), document()), stylesheets (xsl:include, xsl:import), unparsed
text, and XML schemas (XSLT import-schema).

1896 Developing WebSphere applications

Using a module resolver
The XModuleResolver interface can be implemented and the implementation registered with the
XStaticContext to override the default XQuery module resolution behavior. Modules are resolved whenever
an XQuery module import is encountered.

About this task

The default module resolution behavior is to attempt to locate one module for each location hint specified
in the module import. The default resolution behavior for each location hint is to resolve relative URIs
against the base URI from the static context, if the base URI is available, or to interpret them as file paths
relative to the current working directory, if the base URI is not available. Absolute URIs are used
unchanged. If a module cannot be located for a location hint, the processor ignores it unless no modules
can be loaded for the namespace, in which case the processor will emit an error message.

Procedure

Use the setModuleResolver method on the XStaticContext interface to register a module resolver.
The getModule method returns an instance of the java.util.List interface. This is because there might be
more than one module document for a particular namespace and set of location hints.

Example

The following is a basic example of using a module resolver.
XFactory factory = XFactory.newInstance();

// Create the static context
XStaticContext staticContext = factory.newStaticContext();

// Create the module resolver and register it with the static context.
staticContext.setModuleResolver(new AModuleResolver(replacementBase));

// Prepare the query.
XQueryExecutable executable = factory.prepareXQuery(new StreamSource(queryFile), staticContext);

// Execute the transformation.
Source source = new StreamSource(inputFile);
Result result = new StreamResult(System.out);
executable.execute(source, result);

The following is a basic example of a module resolver implementation.
class AModuleResolver implements XModuleResolver
{

String _replacementBase;

public AModuleResolver(String replacementBase)
{

_replacementBase=replacementBase;
}

// Resolve URI, returning the Source that URI represents.
// Implements the "rebase:" pseudo-scheme.
public List<? extends Source> getModule(String namespace, List<String> locations, String baseURI) {

String rebasePrefix="rebase:";

List<StreamSource> list = new ArrayList<StreamSource>();
for (int i = 0; i < locations.size(); i++) {

String href = locations.get(i);
String base = baseURI;
if(href.startsWith(rebasePrefix)) {

href=href.substring(rebasePrefix.length());
base=_replacementBase;

Chapter 39. XML applications 1897

}

java.net.URI uri;
StreamSource source=null;
try {

// Get base URI object
uri = new java.net.URI(base);
// Resolved relative reference against base URI
URI resolvedURI = uri.resolve(href);
// Try to read...
source = new StreamSource(resolvedURI.toString());

} catch (java.net.URISyntaxException use) {
throw new RuntimeException(use);

}

list.add(source);
}
return list;

}
}

Using external variables and functions
You can use this information to help you to use external variables and functions.

Procedure
v Use external variables.

v Use external functions.

Using external variables
The XML API allows you to access external variables from XPath and XQuery expressions as well a
stylesheet parameters from XSLT stylesheets.

About this task

External variables are useful when your XML processing depends on information that is not contained in
an input document. If you are writing an application that allows users to search for books by title in a
library that is stored as XML, for example, you could prepare a single XQuery expression to find books in
the library that uses a variable for the book title to be matched. The resulting XQueryExecutable object
can be used for each search that the user submits by binding the submitted book title to the variable. The
details of using external variables and stylesheet parameters are presented in separate articles for XPath,
XQuery, and XSLT.

Procedure
v Use external variables with XPath.

v Use external variables with XQuery.

v Set parameters with XSLT.

Using external variables with XPath:

When using an XPath expression that uses external variables, supply (or bind) values for each variable
using an XDynamicContext instance and optionally declare the types of the variables using an
XStaticContext instance.

Procedure

v When preparing an XPath expression that uses external variables, declare the types of the variables
using an XStaticContext instance.

1898 Developing WebSphere applications

This step is optional. If a variable is not declared, the processor assumes its type is item()*. In other
words, the value of the variable can be a sequence of any length consisting of items of any type.
Declaring a type for your variables can help the processor detect some usage errors statically during
preparation.

The XStaticContext interface has two declareVariable methods that each have two parameters—one for
the name, and one for the type of the variable. The name is always provided as a QName object, but
the type can be a QName or an XSequenceType.

Table 302. XStaticContext declareVariable methods.

The following table explains when to use each form of the declareVariable method.
Method Signature Purpose

declareVariable(QName name, QName type) Use when value of the variable is a single atomic value

The QName must refer to a built-in type or a global type declared in a
schema that has been registered on the XFactory instance used to create
the XStaticContext instance. If the QName refers to a non-atomic type,
then the processor will treat the variable as having the type element(*,
ns:type), where ns:type is the given QName. The XTypeConstants
interface has convenient constants available that provide a QName object
for each built-in type.

declareVariable(QName name, XSequenceType type) Use when value of the variable is a single node or a sequence of atomic
values or nodes

The following example shows how to prepare an XPath expression that uses variables, with two
declared in the static context and one not declared.

// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context from the factory
XStaticContext staticContext = factory.newStaticContext();

// Define QNames for the names of the variables to be declared
final QName taxRate = new QName("taxRate");
final QName partNumbers = new QName("partNumbers");

// Declare a variable called "taxRate" as an xs:float
staticContext.declareVariable(taxRate, XTypeConstants.FLOAT_QNAME);

// Obtain an XSequenceTypeFactory instance from the factory
XSequenceTypeFactory typeFactory = factory.getSequenceTypeFactory();

// Define a sequence type for a sequence of xs:integer values
XSequenceType integerSequence = typeFactory.atomic(XTypeConstants.INTEGER_QNAME, XSequenceType.OccurrenceIndicator.ZERO_OR_MORE);

// Declare a variable called "partNumbers" as a sequence of xs:integer values
staticContext.declareVariable(partNumbers, integerSequence);

// Create an XPath expression that uses the declared variables, as well as another variable "discount"
// that the processor will assume has type item()*
String expression = "sum(for $partNumber in $partNumbers return /inventory/part[@num=$partNumber]/@price) * (1 - $discount) * (1 + $taxRate)";

// Prepare the XPath expression
XPathExecutable xpath = factory.prepareXPath(expression, staticContext);

v To execute an XPath expression that uses external variables, supply (or bind) values for each variable
using an XDynamicContext instance.

An error is raised if you do not supply a value for a variable that is used when executing the XPath
expression.

The XDynamicContext has a number of bind, bindItem, and bindSequence methods. Each has two
parameters, where the first is a QName object corresponding to the name of the parameter and the
second is the value.

Chapter 39. XML applications 1899

Table 303. XDynamicContext bind, bindItem, and bindSequence methods.

The following table explains when to use each form of the XDynamicContext bind, bindItem, and bindSequence
methods.
Method Purpose

bind Use when binding a single atomic value

There is one form of this method for each of the Java types that is used in
the standard mapping of built-in types to Java types. There are two
additional forms—one that takes a node and one that takes a source.
These are used for binding any node from a DOM tree and parsing a new
source to yield a document node, respectively.

bindItem Use when binding a single item as an XItemView object

An XItemView object can be obtained from the result of executing another
expression or constructed using an XItemFactory instance.

bindSequence Use when binding sequences of less than or greater than one item

There is one form of this method for each of the Java types that is used in
the standard mapping of built-in types to Java types; each accepts an
array of values the given type.

There is an additional form that takes an XSequenceCursor. An
XSequenceCursor can be the result of executing another expression or
can be constructed using an XItemFactory instance.

The following example executes the XPath expression prepared in the first example, first binding values
for each of the variables it uses.

// Create a new dynamic context from the factory
XDynamicContext dynamicContext = factory.newDynamicContext();

// Bind an atomic value for the "taxRate" and "discount" variables
dynamicContext.bind(taxRate, 0.13f);
dynamicContext.bind(new QName("discount"), 0.40);

// Bind a sequence of atomic values for the "partNumbers" variable
dynamicContext.bindSequence(partNumbers, new int[] {2, 1, 2, 3, 2});

// Create an XML input document
String xml = "<inventory>" +
"<part num=’1’ price=’9.99’/>" +
"<part num=’2’ price=’4.47’/>" +
"<part num=’3’ price=’12.99’/>" +
"</inventory>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the expression
XSequenceCursor result = xpath.execute(source, dynamicContext);

Using external variables with XQuery:

When using an XQuery expression that uses external variables, supply (or bind) values for each variable
using an XDynamicContext instance and optionally declare the types of the variables using an
XStaticContext instance.

Procedure

v When preparing an XQuery expression that uses external variables, declare the types of the variables
using an XStaticContext instance.

Variables declared in the XStaticContext are only visible to the main module. To make an external
variable visible to a library module, it must be declared in the prolog of the library module with an
external variable declaration.

Declaring the variable in the XStaticContext is optional. If a variable is not declared, the processor
assumes that its type is item()*. In other words, the value of the variable can be a sequence of any
length consisting of items of any type. Declaring a type for your variables can help the processor detect
some usage errors statically during preparation.

1900 Developing WebSphere applications

The XStaticContext interface has two declareVariable methods that each have two parameters—one for
the name, and one for the type of the variable. The name is always provided as a QName object, but
the type can be a QName or an XSequenceType.

Table 304. XStaticContext declareVariable methods.

The following table explains when to use each form of the declareVariable method.
Method Signature Purpose

declareVariable(QName name, QName type) Use when value of the variable is a single atomic value

The QName must refer to a built-in type or a global type declared in a
schema that has been registered on the XFactory instance used to create
the XStaticContext instance. If the QName refers to a non-atomic type,
then the processor will treat the variable as having the type element(*,
ns:type), where ns:type is the given QName. The XTypeConstants
interface has convenient constants available that provide a QName object
for each built-in type.

declareVariable(QName name, XSequenceType type) Use when value of the variable is a single node or a sequence of atomic
values or nodes

XQuery also allows variables to be declared in the prolog of an XQuery expression. The following
XQuery expression uses two variables, one declared in the prolog and one not.

declare namespace xs = "http://www.w3.org/2001/XMLSchema";
declare variable $searchTerms as xs:string+ external;

<table>
<tr><td>Title</td><td>Author</td></tr>
{

for $book in /library/book
let $value := $book/@*[local-name()=$searchField]
where exists(for $term in $searchTerms return if (contains($value, $term)) then true() else ())
return

<tr>
<td>{ string($book/@title) }</td>
<td>{ string($book/@author) }</td>

</tr>
}

</table>

The variable not declared in the XQuery expression itself can be optionally declared using an
XStaticContext instance to provide the processor with type information.

The following example shows how to prepare the above XQuery expression, providing a type for the
variable not declared in the XQuery expression itself. It assumes that the expression is accessible using
the xquerySource source object.

// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context from the factory
XStaticContext staticContext = factory.newStaticContext();

// Define a QName for the name of the variable to be declared
final QName searchField = new QName("searchField");

// Declare a variable called "searchField" as an xs:string
staticContext.declareVariable(searchField, XTypeConstants.STRING_QNAME);

// Prepare the XQuery expression
XQueryExecutable xquery = factory.prepareXQuery(xquerySource, staticContext);

v To execute an XQuery expression that uses external variables, supply (or bind) values for each variable
using an XDynamicContext instance.

The bindings for external variables will be available to the main module and to any library modules that
have an external variable declaration in their prolog for that variable.

An error is raised if you do not supply a value for a variable that is used when executing the XQuery
expression.

The XDynamicContext has a number of bind, bindItem, and bindSequence methods. Each has two
parameters, where the first is a QName object corresponding to the name of the parameter and the
second is the value.

Chapter 39. XML applications 1901

Table 305. XDynamicContext bind, bindItem, and bindSequence methods.

The following table explains when to use each form of the XDynamicContext bind, bindItem, and bindSequence
methods.
Method Purpose

bind Use when binding a single atomic value

There is one form of this method for each of the Java types that is used in
the standard mapping of built-in types to Java types. There are two
additional forms—one that takes a node and one that takes a source.
These are used for binding any node from a DOM tree and parsing a new
source to yield a document node, respectively.

bindItem Use when binding a single item as an XItemView object

An XItemView object can be obtained from the result of executing another
expression or constructed using an XItemFactory instance.

bindSequence Use when binding sequences of less than or greater than one item

There is one form of this method for each of the Java types that is used in
the standard mapping of built-in types to Java types; each accepts an
array of values the given type.

There is an additional form that takes an XSequenceCursor. An
XSequenceCursor can be the result of executing another expression or
can be constructed using an XItemFactory instance.

The following example executes the XQuery expression prepared in the first example, first binding
values for each of the variables it uses.

// Create a new dynamic context from the factory
XDynamicContext dynamicContext = factory.newDynamicContext();

// Bind an atomic value for the "searchField" variable
dynamicContext.bind(searchField, "title");

// Bind a sequence of atomic values for the "searchTerms" variable
dynamicContext.bindSequence(new QName("searchTerms"), new String[] {"Lost", "Gables"});

// Create an XML input document
String xml = "<library>" +
"<book title=’Lost in the Barrens’ author=’Farley Mowat’/>" +
"<book title=’Anne of Green Gables’ author=’L. M. Montgomery’/>" +
"</library>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the expression
XSequenceCursor result = xquery.execute(source, dynamicContext);

Setting parameters with XSLT:

To use parameters in an XSLT stylesheet, declare the parameters as global parameters in the stylesheet
itself.

Procedure

v Use the as attribute to declare a type for the parameter.

The following stylesheet declares two parameters, explicitly giving one of them a type.
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
exclude-result-prefixes="xs"
version="2.0">

<xsl:param name="targetDate" as="xs:date"/>
<xsl:param name="window" select="3"/>

<xsl:template match="/">
<table>
<tr><td>Task</td><td>Due</td><td>Status</td></tr>

<xsl:apply-templates select="todo-list/task[xs:date(@due) le $targetDate + xs:dayTimeDuration(concat(’P’, $window, ’D’))]">
<xsl:sort select="@due"/>

</xsl:apply-templates>
</table>

</xsl:template>

1902 Developing WebSphere applications

<xsl:template match="task">
<tr>
<td><xsl:value-of select="."/></td>
<td><xsl:value-of select="format-date(xs:date(@due), ’[MNn] [D1o]’)"/></td>
<td>

<xsl:choose>
<xsl:when test="xs:date(@due) lt $targetDate">OVERDUE by

<xsl:value-of select="days-from-duration($targetDate - xs:date(@due))"/> day(s)</xsl:when>
<xsl:otherwise>Due in <xsl:value-of select="days-from-duration(xs:date(@due) - $targetDate)"/> day(s)</xsl:otherwise>
</xsl:choose>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

v Prepare an XSLT stylesheet with global parameters in exactly the same way as any other stylesheet
because there is no need to declare anything in the static context.

Assuming that the stylesheet above is available using the xsltSource Source object, the code below
prepares the stylesheet.

// Create the factory
XFactory factory = XFactory.newInstance();

// Prepare the XSLT stylesheet
XSLTExecutable xslt = factory.prepareXSLT(xsltSource);

v To execute an XSLT stylesheet that uses parameters, supply (or bind) values for each parameter using
an XDynamicContext instance.

You must supply a value for any required parameters or an error is raised. For other parameters, if you
do not supply a value, a default value is used—either one supplied in the stylesheet or a zero-length
string.

The XDynamicContext has a number of bind, bindItem, and bindSequence methods. Each has two
parameters, where the first is a QName object corresponding to the name of the parameter and the
second is the value.

Table 306. XDynamicContext bind, bindItem, and bindSequence methods.

The following table explains when to use each form of the XDynamicContext bind, bindItem, and bindSequence
methods.
Method Purpose

bind Use when binding a single atomic value

There is one form of this method for each of the Java types that is used in the standard mapping of built-in types to
Java types. There are two additional forms—one that takes a Node object and one that takes a Source object. These
are used for binding any node from a DOM tree and parsing a new source to yield a document node, respectively.

bindItem Use when binding a single item as an XItemView object

An XItemView object can be obtained from the result of executing another expression or constructed using an
XItemFactory instance.

bindSequence Use when binding sequences of less than or greater than one item

There is one form of this method for each of the Java types that is used in the standard mapping of built-in types to
Java types; each accepts an array of values the given type.

There is an additional form that takes an XSequenceCursor. An XSequenceCursor can be the result of executing
another expression or can be constructed using an XItemFactory instance.

The following example executes the XSLT stylesheet prepared in the first example, first binding values
for each of the parameters it will use. It assumes that a Result object called xsltResult has already been
created.

// Create an xs:date value for the "targetDate" parameter with date "April 10, 2009"
XMLGregorianCalendar date = DatatypeFactory.newInstance().newXMLGregorianCalendarDate(2009, 4, 10, DatatypeConstants.FIELD_UNDEFINED);

// Create a new dynamic context from the factory
XDynamicContext dynamicContext = factory.newDynamicContext();

// Bind an atomic value for the "targetDate" parameter
dynamicContext.bind(new QName("targetDate"), date);

// Bind an atomic value for the "window" parameter
dynamicContext.bind(new QName("window"), 7);

Chapter 39. XML applications 1903

// Create an XML input document
String xml = "<todo-list>" +
"<task due=’2009-03-31’ completed=’’>File Quarterly Report</task>" +
"<task due=’2009-05-04’ completed=’2009-04-22’>Review candidate resumes</task> +
"<task due=’2009-04-16’ completed=’’>Order stock</task>" +
"<task due=’2009-05-01’ completed=’’>Buy concert tickets</task>" +
"</todo-list>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the stylesheet
xslt.execute(source, dynamicContext, xsltResult);

Using external functions
The XML API allows you to use external functions with XPath, XQuery, and XSLT.

About this task

You can define external functions when you want to use operations that are difficult or impossible to
express directly by core functions defined in functions and operators, additional functions defined in the
XSLT specification, constructor functions named after an atomic type, stylesheet functions defined using
xsl:function declaration of XSLT, or user-defined functions in XQuery. Please note that external functions
cannot be used to override built-in functions. For example, suppose you are using an external function,
my:power(arg1 as xs:double, arg2 as xs:double), to calculate the value of the first argument raised to the
power of the second argument; you could write a Java method taking two Java primitive double arguments
that performs the calculation. The details of using external functions are presented in separate articles.

Procedure
v Use external functions with XPath.

v Use external functions with XQuery.

v Use external functions with XSLT.

Using external functions with XPath:

When using an XPath expression that uses external functions, declare the function signatures using an
XStaticContext instance and supply (or bind) a Java implementation for each function using an
XDynamicContext instance.

Procedure

1. When preparing an XPath expression that uses external functions, declare the function signatures
using an XStaticContext instance.

The XStaticContext interface has two declareFunction methods that each have three parameters—one
for the name, one for the return type of the function, and an array for the types of the arguments. The
name is always provided as a QName object, but the types can be QNames or XSequenceTypes. The
function name, return type, and argument types must uniquely identify the function.

Table 307. XStaticContext declareFunction methods.

This table explains when to use each form of the declareFunction method.
Method Signature Purpose

declareFunction(QName name, QName type, QName[] argTypes) Use when the return value and arguments of the function are all single
atomic values

The type QNames must refer to built-in types or global types declared in a
schema that has been registered on the XFactory instance used to create
the XStaticContext instance. If a QName refers to a non-atomic type, the
processor will treat it as the type element(*, ns:type), where ns:type is the
given QName. The XTypeConstants interface has convenient constants
available that provide a QName object for each built-in type.

declareFunction(QName name, XSequenceType type, XSequenceType[]
argTypes)

Use when any of the arguments or the return value of the function is a
node or a sequence of atomic values or nodes

1904 Developing WebSphere applications

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xslt20/#add-func
http://www.w3.org/TR/xpath-functions/#constructor-functions
http://www.w3.org/TR/xslt20/#stylesheet-functions
http://www.w3.org/TR/xquery/#dt-udf

The following example shows how to prepare an XPath expression that uses an external function.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context
XStaticContext staticContext = factory.newStaticContext();

// Declare a namespace for the function
staticContext.declareNamespace("my", "http://myfunc");

// Create a QName for the name of the function
QName methodQName = new QName("http://myfunc", "pow");

// Declare the function on the static context
staticContext.declareFunction(methodQName, XTypeConstants.DOUBLE_QNAME, new QName[]{XTypeConstants.DOUBLE_QNAME, XTypeConstants.DOUBLE_QNAME});

// Create an XPath executable for the expression
XPathExecutable executable = factory.prepareXPath("sum(/polynomial/term/(my:pow(2, @power) * @coefficient))", staticContext);

2. To execute an XPath expression that uses external functions, supply (or bind) the Java methods that
implement the functions using an XDynamicContext instance.

Use Java reflection to obtain a java.lang.reflect.Method object for the function. If the method is an
instance method, an instance object is required when binding this function.

An error is raised if you do not supply a Java method for a function that is used when executing the
XPath expression.

The XDynamicContext has two bindFunction methods. Each requires a QName object corresponding
to the name of the function and a Method object identifying the Java method that will provide the
implementation for the function.

Table 308. XDynamicContext bindFunction methods.

This table explains when to use each form of the XDynamicContext bindFunction methods.
Method Name Purpose

bindFunction(QName qname, Method method) Use when binding a static method

bindFunction(QName qname, Method method, Object instanceObject) Use when binding an instance method

The following example executes the XPath expression prepared in the first example, first binding a
method for the function it uses. In this example, the static pow(double a, double b) method of the
java.lang.Math class is used to provide the implementation for the external function.

// Create a new dynamic context
XDynamicContext dynamicContext = factory.newDynamicContext();

// Retrieve the java.lang.reflect.Method object for this function
Method method = Math.class.getMethod("pow", Double.TYPE, Double.TYPE);

// Bind the function to the dynamic context
dynamicContext.bindFunction(methodQName, method);

// Create an XML input document
String xml = "<polynomial>" +
"<term power=’2’ coefficient=’3’/>" +
"<term power=’1’ coefficient=’-2’/>" +
"<term power=’0’ coefficient=’1’/>" +
"</polynomial>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the expression
XSequenceCursor result = executable.execute(source, dynamicContext);

// Serialize the result to System.out
result.exportItem(new StreamResult(System.out));

Using external functions with XQuery:

When using an XQuery expression that uses external functions, declare the function signatures either in
the XQuery prolog as external functions or using an XStaticContext instance. Supply (or bind) a Java
implementation for each function using an XDynamicContext instance.

Chapter 39. XML applications 1905

Procedure

1. When preparing an XQuery expression that uses external functions, declare the function signatures in
the XQuery prolog or using an XStaticContext instance.

Functions declared in the XStaticContext are only visible to the main module. For an external function
to be visible to a library module, it must be declared in the prolog of that library module.

The XStaticContext interface has two declareFunction methods that each have three parameters—one
for the name, one for the return type of the function, and an array for the types of the arguments. The
name is always provided as a QName object, but the types can be QNames or XSequenceTypes. The
function name, return type, and argument types must uniquely identify the function.

Table 309. XStaticContext declareFunction methods.

This table explains when to use each form of the declareFunction method.
Method Signature Purpose

declareFunction(QName name, QName type, QName[] argTypes) Use when the return value and arguments of the function are all single
atomic values

The type QNames must refer to built-in types or global types declared in a
schema that has been registered on the XFactory instance used to create
the XStaticContext instance. If a QName refers to a non-atomic type, the
processor will treat it as the type element(*, ns:type), where ns:type is the
given QName. The XTypeConstants interface has convenient constants
available that provide a QName object for each built-in type.

declareFunction(QName name, XSequenceType type, XSequenceType[]
argTypes)

Use when any of the arguments or the return value of the function is a
node or a sequence of atomic values or nodes

The following XQuery expression uses three functions, two of which are declared in the prolog.
declare namespace xs = "http://www.w3.org/2001/XMLSchema";
declare namespace trig = "http://www.example.org/trigonometry";
declare function trig:arctan($ratio as xs:double) as xs:double external;
declare function trig:sin($angle as xs:double) as xs:double external;

<ramps>
{

for $ramp in ramps/ramp
let $angleRadians := trig:arctan($ramp/height div $ramp/base)
let $angle := trig:toDegrees($angleRadians)
let $length := $ramp/height div trig:sin($angleRadians)
return

element ramp
{

$ramp/height,
$ramp/base,
element angle { $angle },
element length { $length }

}
}
</ramps>

Assuming that the query above is available using the xquerySource Source object, the code below
prepares the query. The function that was not declared in the query itself, trig:toDegrees, is declared
on the XStaticContext instance.

// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context
XStaticContext staticContext = factory.newStaticContext();

// Declare a namespace for the functions
staticContext.declareNamespace("trig", "http://www.example.org/trigonometry");

// Create a QName for the trig:toDegrees function
QName toDegreesQName = new QName("http://www.example.org/trigonometry", "toDegrees");

// Declare the function on the static context
staticContext.declareFunction(toDegreesQName, XTypeConstants.DOUBLE_QNAME, new QName[]{XTypeConstants.DOUBLE_QNAME});

// Create an XQuery executable for the query
XQueryExecutable executable = factory.prepareXQuery(xquerySource, staticContext);

2. To execute an XQuery expression that uses external functions, supply (or bind) the Java methods that
implement the functions using an XDynamicContext instance.

1906 Developing WebSphere applications

The bindings for external functions will be available to the main module and to any library modules that
have an external function declaration in their prolog for that function.

Use Java reflection to obtain a java.lang.reflect.Method object for the function. If the method is an
instance method, an instance object is required when binding this function.

An error is raised if you do not supply a Java method for a function that is used when executing the
XQuery expression.

The XDynamicContext has two bindFunction methods. Each requires a QName object corresponding
to the name of the function and a Method object identifying the Java method that will provide the
implementation for the function.

Table 310. XDynamicContext bindFunction methods.

This table explains when to use each form of the XDynamicContext bindFunction methods.
Method Name Purpose

bindFunction(QName qname, Method method) Use when binding a static method

bindFunction(QName qname, Method method, Object instanceObject) Use when binding an instance method

The following example executes the XQuery expression prepared in the first example, first binding
methods for the functions it uses. In this example, the static atan, sin, and toDegrees methods of the
java.lang.Math class are used to provide the implementations for the external functions.

// Create a new dynamic context
XDynamicContext dynamicContext = factory.newDynamicContext();

// Retrieve the java.lang.reflect.Method object for the trig:toDegrees function
Method toDegreesMethod = Math.class.getMethod("toDegrees", Double.TYPE);

// Bind the function to the dynamic context
dynamicContext.bindFunction(toDegreesQName, toDegreesMethod);

// Create QNames for the trig:arctan and trig:sin functions
QName arctanQName = new QName("http://www.example.org/trigonometry", "arctan");
QName sinQName = new QName("http://www.example.org/trigonometry", "sin");

// Retrieve the java.lang.reflect.Method objects for the trig:arctan and trig:sin functions
// then bind them to the dynamic context
Method arctanMethod = Math.class.getMethod("atan", Double.TYPE);
Method sinMethod = Math.class.getMethod("sin", Double.TYPE);
dynamicContext.bindFunction(arctanQName, arctanMethod);
dynamicContext.bindFunction(sinQName, sinMethod);

// Create an XML input document
String xml = "<ramps>" +
"<ramp><base>4</base><height>4</height></ramp>" +
"<ramp><base>4</base><height>3</height></ramp>" +
"<ramp><base>10</base><height>2</height></ramp>" +
"</ramps>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the query
XSequenceCursor result = executable.execute(source, dynamicContext);

// Serialize the result to System.out
result.exportItem(new StreamResult(System.out));

Using query-declared external functions with XQuery:

As an alternative to binding Java methods to functions in a query using the API, Java external functions
can be declared directly within a query. The only additional configuration required is for bound Java
classes to exist on the classpath during query execution.

Procedure

Using the java-extension XQuery option declaration, you can bind a prefix to a Java class.
declare option xltxe:java-extension "prefix = className";

Chapter 39. XML applications 1907

Note: Any prefix name can be used for the java-extension element as long as it is bound to the
http://www.ibm.com/xmlns/prod/xltxe-j namespace.

After binding a prefix to a Java class, methods within the bound class can be invoked by specifying the
prefix and method name separated by a colon:
prefix:methodName(Params*)

Example

Invoking Static Methods

When preparing an XQuery source that uses query-declared external functions, declare the prefix to Java
class binding:
declare namespace calc="http://com.example/myApp/Calculator";
declare namespace sf="http://com.example/myApp/standardFormat";

declare namespace xltxe="http://www.ibm.com/xmlns/prod/xltxe-j";
declare option xltxe:java-extension "calc = org.company.Calculator";
declare option xltxe:java-extension "sf = org.standards.Formatter";

sf:format(calc:sqrt(64), "ISO-42.7")

Assuming that this query is available through the xquerySource Source object, the following code prepares
the query:
// Create the factory
XFactory factory = XFactory.newInstance();

// Create an XQuery executable for the query
XQueryExecutable executable = factory.prepareXQuery(xquerySource);

The following code executes the query that was prepared in the example:
// Create a result object to store the transformation result
Result result = new StreamResult(System.out);

// Execute the XSLT executable
XSequenceCursor xsc = executable.execute();

// Output the result
xsc.exportSequence(res);

The example query provided assumes that the org.company.Calculator class contains a static method
sqrt() that takes one parameter and the org.standards.Formatter class contains a static method format()
that takes two parameters. At prepare time, the classes are not required on the classpath; but they are
required during execution of the query.

The following are example implementations of the org.company.Calculator and org.standards.Formatter
classes:
package org.company;

public class Calculator {
public static int sqrt(int val) {

return (int)Math.sqrt(val);
}

package org.standards;

public class Formatter {
public static String format(int val, String pattern) {

return "Formatting " + val + " using pattern " + pattern;
}

}

1908 Developing WebSphere applications

Invoking Instance Methods

Invoking instance methods from a class is slightly different from invoking static methods because of the
requirement for an instance object. In order to obtain an instance object from a Java class within a query,
you must invoke its new constructor:
prefix:new(Params*)

You can then store the result in an XQuery variable declaration as demonstrated by the following query:
declare namespace car="http://com.example/myApp/car";
declare namespace xltxe="http://www.ibm.com/xmlns/prod/xltxe-j";
declare option xltxe:java-extension "car = org.automobile.Car";
declare variable $var := car:new(3);

car:getDoors($var)

Assuming that this query is available through the xquerySource Source object, the following code prepares
the query.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create an XQuery executable for the query
XQueryExecutable executable = factory.prepareXQuery(xquerySource);

The following code executes the query prepared in the example:
// Create a result object to store the transformation result
Result result = new StreamResult(System.out);

// Execute the XSLT executable
XSequenceCursor xsc = executable.execute();

// Output the result
xsc.exportSequence(res);

The example query assumes that org.automobile.Car class contains a constructor that takes an argument
of type int. In addition, the org.automobile.Car class also contains an instance method getDoors() that
takes no arguments. The syntax for invoking instance methods from query-declared external functions
require that the created instance object be passed in as the first argument.

The following is an example implementation of the org.automobile.Car class:
package org.automobile;

public class Car {
private int doors;

public Car (int doors) {
this.doors = doors;

}

public int getDoors() {
return doors;

}
}

Inheritance with instance methods is also supported. If the org.automobile.Car class has a subclass
org.automobile.Sedan, you can create an instance of the org.automobile.Sedan class and use it to call
methods in org.automobile.Car. This is demonstrated by the following query:
declare namespace car="http://com.example/myApp/car";
declare namespace sedan="http://com.example/myApp/sedan";
declare namespace xltxe="http://www.ibm.com/xmlns/prod/xltxe-j";
declare option xltxe:java-extension "car = org.automobile.Car";

Chapter 39. XML applications 1909

declare option xltxe:java-extension "sedan = org.automobile.Sedan";

declare variable $var := sedan:new(5);

car:getDoors($var)

The following is an example implementation for org.automobile.Sedan:
package org.automobile;

public class Sedan extends Car {
public Sedan (int doors) {

super(doors);
}

}

Limitation: The mechanism used for resolving methods in a Java class requires that only one method
exists, matching in name and arity. If multiple methods exist with the same name and different
arity, an error is thrown.

Using external functions with XSLT:

When using an XSLT stylesheet that uses external functions, declare the function signatures using an
XStaticContext instance and supply (or bind) a Java implementation for each function using an
XDynamicContext instance.

Procedure

1. When preparing an XSLT stylesheet that uses external functions, declare the function signatures using
an XStaticContext instance.

The XStaticContext interface has two declareFunction methods that each have three parameters—one
for the name, one for the return type of the function, and an array for the types of the arguments. The
name is always provided as a QName object, but the types can be QNames or XSequenceTypes. The
function name, return type, and argument types must uniquely identify the function.

A stylesheet function could have the same name as an external function. If the stylesheet function has
an override attribute with the value of yes, any reference to that function name in the stylesheet is a
reference to the stylesheet function; if it has an override attribute with the value of no, it is a reference
to the external function.

Table 311. XStaticContext declareFunction methods.

This table explains when to use each form of the declareFunction method.
Method Signature Purpose

declareFunction(QName name, QName type, QName[] argTypes) Use when the return value and arguments of the function are all single
atomic values

The type QNames must refer to built-in types or global types declared in a
schema that has been registered on the XFactory instance used to create
the XStaticContext instance. If a QName refers to a non-atomic type, then
the processor will treat it as the type element(*, ns:type), where ns:type is
the given QName. The XTypeConstants interface has convenient
constants available that provide a QName object for each built-in type.

declareFunction(QName name, XSequenceType type, XSequenceType[]
argTypes)

Use when any of the arguments or the return value of the function is a
node or a sequence of atomic values or nodes

The following stylesheet uses an external function referred to by the QName ext:pow.
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ext="http://www.example.com/functions"
version="2.0">

<xsl:output method="text"/>

<xsl:template match="polynomial">
<xsl:variable name="p" select="."/>

1910 Developing WebSphere applications

<xsl:for-each select="1 to 5">
<xsl:text>x = </xsl:text>
<xsl:value-of select="."/>
<xsl:text>; </xsl:text>
<xsl:value-of select="for $t in $p/term return concat($t/@coefficient, ’x^’, $t/@power)"

separator=" + "/>
<xsl:text> = </xsl:text>
<xsl:value-of select="sum($p/term/(ext:pow(current(), @power) * @coefficient))"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Assuming that the stylesheet above is available using the xsltSource Source object, the code below
prepares the stylesheet.

// Create the factory
XFactory factory = XFactory.newInstance();

// Create a new static context
XStaticContext staticContext = factory.newStaticContext();

// Declare a namespace for the function
staticContext.declareNamespace("ext", "http://www.example.com/functions");

// Create a QName for the name of the function
QName methodQName = new QName("http://www.example.com/functions", "pow");

// Declare the function on the static context
staticContext.declareFunction(methodQName, XTypeConstants.DOUBLE_QNAME, new QName[]{XTypeConstants.DOUBLE_QNAME, XTypeConstants.DOUBLE_QNAME});

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(xsltSource, staticContext);

2. To execute an XSLT stylesheet that uses external functions, supply (or bind) the Java methods that
implement the functions using an XDynamicContext instance.

Use Java reflection to obtain a java.lang.reflect.Method object for the function. If the method is an
instance method, an instance object is required when binding this function.

An error is raised if you do not supply a Java method for a function that is used when executing the
XSLT stylesheet.

The XDynamicContext has two bindFunction methods. Each requires a QName object corresponding
to the name of the function and a Method object identifying the Java method that will provide the
implementation for the function.

Table 312. XDynamicContext bindFunction methods.

This table explains when to use each form of the XDynamicContext bindFunction methods.
Method Name Purpose

bindFunction(QName qname, Method method) Use when binding a static method

bindFunction(QName qname, Method method, Object instanceObject) Use when binding an instance method

The following example executes the XSLT stylesheet prepared in the first example, first binding a
method for the function it uses. In this example, the static pow(double a, double b) method of the
java.lang.Math class is used to provide the implementation for the external function.

// Create a new dynamic context
XDynamicContext dynamicContext = factory.newDynamicContext();

// Retrieve the java.lang.reflect.Method object for this function
Method method = Math.class.getMethod("pow", Double.TYPE, Double.TYPE);

// Bind the function to the dynamic context
dynamicContext.bindFunction(methodQName, method);

// Create an XML input document
String xml = "<polynomial>" +
"<term power=’2’ coefficient=’3’/>" +
"<term power=’1’ coefficient=’-2’/>" +
"<term power=’0’ coefficient=’1’/>" +
"</polynomial>";
StreamSource source = new StreamSource(new StringReader(xml));

// Execute the stylesheet
XSequenceCursor result = executable.execute(source, dynamicContext);

Chapter 39. XML applications 1911

// Serialize the result to System.out
result.exportItem(new StreamResult(System.out), executable.getOutputParameters());

Using stylesheet-declared external functions with XSLT:

As an alternative to binding Java methods to functions in a stylesheet using the API, Java external
functions can be declared directly within a stylesheet. The only additional configuration required is for
bound Java classes to exist on the classpath during stylesheet execution.

Procedure

Using the java-extension element, you can bind a prefix to a Java class.
<xltxe:java-extension
prefix = string
class = string />

Note: Any prefix name can be used for the java-extension element as long as it is bound to the
http://www.ibm.com/xmlns/prod/xltxe-j namespace.

After binding a prefix to a Java class, methods within the bound class can be invoked by specifying the
prefix and method name separated by a colon:
prefix:methodName(Params*)

Example

Invoking Static Methods

When preparing an XSLT stylesheet that uses stylesheet-declared external functions, declare the prefix to
Java class binding:
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xltxe="http://www.ibm.com/xmlns/prod/xltxe-j"
xmlns:calc="http://com.example/myApp/calculator"
xmlns:sf="http://com.example/myApp/standardFormat">

<xltxe:java-extension prefix="calc" class="org.company.Calculator"/>
<xltxe:java-extension prefix="sf" class="org.standards.Formatter"/>

<xsl:template match="/">
<xsl:value-of select="sf:format(calc:sqrt(64), ’ISO-42.7’)"/>

</xsl:template>

</xsl:stylesheet>

Assuming that this stylesheet is available through the xsltSource Source object, the following code
prepares the stylesheet:
// Create the factory
XFactory factory = XFactory.newInstance();

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(xsltSource);

The following code executes the stylesheet that was prepared in the example:
// Create the xml input
String xml = "<doc/>";

// Create a result object to store the transformation result
Result result = new StreamResult(System.out);

// Execute the XSLT executable
executable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())), result);

1912 Developing WebSphere applications

The example stylesheet provided assumes that the org.company.Calculator class contains a static method
sqrt() that takes one parameter and the org.standards.Formatter class contains a static method format()
that takes two parameters. At prepare time, the classes are not required on the classpath; but they are
required during execution of the stylesheet.

The following are example implementations of the org.company.Calculator and org.standards.Formatter
classes:
package org.company;

public class Calculator {
public static int sqrt(int val) {

return (int)Math.sqrt(val);
}

}

package org.standards;

public class Formatter {
public static String format(int val, String pattern) {

return "Formatting " + val + " using pattern " + pattern;
}

}

Invoking Instance Methods

Invoking instance methods from a class is slightly different from invoking static methods because of the
requirement for an instance object. In order to obtain an instance object from a Java class within a
stylesheet, you must invoke its new constructor:
prefix:new(Params*)

You can then store the result in an xsl:variable element as demonstrated by the following stylesheet:
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xltxe="http://www.ibm.com/xmlns/prod/xltxe-j"
xmlns:car="http://com.example/myApp/car">

<xltxe:java-extension prefix="car" class="org.automobile.Car"/>

<xsl:variable name="var" select="car:new(3)"/>

<xsl:template match="/">
<xsl:value-of select="car:getDoors($var)"/>

</xsl:template>

</xsl:stylesheet>

Assuming that this stylesheet is available through the xsltSource Source object, the following code
prepares the stylesheet.
// Create the factory
XFactory factory = XFactory.newInstance();

// Create an XSLT executable for the stylesheet
XSLTExecutable executable = factory.prepareXSLT(xsltSource);

The following code executes the stylesheet prepared in the example:
// Create the xml input
String xml = "<doc/>";

// Create a result object to store the transformation result
Result result = new StreamResult(System.out);

Chapter 39. XML applications 1913

// Execute the XSLT executable
executable.execute(new StreamSource(new ByteArrayInputStream(xml.getBytes())), result);

The example stylesheet assumes that the org.automobile.Car class contains a constructor that takes an
argument of type int. In addition, the org.automobile.Car class also contains an instance method
getDoors() that takes no arguments. The syntax for invoking instance methods from stylesheet-declared
external functions require that the created instance object be passed in as the first argument.

The following is an example implementation of the org.automobile.Car class:
package org.automobile;

public class Car {
private int doors;

public Car (int doors) {
this.doors = doors;

}

public int getDoors() {
return doors;

}
}

Inheritance with instance methods is also supported. If the org.automobile.Car class has a subclass
org.automobile.Sedan, you can create an instance of the org.automobile.Sedan class and use it to call
methods in org.automobile.Car. This is demonstrated by the following stylesheet:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xltxe="http://www.ibm.com/xmlns/prod/xltxe-j"
xmlns:sedan="http://com.example/myApp/sedan"
xmlns:car="http://com.example/myApp/car">

<xltxe:java-extension prefix="sedan" class="org.automobile.Sedan"/>
<xltxe:java-extension prefix="car" class="org.automobile.Car"/>

<xsl:variable name="var" select="sedan:new(5)"/>

<xsl:template match="/">
<xsl:value-of select="car:getDoors($var)"/>

</xsl:template>

</xsl:stylesheet>

The following is an example implementation for org.automobile.Sedan:
package org.automobile;

public class Sedan extends Car {
public Sedan (int doors) {

super(doors);
}

}

Limitation: The mechanism used for resolving methods in a Java class requires that only one method
exists, matching in name and arity. If multiple methods exist with the same name and different
arity, an error is thrown.

Creating items and sequences
You can use this information to help you to create items and sequences using the XItemFactory as well as
to use sequence types.

1914 Developing WebSphere applications

Procedure
v Create items and sequences using the XItemFactory.

v Use sequence types.

Creating items and sequences using the XItemFactory
You can use XItemFactory to create new items and sequences of items of different types.

Procedure
v Use the getItemFactory method in the XFactory class to create instances of XItemFactory and call the

appropriate item method to create an item of a specific type.

An item itself can be a node or an atomic value such as an integer, string, or boolean.

The following is an example of using the XItemFactory to create new items of different types.
// Create an XFactory
XFactory factory = XFactory.newInstance();

// Create an XItemFactory
XItemFactory itemFactory = factory.getItemFactory();

// Create a new atomic item of a type which is the default mapping of the xs:string built-in type to java.lang.String
XItemView stringItem = itemFactory.item("Lets see");

// Create a new atomic item of type int
XItemView intItem = itemFactory.item(3, XTypeConstants.INT_QNAME);

// Create a new atomic item of type boolean
boolean boolValue = false;
XItemView booleanItem = itemFactory.item(boolValue, XTypeConstants.BOOLEAN_QNAME);

// Create Node type
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
// Parse the input file
Document doc = db.parse(INPUT_File);
Node node = doc.getFirstChild();
XItemView item =itemFactory.item(node)

// Create a new item of complex type from a Source
StreamSource source = new StreamSource(INPUT_File);
XItemView complexItem = itemFactory.item(source);

As shown in the example, you can use item method with one argument as the value of the method and
the type is evaluated based on the mapping rules between built-in types and Java types.

v Use the getItemFactory method in the XFactory class to create instances of XItemFactory and call the
appropriate sequence method to create an XSequenceCursor that represents a sequence of items
providing cursor access to the items in the sequence.

The following is an example of using XItemFactory to create a homogeneous sequence.
// Create an XFactory
XFactory factory = XFactory.newInstance();

// Create an XItemXFactory
XItemFactory itemFactory =xfactory.getItemFactory();

//Create a sequence of int values
XSequenceCursor intSeq = xfactory.sequence(new int[]{1,2,3});

//Create a sequence of String values
XSequenceCursor stringSeq = xfactory.sequence(new String[]{"This", "is", "a", "test"},XTypeConstants.STRING_QNAME);

The following is an example of using the XItemFactory to create a sequence of items of different types.
// Create an XFactory
XFactory factory = XFactory.newInstance();

// Create an XItemXFactory
XItemFactory itemFactory = factory.getItemFactory();

//Create an Array of the newly created items
XItemView[] items = new XItemView[2];
items[0] =itemFactory.item(boolValue, XTypeConstants.BOOLEAN_QNAME);
items[1] = itemFactory.item(intValue, XTypeConstants.INT_QNAME);

// Create a sequence of items
XSequenceCursor seq = itemFactory.sequence(items);

Chapter 39. XML applications 1915

Using sequence types
You can use sequence types when declaring variables for the return or parameter types of functions.

About this task

In the XML API, sequence types are represented using XSequenceType objects. XSequenceType objects
can represent the same set of sequence types as the SequenceType syntax defined in XPath 2.0.
XSequenceType objects are created through the XSequenceTypeFactory interface. You can obtain an
instance of XSequenceTypeFactory using the getSequenceTypeFactory() method on an XFactory instance.

Procedure
v XSequenceTypeFactory has several methods for creating XSequenceType instances.

Each method on the XSequenceTypeFactory interface has an XSequenceType.OccurrenceIndicator
parameter except for emptySequence(). OccurrenceIndicator is an enum that represents the cardinality
of the sequence; ZERO_OR_ONE corresponds to "?" in SequenceType syntax, ZERO_OR_MORE to
"*", ONE_OR_MORE to "+", and ONE to no occurrence indicator for sequences of exactly one item.

v The XSequenceTypeFactory interface methods use QNames to refer to the names of nodes such as
elements and attributes, and also to types and global element and attribute declarations.

QNames representing types must refer to built-in types or to types defined in schemas that have been
registered with the same XFactory instance used to obtain the XSequenceTypeFactory instance.
Similarly, QNames representing global element or attribute declarations must refer to global declarations
present in schemas that have been registered with the same XFactory instance.

Example

Table 313. XSequenceTypeFactory methods and examples of sequence types. The following table lists each method
of the XSequenceTypeFactory and gives examples of the sequence types (using SequenceType syntax) that each
can create.
Method Signature Example Sequence Types Comments

emptySequence() empty-sequence()

item(OccurrenceIndicator cardinality) item()*

atomic(QName typeName, OccurrenceIndicator
cardinality)

xs:integer "sc:type" is a QName referring to a user-defined
schema type.

sc:type+

documentNode(OccurrenceIndicator cardinality) document-node()?

documentNodeWithElement(QName
elementNameOrWildcard, QName typeName,
boolean nillable, OccurrenceIndicator cardinality)

document-node(element()) "ns:elem" is a QName representing an element
name, and "sc:type" is a QName referring to a
user-defined schema type.

The elementNameOrWildcard and typeName
parameters are optional; use null if the element
name or type does not matter.

document-node(element(ns:elem))?

document-node(element(*, sc:type?))

documentNodeWithSchemaElement(QName
elementName, OccurrenceIndicator cardinality)

document-node(schema-element(sc:elemDecl)) "sc:elemDecl" is a QName referring to a global
element declaration in a schema.

element(QName elementNameOrWildcard,
QName typeName, boolean nillable,
OccurrenceIndicator cardinality)

element(*) "ns:elem" is a QName representing an element
name, and "sc:type" is a QName referring to a
user-defined schema type.

The elementNameOrWildcard and typeName
parameters are optional; use null if the element
name or type does not matter.

element(ns:elem, sc:type)*

attribute(QName attributeNameOrWildcard,
QName typeName, OccurrenceIndicator
cardinality)

attribute()+ "ns:attrib" is a QName representing an attribute
name.

The attributeNameOrWildcard and typeName
parameters are optional; use null if the attribute
name or type does not matter.

attribute(ns:attrib)

attribute(ns:attrib, xs:string)?

schemaElement(QName elementName,
OccurrenceIndicator cardinality)

schema-element(sc:elemDecl)* "sc:elemDecl" is a QName referring to a global
element declaration in a schema.

schemaAttribute(QName attributeName,
OccurrenceIndicator cardinality)

schema-attribute(sc:attribDecl) "sc:attribDecl" is a QName referring to a global
attribute declaration in a schema.

1916 Developing WebSphere applications

Table 313. XSequenceTypeFactory methods and examples of sequence types (continued). The following table lists
each method of the XSequenceTypeFactory and gives examples of the sequence types (using SequenceType
syntax) that each can create.
Method Signature Example Sequence Types Comments

processingInstruction(QName piNCName,
OccurrenceIndicator cardinality)

processing-instruction()? "pinst" is an NCName representing the name of
a processing instruction.

processing-instruction("pinst")

processing-instruction(pinst)

comment(OccurrenceIndicator cardinality) comment()

text(OccurrenceIndicator cardinality) text()+

node(OccurrenceIndicator cardinality) node()*

The following example shows how to create XSequenceType objects to represent various sequence types.
Some of the results refer to types and declarations from a schema. The example assumes that the
schema is available through the schemaSource source object.
// Create the factory
XFactory factory = XFactory.newInstance();

// Obtain an XSeqeuenceTypeFactory instance
XSequenceTypeFactory stFactory = factory.getSequenceTypeFactory();

// Create a sequence type for a sequence of xs:integer values: "xs:integer*"
XSequenceType integerSequenceType = stFactory.atomic(

XTypeConstants.INTEGER_QNAME,
XSequenceType.OccurrenceIndicator.ZERO_OR_MORE);

// Create a sequence type for a single node: "node()"
XSequenceType nodeType = stFactory.node(OccurrenceIndicator.ONE);

// Define a constant for the target namespace of a schema containing user-defined types and declarations
final String targetNamespace = "http://www.example.org/schema/";

// Register the schema with the XFactory
factory.registerSchema(schemaSource);

// Create a sequence type for exactly one document node with an element of type "employeeRecord" from the schema:
// "document-node(element(*, ns:employeeRecord))"
XSequenceType employeeRecordDocumentType = stFactory.documentNodeWithElement(

null,
new QName(targetNamespace, "employeeRecord"),
false,
XSequenceType.OccurrenceIndicator.ONE);

// Create a sequence type for an optional attribute matching the attribute declaration "type" in the schema:
// "schema-attribute(ns:type)?"
XSequenceType optionalEmployeeType = stFactory.schemaAttribute(

new QName(targetNamespace, "type"),
XSequenceType.OccurrenceIndicator.ZERO_OR_ONE);

// Create a sequence type for one or more atomic values of type "telephoneNumber" from the schema:
// "ns:telephoneNumber+"
XSequenceType telephoneNumbersType = stFactory.atomic(

new QName(targetNamespace, "telephoneNumber"),
XSequenceType.OccurrenceIndicator.ONE_OR_MORE);

Contents of sample schema:
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:ns="http://www.example.org/schema/" targetNamespace="http://www.example.org/schema/">

<complexType name="employeeRecord">
<sequence>

<element name="name" type="string"></element>
<element name="id" type="int"></element>
<element name="telephone" type="ns:telephoneNumber"></element>

</sequence>
<attribute ref="ns:type"></attribute>

</complexType>

<simpleType name="telephoneNumber">
<restriction base="string">

<pattern value="\d{3}-\d{3}-\d{4}"></pattern>
</restriction>

</simpleType>

<element name="employee" type="ns:employeeRecord"></element>

<simpleType name="employeeType">
<restriction base="string">

<enumeration value="full-time"></enumeration>

Chapter 39. XML applications 1917

<enumeration value="part-time"></enumeration>
<enumeration value="seasonal"></enumeration>

</restriction>
</simpleType>

<attribute name="type" type="ns:employeeType"></attribute>
</schema>

Working with collations
XSLT stylesheets and expressions in XQuery and XPath can refer to collations using collation URIs. A
collation is a set of culture-specific rules that define how text should be sorted and which differences
between two pieces of text are considered significant and which insignificant.

Before you begin

This article assumes some basic familiarity with the java.util.Locale and java.text.Collator classes.

About this task

The processor does not interpret the collation URI in any way -- it treats a collation URI merely as a sort of
name for the instance of the Java Collator class that is associated with that URI. The XML API provides
mechanisms for specifying what will be the default collation URI at preparation-time and for associating an
instance of the Java Collator class with a collation URI at execution-time.

All collation URIs specified through the XML API must be absolute URI references. In an XSLT stylesheet
or an XQuery or XPath expression, any relative URI reference that is used in a context where a collation
URI is required will be resolved against the base URI from the static context for that expression -- that will
ensure that even relative URI references in the stylesheet or expression can be matched with the absolute
URI references specified through the XML API.

Limitations:

v If a collation URI is bound with an instance of the Java Collator class that is not an
instance of java.text.RuleBasedCollator, certain operations will not be permitted with that
collation URI. In particular, the fn:starts-with, fn:ends-with, fn:contains, fn:substring-before
and fn:substring-after functions are not supported with that collation URI.

v All instances of Collator that are currently included with the Java runtime environment are
also instances of java.text.RuleBasedCollator, so this is for most purposes only a
theoretical limitation. However, it is something to be aware of if an application defines its
own instances of the Java Collator class or defines subclasses the Collator class that are
not also instances of java.text.RuleBasedCollator.

Procedure
v Declare the default collation URI.

You can specify what collation URI you want to use as the default for string comparison operations by
using the method setDefaultCollation method on the XStaticContext interface. The default collation URI
from the XStaticContext interface will be used as the collation URI in string comparison operations that
do not explicitly specify a collation URI.

An XQuery expression can override the default collation URI specified on the XStaticContext interface
with the declare default collation declaration. Similarly, an XSLT stylesheet can override the default
collation URI with the [xsl:]default-collation attribute. XPath does not provide a means of overriding the
default collation URI. However, any XPath or XQuery expression or XSLT stylesheet that performs string
comparison operations can specify an explicit collation URI to override the default collation URI.

If you do not explicitly specify a default collation on any instance of the XStaticContext interface you
supply when you prepare your XSLT stylesheet or your XQuery or XPath expression, the default
collation URI for the stylesheet or expression will be the Unicode code-point collation URI:
http://www.w3.org/2005/xpath-functions/collation/codepoint/.

1918 Developing WebSphere applications

http://www.w3.org/2005/xpath-functions/collation/codepoint/

You can use the Unicode code-point collation in situations where characters must be identical Unicode
characters to be considered to be equal. The lexicographical ordering defined by this collation is
determined by the Unicode code points of the characters -- that is, by their positions on the Unicode
code charts. As such, using the Unicode code-point collation will yield much better performance than
collations that perform string comparisons in a culture-specific manner, but its unlikely to give very
satisfactory results for sorting operations.

The following is a simple example showing how to specify the default collation URI on an instance of
the XStaticContext interface.

// Setting of default collation URI is not changed - default remains
// the Unicode code point collation URI
XFactory factory = XFactory.newInstance();
XPathExecutable maxPath1 = factory.prepareXPath("max($var)");

// A new default collation URI is specified in the static context
// That URI is used in any string comparison for which no other
// explicit collation URI is specified
XStaticContext sc = factory.newStaticContext();
sc.setDefaultCollation("http://example.org/my-collation");
XPathExecutable maxPath2 = factory.prepareXPath("max($var)", sc);

v Bind a collation URI.

The XML API provides two methods for binding collation URI with an instance of the Java Collator class
for an execution. The bindCollation methods on the XDynamicContext method have two arguments: the
first argument is a collation URI; the second is either instance of the java.text.Collator class or an
instance of the java.util.Locale class. If an instance of the locale class is specified, the processor will
use the instance of the Collator class that is appropriate for that locale.

XSLT, XPath and XQuery define the concept of “Statically Known Collations”. If a reference to a
collation URI appears in an XSLT stylesheet or an XPath or XQuery expression, and the collation URI is
not one of the Statically Known Collations, a static error is supposed to be reported in some
circumstances. However, the processor treats all collation URIs as if they were in the set of Statically
Known Collations. This is due to the fact that instances of the Java Collator class are not actually
associated with collation URIs until execution time, so it is not possible for the processor to determine
statically which collation URIs are not known. Instead, the processor will report a dynamic error if a
collation URI that is not bound to an instance of the Collator class is used in a stylesheet or expression.

You cannot bind the Unicode code-point collation URI to any instance of the Java Collator class. It is
always implicitly bound with the Unicode code-point collation.

The following example demonstrates how you can bind a collation URI with a specific instance of the
Java Collator class on an instance of the XDynamicContext interface.

XFactory factory = XFactory.newInstance();
XStaticContext sc = factory.newStaticContext();
// Set up a default collation URI
sc.setDefaultCollation("http://example.org/my-collation");

// Prepare an XPath expression that computes fn:max() using the
// collator associated with the default collation URI and again using
// the Unicode code point collation
String expr =

"max($var)," +
"max($var,’http://www.w3.org/2005/xpath-functions/collation/codepoint’)";

XPathExecutable maxPath =
factory.prepareXPath(expr, sc);

XDynamicContext dc = factory.newDynamicContext();
// Set the value of the variable $var
dc.bind(new QName("var"),

new String[] {"encyclopaedia",
// U+00E6 is lower case latin ae ligature
"encyclop\u00E6dia",
"encyclopedia"});

// Set up a Collator for English that does not distinguish between
// capitals, lower-case letters and certain character variants
Collator english =

(Collator) Collator.getInstance(Locale.ENGLISH).clone();
english.setStrength(Collator.SECONDARY);
// Evaluate the expression with that English collator associated with
// the default collation URI
dc.bindCollation("http://example.org/my-collation", english);
XSequenceCursor maxValues = maxPath.execute(dc);
// Print maximum values - expected results are
// encyclopedia for English collation and
// encyclop\u00E6dia for Unicode code point collation
if (maxValues != null) {

Chapter 39. XML applications 1919

do {
System.out.println(maxValues.getStringValue());

} while (maxValues.toNext());
}

Executing using the command-line tools
You can use the ExecuteXSLT tool to execute a stylesheet, use the ExecuteXPath tool to execute an
XPath expression, and use the ExecuteXQuery tool to execute an XQuery expression.

Procedure
v Execute XSLT

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\ExecuteXSLT.bat

– app_server_root/bin/ExecuteXSLT.sh

Syntax

ExecuteXSLT.bat
-outputfile file
-baseURI URI
-useCompiler
-bindVar name=varName value=varValue
-baseOutputURI URI
-XSLTinitMode mode
-XSLTinitTemplate template
-v
-h
-input file
stylesheet

./ExecuteXSLT.sh
-outputfile file
-baseURI URI
-useCompiler
-bindVar name=varName value=varValue
-baseOutputURI URI
-XSLTinitMode mode
-XSLTinitTemplate template
-v
-h
-input file
stylesheet

Parameters

-outputfile file
Specifies that output should go to the specified file

By default, the output is sent to standard out.

-baseURI URI
Specifies the base URI of the containing element

-useCompiler
Specifies compiler modes

If this parameter is not specified, the default behavior is to use interpreted mode.

-bindVar name=varName value=varValue
Bind an atomic value to a variable (XPath, XQuery) or a param (XSLT)

The value must be valid for the type that was specified in the static context (XPath), in
the query (XQuery), or in the stylesheet (XSLT) for the same name.

1920 Developing WebSphere applications

varName
Name of the variable (expressed localPart,namespaceURI)

Notes:

– If the variable is in no namespace, the namespace URI should be
omitted.

– If the value of any option contains a blank space, enclose it in
quotation marks.

– Localpart is a required value.

varValue
Variable value

The -bindVar option can be used multiple times.

For example:
-bindVar name=la,"http://www.ibm.com/Los Angeles" value="some value"

-baseOutputURI URI
Specifies the base URI to use when resolving result documents

The default is either the base URI for the main result document or the current working
directory.

This option only applies when working with XSLT.

-XSLTinitMode mode
Specifies a mode to use as the initial mode in an XSLT transformation (expressed
localPart,namespaceURI)

This option only applies when working with XSLT.

For example:
-XSLTinitMode la,"http://www.ibm.com/Los Angeles"

-XSLTinitTemplate template
Specifies a named template to use as the initial template in an XSLT transformation
(expressed localPart,namespaceURI)

If a named template is not set, the initial template is determined by the initial mode,
context node, and template matching rules.

This option only applies when working with XSLT.

For example:
-XSLTinitTemplate la,"http://www.ibm.com/Los Angeles"

-v Prints the version of the tool

-h Prints the usage statement

-input file
Specifies the full path to a file containing an XML artifact against which the stylesheet
will be executed

stylesheet
Specifies the full path to a file containing the XSL stylesheet

The following is a basic example of executing a stylesheet using the ExecuteXSLT tool:

– ExecuteXSLT.bat -input C:\sampledata\sample.xml C:\stylesheets\simple.xsl

This executes the C:\stylesheets\simple.xsl stylesheet and places the resulting output on standard
out.

Chapter 39. XML applications 1921

– ./ExecuteXSLT.sh -input /var/sampledata/
sample.xml /var/stylesheets/simple.xsl

This executes the /var/stylesheets/simple.xsl stylesheet and places the resulting output on
standard out.

v Execute an XPath expression

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\ExecuteXPath.bat

– app_server_root/bin/ExecuteXPath.sh

Syntax

ExecuteXPath.bat
-outputfile file
-cpm mode
-ns prefix=URI
-schema URI
[-var name=varName type=varType] ...
-baseURI URI
-dnet URI
-useCompiler
-bindVar name=varName value=varValue
-v
-h
-input file
xpathfile

./ExecuteXPath.sh
-outputfile file
-cpm mode
-ns prefix=URI
-schema URI
[-var name=varName type=varType] ...
-baseURI URI
-dnet URI
-useCompiler
-bindVar name=varName value=varValue
-v
-h
-input file
xpathfile

Parameters

-outputfile file
Specifies that output should go to the specified file

By default, the output is sent to standard out.

-cpm mode
Specifies an alternate XPath compatibility mode

Valid values are Latest, 1.0, and 2.0.

The default is 2.0.

-ns prefix=URI
Specifies a namespace for use during static processing

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

-schema URI
Specifies any schema document that is used to populate the in-scope schema
definitions

1922 Developing WebSphere applications

This option can be used multiple times.

-var name=varName type=varType
Adds a variable binding to the static context for a single item

This simply declares the variable, and a value also must be bound to the
XDynamicContext.

varName
Indicates the name of the variable (expressed localPart,namespaceURI)

If the variable is in no namespace, the namespace URI should be omitted.

Localpart is a required value.

varType
Indicates the type of the variable (expressed localPart[, namespaceURI])

If the value of any option contains a blank space, enclose it in quotation marks.

This option can be used multiple times.

For example:
-var name=la,"http://www.ibm.com/Los Angeles" type=boolean,http://www.w3.org/2001/XMLSchema

-baseURI URI
Specifies the base URI of the containing element

-dnet URI
Specifies a default namespace URI for element and type names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where an element or type name is expected.

-useCompiler
Specifies compiler modes

If this parameter is not specified, the default behavior is to use interpreted mode.

-bindVar name=varName value=varValue
Bind an atomic value to a variable (XPath, XQuery) or a param (XSLT)

The value must be valid for the type that was specified in the static context (XPath), in
the query (XQuery), or in the stylesheet (XSLT) for the same name.

varName
Name of the variable (expressed localPart,namespaceURI)

Notes:

– If the variable is in no namespace, the namespace URI should be
omitted.

– If the value of any option contains a blank space, enclose it in
quotation marks.

– Localpart is a required value.

varValue
Variable value

The -bindVar option can be used multiple times.

For example:
-bindVar name=la,"http://www.ibm.com/Los Angeles" value="some value"

-v Prints the version of the tool

-h Prints the usage statement

Chapter 39. XML applications 1923

-input file
Specifies the full path to a file containing an XML artifact against which the XPath
expression will be executed

xpathfile
Specifies the full path to a file containing the XPath expression

The following is a basic example of executing an XPath expression using the ExecuteXPath tool:

– ExecuteXPath.bat -input C:\sampledata\sample.xml C:\XPath\simpleXPath.txt

This executes the XPath expression provided in C:\XPath\simpleXPath.txt and places the resulting
output on standard out.

– ./ExecuteXPath.sh -input /var/sampledata/
sample.xml /var/XPath/simpleXPath.txt

This executes the XPath expression provided in /var/XPath/simpleXPath.txt and places the
resulting output on standard out.

v Execute an XQuery expression

Location
The product includes the following script that sets up the environment and invokes the tool.

– app_server_root\bin\ExecuteXQuery.bat

– app_server_root/bin/ExecuteXQuery.sh

Syntax

ExecuteXQuery.bat
-outputfile file
-baseURI URI
-dnet URI
-useCompiler
-bindVar name=varName value=varValue
-v
-h
-input file
xqueryfile

./ExecuteXQuery.sh
-outputfile file
-baseURI URI
-dnet URI
-useCompiler
-bindVar name=varName value=varValue
-v
-h
-input file
xqueryfile

Parameters

-outputfile file
Specifies that output should go to the specified file

By default, the output is sent to standard out.

-baseURI URI
Specifies the base URI of the containing element

-dnet URI
Specifies a default namespace URI for element and type names

The namespace URI, if present, is used for any unprefixed QName appearing in a
position where an element or type name is expected.

-useCompiler
Specifies compiler modes

1924 Developing WebSphere applications

If this parameter is not specified, the default behavior is to use interpreted mode.

-bindVar name=varName value=varValue
Bind an atomic value to a variable (XPath, XQuery) or a param (XSLT)

The value must be valid for the type that was specified in the static context (XPath), in
the query (XQuery), or in the stylesheet (XSLT) for the same name.

varName
Name of the variable (expressed localPart,namespaceURI)

Notes:

– If the variable is in no namespace, the namespace URI should be
omitted.

– If the value of any option contains a blank space, enclose it in
quotation marks.

– Localpart is a required value.

varValue
Variable value

The -bindVar option can be used multiple times.

For example:
-bindVar name=la,"http://www.ibm.com/Los Angeles" value="some value"

-v Prints the version of the tool

-h Prints the usage statement

-input file
Specifies the full path to a file containing an XML artifact against which the XQuery
expression will be executed

xqueryfile
Full path to a file containing the XQuery expression

The following is a basic example of executing an XQuery expression using the ExecuteXQuery tool:

– ExecuteXQuery.bat -input C:\sampledata\sample.xml C:\XQuery\simpleXQuery.txt

This executes the XQuery expression provided in C:\XQuery\simpleXQuery.txt and places the
resulting output on standard out.

– ./ExecuteXQuery.sh -input /var/sampledata/
sample.xml /var/XQuery/simpleXQuery.txt

This executes the XQuery expression provided in /var/XQuery/simpleXQuery.txt and places the
resulting output on standard out.

Using a message handler and managing exceptions
You can use this information to help you to use a message handler and mange exceptions.

Procedure
v Use a message handler.

v Manage exceptions.

Using a message handler
The default behavior for prepare-time and execution-time processing errors and other messages is to print
the messages to System.err and for nonrecoverable errors to raise an XProcessException as well. If an
error occurs at prepare time, the processor attempts to continue preparation and signal all errors before
generating an XProcessException; but no executable is produced. At run time, execution stops at the first
occurrence of an error situation.

Chapter 39. XML applications 1925

Procedure

Change the handling of errors by registering an implementation of XMessageHandler to the XStaticContext
(for prepare-time errors and other messages) or the XDynamicContext (for execution-time errors and other
messages).
The XMessageHandler interface consists of a single report method that has the following parameters:

level One of the following enumerators defined in the XMessageHandler interface:

INFO Indicates that the error is simply informational and will not affect the result

This is also used for the XSLT message instruction when the terminate attribute evaluates
to "no."

WARNING
Indicates a warning

The processor recovers from a warning situation, but the result might not be what was
expected.

ERROR
Indicates a recoverable error

The processor might recover from this error for the purpose of signaling additional errors,
but no result is produced.

FATAL_ERROR
Indicates a nonrecoverable error

The processor cannot recover from this error. It is also used for the XSLT message
instruction when the terminate attribute evaluates to "yes."

TRACE
Indicates that the message was generated by a call to the XPath fn:trace function

message
Error message

location
Source location as an XSourceLocation if available

In general, the source location is not available for execution-time errors.

cause Original exception that caused the error if available

If the input document is invalid, for example, the XML parser generates an exception that is
passed to the report method through this parameter.

errorItems
Items that were specified for the error-object parameter to the XPath fn:error function

The implementation of XMessageHandler can present the errors and other messages as desired, such as
writing to a log file rather than sending the messages to System.err. It may also be more strict and stop
compilation or execution after any error including recoverable errors by generating an exception. Because
the report method has no throws clause, the exception must be unchecked. The implementation might also
choose to ignore informational and warning messages. In short, registering an XMessageHandler allows
the application to configure message handling to suit its purposes.
Note that in the case of a nonrecoverable error, if the registered message handler does not generate an
exception, an XProcessException is raised by the processor.

Managing exceptions
Various exceptions might occur. Unless otherwise indicated, all exceptions extend RuntimeException and
thus are unchecked.

1926 Developing WebSphere applications

Procedure
v Manage XProcessException.

This exception occurs when the processor finds a nonrecoverable error when preparing or executing an
expression, query, or stylesheet as described in the specifications for each language.

If there are multiple errors at prepare time, the processor attempts to report all of the errors and only
generates an XProcessException at the end of preparation or if it reaches a point where it cannot
continue. At execution time, however, the first error results in an XProcessException and the end of
execution.

In general, XProcessExceptions should not occur if the expression, query, or stylesheet is syntactically
and semantically valid and also valid for the types of input documents that it is meant to process.

An XProcessException also occurs for an XSLT message instruction where the terminate attribute
evaluates to "yes."

This is the default behavior for handling processing errors and other messages. Applications can
register an implementation of the XMessageHandler interface at prepare time or execution time to
modify the default behavior.

v Manage an XViewException.

This exception is raised for incorrect use of the XML API itself such as calling one of the XNodeView
methods on an item that is atomic.

See the API documentation for more information about when this exception can occur.

v Manage a NullPointerException.

This exception is raised when a null value is passed to an API method where null is not allowed, such
as passing a null prefix or namespace to the XStaticContext declareNamespace method.

See the XML API documentation for more information about when this exception can occur.

v Manage an IllegalArgumentException.

This exception is raised when an invalid value is passed to an API method, such as calling the
XStaticContext setXPathCompatibilityMode method with a value other than one of the predefined
settings.

See the XML API documentation for more information about when this exception can occur.

v Manage exceptions generated by XFactory.newInstance.

The newInstance method on the XFactory class loads the XFactory implementation class and creates a
new instance; therefore, any of the following checked exceptions might occur:

– ClassNotFoundException

– IllegalAccessException

– InstantiationException

These exceptions would likely result if there is a classpath problem or a Java security issue.

Chapter 39. XML applications 1927

1928 Developing WebSphere applications

Chapter 40. Deploying client applications

Deploying a client application depends on installing appropriate supporting files on the client machine,
usually some configuring actions, and adding the program files for the client application. When the client
application has been deployed, the application can run.

About this task

The steps required to deploy and run a client application depend on the type of client and the
programming model used.

You can install an application client JAR file using the administrative console, wsadmin AdminApp install,
or update commands. Install the client module only on a Version 8.0 deployment target (such as server,
cluster, and so on).

Complete one or more of the following tasks:

Procedure
v Deploy the client application

v Run an ActiveX client application

v Deploy and run a Java EE client application

v Run the IBM Thin Client for Enterprise JavaBeans

Deploying applet client code
Applet clients are capable of communicating over the HTTP protocol and the RMI-IIOP protocol.

Before you begin

Applet clients have the following setup requirements:
v These clients are available on the Windows platforms. Check the prerequisites page for information on

platform support and product prerequisites.
v The browser installation precedes the client code installation.

About this task

Unlike typical applets that are on web servers or WebSphere Application Servers and can only
communicate over the HTTP protocol, applet clients can communicate over the HTTP protocol and the
RMI-IIOP protocol. This additional capability gives the applet direct access to enterprise beans.

The applet container is the web browser and the Java plug-in combination. You must first install the
Application Client for WebSphere Application Server so that the browser recognizes the IBM product Java
plug-in.

Procedure
1. Install the Application Client for WebSphere Application Server.

2. Configure required Java runtime parameters.

a. Click Start > Control panel .

b. Select the IBM Control Panel for Java

c. On the Advanced tab, enter the following parameter values in the Java Runtime Parameters field.

© Copyright IBM Corp. 2012 1929

-Xmx512M
-Djava.security.policy=<app_client_root>\properties\client.policy
-Dwas.install.root=<app_client_root>
-Djava.ext.dirs=<app_client_root>\java\jre\lib\ext;
<app_client_root>\lib;
<app_client_root>\plugins;
<app_client_root>\lib\ext;
<app_client_root>\installedConnectors\
-Djava.class.path=<app_client_root>\properties
-Dcom.ibm.CORBA.ConfigURL=file:<app_client_root>\properties\sas.client.props
-Dcom.ibm.SSL.ConfigURL=file:<app_client_root>\properties\ssl.client.props

Note: These parameter entries are automatically placed into the WebSphere Application Server
control panel for the Java plug-in user who installed the WebSphere Application Server
Application Client provided you are using a Java SE Development Kit (JDK) prior to JDK 1.5. If
the applet is being run by a user other than the person who installed the client, then that user
must enter the parameter entries.

For JDK 1.5 and later, this automatic parameter feature is removed.
v The Java Runtime Parameters field is similar to the command prompt when using command line

options. Therefore, you can enter most options available from the command prompt (for example,
-cp, classpath, and others) in this field as well.

3. Configure use of secure sockets layer (SSL) for secure access to resources. By default, the applet
client is configured to have security enabled. If you have administrative security turned on at the server
from which you are accessing resources, then you can use SSL when needed. If you decide that the
security requirements for applet client applications differ from other types of client applications, then
you can create special copies of client property files for applets to use.

Running an ActiveX client application
To run an ActiveX client application that is to use the ActiveX to Enterprise Java Beans (EJB) bridge, you
must perform some initial configuration to set appropriate environment variables and to enable the ActiveX
to EJB bridge to find its XJB.JAR file and the Java run time. This initial configuration sets up the
environment within which the ActiveX client application can run.

About this task

To perform the required configuration, complete one or more of the following tasks:

Procedure
1. Start an ActiveX application and configure service programs.

2. Start an ActiveX application and configuring non-service programs

Starting an ActiveX application and configuring service programs
To run an ActiveX service program such as Active Server Page (ASP) that is to use the ActiveX to the
Enterprise Java Bean (EJB) bridge, some initial configuration (to set appropriate environment variables
and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the Java run time) is necessary. This
configuration sets up the environment within which the ActiveX service program can run.

Before you begin

The XJB.JClassFactory must find the Java run time dynamic link library (DLL) when initializing. In a
service program such as Internet Information Server you cannot specify a path for its processes
independently; you must set the process paths in the system PATH variable. This limitation means that you
can only have a single Java virtual machine (JVM) version available on a machine using ASP.

1930 Developing WebSphere applications

About this task

To add the Java Runtime Environment (JRE) directories to your system path, complete one of the
following task.

Procedure

On Windows XP systems, complete the following steps:
1. Open the Control Panel, then double-click the System icon.
2. Click the Advanced tab on the System Properties window.
3. Click Environment Variables.
4. Edit the Path variable in the System Variables window.
5. Add the following information to the beginning of the path that is displayed in the Variable Value field:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\Java\jre\bin\classic;

where C:\WebSphere\AppClient is the directory in which you installed the Java client in the WebSphere
product.

6. Click OK in the Edit System Variable window to apply the changes.
7. Click OK in the Environment Variables window.
8. Click OK in the System Properties window.
9. Restart Windows XP.

What to do next

After you change the system PATH variable you must reboot the Internet Information Server machine so
that Internet Information Server can see the change.

Starting an ActiveX application and configuring non-service programs
To run an ActiveX program initiated from an icon or command line (a non-service program) that is to use
the ActiveX to the Enterprise Java Beans (EJB) bridge, you must perform some initial configuration to set
appropriate environment variables and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the
Java run-time environment. This uses a batch file to set up the environment within which the ActiveX
program can run.

About this task

To perform the required configuration, complete the following steps:

Procedure
1. Edit the setupCmdLineXJB.bat file to specify appropriate values for the environment variables required

by the ActiveX to EJB bridge. For more information about these environment variables, see ActiveX to
EJB bridge, environment and configuration. For more information about creating a JVM for an ActiveX
program, see ActiveX to EJB bridge, initializing the Java virtual machine (JVM). After the ActiveX
program has created an XJB.JClassFactory object and called the XJBInit() method, the JVM is
initialized and ready for use.

2. Start the ActiveX client application by using one of the following methods:
v Use the launchClientXJB.bat file to start the application. For example:

launchClientXJB MyApplication.exe parm1 parm2

or
launchClientXJB MyApplication.vbp

v Use the setupCmdLineXJB.bat file to create an environment in which to run the application, then start
the application from within that environment.

Chapter 40. Deploying client applications 1931

setupCmdLineXJB.bat, launchClientXJB.bat and other ActiveX batch
files
This topic provides reference information about the aids that client applications and client services can use
to access the ActiveX to EJB bridge. These enable the ActiveX to Enterprise JavaBeans (EJB) bridge to
find its XJB.JAR file and the Java run-time environment.

Location

The include file is located in the was_client_home\aspIncludes directory. You can include the file into your
Active Server Pages (ASP) application with the following syntax in your ASP page:

<-- #include virtual ="/WSASPIncludes/setupASPXJB.inc" -->

This syntax assumes that you have created a virtual directory in Internet Information Server called
WSASPIncludes that points to the was_client_home\aspIncludes directory.

Usage notes

The following batch files are provided for client applications to use the ActiveX to EJB bridge:
v setupCmdLineXJB.bat

Sets the client environment variables.
v launchClientXJB.bat

Calls the setupCmdLineXJB.bat file and launches the application you specify as its arguments; for
example:

launchClientXJB.bat myapp.exe parm1 parm2

or

launchClientXJB MyApplication.vbp
v Active Server Pages (ASP) include file

An include file is provided for ASP users to automatically set the following page-level (local)
environment variables:
– com_ibm_websphere_javahome. Path to the Java run-time directory installed with the WebSphere

advanced server client.
– com_ibm_websphere_washome. Path to the WebSphere advanced server client directory.
– com_ibm_websphere_namingfactory. Sets the Java java.naming.factory.initial system property.
– com_ibm_websphere_computername. (Optional) Name of the computer where the WebSphere

Advanced Server Client is installed. If you intend to talk to a single specific computer, you are
recommended to change this value to become the server name that you intend to access.

v System settings

To enable the ActiveX to EJB bridge to access the Java run-time dynamic link library (DLL), the
following directories must exist in the system PATH environment variable:

was_client_home\java\jre\bin;was_client_home\java\jre\bin\classic

Where was_client_home is the name of the directory where you installed the WebSphere Application
Server client (for example, C:\WebSphere\AppClient).

Note: This technique enables only one Java run time to activate on a machine, therefore all client
services on that machine must use the same Java run time. Client applications do not have this
limitation because they each have their own private, non-system scope.

1932 Developing WebSphere applications

Deploying and running a Java EE client application
You can use the launchClient command to run a Java Enterprise Edition (EE) client application in an
Application Client installation or in a WebSphere Application Server node. Alternatively, you can use Java
Web Start on a remote client machine to download and run a Java EE client application, including Thin
client application, with a single click from a web browser on that machine.

Procedure
1. Deploy and run a Java EE client application for use with the launchClient command.

After deploying a Java EE client application onto a machine with an Application Client installation or in
a WebSphere Application Server node, you can start the application by using the launchClient
command on that machine.

a. Deploy the Java EE client application

b. Start the Java EE client application

2. Deploy and run a Java EE client application by using Java Web Start.

a. Prepare the Java EE client application ready to be deployed by remote action.

b. Use Java Web Start on a remote client machine to download and run the Java EE client
application.

Deploying a Java EE client application
Deploying a Java EE client application onto the client machines where it is to run includes distributing the
EAR file for the client application and configuring resource references for use by the client application.

Before you begin

To run a deployed Java EE client application, the application needs access to a Application Client
installation or a WebSphere Application Server installation.

For information about installing the Application Client on a client machine, refer to the Installing Application
Client for WebSphere Application Server topic.

Attention: Application Client for WebSphere Application Server ships only with the 32-bit WebSphere
Application Server.

About this task

Use this topic only if you later want to use the want to launchClient command to run the Java client
application on an Application Client installation or in a WebSphere Application Server node.

If you want to download and run a Java EE client application remotely, you can use the Java Web Start to
deploy the application onto the remote client machine with a single click from a Web browser on the client
machine. For information about using Java Web Start to deploy Java EE client applications, see
“Downloading and running a Java EE client application by using Java Web Start”.

Procedure
1. Distribute the EAR file.

The client machines configured to run a client application must have access to the EAR file.

v If all the machines in your environment share the same image and platform, run the Application
Client Resource Configuration Tool (ACRCT) on one machine to configure the external resources,
then distribute the configured EAR file to the other machines.

v If your environment is set up with a variety of client installations and platforms, run the ACRCT for
each unique configuration.

Chapter 40. Deploying client applications 1933

v You can either distribute an EAR file to the correct client machines, or make it available on a
network drive.

v Distributing EAR files is the responsibility of the system and network administrator.

2. Configure the resources for the application client. This generally involves using the Application Client
Resource Configuration Tool (ACRCT) to configure references for the resources that the application is
to use, including resource adapters, resource providers, data sources, and Java Message Service
resources. These configurations are stored in the client JAR file within the application EAR file. The
client runtime uses these configurations to resolve and create an instance of the resources for the
client application.

For some types of resources, other actions are needed; for example, to install a resource adapter and
define environment variable needed to start the client application. More information about the actions
for different types of resources is given in other configuring resources topics.

If you plan to deploy the client application on z/OS, run the ACRCT on Windows. You can also run the
ACRCT for distributed platforms locally.

If the client application defines the local resources, but the resources are installed in a different
location, run the ACRCT (clientConfig command) on the local machine to change the configuration in
the EAR file. For example, the EAR file can contain a DB2 resource, configured as C:\DB2. If, however,
you installed DB2 in the D:\Program Files\DB2 directory, use the ACRCT to create a local version of
the EAR file.

What to do next

After deploying the Java EE client application, use the launchClient command to run the client
application.

Starting the Application Client Resource Configuration Tool and opening an EAR
file
You can perform many tasks by starting the Application Client Resource Configuration Tool (ACRCT).
Many of these tasks also involve then opening an EAR file.

Before you begin

Attention: This task only applies to Java Platform, Enterprise Edition (Java EE) application clients.

About this task

Use these steps to start the Application Client Resource Configuration Tool. When you start the tool, one
of the most common tasks that you perform is opening and modifying the components of EAR files.

Procedure
1. Open a command prompt and change to the app_server_root\bin directory.

2. Run the clientConfig.bat file.

Note: When running the clientConfig.bat file, run the script using the
administrator account that was created when you installed the operating system.

3. Open an EAR file within the Application Client Resource Configuration Tool (ACRCT):
a. Click File > Open.
b. Select the file then click Open.

4. Save your changes to the file and close the tool:
a. Click File > Save.
b. Click File > Exit.

1934 Developing WebSphere applications

Deploying a resource adapter for a Java EE client application
A Java EE client application can use a resource adapter to connect to an enterprise information system
(EIS). To use a resource adapter, you need to install it, configure it, and configure related resources.

About this task

The resource adapter support provided for Java EE client applications is a subset of the support provided
for application servers. A client resource adapter is used in a non-managed environment and must conform
to the J2EE Connector Architecture Specification Version 1.5 or higher. Only outbound connections to the
EIS are supported through the ManagedConnectionFactory interfaces. The inbound messaging support
(from the EIS), life cycle management, and work management aspects of the specification are not
supported on the client.

When running Java EE application clients, the launchClient script specifies a system property called
com.ibm.ws.client.installedConnector, which is set to the same value as the
CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource
adapters and can be overridden for each launchClient call by specifying the -CCD parameter. When the
client container is activated, all resource adapter subdirectories under the specified default location for the
resource adapters directory are added to the classpath. This action allows the client application to use the
resource adapters without using the ACRCT to specify any of the client resources.

Procedure
1. Install the resource adapter archive (RAR) file

For a client application to use a resource adapter, the RAR file must be installed in the directory
specified by the environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the
setupCmdLine script runs. The launchClient tool, Application Client Resource Configuration Tool
(ACRCT) and clientRAR tool all use this variable to find the default location of all installed resource
adapters.

To install a RAR file for a client application, use the clientRAR tool.

2. Configure the resource adapter and its resources for the client application Use the Application Client
Resource Configuration Tool (ACRCT) to define the resource adapter, connection factories, and
administered objects in the EAR file for the client application. The client application uses this
configuration to resolve and create an instance of the resource adapter and the other resources.

a. Configure the resource adapter

b. Configure a connection factory

c. Configure administered objects

clientRAR tool:

This topic describes the command line syntax for the client resource adapter installation tool.

If this tool is used to add or delete resource adapters on the server, then only the client can use the
resource adapter. If the resource adapter is installed on the server using the wsadmin tool or the
administrative console, then do not use the clientRAR tool remove it. Only resource adapters that are
installed using the clientRAR tool should be removed using the clientRAR tool.

The command line invocation syntax for the clientRAR tool follows:
clientRAR [-help | -?] [-CRDcom.ibm.ws.client.installedConnectors=<dir>] <task> <archive>

where
-help, -?
Print the usage information.
-CRDcom.ibm.ws.client.installedConnectors
The directory where resource adapters are installed.
This will override the system property of the same name

Chapter 40. Deploying client applications 1935

(com.ibm.ws.client.installedConnectors).

<task>
The task to perform: add - install, delete - uninstall.

<archive>
if task=add then this is the fully qualified name of the resource adapter archive file.
If task=delete then this is the filename of the resource adapter archive to be uninstalled.

The following examples demonstrate correct syntax.

On Windows operating systems:

v clientRAR add c:\rars\myrar.rar

v clientRAR delete myrar.rar

On UNIX and Linux operating systems:

v ./clientRAR add /usr/rars/myrar.rar

v ./clientRAR delete myrar.rar

Configuring resource adapters for the client:

Use the Application Client Resource Configuration Tool (ACRCT) to configure resource adapters for the
client.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new resource adapters. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new resource adapters from the tree.

4. Expand the JAR file to view its contents.

5. Right-click the Resource Adapters folder, and click New.

6. Configure the resource adapter settings in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource adapters for the client:

A resource adapter is a system-level software driver that a Java application uses to connect to an
enterprise information system (EIS). A resource adapter plugs into an application client and provides
connectivity between the EIS and the enterprise application.

Important: This topic is not relevant to the WebSphere MQ resource adapter. WebSphere MQ classes
are picked up automatically by the client container (for both stand alone and with a
WebSphere Application Server installation).

The resource adapter support for the Java EE client applications is a subset of the support for the server.
For any resource adapter installed using the clientRAR tool, the client resource adapter is used in a
non-managed environment and must conform to the Java EE Connector Architecture Specification Version
1.5 or higher. Only outbound connections to the EIS are supported through the
ManagedConnectionFactory interfaces. The inbound messaging support (from the EIS), life cycle
management, and work management aspects of the specification are not supported on the client.

For a client application to use a resource adapter, it must be installed in the directory specified by the
environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the setupCmdLine script

1936 Developing WebSphere applications

runs. The launchClient tool, Application Client Resource Configuration Tool (ACRCT) and clientRAR tool all
use this variable to find the default location of all installed resource adapters. To install a resource adapter
in the client, use the clientRAR tool. Once the resource adapter is installed, it must be configured using
the ACRCT. The client configuration tool adds the resource adapter configuration to the EAR file. Then,
connection factories and administered objects are defined.

When running Java EE application clients, the launchClient script specifies a system property called
com.ibm.ws.client.installedConnector, which is set to the same value as the
CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource adapters and
can be overridden for each launchClient call by specifying the -CCD parameter. When the client container
is activated, all resource adapter subdirectories under the specified default location for the resource
adapters directory are added to the classpath. This action allows the client application to use the resource
adapters without using the ACRCT to specify any of the client resources.

Using resource adapters is a new mechanism for easily extending client applications.

Resource adapter settings:

Use this panel to view or change the configuration properties of the resource adapter. These configuration
properties control how resource adapters are created.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapter. Right-click
Resource Adapter and click New. The following fields appear on the General tab.

Name:

The name by which this Resource Adapter is known for administrative purposes within IBM WebSphere
Application Server. The name must be unique within the Resource Adapters across the product
administrative domain.

Information Value
Data type String

Description:

A description of this resource adapter for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

Class Path:

Any additional class path. The path to the resource adapter directory is automatically added.

Information Value
Data type String
Default The path to your Resource Adapter directory.

Native Path:

The native path where the Resource Adapter is located. Enter any additional native class path here.

Chapter 40. Deploying client applications 1937

Information Value
Data type String

Resource Adapter Name:

A mandatory field that points to an installed resource adapter subdirectory. The entry does not represent
the full directory name for the resource adapter. The full directory name is the installed resource adapter
path, plus the resource adapter name.

Information Value
Data type String

Installed Resource Adapter Path:

The directory where resource adapters are installed. If you do not complete this field, then the default
takes effect.

If you specify the value, ${CONNECTOR_INSTALL_ROOT}, then this value replaces the value of the
CLIENT_CONNECTOR_INSTALL_ROOT variable on the machine on which the client application runs. This action
allows the application to run easily on different machines, where the client installation might be in different
locations.

Information Value
Data type String
Default ${CONNECTOR_INSTALL_ROOT}

Configuring new connection factories for resource adapters for the client:

Use the Application Client Resource Configuration Tool (ACRCT) to configure new connection factories for
resource adapters for the client.

About this task

Complete this task to configure new connection factories for resource adapters.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new connection factories. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new connection factories from the tree.

4. Expand the JAR file to view its contents.

5. Click the Resource Adapters folder.

6. Expand the resource adapter for which you want to create connection factories.

7. Right-click the Connection Factories folder and click New.

8. Configure the connection factory properties in the resulting property dialog.

9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Resource adapter connection factory settings:

Use this panel to view or change the configuration properties of the selected resource adapter connection
factory.

1938 Developing WebSphere applications

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters. Right-click the
Connection Factories folder, and click New. The following fields appear on the General tab.

Name:

The name by which this connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the resource adapter connection factories across the
product administrative domain.

Information Value
Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere
Application Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this resource adapter connection factory definition to the deployment
descriptor. This entry should be a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly when getting a connection. If this field is used, then the Properties
field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly when getting a connection.

Information Value
Data type String

Password:

Specifies an encrypted password. If you complete this field, then the Password field in the Properties box
is ignored.

If you specify a value for the UserName property, you must also specify a value for the Password
property.

Information Value
Data type String

Chapter 40. Deploying client applications 1939

Re-Enter Password:

Confirms the password.

Type:

A drop-down list of all the connectionFactoryInterfaces as defined for the factories in the Resource
Adapter Archive.

For each Type, there is a set of properties specified in the Properties box. This set of properties is
constructed by retrieving the properties from each connection definition object. For any existing connection
factories that are displayed for updating, this list of properties is overlaid with the properties specified for
the objects. When the Type field is changed, the properties also change to reflect the correct properties for
that type.

Information Value
Data type String

Configuring administered objects for resource adapters for the client:

This section helps you configure new administered objects for the client.

Before you begin

Before you configure new administered objects, you must complete the following prerequisites:

1. Install the Resource Adapter Archive file (RAR) using the clientRAR tool.

2. Configure the resource adapter for the .ear file, using the Application Client Resource Configuration
Tool (ACRCT) tool.

About this task

Complete this task to configure new administered objects for installed resource adapters.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new administered objects. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new administered objects from the tree.

4. Expand the JAR file to view its contents.

5. Click the Resource Adapters folder.

6. Expand the resource adapter for which you want to create administered objects.

7. Right-click the Administered Objects folder and click New.

8. Configure the administered object properties in the resulting property dialog.

9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Administered objects settings:

Use this panel to view or change the configuration properties of the selected administered objects.

1940 Developing WebSphere applications

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters >
resource_adapter_instance. Right-click Administered Objects and click New. The following fields appear
on the General tab.

The settings for administered objects are handled similarly to connection factories. When updating
administered objects, use the same panels that you used to create administered objects.

Name:

The name by which this administered object is known for administrative purposes within IBM WebSphere
Application Server. The name must be unique within the resource adapter administered objects across the
product administrative domain.

Information Value
Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere
Application Server.

Information Value
Data type String

JNDI Name:

This entry is a resource-env-ref name, a message-destination-ref name (if the message-destination-
ref has no link), or a message-destination link.

Information Value
Data type String

Type:

A drop-down list of all the administered object class-interface pairs as defined for the admin objects in the
Resource Adapter Archive (RAR) file.

For each Type, there is a set of properties specified in the Properties box. This set of properties is
constructed by retrieving the properties from each administered object definition. For any existing
administered objects that are displayed for updating, this list of properties is overlaid with the properties
specified for the objects. When the Type field is changed, the properties also change to reflect the correct
properties for that type.

Information Value
Data type String

Enabling client use of data sources
If a Java EE client application accesses a database directly, you must provide the database drivers on the
client machine, and configure the data source provider (JDBC provider) and data sources. Instead of
accessing the database directly, it is recommended that your client application access the database
through an enterprise bean.

Chapter 40. Deploying client applications 1941

About this task

WebSphere Application Server and the Application Client for WebSphere Application Server do not provide
client database drivers to be used directly from a Java EE client application. You can contact your
database vendor to get client database driver code and licenses.

Data sources configured on the server and looked up on the client do not participate in global transactions.

Instead of accessing the database directly, it is recommended that your client application access the
database through an enterprise bean. This technique eliminates the need to have database drivers on the
client machine, because the database access is handled by the enterprise bean running on WebSphere
Application Server. It also enables the client application to take advantage of the pooling and additional
database functions provided by the server.

For a current list of data source providers that are supported on WebSphere Application Server, see the
WebSphere Application Server prerequisite website.

Procedure
1. For direct access from a client to the database, install the client database drivers on the client

machine. For information about installing database drivers, see the documentation provided by your
database vendor.

2. Configure a data source provider and a data source for the client application Use the Application Client
Resource Configuration Tool (ACRCT) to define the data source provider and a data source in the
EAR file for the client application. The client application uses this configuration to resolve and create
an instance of the data source provider and data source.

a. Configure a new data source provider. This provider describes the JDBC database implementation
for your client application.

b. Configuring a new data source This describes the client properties of the database your client
application uses.

Configuring new data source providers (JDBC providers) for application clients:

You can create new data source providers, also known as JDBC providers, for your application client using
the Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new data source providers, also known as JDBC providers, for your
application client. In a separate administrative task, install the Java code for the required data source
provider on the client machine on which the application client resides.

About this task

Use this task to connect application clients to relational databases.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file for which you
want to configure the new data source provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new data source provider from the tree.

3. Expand the JAR file to view its contents.

4. Click the Data Source Providers folder. Do one of the following:
v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.

1942 Developing WebSphere applications

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Example

You can configure data source provider and data source settings.

v Configuring data source provider and data source settings

The following code examples illustrates how to use configure data source provider and data source
settings:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"
description="jdbcProvider:description" implementationClassName="jdbcProvider:
ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"
name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"
description="jdbcFactory:description" databaseName="jdbcFactory:databasename">
<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"
value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"
value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"
value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"
value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.
– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.

Example: Configuring data source provider and data source settings:

You can configure data source provider and data source settings.

The purpose of this article is to help you to configure data source provider and data source settings.
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.
– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.
v Example:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"
description="jdbcProvider:description" implementationClassName="jdbcProvider:
ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"

Chapter 40. Deploying client applications 1943

name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"
description="jdbcFactory:description" databaseName="jdbcFactory:databasename">
<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"
value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"
value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"
value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"
value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>

Data source provider settings for application clients:

Use this page to create a data source under a JDBC provider which provides the specific JDBC driver
implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right-click Data Source Providers >
and click New. The following fields appear on the General tab:

Name:

Specifies the display name for the data source.

For example you can set this field to Test Data Source.

Information Value
Data type String

Description:

Specifies a text description for the resource.

Information Value
Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Implementation class:

Use this setting to perform database specific functions.

Information Value
Data type String
Default Dependent on JDBC driver implementation class

Custom Properties:

1944 Developing WebSphere applications

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data sources for application clients:

Learn how to create date sources for application clients.

About this task

During this task, you create new data sources for your application client.

Procedure

1. Click the data source provider for which you want to create a data source in the tree. Take one of the
following actions as needed:
v Configure a new data source provider.
v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.

3. Click the data source folder. Take one of the following actions as needed:
v Right click the data source folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the data source properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Data source properties for application clients:

Use this page to create or modify the data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Data Source Providers > Data source
provider instance. Right-click Data Sources and click New. The following fields are displayed on the
General tab:

Name:

Specifies the display name of this data source.

Information Value
Data type String

Description:

Specifies a text description of the data source.

Information Value
Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Chapter 40. Deploying client applications 1945

Database Name:

The name of the database to which you want to connect.

User:

Use the user ID with the Password property, for authentication if the calling application does not provide a
user ID and password explicitly.

If you specify a value for the User ID property, then you must also specify a value for the Password
property. The connection factory User ID and Password properties are used if the calling application does
not provide a user ID and password explicitly.

Password:

Use the password with the User ID property, for authentication if the calling application does not provide a
user ID and password explicitly.

If you specify a value for the Password property, then you must also specify a value for the User ID
property.

Re-Enter Password:

Confirms the password.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring mail providers and sessions for application clients
You can edit the configurations of mail sessions and providers for your application clients using the
Application Client Resource Configuration Tool (ACRCT).

About this task

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of mail sessions
and providers for your application clients to use.

Procedure
1. Start the ACRCT.

2. Open an EAR file.

3. Locate the mail objects in the tree that is displayed for the EAR file. For example, if your file contains
mail sessions, expand Resources > application.jar > Mail Providers >
java_mail_provider_instance > Mail Sessions.

In this example, java_mail_provider_instance is a particular mail provider.

Results

The mail session instances are located in the JavaMail Sessions folder.

1946 Developing WebSphere applications

Example

You can configure mail provider and mail session settings.

v Configuring mail provider and mail session settings for application clients

The following code examples illustrates how to configure mail provider and mail session settings for
application clients:
<resources.mail:MailProvider xmi:id="builtin_mailprovider" name="Built-in Mail Provider" description="The built-in mail provider">
<factories xmi:type="resources.mail:MailSession"

xmi:id="MailSession_1207766754834" name="MailSession"
jndiName="mail/session" description="Sample mail session" category="Sample"
mailTransportHost="smtp.coldmail.com" mailTransportUser="transportUser"
mailTransportPassword="{xor}Lz4sLChvLTs="
mailFrom="smith@coldmail.com" mailStoreHost="imap.coldmail.com" mailStoreUser="storeUser"
mailStorePassword="{xor}Lz4sLChvLTs="
debug="true" strict="true"
mailTransportProtocol="builtin_smtp" mailStoreProtocol="builtin_imap">

<propertySet xmi:id="J2EEResourcePropertySet_1207766778585">
<resourceProperties xmi:id="J2EEResourceProperty_1207766778585" name="key" type="java.lang.String" value="value" required="false"/>

</propertySet>
</factories>
<protocolProviders xmi:id="builtin_smtp" protocol="smtp" classname="com.sun.mail.smtp.SMTPTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3" protocol="pop3" classname="com.sun.mail.pop3.POP3Store" type="STORE"/>
<protocolProviders xmi:id="builtin_imap" protocol="imap" classname="com.sun.mail.imap.IMAPStore" type="STORE"/>
<protocolProviders xmi:id="builtin_smtps" protocol="smtps" classname="com.sun.mail.smtp.SMTPSSLTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3s" protocol="pop3s" classname="com.sun.mail.pop3.POP3SSLStore" type="STORE"/>
<protocolProviders xmi:id="builtin_imaps" protocol="imaps" classname="com.sun.mail.imap.IMAPSSLStore" type="STORE"/>

</resources.mail:MailProvider>

v Required fields:
– Mail Provider Properties page: name, and at least one protocol provider
– Mail Session Properties page: name, jndiName, outgoing server and protocol, and/or incoming server

and protocol
v Special cases:

– If you use the ACRCT tool, the password field will be encrypted. You cannot encrypt the password
field if you do not use the ACRCT tool.

Mail provider settings for application clients:

Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right-click Mail Providers > and click
New. The following fields appear on the General tab:

Name:

The name of the JavaMail resource provider.

Description:

An optional description for the resource provider.

Class Path:

Specifies a list of paths or JAR file names which together form the location for the resource provider
classes.

Protocol:

Specifies the name of the protocol.

Classname:

Chapter 40. Deploying client applications 1947

Specifies the name of the class implementing the protocol. Leave this field blank if you want to use the
default implementation.

Type:

This menu contains the following two values: TRANSPORT or STORE.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Mail session settings for application clients:

Use this page to configure mail session properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Mail Providers > mail provider
instance. Right-click Mail Sessions and click New. The following fields appear on the General tab:

Name:

Represents the administrative name of the JavaMail session object.

Description:

Provides an optional description for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Mail Transport Host:

Specifies the server to connect to when sending mail.

Mail Transport Protocol:

Specifies the transport protocol to use when sending mail.

Mail Transport User:

Specifies the user ID to use when the mail transport host requires authentication.

Mail Transport Password:

Specifies the password to use when the mail transport host requires authentication.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed strictly in compliance with RFC 822, which is a
specifications document issued by the Internet Architecture Board.

1948 Developing WebSphere applications

This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses
effectively enforces a strict definition of a valid email address. If you select this setting, JavaMail will
adhere to RFC 822 syntax and reject recipient addresses that do not parse into valid email addresses (as
defined by the specification). If you do not select this setting, JavaMail will not adhere to RFC 822 syntax
and will accept recipient addresses that do not comply with the specification. By default, this setting is
deselected. You can view the RFC 822 specification at the following URL for the World Wide Web
Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Re-Enter Password:

Confirms the password.

Mail From:

Specifies the mail originator.

Mail Store Host:

Specifies the mail account host (or "domain") name.

Mail Store User:

Specifies the user ID of the mail account.

Mail Store Password:

Specifies the password of the mail account.

Re-Enter Password:

Confirms the password.

Mail Store Protocol:

Specifies the protocol to be used when receiving mail.

Mail Debug:

When true, JavaMail interaction with mail servers, along with these mail session properties are printed to
the stdout file.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring mail provider and mail session settings for application clients:

You can configure mail provider and mail session settings. This topic provides the required fields, special
cases, and an example.

The purpose of this topic is to help you configure mail provider and mail session settings.
v Required fields:

Chapter 40. Deploying client applications 1949

– Mail Provider Properties page: name, and at least one protocol provider
– Mail Session Properties page: name, jndiName, outgoing server and protocol, and/or incoming server

and protocol
v Special cases:

– If you use the ACRCT tool, the password field will be encrypted. You cannot encrypt the password
field if you do not use the ACRCT tool.

v Example:
<resources.mail:MailProvider xmi:id="builtin_mailprovider" name="Built-in Mail Provider" description="The built-in mail provider">
<factories xmi:type="resources.mail:MailSession"

xmi:id="MailSession_1207766754834" name="MailSession"
jndiName="mail/session" description="Sample mail session" category="Sample"
mailTransportHost="smtp.coldmail.com" mailTransportUser="transportUser"
mailTransportPassword="{xor}Lz4sLChvLTs="
mailFrom="smith@coldmail.com" mailStoreHost="imap.coldmail.com" mailStoreUser="storeUser"
mailStorePassword="{xor}Lz4sLChvLTs="
debug="true" strict="true"
mailTransportProtocol="builtin_smtp" mailStoreProtocol="builtin_imap">

<propertySet xmi:id="J2EEResourcePropertySet_1207766778585">
<resourceProperties xmi:id="J2EEResourceProperty_1207766778585" name="key" type="java.lang.String" value="value" required="false"/>

</propertySet>
</factories>
<protocolProviders xmi:id="builtin_smtp" protocol="smtp" classname="com.sun.mail.smtp.SMTPTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3" protocol="pop3" classname="com.sun.mail.pop3.POP3Store" type="STORE"/>
<protocolProviders xmi:id="builtin_imap" protocol="imap" classname="com.sun.mail.imap.IMAPStore" type="STORE"/>
<protocolProviders xmi:id="builtin_smtps" protocol="smtps" classname="com.sun.mail.smtp.SMTPSSLTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3s" protocol="pop3s" classname="com.sun.mail.pop3.POP3SSLStore" type="STORE"/>
<protocolProviders xmi:id="builtin_imaps" protocol="imaps" classname="com.sun.mail.imap.IMAPSSLStore" type="STORE"/>

</resources.mail:MailProvider>

Configuring new mail sessions for application clients
You can use the Application Client Resource Configuration Tool (ACRCT) to configure new mail sessions
for your application client.

Before you begin

During this task, you configure new mail sessions for your application client. The mail sessions are
associated with the pre-configured default mail provider supplied by the product.

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file. The EAR file

contents are displayed in a tree view.

2. Select the JAR file in which you want to configure the new JavaMail session.

3. Expand the JAR file to view its contents.

4. Click Mail Providers > Mail Provider > Mail Sessions. Complete one of the following actions:
v Right click the Mail Sessions folder and select New Factory.
v Click Edit > New on the menu bar.

5. Configure the Mail Session properties in the displayed fields.

6. Click OK.

7. Click File > Save on the menu bar to save your changes.

Configuring new URL providers for application clients
You can create URL providers and URLs for your client application using the Application Client Resource
Configuration Tool (ACRCT).

Before you begin

During this task, you create URL providers and URLs for your client application. In a separate
administrative task, you must install the Java code for the required URL provider on the client machine on
which the client application resides.

1950 Developing WebSphere applications

About this task

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new URL provider. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new URL provider from the tree.

4. Expand the JAR file to view the contents.

5. Click the folder called URL Providers. Complete one of the following actions:
v Right click the folder and select New.
v Click Edit > New on the menu bar.

6. Configure the URL provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Example
v Configuring URL and URL provider settings for application clients

This code example illustrates how to configure URL and URL provider settings for application clients:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"
description="urlProvider:description"
streamHandlerClassName="urlProvider:streamHandlerClass"
protocol="urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>
<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"
jndiName="urlFactory:jndiName" description="urlFactory:description"
spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"
value="urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"
value="urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>
v Required fields:

– URL Properties page: name, jndiName, url
– URL Provider Properties page: name

URLs for application clients:

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such
as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the type of resource and
the mechanism by which you can access the resource.

In a web browser location or address box, a URL for a file available using HyperText Transfer Protocol
(HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer Protocol
(FTP) start with ftp:. Files available locally start with file:.

Chapter 40. Deploying client applications 1951

The scheme_information commonly identifies the Internet machine making a resource available, the path
to that resource, and the resource name. The scheme_information for HTTP, FTP and File generally starts
with two slashes (//), then provides the Internet address separated from the resource path name with one
slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the
server generally returns the default index for the directory.

URL providers for the Application Client Resource Configuration Tool:

A URL provider implements the function for a particular URL protocol, such as HyperText Transfer Protocol
(HTTP). This provider, comprised of a pair of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Configuring URL providers and sessions using the Application Client Resource Configuration
Tool:

You can edit the configurations of URL providers and URLs to be used by your application clients using
the Application Client Resource Configuration Tool (ACRCT).

Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of URL
providers and URLs to be used by your application clients.

About this task

Procedure

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the URL objects in the tree that displays. For example, if your file contains URL providers and
URLs, expand Resources > application > .jar > URL Providers > url_provider_instance

where url_provider_instance is a particular URL provider.

4. If you expand the tree further, you will also see the URLs folders containing the URL instances for
each URL provider instance.

URL settings for application clients:

Use this page to implement the function for a particular URL protocol, such as Hyper Text Transfer
Protocol (HTTP).

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > URL Providers > URL provider
instance. Right-click URLs and click New. The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and java.net.URLConnection
classes.

Name:

The administrative name for the URL.

Description:

1952 Developing WebSphere applications

This is an optional description of the URL for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

URL:

A Uniform Resource Locator (URL) name that points to an Internet or intranet resource. For example:
http://www.ibm.com.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

URL provider settings for application clients:

Use this page create new URL providers.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right click URL Providers, and click
New. The following fields appear on the General tab.

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer
Protocol (HTTP). This provider, comprised of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Name:

Administrative name for the URL.

Description:

Optional description of the URL, for your administrative records.

Class Path:

A list of paths or JAR file names which together form the location for the resource provider classes.

Protocol:

Protocol supported by this stream handler. For example, nntp, smtp, ftp, and so on.

To use the default protocol, leave this field blank.

Stream handler class:

Fully qualified name of a User-defined Java class that extends the java.net.URLStreamHandler for a
particular URL protocol, such as FTP.

To use the default stream handler, leave this field blank.

Chapter 40. Deploying client applications 1953

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for application clients:

You can configure URL and URL provider settings. This topic provides the required fields and an example.

The purpose of this article is to help you to configure URL and URL provider settings.
v Required fields:

– URL Properties page: name, jndiName, url
– URL Provider Properties page: name

v Example:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"
description="urlProvider:description"
streamHandlerClassName="urlProvider:streamHandlerClass"
protocol="urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>
<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"
jndiName="urlFactory:jndiName" description="urlFactory:description"
spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"
value="urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"
value="urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource Configuration Tool
You can use URLs for your client application using the Application Client Resource Configuration Tool
(ACRCT).

Before you begin

During this task, you create URLs for your client application.

About this task

Procedure
1. Click the URL provider for which you want to create a URL in the tree. Complete one of the following:

v Configure a new URL provider.
v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.

3. Click the URL folder. Complete one of the following actions:
v Right click the folder and click New.
v Click Edit -> New on the menu bar.

4. Configure the URL properties in the displayed fields.

5. Click OK when you finish.

1954 Developing WebSphere applications

6. Click File > Save in the menu bar to save your changes.

Configuring Java messaging client resources
To configure Java messaging client resources, you create new JMS provider configurations for your
application client. The application client can use a messaging service through the Java Message Service
APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS connection factory, and the
other is a JMS destination factory.

Before you begin

In a separate administrative task, install the Java Message Service (JMS) client on the client machine
where the application client resides. The messaging product vendor must provide an implementation of the
JMS client. For more information, see your messaging product documentation.

Attention: When completing this task, you can either create a new messaging provider, or you can use
an existing one.

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new JMS provider. The EAR file contents are in
the displayed tree view.

3. Select the JAR file in which you want to configure the new JMS provider from the tree.

4. Expand the JAR file to view its contents.

5. Optionally right-click Messaging Providers and select New, if you want to create and use a new
messaging provider.

6. Configure the JMS provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save.

Asynchronous messaging in WebSphere Application Server using JMS:

WebSphere Application Server supports asynchronous messaging as a method of communication based
on the Java Message Service (JMS) programming interface. The JMS interface provides a common way
for Java programs (clients and Java Platform, Enterprise Edition (Java EE) applications) to create, send,
receive, and read asynchronous requests as JMS messages.

This topic provides a generic overview of asynchronous messaging using the JMS support provided by
WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the common set of JMS
interfaces and associated semantics that define how a JMS client can access the facilities of a JMS
provider. This support enables WebSphere product Java EE applications, as JMS clients, to exchange
messages asynchronously with other JMS clients, by using JMS destinations (queues or topics). A Java
EE application can use JMS queue destinations for point-to-point messaging and JMS topic destinations
for publish and subscribe messaging. A Java EE application can explicitly poll for messages on a
destination, and then retrieve messages for processing by business logic beans (enterprise beans).

With the base JMS and XA support, the Java EE application uses standard JMS calls to process
messages, including any responses or outbound messaging. An enterprise bean can handle responses
acting as a sender bean, or within the enterprise bean that receives the incoming messages. Optionally,
this process can use two-phase commit within the scope of a transaction. This level of function for
asynchronous messaging is called bean-managed messaging, and gives an enterprise bean complete
control over the messaging infrastructure, for example, connection and session pool management. The
common container has no role in bean-managed messaging.

Chapter 40. Deploying client applications 1955

WebSphere Application Server also supports automatic asynchronous messaging using message-driven
beans (a type of enterprise bean defined in the Enterprise JavaBeans (EJB) 2.0 specification) and JMS
listeners (part of the JMS application server facilities). Messages are automatically retrieved from JMS
destinations, optionally within a transaction, then sent to the message-driven bean in a Java EE
application, without the application having to explicitly poll JMS destinations.

Java Message Service providers for clients:

Client applications can use messaging resources from three main types of Java Message Service (JMS)
providers in WebSphere Application Server: The WebSphere Application Server default messaging
provider (which uses service integration as the provider), the WebSphere MQ messaging provider (which
uses your WebSphere MQ system as the provider) and third-party messaging providers (which use
another company's product as the provider).

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider
and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To
use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)
function defined within that specification, or support an inbound resource adapter as defined in the JCA
specification version 1.5.

Default messaging provider
If you mainly want to use messaging between applications in WebSphere Application Server,
perhaps with some interaction with a WebSphere MQ system, the default messaging provider is
the natural choice. This provider is based on service integration technologies and is fully integrated
with the WebSphere Application Server runtime environment.

WebSphere MQ messaging provider
If your business also uses WebSphere MQ, and you want to integrate WebSphere Application
Server messaging applications into a predominately WebSphere MQ network, choose the
WebSphere MQ messaging provider, which allows you to define resources for connecting to any
queue manager on the WebSphere MQ network.

Third-party messaging provider
You can configure any third-party messaging provider that supports the JMS Version 1.1 unified
connection factory. You might want to do this, for example, because of existing investments.

WebSphere applications can use messaging resources provided by any of these JMS providers. However
the choice of provider is most often dictated by requirements to use or integrate with an existing
messaging system. For example, you may already have a messaging infrastructure based on WebSphere
MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS
provider, or configure a service integration bus with links to a WebSphere MQ network and then access
the bus through the default messaging provider.

Configuring new JMS providers with the Application Client Resource Configuration Tool:

You can create new Java Message Service (JMS) provider configurations for the Application Client. The
Application Client makes use of a messaging service through the JMS interfaces.

About this task

During this task, you create new Java Message Service (JMS) provider configurations for the Application
Client. The Application Client makes use of a messaging service through the JMS interfaces. A JMS
provider provides two kinds of Java Platform, Enterprise Edition (Java EE) resources. One is a JMS
connection factory, and the other is a JMS destination.

In a separate administrative task, you must install the JMS client on the client machine where your
particular application client resides. The messaging product vendor must provide an implementation of the
JMS client. For more information, see your messaging product documentation.

1956 Developing WebSphere applications

Procedure

1. Start the Application Client Resource Configuration Tool and open the EAR file for which you want to
configure the new JMS provider. The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Right-click Messaging Providers. Complete one of the following actions:
v Right click the folder and select New.
v On the menu bar, click Edit > New.

5. In the resulting property dialog, configure the JMS provider properties.

6. Click OK when finished.

7. Click File > Save on the menu bar to save your changes.

Example

The following code example illustrates how to configure JMS Provider, JMS Connection Factory and JMS
Destination settings for application clients.
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description"
externalInitialContextFactory="genericJMSProvider:contextFactoryClass"
externalProviderURL="genericJMSProvider:providerUrl">
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination"
xmi:id="GenericJMSDestination_1" name="jmsDestination:name"
jndiName="jmsDestination:jndiName" description="jmsDestination:description"
externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"
value="jmsDestination:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms:GenericJMSConnectionFactory"
xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"
description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="
externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19"
name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Required fields include:
v JMS Provider Properties page: name, and at least one protocol provider
v JMS Connection Factory Properties page: name, jndiName, destination type
v JMS Destination Properties page: name, jndiName, destination type

Special cases:
v The destination type must be QUEUE, or TOPIC.

JMS provider settings for application clients:

Use this page to configure properties of the Java Message Service (JMS) provider, if you want to use a
JMS provider other than the default messaging provider or the WebSphere MQ as a JMS provider.

Chapter 40. Deploying client applications 1957

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right click Messaging Providers, and
click New. The following fields appear on the General tab.

Name:

The name by which the JMS provider is known for administrative purposes.

Information Value
Data type String

Description:

A description of the JMS provider, for administrative purposes.

Information Value
Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Context factory class:

The Java class name of the initial context factory for the JMS provider.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

Information Value
Data type String

Provider URL:

The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a JMS provider has the form: ldap://hostname.company.com/contextName.

Information Value
Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Default Provider connection factory settings:

1958 Developing WebSphere applications

Use this panel to view or change the configuration properties of the selected JMS connection factory for
use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server. These configuration properties control how connections are created between the JMS
provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Connection Factories and click New. The following fields appear on the General
tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a
drop down menu.

Name:

The name of the connection factory.

Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this Resource Adapter connection factory definition to the
deployment descriptor. This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used with the Password property for connecting to an application.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User ID and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

The password used to authenticate connection to an application.

Chapter 40. Deploying client applications 1959

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the connection factory connects.

Information Value
Data type String

Client Identifier:

The name of the client. Required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent

1960 Developing WebSphere applications

Information Value
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

Information Value
Default ReliablePersistent

Chapter 40. Deploying client applications 1961

Information Value
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Durable Subscription Home:

The name of the durable subscription home.

Information Value
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Data type Selection list
Default In cluster

1962 Developing WebSphere applications

Information Value
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

Chapter 40. Deploying client applications 1963

The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example merlin:7276:BootstrapBasicMessaging,Gandalf:

5557:BootstrapSecureMessaging where

BootstrapBasicMessaging corresponds to the remote
protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default
localhost is used as a default value.

v If the port number is not specified, then 7276 is used as
a default value.

v If the chain name is not specified, a predefined chain,
such as BootstrapBasicMessaging, is used as a default
value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus
Range Bus, Host, Cluster, Server

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

Information Value
Data type String

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider queue connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS queue connection
factory for use with the internal product Java Message Service (JMS) provider that is installed with
WebSphere Application Server. These configuration properties control how connections are created
between the JMS provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Queue Connection Factories and click New. The following fields appear on the
General tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a
drop down menu.

1964 Developing WebSphere applications

Name:

The name of the queue connection factory.

Information Value
Data type String

Description:

A description of this queue connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this queue connection factory definition to the deployment
descriptor. This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the
Properties box is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

Chapter 40. Deploying client applications 1965

The name of the bus to which the queue connection factory connects.

Information Value
Data type String

Client Identifier:

The client identifier. Required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

1966 Developing WebSphere applications

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, Destination, ME

Chapter 40. Deploying client applications 1967

Target Significance:

The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote
protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default
localhost is used as a default value.

v If the port number is not specified, then 7276 is used as
a default value.

v If the chain name is not specified, a predefined chain,
such as BootstrapBasicMessaging, is used as a default
value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus, Cluster, Server
Range Bus, Host

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider topic connection factory settings:

1968 Developing WebSphere applications

Use this panel to view or change the configuration properties of the selected JMS topic connection factory
for use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server. These configuration properties control how connections are created between the JMS
provider and the service integration bus that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Topic Connection Factories and click New. The following fields appear on the
General tab.

Settings that have a default value display that appropriate value. Any settings that have fixed values have
a drop down menu.

Name:

The name of the topic connection factory.

Information Value
Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this topic connection factory definition to the deployment descriptor.
This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

Chapter 40. Deploying client applications 1969

The password used to create an encrypted. If you complete this field, then the Password field in the
Properties box is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the topic connection factory connects.

Information Value
Data type String

Client Identifier:

The name of the client. This field is required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent

1970 Developing WebSphere applications

Information Value
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

Information Value
Default ReliablePersistent

Chapter 40. Deploying client applications 1971

Information Value
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Durable Subscription Home:

The name of the durable subscription home.

Information Value
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Data type Selection list
Default In cluster

1972 Developing WebSphere applications

Information Value
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

Chapter 40. Deploying client applications 1973

The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote
protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default
localhost is used as a default value.

v If the port number is not specified, then 7276 is used as
a default value.

v If the chain name is not specified, a predefined chain,
such as BootstrapBasicMessaging, is used as a default
value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus
Range Bus, Host, Cluster, Server

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider queue destination settings:

Use this panel to view or change the configuration properties of the selected JMS queue destination for
use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Queue Destinations. Click New. The following fields appear on the General tab.

Name:

The name of the queue destination factory. You must complete this field.

Information Value
Data type String

Description:

A description of this queue destination for administrative purposes within WebSphere Application Server.

1974 Developing WebSphere applications

Information Value
Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

Information Value
Data type String

Queue Name:

The name of the queue.

Information Value
Data type String

Delivery Mode:

The delivery mode for messages sent to this destination.

Information Value
Data type String
Range Application, Persistent or NonPersistent
Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained
by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if
the Time to Live field is not completed.

Information Value
Data type Integer
Units Milliseconds

Priority:

The priority for messages sent to this destination. The value from the producer is used if not completed.

Information Value
Data type Integer
Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

Information Value
Data type String
Range AsConnection, AlwaysOn and AlwaysOff

Chapter 40. Deploying client applications 1975

Information Value
Default AsConnection

Default Provider topic destination settings:

Use this panel to view or change the configuration properties of the selected JMS topic destination for use
with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Topic Destinations, and click New. The following fields appear on the General tab.

Name:

The name of the topic destination entry.

Information Value
Data type String

Description:

A description of the entry.

Information Value
Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

Information Value
Data type String

Topic Space:

The name of the topic space. This field is required.

Information Value
Data type String
Default DEFAULT_TOPIC_SPACE

Topic Name:

The name of the topic. This field is required.

Information Value
Data type String

Delivery Mode:

The default mode for messages sent to this destination.

1976 Developing WebSphere applications

Information Value
Data type String
Range Application, Persistent or NonPersistent
Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained
by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if
not completed.

Information Value
Data type Long
Units Milliseconds

Priority:

The priority for messages sent to this destination. Value from producer is used if not completed.

Information Value
Data type Integer
Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

Information Value
Data type String
Range AsConnection, AlwaysOn and AlwaysOff
Default AsConnection

WebSphere MQ Provider queue connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected queue connection factory for
use with the WebSphere MQ Java Message Service (JMS) provider. These configuration properties control
how connections are created between the JMS provider and WebSphere MQ.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file and click Messaging Providers >
WebSphere MQ Provider. Right click Queue Connection Factories, and click New. The following fields
are displayed on the General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters, except for channels which
have a maximum of 20 characters.

A queue connection factory for the JMS provider has the following properties.

Name:

Chapter 40. Deploying client applications 1977

The name by which this queue connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the JMS connection factories across the WebSphere
administrative domain.

Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the password property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

The connection factory user ID and password properties are used if the calling application does not
provide a user ID and password explicitly; for example, if the calling application uses the method
createQueueConnection(). The JMS client flows the user ID and password to the JMS server.

Information Value
Data type String

Password:

The password used, with the user ID property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

Information Value
Data type String
Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory.

Connections created by this factory connect to that queue manager.

1978 Developing WebSphere applications

Information Value
Data type String

Enter Hostname and Port Information:

This radio button is selected by default and, if selected, enables the host and port properties and disables
the connection name list property.

Information Value
Data type Radio button
Default Selected

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

Information Value
Data type String
Default Null
Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection
only.

This port must be configured on the WebSphere MQ queue manager.

Information Value
Data type Integer
Default Null
Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Enter Connection Name List Information:

If selected, this radio button enables the connection name list property and disables the host and port
name properties. Select this radio button if you want to connect to a multi-instance queue manager.

Information Value
Data type Radio button
Default Cleared

Connection Name List:

A comma-separated list of host and port information which can be used to connect to a multi-instance
queue manager.

The format of the list is:

host[(port)],[host[(port)]]

where port is optional and defaults to 1414 if it is not set. For example:

hostname1,hostname2(1415)

Chapter 40. Deploying client applications 1979

For further information about multi-instance queue managers, see the WebSphere MQ information center.

This property must only be used for connecting to a multi-instance queue manager. It must not be used for
connecting to a list of distinct queue managers as that can result in transaction integrity issues.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection
only.

Information Value
Data type String
Default Null
Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNDI bindings are used for connection to the
WebSphere MQ queue manager. The external JMS provider controls the communication protocols
between JMS clients and JMS servers. Tune the transport type when you are using non-ASF
nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and
the client is local to the queue manager node.

Information Value
Data type Enum
Units Not applicable
Default BINDINGS
Range BINDINGS

JNDI bindings are used to connect to the queue manager. BINDINGS is a
shared memory protocol and can only be used when the queue manager is on
the same node as the JMS client and poses security risks that must be
addressed through the use of EJB roles.

CLIENT
WebSphere MQ client connection is used to connect to the queue manager.
CLIENT is a typical TCP-based protocol.

DIRECT
For WebSphere MQ Event Broker using DIRECT mode. DIRECT is a
lightweight sockets protocol used in nontransactional, nondurable, and
nonpersistent Publish/Subscribe messaging. DIRECT only works for clients
and message-driven beans using the non-ASF protocol.

QUEUED
QUEUED is a standard TCP protocol.

1980 Developing WebSphere applications

Information Value
Recommended Queue connection factory transport type

BINDINGS is faster by 30% or more, but it requires correctly set up EJB roles
to guarantee security. If you have security concerns and need to use CLIENT
then you should make appropriate use of SSL to secure the connection to the
queue manager.

Topic connection factory transport type
DIRECT is the fastest type and must be used where possible. Use BINDINGS
when you want to satisfy additional security tasks and the queue manager is
local to the JMS client. QUEUED is the fallback for all other cases.
WebSphere MQ 5.3 before CSD2 with the DIRECT setting can lose messages
when used with message-driven beans and under load. This loss also
happens with client-side applications unless the broker maxClientQueueSize is
set to 0. You can set this value to 0 with the command:

#wempschangeproperties WAS_nodeName_server1
-e default -o DynamicSubscriptionEngine -n
maxClientQueueSize -v 0 -x executionGroupUUID

where executionGroupUUID can be found by starting the broker and looking in
the Event Log/Applications for event 2201. This value is usually
ffffffff-0000-0000-000000000000.

Note: The WebSphere MQ 5.3 JMS cannot be used within WebSphere Application
Server Version 6.1 because WebSphere Application Server Version 6.1 has a Java 5
runtime. Therefore, cross-memory connections cannot be established with WebSphere
MQ 5.3 queue managers. This can result in a performance degradation if you were
previously using WebSphere MQ 5.3 and BINDINGS for your connections and move to
CLIENT network connections in migrating to WebSphere Application Server Version 6.1.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

Information Value
Data type String

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

Information Value
Data type String

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and Application Programming Reference
sections of the WebSphere MQ information center.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,
unwanted messages are handled according to their disposition options.

Information Value
Data type Enum

Chapter 40. Deploying client applications 1981

Information Value
Units Not applicable
Default Cleared
Range Selected

Unwanted messages are left on the queue.
Cleared

Unwanted messages are handled according to
their disposition options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory
does not already exist.

Information Value
Data type String
Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

Information Value
Data type String

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled
failure.

Information Value
Data type Check box
Default Selected

Local Server Address:

Specifies the local server address.

Information Value
Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message
delivery

Information Value
Data type Integer
Units Milliseconds
Default 5000

Rescan interval:

1982 Developing WebSphere applications

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have
been added to a topic out of order.

This interval controls the scanning for messages that have been added to a topic out of order with respect
to a WebSphere MQ browse cursor.

Information Value
Data type Integer
Units Milliseconds
Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

Set this property to a valid cipher suite provided by your JSSE provider. The value must match the
CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate
revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version
1.4.

The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At
connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.
For more information about CRL security, see the information about “Working with Certificate Revocation
Lists” in the Security section of the WebSphere MQ information center.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue
manager. The distinguished name is used to check the identifying certificate presented by the server at
connection time.

If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the
connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at
least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the information about
“Distinguished Names” in the WebSphere MQ information center.

Chapter 40. Deploying client applications 1983

Connection pool:

Specifies an optional set of connection pool settings.

Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.
This connection pooling is independent from any WebSphere MQ connection pooling. You must configure
the connection and session pool properties appropriately for your applications, otherwise you might not get
the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the
default value. The size of the connection pool is set on a per queue or topic basis.

Information Value
Data type Check box
Default Selected

Client reconnect options:

Specifies whether a client mode connection reconnects automatically, or not, in the event of a
communications or queue manager failure. This property is ignored unless the connection factory is being
used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED
Range

DISABLED
The client reconnection does not automatically
occur.

ASDEF The value from the DefRecon attribute from the
channels stanza of the client configuration file is
used. If there is no DefRecon value specified
then this setting has the same effect as a value
of DISABLED.

RECONNECT
Reconnection occurs to any queue manager
consistent with the value of the queue manager
attribute, which might be a different queue
manager from that to which the connection was
originally connected.

QMGR Reconnection only occurs to the queue manager
to which the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout:

The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

1984 Developing WebSphere applications

Information Value
Data type Integer
Units Seconds
Default 1800
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

WebSphere MQ Provider topic connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected topic connection factory for
use with the WebSphere MQ Java Message Service (JMS) provider. These configuration properties control
how connections are created between the JMS provider and WebSphere MQ.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere
MQ Provider. Right-click Topic Connection Factories and click New.

Note:
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ
JMS resources, see the Using Java section of the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters, except for channels which
have a maximum of 20 characters.

MA0C broker: When creating a WebSphere Application Server Version 6 topic connection factory
for the MA0C broker, consider the following attribute values:

BrokerControlQueue
This value is fixed at SYSTEM.BROKER.CONTROL.QUEUE for the MA0C broker and is
the queue the broker reads from.

BrokerVersion
Set this value to BASIC for the MA0C broker.

ClientID
Set this value to whatever you like for the MA0C broker (the value is string and is merely
an identifier for your client application).

XA Enabled
Set this value to TRUE or FALSE for the MA0C broker (the setting you use is a
performance enhancement flag - you probably want to set this value to 'true' most of the
time).

BrokerMessage Selection
This value is fixed at CLIENT for the MA0C broker because the broker relies on client side
message selection.

Direct Broker Authorization Type
This value is not required by the MA0C broker.

A topic connection factory for the WebSphere MQ JMS provider has the following properties.

Name:

The name by which this topic connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the JMS provider.

Chapter 40. Deploying client applications 1985

Information Value
Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The Java Naming and Directory Interface (JNDI) name that is used to bind the topic connection factory
into the application server name space.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 45 ASCII characters

User ID:

The user ID used, with the password property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

The connection factory user ID and password properties are used if the calling application does not
provide a user ID and password explicitly, for example, if the calling application uses the method
createTopicConnection(). The JMS client flows the user ID and password to the JMS server.

Information Value
Data type String

Password:

The password used, with the user ID property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

Information Value
Data type String

Re-Enter Password:

1986 Developing WebSphere applications

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this
connection factory connect to this queue manager.

Information Value
Data type String

Enter Hostname and Port Information:

This radio button is selected by default and, if selected, enables the host and port properties and disables
the connection name list property.

Information Value
Data type Radio button
Default Selected

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connections only.

Information Value
Data type String
Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection
only.

This port must be configured on the WebSphere MQ queue manager.

Information Value
Data type Integer
Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Enter Connection Name List Information:

If selected, this radio button enables the connection name list property and disables the host and port
name properties. Select this radio button if you want to connect to a multi-instance queue manager.

Information Value
Data type Radio button
Default Cleared

Connection Name List:

A comma-separated list of host and port information which can be used to connect to a multi-instance
queue manager.

The format of the list is:

Chapter 40. Deploying client applications 1987

host[(port)],[host[(port)]]

where port is optional and defaults to 1414 if it is not set. For example:

hostname1,hostname2(1415)

For further information about multi-instance queue managers, see the WebSphere MQ information center.

This property must only be used for connecting to a multi-instance queue manager. It must not be used for
connecting to a list of distinct queue managers as that can result in transaction integrity issues.

Channel:

The name of the channel used for client connections to the WebSphere MQ queue manager, for client
connection only.

Information Value
Data type String
Range 1 through 20 ASCII characters

Transport Type:

Whether WebSphere MQ client connection or JNDI bindings are used for connection to the WebSphere
MQ queue manager.

Information Value
Data type Enum
Default BINDINGS
Range CLIENT

WebSphere MQ client connection is used to
connect to the WebSphere MQ queue manager.

BINDINGS
JNDI bindings are used to connect to the
WebSphere MQ queue manager.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

Information Value
Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs that WebSphere MQ supports.
See the properties for the topic destination for more details.

Information Value
Data type String
Units Integer
Range 1 through 65535

Broker Control Queue:

1988 Developing WebSphere applications

The name of the broker control queue to which all command messages (except publications and requests
to delete publications) are sent.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the WebSphere MQ queue manager that provides the Publisher and Subscriber message
broker.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Publish Queue:

The name of the broker input queue that receives all publication messages for the default stream.

The name of the broker's input queue (stream queue) that receives all publication messages for the
default stream. Applications can also send requests to delete publications on the default stream to this
queue.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Subscribe Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

The name of the broker queue from which nondurable subscription messages are retrieved. The
subscriber specifies the name of the queue when it registers a subscription.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker CCSubQ:

The name of the broker queue from which nondurable subscription messages are retrieved for a
ConnectionConsumer request. This property applies only for use of the web container.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Chapter 40. Deploying client applications 1989

Broker Version:

Whether the message broker is provided by the WebSphere MQ MA0C SupportPac or newer versions of
WebSphere family message broker products.

Information Value
Data type Enum
Default Advanced
Range Advanced

The message broker is provided by newer
versions of WebSphere family message broker
products (WebSphere MQ Integrator and
WebSphere MQ Publish and Subscribe).

Basic The message broker is provided by the
WebSphere MQ MA0C SupportPac (WebSphere
MQ - Publish and Subscribe).

Cleanup level:

The level of cleanup provided by the publish or subscribe cleanup utility.

Information Value
Data type Enum
Default SAFE
Range

ASPROP

NONE

STRONG

Cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

Information Value
Data type Integer
Units Milliseconds
Default 6000

Message selection:

Where broker message selection is performed.

Information Value
Data type Enum
Default BROKER
Range

BROKER
Message selection is performed at the broker
location.

Message CLIENT
Message selection is performed at the client
location.

Publish acknowledge interval:

1990 Developing WebSphere applications

The interval, in number of messages, between publish requests that require acknowledgment from the
broker.

Information Value
Data type Integer
Default 25

Sparse subscriptions:

Enables sparse subscriptions.

Information Value
Data type Check box
Default Cleared

Status refresh interval:

The interval, in milliseconds, between transactions to refresh the publish or subscribe status.

Information Value
Data type Integer
Default 6000

Subscription store:

Where WebSphere MQ stores data relating to active JMS subscriptions.

Information Value
Data type Enum
Default MIGRATE
Range

MIGRATE

QUEUE

BROKER

Multicast:

Whether this connection factory uses multicast transport.

Information Value
Data type Enum
Default NOT USED

Chapter 40. Deploying client applications 1991

Information Value
Range

NOT USED
This connection factory does not use multicast
transport.

ENABLED
This connection factory always uses multicast
transport.

ENABLED_IF_AVAILABLE
This connection factory uses multicast transport.

ENABLED_RELIABLE
This connection factory uses reliable multicast
transport.

ENABLED_RELIABLE_IF_AVAILABLE
This connection factory uses reliable multicast
transport if available.

Direct authentication:

Whether to use direct broker authorization.

Information Value
Data type Enum
Default NONE
Range

NONE Direct broker authorization is not used.

PASSWORD
Direct broker authorization is authenticated with a
password.

CERTIFICATE
Direct broker authorization is authenticated with a
certificate.

Proxy Host Name:

The host name of a proxy to be used for communication with WebSphere MQ.

Information Value
Data type String

Proxy Port:

The port number of a proxy to be used for communication with WebSphere MQ.

Information Value
Data type Integer
Default 0

Fail if quiesce:

Whether applications return from a method call if the queue manager has entered a controlled failure.

1992 Developing WebSphere applications

Information Value
Data type Check box
Default Selected

Local Server Address:

The local server address.

Information Value
Data type String

Polling Interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery.

Information Value
Data type Integer
Units Milliseconds
Default 5000

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added
to a topic out of order.

The rescan interval controls the scanning for messages that have been added to a topic out of order with
respect to a WebSphere MQ browse cursor.

Information Value
Data type Integer
Units Milliseconds
Default 5000

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

Set this property to a valid cipher suite provided by your JSSE provider. The value must match the
CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

A list of zero or more Certificate Revocation List (CRL) servers that are used to check for SSL certificate
revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version
1.4.

The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At
connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

Chapter 40. Deploying client applications 1993

For more information about CRL security, see the information about “Working with Certificate Revocation
Lists” in the Security section of the WebSphere MQ information center.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue
manager. The distinguished name is used to check the identifying certificate presented by the server at
connection time.

If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the
connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at
least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the information about
“Distinguished Names” in the Security section of the WebSphere MQ information center.

Connection pool:

An optional set of connection pool settings.

Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.
This connection pooling is independent from any WebSphere MQ connection pooling. You must configure
the connection and session pool properties appropriately for your applications, otherwise you might not get
the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the
default value. The size of the connection pool is set on a per queue or topic basis.

Information Value
Data type Check box
Default Selected

Client reconnect options:

Specifies whether a client mode connection reconnects automatically, or not, in the event of a
communications or queue manager failure. This property is ignored unless the connection factory is being
used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED

1994 Developing WebSphere applications

Information Value
Range

DISABLED
The client reconnection does not automatically
occur.

ASDEF The value from the DefRecon attribute from the
channels stanza of the client configuration file is
used. If there is no DefRecon value specified
then this setting has the same effect as a value
of DISABLED.

RECONNECT
Reconnection occurs to any queue manager
consistent with the value of the queue manager
attribute, which might be a different queue
manager from that to which the connection was
originally connected.

QMGR Reconnection only occurs to the queue manager
to which the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout:

The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Information Value
Data type Integer
Units Seconds
Default 1800
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

WebSphere MQ Provider queue destination settings for application clients:

Use this panel to view or change the configuration properties of the selected queue destination for use
with the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file and click Messaging Providers >
WebSphere MQ Provider. Right-click Queue Destinations and click New. The following fields are
displayed on the General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java in the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters.

A queue for use with the WebSphere MQ product JMS provider has the following properties.

Name:

Chapter 40. Deploying client applications 1995

The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

A description of the queue, for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI Name:

The application client runtime environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent or have their persistence
defined by the application.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

Messages on the destination have their persistence defined by the
application that put them onto the queue.

Queue defined
[WebSphere MQ destination only] Messages on the destination have
their persistence defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Nonpersistent
Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority
property.

Information Value
Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range Application defined

The priority of messages on this destination is defined by the
application that put them onto the destination.

Queue defined
[WebSphere MQ destination only] Messages on the destination have
their persistence defined by the WebSphere MQ queue definition
properties.

Specified
The priority of messages on this destination is defined by the
Specified priority property. If you select this option, you must define
a priority on the Specified priority property.

1996 Developing WebSphere applications

Specified Priority:

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0
(lowest) through 9 (highest).

Information Value
Data type Integer
Units Message priority level
Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout value for this queue is defined by the application or the by Specified expiry
property or whether messages on the queue never expire (have an unlimited expiry time out).

Information Value
Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range Application defined

The expiry timeout for messages on this queue is defined by the
application that put them onto the queue.

Specified
The expiry timeout for messages on this queue is defined by the
Specified expiry property. If you select this option, you must define
a timeout on the Specified expiry property.

Unlimited
Messages on this queue have no expiry timeout and those
messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)
after which messages on this queue expire.

Information Value
Data type Integer
Units Milliseconds
Range Greater than or equal to 0

v 0 indicates that messages never time out
v Other values are an integer number of milliseconds

Base Queue Name:

The name of the queue to which messages are sent, on the queue manager specified by the Base queue
manager name property.

Information Value
Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

This queue manager provides the queue specified by the Base queue name property.

Chapter 40. Deploying client applications 1997

Information Value
Data type String
Units En_US ASCII characters
Range A valid WebSphere MQ Queue Manager name, as 1 through 48 ASCII

characters

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ
queue manager. See the WebSphere MQ messaging provider queue and topic advanced properties
settings for more details.

Information Value
Data type String

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal integer encoding is used.
REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal decimal encoding is used.
REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

Information Value
Data type Enum
Default IEEENORMAL

1998 Developing WebSphere applications

Information Value
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
S390 S390 floating point encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java
platform) when you select this check box.

Information Value
Data type Enum
Default Cleared
Range Cleared

Native encoding is not used, so specify the following properties for
integer, decimal and floating point encoding.

Selected
Native encoding is used (to provide appropriate encoding values for
the Java platform).

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Target client:

Whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

Information Value
Data type Enum
Default WebSphere MQ
Range WebSphere MQ

The target is a traditional WebSphere MQ application that does not
support JMS.

JMS The target application supports JMS.

Message body:

Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED

Chapter 40. Deploying client applications 1999

Information Value
Range UNSPECIFIED

When sending messages, the WebSphere MQ messaging provider
does or does not generate and include an RFH version 2 header,
depending on the value of the Append RFH version 2 headers to
messages sent to this destination property. When receiving
messages, the WebSphere MQ messaging provider acts as if the
value is set to JMS.

JMS When sending messages, the WebSphere MQ messaging provider
automatically generates an RFH version 2 header and includes it in
the WebSphere MQ message. When receiving messages, the
WebSphere MQ messaging provider sets the JMS message
properties according to values in the RFH version 2 header (if these
value are present); it does not present the RFH version 2 header as
part of the JMS message body.

MQ When sending messages, the WebSphere MQ messaging provider
does not generate an RFH version 2 header. When receiving
messages, the WebSphere MQ messaging provider presents the
RFH version 2 header as part of the JMS message body.

ReplyTo destination style:

Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information in the RFH version
2 header.

MQMD Use the value supplied in the MQMD. This populates the reply to
queue manager field with the value from the MQMD, equivalent to
the default behaviour of WebSphere MQ Version 6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2 header. If the sending
application set a JMSReplyTo value, then that value is used.

MQMD read enabled:

Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the MQMD fields.
Selected

Applications can read the values of the MQMD fields.

MQMD write enabled:

Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box

2000 Developing WebSphere applications

Information Value
Default Cleared
Range Cleared

Applications cannot write the values of the MQMD fields.
Selected

Applications can write the values of the MQMD fields.

MQMD message context:

Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO structure specify no explicit
message context options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_IDENTITY_CONTEXT, and the MQPMO structure
specifies MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_ALL_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider topic destination settings for application clients:

Use this panel to view or change the configuration properties of the selected topic destination for use with
the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere
MQ Provider. Right click Topic Destinations, and click New. The following fields are displayed on the
General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java in the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A
topic for use with the WebSphere MQ product JMS provider has the following properties.

Name:

Chapter 40. Deploying client applications 2001

The name by which the topic is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

A description of the topic for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI Name:

The application client runtime environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence
defined by the application.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

Messages on the destination have their persistence defined by the application
that put them in the queue.

Queue defined
[WebSphere MQ destination only] Messages on the destination have their
persistence defined by the WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Nonpersistent
Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority
property.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

The priority of messages on this destination is defined by the application that
put them in the destination.

Queue defined
[WebSphere MQ destination only] Messages on the destination have their
persistence defined by the WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is defined by the Specified
priority property. If you select this option, you must define a priority for the
Specified priority property.

Specified Priority:

2002 Developing WebSphere applications

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0
(lowest) through 9 (highest).

If the Priority property is set to Specified, messages sent to this queue have the priority value specified
by this property.

Information Value
Data type Integer
Units Message priority level
Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or by the Specified expiry
property, or whether messages on the queue never expire (have an unlimited expiry timeout).

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

The expiry timeout for messages on this queue is defined by the application
that put them in the queue.

Specified
The expiry timeout for messages in this queue is defined by the Specified
expiry property. If you select this option, you must define a timeout value for
the Specified expiry property.

Unlimited
Messages on this queue have no expiry timeout, and these messages never
expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type the number of milliseconds (greater than 0) after
which messages on this queue expire.

Information Value
Data type Integer
Units Milliseconds
Range Greater than or equal to 0

v 0 indicates that messages never time out.
v Other values are an integer number of milliseconds.

Base Topic Name:

The name of the topic to which messages are sent.

Information Value
Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs that WebSphere MQ supports.

Chapter 40. Deploying client applications 2003

Information Value
Data type String
Units Integer
Range 1 through 65535

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal integer encoding is used.
REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal decimal encoding is used.
REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

Information Value
Data type Enum
Default IEEENORMAL
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
S390 S/390® floating point encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java
platform) when you select this check box.

2004 Developing WebSphere applications

Information Value
Data type Enum
Default Cleared
Range Cleared

Native encoding is not used, so specify the previous properties for integer,
decimal and floating point encoding.

Selected
Native encoding is used (to provide appropriate encoding values for the Java
platform).

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

BrokerDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved.

The subscriber specifies the name of the queue when it registers a subscription.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

BrokerCCDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved for a
ConnectionConsumer. This property applies only for use of the web container.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Target Client:

Whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

Information Value
Data type Enum
Default WebSphere MQ
Range WebSphere MQ

The target is a traditional WebSphere MQ application that does not support
JMS.

JMS The target application supports JMS.

Message body:

Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED

Chapter 40. Deploying client applications 2005

Information Value
Range UNSPECIFIED

When sending messages, the WebSphere MQ messaging provider does or
does not generate and include an RFH version 2 header, depending on the
value of the Append RFH version 2 headers to messages sent to this
destination property. When receiving messages, the WebSphere MQ
messaging provider acts as if the value is set to JMS.

JMS When sending messages, the WebSphere MQ messaging provider
automatically generates an RFH version 2 header and includes it in the
WebSphere MQ message. When receiving messages, the WebSphere MQ
messaging provider sets the JMS message properties according to values in
the RFH version 2 header (if these value are present); it does not present the
RFH version 2 header as part of the JMS message body.

MQ When sending messages, the WebSphere MQ messaging provider does not
generate an RFH version 2 header. When receiving messages, the
WebSphere MQ messaging provider presents the RFH version 2 header as
part of the JMS message body.

ReplyTo destination style:

Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information in the RFH version 2 header.
MQMD Use the value supplied in the MQMD. This populates the reply to queue

manager field with the value from the MQMD, equivalent to the default
behaviour of WebSphere MQ Version 6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2 header. If the sending application
set a JMSReplyTo value, then that value is used.

Multicast:

Whether this connection factory uses multicast transport.

Information Value
Data type Enum
Default AS_CF
Range

AS_CF This connection factory uses multicast transport.

DISABLED
This connection factory does not use multicast transport.

NOT_RELIABLE
This connection factory always uses multicast transport.

RELIABLE
This connection factory uses multicast transport when the topic destination is
not reliable.

ENABLED
This connection factory uses reliable multicast transport.

MQMD read enabled:

2006 Developing WebSphere applications

Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the MQMD fields.
Selected

Applications can read the values of the MQMD fields.

MQMD write enabled:

Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot write the values of the MQMD fields.
Selected

Applications can write the values of the MQMD fields.

MQMD message context:

Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO structure specify no explicit message
context options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_IDENTITY_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_ALL_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

Generic JMS connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected Java Message Service (JMS)
connection factory for use with the associated JMS provider. These configuration properties control how
connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers >
new_JMS_Provider_instance. Right-click Connection Factories, and click New. The following fields are
displayed on the General tab.

Chapter 40. Deploying client applications 2007

A Java Message Service (JMS) connection factory creates connections to JMS destinations. The JMS
connection factory is created by the associated JMS provider. A JMS connection factory for a generic JMS
provider (other than the internal default messaging provider or WebSphere MQ as a JMS provider) has the
following properties:

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM
WebSphere Application Server. The name must be unique within the associated JMS provider.

Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String
Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

Indicates the user ID used with the Password property, for authentication if the calling application does
not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not
provide a userid and password explicitly; for example, if the calling application uses the method
createQueueConnection(). The JMS client flows the userid and password to the JMS server.

Information Value
Data type String

Password:

The password used with the User ID property for authentication if the calling application does not provide
a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for the Password property.

Information Value
Data type String
Default Null

Re-Enter Password:

Confirms the password entered in the Password field.

2008 Developing WebSphere applications

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

As a convention, use the fully qualified JNDI name, for example, jms/Name, where Name is the logical
name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI API by the
platform.

Information Value
Data type String

Connection Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publication or subscription).

Select one of the following options:
Queue

A JMS queue destination for point-to-point messaging.
Topic A JMS topic destination for publish subscribe messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Generic JMS destination settings for application clients:

Use this panel to view or change the configuration properties of the selected JMS destination for use with
the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > new JMS
Provider instance. Right-click Destinations, and click New. The following fields are displayed on the
General tab.

A JMS destination is used to configure the properties of a JMS destination for the associated generic JMS
provider. Connections to the JMS destination are created by the associated JMS connection factory. A
JMS destination for use with a generic JMS provider (not the default messaging provider or WebSphere
MQ as a JMS provider) has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

Chapter 40. Deploying client applications 2009

A description of the queue, for administrative purposes.

JNDI Name:

The JNDI name of the actual (physical) name of the JMS destination bound into JNDI.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Destination Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publishing or subscribing).

Select one of the following options:
Queue

A JMS queue destination for point-to-point messaging.
Topic A JMS topic destination for pub/sub messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JMS provider, JMS connection factory and JMS destination settings for
application clients:

You can configure JMS Provider, JMS Connection Factory and JMS Destination settings. This topic
provides the required fields, special cases, and an example.

The purpose of this article is to help you to configure JMS Provider, JMS Connection Factory and JMS
Destination settings.
v Required fields include:

– JMS Provider Properties page: name, and at least one protocol provider
– JMS Connection Factory Properties page: name, jndiName, destination type
– JMS Destination Properties page: name, jndiName, destination type

v Special cases:
– The destination type must be QUEUE, or TOPIC.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description"
externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

2010 Developing WebSphere applications

externalProviderURL="genericJMSProvider:providerUrl">
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination"
xmi:id="GenericJMSDestination_1" name="jmsDestination:name"
jndiName="jmsDestination:jndiName" description="jmsDestination:description"
externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"
value="jmsDestination:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms:GenericJMSConnectionFactory"
xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"
description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="
externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19"
name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Configuring new JMS connection factories for application clients
Use this task to create a new Java Message Service (JMS) connection factory configuration for your
application client.

Procedure
1. Click the JMS provider for which you want to create a connection factory in the tree. Complete one of

the following actions:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its Connection Factories folder.

3. Click the connection factory folder, and complete one of the following actions:
v Right-click the folder and selectNew.
v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new JMS destinations for application clients
Use this task to create a new Java Message Service (JMS) destination configuration for your application
client.

Procedure
1. Click the JMS provider in the tree for which you want to create a destination. Complete one of the

following actions:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its Destinations folder.

3. Click the provider folder, and complete one of the following actions:
v Right-click the folder and select New.
v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the displayed fields.

Chapter 40. Deploying client applications 2011

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new resource environment providers for application clients
You can create new resource environment provider configurations for your application client using the
Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment provider configurations for your application client.

About this task

To configure a new resource environment provider, perform the following steps:

Procedure
1. Start the Application Configuration Resource Tool and open the EAR file for which you want to

configure the new Java Message Service (JMS) provider. The EAR file contents display in a tree view.

2. Select from the tree the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Click the Resource Environment Providers folder. Take one of the following actions:
v Right-click the provider folder, and click New.
v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients:

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected Java Archive (JAR) file. Right-click Resource
Environment Providers, and click New. The following fields are displayed on the General tab:

Name:

Specifies the administrative name for the resource environment provider.

Description:

Specifies a description of the resource environment provider for your administrative records.

Class Path:

Specifies the path to the JAR file that contains the implementation classes for the resource environment
provider.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

2012 Developing WebSphere applications

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application clients
You can create new resource environment entries for your client application using the Application Client
Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment entries for your client application.

About this task

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new resource environment entry. The EAR file
contents are in the displayed tree view.

3. Click the desired resource environment provider, and complete the following action to configure new
providers:
v Configure a new resource environment provider.

4. Expand the resource environment provider to view the Resource Environment Entries folder.

5. Click the resource environment entries folder, and complete one of the following actions:
v Right-click the folder and select New.
v Click Edit > New on the menu bar.

6. Configure the resource environment entry properties in the displayed fields.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients:

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Environment Providers >
resource environment instance. Right-click Resource Environment Entries, and click New. The following
fields appear on the General tab:

Name:

Specifies the administrative name for the resource environment entry.

Description:

Specifies a description of the URL for your administrative records.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming
subcontexts.

Use this name to link to the binding information of the platform. The binding associates the resources
defined in the deployment descriptor of the module to the actual (or physical) resources bound into JNDI
by the platform.

Chapter 40. Deploying client applications 2013

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring Resource Environment settings:

You can configure Resource Environment settings. This topic provides the required fields and an example.

The purpose of this topic is to help you configure Resource Environment settings.
v Required fields:

– Resource Environment Provider page: Name
– Resource Environment Entry page: Name, JNDI Name

v Example:
<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"
name="resourceEnvProvider:name" description="resourceEnvProvider:description">
<classpath>resourceEnvProvider:classpath</classpath>
<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"
name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"
description="resourceEnvEntry:description">
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_21">
<resourceProperties xmi:id="J2EEResourceProperty_23"
name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>
</propertySet>
</resources.env:ResourceEnvironmentProvider>

Example: Configuring resource environment custom settings for application clients:

You can configure resource environment custom settings.

The purpose of this topic is to help you configure resource environment custom settings.
v The custom page applies to every resource type. You can specify as many custom names and values

as you need.
v Example:
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>

Running a Java EE client application with launchClient
After deploying a Java EE client application onto a machine with an Application Client installation or in a
WebSphere Application Server node, you can start the application by using the launchClient command on
that machine.

Before you begin

Before you can use the launchclient command to run a Java EE client application, you must have
deployed the application.

2014 Developing WebSphere applications

This task only applies to Java EE client applications.

About this task

The Java Platform, Enterprise Edition (Java EE) specification requires support for a client container that
runs Java applications (known as Java EE client applications) and provides Java EE services to the
applications. Java EE services include naming, security, and resource connections.

Procedure
1. Enter the following command to launch Java EE application clients:

app_client_root/bin/launchClient

2. Pass parameters to the launchClient command or to your application client program as well. The
launchClient command allows you to do both. The launchClient command requires that the first
parameter is either:
v An EAR file specifying the application client to launch.
v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool:
launchClient [-profileName pName | -JVMOptions options | -help | -?] userapp [-CCname=value] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CCname=value is the client container name-value pair parameter. See the client container
parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The
-profileName option is not required for running in a single profile environment or in an Application
Clients installation.

The default is default_profile.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around
the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are
ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:
v The command line
v A properties file
v System properties

The parameters are resolved in the order listed above, with command line values having the highest
priority and system properties the lowest. Using this prioritization you can set and override default
values.

3. Specify the server name.

By default, the launchClient command uses
the localhost for the BootstrapHost property value.

This setting is effective for testing your application client when it is installed on the same computer as
the server. However, in other cases override this value with the name of your server. You can override
the BootstrapHost value by invoking launchClient command with the following parameters:
launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name
to the launchClient shell.

Chapter 40. Deploying client applications 2015

Security is controlled by the server. You do not need to configure security on the client because the
client assumes that security is enabled. If server security is not enabled, then the server ignores the
security request, and the application client functions as expected.

Example

You can store launchClient values in a properties file, which is a good method for distributing default
values. You can then override one or more values on the command line. The format of the file is one
launchClient -CC parameter per line without the -CC prefix. For example:

verbose=true classpath=c:\mydir\util.jar;c:\mydir\harness.jar;c:\production\G19
\global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=c:\WebSphere\mylog.txt

verbose=true classpath=/usr/lpp/mydir/util.jar;/usr/lpp/mydir/harness.jar;/usr/lpp
/production/G19/global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=/usr
/lpp/WebSphere/mylog.txt

launchClient tool
This topic describes the Java Platform, Enterprise Edition (Java EE) command line syntax for the
launchClient tool for WebSphere Application Server.

Important: All users who run commands from a specific profile must have authority to modify files that are
created by other users that use the same profile. Otherwise, you might see a permission
denied error in the log files. To avoid this issue, consider one of the following policies:

v Use specific profiles for distinct user authorities

v Always use the same user for all of the commands that are run in a given profile

v Ensure that all users of a specific profile belong to the same group. In addition, ensure that
each user of a group has the read and write authority to the files that are created by other
members in the same profile.

The following example illustrates the command line invocation syntax for the launchClient tool:
launchClient [-profileName pName | -JVMOptions options | -help | -?] userapp [-CCname=value] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CCname=value is the client container name-value pair parameter. See the client container parameters
section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The
-profileName option is not required for running in a single profile environment or in an Application
Clients installation.

The default is default_profile.

v -JVMOptions is a valid Java standard or nonstandard option string, except -cp or -classpath. Insert
quotation marks around the string.

v -help, -? prints the usage information.

The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and
-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.
All other parameters are optional and can appear in any order after the userapp parameter. The Java EE
Application client run time ignores any optional parameters that do not begin with a -CC prefix and passes
those parameters to the application client.

2016 Developing WebSphere applications

Client container parameters

Supported arguments include:

-CCadminConnectorHost
Specifies the host name of the server from which configuration information is retrieved.

The default is the value of the -CCBootstrapHost parameter or the value, localhost, if the
-CCBootstrapHost parameter is not specified.

-CCadminConnectorPort
Indicates the port number for the administrative client function to use. The default value is 8880 for
SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType
Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection
type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

-CCadminConnectorUser
Administrative clients use this user name when a server requires authentication. If the connection type
is SOAP, and security is enabled on the server, this parameter is required.

-CCadminConnectorPassword
The password for the user name that the -CCadminConnectorUser parameter specifies.

-CCaltDD
The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter
to specify the deployment descriptor to use. Use this argument when a client JAR file is configured
with more than one deployment descriptor. Set the value to null to use the client JAR file standard
deployment descriptor.

-CCBootstrapHost
The name of the host server you want to connect to initially. The format is:
your_server_of_choice.com

-CCBootstrapPort
The server port number. If you do not specify this argument, the WebSphere Application Server default
value is used.

-CCclassLoaderMode
Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from
the local class path before delegating the class loading to its parent. The classes loaded for the
following are affected:

v Classes defined for the Java EE application client

v Resources defined in the Java EE application

v Classes specified on the manifest of the Java EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to
delegate the loading of classes to its parent class loader before attempting to load the class from its
local class path.

-CCclasspath
A class path value. When you launch an application, the system class path is used. If you want to
access classes that are not in the EAR file or part of the system class paths, specify the appropriate
class path here. Multiple paths can be concatenated.

-CCD
Use this option to have the WebSphere Application Server set the specified system property during
initialization. Do not use the equals (=) character after the -CCD. For example:

Chapter 40. Deploying client applications 2017

-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format
of this parameter is -CCD<property key>=<property value>. For example,
-CCDI18NService.enable=true.

-CCdumpJavaNameSpace
Controls generation of a dump of the java: name space for the application that is launched, which can
be used for debugging purposes. A value of true generates a dump in short format, and includes the
name and object type for each binding. A value of long generates a dump in long format, and includes
additional information for each binding over short format, such as the local object type and string
representation of the local object. The default value is false, and does not generate a dump.

-CCexitVM
Use this option to have the WebSphere Application Server call the System.exit() method after the
client application completes. The default is false.

-CCinitonly
Use this option to initialize application client run time for ActiveX application clients without launching
the client application. The default is false.

-CCjar
The name of the client Java Archive (JAR) file that resides within the EAR file for the application you
wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCpropfile
Indicates the name of a properties file that contains launchClient properties. Specify the properties
without the -CC prefix in the file, with the exception of the securityManager, securityMgrClass and
securityMgrPolicy properties. See the following example: verbose=true.

-CCproviderURL
Provides bootstrap server information that the initial context factory can use to obtain an initial context.
WebSphere Application Server initial context factory can use either a Common Object Request Broker
Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs
are more flexible than IIOP URLs and are the recommended URL format to use. This value can
contain more than one bootstrap server address. This feature can be used when attempting to obtain
an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in
the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating
a single point of failure. The address list does not process in a particular order. For naming operations,
this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL
specifying multiple systems is illustrated in the following example:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCsecurityManager
Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass
Indicates the fully qualified name of a class that implements a security manager. Only use this
argument if the -CCsecurityManager parameter is set to enable. The default is
java.lang.SecurityManager.

-CCsecurityMgrPolicy
Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager
parameter is set to enable. When you enable this parameter, the java.security.policy system
property is set. The default is app_server_root/properties/client.policy.

-CCsoapConnectorPort
The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the
WebSphere Application Server default value is used.

2018 Developing WebSphere applications

-CCtrace
Use this option to obtain debug trace information. You might need this information when reporting a
problem to IBM customer support. The default is false. For more information, read the Enabling trace
topic.

-CCtracefile
Indicates the name of the file to which trace information is written. The default is to write output to the
console.

-CCtraceMode
Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is
advanced. Basic tracing format is a more compact form of tracing.

For more information on basic and advanced trace formatting, refer to the Interpreting trace output
topic.

-CCverbose
This option displays additional information messages. The default is false.

If you are using an EJB client application with security enabled, edit the sas.client.props file, which is
located in the profile_root/properties directory. Within the file, change the com.ibm.CORBA.loginSource
value to none.

For more information on the sas.client.props utility, refer to the Manually encoding passwords in
properties files and the PropFilePasswordEncoder command reference topics.

RMI connection with security. Used with the EJB and administrative client application.
Using Jacl:
wsadmin -conntype RMI -port rmiportnumber -user userid
-password password

Using Jython:
wsadmin -lang jython -conntype RMI -port rmiportnumber -user userid
-password password

rmiportnumber for your connection displays in the administrative console as
BOOTSTRAP_ADDRESS.

Attention: On the AIX, HP-UX, Linux, IBM i, Solaris, and z/OS operating systems, the use of
-password option may result in security exposure as the password information becomes visible to
the system status program, such as ps command, which can be invoked by other users to display
all of the running processes. Do not use this option if security exposure is a concern. Instead,
specify user and password information in the soap.client.props file for SOAP connector or
sas.client.props file for RMI connector. The soap.client.props and sas.client.props files are
located in the properties directory of your WebSphere Application Server profile.

If Kerberos (KRB5) is enabled for administrative authentication, the authentication target supports
BasicAuth and KRB5. To use KRB5, update the sas.client.props, soap.client.props, and
ipc.client.props files, according to the connector type.

Attention: When using Kerberos authentication, the user password does not flow across the
wire. A one-way hash of password is used to identify the client.

The following examples demonstrate correct syntax.

launchClient c:\earfiles\myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

./launchClient.sh /usr/earfiles/myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

Chapter 40. Deploying client applications 2019

Specifying the directory for an expanded EAR file
You can archive the Manifest.mf client Java Archive (JAR) files instead of automatically cleaning them up
after the application exits.

Before you begin

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory
name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use
the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In
a normal J2EE Java client, these files are automatically cleaned up after the application exits. This
cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and
removing the temporary directory) each time the launchClient tool is called, complete the following steps:

Procedure
1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does
not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the
launchClient tool reuses the directory.

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.
When you call the launchClient command, it extracts the new EAR file to the directory. If you do not
delete the directory or change the system property value to point to a different directory, the
launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.
When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure
that the directory you specify is unique for each EAR file you use. For example, do not point the
MyEar1.ear and the MyEar2.ear files to the same directory.

Downloading and running a Java EE client application using Java Web
Start
Learn about the Java Web Start technology that is provided by the Java Standard Edition runtime
environment to deploy Java Enterprise Edition application clients, including Thin application clients, on the
remote client machine with a single click from a web browser on the client machine.

Before you begin

The supported client platforms for deploying application clients using the Java Web Start are the same as
the IBM Application Client for WebSphere Application Server supported platforms, except Linux on Power®

and OS/400® operating systems.

Before you begin this task, see the following topics to understand Java Web Start technology and its
components:

v “Java Web Start architecture for deploying application clients” on page 2022

v “Client application Java Network Launcher Protocol deployment descriptor file” on page 2023

v “ClientLauncher class” on page 2026

Note: The Sun Java Web Start, which is available from Sun Microsystems, is not compatible with the IBM
Runtime Environment, Java 2 Technology Edition, which is provided by WebSphere Application
Server and the IBM Application Client. The IBM Runtime Environment contains some additional
functionality that is not supported in the Sun Java Web Start. Also, the IBM Runtime Environment
uses a different packaging structure than the Sun Java Web Start. Use the IBM Runtime
Environment.

2020 Developing WebSphere applications

About this task

To deploy application clients using Java Web Start, the client machine must have at least a Java SE
runtime environment installed. The Java SE runtime environment includes the Java Web Start, which
implements the JSR 56: Java Network Launching Protocol and API. The application clients Enterprise
Archive (EAR) file is a Java archive (JAR) resource in a JNLP descriptor file that resides on a central
server. The JNLP descriptor file also specifies the runtime environment requirement for running the
application.

WebSphere Application Server provides a launcher class to launch the Java EE application client in the
application client container inside of Java Web Start. The client machine might not have the IBM
Application Client for WebSphere Application Server installed. If this is the case, create and install an
application client container and runtime package as a runtime environment through Java Web Start. The
JNLP descriptor file specifies this runtime environment as the required runtime environment for running the
Java EE application client.

WebSphere Application Server also provides command-line utility programs to create this application client
container and runtime package from an existing IBM Application Client for WebSphere Application Server
installation, as well as an installer class to install this package as a runtime environment for the application
client container and also the Java Runtime Environment (JRE) in the IBM Application Client for
WebSphere Application Server installation. To run the Java EE application client, the EAR file is deployed
as a JAR resource that is described in the JNLP descriptor file.

Procedure
1. Identify the client machine operating system, and install the corresponding IBM Application Client for

WebSphere Application Server on a development machine. For example, if the Java EE application
clients are targeted to run on Windows operating systems, install the IBM Application Client for
WebSphere Application Server for Windows.

2. Run the utility programs to create the application client container and runtime package.

a. Use the “buildClientRuntime tool” on page 2031 utility to create the package.

b. Use the “buildClientLibJars tool” on page 2023 utility to create the JAR files containing the launcher
and the installer class. This utility also zips up the properties files in the <app_client_root>/
properties directory.

3. Create the runtime installer JNLP descriptor file. The JNLP response must be included in the JNLP
version ID to indicate the current runtime version in the response header, for example,
x-java-jnlp-version-id=1.6.0. Using a servlet of a JavaServer Pages (JSP) file to provide a dynamic
JNLP response.

4. Create the Java EE application client launch JNLP descriptor file.

5. Package the application client container runtime environments and the Java EE application in an
Enterprise Archive (EAR) file. Depending on your preferred deployment strategy, the files can be in two
separate Web modules, or combined into one.

6. All JAR resources must be Java signed, including the Java EE application client EAR file.

7. Deploy the Enterprise Archive file on an application server, and start the application. The Java EE
application client is ready to be deployed.

Example

A Java Web Start deployment Sample is included in the client samples. This Sample demonstrates the
steps to deploy a Java EE application client with an automated ANT script. The Sample has a servlet to
generate the runtime installer JNLP response with JNLP version ID, for example, x-java-jnlp-version-id.

Important: When the application client initially launches using Java Web Start from Sun Microsystems
Java SE Runtime Environment 6.0, it installs the Application Client runtime, which includes the
IBM JRE. An null pointer exception (NPE) is thrown from the

Chapter 40. Deploying client applications 2021

com.sun.deploy.services.WPlatformService.getSecureRandom() method. This is a known bug
in Sun Java SE 6 (http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528). If you
experience this exception, relaunch the application. The NPE only occurs on the first launch of
the application client.

Java Web Start architecture for deploying application clients
Java Web Start is an application-deployment technology that includes the portability of applets, the
maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up
languages such as XML and HTML. It is a Java application that allows full-featured Java EE client
applications to be launched, deployed and updated from a standard Web server. The Java Web Start client
is used with platforms that support a web browser.

Upon launching Java Web Start for the first time, you might download new client applications from the
Web. Each time you launch JWS thereafter, you can initiate applications either through a link on a web
page or (in Windows) from desktop icons or the Start menu. You can deploy applications quickly using
Java Web Start, cache applications on the client machine, and launch applications remotely offline.
Additionally, because Java Web Start is built from the Java Platform, Enterprise Edition (Java EE)
infrastructure, the technology inherits the complete security architecture of the Java EE platform.

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java
Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Based on the JNLP
descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the
pieces of the application are already cached on the client machine, then those components are not
downloaded again, unless they have been updated on the server machine. After you download and cache
the client application, JWS launches it natively on the client machine.

The following diagram shows an overview of launching a client application, include the Application Client
for WebSphere Application Server as a dependent resource, using Java Web Start.

The web browser running on a client machine connects to a web application located on a server machine.
The client application JNLP descriptor file is downloaded and processed by Java Web Start on the client
machine.

In this diagram, there are two JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

2022 Developing WebSphere applications

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR
files are packaged as web applications in an EAR file. This EAR file is deployed to an Application server.
The client machine with JWS installed uses a web browser to connect to the URL of the client application
JNLP descriptor file to download and run the client application.

Using Java Web Start from Java SE Runtime Environment 6.0 or later is highly recommended. All the
platforms supported by the application client for WebSphere Application Server are supported with the
exception Linux on Power and OS/400 platforms.

You can use the following:

v Java Web Start on the Java Standard Edition Developer Kits that IBM provides, packaged in Application
Client for WebSphere Application Server

v Java Web Start on Java SE 6 Development Kit or Java SE Runtime Environment 6.0, which you can
download from the Oracle website for Windows, Linux and Solaris operating systems

v Java Web Start on HP-UX JDK or JRE for Java Platform, Standard Edition, Version 6, which you can
download from the HP website

buildClientLibJars tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application
client application to be launched using Java Web Start (JWS), the properties files bundled in Application
Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to create
those property JAR files. The Java Web Start client is used with platforms that support a web browser.

The buildClientLibJars tool copies the JAR files from the Application Client for WebSphere Application
Server installation and creates a properties.jar file, which contains the properties files from the
Application Clients installation properties directory to a specified location. When this property is created,
the tool uses the value of keystore, storepass, alias and storetype to sign all of the JAR files in the
specified location.
Windows usage: buildClientLibJars.bat [-help] [-verbose] destdir keystore storepass alias storetype

Unix usage: buildClientLibJars.sh [-help] [-verbose] destdir keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v destdir will output the destination directory name

v keystore is the key store file

v storepass is the key store password

v alias key is the alias name

v storetype is the key store type

Client application Java Network Launcher Protocol deployment descriptor file
The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application.

Location

The client application has an Application Clients runtime dependency that provides the following:

v Java SE Runtime Environment from IBM

v Application Clients run-time properties

v SSL KeyStore and TrustStore file

v Application Clients run-time library JAR files (optional for Thin Application client applications)

Chapter 40. Deploying client applications 2023

http://www.oracle.com/us/sun/index.htm
http://www.hp.com

If the Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start
(JWS), as described by the Application Clients run-time installer JNLP descriptor file. For example:
<j2se version="1.6" href="http://your_server.com/jws/wasappclient/download.jnlp"/>

Usage notes

The client application must also include the WebSphereClientLauncher.jar file, which contains the launcher
class, com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a Java Platform, Enterprise Edition (Java EE) Application client application (that is the resources
for the application contain an EAR file with a client application), the EAR file must be specified as a JAR
resource so that it can be downloaded to JWS and specified in the system property,
com.ibm.websphere.client.launcher.ear. See “JNLP descriptor file for a Java EE Application client
application” on page 2025 for an example.

v If it is a Thin Application client application, the Thin Application client application JAR file must be
specified as a JAR resource so that it can be downloaded to JWS and the name of the class containing
main method entry point is specified in the system property, com.ibm.websphere.launcher.main. See
“JNLP descriptor file for a Thin Application client application” on page 2025 for an example.

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client
application in application arguments section of the JNLP descriptor files. However, only –CCD is supported
for a Thin Application client application to define system properties and the JNLP <property> tag can also
be used to define system properties. See the following example for details:
<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the
JNLP.

1. Specify your target server provider URL, as shown in the following example:
<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080 </argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the
client machine. To use the ones in the Application Clients run-time dependency installed in JWS cache,
specify these application arguments:
<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12 </argument>
<argument> -CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12 </argument>

3. Specify the initial naming context factor, as shown in the following example:
<argument>-CCDjava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the
sas.client.props and ssl.client.props files located in the Application Clients runtime dependency
that is installed in the JWS cache.
<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props </argument>
<argument>-CCDcom.ibm.SSL.ConfigURL=file:${WAS_ROOT}/properties/ssl.client.props </argument>

If any of the default settings in the sas.client.props and sas.client.props file need modifying, use
the –CCD to change the settings through the system properties, as shown in the following example:
<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Important: The ${WAS_ROOT} token used in the JNLP file is replaced by the launcher class,
com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application
Clients run-time dependency installation in the JWS cache. If you are using JSP to
dynamically create this JNLP description file, you must escape this token because it has a
different meaning in JSP 2.0. See the following example for details:
<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/key.p12 </argument>
<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/trust.p12 </argument>

2024 Developing WebSphere applications

JNLP descriptor file for a Java EE Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application.

Here is an example of the client application JNLP descriptor file for a Java EE Application client
application:
<?xml version="1.0" encoding="utf-8"?>
<!--
This sample program is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
-->

<jnlp spec="1.0+" codebase="http://your_server:port_number/jws/wasappclient/apps/">
<information>
<title>Java EE Client Example</title>
<vendor>IBM</vendor>
<homepage href="null"/>
<description>Java WebStart example: Launching Java EE Application Client</description>
<description kind="short">Java EE Applicaiton Client</description>
<description kind="tooltip">Java EE Application Client</description>
</information>

<security>
<all-permissions/>
</security>

<resources>
<j2se href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp" version="1.6"/>
<jar href="../lib/WebSphereClientLauncher.jar" download="eager" main="false"/>
<jar href="../lib/properties.jar" download="eager" main="false"/>
<jar href="SwingCalculator.ear" download="eager" main="false"/>

<property name="com.ibm.websphere.client.launcher.ear" value="SwingCalculator.ear"/>
</resources>

<application-desc main-class="com.ibm.websphere.client.launcher.ClientLauncher">
<argument>-CCproviderURL=corbaloc:iiop:tiu03.torolab.ibm.com:2809</argument>
</application-desc>

</jnlp>

JNLP descriptor file for a Thin Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application. If it is a Thin Application client application, then the launcher class uses the current JVM
from the Application Clients run-time dependency and invokes the Thin Application client application main
method.

Here is an example of the JNLP descriptor file for a Thin Application client application.

Chapter 40. Deploying client applications 2025

This sample program is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
-->

<!-
==
->
<!-- TODO: change "codebase" to the actual URL location of the jnlp file ->
==
->
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"
codebase="http://your_server:port_number/jws/wasappclient/apps">
<information>
<title>Thin Base Calculator Client Samples</title>
<vendor>IBM</vendor>
<description>Thin Base Calculator Client Samples</description>
<offline-allowed/>
</information>

<security>
<all-permissions/>
</security>
<resources>
<j2se version="1.6" href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp"/>

<jar href="/jws/wasappclient/lib/WebSphereClientLauncher.jar" main="true"/>
<jar href="BasicCalculatorClientCommon.jar"/>
<jar href="BasicCalculatorEJB.jar"/>
<jar href="BasicCalculatorThinClient.jar"/>

<property name="com.ibm.websphere.client.launcher.main"
value="com.ibm.websphere.samples.technologysamples.basiccalcthinclient.BasicCalculatorClientThinMain"/>

<property name="java.naming.factory.initial"
value="com.ibm.websphere.naming.WsnInitialContextFactory" />

<property name="java.naming.provider.url"
value="corbaloc:iiop:tiu03:2809"/>

</resources>

<add</argument>
<argument>1</argument>
<argument>2</argument>
</application-desc>

</jnlp>

ClientLauncher class:

2026 Developing WebSphere applications

The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main() method that is called by
Java Web Start (JWS) to launch the client application. The Java Web Start client is used with platforms
that support a web browser.

This client is packaged in the WebSphereClientLauncher.jar file that is located in the Application Client for
WebSphere Application Server installation under the <app_client_root>/ lib/webstart directory.

The launcher class requires that the following properties are defined. These properties are not defined in a
separate properties file. Instead, the properties are defined as part of the Java Network Launching
Protocol (JNLP) files.

com.ibm.websphere.client.launcher.main
If the client application is a Thin Application client, then this property should be specified. It
specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear
If the client application is a Java Platform, Enterprise Edition (Java EE) Application client, then this
property should be specified. It specifies the name of the EAR file to be executed. This property
takes precedence over com.ibm.websphere.client.launcher.main. However, only one of the two
properties should be specified.

Application client launcher for Java Web Start:

The application client launcher for Java Web Start is a Java class,
com.ibm.websphere.client.installer.ClientLauncher, which has a main() method that Java Web Start calls to
start the application client container and to invoke the application client's main() method. It provides similar
functions as the lauchClient command line tool to start application clients from the command line.

The com.ibm.websphere.client.launcher.ClientLauncher class is packaged in the
WebSphereClientLauncher.jar file under the <app_client_root>/lib/webstart directory.

The launcher tool requires that the following properties are defined.

com.ibm.websphere.client.launcher.main
If the client that is to be run is a thin client, then this property should be specified. It specifies the
class where the main entry point of the application resides. It is the main class name for a Thin
application client. If it is set, the launcher will not start the client container, it will rather invoke the
main method for the application directly. However, if com.ibm.websphere.client.launcher.ear is
also set, it will be ignored.

com.ibm.websphere.client.launcher.ear
If the client that is to run is the Java Platform, Enterprise Edition (Java EE) client, then this
property should be specified. It specifies the name of the ear file to be executed. This property
takes precedence over com.ibm.websphere.client.launcher.main although only one of the two
properties should be specified.

These properties are not defined in a separate properties file. Instead, they are defined as part of the Java
Network Launching Protocol files.

When com.ibm.websphere.client.launcher.ear is set, the application client launcher for JWS supports
almost all of the –CC arguments as the lauchClient command line tool supports. However, if only
com.ibm.websphere.client.launcher.main is set, the launcher will only support the –CCD argument. The
following table shows the comparison of the supported –CC arguments for the launchClient command line
tool and the application client launcher for JWS:

Chapter 40. Deploying client applications 2027

Table 314. Comparison of the supported –CC arguments for the launchClient command line tool and the application
client launcher for JWS. Comparison of the supported –CC arguments

-CC argument launchClient Application client launcher for JWS

-CCverbose Yes Yes

-CCjar Yes Yes

-CCclasspath Yes N/A

-CCadminConnectorHost Yes Yes

-CCadminConnectorPort Yes Yes

-CCadminConnectorType Yes Yes

-CCadminConnectorUser Yes Yes

-CCaltDD Yes Yes

-CCBootstrapHost Yes Yes

-CCBootstrapPort Yes Yes

-CCproviderURL Yes Yes

-CCinitonly Yes N/A

-CCtrace Yes Yes

-CCtracefile Yes Yes

-CCsecurityManager Yes N/A

-CCsecurityMgrClass Yes N/A

-CCsecurityMgrPolicy Yes N/A

-CCD Yes Yes

-CCexitVM Yes Yes

-CCdumpJavaNameSpace Yes Yes

-CCsoapConnectorPort Yes Yes

-CCtraceMode Yes Yes

-CCclassLoaderMode Yes Yes

Macro expansion is supported for the –CCD argument by the application client launcher for JWS. The
launcher will automatically substitute certain macro keys (enclosed with ${...}) with the calculated value at
runtime. For example, if a macro key is used in the –CCD argument in the application client JNLP
manifest file,
<argument>-CCDcom.ibm.ssl.keyStore= ${WAS_ROOT}/etc/key.p12</argument>

it will be expanded to the JWS cache installation root location and the argument will become:
-CCDcom.ibm.ssl.keyStore=/home/tiu/.java/deployment/cache/javaws/ext/E1134532441112/etc/key12.p12

The following table shows the three macro keys that are currently supported and will be substituted by the
launcher:

Table 315. Currently supported macro keys. Supported macro keys

Macro key Value

${WAS_ROOT} Installation root location within the JWS cache that is
used by the application client container and runtime
installer for JWS.

${JAVA_HOME} Location of Java home. The return value of
System.getProperty(“java.home”).

2028 Developing WebSphere applications

Table 315. Currently supported macro keys (continued). Supported macro keys

Macro key Value

${USER_HOME} Location of user home. The return value of
System.getProperty(“user.home”).

Preparing the application client run time dependency component for Java Web
Start
To launch a Java Platform, Enterprise Edition (Java EE) application client application, a Thin application
client application, or both using Java Web Start (JWS), a Java Runtime Environment implementation Java
archive (JAR) that IBM provides, the library JAR files and properties files bundled in Application Client for
WebSphere Application Server must be installed in the JWS. Learn the steps to build the application client
run time dependency component from an application client installation. It is packaged as a web application
archive (WAR) file that can be installed in an application Server.

Before you begin

Install the Application Client for WebSphere Application Server for the operating system to which the client
application deploys. If there is a requirement to deploy the client application to multiple operating systems,
the application client run time dependency component must be built separately for each operating system
that client application supports.

For example, if the client application deploys to both the Windows operating system
and Linux operating system, follows the steps for this task to build the application client run time
dependency component for Windows operating systems, with the Application Client for WebSphere
Application Server for Windows installed. Then, repeat the steps for this task to build the application client
run time dependency component for Linux, on a Linux operating system, with the Application Client for
WebSphere Application Server for Linux installed.

Procedure
1. Install the Application Client for WebSphere Application Server for the client application supported

operating systems.

Install the application client in the C:\Program Files\IBM\WebSphere\AppClient directory.

2. Change the directory to the installation bin directory.

On Windows operating systems, the directory is as follows:
CD C:\Program files\IBM\WebSphere\AppClient\bin

3. Run the “buildClientRuntime tool” on page 2031 to generate the application client run time JAR file,
which contains the Java Standard Edition Runtime Environment, the run time library JAR files,
properties files, and the SSL KeyStore and TrustStore files from the application client installation.

For example, if you are using Version 7.0 and using the test certificate that is included in
the application client installation:
buildClientRuntime C:\WebApp1\runtime\WASClient7.0_windows.jar ..\etc\DummyClientKeyFilejar WebAS
"websphere dummy client" JKS

4. Run the buildClientLibJars tools to package up the properties files in the properties directory of the
application client installation into a properties.jar file in the specified location. The buildClientLibJars
tools will also copy the WebSphereClientLauncher.jar file and WebSphereClientRuntimeInstaller.jar
file from the application client installation to the specified location. All jar files in the specified location
will be signed by the provided certificate.

For example, if you are using Version 7.0 and using the test certificate that is included in the
application client installation:
buildClientLibJars C:\Temp\webstart ..\etc\DummyClientKeyFilejar WebAS "websphere dummy client" JKS

Chapter 40. Deploying client applications 2029

5. Create a JavaServer Pages (JSP) file or use a servlet to generate the application client run time
installer Java Network Launching Protocol (JNLP) descriptor to respond to Java Web Start request.
See the Java Web Start deployment sample in the application client installation.

6. Package the two signed JAR files, WASClient7.0_windows.jar and
WebSphereClientRuntimeInstaller.jar, and the JSP file or servlet for generating the Application Client
run time installer JNLP descriptor into a web application archive (WAR) file. This WAR file is packaged
into an EAR file that can be deployed to an application server. See the Java Web Start deployment
sample in the application client installation.

Results

Your web application is ready to serve the application client run time and the JRE environment.

Example
<!-- This sample program applies to WebSphere Application Server, Version 6.1.
It is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2005
All Rights Reserved * Licensed Materials - Property of IBM
-->

<%-- // to set the Last_Modified header so that the JNLP client will know whether to download
// the JNLP file again and update the cached copy.
String jspPath = application.getRealPath(request.getServletPath());
java.io.File jspFile = new java.io.File(jspPath);
long lastModified = jspFile.lastModified();

%><%
// locally declared variables
String url=request.getRequestURL().toString();
String jnlpCodeBase=url.substring(0,url.lastIndexOf(’/’));
String jnlpRefURL=url.substring(url.lastIndexOf(’/’)+1,url.length());

// Need to set a JNLP mime type - if WebStart is installed on the client,
// this header will induce the browser to drive the WebStart Client
response.setContentType("application/x-java-jnlp-file"); 1
response.setHeader("Cache-Control", null);
response.setHeader("Set-Cookie", null);
response.setHeader("Vary", null);
response.setDateHeader("Last-Modified", lastModified);

// An installer must reply with the version number for a given install
if (response.containsHeader("x-java-jnlp-version-id"))
response.setHeader("x-java-jnlp-version-id", "WASClient6.1.0"); 2

else
response.addHeader("x-java-jnlp-version-id", "WASClient6.1.0");

%>

<?xml version="1.0" encoding="utf-8"?>

<!-- == -->
<!-- TODO: change "codebase" to the actual url location of this jsp -->
<!-- == -->

<jnlp spec="1.0+"
codebase="http://YOUR_APP_SERVER:PORTNUMBER/WEBAPP_CONTEXT_ROOT/Runtime/WebSphereJre">

<information>

2030 Developing WebSphere applications

<title>Application Client Java Runtime Environment</title>
<vendor>IBM</vendor>
<icon href="icon.gif"/>
<description>Application Client Java Runtime Environment</description>
<description kind="short">Application Client JRE</description>
<description kind="tooltip">Application Client JRE</description>
<offline-allowed/>

</information>

<security>
<all-permissions/>
</security>

<resources>
<j2se version="1.4+"/><%-- The installer can use any 1.4 JRE --%> 3
<jar href="WebSphereClientRuntimeInstaller.jar" main="true"/> 4

<!-- JRE version registration with Web Start -->
<property name="com.ibm.websphere.client.jre.version" value="WASClient6.1.0"/> 5
</resources>

<resources os="Windows"> 6
<!-- == -->
<!-- TODO: the property value for unix platform is "java/jre/bin/javaw" -->
<!-- and the "os" value match to your target client machine platform -->
<!-- == -->

<jar href="WASClient6.1.0_Windows.jar"/> 7

<!-- == -->
<!-- TODO: property value for unix platform is "java/jre/bin/javaw" -->
<!-- == -->
<!-- relative path of the jre executable —->

<property name="com.ibm.websphere.client.jre.launch.java"
value="java\jre\bin\javaw.exe"/> 8

</resources>
<installer-desc main-class="com.ibm.websphere.client.installer.ClientRuntimeInstaller"/>
</jnlp>

1. Specifies that the file is a JNLP mime type so that the browser can process the JNLP file.

2. Specifies the exact version of this Application Client run time dependency component in the response
by setting the HTTP header field: x-java-jnlp-version-id.

3. Specifies the required JRE version to run the installer program.

4. Specifies the installer WebSphereClientRuntimeInstaller.jar file, which contains the
ClientRuntimeInstaller class.

5. Specifies a system property that defines the version of Application Client run time dependency
component. This version is registered to the JNLP client.

6. Specifies resources for a particular platform. Each supported client application platform needs its own
separate JAR file.

7. Specifies the Application Client run time dependency component JAR file.

8. Specifies the program to call that starts a JVM for the client application.

buildClientRuntime tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application
client application to be launched using Java Web Start (JWS), the library JAR files bundled in Application

Chapter 40. Deploying client applications 2031

Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to build
those JAR files. The Java Web Start client is used with platforms that support a web browser.

The buildClientRuntime tool builds the required components from the WebSphere Application Server
clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java SE Runtime Environment 6 (JRE 6) that IBM provides

v Application Clients runtime properties and configuration

v SSL KeyStore and TrustStore files

v Runtime library JAR files

In the case of building an Application Clients runtime JAR file only for serving Thin Application client
applications and not for Java EE Application client applications, the runtime library JAR files and the
Application Clients runtime properties files are not included, except the configuration files,
sas.client.props, ssl.client.props and soap.client.props, located in the WAS_ROOT/properties
directory. The Java Web Start client is used with platforms that support a web browser.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:
Windows Usage: buildClientRuntime.bat [-help] [-verbose] outfile keystore storepass alias storetype

Unix Usage: buildClientRuntime.sh [-help] [-verbose] outfile keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v outfile is the output file name

v keystore is the key store file

v storepass is the key store password

v alias is the key alias name

v storetype is the key store type

ClientRuntimeInstaller class:

This section provides information on the ClientRuntimeInstaller class.

This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller, contains a main() method that Java
Web Start (JWS) calls to install the Application Client for WebSphere Application Server run-time
dependency component in JWS cache. It is packaged in WebSphereClientRuntimeInstaller.jar file
located in the Application Client for WebSphere Application Server installation in the <app_server_root>/
JWS directory.

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency
component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher
Protocol (JNLP) descriptor file. See the following example for details:
<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>
<jar href="Launcher/WASClient6.1_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version
Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to
the Application Client run-time dependency component.

2032 Developing WebSphere applications

com.ibm.websphere.client.jre.launch.java
Specifies the relative location of the javaw.exe program in the Application Client run-time
dependency component JAR file.

The previously mentioned properties, JRE version name and the location of the javaw.exe program are
registered to the Java Web Start Application Manager, as shown in the following example:
<property name="com.ibm.websphere.client.jre.version" value="WASclient6.1"/>
<property name="com.ibm.websphere.client.jre.launch.java" value="java\jre\bin\javaw.exe"/>

Using the Java Web Start sample
The EAR file, WasAppClientRuntime.ear, is provided in the app_client_root/samples/bin/
WasAppClientRuntime directory of the Client Application for WebSphere Application Server installation. This
EAR file provides a sample Application Clients run-time installer JNLP descriptor file and a sample
Application Clients run-time library component JNLP descriptor file. Follow the steps in this task to build
the Application Clients run-time dependency component and the Application Clients run-time library
component. Add these components to the WebSphereClientRuntime.ear file, and then install the EAR file in
an Application Server to be used by the client application.

About this task

There is a new Java Web Start sample available in the client sample gallery for WebSphere Application
Server V7.0. Refer to the client sample gallery in the Application Client for WebSphere Application Server
product. The name of the new sample is “Java Web Start Deployment Sample”.

Installing Java Web Start
Learn about the steps that are necessary to install Java Web Start (JWS).. Java Web Start technology is
provided by the Java SE runtime environment to deploy Java EE application clients (including Thin
application clients) on the remote client machine with a single click from a web browser on the client
machine.

Before you begin

Before you begin this task, see the “Preparing the application client run time dependency component for
Java Web Start” on page 2029 topic to understand Java Web Start (JWS) technology and components.

Note: The Sun Java Web Start, which is available from Sun Microsystems, is not compatible with the IBM
Runtime Environment, Java 2 Technology Edition, which is provided by WebSphere Application
Server and the IBM Application Client. The IBM Runtime Environment contains some additional
functionality that is not supported in the Sun Java Web Start. Also, the IBM Runtime Environment
uses a different packaging structure than the Sun Java Web Start. Use the IBM Runtime
Environment.

Note: The Java Web Start can load native shared libraries with the .so file extension only.
Rename any native shared libraries so that they have the .so file extension before packaging them
in a Java archive (JAR) file for Java Web Start deployment.

About this task

Complete the following steps to install JWS:

Procedure
1. Install IBM Application Client for WebSphere Application Server.

2. Change your directory to the javaws path.

v client_install_root\java\jre\lib\javaws

v client_install_root/java/jre/lib/javaws

Chapter 40. Deploying client applications 2033

3. Run the update settings script from the path mentioned in the previous step.

v Run the updateSetting.sh script

v Run the updateSetting script

4. Change your path to the JWS installed path. For example, enter:

v client_install_root\java\jre\javaws

v client_install_root/java/jre/javaws

5. Run javaws from the path mentioned in the previous step.

v Run ./javaws command.

v Run javaws command.

Using a static JNLP file with Java Web Start for Application clients
Do not use JSP to dynamically generate a JNLP file, otherwise the JNLP jsp page cannot be opened in
some IE browsers.

About this task

To use a static JNLP file, you will need to add the following mime type mapping in the web.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>
WAS Client runtime for Java Web Start</display-name>
<welcome-file-list>

<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
<mime-mapping>
<extension>jnlp</extension>
<mime-type>application/x-java-jnlp-file</mime-type>
</mime-mapping>

</web-app>

Running the IBM Thin Client for Enterprise JavaBeans (EJB)
An EJB Client is a Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Java Platform,
Standard Edition (Java SE) application that accesses remote Enterprise Java Beans from a server through
Java Naming and Directory Interface (JNDI) look up. IBM Thin Client for EJB offers a smaller footprint and
is easy to deploy to a Java SE environment and an Eclipse Rich Client Platform (RCP) environment. You
can bundle the IBM Thin Client for EJB library using the WebSphere Application Server installation or the
Application Client for WebSphere Application Server installation with your application. The IBM Thin Client
for EJB also extends the choice of Java SE runtime. It can be run in the Java Runtime Environment (JRE)
that is packaged with the WebSphere Application Server product, the JRE that is downloaded from the
Oracle website, or the JRE that is downloaded from the HP website.

Before you begin

The IBM ORB implementation library is required if the IBM Thin Client for EJB is running with a non-IBM
product JRE on a non-IBM product platform. For example, running the IBM Thin Client for EJB with Sun
Microsystems JRE on Windows, Linux, or Solaris, and with the HP JRE on HP-UX. The IBM-provided
Solaris hybrid and HP hybrid JRE are not considered non-IBM product JRE environments.

2034 Developing WebSphere applications

The IBM Thin Client for EJB can access version 2.x and version 3.x EJB on the WebSphere Application
Server using the JNDI lookup, but it cannot access version 3.x EJB through resource injection. Resource
injection is supported if the client application is a Java Platform, Enterprise Edition (Java EE) Application
Client running within the Java Platform, Enterprise Edition (Java EE) Application Client Container.

Before you set up an EJB Thin Client environment, obtain the Java archive (JAR) file for the EJB Thin
Client for WebSphere Application Server. To obtain the EJB Thin Client for WebSphere Application Server,
install WebSphere Application Server or Application Client. The EJB Thin Client for WebSphere Application
Server file, com.ibm.ws.ejb.thinclient_8.5.0.jar, is located in the app_server_root\runtimes directory.
Use the com.ibm.ws.ejb.thinclient.jar for any client that runs on distributed platforms. Determining the
client to use depends on the client platform, and not the platform of the server you are connecting to.

Copy the Java archive (JAR) file for the IBM Thin Client for EJB with WebSphere Application Server
product, com.ibm.ws.ejb.thinclient_8.5.0.jar and the endorsed_apis_8.5.0.jar files, to other machines
to create a lightweight client environment that enables communications with the products. Copies of the
IBM Thin Client for EJB are subject to the same terms and conditions of the license agreement for the
WebSphere product where you obtained the Thin Client for EJB. Refer to the license agreements for
correct usage and other limitations.

Copy the app_server_root\runtimes\endorsed\endorsed_apis_8.5.0.jar file into the default directory,
JAVA_JRE\lib\endorsed. Alternatively, you can use the java.endorsed.dirs property to specify a directory of
your choice. If you choose to use an alternative directory, it is a best practice to only include the
endorsed_apis JAR file.

The IBM Thin Client for EJB with WebSphere Application Server runs on distributed operating systems
with JDK support, including both Version 6 and Version 7. When using the IBM Thin Client for EJB as a
standalone Java SE application with a non-IBM product JRE, you must override the default ORB
implementation for the JRE through one of following methods:

v Include the com.ibm.ws.orb_8.5.0.jar file in the Java system classpath.

v Override the default ORB implementation in the JRE, using Java Endorsed Standards Override
Mechanism.

v Set the java.endorsed.dirs path to a directory that contains the com.ibm.ws.orb_8.5.0.jar file.

When running the IBM Thin Client for EJB as an Eclipse RCP application, it is recommended to use
method two, to override the default JRE ORB implementation.

Important: The Pluggable Application Client is deprecated. It is replaced by the IBM Thin Client for EJB.

Attention: When running the IBM Thin Client for EJB, and the
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager command line option is used, a
ClassDefNotFoundError error is thrown. The use of WsLogManager is not supported in the IBM Thin Client
for EJB, but you can use another Java logging manager.

About this task

Run the IBM Thin Client for EJB, by completing the following steps.

Procedure
1. Invoke the client application. Run the following Java command:

<java_install_root>\bin\java
-classpath com.ibm.ws.ejb.thinclient_8.5.0.jar;<list_of_your_application_jars_and_classes>
-Djava.naming.provider.url=iiop://<your_application_server_machine_name>
<fully_qualified_class_name_to_run>

Add the following system properties to the Java command if you want authentication and SSL enabled:

Chapter 40. Deploying client applications 2035

<java_install_root>/bin/java
-classpath com.ibm.ws.ejb.thinclient_8.5.0.jar:<list_of_your_application_jars_and_classes>
-Djava.naming.provider.url=iiop://<your_application_server_machine_name>
-Dcom.ibm.SSL.ConfigURL=file:///home/user1/ssl.client.props
-Dcom.ibm.CORBA.ConfigURL=file:///home/user1/sas.client.props
<fully_qualified_class_name_to_run>

2. Provide IIOP authentication configuration and Client SSL Configuration. Add the following system
properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/user1/ssl.client.props
-Dcom.ibm.CORBA.ConfigURL=file:///home/user1/sas.client.props

You can obtain the ssl.client.props file and sas.client.props file from the WebSphere Application
Server installation and modify the file to suit your environment. You must, at a minimum, update the
location of the key files in the ssl.client.props file to the match location of your target environment.
For example,
-Dcom.ibm.ssl.keyStore=/home/user1/etc/key.p12
-Dcom.ibm.ssl.trustStore=/home/user1/etc/trust.p12

Recommended SSL configuration settings when running the application with a non-IBM product JRE:
com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the
application runs. The automatic key file generation is not supported with a non-IBM product JRE.

You must override the default ORB implementation of the non-IBM product JRE with the
com.ibm.ws.orb_8.5.0.jar file, or add it to the classpath.

3. Run your client application:

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into the
JAVA_JRE\lib\endorsed default directory; for example:

%JAVA_HOME%\bin\java -Dcom.ibm.SSL.ConfigURL=file:\\\home\sample\ssl.client.props <your_client_application>

$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into a directory
other than the default JAVA_JRE\lib\endorsed directory; for example:

%JAVA_HOME%\bin\java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:\\\home\sample\ssl.client.props <your_client_application>

$JAVA_HOME/bin/java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

What to do next

Enable trace for the IBM Thin Client for EJB by adding the following to the Java command.
-Dcom.ibm.ejs.ras.lite.traceSpecification=*=all

2036 Developing WebSphere applications

Running Java thin client applications
You can run Java thin client applications on machines installed with either a WebSphere Application Client
installation or a WebSphere Application Server installation.

About this task

Important: Java thin clients are not packaged with JDBC provider classes. For example, the WebSphere
Application Server Version 7.0 Java thin client is not packaged with Apache Derby 10.2
classes. Likewise, the version 6.1 Java thin client is not packaged with Cloudscape Version
5.1, Cloudscape Version 10.0, or Cloudscape version 10.1 classes. Therefore, to utilize the
JDBC provider classes (such as Apache Derby, Oracle, DB2, Informix, or Sybase) on a Java
thin client, you must:

1. Add the classes to your Java thin client application environment.

2. Make the classes visible to the Java thin client application. To do this, add the path to the
classes in the client classpath within the script that launched the client program.

Otherwise, any attempt to load a database class (such as through the JNDI lookup of a
datasource) results in a ClassNotFoundException.

The Java invocation to run a Java thin client application varies between a client and a server. If your Java
thin client application needs to run on both a client installation and a server installation, follow the steps in
the Running a Java thin client application on a server machine topic.

Procedure
v “Running a Java thin client application on a client machine” on page 2039

v “Running a Java thin client application on a server machine” on page 2039

Example

Your Java thin application client no longer needs additional code to set security providers if you have
enabled security for your WebSphere Application Server instance. This code found in IBM i Java thin or
pluggable application clients should be removed to prevent migration and compatibility problems. The
java.security file from your WebSphere instance in the properties directory is now used to configure the
security providers.

v Running the thin or pluggable application client with security enabled

Running the thin or pluggable application client with security enabled. The following code examples
illustrates how security providers were set programmatically in the main() method and occurred prior to
any code that accessed enterprise beans:
import java.security.*;

...
if (System.getProperty("os.name").equals("OS/400")) {

// Set the default provider list first.
Provider jceProv = null;
Provider jsseProv = null;
Provider sunProv = null;

// Allow for when the Provider is not needed, when
// it is not in the client application’s classpath.
try {

jceProv = new com.ibm.crypto.provider.IBMJCE();
}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

Chapter 40. Deploying client applications 2037

try {
jsseProv = new com.ibm.jsse.JSSEProvider();

}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

try {
sunProv = new sun.security.provider.Sun();

}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

// Enable providers early and ahead of other providers
// for consistent performance and function.
if ((null != sunProv) && (1 != Security.insertProviderAt(sunProv, 1))) {

Security.removeProvider(sunProv.getName());
Security.insertProviderAt(sunProv, 1);

}
if ((null != jceProv) && (2 != Security.insertProviderAt(jceProv, 2))) {

Security.removeProvider(jceProv.getName());
Security.insertProviderAt(jceProv, 2);

}
if ((null != jsseProv) && (3 != Security.insertProviderAt(jsseProv, 3))) {

Security.removeProvider(jsseProv.getName());
Security.insertProviderAt(jsseProv, 3);

}

// Adjust default ordering based on admin/startstd properties file.
// Maximum allowed in property file is 20.
String provName;
Class provClass;
Object provObj = null;

for (int i = 0; i < 21; i++) {
provName = System.getProperty("os400.security.provider."+ i);

if (null != provName) {

try {
provClass = Class.forName(provName);
provObj = provClass.newInstance();

}
catch (Exception ex) {

// provider not found
continue;

}

if (i != Security.insertProviderAt((Provider) provObj, i)) {

// index 0 adds to end of existing list
if (i != 0) {

Security.removeProvider(((Provider) provObj).getName());
Security.insertProviderAt((Provider) provObj, i);

}
}

} // end if (null != provName)
} // end for (int i = 0; i < 21; i++)

} // end if ("os.name").equals("OS/400")

For examples of Java thin client applications, refer to the Samples section of the information center.

2038 Developing WebSphere applications

Running a Java thin client application on a client machine
To run a Java thin client application on a machine with Application Client for WebSphere Application
Server installed, use the setup Client command then start the application.

Before you begin

Before performing this task, you must install the Java thin application client from the Application Client for
WebSphere Application Server installation.

Procedure
1. Set up the client application environment. Run the setupClient command.

app_client_root\AppClient\bin\setupClient.bat

app_client_root/AppClient/bin/setupClient.sh

2. Run a Java command to invoke your client application.

"%JAVA_HOME%\bin\java" %WAS_LOGGING% -Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf"
-classpath "%WAS_CLASSPATH%;<list_of_your_application_jars_and_classes>"
-Djava.ext.dirs="%JAVA_JRE%\lib\ext;%WAS_EXT_DIRS%;%WAS_HOME%\plugins;%WAS_HOME%\lib\WMQ\java\lib"
-Djava.naming.provider.url=iiop://<your_application_server_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
"%SERVER_ROOT%" "%CLIENTSAS%" "%CLIENTSSL%" <fully_qualified_class_name_to_run>

For information about IIOP and corbaloc URLs, see Developing applications that use JNDI.

$JAVA_HOME/bin/java $WAS_LOGGING
-classpath "$WAS_CLASSPATH: <list_of_your_application_jars_and_classes>"
-Djava.ext.dirs=$JAVA_JRE/lib/ext:$WAS_EXT_DIRS:$WAS_HOME/plugins:$WAS_HOME/lib/WMQ/java/lib"
-Djava.naming.provider.url=iiop://<your_application_server_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
$SERVER_ROOT $CLIENTSAS $CLIENTSSL <fully_qualified_class_name_to_run>

Running a Java thin client application on a server machine
To run a Java thin client application on a machine with WebSphere Application Server installed, use the
setupClient command then start the application.

Before you begin

You must install WebSphere Application Server before performing this task.

Procedure
1. Set up the Thin application client environment.

Use the setupCmdLine shell.
app_server_root\bin\setupCmdLine.bat

Use the setupCmdLine shell.
app_server_root/bin/setupCmdLine.sh

2. Run the application client.

Perform one of the following methods:
v Run a Java command to call your main class directly.

"%JAVA_HOME%\bin\java" %WAS_LOGGING%"
-Djava.security.auth.login.config="%USER_INSTALL_ROOT%\properties\wsjaas_client.conf"
-Djava.ext.dirs="%JAVA_HOME%\jre\lib\ext;%WAS_EXT_DIRS%;%WAS_HOME%\plugins;%WAS_HOME%\lib\WMQ\java\lib"
-Djava.naming.provider.url=<an_IIOP_URL_or_a_corbaloc_URL_to_your
application_server_machine_name>

Chapter 40. Deploying client applications 2039

-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Dserver.root="%WAS_HOME%" "%CLIENTSAS%" "$CLIENTSSL" %USER_INSTALL_PROP%
-classpath "%WAS_CLASSPATH%;<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

v Enter a command to use the WebSphere Application Server launcher.
"%JAVA_HOME%\bin\java" %WAS_LOGGING%
-Djava.security.auth.login.config="%USER_INSTALL_ROOT%\properties\wsjaas_client.conf"
-classpath "%WAS_CLASSPATH%;<list_of_your_application_jars_and_classes>
-Djava.ext.dirs="%WAS_EXT_DIRS%;%WAS_HOME%\plugins"
-Djava.endorsed.dirs="%WAS_ENDORSED_DIRS%
-Djava.naming.provider.url=iiop://<your_application_server_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
%SERVER_ROOT% %CLIENTSAS% %CLISENTSSL% <fully_qualified_class_name_to_run>

Perform one of the following methods:
v Run a Java command to call your main class directly.

"$JAVA_HOME/bin/java" $WAS_LOGGING
-Djava.security.auth.login.config="$USER_INSTALL_ROOT/properties/wsjaas_client.conf"
-Djava.ext.dirs="$JAVA_HOME/jre/lib/ext:$WAS_EXT_DIRS:$WAS_HOME/plugins: $WAS_HOME/lib/WMQ/java/lib"
-Djava.naming.provider.url=<an_IIOP_URL_or_a_corbaloc_URL_to_your
application_server_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Dserver.root="$WAS_HOME" $USER_INSTALL_PROP "$CLIENTSAS" "$CLIENTSSL"
-classpath "$WAS_CLASSPATH:<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

For more information on IIOP and corbaloc URLs, see Developing applications that use JNDI.
v Enter a command to use the WebSphere Application Server launcher.

"$JAVA_HOME/bin/java" $WAS_LOGGING
-Djava.security.auth.login.config="$USER_INSTALL_ROOT/properties/wsjaas_client.conf"
"-Dws.ext.dirs=<list_of_your_application_jars_and_classes>
$WAS_EXT_DIRS:$WAS_USER_DIRS"
-Djava.naming.provider.url=<an_IIOP_URL_or_a_corbaloc_URL_to_your
application_server_machine_name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
"-Dserver.root=$WAS_HOME"
"$CLIENTSAS" "$CLIENTSSL" $USER_INSTALL_PROP -classpath "$WAS_CLASSPATH"
com.ibm.ws.bootstrap.WSLauncher
<fully_qualified_class_name_to_run> <your_application_parameters>

2040 Developing WebSphere applications

Chapter 41. Deploying data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as, JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Deploying data access applications
Deploying a data access application includes more than installing your web application archive (WAR) or
enterprise archive (EAR) file onto a server. Deployment can include tasks for configuring your application
to use the data access resources of the server and overall runtime environment.

Before you begin

You can deploy only application code that is assembled into the appropriate modules. See the topic,
Assembling data access applications for guidelines, for this process.

About this task

Perform the following steps if your application requires access to a relational database (RDB). When your
application requires access to a different type of enterprise information system (EIS), such as an
object-oriented database or the Customer Information Control System (CICS), consult the topics,
Relational resource adapters and JCA, and Accessing data using Java EE Connector Architecture
connectors.

Procedure
1. If your RDB configuration does not exist, do the following steps:

a. Create a database to hold the data.

b. Create tables required by your application.
If your application uses container managed persistence (CMP) entity beans to access the
data You can create the tables using the data definition language (DDL) generated from the

enterprise bean configuration. For more information, see the topic, Recreating database
tables from the exported table data definition language.

© Copyright IBM Corp. 2012 2041

If your application uses bean managed persistence (BMP) entity beans, or does not use
entity beans

You must use your database server interfaces to create the tables.

The Enterprise JavaBeans (EJB) to RDB Mapping wizard of an assembly tool is also used to
create your database tables for either type of entity bean. Select the top-down mapping option in
the wizard. However, this option does not give you direct control in naming the RDB elements or
choosing column types. Additionally, because the top-down process is automatic, it might not
provide mappings to reflect the precise relationships that you intend.

If you use Rational Application Developer, consult the information center about the mapping wizard.
To learn about all of your assembly tool options, see the assembly tools topic in this information
center.

c. Check the data source minimum required settings by vendor to see any database vendor
requirements for connecting to an application server. See the topic, Data source minimum required
settings, by vendor, for instructions.

2. Optional: Map your entity beans to the database tables through the meet-in-the-middle mapping option
of an assembly tool. Complete this step only if you did not create your database schema through the
top-down mapping option, did not generate your mapping relationships through bottom-up mapping, or
did not generate mappings during the application assembly process. For information about the
top-down mapping option see the information center for Rational Application Developer.

3. Install your application onto the application server. See the topic, Installing enterprise application files.
When you install the application, you can alter data access settings that were made during application
assembly, or, if they were omitted from the assembly process, set them for the first time. These
settings include resource bindings and resource authentication aliases, which are addressed in the
following substeps:

a. Bind application resource references to the data sources, or other resource objects, that provide
database connectivity. For details on the concept of binding, see the topic, Data source lookups for
enterprise beans and web modules.

Tip: After deployment, you can use the WebSphere Application Server administrative console to
alter resource bindings. Click Applications > Application Types > Webphere enterprise
applications > application_name, and select the link to the appropriate mapping page. For
example, if you want to alter the binding of an EJB module resource, you might click Map
data sources for all 2.x CMP beans. For a web module resource, click Resource
references.

b. Define authentication alias data for resources that must be authenticated with the backend through
container-managed authorization. In this security configuration, WebSphere Application Server
performs EIS signon for data source or connection factory connections. Consult the topic, J2EE
connector security for detailed reference on resource authentication.

4. Start the deployed application files using the administrative console, the wsadmin scripting tool
startApplication command, or your own Java program.

5. Save the changes to your administrative configuration.

6. Test the application. For example, point a web browser at the URL for a deployed application and
examine the performance of the application.

Results

When you deploy an application that uses a DB2 UDB for IBM i back-end database, you might find the
following exception in the SystemOut.log file:
PMGR6022E: Error using adapter to create or execute an Interaction

This type of error indicates that you deployed an application with container-managed persistence (CMP)
enterprise beans that were originally configured to access a DB2 database on Windows, Linux, or a
supported UNIX system. Using the administrative console, uninstall the affected CMP applications, then

2042 Developing WebSphere applications

reinstall the applications with the new database setting. Remember to select Deploy enterprise beans; on
the EJB deploy panel, select the appropriate version of your DB2 UDB for IBM i database.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

What to do next

If the application does not perform as wanted, update the application, then save and test it again.

Available resources
Use this page to select configured resources that you want to bind to the resource references of the
enterprise beans or web modules in your application.

To view this administrative console page:

1. Click Applications > Application Types > Websphere enterprise applications > application_name.

2. Click the link for any of these resource configuration pages:

v Resource references

v Map data sources for all 2.x CMP beans

v Provide default data source mapping for modules containing 2.x entity beans

3. Locate the table row of the EJB or web module that you want to map to a different resource.

4. Within the row, locate the JNDI name of the resource that is currently bound to the EJB or web
module.

5. Click Browse.

You now see Available resources.

Each table row corresponds to a resource that you can bind to your enterprise bean or web module.

Select
Select the resource that you want to bind to the resource reference of your module.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that you want to bind to the
resource reference of your module.

Information Value
Data type String

Scope
The scope of the resource. Note that this administrative console page displays only resources that are
configured for a scope at which your application operates.

Description
The text description of the resource.

Chapter 41. Deploying data access resources 2043

Map data sources for all 1.x CMP beans
Use this page to designate how the container-managed persistence (CMP) 1.x beans of an application
map to data sources that are available to the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map data sources for all 1.x CMP beans.

Guidelines for using this administrative console page:

v The table depicts the 1.x CMP bean contents of your application.

v Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name
of the data source mapping target of the bean only if you bound them together during application
assembly or installation. For every data source that is displayed, you see the corresponding security
configuration.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those CMP beans.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your CMP beans.

3. Click Apply. The console displays the 1.x CMP bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify data source security settings:

1. Select one or more rows in the table.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your settings.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the data source that is configured for the
enterprise bean.

Information Value
Data type String

2044 Developing WebSphere applications

User name
The user name and password that comprise the authentication alias for securing the data source.

Map default data sources for modules containing 1.x entity beans
Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map default data sources for modules containing 1.x
entity beans.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping
target of the EJB module only if you bound them together during application assembly. For every data
source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you
select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Select
Select the check boxes of the rows that you want to edit.

EJB Module
The name of the module that contains the 1.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

Chapter 41. Deploying data access resources 2045

JNDI name
The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

Information Value
Data type String

User name
The user name and password that comprise the authentication alias for securing the data source.

Map data sources for all 2.x CMP beans settings
Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources
that are available to the application.

To view this administrative console page, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans.

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of
the data source mapping target of the bean only if you bound them together during application assembly.
For every data source that is displayed, you see the corresponding security configuration.

Set Multiple JNDI names
Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or
more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules
with that JNDI name.

Information Value
Data type Drop-down list

Set Authorization Type
Specify the authorization type for securing the data source. Select one or more EJB modules from the
table to set the authorization type.

Select either Container or Application from the displayed list. Container-managed authorization indicates
that WebSphere Application Server performs signon to the data source. Application-managed authorization
indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method
Specify the authorization type and the authentication method for securing the data source. Select one or
more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

2046 Developing WebSphere applications

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

Chapter 41. Deploying data access resources 2047

Target resource JNDI name
Specifies the resource to which the CMP bean is bound.

Resource authorization
Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Map data sources for all 2.x CMP beans
Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console panel, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.
Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target
of the EJB module only if you bound them together during application assembly. For every data source
that is displayed, you see the corresponding security configuration.

Set Multiple JNDI Names
Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple
JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type
Specifies the authorization type that you to use for the modules. Select one or more modules, click Set
Authorization Type, and select the authorization type.

You can choose:

v Per application - indicates that the enterprise bean code performs signon.

v Container - indicates that the application server performs signon to the data source.

Modify Resource Authentication Method
Specifies the resource authentication method for the modules that you have configured with
container-managed authorization. Select one or more modules, click Modify Resource Authentication
Method, and select the authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

2048 Developing WebSphere applications

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows you want to edit.

EJB Module
Specifies the name of the module that contains the 2.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB
module.

Information Value
Data type String

Chapter 41. Deploying data access resources 2049

Resource authorization
Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties
When selected, you will be directed to a panel on which you can specify extended properties that the
module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when
you select this option.

Installing a resource adapter archive
The application server uses the classes and other code that comprise a resource adapter archive (RAR) to
support the resource adapters that you configure.

Before you begin

A RAR file, which is often called a Java EE Connector Architecture (JCA) connector, must comply with the
JCA Specification. You can meet these requirements by using a supported assembly tool to assemble a
collection of Java archive (JAR) files, other runnable components, and utility classes into a deployable
resource adapter archive (RAR). You can then install the RAR file in the application server.

About this task

A resource adapter archive provides the classes and other code to support a resource adapter for access
to a specific EIS, such as the Customer Information Control System (CICS). Therefore, you can only
configure resource adapters for an EIS after you install the appropriate RAR file.

Important: When you use the Install RAR dialog to install a RAR file, the scope you define on the
Resource Adapters page has no effect on where the RAR file is installed. You can install RAR
files only at the node level, which you specify on the Install RAR page. To set the scope of an
RAR file to a specific cluster, or server, after you install the RAR file at each node level, create
a copy of the RAR file with the appropriate cluster or server scope.

Procedure
1. Navigate to the Resource adapter panel. Click Resources > Resource Adapters > Resource

adapters.

2. Install a new resource adapter archive.

a. Click Install RAR. A dialog opens for installing a RAR file and configuring the associated resource
adapter. Only click New if you want to configure a new resource adapter for a previously installed
RAR file.

b. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path, and browse to find the
file.

v If your RAR file is located on your server, select Remote file system, and specify the fully
qualified path to the file.

c. Click Next.

3. Configure the resource adapter name and any other properties needed under General Properties. For
more details on the settings that you can configure, such as the J2C connection factories, see the
topics Installing resource adapters within applications and Configuring resource adapters.

4. Click OK.

2050 Developing WebSphere applications

5. Optional: Create a copy of the RAR file with a different scope level. After you install the RAR file at
each node level, you can create another copy of the file that has a specific server or cluster as the
scope for that file.

Note:

v If you do not create a copy of your RAR at the cluster scope, then you must create identical
factories (connection factories, admin object, and activation specifications) at the node level
for each of your nodes in the cluster. By creating the copy of your RAR, you provide a
placeholder for your factories and circumvent the need to create identical factories at the
node level for each of your nodes in the cluster.

v You must still install the RAR binaries (files, such as jars and xml deployment files) on each
node for the RAR to operate successfully.

a. Click Resources.

b. Click Resource Adapters.

c. Select the scope level and then click NEW.

d. Choose the RAR file from the installed archive path.

e. Click OK.

Results

You have installed a resource adapter archive that provide access to the EIS when it is properly
configured. If you must configure more settings, or change some settings that were configured during the
installation process, refer to the topic on configuring a resource adapter in the administrative console for
more information.

Installing resource adapters embedded within applications
Install resource adapters in your applications so they can access outside data sources.

Before you begin

The JCA Version 1.6 specification adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

About this task

Procedure
1. Assemble an application with RAR modules in it. See the topic Assembling applications for more

information.

2. Install the application. Follow the steps in the topic Installing a new application.

In the Map modules to servers step, specify target servers or clusters for each RAR file. Be sure to
map all other modules that use the resource adapters defined in the RAR modules to the same
targets. Also, specify the web servers as targets that serve as routers for requests to this application.
The plug-in configuration file (plugin-cfg.xml) for each web server is generated based on the
applications that are routed through it.

In the Metadata for modules step of installing an application, you can set or unset the
metadata-complete flag as discussed in the topic, JCA 1.6 support for annotations in RAR modules.

Note: When installing a RAR file on a server, the application server looks for the manifest
(MANIFEST.MF) for the connector module. The application server first looks for the RAR file's
connectorModule.jar file and loads the manifest from the connectorModule.jar file. If the class
path entry is in the manifest from the connectorModule.jarfile, the RAR uses that class path.

Chapter 41. Deploying data access resources 2051

To ensure that the installed connector module finds the classes and resources that it needs,
check the Class path setting for the RAR using the administrative console. For more information
on how to check this setting, see the topics Resource adapter settings and WebSphere
relational resource adapter settings.

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

See the topic, Configuring connection factories for resource adapters within applications to view the
steps to complete this step.

Results

Note: A given native library can only be loaded one time for each instance of the Java virtual machine
(JVM). Because each application has its own class loader, separate applications with embedded
RAR files cannot both use the same native library. The second application receives an exception
when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes
native path elements, then you must always ensure that you shut down the application server
cleanly, with no outstanding transactions. If the application server does not shut down cleanly it
performs recovery upon server restart and loads any required RAR files and native libraries. On
completion of recovery, do not attempt any application-related work. Shut down the server and
restart it. No further recovery is attempted by the application server on this restart, and normal
application processing can proceed.

Install RAR
Use this page to install a resource archive (RAR) file in one of two ways. You can either upload a RAR file
from the local file system, or specify an existing RAR file on a server. The RAR file must be installed at the
node level, and you can select the node on this page.

To view this page in the administrative console click Resources > Resource Adapters > Resource
Adapters > Install RAR.

For information about installing a resource adapter, see the topic, Installing a resource adapter archive
(RAR) file.

Scope
Specifies the scope of the resource adapter. Only applications that are installed within this scope can use
this adapter.

Local file system
Specifies the path of a RAR that resides on the same server as the console.

Information Value
Data type String

Remote file system
Specifies the path of a RAR that resides on one of the nodes of the cell.

Information Value
Data type String

2052 Developing WebSphere applications

Deploying SQLJ applications
Use Structured Query Language in Java (SQLJ) to develop data access applications that connect to DB2
databases. SQLJ is a set of programming extensions that enable you to use the Java programming
language to embed statements that provide SQL (Structured Query Language) database requests.

About this task

The advantages of developing applications with SQLJ include improved performance and a shorter, more
efficient development cycle. You can achieve the following with SQL:
v Improve performance by using static SQL statements.
v Reduce the development cycle:

– Write less code with the simpler SQLJ syntax, which reduces the number of lines of code that is
required to execute statements, set parameters, and retrieve parameters.

– Detect programming errors earlier in the development phase with the online check function, which
performs data type validation and schema validation. See the DB2 documentation for a complete list
of customization options.

Consider using SQLJ in situations where dynamic SQL is not needed, and where applications use DB2 as
the database server.

The application server includes enhanced SQLJ support for applications that use container-managed
persistence (CMP). The enhanced support includes the following items: include:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

These enhancements reduce the complexity of installing, deploying, and customizing SQLJ applications for
both container-managed and bean-managed persistence.

Procedure
1. Acquire the required drivers to deploy an SQLJ application in the application server. You need the

following files, depending on the JDBC provider that you use:

JDBC provider type Required files

DB2 Using IBM JCC Driver

This driver is also known as:

v IBM Data Server Driver for JDBC and SQLJ

v IBM DB2 Driver for JDBC and SQLJ

v IBM DB2 Universal JDBC Driver.

db2jcc.jar or db2jcc4.jar

DB2 Universal JDBC driver (deprecated) db2jcc.jar

2. Deploy the SQLJ application.

v Deploy applications that use container-managed persistence (CMP):

– “Deploying SQLJ applications that use container-managed persistence (CMP)” on page 2054 with
the DB2 Using IBM JCC Driver.

– “Deploying SQLJ applications that use container-managed persistence (CMP) with the ejbdeploy
tool” on page 2055.

v “Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans” on
page 2056.

v “Using embedded SQLJ with the DB2 for z/OS Legacy driver” on page 2066 (deprecated).

3. Customize and bind the SQLJ profiles. Before the application server can use an SQLJ application, the
SQLJ statements must be processed for the database server. By default, four DB2 packages are

Chapter 41. Deploying data access resources 2053

created in the database; one package is created for each isolation level. The customization process
augments the profiles with information that is specific to the database. If you do not customize the
SQLJ profiles, the SQLJ application uses dynamic SQL like a JDBC application.

v “Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications” on
page 2058.

v Customize and bind SQLJ profiles with the wsadmin scripting tool. See the topic, Customizing and
binding SQLJ profiles with the wsadmin tool.

v “Customizing and binding SQLJ profiles with the db2sqljcustomize tool” on page 2060.

Deploying SQLJ applications that use container-managed persistence
(CMP)
Embed Structured Query Language in Java (SQLJ) statements in your applications to maximize the
efficiency of transactions with your databases. Before your applications can take advantage of SQLJ, you
must deploy the application and customize the SQLJ profiles that are created. The application server
provides functionality to use SQLJ as the persistence mechanism for enterprise beans that use
container-managed persistence. Deploy the CMP beans in the application server to enable SQLJ support.

Before you begin

You need an application that uses SQLJ and container-managed persistence. Develop this application in
Rational Application Developer or another development tool.

About this task

Deploy SQLJ applications in the application server to simplify the process of SQLJ translation and bean
deployment. The application server includes these new features for SQLJ support:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

You can also deploy the SQLJ application using the ejbdeploytool. Read the topic on deploying SQLJ
applications that use container-managed persistence (CMP) with the ejbdeploy tool for more information.

Procedure
1. Create a top-down mapping to a DB2 database.

2. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation.

3. Deploy the EAR file in the administrative console.

a. Click Applications > Install New application.

b. Select Local file system or Remote file system, and browse to the EAR file.

c. Select Detailed - Show all installation options and parameters. Click Next.

d. In Step 1: Select installation options, select Deploy enterprise beans. Configure any other
options, and click Next.

e. In Step 3: Provide options to perform the EJB deploy, select SQLJ for Deploy EJB option -
Database access type.

f. Enter the location of the sqlj.zip file in the SQLj class path field.

g. Complete the installation process for the application.

What to do next

After the enterprise application is deployed, customize the SQLJ profiles using the administrative console,
scripting, or the db2sqljcustomize tool:

2054 Developing WebSphere applications

v For administrative console support, read the topic on customizing and binding profiles for Structured
Query Language in Java (SQLJ) applications.

v For scripting support, read the topic on the application management command group for the AdminTask
object.

v For use of the db2sqljcustomize tool, read the topic on customizing and binding SQLJ profiles with the
db2sqljcustomize tool.

Deploying SQLJ applications that use container-managed persistence (CMP) with
the ejbdeploy tool
Embed Structured Query Language in Java (SQLJ) statements in your applications to maximize the
efficiency of transactions with your databases. Before your applications can take advantage of SQLJ, you
must deploy the application and customize the SQLJ profiles that are created. The application server
provides functionality to use SQLJ as the persistence mechanism for enterprise beans that use
container-managed persistence. Use the ejbdeploy tool to deploy the application.

About this task

You can deploy SQLJ applications with the ejbdeploy tool to deploy the enterprise application in a
stand-alone environment.

Alternatively, the application server includes enhanced SQLJ support for applications that use
container-managed persistence (CMP). The new features include:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

These enhancements reduce the complexity of installing, deploying, and customizing SQLJ applications for
both container-managed and bean-managed persistence.Read the topic on deploying SQLJ applications
that use container-managed persistence (CMP) for more information.

Procedure
1. Create a top-down mapping to a DB2 database.

2. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation.

3. Modify the Java build path of your enterprise bean JAR project to include the sqlj.zip file.

4. Use Rational Application Developer or the DB2 SQLJ translator to automatically translate SQLJ.

v Use Rational Application Developer:

a. From the Project Navigator, click EJB_JAR_PROJECT_NAME > SOURCE_FOLDER >
META-INF > backends > database_version.

b. Open Map.mapxmi in the Mapping editor.

c. On the Overview panel, highlight the name of your JAR project in the Enterprise Beans column.
You must highlight the name of the JAR project, not the name of one of the enterprise beans
that is listed.

d. On the Properties panel, expand SQLJ.

e. Set Is using SQLJ? to True.

f. Set Translator Module to the fully qualified path of the sqlj.zip file on your workstation.

g. Save the Map.mapxmi file.

h. Export the enterprise archive (EAR) file.

v Use the DB2 SQLJ translator. This tool creates a .java version of your .sqlj file and a serialized
profile, with a .ser extension, that is used later in processing. Refer to the DB2 documentation for
more information on the SQLJ translator tool.

5. Deploy the EAR file with the ejbdeploy tool.

Chapter 41. Deploying data access resources 2055

a. Verify that the app_server_root/bin directory is in your class path.

b. Run the ejbdeploy command utility with the -sqlj option. The ejbdeploy command will generate an
EAR file with the name you specify and an Ant script with the name application_name.ear.xml.

For example: :
ejbdeploy d:\application_name.ear

working d:\deployed_application_name.ear
-sqlj
-dbvendor DB2UDB_V81
-cp "C:\PROGRA~1\IBM\SQLLIB\java\sqlj.zip"

Note: Supply the location of the SQLJ translator sqlj.zip file with -cp, which is the class path option
The ejbdeploy command does not access sqlj.zip from your system class path.

6. Choose the option for customization.

v Use the application server's SQLJ support. Install the deployed application to customize the SQLJ
profiles with the application server or scripting.

a. Install the enterprise application in the application server.

Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative
console, you will lose the customization changes that you have made.

b. Customize the SQLJ profiles.

– For administrative console support, read the topic on customizing and binding profiles for
Structured Query Language in Java (SQLJ) applications.

– For scripting support, read the topic on the application management command group for the
AdminTask object.

v Customize and bind the SQLJ profiles with the db2sqljcustomize tool. Read the topic on customizing
and binding SQLJ profiles with the db2sqljcustomize tool.

Deploying SQLJ applications that use bean-managed persistence,
servlets, or sessions beans
You can embed Structured Query Language in Java (SQLJ) statements in your applications to maximize
the efficiency of transactions with your databases. Before your applications can take advantage of SQLJ,
deploy the application and customize the created SQLJ profiles. You can use Rational Application
Developer or the DB2 SQLJ translator to translate the application before deploying it on the application
server.

Before you begin

Create an SQLJ application using Rational Application Developer or another development tool.

About this task

To deploy SQLJ applications that do not use container-managed persistence, translate the SQLJ
application first to configure it for the application server environment. After translation, customize the SQLJ
profiles in the application server, with scripting, or with the db2sqljcustomizer tool.

SQLJ support for applications that use bean-managed persistence include these features:

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without reinstalling the application.

Procedure
1. Optional: Create a backup copy of your .java file. For example if your file is called MyServlet.java,

copy MyServlet.java to MyServlet.java.bkup.

2056 Developing WebSphere applications

2. Optional: Rename your .java file to a file name with an .sqlj extension. For example, if your
application is a servlet named MyServlet.java, rename MyServlet.java to MyServlet.sqlj

3. Optional: Edit the SQLJ file to convert the JDBC syntax to SQLJ syntax. When using SQLJ, if you
want connection management for the application server to function properly, specify correct connection
contexts.

For example, convert the following JDBC operation:
Connection con = dataSource.getConnection();
Statement stmt = con.createStatement();
stmt.execute("INSERT INTO users VALUES (1, ’user1’)");
con.commit();

to the following SQLJ:
// At the top of the file and just below the import statements, define Connection_Context
#sql context Connection_context;
.
.
Connection con = dataSource.getConnection();
.
.
Connection_context ctx1 = new Connection_context(con);
.
.
#sql [ctx1] {INSERT INTO users VALUES (1, ’user1’)};
.
.
con.commit(); ctx1.close();

When you run the SQLJ translator, the .java file that is created has the same name as your old .java
file. This provides you with a seamless transition to the SQLJ technology.

4. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation. Modify the Java
build path of your enterprise bean Java archive (JAR) file project to include the sqlj.zip file.

5. Use Rational Application Developer or the DB2 SQLJ translator to automatically translate SQLJ.

v Use Rational Application Developer:

a. In the Project Navigator, right-click your JAR project, and select Add SQLJ Support....

b. Select the check boxes for the applications for which you want SQLJ support.

c. In the SQLJ JAR file field, type the fully qualified path to the sqlj.zip file that you previously
copied to your workstation.

d. Click Finish.

e. Export the enterprise archive (EAR) file.

v Use the DB2 SQLJ translator. This tool creates a .java version of the .sqlj file and a serialized
profile, with an .ser extension, that is used later in processing. Refer to the DB2 documentation for
more information about the SQLJ translator tool.

6. Package your JAR file for the enterprise application.

7. Install the application onto the application server, or customize the profiles with the db2sqljcustomize
tool.

v Customize the profiles with the application server.

a. Package the JAR file for your enterprise beans, servlets, and any .ser files into an enterprise
archive.

b. Install the application in the application server, and customize SQLJ profiles with the
administrative console or the wsadmin tool.

Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative
console, you lose the customization changes that you have made.

Chapter 41. Deploying data access resources 2057

The application server provides enhanced support for SQLJ applications. Install the SQLJ
application in the application server, and you can customize and bind SQLJ profiles through the
administrative console or scripting:

– To customize the SQLJ profiles with the administrative console, read the topic about
customizing and binding profiles for Structured Query Language in Java (SQLJ) applications.

– To customize SQLJ profiles with scripting, read the topic about the application management
command group for the AdminTask object.

v To use the db2sqljcustomize tool, read the topic about customizing and binding SQLJ profiles with
the db2sqljcustomize tool for more information.

Customizing and binding profiles for Structured Query Language in
Java (SQLJ) applications
Simplify the process of customizing and binding SQLJ profiles for your applications by performing these
functions in the administrative console or with scripting. SQLJ profiles must be customized and bound
before the enterprise application can use the application's embedded SQL.

Before you begin

You must have an SQLJ application that has already been deployed and installed in the application server.

For SQLJ applications that use container-managed persistence, you can deploy the application in two
ways:

v Deploy the SQLJ application in the application server. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) for more information.

v Deploy SQLJ applications with the ejbdeploy tool. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) with the ejbdeploy tool.

For SQLJ application that use bean-managed persistence, see the topic on deploying SQLJ applications
that use bean-managed persistence, servlets, or session beans.

About this task

To take advantage of SQLJ applications in the application server, you need to customizing the SQLJ
profiles that contain the embedded SQL statements. By default, four DB2 packages are created in the
database; one for each isolation level. The customization process augments the profiles with information
that is specific to the DB2 database. The database uses this information at run time.

In addition to profile customization, you need to bind the customized profiles to the DB2 database. Profile
binding should only take place after the SQLJ profiles are customized.

You can also customize and bind profiles with scripting or the db2sqljcustomize tool:

v For scripting support, read the topic on the application management command group for the AdminTask
object.

v For information on the db2sqljcustomize tool, read the topic on customizing and binding SQLJ profiles
with the db2sqljcustomize tool for more information. If you customize profiles with the db2sqljcustomize
tool, you will need to reinstall the application.

Procedure
1. Make sure the necessary database tables exist, as described in the topic on deploying data access

applications.

2. Navigate to the SQLJ application that is installed in the application server. Click Applications >
Websphere enterprise applications > app_name.

2058 Developing WebSphere applications

Note: Do not run multiple sessions of the administrative console to customize and bind profiles that
are in the same EAR file.

3. Navigate to the SQLJ profiles section. Click SQLj profiles. When you click this link, the application
server expands the EAR file for the application into a temporary directory; there might be a delay
before the panel for SQLJ profiles is displayed.

4. Select Customize and bind profiles or Bind packages. Choose your option based on the profiles
with which you are working:

v If your profiles have not been customized, or you want to customize the profiles again, choose
Customize and bind profiles.

v If the profiles are already customized, choose Bind packages.

5. Choose to select profiles or a profile group to customize and bind.

v Select profiles from the list that is provided.

a. Select the profiles from the list and click Add. The list displays the SQLJ profiles that are
present in the enterprise application.

Note:
– Select more than one profile by holding CTRL.
– Select a contiguous list of profiles by selecting the first profile name, holding SHIFT,

and selecting the last profile. You will select the first profile, last profile, and any
profiles in the middle.

b. Select Customize/bind the selected SQLj profiles as a group This option specifies that the
application server will create a .grp file that contains the SQLj profiles that are processed. You
can use the .grp file for other binding operations in the future. After you have completed this
panel and click OK, you will be given an option to download the .grp file.

v Select Use a profile group file to specify profiles to customize/bind. Select this to specify a
profile group to process. Click Browse... to locate the file on the system.

6. Complete the necessary information to connect to the database. You need to complete the following
fields:

Database URL
Specifies the URL of the database to which the profile/s will be bound. The typical syntax is:
jdbc:db2://<host name="">:<port>/<database name="">.</database></port></host> or

or
fully_qualified_host_name:port

User Specifies the user ID for the database administrator on the server where the database is
located.

Password
Specifies the password for the database administrator on the server where the database is
located.

Additional options
Specifies additional options to use during the customization and bind processes. See the DB2
documentation for a complete list of customization options.

Class path
Specifies the class path where sqlj.zip, and db2jcc.jar or db2jcc4.jar are located.

7. Click OK.

Note: If you are processing a large enterprise application, or you are processing many SQLJ profiles,
the process might take longer than the default timeout for the administrative console. The
default connection timeout for the application server's administrative console is set to 30

Chapter 41. Deploying data access resources 2059

minutes. If the default timeout is reached and you lose the connection to the server, you can
check the system output log for the final results of the customization and bind process.

To prevent this disconnection, configure the console session timeout to a longer period of time.
After a successful customization and binding process, check the system output log for the total
processing time. Use that time period as a basis for the new timeout value. For information
about how to configure the console timeout, see the topic on changing the console session
expiration.

Results

After the application server finishes processing the SQLJ profiles, you will see the results from the
customization and binding. The results panel displays messages from the database server, as well as
summary results from the application server.

If the operation completed successfully, the following message will be printed to the system log:
ADMA0507I=ADMA0507I: The SQLJ operation on application {0} completed successfully. Exit code: {1}
ADMA0507I.explanation=This informational message indicates the program status.
ADMA0507I.useraction=No user action is required.

If the operation did not complete successfully, the following message will be printed to the system out log:
ADMA0506I=ADMA0506I: The SQLJ operation on application {0} did not complete successfully. Exit code: {1}
ADMA0506I.explanation=The SQLJ operation encountered a problem. This informational message indicates
the program status. Prior messages in the command output give details of the problem.
ADMA0506I.useraction=Check the command output for the cause of the problem.

Customizing and binding SQLJ profiles with the db2sqljcustomize tool
Customize and bind SQLJ profiles with the db2sqljcustomize tool before you install the SQLJ application in
the application server.

Before you begin

To perform this task, you must have SQLJ application that has been deployed, but the application should
not be installed in the application server. If the application is already installed in the application server, you
will need to reinstall the application after you customize the profiles. You also need serialized profiles for
the SQLJ application.

For SQLJ applications that use container-managed persistence, you can deploy the application in two
ways:

v Deploy the SQLJ application in the application server. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) for more information.

v Deploy SQLJ applications with the ejbdeploy tool. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) with the ejbdeploy tool.

For SQLJ application that use bean-managed persistence, see the topic on deploying SQLJ applications
that use bean-managed persistence, servlets, or sessions beans.

About this task

To take advantage of SQLJ applications in the application server, you need to customize the SQLJ
profiles. The customization process augments the profiles with information that is specific to the DB2
database. The database uses this information at run time. By default, four DB2 packages are created in
the database; one package is created for each isolation level.

The application server supports customizing and binding the SQLJ profiles in the administrative console or
with scripting:

2060 Developing WebSphere applications

v For administrative console support, read the topic on customizing and binding profiles for Structured
Query Language in Java (SQLJ) applications.

v For scripting support, see the topic on the application management command group for the AdminTask
object.

Procedure
1. Make sure the necessary database tables exist, as described in the topic on deploying data access

applications.

2. Transfer the serialized profiles to the environment on which you installed your application.
Alternatively, use the Java jar command to extract the serialized profiles from the JAR file in your
installed EAR directory.

3. Add the location for the SQLJ profiles and the application's JAR file to your environment's class path.

4. Make sure the necessary database tables exist, as described in the topic on deploying data access
applications.

5. Optional: If your application is not running in a clustered environment, you can use the Ant script to
make customization easier. If you run a batch SQLJ customization against an EAR file with the
ejbdeploy tool, the tool produces an Ant script that is named application_name.ear.xml. You can use
this script file to run the DB2 customizer program against the serialized profiles in all of the enterprise
bean JAR files for the associated EAR file. The script updates each enterprise bean's JAR file with a
serialized profile and replaces the JAR files in the existing EAR file with the modified versions.

The tool is:

v ws_ant

v ws_ant.bat

a. Change the values of the database URL, and the database user and password properties in
ejbdeploy.sqlj.properties. This file is a common file to all Ant scripts that are generated by the
ejbdeploy command. The ejbdeploy.sqlj.properties script defines the global properties for:
v Database URL - db.url
v User - db.user
v Password - db.password

The Ant script uses the URL, user, and password properties in the serialized profile to customize
the profile. By default, the properties for the serialized profile are created from the global
properties.

b. Run the Ant script, specifying the properties target. For example:
ws_ant -buildfile application_name.ear.xml properties

This script creates the properties file, application_name.ear.properties. The
application_name.ear.properties file contains properties that specify the default names for the
packages corresponding to each serialized profile in the EAR file. This is a sample properties file:
url.MyEJB1.jar.DB2UDBNT_V8_1=jdbc:db2://localhost:50000/MyDB1
user.MyEJB1.jar.DB2UDBNT_V8_1=dbuser
password.MyEJB1.jar.DB2UDBNT_V8_1=dbpassword
pkg.MyEJB1.jar.DB2UDBNT_V8_1=TEST
url.MyEJB2.jar.DB2UDBNT_V8_1=jdbc:db2://localhost:50000/MyDB2
user.MyEJB2.jar.DB2UDBNT_V8_1=dbuser
password.MyEJB2.jar.DB2UDBNT_V8_1=dbpassword
pkg.MyEJB2.jar.DB2UDBNT_V8_1=WORK

c. Use the DB2 Control Center to identify the packages that are installed in the database. The DB2
SQLJ customizer requires a type 4 database URL in the form of:
jdbc:db2://host-name:port/database-name

It also requires a user and password. The value of the port is 50000, unless you change it when
you install DB2.

d. Change the names that are used by the script file to ensure that the names for each
customization profile do not conflict with existing package names that are in the database. Ant

Chapter 41. Deploying data access resources 2061

scripts that are generated for different EAR files use the same package names by default, and the
script will overwrite existing packages unless you change the names. Overwritten packages can
cause errors at run time.

DB2 uses the first seven characters of the package name. The DB2 customizer uses this name to
create four packages in the database. For example, if you specify the name TEST, the DB2
customizer will create packages called TEST1, TEST2, TEST3, and TEST4.

e. Run the Ant script. The Ant script updates the original EAR file with the modified serialized
profiles.

Note: Verify that you have db2jcc.jar in the class path. This file should have been added to the
class path environment variable when DB2 V8 FixPak1 was installed.

A sample Ant command looks like this:
ws_ant -Dwork.dir=tmp

-Dscript.property.file=other.properties
-buildfile application_name.ear.xml

where:

v -buildfile specifies the XML file to create.

v -Dscript.property.file specifies a different properties file. This parameter is optional. If you
want your Ant script to use a another file instead of application_name.ear.properties, specify the
Dscript.property.file property when you run the script.

v -Dwork.dir specifies a temporary working directory for the script. The script will create and
delete files and subdirectories in this directory. If the working directory contains existing files
and directories with the same name as the files and directories used by the script, the script
will erase or overwrite the files and directories. This script creates and uses a directory called
tmp as its working directory.

f. Proceed to installing the application in the application server..

6. Run the db2sqljcustomize tool to customize the SQLJ profiles that correspond to each enterprise
bean's JAR file. When you generate your deployment code, serialized profiles (files with a .ser
extension) that are specific to your application are created. These profiles exist in the same directory
as your SQLJ files, and the files must be customized to the environment before they can be used.
When you run the DB2 SQLJ customizer against the serialized profiles, you create static SQL in the
database that DB2 will use at run time. The customization phase creates four database packages that
contain static SQL, one for each isolation level.

a. Optional: Consider using the SQLJ customizer tool to enable context caching for your
application's data source connections. DB2 V8.1 fix pack 6 provides the new caching option with
the db2sqljcustomize tool called db2optimize. You can run this option if your application uses the
explicit connection context instead of the default context.

Note:

v SQLJ context caching support requires the DB2 with IBM JCC driver or Version 2.2 or
later of the DB2 Universal JDBC Driver with APAR PQ87786 applied.

v If you want to enable context caching for an application or BMP bean that caches
connections across transaction boundaries, you cannot use shareable connections. Use
the get/use/close pattern of connection usage when you invoke the db2optimize option,
or an object closed exception occurs. The following code gives an example of incorrect
connection usage for context caching:
utx.begin();

cons =ds.getConnection(
request.getParameter("db.user"),
request.getParameter("db.password"));

cmctx1 = new CM_context(cons);
#sql [cmctx1] {DELETE FROM cmtest WHERE id=1};

2062 Developing WebSphere applications

utx.commit();
//The next statement verifies the result:

#sql [cmctx1] cursor1 = {SELECT id, name FROM cmtest WHERE id=1};

In this case, the Select statement elicits an object closed exception. To prevent the
exception from occurring, close the connection before committing the transaction. Then
get a new connection and a new context before running the Select statement.

The following example code demonstrates proper syntax for running the option on the serialized
profile:
sqlj -db2optimize SQLJTransactionTest.sqlj
db2sqljcustomize -url jdbc:db2://localhost:50000/dbname -user USER_NAME -password PASSWORD
SQLJTransactionTest_SJProfile0.ser

b. Run the db2sqljcustomize tool to customize the SQLJ profiles. After you successfully run the
db2sqljcustomize command, customized profiles exist in the directory from which you issued the
command. If you run the db2sqljcustomize command from the directory that contains the
serialized profiles that were not customized, the customized versions will overwrite previous
versions that have the same file names.

The recommended syntax for running the db2sqljcustomize command is:
db2sqljcustomize -url JDBC_URL -user USER_NAME -password PASSWORD
[-rootpkgname PACKAGE_NAME] SERIALIZED_PROFILE1 SERIALIZED_PROFILE2 ...

where:

v JDBC_URL is the JDBC URL that is used to access the DB2 system where your tables reside.

v USER_NAME is a valid user name for the DB2 system where your tables reside.

v PASSWORD is the password for the specified user name.

v PACKAGE_NAME is a valid partitioned data set (PDS) member name, up to seven characters
long. Each of the four packages that are created by the profile customizer begin with this name
and are appended with a number from 1 to 4. If you customize only one serialized profile, this
value defaults to a shortened version of the serialized profile name and the -rootpkgname
parameter is not required. If you customize more than one serialized profile with the same
command, there is no default value and the -rootpkgname parameter is required.

v SERIALIZED_PROFILE# is the name of the serialized profile that you are customizing.

– To customize more than one serialized profile with the same command, list multiple files,
separated by spaces.

– Alternatively, you can specify the -rootpkgname parameter to customize more than one
serialized profile with the same command.

Note: The following options provide more control over the customization process:

v -automaticbind yes specifies to run the DB2 SQLJ customizer against the serialized
profiles to create static SQL in the database that the database will use at run time. The
customization phase creates four database packages that contain static SQL, one for
each isolation level.

v -onlinecheck NO and -bindoptions "VALIDATE RUN" specifies settings to bypass errors
during a profile customization and ensure a successful customization.

7. Update the JAR file for the enterprise beans with the serialized profiles.

8. Use the jar command to replace the serialized profiles in your JAR file with the customized profiles.

Note: The customized files must be placed in a location that is part of the application class path, and
they must exist ahead of the serialized profiles that are not customized in your JAR file. If you
decide to replace the serialized profiles in your JAR file, maintain the directory structure in
which the profiles exist.

9. Package the JAR file for the enterprise bean, servlets, and serialized profiles into an enterprise
archive (EAR) file.

Chapter 41. Deploying data access resources 2063

10. Install the application in the application server.

Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative console,
you will lose the customization changes that you have made.

SQLJ profiles and pureQuery bind files settings
Use this page to do customization and binding for the Structured Query Language in Java (SQLJ) profiles
for DB2 that are included in this application. You can also use this page to do binding for pureQuery bind
files in the application. You can view SQLJ profiles for other database types, but you cannot change these
profiles. PureQuery bind files are only valid for DB2. Use SQLJ or pureQuery to develop data access
applications that connect to DB2 databases. SQLJ is a set of programming extensions that enable a
programmer to use the Java programming language to embed statements that provide SQL database
requests. PureQuery provides an alternate set of APIs that can be used instead of JDBC to access the
DB2 database.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > SQLJ profiles and pureQuery bind files.

Advantages of developing applications with SQLJ include improved performance and a shorter, more
efficient development cycle. With SQLJ, you can:

v Improve performance by using static SQL statements.

v Reduce the development cycle by:

– Writing less code with the simpler SQLJ syntax, which reduces the amount of code that is required
to execute statements, and set and retrieve parameters.

– Detecting programming errors earlier in the development phase with the online check function, which
performs data type and schema validation. Activate this function by running it as an option with the
db2sqljcustomize command. See the DB2 documentation for a complete description of the SQLJ
customize command.

DB2 pureQuery run time is an alternative set of APIs to JDBC or SQLJ. Advantages of developing
applications with pureQuery include allowing SQL execution to be either dynamic or static. In addition to
improved performance by using static SQL statements, pureQuery has better problem determination and
diagnosis because it allows for errors at the DB2 server to be related back to application artifacts rather
than to SQL that was generated by an application generator.

Customize and bind profiles:

Specifies that the application server processes the SQLJ profiles that you select from this application.

Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

By default, one DB2 package is created in the database for each isolation level. The customization
process augments the profile or profiles with information that is specific for the DB2 database for use at
run time. Typically, the customization process should run after the SQLJ application has been translated
and before the application is started. If you do not run the customization step, the SQLJ application uses
dynamic SQL like a JDBC application.

Binding DB2 SQLJ profiles involves the process of binding the customized SQLJ profiles to the DB2
database.

Bind packages:

Specifies that the application server binds the SQLJ profiles that you select to the DB2 database server.

2064 Developing WebSphere applications

Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

Bind packages from the SQLJ application that have already been customized.

Select and order the profiles to customize/bind:

Specifies the profiles to process from the list that is provided.

v Select a profile or group of profiles from the Available profiles, and click Add to add the profile that is
selected to Selected Profiles.

v Select a profile or group of profiles from the Selected Profiles, and click Remove to add the profile that
is selected to Available profiles.

When SQLJ or pureQuery profiles have been added to Selected Profiles, select profiles from that list and
use Move Up or Move Down to change the order in which the profiles are processed.

Customize/bind the selected SQLJ profiles as a group:

Specifies that the application server creates a .grp file that contains the SQLJ profiles that you selected.

Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

When you click OK, there is an option on the next page to download the .grp file.

Use a profile group file to specify profiles to customize/bind:

Specifies a profile group file from the local file system to customize or bind.

Database URL:

Specifies the URL of the database to which the profile or profiles are bound.

The typical syntax is:
jdbc:db2://host_name:port_name/database_name

User:

Specifies the user ID for the database administrator on the server where the database is located.

Password:

Specifies the password for the database administrator on the server where the database is located.

Additional options:

Specifies additional options to use during the customization and bind processes.

Options for pureQuery binding uses the following syntax:
-bindoptions "BLOCKING NO"

For more information about pureQuery bind options, refer to the DB2 pureQuery Bind Utility topic.

Class path:

Chapter 41. Deploying data access resources 2065

Specifies the class path where the sqlj.zip, and db2jcc.jar or db2jcc4.jar files for SQLJ are located.
Specifies the class path where the pdq.jar, pdqmgt.jar, db2jcc.jar, and db2jcc_license_cisuz.jar files
for pureQuery are located.

Download SQLJ profile group
Use this panel to download the group file for the Structured Query Language in Java (SQLJ) profiles that
are bound together as a single package on the DB2 database server. You can use the file when
performing future customization or binding work on the application. Click the link that is provided to
download the profile group to your local file system. The group file has a filename extension of .grp and a
HTTP Content-Type of text/plain.. Your web browser settings might cause the browser to display the file
contents rather than prompting you for a download destination. If this happens, you can manually copy
and paste the contents into your own .grp file.

Note: This topic does not apply to IBM Optim PureQuery Runtime. IBM Optim PureQuery Runtime does
not support binding pureQuery bind files as a group.

Click Applications > Application Types > WebSphere enterprise applications > app_name > SQLJ
profiles and pureQuery bind files. When you are selecting the profiles to customize and bind, select
Customize/bind the selected SQLJ profiles as a group to view this console panel.

Review results
Use this panel to review the results from the customization and binding process for the Structured Query
Language in Java (SQLJ) profiles or pureQuery bind files. Use SQLJ or IBM Optim PureQuery Runtime to
develop data access applications that connect to DB2 databases. SQLJ is a set of programming
extensions that enable a programmer to use the Java programming language to embed statements that
provide SQL (Structured Query Language) database requests. IBM Optim PureQuery Runtime provides an
alternate set of APIs that can be used instead of JDBC to access the DB2 database.

Click Applications > Application Types > WebSphere enterprise applications > application_name >
SQLj profiles and pureQuery bind. Select profiles to customize and bind, complete the necessary fields,
and click OK to view this console panel.

Review results:

Displays the results of the customization and bind process. The field shows information that is received
from the database and summary statements from the application server.

Using embedded SQLJ with the DB2 for z/OS Legacy driver
Structured Query Language in Java (SQLJ) is a set of programming extensions that enable a programmer,
using the Java programming language, to embed statements that provide Structured Query Language
(SQL) database requests. You can use the DB2 for z/OS Legacy driver with your data access applications.

About this task

Notes:

1. To use SQLJ with WebSphere Application Server for z/OS and the DB2 for z/OS Legacy
Driver, install DB2 APAR PQ76442.

2. Container Managed Persistence (CMP) beans generated using SQLJ are not supported by the
DB2 for z/OS Legacy Driver. Use the DB2 Universal Driver for CMPs that are generated using
SQLJ.

Following are the steps required to develop applications with SQLJ that run on WebSphere Application
Server for z/OS v6.0 using the DB2 for z/OS Legacy driver.

2066 Developing WebSphere applications

Procedure
1. Design your application in Rational Application Developer according to your requirements, using SQLJ

when necessary. For example, if you develop a bean called Test that uses BMP, code TestBean.sqlj
(instead of TestBean.java).

a. From your DB2 for z/OS installation, copy the db2sqljclasses.zip file to a directory on your
workstation, then modify the Java Build Path of your EJB Java archive (JAR) project to include the
db2sqljclasses.zip file.

b. Translate your SQLJ code according to the following steps:

1) Locate your SQLJ file, then use ASCII mode transfer to FTP it to an HFS in your z/OS
environment.

2) Use the sqlj command to translate your SQLJ code into Java code. Two files are produced,
one with a .java extension and the other with an .ser extension.
sqlj -compile=false SQLJ_FILE_NAME

3) Use ASCII mode transfer for the .java file and BINARY mode transfer for the .ser file to move
these files back to the directory on your workstation where the SQLJ file resides.

4) Refresh the project.

c. Generate deployment code for your application.

d. Export your EAR file.

2. Install your application

a. Create a data source with the DB2 for zOS Local JDBC Provider (RRS). When you define your
JDBC Provider and data source, the default values are sufficient for providing SQLJ support.

b. Install your application into WebSphere Application Server.

Use the data source you created in Step 1 to resolve your resource references.

3. Customize your serialized profiles When you generate your deployment code, serialized profiles, or
files with an .ser extension, that are specific to your application, are created. These profiles must be
customized in a z/OS environment before they can be used.

a. Use binary transfer to transfer the serialized profiles to the z/OS environment on which you
installed your application. Alternatively, use the Java jar command to extract the serialized profiles
from the EJB JAR file in your installed EAR directory.

b. Use the db2profc command to customize your serialized profiles. You can get information about the
various options associated with this command from the DB2 documentation; however, here are the
minimum requirements to customize your profile:
db2profc -pgmname=PROGRAM_NAME PROFILE_NAME

v Where:

– PROGRAM_NAME must be a valid MVS™ PDS member name, and can be up to seven
characters.

– PROFILE_NAME is the name of the serialized profile that you want to customize. You must
run db2profc one time for each profile.

v The profile customizer creates four DBRM data sets in the PDS USERNAME.DBRMLIB.DATA.
The member names of the DBRMs begin with what you specified as PROGRAM_NAME.

v Ensure that your CLASSPATH environment variable includes:

– The location of the serialized profile

– The EJB JAR file in your installed EAR directory

v Allocate a PDS to contain the DBRMs that are created. Name this PDS
USERNAME.DBRMLIB.DATA, where USERNAME is the user who implements the db2profc
command.

The following fields are an example:
Space units=TRACK
Primary quantity=15
Secondary quantity=5

Chapter 41. Deploying data access resources 2067

Directory blocks=10
Record format=FB
Record length=80
Block size=27920
Data set name type=PDS

c. Place the existing serialized profiles, which are now customized, into a location that is part of the
application classpath and that is ahead of the serialized profiles that exist in your EJB JAR file.

The output of the DB2 profile customizer and the input file have the same name. Move the output
file ahead of the original serialized profile in the classpath. Alternatively, you can move the
customized profile into the EJB JAR file, replacing the original. It is recommended that you replace
the original file.

IMPORTANT: If you run the db2profc command from the directory where the serialized profile
exists, the profile customizer overwrites the serialized profile. Because you need only the
customized version after the profile customizer has run, this is not a problem.

d. Bind your DBRMs into a package.

Note: You must create your database tables before binding your DBRMs. If you do not, the bind
job fails.

The db2profc customization command creates a series of DBRMs that must be bound into
packages. For each customized profile, four DBRMs are created.

These DBRMs:

v Are located in USERNAME.DBRMLIB.DATA

v All have names that begin with what you specified as PROGRAM_NAME

v Are numbered from 1-through-4

For example, if you log in as IBMUSER, and you specify -pgmname=TESTBMP, then run the
db2profc command, the four data sets, TESTBMP1, TESTBMP2, TESTBMP3, AND TESTBMP4
are created and placed in the PDS IBMUSER.DBRMLIB.DATA.

These data sets must be bound into packages with isolation of UR, CS, RS, and RR. You must
run a bind for each serialized profile that you customize.

e. After you bind all of the DBRMs into packages, bind the packages into a plan. Name the plan
whatever you like.

IMPORTANT: You must also include the JDBC packages in the package list (PKLIST) of your new
plan. The default names for the JDBC packages to include are DSNJDBC.DSNJDBC1, ...,
DSNJDBC.DSNJDBC4. If your installation did not use the default names for the JDBC packages,
contact your DB2 administrator to determine the names of the JDBC packages that you need to
include.

Following is a sample job used to bind a new plan.

v One serialized profile was created while logged on as IBMUSER.

v -pgmname=TESTBMP was specified to run db2profc.

v The new plan is named SQLJPLAN.
//BBOOLS JOB (516B,1025),’IBMUSER’,MSGCLASS=H,CLASS=A,PRTY=14,
// NOTIFY=&SYSUID,TIME=1440,USER=IBMUSER,PASSWORD=IBMUSER,
// MSGLEVEL=(1,1)
//**
//BINDOLS EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DSN=IBMUSER.DBRMLIB.DATA,DISP=SHR
//* DD DSN=MVSDSOM.DB2710.SDSNDBRM,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DB2)

BIND -

2068 Developing WebSphere applications

PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP1) -
VALIDATE(BIND) -
ISOLATION(UR) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP2) -
VALIDATE(BIND) -
ISOLATION(CS) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP3) -
VALIDATE(BIND) -
ISOLATION(RS) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP4) -
VALIDATE(BIND) -
ISOLATION(RR) -
SQLERROR(NOPACKAGE) -

BIND PLAN(SQLJPLAN) -
QUALIFIER(IBMUSER) -
PKLIST(TESTBMP.* -

DSNJDBC.*) -
ACTION(REPLACE) RETAIN -
VALIDATE(BIND)

END
/*

f. Grant the appropriate authority to your new plan. Use an interface to DB2, such as SPUFI, to grant
the authority. Issue this command:
GRANT EXECUTE ON PLAN PLANNAME TO APPSERVERID

Where:

v PLANNAME is the name of the plan that you bound.

v APPSERVERID is the ID under which WebSphere Application Server runs; for example,
CBSYMSR1.

4. Configure your data source to use your new plan

a. From the WebSphere Application Server for z/OS Administrative Console, navigate to your Data
Source and select Custom Properties.

b. Select the Custom Property planName.

c. Update the value of planName with what you named your plan when it was bound.

d. Set enableSQLJ to true.

5. Stop and restart your server.

6. Run your application.

Chapter 41. Deploying data access resources 2069

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 316. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 317. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

2070 Developing WebSphere applications

Table 318. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 319. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 320. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 321. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 41. Deploying data access resources 2071

Table 322. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Installing a resource adapter archive
The application server uses the classes and other code that comprise a resource adapter archive (RAR) to
support the resource adapters that you configure.

Before you begin

A RAR file, which is often called a Java EE Connector Architecture (JCA) connector, must comply with the
JCA Specification. You can meet these requirements by using a supported assembly tool to assemble a
collection of Java archive (JAR) files, other runnable components, and utility classes into a deployable
resource adapter archive (RAR). You can then install the RAR file in the application server.

About this task

A resource adapter archive provides the classes and other code to support a resource adapter for access
to a specific EIS, such as the Customer Information Control System (CICS). Therefore, you can only
configure resource adapters for an EIS after you install the appropriate RAR file.

Important: When you use the Install RAR dialog to install a RAR file, the scope you define on the
Resource Adapters page has no effect on where the RAR file is installed. You can install RAR
files only at the node level, which you specify on the Install RAR page. To set the scope of an
RAR file to a specific cluster, or server, after you install the RAR file at each node level, create
a copy of the RAR file with the appropriate cluster or server scope.

Procedure
1. Navigate to the Resource adapter panel. Click Resources > Resource Adapters > Resource

adapters.

2. Install a new resource adapter archive.

a. Click Install RAR. A dialog opens for installing a RAR file and configuring the associated resource
adapter. Only click New if you want to configure a new resource adapter for a previously installed
RAR file.

b. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path, and browse to find the
file.

v If your RAR file is located on your server, select Remote file system, and specify the fully
qualified path to the file.

c. Click Next.

3. Configure the resource adapter name and any other properties needed under General Properties. For
more details on the settings that you can configure, such as the J2C connection factories, see the
topics Installing resource adapters within applications and Configuring resource adapters.

2072 Developing WebSphere applications

4. Click OK.

5. Optional: Create a copy of the RAR file with a different scope level. After you install the RAR file at
each node level, you can create another copy of the file that has a specific server or cluster as the
scope for that file.

Note:

v If you do not create a copy of your RAR at the cluster scope, then you must create identical
factories (connection factories, admin object, and activation specifications) at the node level
for each of your nodes in the cluster. By creating the copy of your RAR, you provide a
placeholder for your factories and circumvent the need to create identical factories at the
node level for each of your nodes in the cluster.

v You must still install the RAR binaries (files, such as jars and xml deployment files) on each
node for the RAR to operate successfully.

a. Click Resources.

b. Click Resource Adapters.

c. Select the scope level and then click NEW.

d. Choose the RAR file from the installed archive path.

e. Click OK.

Results

You have installed a resource adapter archive that provide access to the EIS when it is properly
configured. If you must configure more settings, or change some settings that were configured during the
installation process, refer to the topic on configuring a resource adapter in the administrative console for
more information.

Installing resource adapters embedded within applications
Install resource adapters in your applications so they can access outside data sources.

Before you begin

The JCA Version 1.6 specification adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

About this task

Procedure
1. Assemble an application with RAR modules in it. See the topic Assembling applications for more

information.

2. Install the application. Follow the steps in the topic Installing a new application.

In the Map modules to servers step, specify target servers or clusters for each RAR file. Be sure to
map all other modules that use the resource adapters defined in the RAR modules to the same
targets. Also, specify the web servers as targets that serve as routers for requests to this application.
The plug-in configuration file (plugin-cfg.xml) for each web server is generated based on the
applications that are routed through it.

In the Metadata for modules step of installing an application, you can set or unset the
metadata-complete flag as discussed in the topic, JCA 1.6 support for annotations in RAR modules.

Note: When installing a RAR file on a server, the application server looks for the manifest
(MANIFEST.MF) for the connector module. The application server first looks for the RAR file's
connectorModule.jar file and loads the manifest from the connectorModule.jar file. If the class
path entry is in the manifest from the connectorModule.jarfile, the RAR uses that class path.

Chapter 41. Deploying data access resources 2073

To ensure that the installed connector module finds the classes and resources that it needs,
check the Class path setting for the RAR using the administrative console. For more information
on how to check this setting, see the topics Resource adapter settings and WebSphere
relational resource adapter settings.

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

See the topic, Configuring connection factories for resource adapters within applications to view the
steps to complete this step.

Results

Note: A given native library can only be loaded one time for each instance of the Java virtual machine
(JVM). Because each application has its own class loader, separate applications with embedded
RAR files cannot both use the same native library. The second application receives an exception
when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes
native path elements, then you must always ensure that you shut down the application server
cleanly, with no outstanding transactions. If the application server does not shut down cleanly it
performs recovery upon server restart and loads any required RAR files and native libraries. On
completion of recovery, do not attempt any application-related work. Shut down the server and
restart it. No further recovery is attempted by the application server on this restart, and normal
application processing can proceed.

Install RAR
Use this page to install a resource archive (RAR) file in one of two ways. You can either upload a RAR file
from the local file system, or specify an existing RAR file on a server. The RAR file must be installed at the
node level, and you can select the node on this page.

To view this page in the administrative console click Resources > Resource Adapters > Resource
Adapters > Install RAR.

For information about installing a resource adapter, see the topic, Installing a resource adapter archive
(RAR) file.

Scope
Specifies the scope of the resource adapter. Only applications that are installed within this scope can use
this adapter.

Local file system
Specifies the path of a RAR that resides on the same server as the console.

Information Value
Data type String

Remote file system
Specifies the path of a RAR that resides on one of the nodes of the cell.

Information Value
Data type String

2074 Developing WebSphere applications

Chapter 42. Deploying EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java Platform, Enterprise Edition (Java EE) applications as well
as access data.

Deploying EJB 3.x enterprise beans

EJB module settings
Use this page to configure and manage a specific deployed EJB module.

Note: You cannot start or stop an individual EJB module for modification. You must start or stop the
appropriate application entirely.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > module_name.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

URI
Specifies location of the module relative to the root of the application EAR file. The URI must match the
URI of a ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate deployment descriptor
Specifies an alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Starting weight
Specifies the order in which modules are started when the server starts. The module with the lowest
starting weight is started first.

If the application deployment descriptor specifies the <initialize-in-order>true</initialize-in-order>
element, the default starting weights reflect the order that is specified in the deployment descriptor.
Otherwise, the defaults are determined based on module type (RAR modules start before EJB modules,
which start before web modules).

Information Value
Data type Integer
Default 5000
Range Greater than 0

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

© Copyright IBM Corp. 2012 2075

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 323. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 324. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

2076 Developing WebSphere applications

Table 325. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 326. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 327. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 328. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Chapter 42. Deploying EJB applications 2077

Table 329. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Deploying EJB modules
When you deploy an Enterprise JavaBeans (EJB) module, you install that module on a server that has
been configured to support deployed modules.

Before you begin

Assemble one or more EJB modules, assemble one or more web modules, and assemble them into a
Java EE application.

For an overview about the changes to the EJB deployment model for EJB 3.x, see the topic EJB 3.x
deployment overview.

Procedure
1. Prepare the deployment environment. See the topic Preparing to host applications.

2. Update the configuration for each EJB module as needed for the deployment environment.

3. Required: If a module has dependencies on Java 5-specific extensions, such as generics, annotations,
and so on, then you must run the EJBDeplolycommand-line tool separately and before installing the
module or application containing it. This is because the administrative console and the wsadmin
command-line tool do not allow for specifying the ejbdeploy -complianceLevel 5.0 option.

It is only necessary to run the EJBDeploy tool for EJB 2.1 modules containing entity beans.

4. Address potential interoperability issues.

There can be unexpected results if a WebSphere stack product, or another product, that runs on a
version of Application Server that does not support EJB 3.x attempts to remotely invoke a method on
an EJB 3.x compliant enterprise bean on a separate server that is running a version Application Server
that supports EJB 3.x. If these products attempt to invoke a method through the enterprise bean's EJB
3.x remote business interface, they might encounter exceptions that were introduced in EJB 3.x that
will be pushed back to the environment that is not EJB 3.x compliant.

This scenario could also be an issue for an administrator of an environment that includes a
combination of stack products that contain a mixture of EJB 3.x compliant and non-compliant instances
of Application Server.

The following is a list of the exception classes that have been introduced in EJB 3.0:

v javax.ejb.ConcurrentAccessException

v javax.ejb.EJBAccessException

v javax.ejb.EJBTransactionRequiredException

v javax.ejb.EJBTransactionRolledbackException

v javax.ejb.NoSuchEJBException

a. Ensure that Application Server is updated to 7.0.0.3.

2078 Developing WebSphere applications

b. Manually copy the <app_server_root>/runtimes/ejb3exceptions.jar file from Application Server to a
directory on each of the stack products installations, or other product installations, that you will use
as the EJB 3.x client.

c. Ensure that the directory that contains the ejb3exceptions.jar file is in the class path. One possible
location for the JAR file that would satisfy this requirement is the <app_server_root>/lib directory on
a server that is not EJB 3.x compliant.

Note: Just like the EJB thin client jars, if an update becomes available, users must copy the
ejb3exceptions.jar file again after installing the version of the WebSphere Application Server
containing the updated version.

5. Deploy the application. See the topic Deploying and administering enterprise applications.

What to do next

If you specify that the EJBDeploy tool be run during application installation and the installation fails with a
NameNotFoundException message, ensure that the input Java archive (JAR) or enterprise archive (EAR)
file does not contain source files. Either remove the source files or include all dependent classes and
resource files on the class path. If there are source files in the input JAR or EAR file, the EJB deployment
tools runs a rebuild before generating the deployment code.

If the module deploys successfully, test and debug the module. See the topic Diagnosing problems (using
diagnosis tools).

EJB 3.0 and EJB 3.1 deployment overview
Learn about the Enterprise JavaBeans (EJB) 3.0 and 3.1 deployment model, including Just-In-Time (JIT)
deployment.

All Java Enterprise Edition (Java EE) application server products have some form of EJB deployment
phase in which your application is customized to run in that particular implementation of the application
server. Typically, this is accomplished by a deployment tool that is specific to the application server and
generates code to bridge your EJB interface and implementation code to the application server's
implementation for an EJB container. Some application server products' deployment tools alter the
bytecodes of your application classes, rather than generating code, but the end result is similar.

Application Server bridges your EJB interface with its implementation by generating code that
encapsulates your EJB implementation classes, connecting them to Application Server's EJB container.
This enables the EJB container to host your enterprise beans and provide services to them. If one or more
of your enterprise beans has remote interfaces defined, Application Server generates additional code to
provide the remote function.

For more information about packaging your EJB module, see the topic that covers the EJB 3.x module
packaging overview.

EJBDeploy Tool

Historically, EJB deployment in the Application Server product has been performed by the EJBDeploy tool,
which is included with WebSphere Application Server and packaged with the development tools for the
WebSphere products.

The EJBDeploy tool introspects the external interfaces for your enterprise beans, generates the wrapper
code as .java files, and compiles the code using the javac compiler to produce .class files that are
packaged in your EJB module with your application code. The EJBDeploy tool also runs the rmic tool
against the remote EJB interfaces in the application, producing additional stub and tie class files that
interact with the Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Object Request
Broker (ORB), providing remote object support.

Chapter 42. Deploying EJB applications 2079

For modules previous to EJB 3.0, you ran the EJBDeploy tool when you installed the application on
Application Server or before you installed the application from the command-line tool or a development
tool.

Just-In-Time (JIT) deployment

EJB 3.0 support in Application Server introduced a new feature called JIT deployment.

With JIT deployment, the EJB container dynamically generates the wrapper, stub, and tie classes
in-memory when the application is running. Additionally, the web container and application client containers
dynamically generate the stub class that is required for remote EJB invocations.

Effectively, this means that you do not need to process EJB 3.0 or 3.1 modules, web modules that invoke
EJB 3.0 or 3.1 beans, or client modules that invoke EJB 3.0 or 3.1 beans through the EJBDeploy tool
before you run them in Application Server.

createEJBStubs tool

In most cases the Just-In-Time deployment feature can dynamically generate the RMI-IIOP stub classes
that are required for invocation of remote EJB interfaces. There are some instances in which these stub
classes are not dynamically generated. For EJB 3.0 or 3.1 clients that are not running inside an EJB 3.x
enabled web container, EJB container, or client container, you must generate the stub classes with the
createEJBStubs tool and ensure that the generated stubs are available in the client environment's class
path. Typically, you would accomplish this by copying the generated stubs to the location where the client's
business interface class resides.

The createEJBStubs tool must be used to generate client-side stubs for the following environments:

v "Bare" Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client
environment.

v Containers in Application Server environments prior to Version 7 that do not have the Feature Pack for
EJB 3.0 applied.

v Environments that are not WebSphere Application Server environments.

Interoperability

There can be unexpected results if a WebSphere stack product, or another product, that runs on a version
of Application Server that does not support EJB 3.0 or 3.1 attempts to remotely invoke a method on an
EJB 3.x compliant enterprise bean on a separate server that is running a version Application Server that
supports EJB 3.0 or 3.1. If these products attempt to invoke a method through the enterprise bean's EJB
3.x remote business interface, they might encounter exceptions that were introduced in EJB 3.0 that will
be pushed back to the environment that is not EJB 3.x compliant.

This scenario could also be an issue for an administrator of an environment that includes a combination of
stack products that contain a mixture of EJB 3.x compliant and non-compliant instances of Application
Server.

The following is a list of the exception classes introduced in EJB 3.0:

v javax.ejb.ConcurrentAccessException

v javax.ejb.EJBAccessException

v javax.ejb.EJBTransactionRequiredException

v javax.ejb.EJBTransactionRolledbackException

v javax.ejb.NoSuchEJBException

Refer to the EJB module deployment step to address potential interoperability issues.

2080 Developing WebSphere applications

EJB 2.x Modules

EJB 2.x modules that have been converted to be EJB 3.0 or EJB 3.1 modules should have all WebSphere
Application Server generated files (including stub and tie classes) removed prior to EJB deployment in the
Application Server product.

EJBDEPLOY relationships – troubleshooting tips
Use this information to troubleshoot information for EJBDEPLOY problems.

The converter that is defined for the primary key is not invoked on its foreign key
value

The mapping for primary key fields to database columns may use a converter to transform the key values.
If a container-managed persistence (CMP) bean uses a converter to map its primary key, and that bean
has a relationship where the bean at the other end holds a foreign key, the mapping for the foreign key will
not use the converter.

The following errors might occur, indicating that the converter defined for the primary key is not invoked on
its foreign key value. During the run of the ejbDeploy command , you receive the following message:
No type mapping defined for Java datatype1 to Database datatype2

During run time, the application does not find the CMP bean at the other end of the relationship.

To work around this limitation, define your own foreign key in the database table, and create a mapping
that uses the same converter as defined for the primary key on the enterprise beans at the other end of its
relationship.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server products or components require multiple locations. Default values for installation actions by root
and nonroot users are given. If no nonroot values are specified, then the default directory values are
applicable to both root and nonroot users.

app_client_root

Table 330. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

Chapter 42. Deploying EJB applications 2081

app_server_root

Table 331. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 332. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Table 333. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

2082 Developing WebSphere applications

Table 334. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 335. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 336. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Chapter 42. Deploying EJB applications 2083

2084 Developing WebSphere applications

Chapter 43. Deploying messaging resources

This page provides a starting point for finding information about deploying asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

v Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Deploying enterprise applications
You can deploy an enterprise application to use JMS, or to use message-driven beans.

About this task

Enterprise applications can use JMS APIs directly to explicitly poll for messages on a JMS destination,
then retrieve messages for processing by business logic beans (enterprise beans).

Message-driven beans can also be used as asynchronous message consumers. When a message arrives
at the destination, the EJB container invokes the message-driven bean automatically without an application
having to explicitly poll the destination.

Procedure
v Deploy an enterprise application to use JMS.

v Deploy an enterprise application to use message-driven beans.

Deploying an enterprise application to use JMS
You can deploy an enterprise application to use JMS.

About this task

This task description assumes that you have an .EAR file, which contains an application enterprise bean
with code for JMS, that can be deployed in WebSphere Application Server.

To deploy an enterprise application to use JMS, complete the following steps:

© Copyright IBM Corp. 2012 2085

Procedure
1. Configure the deployment attributes for the application, as described in Assembling applications.

2. Use the WebSphere Application Server administrative console to install the application.

This stage is a standard WebSphere Application Server task, as described in Installing applications.

Deploying enterprise applications developed as message-driven beans
You can deploy an enterprise application developed as a message-driven bean in WebSphere Application
Server.

About this task

Message-driven beans can be used as asynchronous message consumers. When a message arrives at
the destination, the EJB container invokes the message-driven bean automatically without an application
having to explicitly poll the destination.

Procedure
v Deploy an enterprise application to use message-driven beans with JCA 1.5-compliant resources. You

can configure message-driven beans as listeners on a Java EE Connector Architecture (JCA) 1.5
resource adapter, such as the default messaging provider or the WebSphere MQ messaging provider in
WebSphere Application Server.

v Deploy an enterprise application to use message-driven beans with listener ports. Listener ports are
stabilized. For more information, read the article on stabilized features. You should only deploy your
application against a listener port for compatability with existing message-driven bean applications.
Otherwise, you should deploy your application against JCA 1.5-compliant resources.

Deploying an enterprise application to use message-driven beans with JCA
1.5-compliant resources
Message-driven beans can be configured as listeners on a Java EE Connector Architecture (JCA) 1.5
resource adapter, such as the default messaging provider or the WebSphere MQ messaging provider in
WebSphere Application Server.

Before you begin

This task assumes that you have an EAR file that contains an enterprise application, developed as a
message-driven bean, that can be deployed in WebSphere Application Server.

Note: You can continue to deploy message-driven beans against a listener port. You might want to do this
for compatability with existing message-driven bean applications. However, listener ports are
stabilized, and you should plan to migrate all your message-driven beans to use JCA 1.5-compliant
or 1.6-compliant resources.

About this task

You deploy message-driven beans against JCA 1.5-compliant resources, and configure the resources as
deployment descriptor attributes and (for EJB 3) as annotations.

Procedure
1. For each message-driven bean in the application, create a J2C activation specification.

2. For each message-driven bean in the application, configure the J2C deployment attributes, as
described in “Configuring deployment attributes for a message-driven bean against JCA 1.5-compliant
resources” on page 2087.

3. Use the WebSphere Application Server administrative console to install the application.

2086 Developing WebSphere applications

Configuring deployment attributes for a message-driven bean against JCA 1.5-compliant
resources:

You can configure the message-driven bean deployment attributes for a Java EE Connector Architecture
(JCA) 1.5-compliant enterprise application, to override the deployment attributes defined within the
application EAR file.

Before you begin

This task assumes that you have an EAR file that contains an enterprise application, developed as a
message-driven bean, that can be deployed in WebSphere Application Server.

Note: You can continue to configure message-driven beans against a listener port. You might want to do
this for compatability with existing message-driven bean applications. However, listener ports are
stabilized, and you should plan to migrate all your message-driven beans to use JCA 1.5-compliant
or 1.6-compliant resources.

About this task

You configure the deployment attributes of a message-driven bean application by using an assembly tool.
Detailed steps given in this task are for Rational Application Developer, but other tools have very similar
steps.

Procedure

1. Start your assembly tool.

2. Edit the application EAR file. For example, use the Rational Application Developer import wizard to
import the EAR file into the assembly tool. To start the import wizard:

a. Click File > Import > EAR file.

b. Click Next, then select the EAR file.

c. Click Finish.

3. Open the deployment attributes for editing. In the Java EE Hierarchy view, right-click the EJB module
for the message-driven bean then click Open With > Deployment Descriptor Editor. A property
dialog notebook for the message-driven bean is displayed in the property pane.

4. Review and, if needed, change the deployment attributes.

a. In the property pane, select the Bean tab.

b. Under Activation Configuration, review the attributes.

Note: For EJB 3 message-driven beans, you can instead use an EJB 3 annotation to configure the
activation configuration properties. Do not use an EJB 3 annotation to change or replace
what is specified in the bean deployment descriptor. If an activation configuration property is
specified in both places, the value used is the one that is given in the deployment
descriptor.

acknowledgeMode
This attribute determines how the session acknowledges any messages it receives.
Auto Acknowledge

The session automatically acknowledges delivery of each message.
Dups OK Acknowledge

The session lazily acknowledges the delivery of messages. This setting is likely to
result in the delivery of some duplicate messages if JMS fails, so it should be used
only by consumer applications that are tolerant of duplicate messages.

destinationType
This attribute determines whether the message-driven bean uses a queue or topic destination.
Queue The message-driven bean uses a queue destination.

Chapter 43. Deploying messaging resources 2087

Topic The message-driven bean uses a topic destination.

subscriptionDurability
This attribute determines whether a JMS topic subscription is durable or nondurable.
Durable

A subscriber registers a durable subscription with a unique identity that is retained by
JMS. Subsequent subscriber objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no active subscriber for a
durable subscription, JMS retains the subscription messages until they are received by
the subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their subscriber object. This means that
a client sees the messages published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages published on its topic.

A nondurable subscriber can only be used in the same transactional context (for
example, a global transaction or an unspecified transaction context) that existed when
the subscriber was created.

messageSelector
This attribute determines the JMS message selector that is used to select which messages the
message-driven bean receives. For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the message
properties. Message selectors cannot reference message body values.

c. Specify bindings deployment attributes.

Under WebSphere Bindings, select the JCA Adapter option then specify the bindings deployment
attributes:
ActivationSpec JNDI name

This attribute specifies the JNDI name of the activation specification that is used to deploy
this message-driven bean. This name must match the name of an activation specification
that you define to WebSphere Application Server.

ActivationSpec Authorization Alias
This attribute specifies the name of an authentication alias used for authentication of
connections to the JCA resource adapter. An authentication alias specifies the user ID and
password that is used to authenticate the creation of a new connection to the JCA resource
adapter.

Destination JNDI name
This attribute specifies the JNDI name that the message-driven bean uses to look up the
JMS destination in the JNDI namespace.

5. Save your changes to the deployment descriptor:

a. Close the deployment descriptor editor.

b. When prompted, click Yes to indicate that you want to save changes to the deployment descriptor.

6. Verify the archive files.

7. From the pop-up menu for the project, click Deploy to generate EJB deployment code.

8. Optional: Test your completed module on a WebSphere Application Server installation.

Right-click a module, click Run on Server, then follow the instructions in the displayed wizard.

Restriction: Run on Server works on the Windows, Linux/Intel, and AIX operating systems only. You
cannot deploy remotely to a WebSphere Application Server installation on a UNIX
operating system such as Solaris.

2088 Developing WebSphere applications

Important: Use Run on Server for unit testing only. When an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use on
production servers.

What to do next

After assembling your application, use a systems management tool to deploy the EAR file onto the
application server that will run the application; for example, use the administrative console as described in
Deploying and managing applications.

Deploying an enterprise application to use message-driven beans with listener
ports
Define the listener ports for your application. For each message-driven bean in the application, configure
the deployment attributes to match the listener port definitions. Install the application, specifying the name
of the listener port to use for late responses.

Before you begin

Listener ports are stabilized. For more information, read the article on stabilized features. You should only
deploy your application against a listener port for compatability with existing message-driven bean
applications. Otherwise, you should deploy your application against JCA 1.5-compliant resources.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

This task assumes that you have an EAR file, which contains an enterprise application developed as a
message-driven bean, that can be deployed in WebSphere Application Server.

Procedure
1. Define the listener ports for your application, by using the WebSphere Application Server administrative

console as described in Creating a new listener port.

2. For each message-driven bean in the application, configure the deployment attributes to match the
listener port definitions, as described in “Configuring deployment attributes for a message-driven bean
against a listener port.”

3. Install the application, as described in Installing enterprise application files with the console.

When you install the application, you are prompted to specify the name of the listener port that the
application is to use for late responses. Select the listener port, then click OK.

Configuring deployment attributes for a message-driven bean against a listener port:

You can configure the message-driven beans deployment attributes for an enterprise bean, to override the
deployment attributes defined within the application EAR file.

Before you begin

Listener ports are stabilized. For more information, read the article on stabilized features. You should only
configure your application against a listener port for compatability with existing message-driven bean
applications. Otherwise, you should configure your application against JCA 1.5-compliant resources.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

Chapter 43. Deploying messaging resources 2089

This task assumes that you have an EAR file that contains an enterprise application, developed as a
message-driven bean, that can be deployed in WebSphere Application Server.

About this task

You configure the deployment attributes of a message-driven bean application by using an assembly tool.
Detailed steps given in this task are for Rational Application Developer, but other tools have very similar
steps.

Procedure

1. Start your assembly tool.

2. Edit the application EAR file. For example, use the Rational Application Developer import wizard to
import the EAR file into the assembly tool. To start the import wizard:

a. Click File > Import > EAR file.

b. Click Next, then select the EAR file.

c. Click Finish.

3. Open the deployment attributes for editing. In the Java EE Hierarchy view, right-click the EJB module
for the message-driven bean then click Open With > Deployment Descriptor Editor. A property
dialog notebook for the message-driven bean is displayed in the property pane.

4. Specify general deployment attributes.

a. In the property pane, select the Bean tab.

b. On the main panel, configure the Transaction type attribute.

This attribute determines whether the message-driven bean manages its own transactions, or
whether the container manages transactions on behalf of the bean.
Bean The message-driven bean manages its own transactions.
Container

The container manages transactions on behalf of the bean.

5. Under Activation Configuration, review the following attributes:

Note: For EJB 3 message-driven beans, you can instead use an EJB 3 annotation to configure the
activation configuration properties. Do not use an EJB 3 annotation to change or replace what
is specified in the bean deployment descriptor. If an activation configuration property is
specified in both places, the value used is the one that is given in the deployment descriptor.

acknowledgeMode
This attribute determines how the session acknowledges any messages it receives.
Auto Acknowledge

The session automatically acknowledges delivery of each message.
Dups OK Acknowledge

The session lazily acknowledges the delivery of messages. This setting is likely to result
in the delivery of some duplicate messages if JMS fails, so it should be used only by
consumer applications that are tolerant of duplicate messages.

destinationType
This attribute determines whether the message-driven bean uses a queue or topic destination.
Queue The message-driven bean uses a queue destination.
Topic The message-driven bean uses a topic destination.

subscriptionDurability
This attribute determines whether a JMS topic subscription is durable or nondurable.
Durable

A subscriber registers a durable subscription with a unique identity that is retained by
JMS. Subsequent subscriber objects with the same identity resume the subscription in

2090 Developing WebSphere applications

the state it was left in by the earlier subscriber. If there is no active subscriber for a
durable subscription, JMS retains the subscription messages until they are received by
the subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their subscriber object. This means that a
client sees the messages published on a topic only while its subscriber is active. If the
subscriber is not active, the client is missing messages published on its topic.

A nondurable subscriber can only be used in the same transactional context (for example,
a global transaction or an unspecified transaction context) that existed when the
subscriber was created.

messageSelector
This attribute determines the JMS message selector that is used to select which messages the
message-driven bean receives. For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the message
properties. Message selectors cannot reference message body values.

6. Specify the bindings deployment attribute.

a. Under WebSphere Bindings, specify the following attribute:
Listener port name

Type the name of the listener port for this message-driven bean.

7. Save your changes to the deployment descriptor:

a. Close the deployment descriptor editor.

b. When prompted, click Yes to indicate that you want to save changes to the deployment
descriptor.

8. Verify the archive files.

9. From the pop-up menu for the project, click Deploy to generate EJB deployment code.

10. Optional: Test your completed module on a WebSphere Application Server installation.

Right-click a module, click Run on Server, then follow the instructions in the displayed wizard.

Restriction: Run on Server works on the Windows, Linux/Intel, and AIX operating systems only. You
cannot deploy remotely to a WebSphere Application Server installation on a UNIX
operating system such as Solaris.

Important: Use Run on Server for unit testing only. When an application is published remotely, the
assembly tool overwrites the server configuration file for that server. Do not use on
production servers.

What to do next

After assembling your application, use a systems management tool to deploy the EAR file onto the
application server that will run the application; for example, use the administrative console as described in
Deploying and managing applications.

Chapter 43. Deploying messaging resources 2091

2092 Developing WebSphere applications

Chapter 44. Deploying OSGi applications

You deploy an OSGi application by adding an enterprise bundle archive (EBA) asset to a business-level
application.

About this task

You can add an EBA asset to a business-level application by using the administrative console, or by using
wsadmin commands.

The WebSphere Application Server administrative console and the OSGi Applications command-line
console provide commands that you can use to explore or debug bundles running on an application
server.

Procedure
v Deploy an OSGi application as a business-level application.

Import an OSGi application as an enterprise bundle archive (EBA) asset, then add the asset to a
business-level application by creating a composition unit. Optionally, add a composite bundle extension
to the composition unit..

v Debug bundles at run time.

You can use either the WebSphere Application Server administrative console or the wsadmin-based
OSGi Applications command-line console to explore or debug the bundles associated with a specific
OSGi application or shared bundle framework..

Deploying an OSGi application as a business-level application
Import an OSGi application as an enterprise bundle archive (EBA) asset, then add the asset to a
business-level application by creating a composition unit. Optionally, add a composite bundle extension to
the composition unit.

Before you begin

This topic assumes that you have already created an enterprise OSGi application packaged as an EBA
file, for example as described in “Creating an OSGi application” on page 656. You might also have
developed a composite bundle extension, as described in Extending a deployed OSGi application.

In addition to specifying the configuration information for the EBA asset through the following procedure,
you can also change it later as described in Modifying the configuration of an OSGi composition unit. For
example, if you update a bundle in an EBA asset, or replace a composite bundle extension, you might
introduce a resource that requires additional configuration, such as a new or changed Blueprint resource
reference, or security role mapping.

About this task

To deploy an OSGi application in WebSphere Application Server, you import your OSGi application (EBA
file) as an asset and create an empty business-level application. You then add a composition unit to the
business-level application. This composition unit consists of the new EBA asset plus configuration
information for the context roots, virtual hosts, security role mappings, and web application or Blueprint
resource bindings for your OSGi application. The composition unit can also include composite bundle
extensions.

Note:

v An EBA file can be imported into only one asset.

© Copyright IBM Corp. 2012 2093

v An EBA asset can be added to only one business-level application.

v One or more composite bundle extensions can be added to a composition unit.

A business-level application is scoped to cell scope, therefore only one instance of a given OSGi
application can be deployed in a cell.

This topic describes the specific task of deploying an OSGi application and any composite bundle
extensions as a business-level application. The more generalized task of creating any business-level
application is described in Creating business-level applications.

Each step can be completed using either the administrative console or wsadmin commands. You can also
create an empty business-level application or add a composition unit using programming.

Demonstration of this task (4 min)

Procedure
1. Import the EBA file as an asset.

Note: You can import the asset before or after you create the empty business-level application. An
EBA file can be imported into only one asset.

To import the EBA file using the administrative console, navigate to Applications > New Application
> New Asset. For more information, see Importing assets.

To import the EBA file using the importAsset command, enter (for example) the following command:

AdminTask.importAsset(["-storageType", "FULL",
"-source", com.ibm.ws.eba.helloWorldService.eba])

For more information, see the step “Import assets to your configuration” in topic Setting up
business-level applications using wsadmin scripting.

Notes:

v When you import the EBA file as an asset, it is checked for any bundle dependencies. If the
OSGi application has dependencies on bundles that are not included in the EBA file, the
dependencies are resolved against any configured bundle repositories. Asset registration
cannot complete unless all missing dependencies are available from configured bundle
repositories.

v When asset registration completes, if the asset requires bundles to be downloaded from
bundle repositories, a warning message is displayed telling you to save your changes to the
master configuration after completing the asset import. When you save changes, the
missing dependencies are downloaded from the configured bundle repositories.

v If the asset uses Java 2 security, the security permissions are displayed. This information
comes from the META-INF/permissions.perm file for your application. For more information,
see Java 2 security and OSGi Applications.

v Do not add the asset to a business-level application until the bundle download has
completed. You can view the download status of the bundles from the administrative
console, or by calling the areAllDownloadsComplete () method of the BundleCacheManager
MBean. See Interacting with the OSGi bundle cache.

2. Create an empty business-level application.

To create an empty business-level application using the administrative console, navigate to
Applications > New Application > New Business Level Application. For more information, see the
step “Create an empty business-level application” in topic Creating business-level applications with the
console.

To create an empty business-level application using the createEmptyBLA command, enter (for example)
the following command:

2094 Developing WebSphere applications

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.was_v8/was/8.0/ProgramingModel/WASV8_OSGi_DeployAppAsBLA/wasv8_osgi_deployappasbla_viewlet_swf.html?dmuid=20111114113605581423

AdminTask.createEmptyBLA(’[-name "helloWorld"
-description "helloWorld OSGi sample"]’)

For more information, see the step “Create an empty business-level application” in topic Setting up
business-level applications using wsadmin scripting.

To create an empty business-level application using programming, see Creating an empty
business-level application using programming.

3. Add the EBA asset to the business-level application as a composition unit.

An EBA asset can be added to only one business-level application. An OSGi composition unit consists
of an EBA asset, (optionally) one or more composite bundle extensions, and some or all of the
following configuration information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

To add the asset to the business-level application as a composition unit, use one of the following
methods:

v “Adding an EBA asset to a composition unit by using the administrative console.”

v “Adding an EBA asset to a composition unit by using wsadmin commands” on page 2098.

v Adding a composition unit using programming.

4. Optional: Add a composite bundle as an extension to the composition unit.

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you
can update versions of existing bundles but you cannot add extra bundles to the asset. However, after
you have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

5. Save your changes to the master configuration.

If you are using wsadmin commands, enter the following command:

AdminConfig.save()

What to do next

You are now ready to start your business-level application.

Adding an EBA asset to a composition unit by using the
administrative console
Use the administrative console to add a composition unit that consists of a previously-imported EBA asset
plus configuration information. The configuration information can include HTTP session management,
context roots, virtual hosts, security roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI
mappings for EJB references, and web application or Blueprint resource reference bindings for your OSGi
application.

Before you begin

You can add an EBA asset to a business-level application by using the administrative console as
described in this topic, or by using the addCompUnit command as described in “Adding an EBA asset to a
composition unit by using wsadmin commands” on page 2098.

An EBA asset can be added to only one business-level application. A business-level application is scoped
to cell scope, therefore only one instance of a given OSGi application can be deployed in a cell.

Chapter 44. Deploying OSGi applications 2095

This task makes the following assumptions:

v You have already imported the EBA file as an asset (as described in “Deploying an OSGi application as
a business-level application” on page 2093), then saved your changes to the master configuration
(which causes any bundle dependencies to be downloaded from configured bundle repositories).

v You have already defined the target virtual hosts. To check existing virtual hosts by using the
administrative console, click Environment > Virtual hosts.

v You have already created the JCA authentication alias that you want to associate with each Blueprint
resource reference. To check existing JCA authentication aliases using the administrative console, click
Security > Global security > [Authentication] Java Authentication and Authorization Service >
J2C authentication data.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and some or all of the following configuration information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

You use the Set options settings wizard to add a new composition unit to a business-level application. The
contents of the asset determine the specific steps in the wizard. This topic describes the main elements
that you configure when adding an EBA asset. For a general description of all the elements that the wizard
might prompt you to configure, see Creating business-level applications with the console.

In addition to specifying the configuration information for the EBA asset through the following procedure,
you can also change it later as described in Modifying the configuration of an OSGi composition unit. For
example, if you update a bundle in an EBA asset, or replace a composite bundle extension, you might
introduce a resource that requires additional configuration, such as a new or changed Blueprint resource
reference, or security role mapping.

Procedure
1. Start the administrative console.

2. Add the previously-imported asset (the .eba file) as a deployed asset.

a. If you have just created a new business-level application, the general properties for the
business-level application are already displayed, including the option [Deployed assets] Add >
Add Asset. Otherwise, navigate to Applications > Application Types > Business-level
applications > application_name > [Deployed assets] Add > Add Asset. A list of available
assets is displayed.

b. Select the asset to add, then click Continue. The Set options settings wizard is displayed.

3. Wizard step: Set options.

Change the composition unit settings as needed, then click Next. For more information, see Set
options settings.

4. Wizard step: Map composition unit to a target.

Select the deployment target application server or web server. For more information, see Map target
settings.

5. Wizard step: Map context root for web modules.

Select a web application bundle (WAB) from the list, then enter the context root for the WAB. For
example, /sample. For more information, see Context root for web modules [Settings].

6. Wizard step: Map virtual hosts for web modules.

2096 Developing WebSphere applications

The list of available WABs in this asset is displayed. For each WAB, you can change the associated
virtual host by selecting a different one from the list. If you specify an existing virtual host in the
ibm-web-bnd.xml or .xmi file for a WAB, the specified virtual host is set by default. Otherwise, the
default virtual host setting is default_host. For more information, see Virtual hosts for web modules
[Settings].

7. Wizard step: Map security roles to users or groups.

Change the security mapping as needed. For more information, see Security role to user or group
mapping [Settings].

8. Wizard step: Map RunAs roles to users

You can map a specified user identity and password to a RunAs role. This mapping enables you to
specify application-specific privileges for individual users, so that they can run specific tasks using
another user identity. For more information, see RunAs roles for users [Collection].

9. Wizard step: Bind Blueprint resource references.

The list of available Blueprint resource references in this asset is displayed. For each reference, you
can optionally select an authentication alias from the list. Default authentication aliases (from
ibm-eba-bnd.xml files) are offered only if they exist on every target server or cluster. For more
information, see Blueprint resource references [Settings].

10. Wizard step: Map web module resource references to resources.

The list of available web application resource references in this asset is displayed. That is, resources
of type resource-ref (resource reference), as defined in the Java specification JSR-250: Common
Annotations for the Java Platform. For each reference, specify the JNDI name under which the
resource is known in the runtime environment. Optionally, set authentication properties and extended
data source custom properties, which affect how the resource is accessed at run time. To specify the
JNDI name mapping, either type the JNDI name into the box, or click Browse... then select the
resource reference from the list of available resources. To modify the authentication method, or to set
extended data source custom properties that apply to the database connection, select a single
reference then click Modify Resource Authentication Method... or Extended Properties.... For
more information, see Web module resource references [Settings].

11. Wizard step: Bind web module message destination references to administered objects.

The list of available web application message destination and resource environment references in this
asset is displayed. That is, resources of type message-destination-ref (message destination
reference) or resource-env-ref (resource environment reference), as defined in the Java specification
JSR-250: Common Annotations for the Java Platform. For each reference, specify the JNDI name
under which the resource is known in the runtime environment. For more information, see Web
module message destination references [Settings].

12. Wizard step: Provide EJB JNDI names

For each Session enterprise bean in the composition unit, you can specify the JNDI name by which
the enterprise bean is known in the runtime environment. For more information, see EJB JNDI names
[Settings].

13. Wizard step: Map EJB References

For each EJB reference that is defined in either an ejb-jar.xml file, a web.xml file, or an @EJB
annotation in the composition unit, you can specify the JNDI name by which the EJB reference is
known in the runtime environment. For more information, see EJB references [Settings].

14. Wizard step: Map EJB resource references to resources

The list of available EJB resource references in this asset is displayed. That is, resources of type
resource-ref (resource reference), as defined in the Java specification JSR-250: Common Annotations
for the Java Platform. For each reference, specify the JNDI name under which the resource is known
in the runtime environment. For more information, see EJB resource references [Settings].

15. Wizard step: Bind EJB message destination references to administered objects

The list of available EJB message destination and resource environment references in this asset is
displayed. That is, resources of type message-destination-ref (message destination reference) or

Chapter 44. Deploying OSGi applications 2097

resource-env-ref (resource environment reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform. For each reference, specify the JNDI name under which
the resource is known in the runtime environment. For more information, see EJB message
destination references [Settings].

16. Wizard step: Bind listeners for message-driven beans

For each message-driven bean (MDB) that is defined in either an ejb-jar.xml file or an
@MessageDriven annotation in the composition unit, you can specify the settings necessary to bind
an MDB listener to the MDB. By binding a listener to an MDB, you configure the association of the
MDB with the JMS destination from which the MDB receives messages. For more information, see
Listeners for message-driven beans [Settings].

17. Wizard step: Summary

A summary of your selections is displayed. To complete the creation of the composition unit, click
Finish. If there are settings that you want to change, click Previous to review the settings.

18. Save your changes to the master configuration.

Results

The product creates composition units for the application, module, or shared library relationships. The unit
names are shown in lists of deployed assets on the settings page of your business-level application. To
view the settings page, click Applications > Application Types > Business-level applications >
application_name.

What to do next

Note: After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you
can update versions of existing bundles but you cannot add extra bundles to the asset. However,
after you have added the asset as a composition unit to a business-level application, you can
extend the business-level application by adding one or more composite bundles to the composition
unit. See Adding or removing extensions for an OSGi composition unit.

You are now ready to start your business-level application.

Adding an EBA asset to a composition unit by using wsadmin
commands
You can use the addCompUnit command and the AdminConfig commands to add a composition unit that
consists of a previously-imported enterprise bundle archive (EBA) asset plus configuration information. The
configuration information can include HTTP session management, context roots, virtual hosts, security
roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI mappings for EJB references, and
web application or Blueprint resource reference bindings for your OSGi application.

Before you begin

You can add an EBA asset to a business-level application by using wsadmin commands as described in
this topic, or by using the administrative console as described in “Adding an EBA asset to a composition
unit by using the administrative console” on page 2095.

An EBA asset can be added to only one business-level application. A business-level application is scoped
to cell scope, therefore only one instance of a given OSGi application can be deployed in a cell.

This task makes the following assumptions:

v You have already imported the EBA file as an asset (for example by using the importAsset command
as described in step 2 of Setting up business-level applications using wsadmin scripting), then saved
your changes to the master configuration (which causes any bundle dependencies to be downloaded
from configured bundle repositories).

2098 Developing WebSphere applications

v You have already defined the target virtual hosts. To check existing virtual hosts using the wsadmin tool,
issue the following jython command:

print AdminConfig.list(’VirtualHost’)

v You have already created the JCA authentication alias that you want to associate with each Blueprint
resource reference (for more information, see Configuring new Java 2 Connector authentication data
entries using wsadmin).

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and some or all of the following configuration information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

To create and configure all elements of the composition unit except the HTTP session manager, you use
the addCompUnit command. To configure the HTTP session manager, you use the AdminConfig commands
to configure the deployed object represented by the appDeploy variable. The composition unit must be
created before the session management options can be applied to it, so you must run the addCompUnit
command before you configure the HTTP session manager.

In addition to specifying the configuration information for the EBA asset through the following procedure,
you can also change it later as described in Modifying the configuration of an OSGi composition unit by
using wsadmin commands. For example, if you update a bundle in an EBA asset, or replace a composite
bundle extension, you might introduce a resource that requires additional configuration, such as a new or
changed Blueprint resource reference, or security role mapping.

Procedure
1. Create and configure all elements of the composition unit except the HTTP session manager.

Each of the following substeps describes the syntax for adding a single element to the composition
unit. However, to create the composition unit you run the addCompUnit command only once. Therefore,
when you run the command, you must combine these elements together. An example of the combined
syntax is given after the separate substeps.

For several of the elements, the values you specify include bundle identifiers. If your EBA asset
includes or references composite bundles, the command syntax is slightly different. For clarity, the
differences for composite bundles are described, step by step, in a linked topic.

a. Add the previously-imported asset (the .eba file) as a deployed asset.

The parameters for this aspect of the command are as follows:

-blaID
Specifies the configuration ID of the business-level application.

-cuSourceID
Specifies the ID of the EBA asset that is being added to the business-level application.

-CUOptions
Specifies the following additional properties for the composition unit.

v parentBLA

v backingID

v name

v description

Chapter 44. Deploying OSGi applications 2099

v startingWeight

v startedOnDistributed

v restartBehaviorOnUpdate

-MapTargets
Specifies additional properties for the composition unit target mapping. That is, it specifies the
deployable unit URI (which, for an EBA asset, is ebaDeploymentUnit) and the target node and
server, or the target cluster. To add an additional target, you use the plus sign character (+)
as a prefix.

-ActivationPlanOptions
Specifies additional properties for the composition unit activation plan. That is, it specifies the
deployable unit URI and a list of runtime components. For an EBA asset, use default values as
shown in the example that follows.

If the target is one cluster, the Jython syntax for this aspect of the command is as follows:
AdminTask.addCompUnit(’[

-blaID WebSphere:blaname=bla_name
-cuSourceID WebSphere:assetname=asset_name.eba
-CUOptions [

[WebSphere:blaname=bla_name.eba
WebSphere:assetname=asset_name.eba
cu_name "optional_cu_description" 1 false DEFAULT]]

-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster_name]]
-ActivationPlanOptions [[default ""]]
...

]’)

For example:
AdminTask.addCompUnit(’[

-blaID WebSphere:blaname=helloWorldService
-cuSourceID WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
-CUOptions [

[WebSphere:blaname=helloWorldService.eba
WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
com.ibm.ws.eba.helloWorldService_0001.eba "" 1 false DEFAULT]]

-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster1]]
-ActivationPlanOptions [[default ""]]
...

]’)

If the target is two servers, the Jython syntax for this aspect of the command is as follows::
AdminTask.addCompUnit(’[

-blaID WebSphere:blaname=bla_name
-cuSourceID WebSphere:assetname=asset_name.eba
-CUOptions [

[WebSphere:blaname=bla_name.eba
WebSphere:assetname=asset_name.eba
cu_name "optional_cu_description" 1 false DEFAULT]]

-MapTargets [
[ebaDeploymentUnit WebSphere:node=node_name,server=server_name+

WebSphere:node=node2_name,server=server2_name]]
-ActivationPlanOptions [[default ""]]
...

]’)

For example:
AdminTask.addCompUnit(’[

-blaID WebSphere:blaname=helloWorldService
-cuSourceID WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
-CUOptions [

[WebSphere:blaname=helloWorldService.eba
WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
com.ibm.ws.eba.helloWorldService_0001.eba "" 1 false DEFAULT]]

2100 Developing WebSphere applications

-MapTargets [[ebaDeploymentUnit WebSphere:node=node01,server=server1+
WebSphere:node=node01,server=web1]]

-ActivationPlanOptions [[default ""]]
...

]’)

b. Map context root for web modules.

Context roots determine where the web pages of a particular web application bundle (WAB) are
found at run time. The context root that you specify here is combined with the defined server
mapping to compose the full URL that you enter to access the pages of the WAB. For example, if
the application server default host is www.example.com:8080 and the context root of the WAB is
/sample, the web pages are available at www.example.com:8080/sample.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map context root for web
modules in composite bundles.

The list of bundles under the ContextRootStep must contain all the WABs contained in the OSGi
application.
AdminTask.addCompUnit(’[

...
-ContextRootStep [

[bundle_symbolic_name_1 bundle_version_1 context_root_1]
[bundle_symbolic_name_2 bundle_version_2 context_root_2]]

...
]’)

For example, for an EBA file that contains two WABs (com.ibm.ws.eba.helloWorldService.web at
version 1.0.0, which is to be mapped to /hello/web, and
com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
/hello/service), this aspect of the command is as follows:
AdminTask.addCompUnit(’[

...
-ContextRootStep [

[com.ibm.ws.eba.helloWorldService.web 1.0.0 "/hello/web"]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0 "/hello/service"]]

...
]’)

c. Bind listeners for message-driven beans

For each message-driven bean (MDB) that is defined in either an ejb-jar.xml file or an
@MessageDriven annotation in the composition unit, you can specify the settings necessary to
bind an MDB listener to the MDB. By binding a listener to an MDB, you configure the association of
the MDB with the JMS destination from which the MDB receives messages.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind listeners for
message-driven beans in composite bundles

AdminTask.addCompUnit(’[
...
-MDBBindingsStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

activation_spec_1 destination_jndi_name_1 authentication_alias_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

activation_spec_2 destination_jndi_name_2 authentication_alias_2]]
...

]’)

In the following example, an EBA file contains two EJB bundles, com.ibm.ws.eba.currencyService
at version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains a message-driven bean called ExchangeRateMDB, bound to an activation specification with

Chapter 44. Deploying OSGi applications 2101

a JNDI name of eis/ExchangeRate_Act_Spec; the destination JNDI name that is defined in the
activation specification is overridden by a destination whose JNDI name is jms/ExchangeRateQueue,
and the authentication alias that is defined in the activation specification is overridden by an
authentication alias called ExchangeRate_Auth_Alias. The accountService bundle contains an MDB
called CustomerDetailsMDB, bound to an activation specification with a JNDI name of
eis/CustomerDetails_Act_Spec; the destination JNDI name that is defined in the activation
specification is overridden by a destination whose JNDI name is jms/CustomerDetailsQueue, and
the authentication alias that is defined in the activation specification is overridden by an
authentication alias called CustomerDetails_Auth_Alias.
AdminTask.addCompUnit(’[
...
-MDBBindingsStep [
[com.ibm.ws.eba.currencyService 1.0.0 META-INF/ejb-jar.xml/ExchangeRateMDB
eis/ExchangeRate_Act_Spec jms/ExchangeRateQueue ExchangeRate_Auth_Alias]

[com.ibm.ws.eba.accountService 0.9.0 META-INF/ejb-jar.xml/CustomerDetailsMDB
eis/CustomerDetails_Act_Spec jms/CustomerDetailsQueue CustomerDetails_Auth_Alias]]

...
]’)

d. Provide EJB JNDI names

For each Session enterprise bean in the composition unit, you can specify the JNDI name by which
the enterprise bean is known in the runtime environment.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Provide EJB JNDI names
in composite bundles

AdminTask.addCompUnit(’[
...
-EJBMappingsStep [

[bundle_symbolic_name_1 bundle_version_1 ejb_name_1
ejb_interface_1 ejb_iterface_type_1 jndi_name_1]

[bundle_symbolic_name_2 bundle_version_2 ejb_name_2
ejb_interface_2 ejb_iterface_type_2 jndi_name_2]]

...
]’)

In the following example, an EBA file contains two EJB bundles, com.ibm.ws.eba.currencyService
at version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains an enterprise bean called ExchangeRate_ejb, with a Local interface called
com.ibm.ws.eba.ejb.ExchangeRate, that is mapped to a JNDI name of ejb/ExchangeRate. The
accountService bundle contains an enterprise bean called CustomerDetails_ejb, with a Remote
interface called com.ibm.ws.eba.ejb.CustomerDetails, that is mapped to a JNDI name of
ejb/CustomerDetails.
AdminTask.addCompUnit(’[

...
-EJBMappingsStep [

[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

...
]’)

e. Map EJB references

For each EJB reference that is defined in either an ejb-jar.xml file, a web.xml file, or an @EJB
annotation in the composition unit, you can specify the JNDI name by which the EJB reference is
known in the runtime environment.

The Jython syntax for this aspect of the command is as follows.

2102 Developing WebSphere applications

Note: For composite bundles, the syntax is slightly different. See Step: Map EJB references in
composite bundles

AdminTask.addCompUnit(’[
...
-EJBRefStep [

[bundle_symbolic_name_1 bundle_version_1 uri_1
ejb_reference_name_1 business_interface_1 jndi_name_1]

[bundle_symbolic_name_2 bundle_version_2 uri_2
ejb_reference_name_2 business_interface_2 jndi_name_2]]

...
]’)

The uri parameter specifies the location where the EJB reference is defined.

In the following example, an EBA file contains two bundles, com.ibm.ws.eba.currencyService at
version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains an EJB reference called ExchangeRate, from the CurrencyExchange enterprise bean,
defined in META-INF/ejb-jar.xml, that is mapped to a JNDI name of ejb:ExchangeRate. The
accountService bundle contains an EJB reference called CustomerDetails, defined in web.xml, that
is mapped to a JNDI name of ejb:CustomerDetails.
AdminTask.addCompUnit(’[

...
-EJBRefStep [

[com.ibm.ws.eba.currencyService 1.0.0 META-INF/ejb-jar.xml/CurrencyExchange
ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate ejb:ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 WEB-INF/web.xml
CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

...
]’)

f. Map EJB resource references to resources

Binding a resource reference maps a resource dependency of an enterprise bean to an actual
resource available in the server runtime environment. At a minimum, you can be achieve this
mapping by specifying the JNDI name under which the resource reference is known in the runtime
environment. By default, the JNDI name is retrieved from pre-existing bindings, or set to the value
of the mapped-name specified in the resource reference definition. Use this option to bind
resources of type resource-ref (resource reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map EJB resource
references to resources in composite bundles

AdminTask.addCompUnit(’[
...
-EJBResourceRefs [
[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
resource_authentication_method
mapping_properties
extended_properties
]]

...
]’)

The mapping_properties parameter defines arbitrary name and value pairs for extended data source
properties, in the following format (one continuous string):

Chapter 44. Deploying OSGi applications 2103

WebSphere:name=property_name1,value=property_value1,description=property_description1
+WebSphere:name=property_name2,value=property_value2,description=property_description2
+ ...

The extended_properties parameter defines extended data source custom properties in the
following format (one continuous string):
property_name1=property_value1+property_name2=property_value2+ ...

For example:
AdminTask.addCompUnit(’[
...
-EJBResourceRefs [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]
[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

...
]’)

g. Bind EJB message destination references to administered objects.

Binding a message destination reference or resource environment reference maps a resource
dependency of an enterprise bean to an actual resource available in the server runtime
environment. At a minimum, you can achieve this mapping by specifying the JNDI name under
which the message destination reference or resource environment reference is known in the
runtime environment. By default, the JNDI name is retrieved from pre-existing bindings, or set to
the value of the mapped-name specified in the message destination reference definition. Use this
option to bind resources of type message-destination-ref (message destination reference) or
resource-env-ref (resource environment reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind EJB message
destination references to administered objects in composite bundles.

AdminTask.addCompUnit(’[
...
-EJBMsgDestRefs [

[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
]]

...
]’)

For example:
AdminTask.addCompUnit(’[

...
-EJBMsgDestRefs [

[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
jms/myT javax.jms.Topic jms/notificationTopic]]

...
]’)

h. Map virtual hosts for web modules.

You use a virtual host to associate a unique port with a web application. The aliases of a virtual
host identify the port numbers defined for that virtual host. A port number specified in a virtual host

2104 Developing WebSphere applications

alias is used in the URL that is used to access artifacts such as servlets and JavaServer Page
(JSP) files in a web application. For example, the alias myhost:8080 is the host_name:port_number
portion of the URL http://myhost:8080/sample.

Each WAB that is contained in a deployed asset must be mapped to a virtual host. WABs can be
installed on the same virtual host, or dispersed among several virtual hosts.

If you specify an existing virtual host in the ibm-web-bnd.xml or .xmi file for a WAB, the specified
virtual host is set by default. Otherwise, the default virtual host setting is default_host, which
provides several port numbers through its aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

Unless you want to isolate your WAB from other WABs or resources on the same node,
default_host is a suitable virtual host. In addition to default_host, WebSphere Application Server
provides admin_host, which is the virtual host for the administrative console system application.
admin_host is on port 9060. Its secure port is 9043. Do not select admin_host unless the WAB
relates to system administration.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map virtual hosts for web
modules in composite bundles.

AdminTask.addCompUnit(’[
...
-VirtualHostMappingStep [

[bundle_symbolic_name_1 bundle_version_1
web_module_name_1 virtual_host_1]
[bundle_symbolic_name_2 bundle_version_2
web_module_name_2 virtual_host_2]]

...
]’)

For example, for an EBA file containing two WABs (com.ibm.ws.eba.helloWorldService.web at
version 1.0.0, which is to be mapped to default_host, and
com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
test_host), this aspect of the command is as follows:
AdminTask.addCompUnit(’[

...
-VirtualHostMappingStep [

[com.ibm.ws.eba.helloWorldService.web 1.0.0
"HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"HelloWorld second service" test_host]]

...
]’)

i. Map security roles to users or groups.

The Jython syntax for this aspect of the command is as follows:
AdminTask.addCompUnit(’[
...
-MapRolesToUsersStep [
[role_name everyone?
all_authenticated_in_realm?
usernames groups]]

...
]’)

Key:

v role_name is a role name defined in the application.

v everyone? is set to Yes or No, to specify whether everyone is in the role.

Chapter 44. Deploying OSGi applications 2105

v all_authenticated_in_realm? is set to Yes or No, to specify whether all authenticated users
can access the application realm.

v usernames is a list of WebSphere Application Server user names, separated by the "|"
character.

v groups is a list of WebSphere Application Server groups, separated by the "|" character.

Note: For usernames, and groups, the empty string "" means "use the default or existing value".
The default value is usually that no users or groups are bound to the role. However, when an
application contains an ibm-application-bnd.xmi file, the default value for usernames is
obtained from this file. If you are deploying an application that contains an
ibm-application-bnd.xmi file, and you want to remove the bound users, specify just the "|"
character (which is the separator for multiple user names). This setting explicitly specifies "no
users", and therefore guarantees that no users are bound to the role.

For example:
AdminTask.addCompUnit(’[
...
-MapRolesToUsersStep [
[ROLE1 No Yes "" ""]
[ROLE2 No No WABTestUser1 ""]
[ROLE3 No No "" WABTestGroup1]
[ROLE4 Yes No "" ""]]

...
]’)

For more information about the -MapRolesToUsersStep option, see the information for the
$AdminApp install command “MapRolesToUsers” option. This is the equivalent option for Java EE
applications. For more general information, see Security role to user or group mapping.

j. Map RunAs roles to users

You can map a specified user identity and password to a RunAs role. This mapping enables you to
specify application-specific privileges for individual users, so that they can run specific tasks using
another user identity. The Jython syntax for this aspect of the command is as follows:
AdminTask.addCompUnit(’[
...
-MapRunAsRolesToUsersStep [
[role_name user_name password]]

]’)

For example:
AdminTask.addCompUnit(’[
...
-MapRunAsRolesToUsersStep [
[Role1 User1 password1]
[AdminRole User3 password3]]

]’)

For more information about the -MapRunAsRolesToUsers option, see the information for the
$AdminApp install command “MapRunAsRolesToUsers” option. This is the equivalent option for
Java EE applications. For more general information, see Map RunAs roles to users.

k. Add authentication aliases to Blueprint resource references.

Blueprint components can access WebSphere Application Server resource references. Each
reference is declared in a Blueprint XML file, and can be secured using a Java Platform, Enterprise
Edition (Java EE) Connector Architecture (JCA) authentication alias. Each bundle in an OSGi
application can contain any number of resource reference declarations in its various Blueprint XML
files.

When you secure resource references, those resource references can be bound only to JCA
authentication aliases that exist on every server or cluster on which the application is deployed. An
OSGi application can be deployed to multiple servers and clusters that are in the same security

2106 Developing WebSphere applications

domain. Therefore, each JCA authentication alias must exist in either the security domain of the
target servers and clusters, or the global security domain.

You must declare the resource references in the Blueprint XML file. For example:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:rr="http://www.ibm.com/appserver/schemas/8.0/blueprint/resourcereference">
<!-- Other Blueprint declarations ... -->

<rr:resource-reference id="resourceRef"
interface="javax.sql.DataSource"
filter="(osgi.jndi.service.name=jdbc/Account)">

<rr:res-auth>Container</rr:res-auth>
<rr:res-sharing-scope>Shareable</rr:res-sharing-scope>

</rr:resource-reference>
</blueprint>

This declaration includes the resource reference ID (for example resourceRef), the service filter (for
example jdbc/Account), the authentication type (for example Container), and the sharing setting
(for example Shareable).

The Blueprint resource references to authentication alias bindings for each bundle are stored in a
file ibm-eba-bnd.xml in the META-INF directory of that bundle. If an OSGi application contains any of
these files when it is deployed as an asset, these files provide the default authentication alias
values that are used when binding the resource references. For example:
<eba-bnd>
<resource-ref>
<jndi-name>jdbc/Acount</jndi-name>
<authentication-alias>Alias1</authentication-alias>
<interface>javax.sql.DataSource</interface>
<authentication>Container</authentication>
<sharing-scope>Shareable</sharing-scope>
<id>resourceRef</id>

</resource-ref>
</eba-bnd>

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Add authentication aliases
to Blueprint resource references in composite bundles.

AdminTask.addCompUnit(’[
...
-BlueprintResourceRefBindingStep [
[
bundle_symbolic_name
bundle_version
blueprint_resource_reference_id
interface_name
jndi_name
authentication_type
sharing_setting
authentication_alias_name
]]

...
]’)

Note: The value for jndi_name must match the JNDI name that you declare in the filter attribute
of the resource reference element in the Blueprint XML file.

For example, for an EBA file that contains a bundle
com.ibm.ws.eba.helloWorldService.properties.bundle.jar at Version 1.0.0, which is to be bound
to authentication alias alias1, the command is as follows:
AdminTask.addCompUnit(’[
...
-BlueprintResourceRefBindingStep[

Chapter 44. Deploying OSGi applications 2107

[com.ibm.ws.eba.helloWorldService.properties.bundle 1.0.0 resourceRef
javax.sql.DataSource jdbc/Account Container Shareable alias1]]

...
]’)

l. Bind web module message destination references to administered objects.

Binding a resource reference maps a resource dependency of the web application to an actual
resource available in the server runtime environment. At a minimum, you can achieve this mapping
by specifying the JNDI name under which the resource is known in the runtime environment. By
default, the JNDI name is the resource ID that you specified in the web.xml file during development
of the web application bundle (WAB). Use this option to bind resources of type
message-destination-ref (message destination reference) or resource-env-ref (resource environment
reference), as defined in the Java specification JSR-250: Common Annotations for the Java
Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind web module message
destination references to administered objects in composite bundles.

AdminTask.addCompUnit(’[
...
-WebModuleMsgDestRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
]]

...
]’)

For example:
AdminTask.addCompUnit(’[
...
-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myQ javax.jms.Queue
jms/workQ]
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myT javax.jms.Topic
jms/notificationTopic]]

...
]’)

m. Map web module resource references to resources.

Binding a resource reference maps a resource dependency of the web application to an actual
resource available in the server runtime environment. At a minimum, you can achieve this mapping
by specifying the JNDI name under which the resource is known in the runtime environment. By
default, the JNDI name is the resource ID that you specified in the web.xml file during development
of the web application bundle (WAB). Use this option to bind resources of type resource-ref
(resource reference), as defined in the Java specification JSR-250: Common Annotations for the
Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map web module resource
references to resources in composite bundles.

AdminTask.addCompUnit(’[
...
-WebModuleResourceRefs [

[
bundle_symbolic_name

2108 Developing WebSphere applications

bundle_version
resource_reference_id
resource_type
target_jndi_name
login_configuration
login_properties
extended_properties
]]

...
]’)

For example:
AdminTask.addCompUnit(’[

...
-WebModuleResourceRefs [

[com.ibm.ws.eba.helloWorldService.web 1.0.0
jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

...
]’)

Note: If you use multiple extended properties, the jython syntax is
"extprop1=extval1,extprop2=extval2".

In the following example, the jython syntax from the previous individual substeps is combined so that,
by running the addCompUnit command once only, a composition unit is created and added to a
business-level application.

Note: If your EBA asset includes or references composite bundles, the command syntax is slightly
different. For an equivalent example, see Example: Using the addCompUnit command to add an
EBA asset that includes composite bundles.

AdminTask.addCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuSourceID WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
-CUOptions [
[WebSphere:blaname=helloWorldService.eba
WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
com.ibm.ws.eba.helloWorldService_0001.eba "" 1 false DEFAULT]]

-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster1]]
-ActivationPlanOptions [[default ""]]
-ContextRootStep [
[com.ibm.ws.eba.helloWorldService.web 1.0.0 "/hello/web"]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0 "/hello/service"]]

-EJBMappingsStep [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

-EJBRefStep [
[com.ibm.ws.eba.currencyService 1.0.0 META-INF/ejb-jar.xml/CurrencyExchange
ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate ejb:ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 WEB-INF/web.xml
CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

-EJBResourceRefs [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]
[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

-EJBMsgDestRefs [

Chapter 44. Deploying OSGi applications 2109

[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
jms/myT javax.jms.Topic jms/notificationTopic]]

-VirtualHostMappingStep [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
"HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"HelloWorld second service" test_host]]

-MapRolesToUsersStep [
[ROLE1 No Yes "" ""]
[ROLE2 No No WABTestUser1 ""]
[ROLE3 No No "" WABTestGroup1]
[ROLE4 Yes No "" ""]]

-MapRunAsRolesToUsersStep [
[Role1 User1 password1]
[AdminRole User3 password3]]

-BlueprintResourceRefBindingStep[
[com.ibm.ws.eba.helloWorldService.properties.bundle 1.0.0 resourceRef
javax.sql.DataSource jdbc/Account
Container Shareable alias1]]

-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myQ javax.jms.Queue
jms/workQ]
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myT javax.jms.Topic
jms/notificationTopic]]

-WebModuleResourceRefs [
[com.ibm.ws.eba.helloWorldService.web 1.0.0 jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]
[com.ibm.ws.eba.helloWorldService.web 1.0.0 jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

]’)

2. Configure the HTTP session manager.

To configure the HTTP session manager, you use the AdminConfig commands to configure the
deployed object represented by the appDeploy variable. Session management for OSGi applications is
configured in the same way as for enterprise applications, except for a minor difference in syntax when
getting the deployed object.

a. Get the deployed object.

Use the instructions given in Configuring applications for session management using scripting. Note
that, for enterprise applications, you use the following two line script:
deployments = AdminConfig.getid(’/Deployment:myApp/’)
appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

For OSGi applications, the equivalent script is the following single line:
appDeploy = AdminTask.getOSGiApplicationDeployedObject(’-cuName cu_name’)

where cu_name is the name of the composition unit. For example:
appDeploy = AdminTask.getOSGiApplicationDeployedObject(’

-cuName com.ibm.ws.eba.helloWorldService_0001.eba’)

b. Create the session management options.

Use the instructions given in Configuring applications for session management using scripting. The
command usage for creating the session management options is exactly the same for enterprise
applications and OSGi applications.

2110 Developing WebSphere applications

What to do next

After using these commands, save your changes to the master configuration by using the following
command:

AdminConfig.save()

Note: After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you
can update versions of existing bundles but you cannot add extra bundles to the asset. However,
after you have added the asset as a composition unit to a business-level application, you can
extend the business-level application by adding one or more composite bundles to the composition
unit. See Adding or removing extensions for an OSGi composition unit using wsadmin commands.

You are now ready to start your business-level application.

Adding an EBA asset that includes composite bundles by using the addCompUnit
command
You can use the addCompUnit command to add a composition unit that contains a previously-imported
enterprise bundle archive (EBA) asset plus configuration information. If the EBA asset includes composite
bundles, the command syntax is slightly different.

Before you begin

For a full description of how you specify this configuration information, see “Adding an EBA asset to a
composition unit by using wsadmin commands” on page 2098. When you work through that task, each
step where the syntax is different for composite bundles is linked to an equivalent step in this task.

About this task

An OSGi composition unit includes an EBA asset and some or all of the following configuration
information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

For several of the elements, the values you specify include bundle identifiers. If your EBA asset includes
or references composite bundles, the command syntax is slightly different. The differences for composite
bundles are described in the following steps.

Procedure
v Map context root for web modules in composite bundles.

The Jython syntax for this aspect of the command is as follows:

AdminTask.addCompUnit(’[
...
-ContextRootStep [
[bundle_symbolic_name_1 bundle_version_1 context_root_1]
[bundle_symbolic_name_2 bundle_version_2 context_root_2]]

...
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/WAB.symbolic.name

For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains two
WABs (com.ibm.ws.eba.helloWorldService.web at version 1.0.0, which is to be mapped to /hello/web,

Chapter 44. Deploying OSGi applications 2111

and com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
/hello/service), this aspect of the command is as follows:

AdminTask.addCompUnit(’[
...
-ContextRootStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web 1.0.0
"/hello/web"]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"/hello/service"]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map context
root for web modules.

v Bind listeners for message-driven beans in composite bundles

The Jython syntax for this aspect of the command is as follows.

AdminTask.addCompUnit(’[
...
-MDBBindingsStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

activation_spec_1 destination_jndi_name_1 authentication_alias_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

activation_spec_2 destination_jndi_name_2 authentication_alias_2]]
...

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/EJBbundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two EJB bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and
com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle contains a
message-driven bean called ExchangeRateMDB, bound to an activation specification with a JNDI name of
eis/ExchangeRate_Act_Spec; the destination JNDI name that is defined in the activation specification is
overridden by a destination whose JNDI name is jms/ExchangeRateQueue, and the authentication alias
that is defined in the activation specification is overridden by an authentication alias called
ExchangeRate_Auth_Alias. The accountService bundle contains an MDB called CustomerDetailsMDB,
bound to an activation specification with a JNDI name of eis/CustomerDetails_Act_Spec; the destination
JNDI name that is defined in the activation specification is overridden by a destination whose JNDI
name is jms/CustomerDetailsQueue, and the authentication alias that is defined in the activation
specification is overridden by an authentication alias called CustomerDetails_Auth_Alias.

AdminTask.addCompUnit(’[
...
-MDBBindingsStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
META-INF/ejb-jar.xml/ExchangeRateMDB eis/ExchangeRate_Act_Spec
jms/ExchangeRateQueue ExchangeRate_Auth_Alias]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
META-INF/ejb-jar.xml/CustomerDetailsMDB eis/CustomerDetails_Act_Spec
jms/CustomerDetailsQueue CustomerDetails_Auth_Alias]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind
listeners for message-driven beans

v Provide EJB JNDI names in composite bundles

The Jython syntax for this aspect of the command is as follows.

2112 Developing WebSphere applications

AdminTask.addCompUnit(’[
...
-EJBMappingsStep [
[bundle_symbolic_name_1 bundle_version_1 ejb_name_1

ejb_interface_1 ejb_interface_type_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 ejb_name_2

ejb_interface_2 ejb_interface_type_2 jndi_name_2]]
...

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/EJBbundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two EJB bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and
com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle contains an enterprise
bean called ExchangeRate_ejb, with a Local interface called com.ibm.ws.eba.ejb.ExchangeRate, that is
mapped to a JNDI name of ejb/ExchangeRate. The accountService bundle contains an enterprise bean
called CustomerDetails_ejb, with a Remote interface called com.ibm.ws.eba.ejb.CustomerDetails, that
is mapped to a JNDI name of ejb/CustomerDetails.

AdminTask.addCompUnit(’[
...
-EJBMappingsStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Provide EJB
JNDI names

v Map EJB references in composite bundles

The Jython syntax for this aspect of the command is as follows.

AdminTask.addCompUnit(’[
...
-EJBRefStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

ejb_reference_name_1 business_interface_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

ejb_reference_name_2 business_interface_2 jndi_name_2]]
...

]’)

The uri parameter specifies the location where the EJB reference is defined.

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/EJBbundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and com.ibm.ws.eba.accountService at
version 0.9.0. The currencyService bundle contains an EJB reference called ExchangeRate, from the
CurrencyExchange enterprise bean, defined in META-INF/ejb-jar.xml that is mapped to a JNDI name of
ejb:ExchangeRate. The accountService bundle contains an EJB reference called CustomerDetails,
defined in web.xml, that is mapped to a JNDI name of ejb:CustomerDetails.

AdminTask.addCompUnit(’[
...
-EJBRefStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0

Chapter 44. Deploying OSGi applications 2113

META-INF/ejb-jar.xml/CurrencyExchange ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate
ejb:ExchangeRate]

[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
WEB-INF/web.xml CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map EJB
references

v Map EJB resource references to resources in composite bundles

The Jython syntax for this aspect of the command is as follows

AdminTask.addCompUnit(’[
...
-EJBResourceRefs [
[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
resource_authentication_method
mapping_properties
extended_properties
]]

...
]’)

The mapping_properties parameter defines arbitrary name and value pairs for extended data source
properties, in the following format (one continuous string):

WebSphere:name=property_name1,value=property_value1,description=property_description1
+WebSphere:name=property_name2,value=property_value2,description=property_description2
+ ...

The extended_properties parameter defines extended data source custom properties in the following
format (one continuous string):

property_name1=property_value1+property_name2=property_value2+ ...

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/EJBBundle.symbolic.name

For example:

AdminTask.addCompUnit(’[
...
-EJBResourceRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map EJB
resource references to resources

v Bind EJB message destination references to administered objects in composite bundles.

The Jython syntax for this aspect of the command is as follows

AdminTask.addCompUnit(’[
...
-EJBMsgDestRefs [

2114 Developing WebSphere applications

[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
]]

...
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/EJBBundle.symbolic.name

For example:

AdminTask.addCompUnit(’[
...
-EJBMsgDestRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails jms/myT javax.jms.Topic jms/notificationTopic]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind EJB
message destination references to administered objects.

v Map virtual hosts for web modules in composite bundles.

The Jython syntax for this aspect of the command is as follows:

AdminTask.addCompUnit(’[
...
-VirtualHostMappingStep [
[bundle_symbolic_name_1 bundle_version_1
web_module_name_1 virtual_host_1]
[bundle_symbolic_name_2 bundle_version_2
web_module_name_2 virtual_host_2]]

...
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/WAB.symbolic.name

For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains two
WABs (com.ibm.ws.eba.helloWorldService.web at version 1.0.0, which is to be mapped to
default_host, and com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be
mapped to test_host), this aspect of the command is as follows:

AdminTask.addCompUnit(’[
...
-VirtualHostMappingStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0 "HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot
0.9.0 "HelloWorld second service" test_host]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map virtual
hosts for web modules.

v Add authentication aliases to Blueprint resource references in composite bundles.

The Jython syntax for this aspect of the command is as follows.

Chapter 44. Deploying OSGi applications 2115

AdminTask.addCompUnit(’[
...
-BlueprintResourceRefBindingStep [
[
bundle_symbolic_name
bundle_version
blueprint_resource_reference_id
interface_name
jndi_name
authentication_type
sharing_setting
authentication_alias_name
]]

...
]’)

Notes:

– For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/embedded_bundle.symbolic.name

– The value for jndi_name must match the JNDI name that you declare in the filter attribute
of the resource reference element in the Blueprint XML file.

For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains a
bundle com.ibm.ws.eba.helloWorldService.properties.bundle.jar at Version 1.0.0, which is to be
bound to authentication alias alias1, the command is as follows:

AdminTask.addCompUnit(’[
...
-BlueprintResourceRefBindingStep[
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.properties.bundle
1.0.0 resourceRef javax.sql.DataSource jdbc/Account Container Shareable alias1]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Add
authentication aliases to Blueprint resource references.

v Bind web module message destination references to administered objects in composite bundles.

The Jython syntax for this aspect of the command is as follows

AdminTask.addCompUnit(’[
...
-WebModuleMsgDestRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
]]

...
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/WAB.symbolic.name

For example:

AdminTask.addCompUnit(’[
...
-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jms/myQ javax.jms.Queue
jms/workQ]

2116 Developing WebSphere applications

[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jms/myT javax.jms.Topic
jms/notificationTopic]]

...
]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind web
module message destination references to administered objects.

v Map web module resource references to resources in composite bundles.

The Jython syntax for this aspect of the command is as follows.

AdminTask.addCompUnit(’[
...
-WebModuleResourceRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
login_configuration
login_properties
extended_properties
]]

...
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.name_CBA.bundle.version/WAB.symbolic.name

For example:

AdminTask.addCompUnit(’[
...
-WebModuleResourceRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

...
]’)

Notes:

– If you use multiple extended properties, the jython syntax is
"extprop1=extval1,extprop2=extval2".

– For bundles other than composite bundles, the syntax is slightly different. See Step: Map
web module resource references to resources.

Example

In the following example, the jython syntax from the previous steps is combined with the additional steps
described in “Adding an EBA asset to a composition unit by using wsadmin commands” on page 2098 so
that, by running the addCompUnit command once only, a composition unit is created and added to a
business-level application. In the example, an EBA file com.ibm.ws.eba.helloWorldService.eba contains a
composite bundle with symbolic name com.ibm.ws.eba.helloWorldCBA, at version 1.0.0. This composite
bundle contains two WABs:

v com.ibm.ws.eba.helloWorldService.web, at version 1.0.0

Chapter 44. Deploying OSGi applications 2117

v com.ibm.ws.eba.helloWorldService.withContextRoot, at version 0.9.0

The composite bundle also contains a bundle with symbolic name
com.ibm.ws.eba.helloWorldService.properties.bundle, at version 1.0.0.

AdminTask.addCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuSourceID WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
-CUOptions [
[WebSphere:blaname=helloWorldService.eba
WebSphere:assetname=com.ibm.ws.eba.helloWorldService.eba
com.ibm.ws.eba.helloWorldService_0001.eba "" 1 false DEFAULT]]

-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster1]]
-ActivationPlanOptions [[default ""]]
-ContextRootStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web 1.0.0
"/hello/web"]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"/hello/service"]]

-EJBMappingsStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

-EJBRefStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
META-INF/ejb-jar.xml/CurrencyExchange ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate
ejb:ExchangeRate]

[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
WEB-INF/web.xml CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

-EJBResourceRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

-EJBMsgDestRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails jms/myT javax.jms.Topic jms/notificationTopic]]

-VirtualHostMappingStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0 "HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot
0.9.0 "HelloWorld second service" test_host]]

-MapRolesToUsersStep [
[ROLE1 No Yes "" ""]
[ROLE2 No No WABTestUser1 ""]
[ROLE3 No No "" WABTestGroup1]
[ROLE4 Yes No "" ""]]

-MapRunAsRolesToUsersStep [
[Role1 User1 password1]
[AdminRole User3 password3]]

-BlueprintResourceRefBindingStep[
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.properties.bundle
1.0.0 resourceRef javax.sql.DataSource jdbc/Account Container Shareable alias1]]

-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jms/myQ javax.jms.Queue
jms/workQ]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web

2118 Developing WebSphere applications

1.0.0
jms/myT javax.jms.Topic
jms/notificationTopic]]

-WebModuleResourceRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

]’)

Debugging bundles at run time
You can explore or debug the bundles associated with a specific OSGi application or shared bundle
framework by using either the WebSphere Application Server administrative console or the wsadmin-based
OSGi Applications command-line console.

Debugging bundles at run time by using the WebSphere Application
Server administrative console
The WebSphere Application Server administrative console provides panels that you can use to explore or
debug a specific set of bundles running on an application server.

You can explore or debug bundles by interrogating the contents of OSGi frameworks. A framework
contains a collection of bundles, together with the packages and services associated with the bundles.
There are two types of framework:

Isolated framework
An isolated framework contains the bundles that are defined exclusively for a specific application;
each OSGi application runs in its own isolated framework. In a network deployment environment,
there is one isolated framework for each server on which the application is installed. If an
application includes one or more composite bundles, either as part of the application, or as an
extension to the application, there is a separate isolated framework for each composite bundle.

Share bundle framework
There is a shared bundle framework per server, containing all the shared bundles that are
available to the applications that are installed on that server. If the applications indirectly reference
one or more composite bundles through package dependencies, there is a shared bundle
framework for each composite bundle.

You can find the state of the bundles in a framework, and see which bundles import or export certain
packages, or which bundles register or consume a particular service. You can also see the values of the
headers in the bundle manifest files.

You can navigate trails through bundles, packages, and services. For example, you might navigate the
following trail:

1. Select a package.

2. See which bundle exports this package.

3. Find out the services that this bundle registers.

4. Find out which other bundles consume each of these services.

5. Explore the details of each of these bundles.

The panels have a breadcrumb trail that shows you where you are in a trail, and allows you to retrace the
steps that you have taken through the trail.

Chapter 44. Deploying OSGi applications 2119

Note: You can view the frameworks for an application only if the application has been started. If the
application fails to start, the link to access the framework panels is not available.

The following sections describe all the panels, and the administrative console commands that you can use
to display them.

Application OSGi frameworks

This panel lists all the OSGi frameworks that are associated with a given application.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console

For details of the information that is displayed in this panel, see Application OSGi frameworks [Collection].

Bundles in OSGi framework

This panel lists all the bundles in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name

v From the Packages in OSGi framework [Collection] page, or the Services in OSGi framework
[Collection] page, click Framework bundles.

For details of the information that is displayed in this panel, see Bundles in OSGi framework [Collection].

Packages in OSGi framework

This panel lists all the packages in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework packages

v From the Bundles in OSGi framework [Collection] page, or the Services in OSGi framework [Collection]
page, click Framework packages.

For details of the information that is displayed in this panel, see Packages in OSGi framework [Collection].

Services in OSGi framework

This panel lists all the services in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework services

v From the Packages in OSGi framework [Collection] page, or the Bundles in OSGi framework [Collection]
page, click Framework services.

For details of the information that is displayed in this panel, see Services in OSGi framework [Collection].

2120 Developing WebSphere applications

Packages in bundle

This panel lists all the imported packages and exported packages for a given OSGi bundle.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name > Bundle packages

v From the Packages in OSGi framework [Collection] page, or the Services in OSGi framework
[Collection] page, click Framework bundles > bundle_name > Bundle packages.

For details of the information that is displayed in this panel, see Packages in bundle [Collection].

Services in bundle

This panel lists all the services that are registered, and all the services that are consumed, by a given
OSGi bundle.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name > Bundle services

v From the Packages in OSGi framework [Collection] page, or the Bundles in OSGi framework [Collection]
page, click Framework bundles > bundle_name > Bundle services.

For details of the information that is displayed in this panel, see Services in bundle [Collection].

Bundle details

This panel displays the details of a given bundle, including identification information, the values of headers
in the bundle manifest file, and bundle dependencies.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name

v From the Packages in OSGi framework [Collection] page, or the Services in OSGi framework
[Collection] page, click Framework bundles > bundle_name.

For details of the information that is displayed in this panel, see Bundle details [Settings].

Package details

This panel displays the details of a given package, including identification information, and the bundles that
export and import the package.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework packages > package_name

v From the Bundles in OSGi framework [Collection] page, or the Services in OSGi framework [Collection]
page, click Framework packages > package_name.

v From the Bundle details [Settings] page, click Bundle packages > package_name.

Chapter 44. Deploying OSGi applications 2121

For details of the information that is displayed in this panel, see Package details [Settings].

Service details

This panel displays the details of a given service, including identification information, the service interfaces,
the bundles that have registered or that use the service, and the service properties.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework services > service_identifier

v From the Packages in OSGi framework [Collection] page, or the Bundles in OSGi framework [Collection]
page, click Framework services > service_identifier.

v From the Bundle details [Settings] page, click Bundle services > service_identifier.

For details of the information that is displayed in this panel, see Service details [Settings].

Debugging bundles at run time by using the command-line console
The OSGi Applications command-line console is a set of wsadmin commands that you can use to explore
or debug a specific set of bundles running on an application server. As an aid to debugging applications in
a test environment, the console also includes commands to start and stop bundles.

About this task

You can explore or debug bundles by interrogating the contents of OSGi frameworks. A framework
contains a collection of bundles, together with the packages and services associated with the bundles.
There are two types of framework:

Isolated framework
An isolated framework contains the bundles that are defined exclusively for a specific application;
each OSGi application runs in its own isolated framework. In a network deployment environment,
there is one isolated framework for each server on which the application is installed. If an
application includes one or more composite bundles, either as part of the application, or as an
extension to the application, there is a separate isolated framework for each composite bundle.

Share bundle framework
There is a shared bundle framework per server, containing all the shared bundles that are
available to the applications that are installed on that server. If the applications indirectly reference
one or more composite bundles through package dependencies, there is a shared bundle
framework for each composite bundle.

To work with a framework that is currently running, you first connect to the framework.

Procedure
1. Start the OSGi Applications command-line console.

At a command prompt, run the osgiApplicationConsole.bat command (for Windows systems) or the
osgiApplicationConsole.sh command (for Linux systems). You can run this command from the
app_server_root/bin directory or from any profile_root/bin directory. The command takes the
following optional parameters:

-h The host name of the target machine. For example, machine1.hursley.ibm.com.

-o The port number of the SOAP port of the target server. For example, 8880.

-u The user ID, if the wsadmin connection is secured.

-p The password, if the wsadmin connection is secured.

2122 Developing WebSphere applications

For example:

app_server_root/bin/osgiApplicationConsole -h machine1.hursley.ibm.com -o 8880

The wsadmin command prompt is displayed. This instance of wsadmin recognizes OSGi Applications
console commands.

2. Connect to an available framework.

You use the connect command to connect to a specific framework.

If you know the framework name and version number, and the node and server on which the
framework is running, you can use this information to connect. For example:

wsadmin>connect("com.ibm.ws.eba.helloWorldService.eba", "1.0.0", "wasNode1", "server1")

Alternatively, use the list command to list all available frameworks and to provide a unique ID for
each framework, then use this ID to connect. For example:

a. List all available frameworks:
wsadmin>list()

If you are connecting to an individual application server, this command might generate the following
system response:
ID Bundle Version Node Server
0 SharedBundles 7.0.0 wasNode1 server1
1 com.ibm.ws.eba.helloWorldService.eba 1.0.0 wasNode1 server1
2 com.ibm.ws.eba.obr.fep.eba5.eba 1.0.0 wasNode1 server1
3 com.ibm.ws.eba.wab.componenttest 1.0.0 wasNode1 server1

b. Connect to the com.ibm.ws.eba.helloWorldService.eba framework:
wsadmin>connect(1)

If the command completes successfully it generates the following system responses:
CWSAJ0035I: Connecting to framework com.ibm.ws.eba.helloWorldService.eba_1.0.0
on node wasNode1 and server server1.
CWSAJ0036I: Successfully connected to framework com.ibm.ws.eba.helloWorldService.eba_1.0.0.

To connect to a different framework, run the connect command again. You do not need to disconnect
from one framework before connecting to another framework.

3. Work with the connected framework.

Use one or more of the following commands to work with the framework to which you are connected:

v List all available frameworks, and indicate the currently connected framework.

Use the list command:
wsadmin>list()

This command might generate the following system response:
ID Bundle Version Node Server
0 SharedBundles 7.0.0 wasNode1 server1
1 com.ibm.ws.eba.helloWorldService.eba 1.0.0 wasNode1 server1 <== Connected
2 com.ibm.ws.eba.obr.fep.eba5.eba 1.0.0 wasNode1 server1
3 com.ibm.ws.eba.wab.componenttest 1.0.0 wasNode1 server1

v Display summary information about each of the bundles in the framework.

Use the ss command:
wsadmin>ss()

Note: “ss” stands for “short status”.
This command might generate the following system response:
ID State Bundle
0 ACTIVE org.eclipse.osgi_3.6.1.R36x_v20100806
1 ACTIVE com.ibm.samples.websphere.osgi.blog.app_1.0.0
2 ACTIVE com.ibm.samples.websphere.osgi.blog_1.0.0

Chapter 44. Deploying OSGi applications 2123

3 ACTIVE com.ibm.samples.websphere.osgi.blog.persistence_1.0.0
4 ACTIVE com.ibm.samples.websphere.osgi.blog.web_1.0.0
5 ACTIVE com.ibm.samples.websphere.osgi.blog.api_1.0.0

v Display comprehensive information about all of the bundles in the framework, and the services that
they register or consume.

Use the bundles command:
wsadmin>bundles()

This command might generate the following system response.

Note: Information about the bundles that you included in your application is listed as bundle 2 and
subsequent bundles. Bundles 0 and 1 are system artifacts; do not modify or rely on these
bundles. Although the detail for bundle 0 is not shown in the following example, this bundle
typically generates much more information than the other bundles.

org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
Id=0, Status=ACTIVE Location=System Bundle

...
com.ibm.samples.websphere.osgi.blog.app_1.0.0 [1]
Id=1, Status=ACTIVE Location=com.ibm.samples.websphere.osgi.blog.app_1.0.0

...
com.ibm.samples.websphere.osgi.blog_1.0.0 [2]
Id=2, Status=ACTIVE

Location=reference:file:/C:/IBM/WebSphere/AppServer/profiles/profile01/
installedEBAs/com.ibm.samples.websphere.osgi.blog.app_1.0.0/byValue/
98b31e7a-4375-45fa-be20-d34b06f5c8b8.3/3/
Registered Services

{com.ibm.samples.websphere.osgi.blog.api.BloggingService}={service.id=46,
osgi.service.blueprint.compname=bloggingServiceComponent
}

{org.osgi.service.blueprint.container.BlueprintContainer}={osgi.blueprint.
container.symbolicname=com.ibm.samples.websphere.osgi.blog,service.id=47,
osgi.blueprint.container.version=1.0.0}
No services in use.

com.ibm.samples.websphere.osgi.blog.persistence_1.0.0 [3]
Id=3, Status=ACTIVE

Location=reference:file:/C:/IBM/WebSphere/AppServer/profiles/profile01/
installedEBAs/com.ibm.samples.websphere.osgi.blog.app_1.0.0/byValue/
98b31e7a-4375-45fa-be20-d34b06f5c8b8.1/1/
Registered Services

{javax.persistence.EntityManagerFactory}={osgi.unit.provider=org.apache.openjpa.
persistence.PersistenceProviderImpl,service.id=42,osgi.unit.name=blogExample,
osgi.unit.version=1.3.0,org.apache.aries.jpa.container.managed=true,org.apache.
aries.jpa.default.unit.name=false}

{javax.persistence.EntityManagerFactory}={osgi.unit.provider=org.apache.openjpa.
persistence.PersistenceProviderImpl,service.id=43,org.apache.aries.jpa.proxy.factory=true,
osgi.unit.name=blogExample,osgi.unit.version=1.3.0,org.apache.aries.jpa.container.managed=true,
org.apache.aries.jpa.default.unit.name=false}

{com.ibm.samples.websphere.osgi.blog.persistence.api.BlogPersistenceService}={service.id=44,
osgi.service.blueprint.compname=persistenceImpl}

{org.osgi.service.blueprint.container.BlueprintContainer}={osgi.blueprint.container.
symbolicname=com.ibm.samples.websphere.osgi.blog.persistence,service.id=45,
osgi.blueprint.container.version=1.0.0}
No services in use.

com.ibm.samples.websphere.osgi.blog.web_1.0.0 [4]
Id=4, Status=ACTIVE

Location=reference:file:/C:/IBM/WebSphere/AppServer/profiles/profile01/
installedEBAs/com.ibm.samples.websphere.osgi.blog.app_1.0.0/byValue/
98b31e7a-4375-45fa-be20-d34b06f5c8b8.2/2/

2124 Developing WebSphere applications

Registered Services

{javax.servlet.ServletContext}={service.id=48,osgi.web.contextpath=/blog,
osgi.web.version=1.0.0,osgi.web.symbolicname=com.ibm.samples.websphere.osgi.blog.web}

{org.osgi.service.blueprint.container.BlueprintContainer}={osgi.blueprint.container.
symbolicname=com.ibm.samples.websphere.osgi.blog.web,service.id=49,
osgi.blueprint.container.version=1.0.0}
No services in use.

com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]
Id=5, Status=ACTIVE

Location=reference:file:/C:/IBM/WebSphere/AppServer/profiles/profile01/
installedEBAs/com.ibm.samples.websphere.osgi.blog.app_1.0.0/byValue/
98b31e7a-4375-45fa-be20-d34b06f5c8b8.0/0/
No registered services.
No services in use.

v Display comprehensive information about a given bundle in the framework.

Use the bundle command. Specify the ID of the bundle that you want to examine. The bundle ID
values are one of the outputs of the ss command.

This command lists the information associated with the specified bundle. For example the bundle
symbolic name, the bundle version, the services that the bundle registers, the services that are
consumed by the bundle, and whether the bundle is a fragment or a host bundle.

For example:
wsadmin>bundle(3)

This command might generate the following system response:
com.ibm.samples.websphere.osgi.blog.persistence_1.0.0 [3]
Id=3, Status=ACTIVE

Location=reference:file:/C:/IBM/WebSphere/AppServer/profiles/profile01/
installedEBAs/com.ibm.samples.websphere.osgi.blog.app_1.0.0/byValue/
98b31e7a-4375-45fa-be20-d34b06f5c8b8.1/1/
Registered Services

{javax.persistence.EntityManagerFactory}={osgi.unit.provider=org.apache.openjpa.
persistence.PersistenceProviderImpl,service.id=42,osgi.unit.name=blogExample,
osgi.unit.version=1.3.0,org.apache.aries.jpa.container.managed=true,org.apache.
aries.jpa.default.unit.name=false}

{javax.persistence.EntityManagerFactory}={osgi.unit.provider=org.apache.openjpa.
persistence.PersistenceProviderImpl,service.id=43,org.apache.aries.jpa.proxy.factory=true,
osgi.unit.name=blogExample,osgi.unit.version=1.3.0,org.apache.aries.jpa.container.managed=true,
org.apache.aries.jpa.default.unit.name=false}

{com.ibm.samples.websphere.osgi.blog.persistence.api.BlogPersistenceService}={service.id=44,
osgi.service.blueprint.compname=persistenceImpl}

{org.osgi.service.blueprint.container.BlueprintContainer}={osgi.blueprint.container.
symbolicname=com.ibm.samples.websphere.osgi.blog.persistence,service.id=45,
osgi.blueprint.container.version=1.0.0}
No services in use.
No exported packages
Imported Packages
Imported Packages
com.ibm.samples.websphere.osgi.blog.persistence.api;
version="1.0.0"<com.ibm.samples.websphere.osgi.blog.api_1.0.0 [3]>
javax.persistence; version="1.1.0"<org.eclipse.osgi_3.6.1.R36x_v20100806 [3]>

No fragment bundles
No host bundles
No named class spaces
Required bundles
org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]

v Display header information about a given bundle.

Chapter 44. Deploying OSGi applications 2125

Use the headers command. Specify the ID of the bundle that you want to examine. The bundle ID
values are one of the outputs of the ss command.

For example:
wsadmin>headers(2)

This command might generate the following system response:
Ant-Version = Apache Ant 1.7.1
Bundle-ActivationPolicy = lazy
Bundle-ManifestVersion = 2
Bundle-Name = Blog Core Services Bundle
Bundle-SymbolicName = com.ibm.samples.websphere.osgi.blog
Bundle-Vendor = IBM
Bundle-Version = 1.0.0
Created-By = 2.4 (Your Corporation)
Import-Package = com.ibm.samples.websphere.osgi.logging;version="[1.0.0,1.1.0)",
com.ibm.samples.websphere.osgi.blog.api;version="[1.0.0,1.1.0)",
com.ibm.samples.websphere.osgi.blog.comment.persistence.api;version="[1.0.0,1.1.0)",
com.ibm.samples.websphere.osgi.blog.persistence.api;version="[1.0.0,1.1.0)"
Manifest-Version = 1.0

v Display information about the packages that are imported or exported by the framework.

Use the packages command. Optionally, specify either or both of the following parameters to select a
particular package or subset of packages:

bundle ID
Display information about the exported packages for this bundle.

The bundle ID values are one of the outputs of the ss command.

package name
Display information about the specified package.

Command syntax:
wsadmin>packages()
wsadmin>packages(bundle_id)
wsadmin>packages(package_name)

Example using a bundle ID:
wsadmin>packages(5)

This command might generate the following system response:
com.ibm.samples.websphere.osgi.blog.persistence.api; version="1.0.0"
<com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]>
com.ibm.samples.websphere.osgi.blog_1.0.0 [2] imports
com.ibm.samples.websphere.osgi.blog.persistence_1.0.0 [3] imports

com.ibm.samples.websphere.osgi.blog.comment.persistence.api; version="1.0.0"
<com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]>
com.ibm.samples.websphere.osgi.blog_1.0.0 [2] imports

com.ibm.samples.websphere.osgi.blog.api; version="1.0.0"
<com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]>
com.ibm.samples.websphere.osgi.blog_1.0.0 [2] imports
com.ibm.samples.websphere.osgi.blog.web_1.0.0 [4] imports

Example using a package name:
wsadmin>packages("com.ibm.samples.websphere.osgi.blog.comment.persistence.api")

This command might generate the following system response:
com.ibm.samples.websphere.osgi.blog.comment.persistence.api; version="1.0.0"
<com.ibm.samples.websphere.osgi.blog.api_1.0.0 [5]>
com.ibm.samples.websphere.osgi.blog_1.0.0 [2] imports

v Display information about the services that are currently registered by the framework. For each
service this information includes the service interfaces, the bundle that registered the service, and
any bundles that consume the service.

2126 Developing WebSphere applications

Use the services command. Optionally, specify either or both of the following parameters to select a
particular service or subset of services:

service ID
Display information about a specified service.

filter
Display information about all services that match the filter.

The filter must comply with the OSGi filter format as defined in section 3.2.7 of the OSGi
Service Platform Release 4 Version 4.2 Core Specification.

Command syntax:
wsadmin>services()
wsadmin>services(service_id)
wsadmin>services("(&(prop1=value_1)(prop2=value_2))")

Example using a service ID:
wsadmin>services(2)

This command might generate the following system response:
{org.osgi.service.packageadmin.PackageAdmin}={service.id=2,
service.ranking=2147483647,service.vendor=Eclipse.org - Equinox,
service.pid=0.org.eclipse.osgi.framework.internal.core.PackageAdminImpl}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
Bundles using service:
org.eclipse.osgi_3.6.1.R36x_v20100806 [0]

Example using a single property filter:
wsadmin>services("(objectClass=org.osgi.service.packageadmin.PackageAdmin)")

This command might generate the following system response:
{org.osgi.service.packageadmin.PackageAdmin}={service.id=2,
service.ranking=2147483647,service.vendor=Eclipse.org - Equinox,
service.pid=0.org.eclipse.osgi.framework.internal.core.PackageAdminImpl}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
Bundles using service:
org.eclipse.osgi_3.6.1.R36x_v20100806 [0]

Example using a multiple property filter:
wsadmin>services("(&(objectClass=javax.resource.Referenceable)(ibm.private.jndi.object=true))")

This command might generate the following system response:
{java.lang.reflect.InvocationHandler,com.ibm.websphere.rsadapter.WSDataSource,java.sql.Wrapper,
javax.sql.CommonDataSource,javax.resource.Referenceable,javax.sql.DataSource}={service.id=35,
osgi.jndi.service.name=jdbc/pgc,ibm.private.jndi.object=true}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
No bundles using service.

{java.lang.reflect.InvocationHandler,com.ibm.websphere.rsadapter.WSDataSource,java.sql.Wrapper,
javax.sql.CommonDataSource,javax.resource.Referenceable,javax.sql.DataSource}={service.id=36,
osgi.jndi.service.name=jdbc/DefaultEJBTimerDataSource,ibm.private.jndi.object=true}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
No bundles using service.

{java.lang.reflect.InvocationHandler,com.ibm.websphere.rsadapter.WSDataSource,java.sql.Wrapper,
javax.sql.CommonDataSource,javax.resource.Referenceable,javax.sql.DataSource}={service.id=39,
osgi.jndi.service.name=jdbc/lrsched,ibm.private.jndi.object=true}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
No bundles using service.

{javax.resource.Referenceable,javax.resource.cci.ConnectionFactory}={service.id=40,
osgi.jndi.service.name=eis/jdbc/pgc_CMP,ibm.private.jndi.object=true}
Registered by bundle: org.eclipse.osgi_3.6.1.R36x_v20100806 [0]
No bundles using service.

v Update the cached runtime information about the framework.

Chapter 44. Deploying OSGi applications 2127

It can take some time for the system to gather the runtime information about the framework and the
bundles running within it. Therefore, when you run the osgiApplicationConsole command, the
command-line console caches the runtime information. If you make changes to the currently
selected framework, for example by updating or adding bundles, these changes are not reflected in
the output of the command-line console commands until you run the refresh command.

Note: You can also update this runtime information by restarting the OSGi Applications
command-line console. However, you then have to reconnect to the framework. It is quicker
to use the refresh command.

Command syntax:
wsadmin>refresh()

v Stop a bundle.

Use the stop command to stop the bundle specified by a given bundle ID. The bundle ID values are
one of the outputs of the ss command.

Note:

– The OSGi Applications command-line console is intended primarily as a method of
debugging applications. In a production environment, you would normally use the
administrative console or equivalent administrative commands to start and stop
applications.

– Do not use the stop command on any bundles under the shared bundle framework, on
system bundles, or on the bundles that represent system artifacts (bundle ID 0 and 1),
otherwise serious errors can result.

For example:
wsadmin>stop(5)

This command might generate the following system response:
CWSAJ0042I: Stopping Bundle com.ibm.samples.websphere.osgi.blog.api_1.0.0.
CWSAJ0034I: Bundle com.ibm.samples.websphere.osgi.blog.api stopped successfully.

v Start a bundle.

Use the start command to start the bundle specified by a given bundle ID. The bundle ID values
are one of the outputs of the ss command.

Note:

– The OSGi Applications command-line console is intended primarily as a method of
debugging applications. In a production environment, you would normally use the
administrative console or equivalent administrative commands to start and stop
applications.

– Do not use the start command on any bundles under the shared bundle framework, on
system bundles, or on bundles that represent applications (bundle ID 0 and 1), otherwise
serious errors can result.

For example:
wsadmin>start(5)

This command might generate the following system response:
CWSAJ0040I: Starting Bundle com.ibm.samples.websphere.osgi.blog.api_1.0.0.
CWSAJ0032I: Bundle com.ibm.samples.websphere.osgi.blog.api started successfully.

v Display help information about the console commands.

Use the help command to display a summary of the runtime commands and their uses.

Command syntax:
wsadmin>help()

2128 Developing WebSphere applications

This command generates the following system response:
CWSAJ0025I: OSGi application console

Display commands: These commands work only if connected to a framework

ss() - This command gives the summary information about the installed bundles.
bundles() - This command gives comprehensive information about the installed bundles.
packages() - This command gives information about the imported/exported packages.
services() - This command gives information about the registered Services.

bundle(<bundleID>) - This command gives information about the specified bundle
headers(<bundleID>) - This command gives information about the headers associated with the

specified bundle
packages(<bundle ID>) - This command gives information about the exported packages for this bundle.
packages(<package Name>) - This command gives information about the specified package.
services(<service ID>) - This command gives information about the specified service.
services(<OSGI Filter>) - This command gives information about the services matching the filter.

refresh() - This command refreshes the internal OSGi application console cache with the latest
information about the state of the framework.

Framework commands:

list() - This command lists the available frameworks that you can connect to.
connect(<Framework id>) - This command connects to the specified framework.
connect(<Bundle Name>, <Bundle Version>, <Node Name>, <Server Name>)

- This command connects to the specified framework.

Controlling Bundles:

start(<bundleID>) - This command starts the requested bundle.
stop(<bundleID> - This command stops the requested bundle.

Chapter 44. Deploying OSGi applications 2129

2130 Developing WebSphere applications

Chapter 45. Deploying SCA composites

This page provides a starting point for finding information about Service Component Architecture (SCA)
composites, which consist of components that implement business functions in the form of services.

You typically do not deploy SCA composites directly onto a product server. To deploy SCA composites, you
import SCA composites as assets to the product repository and add the assets to business-level
applications.

Deploying SCA business-level applications
Deploying an Service Component Architecture (SCA) business-level application consists of creating an
empty business-level application and then adding SCA assets, shared libraries, business-level applications,
and other artifacts as composition units to the empty business-level application.

Before you begin

Develop the artifacts to go in the application and configure the target server. You must deploy SCA
composite assets of a business-level application to a Version 8.x target or to a Version 7.0 target that is
enabled for the Feature Pack for SCA.

If your SCA composite or application uses OASIS support, you must deploy the SCA asset or application
to a Version 8.5 target.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must
deploy the SCA asset or application to a Version 8.x target or to a feature pack Version 1.0.1.0 target.
Version 1.0.1 functionality includes:
v Java Message Service (JMS) bindings
v Atom bindings
v HTTP bindings with a wire format of JSON-RPC
v Java Platform, Enterprise Edition (Java EE) integration modules (implementation.jee,

implementation.web, or implementation.ejb components)
v SCA Spring component implementations
v OSGi applications as SCA component implementations
v Service Data Objects (SDO) composites

About this task

When creating a business-level application, you can configure the application enough to enable it to run on
the server. Later, you can configure the application and its contents further, start or stop the application,
and otherwise manage its activity.

The topics in this section describe how to deploy and administer a business-level application or its
contents using the administrative console. You can also use programming or wsadmin scripting.

Procedure
v Import assets to a repository.

v Create an SCA business-level application that has SCA assets, shared libraries, or business-level
applications.

v Start the application.

v Stop the application.

v Update SCA composite artifacts.

v Update the application and its configuration units.

© IBM Corporation 2011 2131

v View the composite definition of an SCA asset composition unit.

v View SCA domain information.

v View or edit JMS bindings on references and services of SCA composites.

v Delete the application.

What to do next

After making changes to administrative configurations of your applications in the administrative console,
ensure that you save the changes.

Importing assets
You must register application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
libraries, and other resource files with the product configuration as assets before you can add the assets
to one or more business-level applications. Importing an asset registers it with the product configuration.

Before you begin

This topic assumes that you have one or more application binary files that you want to add to a
business-level application. You must register those binary files as assets before you can add them to the
business-level application.

About this task

Before a business-level application that uses an asset can be started on the target run time, the asset
binaries must be extracted to a deployer-defined location on the file system that is local to the target run
time. Importing an asset extracts binaries to a location that is local to the target run time.

The application server run time that reads the asset binaries either at application start time or while
serving an incoming client request determines the extraction format of the asset binaries. The extraction
format might include unzipping of Java archive (JAR) or compressed (zip) files.

This topic describes how to import an asset using the administrative console. Alternatively, you can use
the wsadmin tool or programming.

Procedure
1. Click Applications > New Application > New Asset in the console navigation tree.

2. On the Upload asset page, specify the asset package to import.

a. Specify the full path name of the asset.

b. Click Next.

3. On the Select options for importing an asset page, specify asset settings.

You typically can click Next and use the default values.

a. Optional: For Asset description, specify a brief description of the asset.

b. Optional: For Asset binaries destination URL, specify the target location of the asset.

This setting specifies the location to which the product extracts the asset. After an asset is
imported, the product looks for the asset in this location when a running application uses the asset.

If you do not specify a value, the product installs the asset to the default location,
${profile_root}/installedAssets/asset_name/BASE/.

c. Optional: For Asset type aspects, examine the asset content type and version specified by the
product. You cannot change this setting value.

The type aspect typically denotes the type of application contents, such as a specification to which
the application is written. For example, an enterprise bean (EJB) that supports the EJB Version 2.0
specification has the aspects type=EJB,version=2.0.

2132 Developing WebSphere applications

If the type aspect is none and if the asset is a JAR file, then the product associates a javarchive
type aspect with the asset by default.

d. For File permissions, specify any file permissions that are set on asset binary files so the target
run time can read or run the asset. Importing the asset extracts its binary files on the disk local to
the target runtime environment.

Try importing the asset using the default value. For detailed information on the File permissions
setting, refer to the Select options for importing an asset page online help.

Restriction: OSGi applications do not use a File permissions setting.

e. For Current asset relationships, add assets that the asset you are importing needs to run or
remove assets that are not needed.

When the product imports a JAR asset, the product detects asset relationships automatically by
matching the dependencies defined in the JAR manifest with the assets that are already imported
into the administrative domain.

f. For Validate asset, specify whether the product validates the asset.

The setting is deselected by default. This false (no) value is appropriate for most assets. Only
select true (yes) to validate an asset when needed.

The product does not save the value specified for Validate asset. Thus, if you select to validate the
asset (yes) now and later update the asset, when you update the asset you must enable this
setting again for the product to validate the updated files.

Restriction: OSGi applications do not use a Validate asset setting.

g. Click Next.

4. On the Summary page, click Finish.

Results

Several messages are displayed, indicating whether your asset is imported successfully.

An asset can contain multiple deployable objects as defined by the application contents of that asset. A
deployable object is a part of the asset that you can map to a deployment target such as an application
server. If the product imports the asset successfully, then appropriate deployable objects are identified in
the asset and are further used when a composition unit is created from that asset.

If the asset importing is not successful, read the messages and try importing the asset again. Correct the
values noted in the messages.

What to do next

If the product imports the asset successfully and displays the list of assets on the Assets page, then click
Save.

Add a composition unit to a business-level application using the asset that you imported. An asset included
in a business-level application is represented by a composition unit.

Upload asset settings
Use this page to specify the asset to register with the asset repository. You can add registered assets to a
business-level application.

To view this administrative console page, click Applications > New application > New Asset.

Importing an asset registers the asset with the asset repository.

Chapter 45. Deploying SCA composites 2133

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

During asset importing, asset files typically are uploaded from a client workstation running the browser to
the server running the administrative console, where they are registered. In such cases, use the web
browser running the administrative console to select files to upload to the server.

Path to the asset:

Specifies the fully qualified path to the asset.

Specify one of the following supported assets:
v A single file, such as an enterprise bean (EJB) file
v An archive of files, such as a Java archive (JAR) or a compressed .zip file
v An archive of archives, such as an enterprise archive (EAR) or shared library file

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Asset settings
Use this page to specify options for the registration of an asset with the asset repository. Default values for
the options are used if you do not specify a value. If the asset is an OSGi application, additional
information about bundle download status is displayed.

To view this administrative console page, click Applications > Application Types > Assets >
asset_name. This page is similar to the Select options for importing an asset page on the asset import
and update wizards.

Asset name:

Specifies a logical name for the asset. An asset name must be unique within a cell and cannot contain an
unsupported character.

An asset name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 337. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

2134 Developing WebSphere applications

This Asset name field is the same as the Name setting on an Assets page.

Information Value
Data type String

Asset description:

Specifies a description for the asset.

Asset binaries destination URL:

Specifies the directory to which the product imports the asset file.

Information Value
Data type String
Units Full path name

Asset type aspects:

Specifies the type of asset content. Examples of asset type include Java archive (JAR) files, shared
libraries, enterprise application archive (EAR) files, and enterprise bundle archive (EBA) files.

The asset type suggests the content of the asset. An asset packaged as a JAR file might contain a web
module, portlet, or web service. An asset packaged as an EBA file contains an OSGi application.

This setting is read-only. You cannot edit this setting.

Information Value
Data type String
Units File type
Default none

File permissions:

Specifies access permissions for asset binaries that the product expands to the asset binaries destination
URL.

Restriction: OSGi applications do not use a File permissions setting.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the list. List selections overwrite file permissions set in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Table 338. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Chapter 45. Deploying SCA composites 2135

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the asset, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the
specified file permission pattern. You must provide more precise matching patterns using regular
expressions as defined by Java programming API. For example, suppose the product processes the
following directory and file URIs during a file permission operation:

Table 339. Example URIs for file permission operations. Results are shown following this table.
Number Example URL

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in
file patterns.

You cannot unset read permission on a file on Windows operating systems. With POSIX style
permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,

2136 Developing WebSphere applications

group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the asset level. You can also specify access permissions for
asset binaries in the node-level configuration. The node-level file permissions specify the maximum (most
lenient) permissions that can be given to asset binaries. Access permissions specified here at asset level
can only be the same as or more restrictive than those specified at the node level.

Information Value
Data type String

Current asset relationships:

Specifies the assets to which this asset is related.

To add or remove a relationship, use the Manage relationships page:

1. Click Manage Relationships. The Selected list on the right lists the current asset relationships.

2. To add a relationship, select an asset in the Available list on the left and click >>.

3. To remove a relationship, select an asset in the Selected list on the right and click <<.

4. Click OK.

Information Value
Data type String
Default none

Validate asset:

Specifies whether the product examines the asset references specified during asset importing or updating
and, if validation is enabled, warns you of incorrect references or fails the operation.

Restriction: OSGi applications do not use a Validate asset setting.

An asset typically refers to resources using data sources for container-managed persistence (CMP) beans
or using resource references or resource environment references defined in deployment descriptors. The
validation checks whether the resource referred to by the asset is defined in the scope of the deployment
target of that asset.

Select true (enable the check box) for resource validation and to stop operations that fail as a result of
incorrect resource references. Select false (empty check box) for no resource validation.

Information Value
Data type String
Default false (empty check box)

EBA Dependencies:

For an enterprise bundle archive (EBA) asset, displays the current bundle download status for all bundles
in the asset. This item is only displayed if your asset is an EBA asset, which means that it contains an
OSGi application.

You cannot update an EBA asset until bundle downloads are complete from any previous update, and until
the business-level application that uses the asset has picked up the previous updates by being restarted.

Chapter 45. Deploying SCA composites 2137

Before you try and update bundle versions, you can use the EBA dependency information to check the
bundle download status of the asset. The status displayed is one of the following values:

v Bundles downloading...

v Bundle downloads are complete.

v No bundles downloads are required.

Note: In addition to the information given here, you can also check the bundle download status indirectly,
by checking the status of the associated EBA composition unit as described in Checking and
updating the EBA asset version used by a business-level application.

If bundle downloads for the asset are complete, or no bundle downloads are required, you can update the
asset using either of the methods described in Maintaining bundle versions for an EBA asset.

If bundle downloads for the asset are complete, and a new version of the EBA asset is available, restart
the business-level application to bring the EBA composition unit up-to-date and to run the newer
configuration.

SCA application package deployment
The product supports deployment of many types of Service Component Architecture (SCA) artifacts as
composition units of business-level applications. Typical artifacts include Java archive (JAR) files,
compressed .zip files, and web application archive (WAR) files.

The following outlines the details about deployment of SCA artifacts:
v Deployment of JAR or compressed files
v Deployment of WAR files
v Notes and limitations

Deployment of JAR or compressed files
v The product supports one composite file for each package. The product determines which composite file

to support using the following process:

1. The SCA deployment extension looks for the META-INF/sca-contribution.xml file, gets the name of
each deployable composite defined in the file, and uses QName values to find the actual composite
file names under any directory for that composite. If more than one composite is found in the
sca-contribution.xml file, you can select the composite to deploy.

2. If there is no META-INF/sca-contribution.xml file defined, the SCA deployment extension looks for
a composite file in the META-INF/sca-deployables directory.

v The product validates SCA composites for inconsistencies with SCA specifications.

One specification requirement is that the names of top-level components must be unique. Thus, the
product validates top-level component name uniqueness.

Tip: Top-level components are also called domain components, with the top-level or domain typically
the cell on multiple-server installations and the server scope on single-server installations.

The product validates all composite files in a JAR or compressed file, regardless of the file location in
the archive or whether the sca-contribution.xml file references the composite file. The product does
not validate all services and references.

The product writes warning and error messages resulting from the validation tests to the SystemOut.log
file. Refer to the log file to learn about inconsistencies with specifications in your SCA composites.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible Logging
(HPEL) log and trace infrastructure instead of using SystemOut.log , SystemErr.log, trace.log,
and activity.log files on distributed and IBM i systems. You can also use HPEL in conjunction
with your native z/OS logging facilities. If you are using HPEL, you can access all of your log and

2138 Developing WebSphere applications

trace information using the LogViewer command-line tool from your server profile bin directory.
See the information about using HPEL to troubleshoot applications for more information on using
HPEL.

v The product uses the following process for QName resolution:

– The product uses the QName to resolve composite files included in the top-level composite that use
the element. For example, the <include name="mynamespace:MyService"/> statement looks for a
composite file whose composite name is MyService and whose targetNameSpace is mynamespace.
The following rules apply:
- name: Use the outer composite.
- namespace declarations: Merged into the outer composite.
- targetNamespace: Use the outer composite (must be the same).
- local: Use the composite (preferably the same but not required).
- requires(intents) and policySets: Must be compatible, and aggregated into the outer composite.

Deployable composite files must have name and targetNamespace values. The name and
targetNamespace values are combined to form the QName of a composite file.

– When a composite is used as a component implementation in the top-level composite, the composite
is also resolved using the QName. For example, the <implementation.composite
name="mynamespace:MyComposite"/> statement causes the product administration to look for a
composite file whose composite name is MyComposite and whose targetNamespace is mynamespace.

v A JAR file can contain other JAR files at the top level. The contained JAR files are available on the
classpath. However, any archives inside those JAR files are not available. The product supports one
level of embedded JAR files.

Deployment of WAR files
v A composite file in a WAR file must be named default.composite. A composite file that is not in a WAR

file can have any name.

v The default.composite composite file must be inside a WAR file in the META-INF/sca-deployables
directory.

v The META-INF/sca-deployables directory must contain no more than one composite file. If there is more
than one composite file in the META-INF/sca-deployables directory, then the product returns a validation
error and stops the WAR file deployment.

However, you can place other composite files in directories other than META-INF/sca-deployables, and
reference those composite files in the top-level composite under the META-INF/sca-deployables
directory.

v The product does not support having a sca-contribution.xml file inside the WAR file under the
META-INF directory. If the product finds a sca-contribution.xml file, then the product returns a validation
error and stops the WAR file deployment.

Notes and limitations
v The product does not provide administration console pages for configuring contributions.

v If you import a package or namepace from a different contribution, or JAR (contribution.xml), you
might need to import that contribution as an asset before importing your own asset.

For example, suppose your Contribution A imports a JAR file from Contribution B. You might need to
import Contribution B and then Contribution A as assets. Contribution A depends on Contribution B so
you must import Contribution B before importing Contribution A.

v You cannot use a local interface across a class loader boundary. Use a remotable interface to cross a
class loader boundary.

Creating SCA business-level applications
You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, business-level applications, and other artifacts as composition units to the empty
business-level application.

Chapter 45. Deploying SCA composites 2139

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.x server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses OASIS support, you must deploy the SCA asset or application
to a Version 8.5 target.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must
deploy the SCA asset or application to a Version 8.x target or to a feature pack Version 1.0.1.0 target.
Version 1.0.1 functionality includes:
v Java Message Service (JMS) bindings
v Atom bindings
v HTTP bindings with a wire format of JSON-RPC
v Java Platform, Enterprise Edition (Java EE) integration modules (implementation.jee,

implementation.web, or implementation.ejb components)
v SCA Spring component implementations
v OSGi applications as SCA component implementations
v Service Data Objects (SDO) composites

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, the wsadmin tool, or
programming.

You create SCA business-level applications the same way as for non-SCA business-level applications.
However, when you use an SCA asset in a business-level application, function that applies only to
applications that use SCA composites becomes available. For example, you can access administrative
console pages that apply only to applications that use SCA composites.

Procedure
1. Select a way to create your business-level application.

Table 340. Ways to create SCA business-level applications. You can create a business-level application using the
administrative console, wsadmin scripts, or programming.

Option Method

Administrative console
business-level application creation
wizard

See “Creating SCA business-level
applications with the console” on
page 2141.

Click Applications > New Application > New Business Level Application and
follow instructions in the wizard.

For example use of the console to create a business-level application that has
an SCA asset, see “Example: Creating an SCA business-level application with
the console” on page 2171.

2. Create your business-level application using the administrative console, wsadmin, or programming.

3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the Business-level applications page.

2140 Developing WebSphere applications

What to do next

After you create a business-level application, you can do the following to add composition units to it:

1. Import any SCA or other assets needed by your business-level application.

2. Add assets, shared libraries, or other business-level applications as composition units.

If the asset or application uses OASIS support, specify a Version 8.5 target.

If the asset or application uses Feature Pack for SCA Version 1.0.1 functionality, specify a Version 8.x
target or a feature pack Version 1.0.1.0 target.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset as a
composition unit to the business-level application before adding the SCA asset as a composition unit.

3. Save the changes to your administrative configuration.

4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then save and run it again.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again. If SCA composite assets do not start, ensure that
each asset is mapped to a deployment target that supports SCA composites.

When an SCA application fails to start, multiple first failure data capture (FFDC) entries are logged for a
single error. The FFDC log entries pertain to the same problem and are not different issues related to the
failure. Use the information provided in the FFDC log entries to fix the problem and try starting the SCA
application again.

If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to the
business-level application. You cannot change the target after deployment.

If the META-INF/sca-deployables directory has multiple SCA composite files and the application does not
start because the product cannot obtain the CompUnitInfoLoader value, place only the file that contains
the composite in the META-INF/sca-deployables directory. You can place the other composite files
anywhere else within the archive.

If the SCA application uses security, the target must be in the global security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server or cluster as the SCA composition unit.

Creating SCA business-level applications with the console
You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, or business-level applications as composition units to the empty business-level
application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.x server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must
deploy the SCA asset or application to a Version 8.5 target or to a feature pack Version 1.0.1.0 target.
Version 1.0.1 functionality includes:
v Java Message Service (JMS) bindings

Chapter 45. Deploying SCA composites 2141

|
|
|
|

v Atom bindings
v HTTP bindings with a wire format of JSON-RPC
v Java Platform, Enterprise Edition (Java EE) integration modules (implementation.jee,

implementation.web, or implementation.ejb components)
v SCA Spring component implementations
v OSGi applications as SCA component implementations
v Service Data Objects (SDO) composites

Also, determine an application name. Optionally, determine which assets, shared libraries, or
business-level applications that the new business-level application needs.

About this task

You can create a business-level application that has SCA assets using the administrative console.
Alternatively, you can use the wsadmin scripting tool or programming.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.

a. Click Applications > New Application > New Business-level Application.

b. On the New business-level application page, specify a unique name for the application and a
description, and then click Apply.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unknown.

2. Add one SCA asset to your business-level application. The product adds the asset as a composition
unit of your business-level application.

a. Import the SCA asset.

b. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name.

c. On the business-level application settings page, specify the type of composition unit to add.

Although you can add an asset, shared library, or business-level application to your business-level
application, the logic is in your SCA asset. Add the SCA asset as a composition unit.

Under Deployed assets, click Add > Add Asset.

d. On the Add page, select one unit from the list of available units, and then click Continue.

On the Add page, you might be able to select multiple deployable SCA composites. However, you
can deploy only one deployable SCA composite at a time. Select only one unit and click Continue.
If you select multiple units, the product deploys only one of those units.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset
as a composition unit to the business-level application before adding the SCA asset as a
composition unit.

e. On the Set options page, change the composition unit settings as needed, and then click Next.

This page is not shown if you have multiple deployable unit assets.

f. On the Map composition unit to a target page, specify one target server that supports SCA
composites, and then click Next.

The target server can be an existing cluster. To map the composition unit to a cluster, select the
existing cluster from the Available list, click Add, and then click Next. The cluster name is shown in
the Current targets list as WebSphere:cluster=cluster_name.

2142 Developing WebSphere applications

If you are adding an SCA asset that uses security, specify a target server that is in the global
security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server as the SCA composition unit.

This page is not shown when you add a business-level application.

g. On the Relationship options page, click Next to accept the default values.

The relationships in SCA applications are set at the asset level. Either the asset must be defined
as an SCA contribution or, in the asset view, a relationship must be set to another asset. When a
relationship is set to another asset manually at the asset level, the relationship only exposes all the
packages within the asset to the other depended asset. The namespaces are not exposed.

This page is shown only for SCA assets that have multiple deployable or composition units.

h. On the Set Java EE composition unit relationship page, associate SCA components with Java EE
applications and then click Next.

Java EE applications are also known as enterprise applications or enterprise archive (EAR) files.
An SCA composite definition can specify an EAR file to use on the archive attribute of an
implementation.jee tag. Use this page to associate SCA components in this business-level
application to the EAR files named in the composite definition. If your SCA application does not use
EAR files, take the default values and click Next.

i. On the Map security roles to users or groups page, specify security roles for users or groups as
needed, and then click Next.

This page is only shown for SCA assets that use security.

j. On the Map RunAs roles to users page, map a user identity and password to RunAs roles as
needed, and then click Next.

This page is only shown for SCA assets that use security.

k. On the Map virtual host page, specify a virtual host that hosts web services for each SCA
composite, and then click Next. By default, composites map to default_host.

This page is only shown for SCA assets that contain a web service binding.

l. On the Attach policy set page, attach a policy set and assign policy set bindings as needed, and
then click Next.

This page is only shown for SCA assets that use web services.

m. On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful. Click
Manage application.

If the product adds the unit successfully, the name of the unit is shown in a list of deployed assets
on the business-level application settings page.

If the unit addition is not successful, read the messages and add the unit again. Correct the
problems noted in the messages.

n. On the Adding composition unit to the business-level application page, click Save.

3. Optional: Add one or more assets, shared libraries, or business-level applications to your
business-level application.

Repeat Step 2 to add another asset or add a shared library or business-level application.

Results

A business-level application that contains the specified composition units.

What to do next

After you create the application, save the changes to your configuration and start the application as
needed.

Chapter 45. Deploying SCA composites 2143

If a composite asset is deployed to a target that does not support SCA composites, the SCA composite
does not start. You must deploy an SCA asset to a target that supports SCA composites.

Map virtual host settings for SCA composites:

Use this page to map Service Component Architecture (SCA) composites that use a web service binding
to a virtual host. You must map the composites to the virtual host that hosts the web services.

This administrative console page displays in the business-level application creation and update wizards. To
view the Map virtual host page, the asset that you add to a business-level application must contain a web
service binding. To view this page, do the following:
1. Import an asset that contains a web service binding.
2. Create a business-level application to which to add the asset.
3. Click Applications > Application Types > Business-level applications > application_name > Add

> Add Asset.
4. On the Add composition unit page, select the asset that contains a web service binding, and click

Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7. On the Define relationship with existing composition units page, change the settings as needed and

click Next.
8. Continue changing settings as needed and click Next on any other pages until the Map virtual host

page is displayed in the wizard.

Composite Name:

Specifies the name of the composite that uses a web service binding in the SCA artifact.

Virtual Host:

Specifies a virtual host to associate with the composite.

Select the virtual host that hosts the web services for the composite. By default, the product associates a
component with the default_host virtual host.

Set Java EE composition unit relationships for SCA composites:

Use this page to associate Service Component Architecture (SCA) components in an SCA composite with
Java Platform, Enterprise Edition (Java EE) applications, otherwise known as enterprise applications or
enterprise archive (EAR) files.

An SCA composite definition can define Java EE applications as component implementations. You can
define an EAR asset on an archive attribute of the implementation.jee tag for the component and use
the application deployed from the asset as its implementation. On this page, associate SCA components in
a business-level application with the EAR files named in the composite definition.

This administrative console page displays in the business-level application creation and update wizards. To
view the Set Java EE composition unit relationship page, the asset that you add to a business-level
application must contain an SCA composite. To view this page, complete the following actions:

1. Import an asset that contains an SCA composite.

2. Create a business-level application to which to add the asset.

3. Click Applications > Application Types > Business-level applications > application_name > Add
> Add Asset.

4. On the Add composition unit page, select the SCA composite asset and click Continue.

5. On the Set options page, change the settings as needed and click Next.

2144 Developing WebSphere applications

6. On the Map composition unit to a target page, specify target servers as needed and click Next.

7. On the Define relationship with existing composition units page, change the settings as needed and
click Next.

8. Continue changing settings as needed and click Next on any other pages until the Set Java EE
composition unit relationship page is displayed in the wizard.

Component Name:

Specifies the name of an SCA component in the SCA composite that you are deploying.

EAR Asset Name:

Specifies the name of the enterprise application, or EAR file, that the SCA component uses.

An EAR asset is an EAR file that has been imported as an asset. The EAR asset name must match the
archive attribute on the implementation.jee tag in the SCA composite definition.

Associated Java EE Composition Unit:

Specifies the composition unit name of the EAR asset. Select the Java EE composition unit that the SCA
component uses. To associate an SCA component with an EAR file, the EAR file must be a composition
unit of your SCA business-level application.

If the Java EE composition unit that you want to associate with an SCA component is not in the drop-down
list, import the EAR file that is named by the archive attribute on the implementation.jee tag of the SCA
composite definition as an asset. Then, add the EAR asset as a composition unit of this business-level
application.

You can use the Import an asset and Add an asset links on this page to add EAR files as assets and
make them composition units of your SCA business-level application.

Attach policy set settings:

Use this page to attach a policy set and assign policy set bindings for the composite defined in a Service
Component Architecture (SCA) application.

This administrative console page displays in the Create new business-level application wizard. To have the
Attach policy set page in the wizard, the SCA component in the asset that you add to a business-level
application must use a web service binding, binding.ws, and the composite file or annotation must specify
the intents or policy sets. To view this page, do the following:
1. Import an asset that uses a web service binding and a composite file or annotation that specifies the

intents or policy sets.
2. Create a business-level application to which to add the asset.
3. Click Applications > Application Types > Business-level applications > application_name > Add

> Add Asset.
4. On the Add composition unit page, select the asset that uses a web service binding, and click

Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7. On the Define relationship with existing composition units page, change the settings as needed and

click Next.
8. Continue changing settings as needed and click Next on any other pages until the Attach policy set

page is displayed in the wizard.

To attach or detach a policy set or to assign a policy set binding, do the following:

Chapter 45. Deploying SCA composites 2145

1. Select a composite, component, service, reference, or binding from Name. The Name list is nested,
indicating parent-child relationships. When you select a parent, the children are automatically selected.

2. Click the desired button.

Table 341. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected composite, component, service, reference, or binding.

When the Include default policy sets option is not enabled, the options for this button
contain user-created policy sets only.

When the Include default policy sets option is not enabled and no user-created policy
sets exist, then there are no button options. You can select Include default policy sets to
display the default policy set options.

When the Include default policy sets option is enabled, the options for this button
include both default policy sets and any user-created policy sets.

To attach a policy set, select a composite, component, service, reference, or binding from
Name and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy Set Detaches a policy set from the selected composite, component, service, reference, or
binding.

Assign Service Policy
Set Binding

Assigns a service policy set binding to the selected composite, component, service,
reference, or binding. There are two default options:

Default specifies to assign the default service policy set binding.

Provider Sample specifies to assign a policy set binding that is provided with the product
to the service.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Assign Reference
Policy Set Binding

Assigns a reference policy set binding to the selected composite, component, service,
reference, or binding. There are two default options:

Default specifies to assign the default reference policy set binding.

Client Sample specifies to assign a policy set binding that is provided with the product to
the reference.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Include default policy sets:

Specifies whether to include default policy sets. Default policy sets specify common quality of service
(QoS) behavior for generic message format.

Before selecting this option, determine whether the default policy sets provide adequate QoS
characteristics for your services.

By default, this option is not enabled.

Name:

2146 Developing WebSphere applications

Specifies a composite, component, service, reference, or binding in the artifact.

The Name list is nested, indicating parent-child relationships. When you select a parent, the children are
automatically selected.

Intents:

Specifies the aggregate of the intents from the composite file and the annotations. SCA intents are used to
describe the abstract policy requirements of a component.

The intents shown include any intents inherited from a parent.

Matched Policy Sets:

Specifies policy sets that potentially satisfy the intents.

You can include default policy sets by enabling the Include default policy sets check box. To exclude
default policy sets, deselect the check box.

Attached Policy Set:

Specifies attached policy sets. If no value is shown, then the composite, component, service, reference, or
binding is not attached to a policy set.

To attach a policy set, select a composite, component, service, reference, or binding and click an Attach
option.

To detach a policy set, use Detach Policy Set. You can detach any policy set, including pre-attached
policy sets.

Policy Set Binding:

Specifies service and reference policy set bindings. If no value is shown, then the composite, component,
service, reference, or binding is not assigned to a policy set binding.

To assign a policy set binding, select a composite, component, service, reference, or binding and click an
Assign Service Policy Set Binding or Assign Reference Policy Set Binding option.

To reset the bindings, select the Default option. For example, select Assign Service Policy Set Binding
> Default or Assign Reference Policy Set Binding > Default.

Map security roles to users or groups collection for SCA composites:

Use this page to view and manage mappings of security roles to users and groups that are used with the
Service Component Architecture (SCA) composites.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map security roles to
users or groups. This page is the same as the Map security roles to users or groups page in the Create
new business-level application wizard. To view this page, your composition unit must support SCA security.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes
those users or groups to access applications defined by the role. Users, groups, and roles are defined
when an application is installed or configured.

Chapter 45. Deploying SCA composites 2147

To map a role to a user or group, enable the Select check box beside the role name in the list and click a
button. On the displayed page, specify one or more users or groups to map to the role.

Table 342. Button descriptions. Use the buttons to map security roles to users, groups, or special subjects.

Button Resulting action

Map Users Displays the Map users or groups page on which you can specify the users to have the
selected security role.

Map Groups Displays the Map users or groups page on which you can specify the groups to have the
selected security role.

Map Special Subjects Maps special subjects according to the option that you select:

None specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm specifies to map all of the authenticated users
to a specified role. When you map all authenticated users to a specified role, all of the
valid users in the current registry who have been authenticated can access resources that
are protected by this role.

All Authenticated in Trusted Realms specifies to map all of the authenticated users in
the trusted realms to a specified role. This option gives all authenticated users who belong
to the user registry access to the application's realm and all authenticated users who
belong to user registries access to realms which are trusted by the current security
domain.

Everyone specifies to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and, essentially,
there is no security.

Role:

Specifies a security role.

Special Subjects:

Specifies which special subjects are mapped to the security role. This option applies only when an
application uses multiple realms.

None Specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm
Specifies to map all of the authenticated users to a specified role. When you map all authenticated
users to a specified role, all of the valid users in the current registry who have been authenticated
can access resources that are protected by this role.

All Authenticated in Trusted Realms
Specifies to map all of the authenticated users in the trusted realms to a specified role. All
authenticated users who belong to the user registry that is mapped to the application's realm and
all authenticated users who belong to user registries that are mapped to realms which are trusted
by the current security domain are successfully authorized.

Everyone
Specifies to map everyone to a specified role. When you map everyone to a role, anyone can
access the resources that are protected by this role and, essentially, there is no security.

To change the value, select the role, click Map Special Subjects, and select an option.

Users:

Lists the users that are mapped to the specified role within this application.

2148 Developing WebSphere applications

Users from the non-default realm are displayed as user@realm.

Groups:

Lists the groups that are mapped to this specified role within this application.

Map RunAs roles to users collection for SCA composites:

Use this page to map a specified user identity and password to a RunAs role for a Service Component
Architecture (SCA) composite. This page enables you to specify application-specific privileges for
individual users to run specific tasks using another user identity.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map RunAs roles to
users. This page is the same as the Map RunAs roles to users page in the Create new business-level
application wizard.

To view this page, the components in your composition unit must contain predefined RunAs roles and
support SCA security. RunAs roles are used by components that need to run as a particular role for
recognition while interacting with another component.

Username:

Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles page. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Password:

Specifies the password for the RunAs user.

Role:

Specifies a security role for a user within this application.

The authorization policy is only enforced when security is enabled.

User:

Lists the user that is mapped to the specified role within this application.

Composition unit settings
Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

v “Settings that are common to all composition units” on page 2150

v “Additional composition unit settings for SCA composites” on page 2151

v “Additional composition unit settings for OSGi applications” on page 2152

Chapter 45. Deploying SCA composites 2149

Settings that are common to all composition units:

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.

Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

The identifier has the format WebSphere:unit_typename=unit_name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

Information Value
Data type String
Units Configuration unit identifier

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

Information Value
Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

2150 Developing WebSphere applications

Information Value
Data type Boolean
Default false

Recycle behavior on update:

Specifies whether the product restarts the composition unit after the composition unit is updated.

The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Table 343. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after the part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Target mapping:

Specifies the current targets for the composition unit.

To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units
in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started
first.

Additional composition unit settings for SCA composites:

SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

Table 344. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description

Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.

SCA composite properties:

Chapter 45. Deploying SCA composites 2151

Specifies the names and values of SCA composite properties in the application.

Table 345. Column descriptions. Provides the name and value of SCA composite properties.

Column Description

Property Name Specifies the name of an SCA composite property.

Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.

SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

Table 346. Column descriptions. Provides the source and target of wires.

Column Description

Wire Source Specifies the source of a wire in the SCA composite.

Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Additional composition unit settings for OSGi applications:

OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are
complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

There are four distinct deployment statuses for an EBA composition unit:

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.

The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and

2152 Developing WebSphere applications

configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

JMS binding settings for SCA composites
Use this page to view property settings for a Java Message Service (JMS) binding that connects Service
Component Architecture (SCA) composite references or services. Also use this page to edit resources of
the JMS binding. The settings shown on this page define a binding.jms element.

To view this administrative console page, your composition unit must support a JMS binding reference or
service. In the administrative console, do the following:

1. Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name.

2. From the composition unit settings page for SCA composites, select to view references or services:

v For an SCA component reference, click SCA Composite Components >
SCA_component_reference_name > SCA Component References > reference_name >
Bindings > JMS binding.

v For an SCA component service, click SCA Composite Components >
SCA_component_service_name > SCA Component Services > service_name > Bindings >
JMS binding.

You can use a JMS binding to identify existing JMS resources using Java Naming and Directory Interface
(JNDI) names.
v General properties (read-only)
v Resources
v Response resources
v Request header properties for a reference (read-only)
v “Response header properties” on page 2156 for a service (read-only)

General properties:

Specifies property settings that apply to all binding.jms elements. The settings pertain to both services
and references. You cannot edit the settings.

JMS binding URI
Specifies a uniform resource identifier (URI) that identifies properties such as the destination,
connection factory and activation specification to be used to send or receive the JMS message.

The URI has the following format:
jms: jms_destination?
connectionFactoryName=connection_factory_name &
destinationType={queue|topic} &
deliveryMode=delivery_mode &
timeToLive=time_to_live &
priority=priority &
user_property=user_property_value & ...

Correlation schema
Specifies the correlation scheme used when sending reply or callback messages.

Valid values are requestmsgidtocorrelid (the default), requestcorrelidtocorrelid, and none.

Initial context factory
Specifies the name of the initial context factory used to obtain a JNDI initial context.

This setting is optional. If no factory is specified, the WebSphere Application Server initial context
factory is used.

Chapter 45. Deploying SCA composites 2153

JNDI URL
Specifies the uniform resource locator (URL) for the JNDI provider.

Request connection
Specifies a binding.jms element that is present in a composite definition file.

A request is a message that is sent to an SCA service or sent by an SCA reference.

Response connection
Specifies a binding.jms element that is present in a composite definition file.

A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Request wire format
Specifies the component definition element name of a wire that connects SCA composites.

For example, wireFormat.jmsObject.

A request is a message that is sent to an SCA service or sent by an SCA reference.

Response wire format
Specifies the component definition element name of a wire that connects SCA composites.

For example, wireFormat.jmsObject.

A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Resources:

Specifies resources for the JMS binding. You can both read and edit resource settings for Destination
JNDI name, Activation specification JNDI name, and Connection factory JNDI name. All other
resource settings are read-only.

Destination type
Specifies the type of the request destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that correspond to the
binding must be one-way.

This setting is for both services and references and is read-only.

@type is the destination type.

Destination JNDI name
Specifies an optional parameter that gives the JNDI name of a destination to which the binding is
connected. For example, jms/InvokeService_Callback.

You can set a destination name for both services and references.

@name is the JNDI name of the destination.

Destination create
Specifies whether to create a destination for the binding.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates destination resources necessary for the SCA composite, if those
resources do not exist and relate to the default messaging provider. The product creates the
resources when adding the SCA composite to a business-level application.

The product validates a composite definition when adding an SCA asset to a business-level
application. If the validation results in an error, the product does not add the asset to the
application. If the value is always and the destination exists, deployment stops with an error.

2154 Developing WebSphere applications

Activation specification JNDI name
Specifies the activation specification that the binding uses to connect to a JMS destination to
process request messages. The value must be a JNDI name.

You can set an activation specification for services only.

The attributes of this element follow those defined for the destination element.

Activation specification create
Specifies whether to create an activation specification for the binding. You can create an activation
specification for services only.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates activation specification resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the activation specification exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Connection factory JNDI name
Specifies the connection factory that the binding uses to process request messages. The value
must be a JNDI name.

You can set a connection factory JNDI name for references only.

The attributes of this property follow those defined for the destination element. This property is
mutually exclusive with the activationSpec property.

Connection factory create
Specifies whether to create a connection factory for the binding. You can create a connection
factory for references only.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates connection factory resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the connection factory exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Response resources:

Specifies the resources used for handling response messages, receiving responses for a reference, and
for sending responses from a service. A response element defines the destination and either the
connection factory or activation specification elements for handling response messages.

Response resources pertain to both services and references. You can both read and edit resource settings
for Response destination JNDI name and Response connection factory JNDI name. All other resource
settings are read-only.

Response destination type
Specifies the type of the response destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that corresponds to the
binding must be one-way.

This setting is for both services and references and is read-only.

Response destination JNDI name
Specifies the destination that is to be used to process responses by this binding. Attributes are the
same as for the parent destination element. For example, jms/InvokeService_Response.

You can set a destination name for both services and references.

Response destination create
Specifies whether to create a response destination for the binding.

Chapter 45. Deploying SCA composites 2155

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response destination resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the response destination exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Response connection factory JNDI name
Specifies the connection factory that the binding uses to process response messages. The value
must be a JNDI name.

You can set a response connection factory for both services and references.

The attributes of this element follow those defined for the destination element. This element is
mutually exclusive with the activationSpec element.

Response connection factory create
Specifies whether to create a response connection factory that the binding can use to process
response messages.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response connection factory resources necessary for the SCA
composite, if those resources do not exist and relate to the default messaging provider. If the
value is always and the response connection factory exists when the SCA composite is added to a
business-level application, deployment stops with an error.

Request header properties:

Specifies JMS header properties that apply to requests from a reference. You cannot edit the header
properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationID.

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDeliveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Response header properties:

Specifies JMS header properties that apply to responses from a service for outbound messages. You
cannot edit the header properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

2156 Developing WebSphere applications

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationID.

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDeliveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Provide HTTP endpoint URL information settings for SCA composites
Use this page to specify endpoint Universal Resource Locator (URL) prefix information for Service
Component Architecture (SCA) composites accessed by web service bindings. The information is used to
form complete endpoint addresses.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Provide HTTP
endpoint URL information.

Default SCA URL prefixes:

Shows the predefined default endpoint URL prefixes for SCA composites that are accessed by Hypertext
Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) for service endpoints.

The field shows both unsecure and secure custom endpoint URL values separated by a space. For
example:
http://theHost:9081 https://theHost:9044

For each endpoint URL prefix, the format is protocol://host_name:port_number. The protocol is either
http or https. In this example, host_name is theHost and port_number is the port used in the endpoint
URL.

To use the default endpoint URL prefixes, deselect the Override default SCA URL prefixes check box.

Override default SCA URL prefixes:

Specifies whether to use a custom endpoint URL prefix when the service has a proxied front end. The
endpoint URL prefixes are those of the proxy server. You must specify proxied endpoints when deploying
services that use the web service binding in a clustered configuration.

To specify a custom endpoint URL prefix, do the following:

1. Select the Override default SCA URL prefixes check box.

2. For HTTP host name, specify the host name of the unsecure custom endpoint. For example: myHost

3. For HTTP port, specify the port of the unsecure custom endpoint. For example: 9081

4. For HTTPS host name, specify the host name of the secure custom endpoint. For example: myHost

5. For HTTPS port, specify the port of the secure custom endpoint. For example: 9044

6. Click OK.

SCA composite component settings
Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component.

Chapter 45. Deploying SCA composites 2157

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > SCA_composite_component_name.

Components are configured instances of implementations. Components provide and consume services.
More than one component can use and configure the same implementation, where each component
configures the implementation differently. For example each component might configure a reference of the
same implementation to consume a different service.

An implementation defines the aspects configurable by a component in the form of a component type. The
component type is in effect a description of the contract honored by the implementation.

A reference represents a requirement that the implementation has on a service provided by another
component.

Component name:

Specifies the component name of the attribute.

Implementation:

Specifies the name of the class or configuration file that contains the component implementation.

For implementation.java, the Java class is shown. For other implementations, the name of the resource
identified by the implementation is shown:

v For implementation.jee, the archive name is shown.

v For implementation.spring, the application context file is shown.

v For implementation.osgiapp, the application symbolic name and version is shown.

Type:

Specifies the type of attribute. In this case, the type is Component.

SCA component services:

Specifies the names of the services.

SCA component references:

Specifies the names and targets of component references. You can edit the reference target for
customization.

SCA component properties:

Specifies the Property Input Source and Property Value for each property.

Options for Property Input Source include the following:

v XPath indicates the source attribute of the property.

v File indicates the file attribute of the property.

v Value indicates the property element value.

SCA component reference settings
Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component reference.

2158 Developing WebSphere applications

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > reference_name.

SCA component references within an implementation represent links to services the implementation uses
that must be provided by other components in the SCA system. For a composite, you can wire references
of components within the composite (component references) to references of the composite (composite
references), indicating that the component references must be resolved by services outside the composite.

References use bindings to describe the access methods used to invoke the services.

Under Additional Properties, click View domain to view a list of services available in the current cell or
domain. This can be helpful when updating the Target setting value, for example.

Reference name:

Specifies the reference name of the attribute.

Type:

Specifies the type of attribute. In this case, it is Reference.

Reference target URI:

Specifies one or more target service uniform resource identifiers (URIs), depending on the multiplicity
setting. Each target wires the reference to a component service that resolves the reference. Targets can
contain a list of targets separated by a space, in the form target1 target2.

Bindings:

Specifies the URI of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

SCA component service settings
Use this page to view and edit the attributes associated with a component service.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > service_name.

Services are used to publish services provided by implementations, so that they are addressable by other
components.

A service published by a component can be provided by a service of a component defined within the
component, or it can be provided by a component reference. The latter case allows the republication of a
service with a new address or new bindings.

Service name:

Specifies the service name of the attribute.

Type:

Specifies the type of attribute. In this case, Service.

Chapter 45. Deploying SCA composites 2159

Work manager JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of the work manager.

Bindings:

Specifies the uniform resource identifier (URI) of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

Service provider policy sets and bindings collection for SCA composites
Use this page to attach and detach policy sets to a composition unit, a service provider, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service provider can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > Service provider policy sets and bindings .

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

Table 347. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected composition unit, service, endpoint, or operation. To attach a
policy set, select a unit, service, endpoint, or operation and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy
Set

Detaches a policy set from the selected composition unit, service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Policy Set column displays None and the Binding column displays Not
applicable.

If there is a policy set attached to an upper-level service resource, the Attached Policy Set
column displays policy_set_name (inherited) and the binding used for the upper-level
attachment is applied. The binding name is displayed followed by (inherited).

2160 Developing WebSphere applications

Table 347. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected composition unit, service, endpoint, or operation. The
options include the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially set
to the default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you select
more than one resource, ensure that all selected resources have the same policy set
attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample with
one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK Symmetric
WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

Composition unit/Service/Endpoint/Operation:

Specifies the name of the composition unit and the associated service providers, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the composition unit and the service
providers, endpoints, or operations that the composition unit contains.

Attached Policy Set:

Specifies the policy set that is attached to a composition unit, service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

Chapter 45. Deploying SCA composites 2161

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding:

Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

References policy sets and bindings collection for SCA composites
Use this page to attach and detach policy sets to a composition unit, a service reference, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service reference can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > References policy sets and bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

Table 348. Button descriptions. Use the buttons to attach or detach client policy sets and to assign policy set
bindings.

Button Resulting action

Attach Client Policy
Set

Attaches a client policy set to the selected composition unit, service, endpoint, or
operation. To attach a policy set, select a composition unit, service, endpoint, or operation
and click Attach Client Policy Set > policy_set_option.

To close the menu list, click Attach Client Policy Set.

2162 Developing WebSphere applications

Table 348. Button descriptions (continued). Use the buttons to attach or detach client policy sets and to assign
policy set bindings.

Button Resulting action

Detach Client Policy
Set

Detaches a client policy set from the selected composition unit, service, endpoint, or
operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Client Policy Set column displays None and the Binding column
displays Not applicable.

If there is a policy set attached to an upper-level service resource, the Attached Client
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper-level attachment is applied. The binding name is displayed followed by (inherited).

Assign Binding Assigns a policy set binding to the selected composition unit, service, endpoint, or
operation. The options include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been
assigned to the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically assign a binding
to the attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in the
following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If
you select more than one resource, ensure that all selected resources have the
same policy set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy
sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default
policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this
sample with one of the SAML HoK Symmetric key default policy sets: either
SAML11 HoK Symmetric WSSecurity default or SAML20 HoK Symmetric
WSSecurity default.

Composition unit/Service/Endpoint/Operation:

Chapter 45. Deploying SCA composites 2163

Specifies the name of the composition unit and the associated service references, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the service composition unit and the service
references, endpoints, or operations that the composition unit contains.

Attached Client Policy Set:

Specifies the policy set that is attached to a composition unit, service reference, endpoint, or operation.

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding:

Specifies the binding configuration that is available for a service reference, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

SCA service provider settings
Use this page to manage policy sets for a Service Component Architecture (SCA) web service provider.
You can attach and detach policy sets to a service provider, its endpoints, or operations. You can select
the default bindings, create new application-specific bindings, or use bindings that you created for an
attached policy set. You can view or change whether the service provider can share its current policy
configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Services > Service providers > service_provider_name.

Service provider:

Specifies the full QName of the service provider. The QName must be in a format that supports the Java
class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service provider name resembles the
following:
{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldService

Policy Set Attachments:

2164 Developing WebSphere applications

Specifies the attached policy sets and assigned bindings for services, endpoints, or operations in the
service provider.

To attach or detach a policy set or to assign bindings with system-specific configurations, do the following:

1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is nested, indicating
parent-child relationships.

2. Click the desired button.

Table 349. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected service, endpoint, or operation. To attach a policy set, select
a service, endpoint, or operation and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy
Set

Detaches a policy set from the selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Policy Set column displays None and the Binding column displays Not
applicable.

If there is a policy set attached to an upper-level service resource, the Attached Policy Set
column displays policy_set_name (inherited) and the binding used for the upper-level
attachment is applied. The binding name is displayed followed by (inherited).

Chapter 45. Deploying SCA composites 2165

Table 349. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected service, endpoint, or operation. The options include
the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially set
to the default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you select
more than one resource, ensure that all selected resources have the same policy set
attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample with
one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK Symmetric
WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service providers, endpoints or operations.

The Service/Endpoint/Operation column lists the service and the service providers, endpoints, or
operations that the service contains.

Attached Policy Set
Specifies the policy set that is attached to a service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

2166 Developing WebSphere applications

v Policy_set_name. The name of the policy set that is attached directly to the service resource,
for example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a
service resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached
policy set.

Binding
Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and
an application-specific binding or a general binding is assigned, for example, MyBindings1.
Default is displayed if a policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from
an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the
binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.
Composition units can use both application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

Chapter 45. Deploying SCA composites 2167

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

SCA service client settings
Use this page to manage policy sets for a Service Component Architecture (SCA) web service client. You
can attach and detach policy sets to a service reference, its endpoints, or operations. You can select the
default bindings, create new application-specific bindings, or use bindings that you created for an attached
policy set. You can view or change whether the service reference can share its current policy
configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Services > Service clients > service_client_name.

Service client:

Specifies the full QName of the service client. The QName must be in a format that supports the Java
class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service client name resembles the
following:
{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldCallbackService

This SCA application has the product web service namespace, http://websphere.ibm.com/, and the
service name in its service client name.

Policy Set Attachments:

Specifies the attached policy sets and assigned bindings for services, endpoints, or operations in the
service client.

To attach or detach a policy set or to assign bindings with system-specific configurations, do the following:

1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is nested, indicating
parent-child relationships.

2. Click the desired button.

Table 350. Button descriptions. Use the buttons to attach or detach client policy sets and to assign policy set
bindings.

Button Resulting action

Attach Client Policy
Set

Attaches a client policy set to the selected service, endpoint, or operation. To attach a
policy set, select a service, endpoint, or operation and click Attach Client Policy Set >
policy_set_option.

To close the menu list, click Attach Client Policy Set.

Detach Client Policy
Set

Detaches a client policy set from the selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Client Policy Set column displays None and the Binding column
displays Not applicable.

If there is a policy set attached to an upper-level service resource, the Attached Client
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper-level attachment is applied. The binding name is displayed followed by (inherited).

2168 Developing WebSphere applications

Table 350. Button descriptions (continued). Use the buttons to attach or detach client policy sets and to assign
policy set bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected service, endpoint, or operation. The options
include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been
assigned to the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically assign a binding
to the attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in the
following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If
you select more than one resource, ensure that all selected resources have the
same policy set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy
sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default
policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this
sample with one of the SAML HoK Symmetric key default policy sets: either
SAML11 HoK Symmetric WSSecurity default or SAML20 HoK Symmetric
WSSecurity default.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service references, endpoints or operations.

The Service/Endpoint/Operation column lists the service and the service references, endpoints, or
operations that the service contains.

Attached Client Policy Set
Specifies the policy set that is attached to a service reference, endpoint, or operation.

Chapter 45. Deploying SCA composites 2169

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource,
for example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a
service resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached
policy set.

Binding
Specifies the binding configuration that is available for a service reference, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and
an application-specific binding or a general binding is assigned, for example, MyBindings1.
Default is displayed if a policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from
an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the
binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.
Composition units can use both application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they

2170 Developing WebSphere applications

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

Example: Creating an SCA business-level application with the console
You can add many different types of artifacts to business-level applications. For example, you can add
applications or modules, Java archives (JAR files), data in compressed files, and other business-level
applications. This example describes how to create an empty business-level application and then add a
Service Component Architecture (SCA) JAR file to the application using the administrative console.

Before you begin

In a product installation, verify that the target server is configured. As part of configuring the server,
determine whether your application files can run on your deployment target. You must deploy SCA
composite assets of a business-level application to a Version 8.0 or later server (target) or to a Version 7.0
target that is enabled for the Feature Pack for SCA.

Download the helloworld-ws-asynch.jar SCA sample file from a product download site:

1. Go to the Samples, Version 8.5 information center.

2. On the Downloads tab, click FTP or HTTP in the Service Component Architecture section.

3. In the authentication window, click OK.

4. In the SCA.zip compressed file, go to the SCA/installableApps directory and download the
helloworld-ws-asynch.jar file.

About this task

For this example, use the administrative console to create a business-level application named
HelloWorldAsync that has an SCA JAR file, helloworld-ws-asynch.jar, as an asset.

Procedure
1. Create an empty business-level application named HelloWorldAsync.

a. Click Applications > New Application > New Business Level Application.

b. On the New application page, specify the name HelloWorldAsync, optionally add a description, and
then click Apply.

c. On the page that is displayed, click the Save link.

The name is shown in the list of applications on the Business-level applications page. Because the
application is empty, its status is Unknown.

2. Import the SCA JAR asset.

a. Click Applications > New Application > New Asset in the console navigation tree.

b. On the Upload asset page, specify the asset package to import, helloworld-ws-asynch.jar, and
click Next.

The JAR file is in the app_server_root/installableApps directory.

c. On the Select options for importing an asset page, click Next to accept the default values.

d. On the Summary page, click Finish.

e. On the Adding asset to repository page, if messages show that the operation completed, click
Manage assets.

f. On the Assets page, click the Save link.

Chapter 45. Deploying SCA composites 2171

The file name displays in the list of assets.

3. Add the SCA JAR asset as a composition unit of the business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, click the HelloWorldAsync application name.

c. On the business-level application settings page, click Add > Add Asset.

d. On the Add page, select the helloworld-ws-asynch.jar asset composition unit from the list of
available units, and then click Continue.

e. On the Set options page, click Next to accept the default values.

f. On the Map composition unit to a target page, specify a target server that supports SCA
composites, and then click Next.

g. On the Define relationship with existing composition units page, click Next to accept the default
values.

h. On the Map virtual host page, click Next to accept the default values.

i. On the Summary page, click Finish.

Several messages are displayed. A message having the format Completed
res=[WebSphere:cuname=helloworldws] indicates that the addition is successful.

During deployment of the composition unit, you can view the Uniform Resource Identifier (URI) for
composite level service of some bindings, along with the service name and binding type. Only the
URI is editable. The product does not validate the URI.

j. If the addition is successful, click Manage application.

k. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets. If you click on the asset name, the
composition unit settings page displays, with the asset name in the SCA Composite Components list.

4. Start the HelloWorldAsync business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, select the check box beside HelloWorldAsync.

c. Click Start.

When the business-level application is running, a green arrow displays for Status. If the business-level
application does not start, ensure that the deployment target to which the application maps is running
and try starting the application again.

What to do next

Optionally examine, and possibly use in applications, other SCA sample files in the SCA/installableApps
directory of the downloadable SCA samples.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again. If SCA composite assets do not start, ensure that
each asset is mapped to a deployment target that supports SCA composites.

If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to the
business-level application. You cannot change the target after deployment.

If the SCA application uses security, the target server or cluster must be in the global security domain.

Updating SCA composite artifacts
You can view and update Service Component Architecture (SCA) composite artifacts in business-level
applications.

2172 Developing WebSphere applications

Before you begin

Add an SCA artifact as a composition unit to a business-level application.

About this task

You can view and update the following SCA composite artifacts:
v Composite level property definition
v Composite level component property definition
v Composite level component reference definition

You can view and update SCA composite artifacts using the administrative console or the wsadmin tool.
This topic describes how to view and update SCA composite artifacts using the administrative console.

Procedure
1. Go to the composition unit settings page for an SCA composite artifact in a business-level application.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_composition_unit_name.

The composition unit settings page for an SCA composite artifact has fields that are not shown on the
composition unit settings page for a non-SCA artifact:
v SCA composite components
v SCA composite properties
v SCA composite wires

2. Click on a name link in one of these SCA fields to view the settings for an SCA artifact.

The SCA fields display None instead of a name link if the composition unit does not have that particular
type of SCA composite.

3. Optional: Update a SCA composite setting value.

a. Change an existing setting value for the SCA artifact.

b. Click OK.

The setting value is updated.

Viewing and updating SCA composites in HelloWorldAsync

“Example: Creating an SCA business-level application with the console” on page 2171 describes how to
create the HelloWorldAsync business-level application. This application contains an SCA artifact,
helloworldws, as a composition unit. You can view and update settings for SCA composites in the
helloworldws composition unit using the console.

1. Go to the composition unit settings page for the helloworldws composition unit in the HelloWorldAsync
business-level application.

Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws.

From the composition unit settings page, you can view information associated with helloworldws, as
well as update composite settings.

2. Click on a link for the SCA artifact to be viewed or updated.

For example, click on the HelloWorldServiceComponent link under SCA composite components and,
in the page that displays, click on the HelloWorldService link under Service. In the Component service
settings page that displays, you can specify a setting value for the service.

3. If you update a setting value for the SCA artifact, click OK.

What to do next

Save the changes to your administrative configuration.

Chapter 45. Deploying SCA composites 2173

On multiple-server products, when saving the configuration, synchronize the configuration with the nodes
where the application is expected to run.

Viewing SCA composite definitions
You can view information on the definition of a Service Component Architecture (SCA) composite in the
administrative console.

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

The composite definition provides data on the composite, such as component names and service
references. The View composite page displays the composite definition of an SCA deployed asset
composition unit.

Procedure
1. Go to the View composite page.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name > View composite.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View composite page displays the contents of the composition unit definition.

Example

Suppose the HelloWorldAsync business-level application provided as a sample with the product is
installed. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > View composite.

The View composite page displays configuration information resembling the following:
<composite targetNamespace="http://helloworld" name="helloworldws" >
<component name="AsynchTranslatorComponent" >
<implementation.java class="helloworld.impl.AsynchTranslatorComponent" />
<service name="AsynchTranslatorService">

<interface.java interface="helloworld.AsynchTranslatorService"
callbackInterface="helloworld.HelloWorldCallback" />

<binding.ws/>
<callback>

<binding.ws/>
</callback>

</service>
</component>

</composite>

What to do next

Browse the page to ensure that it contains the intended configuration information.

Viewing SCA domain information
You can view information on Service Component Architecture (SCA) composites in an SCA domain in the
administrative console.

2174 Developing WebSphere applications

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

Viewing SCA domain information enables you to see on one console page information on all components
in an SCA domain. The View domain page displays information on available services in the current
domain.

Procedure
1. Go to the View domain page.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name > View domain.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View domain page lists information on components in the current domain.

Example

Suppose the HelloWorldAsync business-level application provided as a sample with the product is
installed. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > View domain.

The View domain page displays information resembling the following:
<domain name="myCell02">

<component name = "AsynchTranslatorComponent"
mapTarget = "WebSphere:cell=myCell02,node=myNode02,server=server1">

<service name = "AsynchTranslatorService">
<interface.java interface = "helloworld.AsynchTranslatorService"/>

</service>
<reference name = "AsynchTranslatorService" target = ""/>
<httpurlendpoints name = "endpoints" uri = ""/>

</component>
</domain>

What to do next

Browse the page to ensure that it contains the intended information.

You can export the same domain information to a file using the exportCompositeToDomain command. See
“Exporting SCA domain information using scripting.”

Viewing and editing JMS bindings on references and services of SCA
composites
You can view information on a Java Message Service (JMS) binding for a Service Component Architecture
(SCA) composite in the administrative console. The JMS bindings page of the console displays the
settings of a binding.jms element. You can use the console page to edit resource and response resource
settings.

Before you begin

Configure an SCA composite that uses JMS bindings and add that composite as a composition unit to a
business-level application. To view and edit settings for a JMS binding on references, the composite must

Chapter 45. Deploying SCA composites 2175

define a JMS binding in the reference. Similarly, to view and edit settings for a JMS binding on services,
the composite must define a JMS binding in the service.

About this task

The JMS bindings page enables you to see JMS binding settings for an SCA composite in the
administrative console. The information shown is similar to that shown by running the viewCompUnit
wsadmin scripting command to view the SCA composite composition unit. However, the console page
shows JMS binding settings only, and does not show other information on the composition unit that
running viewCompUnit returns.

After deployment of an SCA composite that uses JMS bindings, you can edit JMS binding resource or
response resource settings that specify Java Naming and Directory Interface (JNDI) names on the JMS
bindings page. The editing capabilities are similar to those of the editCompUnit scripting command. To edit
settings, the JMS resource must exist. The product does not dynamically create JMS resources when you
edit a composition unit.

Procedure
1. Go to the JMS bindings page.

To view this page, your composition unit must support a JMS binding reference or service.

a. Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name.

b. From the composition unit settings page for SCA composites, select to view references or services:

v For an SCA component reference, click SCA Composite Components >
SCA_component_reference_name > SCA Component References > reference_name >
Bindings > JMS binding.

v For an SCA component service, click SCA Composite Components >
SCA_component_service_name > SCA Component Services > service_name > Bindings >
JMS binding.

2. View the JMS binding settings for the composition unit.

3. Edit the Destination JNDI name, Activation specification JNDI name, Connection factory JNDI
name, Response destination JNDI name, or Response connection factory JNDI name settings as
needed and click Apply.

Results

The JMS bindings page displays property settings for a JMS binding. If you change resource or response
resource JNDI name values, the changed values are shown.

Example

Suppose that you have a business-level application named MyJmsBLA, which has an SCA composite named
MySCAComposite. This composite uses a JMS binding on service named JmsService, in a composition unit
named myJmsBindingCU.

1. Click Applications > Application Types > Business-level applications > MyJmsBLA >
myJmsBindingCU > SCA Composite Components > MySCAComposite > SCA Component
Services > JmsService > Bindings > JMS binding.

The JMS bindings page displays general binding settings and settings for a JMS binding on services.

2. Edit the value specified for Activation specification JNDI name, and click Apply.

The JMS bindings page displays the changed value.

2176 Developing WebSphere applications

What to do next

Browse the page to ensure that it contains the binding information.

For information on JMS binding settings, refer to the online help for the JMS bindings page or Section 1.4
of the SCA JMS Binding specification, Version 1.00.

Exporting WSDL and XSD documents
You can export Web Services Description Language (WSDL) and XML schema definition (XSD)
documents used by a Service Component Architecture (SCA) composition unit to a location of your choice.

Before you begin

Your SCA business-level application must contain one or more composition units that use a WSDL or XSD
document.

A WSDL document is a file that provides a set of definitions that describe a web service in WSDL, an
Extensible Markup Language (XML)-based description language.

An XSD document is an instance of an XML schema written in the XML schema definition language. The
document has the extension .xsd. The prefix xsd in the XML elements of an XSD document indicates the
XML schema namespace.

About this task

You can export WSDL and XSD documents that are used by an SCA composition unit using the
administrative console. In previous releases, you had to use the exportWSDLArtifacts command to export
WSDL and XSD documents.

On the composition unit settings page for an SCA composite, click the Export WSDL and XSD
documents link and then specify the target location for the files.

The product extracts from the selected composition unit the WSDL and XSD files that are required for web
services client development. The files are for the services exposed by the web service binding,
binding.ws.

Procedure
1. Go to the composition unit settings page for the SCA composite.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name.

2. Click the Export WSDL and XSD documents link.

3. From the displayed dialog, specify the target directory to which to save the documents.

Results

The WSDL and XSD documents are copied to the target directory.

Example

Suppose you want to export WSDL or XSD documents in the HelloWorldAsync business-level application
that the product provides as a sample. Complete the following actions in the administrative console:

1. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > Export WSDL and XSD documents.

2. Using the displayed dialog, specify a directory that exists on your computer.

Chapter 45. Deploying SCA composites 2177

The product adds the helloworldws_WSDLArtifacts.zip file to the specified directory. The
helloworldws_WSDLArtifacts.zip file has one WSDL file,
AsynchTranslatorComponentTranslatorService_wsdlgen.wsdl.

What to do next

Examine the exported files to ensure that they contain the intended WSDL and XSD documents.

You can export WSDL and XSD documents using the exportWSDLArtifacts command. See Exporting
WSDL and XSD documents using scripting.

Deploying OSGi applications that use SCA
You can deploy OSGi and Service Component Architecture (SCA) applications to servers or clusters as
assets, which you add to a business-level application by creating composition units.

Before you begin

This topic assumes that you have already created an OSGi application packaged as an enterprise bundle
archive (EBA) file and an SCA composite definition packaged as a Java archive (JAR) file.

An SCA composite packaged with a Web archive (WAR) file cannot use the implementation.osgiapp
component.

About this task

To deploy an OSGi application that uses SCA, create a business-level application that includes the EBA
and SCA assets. You can use the administrative console or wsadmin commands to create the
business-level application, import the EBA file and SCA composite as assets, and then add the EBA and
SCA assets as composition units to the business-level application.

An EBA composition unit consists of the imported asset (the EBA file), plus any configuration information
for the OSGi application context roots, virtual hosts, and resource bindings. If a deployed OSGi application
is to be extended using composite bundles extensions, apply all extensions to the EBA composition unit
(cu) and update the OSGi application to the latest deployment version. You must install all service import
and exports that are provided by composite bundle extensions before you can add the SCA asset as a
composition unit to a business-level application. For information on using and deploying OSGi composite
bundle extensions, see the topic on extending a deployed OSGi application.

For implementation.osgiapp, the component implementation value for the composition unit is the
application symbolic name and version.

The following deployment restrictions apply to EBA files:
v Import an EBA file into only one asset.
v Add an EBA asset to only one business-level application.

For information about these and other restrictions, see the topic on multiple SCA implementation
packaging considerations.

2178 Developing WebSphere applications

Procedure
1. Create a business-level application.

Table 351. Ways to create SCA business-level applications. You can create a business-level application that has
OSGi and SCA assets using the administrative console or wsadmin scripts.

Option Method

Administrative console
business-level application
creation wizard

Click Applications > New Application > New Business Level Application and follow
instructions in the wizard.

For example use of the console to create a business-level application that has an SCA
asset, see Example: Creating an SCA business-level application with the console.

2. Import OSGi, SCA, or other assets needed by your business-level application.

3. Add the EBA asset as a composition unit to the business-level application.

You must add the EBA asset before the SCA asset that references it.

4. Add the SCA asset as a composition unit to the business-level application.

By default, the product assigns the SCA composition unit a higher starting weight value than the value
for the OSGi composition unit. When using implementation.osgiapp, the SCA composition unit must
start after the referenced OSGi composition unit starts. Thus, the SCA composition unit must have a
higher starting weight value than the OSGi composition unit. If you override the default values and set
a higher starting weight value for the OSGi composition unit than for the SCA composition unit, the
business-level application does not start.

Note: If a validation error occurs when adding the SCA asset, saying that a service is not found,
ensure that the following conditions exist:

v The service name matches the name of a blueprint service

v The Blueprint service uses the services.exported.interfaces property to export its interface

v The interface is included in the Application-ExportService header of the application manifest

The absence of these conditions can cause the validation error. The error resembles the
following:
com.ibm.wsspi.management.bla.op.OpExecutionException: CWSAM0105E:
The following Service Component Architecture (SCA) Validation errors caused the
CreateScaCodeGen step to fail:
Service not found for component service:
Component = HelloWorldComponent Service = helloWorld

Results

The business-level application has OSGi and SCA composition units. You can now start the business-level
application.

If the ServiceRuntimeException Unable to access OSGi application framework occurs when starting the
business-level application, ensure that the SCA composition unit has a higher starting weight than the EBA
composition unit.

If the ServiceRuntimeException Unable to obtain service service from application occurs, check
SystemOut.log and SystemErr.log files for messages from the Blueprint container indicating that the run
time cannot start the Blueprint service.

If the java.lang.TypeNotPresentException occurs when starting the business-level application, a bundle
that uses one of the supported SCA annotations is not importing the org.osoa.sca.annotations package.
Update the bundle manifest to import this package.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace

Chapter 45. Deploying SCA composites 2179

infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

What to do next

If you must delete a composition unit from the business-level application, delete the SCA composition unit
before attempting to delete the EBA composition unit, otherwise the product returns an error. An EBA
composition unit that provides the implementation cannot be deleted until the SCA composition unit that
uses the implementation.osgiapp is deleted.

Multiple SCA implementation packaging considerations
The product supports several implementation technologies that can provide the business logic for SCA
service components. Because a primary architectural objective of SCA is to enable you to combine
existing services together, it is easy to assume that a single composite with multiple components might
have different implementation technologies. However, there are restrictions that limit packaging of multiple
SCA implementations.

Business-level application deployment constraints

Before deploying an SCA application, particularly one that uses an OSGi application, consider the following
constraints:

v Collocation

SCA composites can be comprised of a variety of implementation frameworks. Packaging formats for
these frameworks include, for example, enterprise archive (EAR) files for Java Platform, Enterprise
Edition (Java EE) applications or enterprise bundle archive (EBA) files for OSGi applications. An SCA
business-level application must contain both the framework packaging format and the SCA composite
that uses it.

In a Network Deployment environment, when deploying an implementation.osgiapp in an SCA
composition unit, the EBA composition unit used for the implementation must be in the same
business-level application and targeted to the same server or cluster as the SCA composition unit.

v Artifacts or shared libraries

Business-level applications support shared libraries. It typically is good practice to package interface
artifacts (Java interface classes or WSDL/XSD artifacts) in a shared library. Services in applications
configured in a business-level application can reference the shared library.

However, OSGi applications do not support shared configuration libraries. You must package Java
interface and WSDL/XSD artifacts in both the SCA contribution Java archive (JAR) file and the EBA
asset that is configured in the business-level application.

v Only one deployment

Only one instance of a given OSGi application, packaged as an EBA file, can be deployed in a Network
Deployment cell. An EBA file can contain only one OSGi application. An EBA asset can contain only one
EBA file. An EBA asset can be added to only one business-level application, which is scoped at
cell-level. Therefore, you can specify only once that a given OSGi application be an SCA
implementation.

To get around this constraint, you can connect to a deployed OSGi application from other applications in
the cell, but you cannot include the business logic in another composite.

2180 Developing WebSphere applications

Class loading

A purpose of the OSGi application framework is to build a class loader structure that is wholly defined by
the OSGi service registry and OSGi application design, and avoid class loader problems that affect Java
EE servers.

If your applications use different implementation technologies, differences in class loader structures might
cause the SCA run time to copy objects from one environment to another. OSGi applications are
remote-only interfaces that do not permit pass-by-reference behavior.

Your SCA application must use correct semantics for local and remote interfaces.

Chapter 45. Deploying SCA composites 2181

2182 Developing WebSphere applications

Chapter 46. Deploying SIP applications

Use the administrative console to customize your Session Initiation Protocol (SIP) application installation

About this task

When you deploy a Session Initiation Protocol (SIP) application, you can perform various tasks such as
installing, starting, stopping, upgrading, and uninstalling the application.

SIP applications are installed as Java Platform, Enterprise Edition (Java EE) applications. You can deploy
a SIP application from a graphical interface or from a command line.

Deploying SIP applications through the console
You can deploy a Session Initiation Protocol (SIP) application through the administrative console.

Before you begin

SIP applications are deployed as Java 2 Platform Enterprise Edition (J2EE) applications. In order to
process requests, a virtual host must be defined when deploying the SIP application. If there is no virtual
host defined for the configured SIP container listen port, the installed application will be inaccessible.

Procedure
1. Open the administrative console.

In a browser, go to URL http://hostname:9090/admin, where hostname is the name of the host
computer. Enter the appropriate login information, and click OK.

2. In the left frame click Applications > Install New Application.

3. Browse and select a SAR file. Specify the context root, beginning with a slash (/), in the Context
Root field. For example, if your application is named ThisApplication, type /ThisApplication.

4. Click Next (under the Context Root field not beside the WebSphere Status title). If the SAR file has
been assembled correctly, the screen will still have the title “Preparing for the application installation”,
but the content will change. If an error message appears, check the contents of the SAR file; in
particular, verify the web.xml file contents, and try to reload the SAR file.

5. Click Next. If you see a screen indicating “Application Security Warnings”, click Continue.

6. The Install New Application screen should appear with “Step 1: Select application options”
highlighted. Select the options you need and click Next.

7. “Step 2: Map modules to servers” should appear highlighted now. You can choose the cluster or
server where you want to install the application's modules.

v If you are installing the application in a stand-alone system, click Next.

v If you are installing the application in a clustered system, select
WebSphere:cell=cellname,cluster=cluster_name in the Clusters and Servers field, select the
check box beside the web module that you want to install, and click Apply and Next.

8. Now “Step 3: Map virtual hosts for web modules” should appear highlighted. To the right of the
application name there should be a drop-down labeled Virtual Host.

v If you are installing the application in a stand-alone system, set the value of the drop-down to
default_host, and click Next.

v If you are installing the application in a clustered system, set the value of the drop-down to the
name of the virtual host that was chosen during setup, and click Next.

Remember: You must define a virtual host for your configured SIP container listen port or else you
will not be able to access the application.

© IBM Corporation 2005 2183

9. You should now see “Step 4: Summary” highlighted. In the right panel you will see a Summary of
installation options table that details your selected options and their values. If you need to change
an option, click Previous to return to the section where you can make your change. Click Finish to
install the application with your settings. The screen should display, Application appname_sar
installed successfully, where appname is the name of the application.

10. Click the Save to Master Configuration link. A Save to Master Configuration window appears.

11. In the Save to Master Configuration window, click Save. The application has now been saved in the
current configuration.

12. To confirm that the installation succeeded, in the left frame click Applications > Enterprise
Applications. The newly installed application should appear in the list of installed applications as
appname_sar.

13. To start the application so that it can service SIP requests, check the box beside appname_sar, and
click Start. You might also want to look at the logs for a successful startup message.

Results

The application can service SIP requests now.

Deploying SIP applications through scripting
You can deploy a Session Initiation Protocol (SIP) application not only from the administrative console but
also from a command line.

About this task

Note: To deploy a SIP application, the application must exist with an enterprise archive (EAR) file, a
Session Initiation Protocol (SIP) module (SAR file), or a web application archive (WAR) file.

Use the wsadmin scripting tool to deploy applications from a command line.

Procedure
v Launch a scripting client.

For more information, see AdminApp object for scripted administration.

v List applications.

For more information, see Listing applications using the wsadmin scripting tool.

v Install stand-alone archive files.

For more information about installation, see Installing enterprise applications using wsadmin scripting
and Installation options for the AdminApp object.

v Edit application configurations.

For more information, see Editing application configurations using the wsadmin scripting tool.

v Uninstall applications.

For more information, see Uninstalling enterprise applications using the wsadmin scripting tool.

2184 Developing WebSphere applications

Chapter 47. Deploying web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming.

Deploying JavaServer Pages and JavaServer Faces files

JSP class loading settings
You can configure a JavaServer Pages (JSP) class to be loaded by either the JSP engine's class loader or
by the web module's class loader.

By default, a JSP class is loaded by a unique instance of the JSP engine's class loader. The JSP engine's
class loader enables reloading at runtime of a JSP class when the JSP source or one of its dependents is
modified. This allows you to reload a single JSP class when necessary, without affecting any other loaded
JSP classes.

JSP classes are loaded by the web module's class loader under either of the following scenarios.

1. The JSP engine configuration parameter useFullPackageNames is set to true, and the JSP file is
configured as a servlet in the web.xml file using the <servlet-class> scenario in the table later in this
topic.

2. The JSP engine configuration parameters useFullPackageNames and disableJspRuntimeCompilation
are both set to true. In this case, you do not need to configure a JSP file does as a servlet in the
web.xml file.

Configuring JSP files as Servlets

You can configure a JSP file as a servlet in the web.xml file. There are two ways to do this. They are
described in the table later in this section.

Before you configure a JSP file as a servlet, consider the following.

1. Reloading capability - If runtime reloading of JavaServer Pages files is desired, requests for
JavaServer Pages files must be handled by the JSP engine. The <servlet-class> scenario in the table
later in this section disables runtime JSP file reloading, while the <jsp-file> scenario is compatible with
reloading.

2. Reducing the number of class loaders - If you do not require runtime reloading of modified JSP pages
and you want to reduce the number of class loader instances, then you can use the <servlet-class>
scenario in the table that follows. Similarly, scenario 2 in section 1 can be used without having to
configure a JSP file as a servlet.

© Copyright IBM Corp. 2012 2185

Table 352. Example: Configure a JSP file as a servlet in the web.xml file.. Configure a JSP file as a servlet

Scenario Example

compatible with
runtime
reloading

multiple class
loaders used? useFullPackageNames

<jsp-file> <servlet>

<servlet-name>jspOne</servlet-name>

<jsp-file>jspOne.jsp</jsp-file>

</servlet>

Yes Yes Can be true or false

<servlet-class> <servlet>

<servlet-name>jspTwo</servlet-name>

<servlet-class>_ibmjsp.jspTwo</servlet-class>

</servlet>

No No Must be true

The JSP batch compiler tool helps you configure JavaServer Pages files as servlets. When
useFullPackageNames is true, the JSP batch compiler generates <servlet> and <servlet-mapping>
elements for each JSP file that it successfully translates and compiles. The elements are written to a
web.xml fragment file named generated_web.xml which is located in the binaries WEB-INF directory of a web
module processed by the JSP file batch compiler (this directory is located within the deployed application's
ear file). You can copy and paste all or some of these elements into the web.xml file to configure
JavaServer Pages files as servlets.

Take note of the location of the web.xml that is used by the application server. The application specific
configuration is obtained from either the application binaries (the application's ear file) or from the
configuration repository. If an application is deployed into WebSphere Application Server with the flag Use
Binary Configuration set to true, then the WEB-INF/web.xml file is looked for in a web module's binaries
directory, not in the configuration repository. Examples of these two locations follow:

v An example of a configuration repository directory is {WAS_ROOT}/profiles/profilename/config/cells/
cellname/applications/enterpriseappname/deployments/deployedname/webmodulename

v An example of an application binaries directory is: {WAS_ROOT}/profiles/profilename/installedApps/
nodename/EnterpriseAppName/WebModuleName/

If the JSP batch compiler is executed on a pre-deployed application then the web.xml file is in the web
module's WEB-INF directory.

JavaServer Pages (JSP) runtime reloading settings
JavaServer Pages files can be translated and compiled at run time when the JSP file or its dependencies
are modified. This is known as JSP reloading.

Note: Use an assembly tool, such as Rational Application Developer, to modify IBM extension and binding
files. You can convert extension and binding files within modules from XMI to XML using the IBM
Bindings and Extensions Conversion Tool for Multi-Platforms.

JSP reloading is enabled through the reloadEnabled JSP engine parameter in the WEB-INF/ibm-web-
ext.xmi or WEB-INF/ibm-web-ext.xml file.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“reloadEnabled” value=“true”/>

ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

2186 Developing WebSphere applications

xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”
version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadEnabled” value=“true”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

The following table contains suggested reload settings for production and development environments.

Table 353. Suggested reload settings for production and development environments.. Reload settings
Configuration Attribute Production Environment setting Development Environment setting

reloadEnabled false true

reloadInterval n/a (ignored if reloadEnabled is false) approximately 5 seconds

trackDependencies n/a (ignored if reloadEnabled is false) true Alternatively, set this to false to improve
response time if dependencies are not changing

disableJspRuntimeCompilation true - Alternatively, set this to false if JSP files
are not pre-compiled and therefore need to be
compiled on the first request.

false

The default for the reloadEnabled parameter is true. If the reloadEnabled parameter is set to true, a JSP
file is reloaded at run time if the JSP file and its class file do not have the same timestamp. In addition, if
trackDependencies is set to true then the JSP file is reloaded if the timestamp of any of its dependencies
has changed since the JSP class file was last generated. If the reloadEnabled parameter is set to false, a
JSP file is still compiled if necessary on the first request to it unless the parameter
disableJspRuntimeCompilation is true. For example, when disableJspRuntimeCompilation is false and
reloadEnabled is false, a JSP file is compiled on the first request if the class file is outdated. It would not
compile on subsequent requests, even if the JSP source file is modified or the class file is deleted,, unless
reloadEnabled is true.

Reload interval

The reload interval is set through the reloadInterval JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=JSPAttribute_1 name=reloadInterval value=5/>

Chapter 47. Deploying web applications 2187

ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If reloading is enabled, the reloadInterval parameter value determines the delay between checks to see if
a JSP file is outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is
outdated only when the last such check was done more than five seconds prior to the current request for
the JSP file. Once the reloadInterval is exceeded, reload checking is performed and the reload interval
timer is reset to 0 for that JSP file. The larger the reloadInterval, the less frequently the JSP engine checks
for the need to reload a JSP file.

Dependency tracking

Dependency tracking is set through the trackDependencies JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“trackDependencies” value=“true”/>

ibm-web-ext.xmi example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If reloading is enabled, the trackDependencies parameter value determines whether the JSP engine tracks
modifications to the requested JSP file dependencies as well as to the JSP file itself. The three types of
dependencies tracked by the JSP engine are:

v files statically included in the JSP file

v tag files that are referenced in the JSP file (excluding tag files that are in JAR files)

v TLDs that are referenced in the JSP file (excluding TLDs that are in JAR files)

Dependency tracking information is always included in the generated class file even if trackDependencies
is false. The information is not used by the JSP engine or batch compiler unless the trackDependencies
parameter is true. This means that you can enable dependency tracking without having to recompile JSP
files.

2188 Developing WebSphere applications

For example, the toplevel.jsp file statically includes the footer.jspf file. When the toplevel.jsp file is
compiled, the path to the footer.jspf file and its timestamp are stored in the toplevel.jsp's class file. As
a result, the footer.jspf file is modified and the toplevel.jsp file is requested. Now that the reload
interval for the toplevel.jsp file has been exceeded, the JSP engine compares the timestamp stored in
the class file with the footer.jspf file timestamp on disk. Because the timestamps are different, the
toplevel.jsp file is compiled, picking up the modification to the footer.jspf file. In order for dependency
tracking to work, the trackDependencies value must be set to true at the time a JSP file is requested at
run time or is processed by the batch compiler.

Disabling compilation

Disablement of run time compilation of JavaServer Pages is set via the disableJspRuntimeCompilation
JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“disableJspRuntimeCompilation” value=“true”/>

ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=1.0>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If the disableJspRuntimeCompilation parameter is set to true, the JSP engine at run time does not
translate and compile JSP files; the JSP engine loads only precompiled class files. JSP source files do not
need to be present in order for the class files to be loaded. With this option set to true, an application can
be installed without JSP source, but must have precompiled class files. There is a web container custom
property of the same name that can be used to determine the behavior of all web modules installed in a
server. If both the web container custom property and the JSP engine option are set, the JSP engine
option takes precedence. Setting the disableJspRuntimeCompilation parameter to true automatically sets
reloadEnabled to false.

Reload processing sequence

The processing sequence pertaining to JSP file reloading when trackDependencies is false is shown in
Figure 1.

Chapter 47. Deploying web applications 2189

When trackDependencies is true, the JSP engine does additional file system processing to determine if
any of a JSP file's dependencies have changed since the JSP file was last translated and compiled. Figure
2 shows the additional processes that are performed on the 'No' path of flow chart labeled “is JSP class
file outdated?”. You can see that the path taken when disableJspRuntimeCompilation is true is the most
efficient path.

Figure 7. Reload processing sequence when trackDependencies is false.

2190 Developing WebSphere applications

JSP and JSF option settings
Use this page to configure the class reloading of web modules such as JavaServer Pages (JSP) files and
to select a JSF implementation to use with this application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > JSP and JSF options. This page is the same as the
Provide JSP reloading options for web modules page on the application installation and update
wizards.

The following note applies to the files with an .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a web module in the installed or deployed application.

Figure 8. Additional reload processing performed when trackDependencies is true.

Chapter 47. Deploying web applications 2191

URI
Specifies the location of the module that is relative to the root of the application (EAR file).

JSP enable class reloading
Specifies whether to enable class reloading when JSP files are updated.

A web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the
ibm-web-ext.xmi file is set to true.

Java Platform, Enterprise Edition 5 (Java EE 5) and later applications IBM extension files are in .xml file
format. For applications versions earlier than Java EE 5, they are in the .xmi file format.

JSP reload interval in seconds
Specifies the number of seconds to scan the application file system for updated JSP files. The default is
the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the
web module.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload
interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

Java EE 5 applications and later IBM extension files are in .xml file format. For applications versions
earlier than Java EE 5, they are in the .xmi file format.

Sun Reference Implementation 1.2
Select this option to use the Sun Reference Implementation 1.2 JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

MyFaces 2.0
Select this option to use the MyFaces JSF implementation. This is the default JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

In a mixed-version cell, a Version 7 node uses MyFaces 1.2 if the MyFaces selection is toggled, while a
Version 8 and later node uses MyFaces 2.0. For WebSphere Application Server versions before Version 7
(for example, Version 6.1 and earlier), this toggle is ineffective because JSF implementation switching was
not supported before Version 7.

2192 Developing WebSphere applications

JSP run time compilation settings
By default, the JavaServer Pages (JSP) engine translates a requested JSP file, compiles the .java file,
and loads the compiled servlet into the run time environment. You can change the JSP engine default
behavior by indicating that a JSP file must not be translated or compiled at run time, even when a .class
file does not exist.

If run time compilation is disabled, you must precompile the JSP files, which provides the following
advantages:
v Reduces compilation related disk operations.
v Minimizes disk storage requirements necessary for handling temporary .java files generated during a

run time compilation.
v Allows you to not include the JSP source files in the application.
v Allows verification that a JSP file compiled successfully before deploying and installing the application in

the product

You can disable run time JSP file compilation on a global or an individual web application basis:
v To disable the translation and compilation of JSP files for all Web applications, in the administrative

console, click Servers > Server Types > WebSphere application servers > server_name. Then, in the
Container Settings section, click Web container settings > Web container > Custom properties.

If the disableJspRuntimeCompilation property appears in the list of defined custom properties, but is set
to false, click the property name, and then set the property to true.

If this property is not included in the list of defined custom properties, click New, and then specify
disableJspRuntimeCompilation in the Name field and true in the Value field.

Valid settings for this property are true or false. When this property is set to true, translation and
compilation of the JSP files is disabled at run time for all web applications.

v To disable the translation and compilation of JSP files for a specific web application, set the JSP engine
initialization parameter disableJspRuntimeCompilation to true. This setting, if enabled, determines the
run time behavior of the JSP engine and overrides the web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings page when assembling
applications.

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific web
application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only
loads precompiled files.

v If neither the web container custom property nor the JSP parameter is set, the first request for a JSP
file results in the translation and compilation of the JSP file when the .class file does not exist or is
outdated. Subsequent requests for the file also result in translations and compilations, but only if the
following conditions are met:
– Translations are required because the .class file is outdated.
– Reloading is enabled for the web module.
– Reload interval is exceeded.

If you disable run time compilation and a request arrives for a JSP file that does not have a matching
.class file, the JSP engine returns the following 404 error to the browser:
Error 404: SRVE0200E: Servlet [org.apache.jsp._jsp1]: Could not find required servlet class - _jsp1.class

In this case, an exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC)
logs. .

If a JSP file has a matching .class file but that file is out of date, the JSP engine still loads the .class file
into memory.

Provide options to compile JavaServer Pages settings
Use this page to specify options to be used by the JavaServer Pages (JSP) compiler.

Chapter 47. Deploying web applications 2193

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Precompile JavaServer Pages files on the Select installations options page.
Thus, to view this page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show me all installation options and parameters > Next > Next
or Continue > Precompile JavaServer Pages files > Next > Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this page only when installing or updating an application that
contains web modules. After the application is installed, you must edit the JSP engine configuration
parameters of a web module WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a module within the application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

JSP class path
Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application
installation. This class path is not saved when the application installation is complete and is not used when
the application is running. This class path is used only to identify resources outside of the application
which are necessary for JSP compilation and which will be identified by other means (such as shared
libraries) after the application is installed. In network deployment configurations, this class path is specific
to the deployment manager machine.

To specify that multiple web modules use the same class path:
1. In the list of web modules, select the Select check box beside each web module that you want to use

a particular class path.
2. Expand Apply Multiple Mappings.
3. Specify the desired class path.
4. Click Apply.

Use full package names
Specifies whether the JSP engine generates and loads JSP classes using full package names.

When full package names are used, precompiled JSP class files can be configured as servlets in the
web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP
classes are generated in the same package, which has the benefit of smaller file-system paths.

2194 Developing WebSphere applications

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class
loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml
file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level
Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,
and 15. The default value is 13 for pre-Java EE 5 web modules, which specifies source level 1.3 and 15 for
Java EE 5 and later web modules.

Disable JSP runtime compilation
Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file
does not exist.

When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the
JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. You can install an application without JSP source, but the application must have precompiled
class files.

For a single web application class loader to load all JSP classes, this compiler option and the Use full
package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

Chapter 47. Deploying web applications 2195

2196 Developing WebSphere applications

Chapter 48. Deploying web services

Deploying web services applications onto application servers
After assembling the artifacts required to enable the web module for web services into an enterprise
archive (EAR) file, you can deploy the EAR file into the application server.

Before you begin

To deploy Java-based web services, you need an enterprise application, also known as an EAR file that is
configured and enabled for web services.

A Java API for XML-Based Web Services (JAX-WS) application does not require additional bindings and
deployment descriptors for deployment whereas a Java API for XML-based RPC (JAX-RPC) web services
application requires you to add additional bindings and deployment descriptors for application deployment.
JAX-WS is much more dynamic, and does not require any of the static data generated by the deployment
step required for deploying JAX-RPC applications.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because you
can use annotations to specify all of the information that is contained within the deployment descriptor file.
You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

Note: In a mixed node cell, you can only target a JAX-WS enabled enterprise beans module to a server
using WebSphere Application Server Version 7.0 and later. However, you can target a JAX-WS
enabled web application archives (WAR) module to a server using either WebSphere Application
Server Version 7.0 and later or WebSphere Application Server Version 6.1 Feature Pack for Web
Services

You can use the wsdeploy command with JAX-RPC applications to add WebSphere product-specific
deployment classes to a web services-compatible enterprise application enterprise archive (EAR) file or an
application client Java archive (JAR) file.

To install or deploy a JAX-WS application, you only need to install the JAX-WS enabled EAR file. If your
web services application contains only JAX-WS endpoints, you do not need to run the wsdeploy command,
as this command is used to process only JAX-RPC endpoints.

Ensure that you have installed the HTTP or Java Message Service (JMS) router module that was
generated with the endptEnabler command onto the same target as your web services enterprise bean
JAR files. These HTTP or JMS router modules are included in your web services application and they
need to use the runtime libraries of the application server.

About this task

This task is one of the steps in developing and implementing web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you are
installing an application containing web services by using the wsadmin command, specify the -deployws
option for JAX-RPC applications. If you are installing an application containing web services by using the
administrative console, select Deploy WebServices in the Install New Application wizard. For more
information about installing applications using the administrative console, see the installing enterprise
application files with the console information.

© Copyright IBM Corp. 2012 2197

If your JAX-RPC web services application was previously deployed with the wsdeploy command, it is not
necessary to specify web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

Procedure
1. Start install_root/bin/wsadmin from a command prompt.

On operating systems such as AIX or Linux, start
install_root/bin/wsadmin.sh.

2. Deploy the EAR file.

v For JAX-WS web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings" command at the wsadmin prompt.

v For JAX-RPC web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings -deployws" command at the wsadmin prompt.

Results

You have a web service installed onto your application server.

Note: While installing web services applications that contain a large number of enterprise beans onto the
application server, you might receive out of memory errors. If you receive out of memory errors,
increase the heap size of your Java Virtual Machine (JVM). Read about tuning the IBM virtual
machine for Java documentation to learn more about tuning the application server environment.

What to do next

You can confirm that the web services application was deployed by entering the web service endpoint URL
in a browser, then viewing an informative page. The information page contains the following information:
{http://webservice.pli.tc.wssvt.ibm.com}RetireWebServices
Hello! This is an Axis2 web service!

The first line of this information is variable, depending on your web service. The URI in the brackets is the
namespace and the string that follows, in this example RetireWebServices, is the name of the port used to
access the web service.

The next step you might want to consider is to apply security to your web service.

Provide options to perform the web services deployment settings
Use this page to specify options for web services deployment.

This administrative console page is a step in the application installation and update wizards.

To view this page, you must select Deploy web services on the Select installation options page.

To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options page.

4. Select Deploy web service.

5. Click Next to get to the Step: Provide options to perform the web services deployment page.

You can specify the web services deployment options on this page only when installing or updating an
application that uses web services.

2198 Developing WebSphere applications

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command
adds product-specific deployment classes to a web services-compatible enterprise archive (EAR) file or an
application client Java archive (JAR) file. These classes include:
v Stubs
v Serializers and deserializers
v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary page of the
wizard.

Deploy web services option - Classpath
Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on
Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the
entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

Information Value
Data type String
Default null

Deploy web services option - Extension Directories
Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this
directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

Information Value
Data type String
Default null

wsdeploy command
Use the wsdeploy command to add WebSphere product-specific deployment classes to a web
services-compatible enterprise application enterprise archive (EAR) file or an application client Java
archive (JAR) file.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The deployment classes that are added by the wsdeploy tool to a web services-compatible EAR file or a
JAR file include:
v Stubs
v Serializers and deserializers

Chapter 48. Deploying web services 2199

v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment
can be performed separately using the wsdeploy command, assembly tools, or when the application is
installed. When using the wsadmin command for installation, specify the -deployws option.

The wsdeploy command operates as noted in the following list:
v Each module in the enterprise application or JAR file is examined.
v If the module contains web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located
and the WSDL2Java command is run with the role deploy-server option.

v If the module contains web services clients, indicated by the presence of the client deployment
descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role
deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See the WSDL2Java command for JAX-RPC applications command information to learn more about the files
that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or
JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to
specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are
compiled.

wsdeploy command syntax

The command syntax is noted in the following example:
wsdeploy Input_filename Output_filename [options]

Required options:
v Input_filename

Specifies the path to the EAR or JAR file to deploy.
v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently
overwritten. The output_filename can be the same as the input_filename.

Other options:
v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to
the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries
are separated the same as they are in the CLASSPATH environment variable.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.
v -debug

Includes debugging information when compiling, that is, use javac -g to compile.
v -help

Displays a help message and exit.
v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.
v -keep

Do not delete working directories containing generated classes. A message is displayed indicating the
name of the working directory that is retained.

v -novalidate

2200 Developing WebSphere applications

Do not validate the web services deployment descriptors in the input file.
v -trace

Displays processing information, including the names of the generated files.
v -compliancelevel level

Sets the JDK level for compiler compliance. Valid values include: 1.4, 5.0, 6.0 (default) and 7.0. This
flag is optional.

The following example illustrates how the options are used with the wsdeploy command:
wsdeploy x.ear x_deployed.ear -trace -keep
Processing web service module x_client.jar.
Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.
Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.
Done processing module x_client.jar.

The following messages may be displayed:
v Flag -f is not valid.

Option f was not recognized as a valid option.
v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command
cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.
v Missing p parameter.

A required option is omitted.

JAX-WS application deployment model
The administration function of the product is enhanced to support installing and deploying Java Application
Programming Interface (API) for XML Web Services (JAX-WS) applications like any other WebSphere
Application Server applications.

A JAX-WS application is packaged as a web application archive (WAR) file or a WAR module within an
Enterprise Archive (EAR) file. The JAX-WS application deployment model is similar to the Java API for
XML Remote Protocol Call (JAX-RPC) web services application model. The main differences are JAX-RPC
web services application requires you to add additional bindings and deployment descriptors for application
deployment. A JAX-WS application does not require additional bindings and deployment descriptors for
deployment. You can deploy your JAX-WS applications as you would deploy any other WebSphere
Application Server application.

JAX-WS web services is a rewrite of JAX-RPC web services. The table compares the web services stack
for both JAX-WS and JAX-RPC web services.

JAX-RPC web services JAX-WS web services

Bindings are proprietary Bindings are based on the open source Java API for XML
Bindings (JAXB)

Parsing is proprietary Parsing is based on the open source Java Specification
Request (JSR) 173

No Java annotations support Support for Java annotations such as @WebService,
@WebMethod, @WebParam, @WebResult, and @SOAPBinding

Chapter 48. Deploying web services 2201

JAX-RPC web services JAX-WS web services

During deployment, some deployment descriptor files are
created in a JAX-RPC based service and client.

The following files are created on the services side, when
it is an EJB based web service and EJB based module:

v webservices.xml

v <name_of_service>_mapping.xml

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

When the service is a JavaBeans-based or web
module-based service, the following files and deployment
descriptors are required:

v webservices.xml

v <name_of_service>_mapping.xml

v In the web.xml file, there is no additional content

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

The web.xml exists in both EJB and JavaBeans based
services. However, there is no additional content added to
the file during deployment of a Web service application or
module.

For JAX-WS web services, the use of the
webservices.xml deployment descriptor is optional
because you can use annotations to specify all of the
information that is contained within the deployment
descriptor file. You can use the deployment descriptor file
to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml
deployment descriptor overrides any corresponding
information that is specified by annotations.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations. In the Version 6.1 Feature Pack for Web
Services, the default behavior is to scan pre-Java EE 5 web application modules to identify JAX-WS
services and to scan pre-Java EE 5 web application modules and EJB modules for service clients during
application installation. Because the default behavior for WebSphere Application Server Version 7.0 and
later is to not scan pre-Java EE 5 modules for annotations during application installation or server startup,
to preserve backward compatability with the feature pack from previous releases, you must configure
either the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a web application archive
(WAR) file or EJB module or define the Java virtual machine custom property,
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during
application installation and server startup. To learn more about annotations scanning, see the JAX-WS
annotations information.

Using a third-party JAX-WS web services engine
In certain situations you might need to set up a third-party JAX-WS web services engine. For example,
you must set up a third-party JAX-WS web services engine if you need to deploy applications that use a
single runtime across various application servers such as WebSphere Application Server, JBoss, and
WebLogic, or if you want to build JAX-WS web services applications using third party JAX-WS run-times
such as CXF, Axis2, and Metro.

Before you begin

Use of a third-party JAX-WS runtime has limitations. It also requires mandatory configuration changes, and
in some cases, it requires manual intervention to resolves issues that occur during deployment and when
you run the application. These limitations and issues vary based on the third-party JAX-WS runtime you

2202 Developing WebSphere applications

decide to use. You should understand the limitations for the third-party JAX-WS runtime you are preparing
to use before you configure your system to use that implementation.

The following limitations exist regardless of which third-party JAX-WS implementation you use:

v The WebSphere Application Server runtime restricts usage of application modules that use both the
JAX-WS implementation provided with WebSphere Application Server, and an external JAX-WS
implementation in the same application EAR file. You must use either the JAX-WS implementation
provided with WebSphere Application Server or the external implementation in a single application EAR
file. This limitation ensures that the runtime WebSphere Application Server does not conflict with the
external third-party JAX-WS implementation.

v You must remove any conflicting JAR files from your application library before you deploy an application
that uses an external JAX-WS implementation. Most of the external third-party JAX-WS runtimes include
some JAR file libraries that are already installed on WebSphere Application Server. This situation
causes conflicts in your application library.

v After an application that uses a third-party JAX-WS runtime is deployed on WebSphere Application
Server, it is not recognized as a service client or provider. Therefore, you cannot attach application level
policy sets to these applications. You must rely on external runtimes support quality of service.
Following is a list of WebSphere Application Server features that are not available if you decide to
deploy and run application that uses third-party JAX-WS implementations:
– WS-Security, WS-RM, and WS-Transactions policy sets
– WSDM
– JNDI lookup to retrieve JAX-WS Service or Port Instance.

gotcha: Even though IBM supports the enablement of third party JAX-WS runtimes to run on WebSphere
Application Server, and ensures the successful deployment of applications that use such
runtimes, IBM does not provide support for resolving JAR file conflict problems, or any problem
that a stack trace indicates is in the third party code.

About this task

When you deploy an application EAR file with a third-party JAX-WS implementation on WebSphere
Application Server, the WebSphere Application Server runtime must ensure the use of the third-party
engine, and disable the use of the existing WebSphere Application Server JAX-WS web services engine.

WebSphere Application Server does not claim support for any of the third-party JAX-WS runtimes, but has
tested the deployment and execution of applications that use such runtimes.

You must complete the following steps before you can use an external JAX-WS runtime in an application.

Procedure
1. Set the class loader policy to Classes loaded with local class loader first (parent last) at the

module level.

Changing the class loader policy to parent last ensures that the external third-party JAX-WS runtime
and their dependent library JAR files are first in the class loader search path, thereby ensuring that the
third-party implementation is used instead of the WebSphere Application Server.

a. In the administrative console, click Applications > Application Types > WebSphere enterprise
applications > application_name > Class loading and update detection.

b. Under Class reloading options, select Override class reloading settings for web and EJB
modules .

c. Under Class loader order, select Class loader order property to Classes loaded with local
class loader first (parent last).

a. Click OK, and then Save to save your changes.

2. Turn off web services annotation scanning.

Chapter 48. Deploying web services 2203

Annotation scanning can be turned off at the application level or at the server level.

To turn off annotation scanning at the application level, set the DisableIBMJAXWSEngine property in
the META-INF/MANIFEST.MF of a WAR file or EJB module to true. Example:

Manifest-Version: 1.0
DisableIBMJAXWSEngine: true

To turn off web services annotation scanning at the server level:

a. In the administrative console, go to the Custom properties page for the Java virtual machine.

Servers > Server Types > WebSphere application servers > server_name, and then, under
Server Infrastructure, click Java and process management > Process definition > Java virtual
machine > Custom properties

b. Set the com.ibm.websphere.webservices.DisableIBMJAXWSEngine property to true

If this property does not already exist for your configuration, click New, and add
com.ibm.websphere.webservices.DisableIBMJAXWSEngine in the Name field and true in the Value
field.

Results

What to do next
v Deploy and run an application EAR file with a third-party JAX-WS implementation on WebSphere

Application Server.

Deploying web services client applications
After you have created an enterprise archive (EAR) file for the web services client application, you can
deploy the web services client application into the Application Server.

Before you begin

To deploy a Java-based web services client, you need an enterprise application, also known as an
enterprise archive (EAR) file that is configured and enabled for web services.

A Java API for XML-Based Web Services (JAX-WS) application is packaged as a web application archive
(WAR) file or a WAR module within an Enterprise Archive (EAR) file. A JAX-WS application does not
require additional bindings and deployment descriptors for deployment whereas a Java API for XML-based
RPC (JAX-RPC) web services application requires you to add additional bindings and deployment
descriptors for application deployment. JAX-WS is much more dynamic, and does not require any of the
static data generated by the deployment step required for deploying JAX-RPC applications. For JAX-RPC
web services clients, you must configure the client deployment descriptors.

About this task

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you are
installing an application containing web services by using the wsadmin command, specify the -deployws
option for JAX-RPC applications.

Use the wsdeploy command only with JAX-RPC applications. The wsdeploy command is not applicable for
JAX-WS applications.

If you are installing an application containing web services by using the administrative console, select
Deploy WebServices in the Install New Application wizard. Read about installing a new application for
more information on using the administrative console.

The following actions deploy the EAR file with the wsadmin command:

2204 Developing WebSphere applications

Procedure
1. Start install_root/bin/wsadmin from a command prompt.

On operating systems such as AIX or Linux, start
install_root/bin/wsadmin.sh.

2. Deploy the EAR file.

v For JAX-WS web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings" command at the wsadmin prompt.

v For JAX-RPC web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings -deployws" command at the wsadmin prompt.

Results

You have a deployed a web service client in the application server runtime environment.

What to do next

Test the web services client. You can now test a web services-enabled managed client EAR file or an
unmanaged client JAR file.

Making deployed web services applications available to clients
You can publish WSDL files to the file system. If you are a client developer or a system administrator, you
can use WSDL files to enable clients to connect to web services.

Before you begin

The publish WSDL administrative console panel supports both JAX-RPC and JAX-WS services. The
publish WSDL panel generates a compression file that contains WSDL files for all modules in an
application that contains JAX-WS or JAX-RPC web services. Read about providing the HTTP endpoint
URL information to learn how the URL information affects the content of the published WSDL.

To publish a Web Services Description Language (WSDL) file you need an enterprise application, also
known as an enterprise archive (EAR) file, that contains a Web services-enabled module and has been
deployed into WebSphere Application Server. To learn how to deploy web services, see the deploying web
services applications onto application servers information.

About this task

The purpose of publishing the WSDL file is to provide clients with a description of the web service,
including the URL identifying the location of the service.

After installing a web services application, and optionally modifying the endpoint information, you might
need WSDL files containing the updated endpoint informations to make deployed web services application
to be available to clients.

Before you publish a WSDL file, you can configure web services to specify endpoint information in the
form of URL fragments to enable full URL specification of WSDL ports. Refer to the tasks describing
configuring endpoint URL information.

The WSDL files for each web services-enabled module are published to the file system location you
specify. You can provide these WSDL files to clients that want to invoke your Web services.

You can specify endpoint information for HTTP ports, for Java Message Service (JMS) ports, or you can
directly access enterprise beans that are acting as web services.

Chapter 48. Deploying web services 2205

Procedure
1. Configure the web services client bindings.

2. Configure the URL endpoint information for HTTP bindings. Do one of the following depending on what
kind of bindings you are using:

v Configure the URL endpoint information for HTTP bindings.

v Configure the URL endpoint information for JMS bindings.

v Configure the URL endpoint information to directly access enterprise beans.

3. Externalize or publish the WSDL file out of the application. You can complete this task in the following
ways:

v Publish a WSDL file with the administrative console

v Publish a WSDL file using a URL.

v Publish a WSDL file with the wsadmin tool.

What to do next

Apply security to your web services. To learn more, see the securing web services applications using
message level security information.

Configuring web services client bindings
When a web services application is deployed into WebSphere Application Server, an instance is created
for each application or module. The instance contains deployment information for the web module or
Enterprise JavaBeans (EJB) module, including client bindings.

Before you begin

Deploy a web service into your WebSphere Application Server instance. Read about deploying web
services applications onto application servers.

You must know the topology of the URL endpoint address of the web services servers and which web
service the client depends upon. You can view the deployment descriptors in the administrative console to
find the topology information. To learn more, see the View web services server deployment descriptors
information.

About this task

The client bindings define the Web Services Description Language (WSDL) file name and preferred ports.
The relative path of a web service in a module is specified within a compatible WSDL file that contains the
actual URL to be used for requests. The address is only needed if the original WSDL file did not contain a
URL, or when a different address is needed. For a service endpoint with multiple ports, you need to define
an alternative WSDL file name.

The following steps describe how to edit bindings for a web service after these bindings are deployed on a
server. When one web service communicates with another web service, you must configure the client
bindings to access the downstream web service.

You can also configure client bindings with the wsadmin tool. Read about configuring a web service client
deployed WSDL file name with the wsadmin tool.

To configure client bindings through the administrative console:

Procedure
1. Open the administrative console.

2206 Developing WebSphere applications

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance > Web services client bindings.

3. Find the web service you want to update.

The web services are listed in the Web Service field.

4. Select the WSDL file name from the drop down box in the WSDL file name field.

5. Click Edit in the Preferred port mappings field to configure the default port to use.

a. Specify the port type and the preferred ports in the Port type and Preferred ports fields.

Configuring the preferred port enables you to select an optimal port implementation use non-SOAP
protocols. See the RMI-IIOP web services using JAX-RPC information to learn more about using
non-SOAP protocols.

b. Click Apply and OK.

6. Click Edit in the Port information field to configure the request timeout, the overridden endpoint, and
the overridden binding namespace for a port.

Configuring the request timeout accommodates complex topologies that can have multiple cascaded
Web services that involve multiple hops or long-running services.

You can configure Timeout values based on observed behavior of the overall system as integration
proceeds. For example, a web service client might time out because of changing network conditions or
the performance of an external web service. When you have applications containing web services
clients that timeout, you can change the request time out values for the clients.

You can specify an endpoint URL to override the current endpoint. A client invoking a request on this
port uses this endpoint instead of the endpoint specified in the WSDL file. You can specify the
Overridden endpoint URL value for both Java API for XML-Based Web Services (JAX-WS) clients
and Java API for XML-based RPC (JAX-RPC) clients.

Note: The Overridden endpoint URL field is applicable for both JAX-WS and JAX-RPC clients. The
other fields on this administrative console page are only applicable for JAX-RPC clients.

a. Click Apply and OK.

Results

Your web service client bindings are configured.

What to do next

Now you can finish any other configurations, start or restart the application, and verify the expected
behavior of the web service.

Web services client bindings
The client bindings define the Web Services Description Language (WSDL) file name, preferred ports and
other port information. Use this page to specify the client bindings and the port mappings for the web
services in a module.

A web service can specify the relative path within the module of a compatible WSDL file containing the
actual URL to be used for requests. The relative path only needs to be specified if the original WSDL file
does not contain a URL or when a different URL is needed. For a service endpoint with multiple ports
defined, a preferred mapping specifies the default port to use for a port type.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > resource_name .

2. Click Manage Modules > module_name > Web services client bindings.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Chapter 48. Deploying web services 2207

Web service:

Identifies the name of this web service. A module can contain one or more web services.

EJB:

For EJB modules, identifies the name of the EJB.

WSDL file name:

Specifies the WSDL file name, which is relative to the module. Locate the WSDL file name in the drop
down menu.

Preferred port mappings:

Specifies and manages the preferred port type mapping for a web service when a particular port type is
requested.

Click Edit to edit the preferred port mapping information on the Preferred port mappings page.

Port information:

Specifies additional configuration information for the ports of this web service.

Click Edit to edit the port information on the Port information page. You can set a request timeout, override
an endpoint and override a binding namespace for each client port.

Preferred port mappings:

Use this page to view and manage a preferred portType mapping for a web service.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

When you have multiple ports that reference the same portType (service endpoint interface), a preferred
port specifies the port to use when the Service.getPort(Class SEI) method is called with only the service
endpoint interface.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > module instance > Web services
client bindings > Edit > preferred_port_instance.

portType:

Specifies the portType.

The preferred port and the portType values are both of the type java.xml.namespace.QName.

Preferred port:

Specifies the preferred port to be associated with a particular portType. The Service.getPort(Class)
method returns the preferred port associated with the specified service endpoint interface class (portType).

The preferred ports available are listed, as well as a value of None, which indicates no preferred port is
selected.

Web services client port information:

2208 Developing WebSphere applications

Use this page to specify a request timeout, override an endpoint, and override a binding namespace for a
web services client port.

A web service can have multiple ports. You can view and configure the port attributes for each defined
web service port. The web services are listed on the web services client bindings page.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > resource_name .

2. Click Manage Modules > module_name > Web services client bindings.

3. Click Edit under Port Information.

This administrative console page applies to both Java API for XML-Based Web Services (JAX-WS) and
Java API for XML-based RPC (JAX-RPC) web services. The Overridden endpoint URL field is the only
field supported for JAX-WS clients. The other fields are not applicable for JAX-WS clients.

Port:

Specifies the name of a port.

Request timeout:

Specifies the time, in seconds, that a web service client waits for a request to complete on this port. If a
timeout is not specified, the default request timeout for the client to wait is 300 seconds. If the value is set
at 0 (zero), the timeout used is the default value for the underlying transport mechanism. This field is
supported only for JAX-RPC clients.

A typical use for this setting is to customize the client's behavior when it is configured to use a JMS
transport to access a web service to make it wait longer for an expected completion. Depending upon
network conditions, or the nature of a web service implementation, it might be necessary to tune the
timeout.

Overridden endpoint URL:

Specifies the name of an endpoint that is used to override the current endpoint. A client invoking a request
on this port uses this endpoint instead of the endpoint specified in the WSDL file. This field is supported
for both JAX-WS and JAX-RPC clients.

If an assembled application contains a web service client that is statically bound, the client is locked into
using the implementation (service end point) identified in the WSDL file used during development.
Overriding the endpoint is an alternative to configuring the deployed WSDL attribute.

The overridden endpoint URI attribute is specified on a per port basis. It does not require an alternative
WSDL file within the module. The overridden endpoint URI takes precedence over the deployed WSDL
attribute. The client uses this value for the service end point URI or SOAP address, instead of the value in
the static client bindings.

Note: You can edit this field if you have managed clients or a mixture of both managed and unmanaged
clients. You cannot edit the field if you have unmanaged clients only.

If you do not want a request by an unmanaged JAX-WS client service to be sent to the endpoint URL that
is specified in this field, you can specify the
com.ibm.ws.websvcs.unmanaged.client.dontUseOverriddenEndpointUri Java virtual machine (JVM)
system property. For more information about this custom property, read about the Java virtual machine
custom properties.

Overridden binding:

Chapter 48. Deploying web services 2209

Specifies the WSDL file binding namespace URI to use with this port, instead of the namespace in the
WSDL file. This binding does not need to exist in the WSDL file. A client invoking a request on this port
uses this binding instead of the binding specified in the WSDL file. An overridden binding namespace
cannot be specified unless an overridden endpoint is specified. This field is supported only for JAX-RPC
clients.

Configuring endpoint URL information for HTTP bindings
Configuring a service endpoint is necessary to connect Java API for XML-Based Web Services (JAX-WS)
and Java API for XML-based RPC (JAX-RPC) web services clients to any web services among the
components being assembled or to any external web services.

Before you begin

You can develop an HTTP accessible Java API for XML-based remote procedure call (JAX-RPC) or Java
API for XML Web Services (JAX-WS) web service when you have an existing JavaBeans object to enable
as a web service. For additional information, see the using HTTP to transport web services requests
information.

You can use either the administrative console or property files to configure and manage HTTP endpoint
URL fragments. To learn about using property files to set and manage the URL fragments, see the
information about working with web services endpoint URL fragment property files.

This task describes using the administrative console to configure endpoint URL information for HTTP
bindings.

About this task

You can specify HTTP URL prefixes for web services that are accessed through HTTP by using the
Provide HTTP endpoint URL information panel in the administrative console. The HTTP URL prefixes
provide location specific information and are used to form complete endpoint URLs that are included within
published WSDL files.

Note: The Provide HTTP panel in the administrative console displays modules that contain Java API for
XML-Based Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) web services.
You can use the Provide HTTP panel to provide URL information for both types of web services,
however, the panel does not indicate which type of service that you are working with.

To configure these prefixes with the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide HTTP endpoint URL
information.

3. Specify the URL prefixes for the web service.

In this step you specify the protocol (HTTP or HTTPS), as well as the host_name and port_number
used in the endpoint URL. You can select a prefix from a predefined list, by selecting the default HTTP
URL prefix, or you can use a custom HTTP URL prefix.

a. Select Default HTTP URL prefix or Custom HTTP URL Prefix.

If you select the default HTTP URL prefix, a list provides you with a choice of endpoint URL
prefixes. The list is a combination of two sets of ports in the module: the virtual host ports and the
application server ports. Use a prefix from this list if the application server of the web service is
accessed directly. Select a value and also select the check box of the modules to use the prefix.

If you want to use a custom HTTP URL prefix, type the value in the field. Select the check box to
use in the prefix.

2210 Developing WebSphere applications

If you configure a custom HTTP URL prefix, , you must also configure the custom JVM property,
com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true.
You must restart the application server after this custom property has been defined so that this
property is used by the system. Setting this custom JVM property is required so the custom HTTP
endpoint prefix information is correctly displayed in the ?WSDL query that is returned from the
browser and the URL field of the WSDL file that is returned to the client. If this custom property is
not defined with the value of true, the custom HTTP URL prefix is not reflected in the WSDL file
that the service returns to the client. To learn how to configure this custom JVM property, see the
documentation on configuring additional HTTP transport properties using the JVM custom property
panel in the administrative console.

Note: The com.ibm.ws.webservices.enableHTTPPrefix custom property applies to JAX-RPC web
services applications only.

b. Click Apply.

The URL prefix, whether default or custom, is copied to the selected module HTTP URL prefix
field.

c. Click OK. The URL information is saved to your workspace.

Results

You have specified the partial URL information that is used to form the target endpoint addresses in the
WSDL files that are published using the Publish WSDL files panel.

What to do next

Configure any other URL endpoint information for Java Message Service (JMS) bindings and direct
Enterprise JavaBeans (EJB) access. Then publish the WSDL files to make the deployed web services
application available to clients.

Provide HTTP endpoint URL information
Use this page to specify endpoint URL prefix information for web services accessed by HTTP. Prefixes are
used to form complete endpoint addresses included in published Web Services Description Language
(WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Provide HTTP endpoint URL information.

You can specify a portion of the endpoint URL to be used in each web service module. In a published
WSDL file, the URL defining the target endpoint address is found in the location attribute of the port's
soap:address element.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

In addition to the using the administrative console, you can use property files to configure and manage
HTTP endpoint URL fragments. To learn about using property files to set and manage the URL fragments,
see the information about working with web services endpoint URL fragment property files.

Specify endpoint URL prefixes for web services:

Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix
field.

Chapter 48. Deploying web services 2211

The URL prefix format is protocol://host_name:port_number, for example, http://myHost:9045. The
actual endpoint URL that is contained in a published WSDL file consists of the prefix followed by the
module's context-root and the web service url-pattern, for example, http://myHost:9045/services/
myService.

Select default HTTP URL prefix:

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the
set of ports for the module's virtual host and the set of ports for the module's application server. Use items
from this list if the web services application server is accessed directly.

To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the
drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you
click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,
depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box
is selected.

Select custom HTTP URL prefix:

Specifies the protocol, host, and port_number of the intermediate service if the web services in a module
are accessed through an intermediate node, for example the web services gateway or an IHS server.

To set a custom HTTP endpoint URL prefix, you must also configure the custom JVM property,
com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true. Setting
this custom JVM property is required so the custom HTTP URL is correctly populated in the URL field of
the WSDL file that is returned to the client. If this custom JVM property is not configured, the custom
HTTP URL prefix is not in the URL field in the copy of the WSDL file that the service returns to the client.
To learn how to configure this custom JVM property, see the documentation on configuring additional
HTTP transport properties using the JVM custom property panel in the administrative console. You must
restart the application server after this custom property has been defined so that this property is used by
the system.

After the com.ibm.ws.webservices.enableHTTPPrefix custom JVM property is configured, select Select
custom HTTP URL prefix and enter a value. Select the check box of the modules that are to use the
prefix and click Apply. When you click Apply, the entry in the Select default HTTP URL prefix or Select
custom HTTP URL prefix fields, depending on which is selected, is copied into the HTTP endpoint URL
prefix field of any module whose check box is selected.

Note: The com.ibm.ws.webservices.enableHTTPPrefix custom property applies to JAX-RPC web services
applications only.

Configuring endpoint URL information for JMS bindings
WebSphere Application Server supports the use of the Java Message Service (JMS) API to transport web
services requests, as an alternative to using HTTP.

Before you begin

The application server supports use of the Java Message Service (JMS) API to transport web services
requests, as an alternative to HTTP transport. Read about using the Java Message Service (JMS) to
transport web services requests to learn more about how web service clients and servers can
communicate through JMS queues and topics instead of through HTTP connections.

You can use either the administrative console or property files to configure and manage JMS endpoint
URL fragments. To learn about using property files to set and manage the URL fragments, see the
information about working with web services endpoint URL fragment property files.

2212 Developing WebSphere applications

This task describes using the administrative console to configure endpoint URL information for JMS
bindings.

About this task

Configuring a service endpoint is necessary to connect web service clients to any web services among the
components being assembled or to any external web services. You can configure the endpoint URL
information for JMS during application installation

In this task, enter the JMS endpoint URL prefix to use for each web service-enabled Enterprise JavaBeans
(EJB) Java archive (JAR) file that belong to the application. The JMS endpoint URLs are included in the
Web Services Description Language (WSDL) files published for clients to use.

You can specify HTTP URL prefixes for web services that are accessed through HTTP by using the
Provide HTTP endpoint URL information panel in the administrative console. These prefixes are used to
form complete endpoint addresses that are included in WSDL files when published.

You can specify JMS URL prefixes by using the Provide JMS and EJB endpoint URL information panel in
the administrative console during or after application installation.

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC) web services.

To configure JMS URL prefixes:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB
endpoint URL information.

3. Locate the list of web services modules that are accessible through JMS transport.

4. Type the JMS URL fragment in the URL fragment field. Enter a URL fragment that is a prefix to the
initial URL part that is obtained by examining the deployment information of the Web service. See the
usage scenario following this task for more information.

The value that you enter is used to define the location attribute of the port soap:address element within
the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip or the
application_name_WSDLFiles.zip file on the Publish WSDL zip files panel.

Results

You have a web service that is accessible through the JMS transport and configured with JMS bindings.

Example

Suppose an application called StockQuoteService contains an EJB JAR file that is named StockQuoteEJB,
which contains one or more web services that are accessible through the JMS transport.

See the using SOAP over Java Message Service to transport web services information to review the
example that defines a queue with the Java Naming and Directory Interface (JNDI) name of
jms/StockQuote_Q, and a connection factory with the JNDI name of jms/StockQuote_CF, for your
application.

In this example, you specify the following string as the JMS URL prefix within the Provide JMS and EJB
endpoint URL information panel:
jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

Chapter 48. Deploying web services 2213

The WSDL publisher uses this partial URL string to produce the actual JMS URL for each port component
that is defined in the module. The targetService=<port_name> string is added to the end of the JMS URL,
for example:
jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF&targetService=getQuote

The published WSDL file is used by clients to invoke the web service.

What to do next

Publish the WSDL files to make the deployed web services application available to clients.

Provide JMS and EJB endpoint URL information
Use this page to specify Java Message Service (JMS) and Enterprise JavaBeans (EJB) endpoint URL
fragments for web services accessed through SOAP and Java Message Service (JMS) or directly as
enterprise beans. Fragments are used to form complete endpoint addresses included in published Web
Services Description Language (WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Provide JMS and EJB endpoint URL information.

You can specify a fragment of the endpoint URL to be used in each web service module. In a published
WSDL file, the URL defining the target endpoint address is found in the location attribute of the port's
soap:address element.

If you are using web services modules that are configured to use JMS or configured to access enterprise
beans directly, these modules are listed on this panel.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

In addition to the using the administrative console, you can use property files to configure and manage
JMS and EJB endpoint URL fragments. To learn about using property files to set and manage the URL
fragments, see the information about working with web services endpoint URL fragment property files.

URL fragment for JMS:

Specifies a URL fragment for web services accessed through a JMS transport. You can enter a value that
is used to define the soap:address of a web service. When WSDL files are published, a URL is formed
using this fragment and is contained in the WSDL files.

The URL fragment that is entered as a value is a prefix to which the targetService property is appended to
form a complete JMS URL endpoint. The default value is obtained by examining the installed service's
deployment information, for example, jms:jndi:jms/MyQueue&jndiConnectionFactoryName=jms/MyCF.

This information is obtained from the configured JMS endpoint for the web service, which is a Message
Driven Bean (MDB) defined by the endpointEnabler command-line tool. You can modify the URL
fragment, for example, by adding properties. The URL fragment is combined with the targetService
property to form the complete URL, for example, jms:jndi:jms/MyQueue&jndiConnectionFactoryName=jms/
MyCF&priority=5&targetService=GetQuote.

URL fragment for EJB:

Specifies a URL fragment for web services accessed through an EJB binding. You can enter a value used
to define the location attribute of the port's generic:address element of a Web service. This port address
is contained in the WSDL compression file when the compression file is published using the
application_name_ExtendedWSDLFiles.zip field on the Publish WSDL zip file panel.

2214 Developing WebSphere applications

The URL fragment value entered is a suffix, which is appended to the initial part of the URL obtained by
examining the web service's deployment information. For example, the following URL fragment can be
obtained from the EJB's deployment information: wsejb:/
com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome.

In this case, you can enter the following information in the URL fragment field,
jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809, which results in this endpoint URL,
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome
&jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809.

Configuring endpoint URL information to directly access enterprise
beans
WebSphere Application Server supports directly accessing an enterprise bean as a web service, as an
alternative to using HTTP or Java Message Service (JMS) to transport requests between the server and
the client. The Enterprise JavaBeans (EJB) module that is used as a web service contains a Web Services
Description Language (WSDL) file that contains EJB bindings.

Before you begin

To learn more about the process of directly accessing an enterprise bean as a web service, see the using
WSDL EJB bindings to invoke an EJB from a JAX-RPC web services client.

You can use either the administrative console or property files to configure and manage EJB endpoint URL
fragments. To learn about using property files to set and manage the URL fragments, see the information
about working with web services endpoint URL fragment property files.

This task describes using the administrative console to configure endpoint URL information to directly
access enterprise beans.

About this task

Configuring a service endpoint is necessary to connect web service clients to any web services among the
components being assembled or to any external web services.

You can specify web address endpoints of the enterprise bean for web services that are accessed directly
by EJB bindings using the Provide JMS and EJB endpoint web address information panel in the
administrative console.

If you have modules that are configured for using direct EJB access, the modules are listed on the Provide
JMS and EJB endpoint web address information panel in the administrative console. The EJB endpoint is
only available in the WSDL that is found in the application_name_ExtendedWSDLfiles.zip file.

You can specify a fragment of the endpoint web address for the web services in each module.

To configure the web address endpoints of the enterprise bean with the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB
endpoint URL information.

3. Locate the list of EJB modules.

4. Select the application module.

5. Type the web address fragment in the URL fragment field.

Chapter 48. Deploying web services 2215

Enter a web address fragment that is a suffix to the initial web address part that is obtained by
examining the web service deployment information. See the example following this task for more
information.

The value that you enter is used to define the location attribute of the port generic:address element
within the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip file name
link on the Publish WSDL zip files panel. The zip file names are listed as links on the panel.

6. Click OK.

7. Click Save.

Results

You have configured endpoints of the enterprise bean for Web services that are accessed directly by EJB
bindings.

Example

The following example illustrates a web address fragment to enter in the URL fragment field.

The following web address information can be obtained from the deployment descriptor of an enterprise
bean:
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome

Enter the following web address fragment in the URL fragment field:
jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2089

The results are shown in the following example:
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome&jndiProviderURL=
corbaloc:iiop:myhost.mycompany.com:2089

What to do next

Provide a description of the web service to the service requestor by publishing WSDL files. To learn more,
read about making deployed web services applications available to clients.

Publishing WSDL files using the administrative console
You can publish a Web Services Description Language (WSDL) file using the WebSphere Application
Server administrative console.

Before you begin

Before completing this task, you need to install or deploy the web service. After deployment, configure the
URL endpoint tasks for your transport:

v Configure endpoint URL information for HTTP bindings

v Configure endpoint URL information for JMS bindings

v Configure endpoint URL information to directly access enterprise beans

About this task

By publishing a WSDL file, you are providing clients with a description of the web service, including the
URL identifying the location of the service.

The WSDL files in each web services-enabled module are published to the file system location you
specify. You can provide these WSDL files in the development and configuration process of the web
service clients so they can invoke your web services.

2216 Developing WebSphere applications

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC) web services.

To learn about more ways to publish WSDL files, see the making deployed web services applications
available to clients information.

To publish an application's WSDL file with the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Web Services Properties, click Publish WSDL files. This takes you to the Publish WSDL zip
files page.

4. Click the WSDL compression file to download. The compression file contains the application's
published WSDL files. The compression file ExtendedWDLFiles.zip contains EJB binding information. It
can also contain JMS or HTTP binding information. The compression file WSDLFiles.zip only contains
JMS or HTTP binding information.

What to do next

Apply security to your web services. To learn more, see the securing web services applications using
message level security information.

Publish WSDL compressed files settings
Use this page to publish Web Services Description Language (WSDL) files.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

The publish WSDL panel generates a compressed file that contains WSDL files for all modules in an
application that contains a JAX-WS or JAX-RPC web service. Read about providing the HTTP endpoint
URL information to learn how the URL information affects the content of the published WSDL.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Publish WSDL files.

When you click OK, a panel showing one or several compressed file names displays. Each compressed
file contains a WSDL file that represents the web services-enabled modules in the application. When you
select a compressed file to publish, a dialogue displays from which you can choose where to create the
compressed file. Within the published compressed files, the directory structure is application_name/
module_name/[META-INF|WEB-INF]/wsdl/wsdl_file_name.

In a published WSDL file, the location attribute of a port's soap:address element contains the endpoint
URL through which the web service is accessed. Using the Provide HTTP endpoint URL information
and the Provide JMS and EJB endpoint URL information panels, configure the endpoint URLs to be
used for the web services in each module.

application_name_WSDLFiles.zip:

Specifies the application_name_WSDLFiles.zip file containing the WSDL that describes web services that
are accessible by standard SOAP-based ports.

application_name_ExtendedWSDLFiles.zip:

Chapter 48. Deploying web services 2217

Specifies the application_name_ExtendedWSDLFiles.zip file containing the WSDL file that describes the
web services available, including SOAP-based and non-SOAP based (for example, EJB) ports.

If there are no web services configured for direct EJB access, this compressed file name is not displayed.
Do not use this compressed file if you want to produce a WSDL file compliant to standards.

Publishing WSDL files using a URL
You can publish a Web Services Description Language (WSDL) file using a URL.

Before you begin

Before you can publish a WSDL file using a URL, ensure the web services-enabled application is installed
and running.

The files referenced by the <wsdl-file> element in the webservices.xml might import other WSDL or XML
Schema Definition (XSD) files. Typically, all WSDL or XSD files are initially placed into the META-INF/wsdl
directory when using Enterprise JavaBeans (EJB) or the WEB-INF/wsdl directory when using JavaBeans. If
your WSDL or XSD files are not placed in one of these directories, the file referenced by the <wsdl-file>
and its imported files are copied to the wsdl directory for publishing purposes.

There are two different forms of URL query strings. The first appends /wsdl to the service and returns only
HTTP and JMS bindings. The second appends /extwsdl to the service and returns the extended WSDL
file, including HTTP, JMS, and EJB bindings. If a WSDL file contains only EJB bindings and the /wsdl
query is used, an error message displays in the browser saying there are no HTTP or JMS bindings in the
WSDL file. The error message suggests using the /extwsdl query instead. Publishing a WSDL file using a
URL requires that the application have a web module; either provided by the application or in the form of
an HTTP router module. If an EJB application contains a WSDL file with only JMS or EJB Web service
bindings, the endptEnabler command can be used to add an HTTP router module to the application.

Note: Only HTTP URLs are supported for publishing.

About this task

To publish a WSDL file using a URL:

Procedure
1. Retrieve the outer-most WSDL file. The outer-most WSDL file is the WSDL file defined by the

<wsdl-file> element in the webservices.xml file.

Each web service has an endpoint address, like http://example.com/services/stockquote. You can
retrieve the outer-most WSDL file (defined by the <wsdl-file> element within the webservices.xml file)
by appending the string “/wsdl” or “/wsdl/” to the endpoint address, for example, http://example.com/
services/stockquote/wsdl.

2. Retrieve the imported WSDL files. When the outer-most WSDL file imports other WSDL or XSD files,
these imported files can be retrieved by appending the relative path to the URL, which is used to
retrieve the outer-most WSDL file. This is also true for WSDL files that import other files. This process
is similar to the use of relative hyperlinks in HTML documents. If an HTML document contains a
hyperlink to other documents, the relative path is appended to create the URL to access the
hyperlinked documents.

Example

Suppose you have an application with the following directory structure:
<module-root>/
WEB-INF/
webservices.xml /* the <wsdl-file> element points to "WEB-INF/wsdl/fooImpl.wsdl"*/

2218 Developing WebSphere applications

web.xml
ibm-webservices-bnd.xml

wsdl/
fooImpl.wsdl /* imports foo.wsdl which is an interface wsdl */
foo.wsdl /* type definition for the interface */

If the SOAP address for the foo service is http://examples.com:9080/services/foo, the simple way to
retrieve the foo service's outer-most WSDL is with the following form: http://examples.com:9090/
services/foo/wsdl or http://examples.com:9090/services/foo/wsdl/. The URL is redirected to
http://examples.com:9090/services/foo/wsdl/fooImpl.wsdl, where fooImpl.wsdl is the name of the
outer-most WSDL file.

Since the fooImpl.wsdl file has the import <import namespace="http://examples.com/foo"
location="a/b/foo.wsdl>, use the URL http://examples.com:9090/services/foo/wsdl/a/b/foo.wsdl to
obtain the foo.wsdl file.

Running an unmanaged web services JAX-RPC client
WebSphere Application Server Version 8.5 and the Application Client for WebSphere Application Server
Version 8.5 provides a thin Java Platform, Standard Edition 6 (Java SE 6) web services client runtime
implementation that is based on the Java API for XML-based RPC (JAX-RPC) 1.1 specification. The Thin
Client for JAX-RPC with WebSphere Application Server is a stand-alone Java SE 6 client environment that
enables running unmanaged JAX-RPC web services client applications in a non-WebSphere environment
to invoke web services that are hosted by the application server.

Before you begin

Note: You can use the Thin Client for JAX-RPC with WebSphere Application Server as a stand-alone
client run time in a pure Java SE environment, or within an OSGi environment. The Thin Client for
JAX-RPC is not supported when running within WebSphere Application Server or WebSphere
Application Client environments. In this version of the application server, with the exception of the
Administration Thin Client, other Thin Client run times provided with the application server can also
reside in the CLASSPATH and coexist with the Thin Client for JAX-RPC.

Before you can set up a JAX-RPC unmanaged client environment you will need to obtain the Thin Client
for JAX-RPC Java archive (JAR) file. To obtain the Thin Client for JAX-RPC, you must either install the
application server or the application client.

The Thin Client for JAX-RPC JAR file, com.ibm.ws.webservices.thinclient_8.5.0.jar, is located in the
app_server_root\runtimes directory. Refer to the license agreements to ensure correct usage and for
limitations on copies of the Thin Client for JAX-RPC outside of the WebSphere environment.

The Thin Client for JAX-RPC is supported in the following environments:

v IBM Software Development Kits (SDKs) Version 6.0

v Sun Java Development Kit (JDK) Version 6.0 that are provided by IBM

v non-IBM SDKs Version 6.0 with this limitation:

– Xerces limitation on non-IBM SDKs

If you are using a non-IBM SDK, because of dependencies with the Xerces implementation, you will
need to download Xerces-J version 2.6.2 and set it in the classpath before attempting to run the Thin
Client for JAX-RPC.

– Equinox 3.6 OSGi runtime environments

Chapter 48. Deploying web services 2219

About this task

Note: WS-Addressing is not supported for JAX-RPC web services in an unmanaged client environment. If
you need to use WS-Addressing, or a web service standard that relies on WS-Addressing, such as
WS-Notification, you must use the Thin Client for Java API for XML-based Web Services (JAX-WS)
instead. To learn how to setup and run the Thin Client for JAX-WS, see the Thin Client for JAX-WS
documentation.

Procedure
1. Configure the path. You can add the Java bin directories to your path by typing:

set PATH=<your_JDK_bin_directory>;%PATH%

export PATH=<your_JDK_bin_directory>:$PATH

2. Configure the classpath.

set CLASSPATH=.;<your_web_services_thin_client_install_directory>\com.ibm.ws.webservices.thinclient_8.5.0.jar;
<your_application_jars>;%CLASSPATH%

export CLASSPATH=.:<your_web_services_thin_client_install_directory>/com.ibm.ws.webservices.thinclient_8.5.0.jar:
<your_application_jars>;$CLASSPATH

v If you are using a non-IBM SDK, obtain a Xerces xml-apis.jar and xercesImpl.jar from the
Xerces web site and configure the classpath definition.

set CLASSPATH=.;<your_Xerces_install_directory>\xml-apis.jar;<your_Xerces_install_directory>
\xercesImpl.jar;%CLASSPATH%

export CLASSPATH=.:<your_Xerces_install_directory>/xml-apis.jar:<your_Xerces_install_directory>
\xercesImpl.jar:$CLASSPATH

3. Configure SSL for the client.

a. Add the following system properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props

You can obtain the ssl.client.props file from the WebSphere Application Server installation and
modify the file to suit your environment. You must, at a minimum, update the location of the
com.ibm.ssl.keyStore and com.ibm.ssl.trustStore key files in the ssl.client.props file to the
match location of your target environment. For example, use these SSL configuration settings when
running the application with a Sun JRE:

com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the
application runs. The automatic key file generation is not supported with a non-IBM product JRE.

4. Enter the following command to run your client application:

%JAVA_HOME%/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

2220 Developing WebSphere applications

Results

You have set up an unmanaged JAX-RPC client runtime environment that can be used to invoke web
services hosted on a WebSphere Application Server.

Running an unmanaged web services JAX-WS client
WebSphere Application Server provides a thin Java Platform, Standard Edition 6 (Java SE 6) web services
client runtime implementation that is based on the Java API for XML-based Web Services (JAX-WS) 2.2
specification. The Thin Client for JAX-WS with WebSphere Application Server is a stand-alone Java SE 6
client environment that enables running unmanaged JAX-WS web services client applications in a
non-WebSphere environment to invoke web services that are hosted by the application server.

Before you begin

Note: You can use the Thin Client for JAX-WS with WebSphere Application Server as a stand-alone client
run time in a pure Java SE environment, or within an OSGi environment. The Thin Client for
JAX-WS is not supported running within WebSphere Application Server or WebSphere Application
Client environments. In this version of the application server, with the exception of the
Administration Thin Client, other Thin Client run times provided with the application server can also
reside in the CLASSPATH and coexist with the Thin Client for JAX-WS.

Before you set up a JAX-WS unmanaged client execution environment, obtain the Thin Client for JAX-WS
Java archive (JAR) file. To obtain the Thin Client for JAX-WS, install WebSphere Application Server
Version 8.5 or the Application Client for WebSphere Application Server Version 8.5. The Thin Client for
JAX-WS JAR file, com.ibm.jaxws.thinclient_8.5.0.jar, is located in the app_server_root\runtimes
directory.

Copy the Thin Client for JAX-WS, com.ibm.jaxws.thinclient_8.5.0.jar file and the
endorsed_apis_8.5.0.jar files, to other machines to create a lightweight client environment that enables
communications with the product. Copies of the Thin Client for JAX-WS are subject to the same terms and
conditions of the license agreement for the WebSphere product where you obtained the Thin Client for
JAX-WS. Refer to the license agreements for correct usage and other limitations.

The Thin Client for JAX-WS is supported in the following environments:

v IBM Software Development Kits (SDKs) Version 6.0

v non-IBM SDKs V6.0 with the following limitation:

– Xerces limitation on non-IBM SDKs

You must download Xerces-J Version 2.6.2, and add the file to the classpath when setting up the
Thin Client for JAX-WS environment.

– WS-SecurityKerberos on non-IBM SDKs

WS-SecurityKerberos is not supported with the Sun JDK or other non-IBM SDKs. Applications
running in a Thin Client for JAX-WS environment that make use of WS-Security message level
protection and use Kerberos security tokens as described in the Web Services Security Kerberos
Token Profile 1.1 specification, do not correctly work on non-IBM JDKs. This limitation exists because
of a dependancy on the IBM JGSS provider that is only available within IBM SDKs.

v Equinox 3.6 OSGi runtime environments

About this task

Set up a Thin Client for JAX-WS environment by completing the following steps.

Chapter 48. Deploying web services 2221

Procedure
1. Copy the Thin Client for JAX-WS JAR file, com.ibm.jaxws.thinclient_8.5.0.jar, to other machines to

create a lightweight client environment.

2. Use the Java Endorsed Standards Override Mechanism to override APIs that are available in the JDK
on your system.

Because the Thin Client for JAX-WS with WebSphere Application ServerVersion 8.5 requires APIs that
are more current than what is available in JDKs to support JAX-WS 2.2 and JAXB 2.2
implementations, you must override the default JDK APIs in use by your system by using the Java
Endorsed Standards Override Mechanism.

Copy the app_server_root\runtimes\endorsed\endorsed_apis_8.5.0.jar file into the default directory,
JAVA_JRE\lib\endorsed. Alternatively, you can use the java.endorsed.dirs property to specify a
directory of your choice. If you choose to use an alternative directory, it is a best practice to only
include the endorsed_apis JAR file.

3. Configure the path. Enter the following command to add the Java bin directories to your path:

set PATH=<your_JDK_bin_directory>;%PATH%

export PATH=<your_JDK_bin_directory>:$PATH

4. Configure the classpath.

v Add the Thin Client for JAX-WS JAR file to the classpath definition.

Important: If the Thin Client is to use the Java Message Service (JMS), then all the JAR files that
are required must be in the classpath for JMS and for the client so that entries exist for
all the required files. Otherwise, required files will not be identified as installed and
ready for use.

set CLASSPATH=.;<your_jax-ws_thin_client_install_directory>\com.ibm.jaxws.thinclient_8.5.0.jar;
<your_application_jars>;%CLASSPATH%

export CLASSPATH=.:<your_jax-ws_thin_client_install_directory>/com.ibm.jaxws.thinclient_8.5.0.jar:
<your_application_jars>;$CLASSPATH

v If you are using a non-IBM SDK, obtain a Xerces xml-apis.jar file and xercesImpl.jar file from the
Xerces website, and configure the classpath definition.

set CLASSPATH=.;<your_Xerces_install_directory>\xml-apis.jar;<your_Xerces_install_directory>
\xercesImpl.jar;%CLASSPATH%

export CLASSPATH=.:<your_Xerces_install_directory>/xml-apis.jar:<your_Xerces_install_directory>
\xercesImpl.jar:$CLASSPATH

5. Optional: Implement policy sets for your client.

6. Configure SSL for the client.

a. Add the following system properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props

You can obtain the ssl.client.props file from the WebSphere Application Server installation and
modify the file to suit your environment. You must, at a minimum, update the location of the
com.ibm.ssl.keyStore and com.ibm.ssl.trustStore key files in the ssl.client.props file to the
match location of your target environment. For example, use these SSL configuration settings when
running the application with a Sun JRE:

com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS

2222 Developing WebSphere applications

com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the
application runs. The automatic key file generation is not supported with a non-IBM product JRE.

7. Run your client application:

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into the
JAVA_JRE\lib\endorsed default directory; for example:

%JAVA_HOME%\bin\java -Dcom.ibm.SSL.ConfigURL=file:\\\home\sample\ssl.client.props <your_client_application>

$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into a directory
other than the default JAVA_JRE\lib\endorsed directory; for example:

%JAVA_HOME%\bin\java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:\\\home\sample\ssl.client.props <your_client_application>

$JAVA_HOME/bin/java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

Results

You have set up an unmanaged JAX-WS client runtime environment to invoke web services hosted on a
WebSphere Application Server.

Testing web services-enabled clients
Once you have developed, assembled, deployed and configured your web service, you can test to confirm
your web service runs in the application server environment.

Before you begin

Before testing your web services Java client to confirm your web service runs in the WebSphere
Application Server environment, verify that the server endpoint specified in the client Web Services
Description Language (WSDL) file is running and available.

About this task

Tests are run differently depending on whether the client module is in a Java EE container or if the client is
running in the Thin Client for Java API for XML-based RPC (JAX-RPC) with WebSphere Application Server
application environment or the Thin Client for Java API for XML-Based Web Services (JAX-WS) with
WebSphere Application Server application environment.

Procedure
1. Test an unmanaged client JAR file by running your application with the java command.

For JAX-WS applications:
"%JAVA_HOME%\bin\java"
-Djava.endorsed.dirs=<your_jax-ws_thin_client_install_directory>/endorsed_apis_8.5.0.jar
-classpath
"<your_JAX-WS_thin_client_install_directory>\runtimes\com.ibm.jaxws.thinclient_8.5.0.jar;
<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

Chapter 48. Deploying web services 2223

For JAX-RPC applications:
"%JAVA_HOME%\bin\java"
-classpath
"<your_JAX-RPC_thin_client_install_directory>\runtimes\com.ibm.ws.webservices.thinclient_8.5.0.jar;
<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

For JAX-WS applications:
"$JAVA_HOME/bin/java"
-Djava.endorsed.dirs=<your_jax-ws_thin_client_install_directory>/endorsed_apis_8.5.0.jar
-classpath
"<your_JAX-WS_thin_client_install_directory>/runtimes/com.ibm.jaxws.thinclient_8.5.0.jar:
<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

For JAX-RPC applications:
"$JAVA_HOME/bin/java"
-classpath
"<your_JAX-RPC_thin_client_install_directory>/runtimes/com.ibm.ws.webservices.thinclient_8.5.0.jar:
<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

The unmanaged client application runs.

2. Test a managed JAX-RPC client EAR file or an unmanaged JAX-WS client EAR file.

a. Run your client application with the launchClient command. The following example illustrates the
use of this command:

launchClient clientEar

Results

You have a web services-enabled client that is tested. Now you can add security measures to the web
service. Security measures are optional.

2224 Developing WebSphere applications

Chapter 49. Deploying web services - RESTful services

You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on manipulating
resources. Resources can contain static or dynamically updated data. By identifying the resources in your
application, you can make the service more useful and easier to develop.

Deploying JAX-RS web applications
After you assemble your Java API for RESTful Web Services (JAX-RS) web application, you can deploy
the web application archive (WAR) package or the enterprise archive (EAR) package onto the application
server.

Before you begin

To deploy a JAX-RS web application, you need a WAR package or EAR package that is configured and
enabled for RESTful services.

About this task

Every web application must have a context root for the web application to deploy successfully. A context
root for each Web module is defined in the application deployment descriptor during application assembly
or during application deployment. The context root is combined with the defined servlet mapping from the
WAR file to compose the full URL that users type to access the servlet. The context root for each
deployed web application must be unique on the server. The context root can also be empty. For instance,
if a Web application used a context root of sample/application/, the web application request URL begins
with http://<hostname>:<port>/sample/application/.

The URL pattern of a servlet is appended to the context root of the Web application. For example, if the
context root is sample/application/ and the servlet URL mapping is rest/api/*, the base URI for the
JAX-RS web application is http://<hostname>:<port>/sample/application/rest/api.

Procedure

Deploy the JAX-RS web application WAR package or EAR package onto the application server. Read
about installing enterprise application files to learn more about deploying web applications.

Results

The JAX-RS web application is deployed and ready for your business use.

Deployment of a Java API for RESTful Web Services (JAX-RS) web application is successful if you can
access the application by typing a Uniform Resource Locator (URL) in a browser or if you can access the
application by following a link. If you cannot access your application, follow these steps to eliminate some
common errors that can occur during deployment.

Note:

Use the following tips to resolve common errors during deployment of JAX-RS web applications.

An HTTP 404 Not Found error message is sent back to the client in the server response.

To resolve this problem, take the following actions:

v Verify that the root resource classes are annotated with a @javax.ws.rs.Path annotation
and that value in the annotation is correct. Root resource classes without a @Path

© IBM Corporation 2011 2225

annotation are not registered with the JAX-RS runtime. To learn more, see the defining
the URI patterns for resources in RESTful applications information.

v Verify that the root resource class is added to the set of classes returned from the
getClasses() method for the subclasses of the javax.ws.rs.core.Application class. Classes
not registered in the subclasses of the javax.ws.rs.core.Application class are not
recognized by the JAX-RS runtime environment. To learn more, see the defining the URI
patterns for resources in RESTful applications information.

v Verify that the web.xml configuration is correct with the expected URL patterns. For
additional details, see the configuring the web.xml file for JAX-RS servlets and filters
information.

v Verify that the URL that is being used is correct and includes the context root. If you are
using a servlet, the servlet URL pattern is a part of the final URL. Using a filter might be
more suitable in your web application. For additional details, see the configuring the
web.xml file for JAX-RS servlets and filters information.

An HTTP 406 Not Acceptable error message is automatically being sent back to the client in
the server response.

To resolve this problem, take the following actions:

v Verify that the Accept HTTP request header in the incoming request is correct. To learn
more, see the Implementing content negotiation based on HTTP headers information.

v Verify that the @javax.ws.rs.Produces value on the resource method or resource class is
compatible with the incoming Accept HTTP request header. To learn more, see the
defining media types for resources in RESTful applications.

An HTTP 415 Unsupported Media Type error message is automatically being sent back to the
client in the server response.

To resolve this problem, take the following actions:

v Verify that that the Content-Type HTTP request header in the incoming request is correct
and is being sent. To learn more, see the defining media types for resources in RESTful
applications.

v Verify that the @javax.ws.rs.Consumes value on the resource method or resource class
is compatible with the incoming Content-Type HTTP request header.

An HTTP 204 No Content response status is automatically being sent back to the client in
the server response.

To resolve this problem, take the following action:

v If the object returned from a resource method is a null value, then a 204 No Content
status response code is sent back from the server runtime automatically.

For information about known problems and their resolution, see the IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

2226 Developing WebSphere applications

Chapter 50. Deploying web services - Security (WS-Security)

The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

Deploying applications that use SAML
After SAML policy sets and bindings have been configured, and SAML tokens created, the SAML token
information can be sent from the original login server to other servers using the SAML propagation feature.
You can also extract SAML attributes from an existing SAML token and then create additional tokens using
the extracted attributes.

About this task

Use the SAML propagation feature of WebSphere Application Server to send SAML token information
based on the original login to other servers using a SAML token. Four propagation methods are provided.
You can propagate the original SAML token, the SAML token identity and attributes, the WSCredential and
WSPrincipal information, or a pre-existing SAML token inserted in the RequestContext.

When SAML is installed on a WebSphere server, you can create SAML attributes using the SAML runtime
API. The SAML attributes are added to a CredentialConfig object, which is used to generate a SAML
token. The API also provides a function that extracts SAML attributes from an existing SAML token and
processes the attributes.

The following topics provide more information about deploying SAML applications.

Propagating SAML tokens
You can use various SAML token propagation methods to include SAML tokens in outbound web services
messages.

About this task

A web services client can include two types of tokens in outbound web services messages:

v Original SAML tokens the client received from inbound web services messages.

v New self-issued SAML tokens.

New SAML tokens can be generated using attributes from the original SAML tokens, or using attributes
from the WSPrincipal user name in the RunAs Subject. The web services policy configuration determines
which SAML tokens will be propagated. You can override the policy configuration by programmatically
inserting SAML tokens that you want to propagate into the Axis2 RequestContext object.

Four propagation methods are enabled. This table summarizes the propagation methods and the
associated binding options:

Table 354. Propagation methods and associated binding options. Use propagation to include SAML tokens in web
services messages.
SAML token propagation
method Binding option Implementation details

Propagate the original
SAML token.

The tokenRequest binding option is set to the value, propagation. Sends the original SAML token from the
server where the token was received to other
servers using WS-Security.

Propagate the user security
name, unique security
name, group IDs, and
security realm name.

The tokenRequest binding option is set to the value, issueByWSCredential. Overrides the default system implementation.

The self-issued SAML token contains user
security name, user unique security name,
group IDs, and security realm name that are
specified by the WSCredential object in user
security context.

© IBM Corporation 2011 2227

Table 354. Propagation methods and associated binding options (continued). Use propagation to include SAML
tokens in web services messages.
SAML token propagation
method Binding option Implementation details

Propagate the SAML token
identity and attributes.

No binding option is set. Default system implementation.

The server self-generates a new SAML token
containing the original SAML attributes,
Authentication method, and NameIdentifier or
SAML NameID, and sends the new
self-generated SAML token to downstream
servers using WS-Security. The new SAML
token issuer name, issuer signing certificate,
and lifetime are determined by the SAML
provider configuration properties.

Propagate the WSPrincipal. The tokenRequest binding option is set to the value, issueByWSPrincipal. Overrides the default system implementation.

The self-issued SAML token contains
WSPrincipal information in the RunAs
subject. The information is stored as
NameIdentity or NameID without copying
anything from the original SAML token, even
if the token exists in the subject.

Programmatically propagate
a pre-existing SAML token.

Insert the SAML token that you want to propagate into the RequestContext using the property,
com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT.

Overrides all other existing binding options.

Procedure
1. Propagate the original SAML token by setting the tokenRequest binding option to the value,

propagation, in the bindings.xml file, as shown in the steps. This method sends the original SAML
token to other servers using WS-Security. In order for the propagation to succeed, there must be a
valid SAML token in the RunAs subject. The server extracts the SAML token from the RunAs subject in
the current security context and validates the following conditions. If any of these conditions are invalid,
the WS-Security runtime environment does not propagate the SAML token, and the propagation
request fails.

v The SAML token has not expired, and the expiration time is within the time window of the
notOnOrAfter value.

v The ConfirmationMethod setting in the SAML token is the same as the confirmationMethod binding
option defined in the token generator configuration.

v The token ValueType in the SAML token matches the ValueType in the token generator
configuration.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a web services client application named JaxWSServicesSamples is deployed, and that
the Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the custom property tokenRequest and set the property value to propagation.

2. To propagate the SAML token identity and attributes using a self-issuing SAML token, modify the
outbound tokenGenerator in the bindings.xml file. This method sends the original SAML attributes,
NameIdentifier or NameID, and authentication method from the original SAML token to other servers
using WS-Security. If there is no SAML token in the subject, the server uses the WSPrincipal, stored
as NameIdentifier or NameID, to create a self-issued SAML token. This propagation method is the
default system implementation. In this method, the binding option is not set.

The following limitations apply to the bindings.xml file when you are using this propagation method:

v Do not set the tokenRequest binding option in the bindings.xml file.

v Do not set the stsURI binding option in the bindings.xml file, or set the option to this value:
www.websphere.ibm.com/SAML/Issuer/Self.

2228 Developing WebSphere applications

3. To propagate the WSPrincipal, modify the bindings.xml file as shown in the steps. Set the
tokenRequest binding option to the value, issueByPrincipal, in the bindings.xml file. Using this
method, the self-issued SAML token is always based on the WSPrincipal even if there is a SAML
token in the subject. The new SAML token contains the WSPrincipal user name as the NameId or
NameIdentifier. The token does not contain any other attributes in the WSPrincipal or WSCredential
objects.

The following limitation applies to the bindings.xml file when you are using this propagation method:

v Do not set the stsURI binding option in the bindings.xml file, or set the option to the value,
www.websphere.ibm.com/SAML/Issuer/Self.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a web services client application named JaxWSServicesSamples is deployed, and that
the Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the custom property tokenRequest and set the property value to issueByPrincipal.

4. To propagate a pre-existing SAML token by inserting SAMLToken in the RequestContext, follow these
steps. Use this method to send a SAML token that you created to downstream servers using
WS-Security. The propagation is automatically triggered if the WS-Security runtime detects a SAML
token in the RequestContext. The pre-existing token overrides any other existing binding options. To
use this propagation method, save the existing SAML token in the RequestContext by specifying
com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT as the
key, as shown in the steps.

a. Generate a SAML token using the method SAMLToken samlToken = <token type>, for example:
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

b. Save the SAMLToken to the RequestContext, for example:
Map requestContext = ((BindingProvider)port).getRequestContext();

requestContext.put("com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT", samlToken);

This propagation option can co-exist with the other propagation methods, and overrides the other
methods. If the SAML token in the RequestContext is expired, or the token expiration time is less than
current time plus the cache cushion, the WS-Security runtime environment ignores the SAML token,
and uses one of the other three propagation methods that is configured in the bindings.xml file. To
avoid using the other three propagation methods, add the following binding option to the custom
properties under callback handler in the TokenGenerator configuration: failOverToTokenRequest =
false.

5. To propagate a user's group memberships, unique security name, and realm name contained in the
com.ibm.websphere.security.cred.WSCredential object, modify the bindings.xml file as shown in the
steps. Set the tokenRequest binding option to the value, issueByWSCredential, in the bindings.xml file.
Using this method, the self-issued SAML token is always based on the WSCredential even if there is a
SAML token in the subject.

The new SAML 1.1 token contains the following assertions:

v The NameIdentifier element contains the SecurityName value from WSCredential with the
NameQualifier element set to the realm name from WSCredential. The SecurityName is obtained by
calling the WSCredential.getSecurityName() method. The realm name is obtained by calling the
WSCredential.getRealmName() method.

v All attributes have an AttributeNamespace set to com.ibm.websphere.security.cred.WSCredential
as the value.

v The GroupIds attribute contains all group names that a user belongs to. The group names are
obtained by calling the WSCredential.getGroupIds() method.

Chapter 50. Deploying web services - Security (WS-Security) 2229

v The UniqueSecurityName attribute contains the unique security name, which is obtained by calling
the WSCredential.getUniqueSecurityName() method.

v Optionally, you can assert the realm name from WSCredential by adding the includeRealmName=true
custom property in the callback handler.

The new SAML 2.0 token contains the following assertions:

v The NameID element contains the SecurityName value from WSCredential with the NameQualifier
element set to the realm name from WSCredential. The SecurityName is obtained by calling the
WSCredential.getSecurityName() method. The realm name is obtained by calling the
WSCredential.getRealmName() method.

v All attributes have a NameFormat set to com.ibm.websphere.security.cred.WSCredential as the
value.

v The GroupIds attribute contains all group names that a user belongs to. The group names are
obtained by calling the WSCredential.getGroupIds() method.

v The UniqueSecurityName attribute contains the unique security name, which is obtained by calling
the WSCredential.getUniqueSecurityName() method.

v Optionally, you can assert the realm name from WSCredential by adding the includeRealmName=true
custom property in the callback handler.

The following limitation applies to the bindings.xml file when you use the propagation method:

v Do not set the stsURI binding option in the bindings.xml file.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a Web services client application named JaxWSServicesSamples is deployed, and that the
Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the tokenRequest custom property and set the property value to issueByWSCredential.

The following example illustrates the NameIdentifier and Attribute statement from a self-issued
SAML 1.1 assertion based on WSCredential.

<saml:AttributeStatement>
<saml:Subject>

<saml:NameIdentifier NameQualifier="ldap.acme.com:9080">uid=alice,dc=acme,dc=com</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Attribute AttributeName="UniqueSecurityName" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>uid=alice,dc=acme,dc=com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="GroupIds" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>cn=development,dc=acme,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=deployment,dc=acme,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=test,dc=acme,dc=com</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The following example illustrates the NameID and Attribute statement from a self-issued SAML 2.0
assertion based on WSCredential.

<saml2:AttributeStatement>
<saml2:Attribute Name="UniqueSecurityName"

NameFormat="com.ibm.websphere.security.cred.WSCredential">
<saml2:AttributeValue>uid=alice,dc=acme,dc=com</saml2:AttributeValue>

<saml2:Attribute>
<saml2:Attribute AttributeName="GroupIds"

NameFormat="com.ibm.websphere.security.cred.WSCredential">
<saml2:AttributeValue>cn=development,dc=acme,dc=com</saml2:AttributeValue>

2230 Developing WebSphere applications

<saml2:AttributeValue>cn=deployment,dc=acme,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=test,dc=acme,dc=com</saml2:AttributeValue>

</saml2:Attribute>
</saml2:AttributeStatement>

<saml2:NameID NameQualifier="ldap.acme.com:9060">alice</saml2:NameID>

Creating SAML attributes in SAML tokens
Using the SAML runtime API, you can create SAML tokens containing SAML attributes. You can also
extract the SAML attributes from an existing SAML token.

About this task

Using WebSphere Application Server, you can create SAML attributes using the SAML token library APIs.
The SAML attributes are added to a CredentialConfig object, which is used to generate a SAML token.
The API also provides a function that extracts SAML attributes from an existing SAML token and
processes the attributes.

To create a SAML token containing SAML attributes, perform the following steps:

Procedure
1. Initialize a com.ibm.wsspi.wssecurity.saml.data.SAMLAttribute object. This creates a SAML attribute

based on an address, for example:
SAMLAttribute sattribute =

new SAMLAttribute("urn:oid:2.5.4.20", //Name
new String[] {" any address"}, //Attribute Values
null, /*XML Attributes empty on this example*/
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500", //NameSpace
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri", //format
"Address");

2. Use the SAMLTokenFactory to create a CredentialConfig object containing a SAML attribute. This
method requires the Java security permisson wssapi.SAMLTokenFactory.newCredentialConfig.

a. Create a com.ibm.wsspi.wssecurity.saml.config.CredentialConfig object and set a valid principal
name.

b. Create a SAML attribute.

c. Create a list of SAML attributes and add the SAML attribute to the list.

d. Add the SAML attribute list to the CredentialConfig object.

See the following example:
SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance("http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0");//samlTokenType

CredentialConfig credentialConfig = samlFactory.newCredentialConfig();
credentialConfig.setRequesterNameID("any name");

SAMLAttribute sattribute =
new SAMLAttribute("urn:oid:2.5.4.20", //Name

new String[] {" any address"}, //Attribute Values
null, /*XML Attributes empty on this example*/
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500", //NameSpace
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri", //format
"Address");

ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(sattribute);
credentialConfig.setSAMLAttributes(al);

3. Specifying the CredentialConfig as a parameter, use the
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory newSAMLToken method to create a
SAML token containing the attributes. This step assumes that a RequesterConfig reqData object and a
ProviderConfig samlIssuerCfg object have already been created. For more information on these
objects, read about RequesterConfig and ProviderConfig.

a. Obtain an instance of the SAMLTokenFactory.

b. Create a SAML token using the newSAMLToken method from the SAMLTokenFactory, for example:

Chapter 50. Deploying web services - Security (WS-Security) 2231

SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance("http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1");

SAMLToken aSamlToken = samlFactory.newSAMLToken(credentialConfig, reqData, samlIssuerCfg);

4. Optional: Extract SAML attributes from an existing SAML token. This step is useful to extract the SAML
attributes from a received SAML token. You can use this step when a SAML assertion is received and
the attributes contained in the assertion need to be processed.

a. Invoke the getSAMLAttributes() method with the token as a parameter to obtain a list of the SAML
attributes in the token. This method requires the Java security permission
wssapi.SAMLToken.getSAMLAttributes.

b. Apply an iterator to the list.

c. Iterate through the list and perform any additional processing required for your application.

See the following example:
List<SAMLAttribute> aList = aSAMLToken.getSAMLAttributes();
java.util.Iterator<SAMLAttribute> i = aList.iterator();

while(i.hasNext()){

SAMLAttribute anAttribute = i.next();

//do something with namespace
String namespace = anAttribute.getAttributeNamespace();

//do something with name
String name = anAttribute.getName();

//do something with friendly name
String friendlyName = anAttribute.getFriendlyName();

//process sring attribute values
String[] stringAttributeValues = anAttribute.getStringAttributeValue();

//process XML attribute values
XMLStructure[] xmlAttributeValues = (XMLStructure[]) anAttribute.getXMLAttributeValue();

}

SAML user attributes
A SAML assertion can contain user attributes relating to the principal of the SAML token. A SAML
assertion can contain multiple user attributes.

You can include user attributes in the token to communicate the address of the person who is the SAML
assertion principal. This example shows a SAML assertion containing a user attribute:
<saml:AttributeStatement>

<saml:Attribute xmlns:x500=
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"

NameFormat=
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

Name="urn:oid:2.5.4.20"
FriendlyName="Address">

<saml:AttributeValue xsi:type="xs:string">
11111 Parker Lane, Austin, Texas, 78758

</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

This table describes the parameters used in the assertion:

Parameter Description

NameFormat Specifies how the attribute is interpreted.

Name Indicates the formal name of the attribute.

FriendlyName Provides a user-friendly name for an attribute when the
Name parameter is cryptic.

2232 Developing WebSphere applications

Parameter Description

AttributeValue The value of the user attribute. The value can be a string,
or a complex XML type.

Establishing security context for web services clients using SAML
security tokens
WebSphere Application Server supports two policy set caller binding configuration options to establish
client security context using SAML security tokens in web services SOAP request messages. The two
configuration options are mapping SAML tokens to a user entry in a local user repository and, asserting
SAML tokens based on a trust relationship.

Before you begin

This task assumes that you are familiar with WebSphere Application Server SAML technology.

About this task

This task describes setting the WebSphere Application Server policy set caller binding configuration option
to establish client security context using SAML security tokens in web services SOAP request messages.
You can either map SAML tokens to a user entry in a local user repository or assert SAML tokens based
on a trust relationship. The second configuration option does not require accessing the local user
repository. Instead, the WS-Security runtime environment populates the client security context entirely
using the contents of SAML security tokens. This process is based on a trust relationship to the SAML
token issuer. If a SAML tokens specifies the sender-vouches subject confirmation method. the process is
based on a trust relationship to the message sender.

Procedure
1. Configure a policy set caller binding and select the SAML token type to represent a web services client

request.

a. Click WebSphere enterprise applications > application_name > Service provider policy sets
and bindings > binding_name > WS-Security > Callers.

b. Click New to create the caller configuration.

c. Specify a Name, such as caller.

d. Enter a value for the Caller identity local part. For example, http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV2.0, which must match the local part of the CustomToken
element in the attached WS-Security policy.

e. Click Apply and Save.

2. Optional: Map SAML security tokens to a user entry in a local user repository. Mapping to a user entry
is the default behavior when you configure a caller binding without specifying a configuration option.
Alternatively and optionally, you can select this configuration option explicitly using the following steps:

a. On the caller binding configuration page, add a Callback handler:
com.ibm.websphere.wssecurity.callbackhandler.SAMLIdAssertionCallbackHandler.

b. Add a Callback handler custom property, crossDomainIdAssertion, and set its value to false.

3. Optional: Assert SAML security tokens based on trust relationship.

a. On the caller binding configuration page, add a Callback handler:
com.ibm.websphere.wssecurity.callbackhandler.SAMLIdAssertionCallbackHandler.

b. Add a Callback handler custom property, crossDomainIdAssertion, and set its value to true.

In WebSphere Application Server Version 7.0 Fix Pack 7 and later releases, the WS-Security runtime
environment takes a SAML token Issuer name to represent the foreign security realm name.
WS-Security takes the NameID element in the case of SAML 2.0 security tokens or the NameIdentifier

Chapter 50. Deploying web services - Security (WS-Security) 2233

element in the case of SAML 1.1 security tokens to represent user security name. Alternatively, you
can explicitly specify which SAML token attribute to use to represent user security name. Moreover,
you can also specify which SAML token attribute to use to represent user group membership. Read
about SAML assertions across WebSphere Application Server security domains for a detailed
discussion of the SAML token assertion trust model and binding configuration.

Version 8.x supports propagating select security context data in SAML tokens. You must set a
tokenRequest custom property with an issueByWSCredential property value in the WS-Security binding
configuration of the web services client. Read about propagating SAML tokens for a detailed
description of this binding option. When the crossDomainIdAssertion property is set to true in Version
8.x, WS-Security checks whether a SAML token contains a SAML Attribute UniqueSecurityName with a
NameFormat element with a value of com.ibm.websphere.security.cred.WSCredential. If found,
WS-Security uses the NameQualifier attribute value of the NameID element or NameIdentifier element
to represent the user security realm name. WS-Security also uses the UniqueSecurityName attribute
value and the GroupIds attribute value to represent a unique user name and group membership. This
default behavior is different between Version 7 and Version 8.x of the product. You can add a
CallbackHandler property, IssuerNameForRealm, and set its value to true to configure Version 8.x to
preserve the Version 7 behavior. Alternatively, you can add a CallbackHandler property,
NameQualifierForRealm, and set its value to true to configure Version 8.x to always use the
NameQualifier attribute to represent the user security realm name.

Results

You have configured a web service to establish a client security context using the SAML security token in
the web services SOAP request messages.

Example

The following example illustrates the NameIdentifier and Attribute elements from a self-issued SAML 1.1
assertion based on WSCredential:
<saml:AttributeStatement>

<saml:Subject>
<saml:NameIdentifier NameQualifier="ldap.example.com:9080">uid=alice,dc=example,dc=com</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Attribute AttributeName="UniqueSecurityName" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>uid=alice,dc=example,dc=com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="GroupIds" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>cn=development,dc=example,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=deployment,dc=example,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=test,dc=example,dc=com</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The following example illustrates the NameID and Attribute elements from a self-issued SAML 2.0
assertion based on WSCredential:
<saml2:AttributeStatement>

<saml2:Attribute Name="UniqueSecurityName" NameFormat="com.ibm.websphere.security.cred.WSCredential" />
<saml2:AttributeValue>uid=alice,dc=example,dc=com</saml2:AttributeValue>
<saml2:Attribute>

<saml2:Attribute AttributeName="GroupIds" NameFormat="com.ibm.websphere.security.cred.WSCredential" />
<saml2:AttributeValue>cn=development,dc=example,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=deployment,dc=example,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=test,dc=example,dc=com</saml2:AttributeValue>

</saml2:Attribute>
<saml2:AttributeStatement>

<saml2:NameID NameQualifier="ldap.example.com:9060">alice</saml2:NameID>

2234 Developing WebSphere applications

Chapter 51. Deploying web services - Transports

Transport chains represent a network protocol stack that is used for I/O operations within an application
server environment. Transport chains are part of the channel framework function that provides a common
networking service for all components.

Invoking JAX-WS web services asynchronously using the HTTP
transport

Using the JAX-WS asynchronous response servlet
Java API for XML-Based Web Services (JAX-WS) includes an asynchronous response servlet, which is
used within the application server environment to receive responses for JAX-WS requests that are invoked
asynchronously.

Before you begin

JAX-WS provides support for invoking web services using an asynchronous client invocation by using
either a callback or polling model. Both the callback model and the polling model are available on the
Dispatch client and the dynamic proxy client. When a JAX-WS client that is running within the application
server environment uses an asynchronous client invocation, the responses are received by the
asynchronous response servlet. To learn how to use the asynchronous client invocation model, read about
invoking JAX-WS web services asynchronously.

About this task

The asynchronous response servlet is used within an application server to handle incoming asynchronous
responses. The servlet uses the same secure and unsecure HTTP ports assigned to the application
server. The servlet starts automatically when the application server starts. Because the asynchronous
response servlet does not perform role-based authorization checks, only user authentication checks are
performed.

The asynchronous response servlet supports both the HTTP and HTTPS protocols. Since the servlet
inherits the SSL configuration of the application server, configuring the application server also configures
the servlet. The asynchronous response servlet is not affected by the custom HTTP and SSL port
properties used by the asynchronous response listener and only runs on the application ports for the
application server.

Procedure
1. Determine if you want the JAX-WS client to use the HTTP or HTTPS transport mechanism.

2. Configure the web container transport chains to modify the SSL configuration of the application server.
The servlet inherits these settings. Read about configuring transport chains to learn how to configure
the web container transport chains.

Results

The asynchronous response servlet is configured to enable your JAX-WS clients to receive asynchronous
responses on the HTTP or HTTPS transport protocol.

Note: When you add a new application server to your environment, the asynchronous response servlet is
automatically restarted so the deployment.xml file can be updated for the new application server. If
your application receives an incoming response when the asynchronous response servlet is
restarting, the incoming response might fail with an HTTP 404 error.

© Copyright IBM Corp. 2012 2235

Note: JAX-WS services do not successfully return asynchronous responses to clients that are installed in
application security-enabled WebSphere Application Servers. Because the Asynchronous Response
Servlet for WebSphere Application Server, which handles asynchronous web services responses, is
protected when application security is enabled, you must supply a credential together with the
JAX-WS service incoming response. Attach the HTTPTransport policy set binding to the JAX-WS
service in the service attachment. Additionally, enter a valid basic authentication user ID and
password, which are defined in the user registry of the client, into the Basic authentication for
outbound asynchronous service responses field.

Using the JAX-WS asynchronous response listener
Java API for XML-Based Web Services (JAX-WS) includes an asynchronous response listener, which is
used within the Thin Client for JAX-WS and application client environments to receive responses for
requests that are invoked asynchronously.

Before you begin

JAX-WS provides support for invoking web services using an asynchronous client invocation by using
either a callback or polling model. Both the callback model and the polling model are available on the
Dispatch client and the dynamic proxy client. When the JAX-WS client uses an asynchronous client
invocation, the responses are received by the asynchronous response listener. To learn how to use the
asynchronous client invocation model, read about invoking JAX-WS web services asynchronously.

About this task

The asynchronous response listener is used within a Web services client to handle incoming
asynchronous responses. You can use the listener in Thin Client for JAX-WS environments and application
client environments. By default, the listener opens a random port to listen for asynchronous responses or
you can optionally configure a specific port for the listener to use. The listener starts automatically in the
JAX-WS run time when the JAX-WS client is configured to expect an asynchronous response.

There are two versions of the asynchronous response listener. The unsecure version of the asynchronous
response listener supports the HTTP protocol, and the secure version of the asynchronous response
listener supports the HTTPS protocol. The correct asynchronous response listener is automatically started
based on the particular transport used by the JAX-WS client. To ensure that the correct Secure Sockets
Layer (SSL) handshaking occurs between the asynchronous response listener and the application server,
configure the SSL properties using the SSL transport policy or the Java system properties.

For web services clients running in the application server environment, use the asynchronous response
servlet for receiving asynchronous responses.

Procedure
1. Determine if you want the JAX-WS client to use the HTTP or HTTPS transport mechanism.

2. Configure the asynchronous response listener for unsecure communication using HTTP.

You can configure the HTTP port for the asynchronous response listener as a Java system property or
as a custom property within the transport policy. Properties that are defined in the policy set binding
files override any Java system property that might have been defined.

a. Define the com.ibm.websphere.webservices.http.listenerPort property as a Java system
property. If this property is set as a Java system property, then all asynchronous response listeners
within that Java Virtual Machine (JVM) are affected.

b. Define the com.ibm.websphere.webservices.http.listenerPort property within the HTTPTransport
transport policy set bindings files. If this property is set as a custom property within a transport
policy set binding, then only the services for which the policy set has been configured are affected.

3. Configure the asynchronous response listener for secure communication using HTTPS.

2236 Developing WebSphere applications

You can configure the HTTPS port for the asynchronous response listener as a Java system property
or as a custom property within the transport policy.

a. Define the com.ibm.websphere.webservices.https.listenerPort property as a Java system
property. If this property is set as a Java system property, thenall asynchronous response listeners
within that JVM are affected.

b. Define the com.ibm.websphere.webservices.https.listenerPort property within the SSLTransport
transport policy set bindings files. If this property is set as a custom property within a transport
policy set binding, then only the services for which the policy set has been configured are affected.

Results

Your JAX-WS web services client is configured to use the asynchronous response listener to receive
incoming asynchronous responses.

Example

The following examples demonstrate how to enable the asynchronous response listener when defining the
custom port of 9999:

v Use the following Java command to configure the custom HTTP port for the asynchronous response
listener in a thin client environment:
- java.exe -Dcom.ibm.websphere.webservices.http.listenerPort=9999 com.ibm.websphere.my_program

v Use the following launchClient command to configure the custom HTTP port for the asynchronous
response listener in an application client container:
- launchClient.bat MyClient.ear -CCDcom.ibm.websphere.webservices.http.listenerPort=9999

v The following is an excerpt from an HTTPTransport policy binding.xml file that includes the
asynchronous response listener properties:

</wsp:Policy>
</wsp:ExactlyOne>

</wsp:All>
<wshttp:outAsyncResponseProxy>
<wshttp:connectInfo host="" port=""></wshttp:connectInfo>

<wshttp:basicAuth userid="" password=""></wshttp:basicAuth>
</wshttp:outAsyncResponseProxy>
<wshttp:properties>

<wshttp:customProperty name="com.ibm.websphere.webservices.http.listenerPort" value="9999" />
</wshttp:properties>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

What to do next

Run the JAX-WS client with the specified asynchronous response listener options.

Invoking JAX-WS web services asynchronously using the SOAP over
JMS transport

Using the JAX-WS JMS asynchronous response message listener
Java API for XML-Based Web Services (JAX-WS) includes a Java Message Service (JMS) asynchronous
response message listener, which is used to receive responses to asynchronous JAX-WS requests that
use the JMS transport. The JMS asynchronous response message listener is used in the application
server and application client environments.

Before you begin

JAX-WS provides support for invoking web service operations asynchronously by using either a callback or
a polling model. When the JAX-WS client uses the JMS transport to invoke asynchronous operations, the

Chapter 51. Deploying web services - Transports 2237

responses are received by the asynchronous response message listener. To learn how to use the JAX-WS
asynchronous client invocation model, read about invoking JAX-WS web services asynchronously.

About this task

The JMS asynchronous response message listener is used within the web services client environment to
receive incoming asynchronous responses when the client application is using the JMS Transport. The
listener requires a connection factory and a queue to function correctly. Begin by configuring the
connection factory and queue, and then specify the JNDI names of the connection factory and queue to
the listener by setting Java system properties. The environment in which the client is running determines
how the system properties are set.

The JMS asynchronous response message listener is started automatically by the web services client
runtime environment when the client invokes the first asynchronous JAX-WS operation using the JMS
transport.

The connection factory and the queue configured with the asynchronous response message listener is
used for all requests that are invoked within a particular Java process such as for the application server or
an application client container. You can share the connection factory among different Java processes.
However, you cannot share a queue among Java processes.

Procedure
1. Determine if you want the JAX-WS client to use the JMS transport mechanism.

2. For each Java process that will use JMS as a transport for asynchronous JAX-WS requests, configure
the connection factory and queue that are used by the JMS asynchronous response listener for that
process. You can share a connection factory among multiple Java processes, but you cannot share a
queue among Java processes.

3. For each Java process, set the com.ibm.websphere.webservices.jms.AsyncReplyQueueName and
com.ibm.websphere.webservices.jms.AsyncReplyCFName Java system properties to specify the JNDI
names of the queue and connection factory that are used by the JMS asynchronous response
message listener for that process.

If the JNDI name of the queue is the default value, jms/DefaultAsyncReplyQueue, then you do not
need to set the AsyncReplyQueueName property. Likewise, if the JNDI name of the connection factory
is the default value, jms/DefaultAsyncReplyCF, then you do not need to set the AsyncReplyCFName
property as well.

If your client runs within the application server environment, then set the properties as application
server system properties by using the administrative console or the wsadmin command.

If your client runs within the application client container environment, then you should set the
properties by using the –CCD option on the launchClient command line.

Results

Your JAX-WS web services client is configured to use the JMS asynchronous response message listener
to receive asynchronous response messages when using the JMS transport.

Example

Suppose that you have a JAX-WS web services client that runs in the application client container
environment and uses the JMS transport to communicate with the server. Suppose also that the client
invokes asynchronous JAX-WS operations. You can create a connection factory with the JNDI name,
jms/MyAppCF, and a queue with the JNDI name, jms/MyAppAsyncReplyQueue. When you invoke the client
with the launchClient command, specify the JNDI names of the queue and connection factory as
illustrated in the following command:

2238 Developing WebSphere applications

launchClient MyAppClient.ear \
-CCDcom.ibm.websphere.webservices.jms.AsyncReplyQueueName=jms/MyAppReplyQueue \
-CCDcom.ibm.websphere.webservices.jms.AsyncReplyCFName=jms/MyAppCF \
<application arguments>

Chapter 51. Deploying web services - Transports 2239

2240 Developing WebSphere applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 2241

2242 Developing WebSphere applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 2243

http://www.ibm.com/legal/copytrade.shtml

2244 Developing WebSphere applications

Index

A
access intent service 138
access intents

isolation levels 140
update locks 140

addCompUnit command 2111
Addressing annotations 1351
alarms 25
Apache Wink REST client

implementation
clients 1447

API
EJB queries

dynamic query service 293
APIs

AccessIntent 462
JavaMail 561
JAX-WS

dynamic client development 1204
programmatic security development 895
propagation

SAML tokens 1483
SAML token library 1469
token creation

SAML sender-vouches token 1481
web services encryption

WSSEncryptionPart 1501, 1544
web services security 1667

consumer signing verification 1640
encryption configuration 1489, 1532
generator security tokens 1526, 1569
generator signing information configuration 1503,

1546
generator token attachment 1519, 1562
message authenticity 1519, 1562
message confidentiality 1628
message protection 1627
message-level security 1486
programming model 1458
signature verification 1644
signing information configuration 1504, 1547
signing information verification 1641
SOAP messages 1489, 1531
WS-Trust client 1464
WSS 1669
WSSDecryption 1630
WSSDecryptPart 1636
WSSEncryption 1492, 1534
WSSSignature 1508, 1516, 1551, 1559
WSSSignPart 1518, 1560
WSSSignPart API 1512, 1554
WSSVerfyPart 1647
WSSVerification 1652
WSSVerifyPart 1654

application clients
data access 147

application login
web customizations 907

application notification service
usage 21

applications
development

JNDI 611
assembly

JAX-RS 1454
web services

clients 1294
web services applications 1281

archive files 1286, 1287
enterprise beans 1282
JAR files 1283
Java code 1284
WSDL files 1285

assets
importing 2132
settings 2134

uploading 2133
Asynchronous API 1040
authentication

client configuration
for signatures 1735

JASPI
administrative console 975
custom implementations 970

JASPI development
custom providers 971

JASPI enablement
application deployment 977
applications 980

JASPI modification
administrative console 976

server configuration
basic authentication handling 1725
identity assertion handling 1730
LTPA tokens 1746
signature validation 1739

authentication alias 2095, 2098

B
basic authentication

client configuration 1720
authentication information collection 1722

server configuration
validation 1726

web services security
Version 5.x applications 1719

batch applications
compiler class path 1087

bindings
client security configuration

assembly tool 1702
server security configuration

assembly tool 1705

© Copyright IBM Corp. 2012 2245

Blueprint container 664
Blueprint resource references 2098
bundle repositories 659
bundle symbolic name 2111
business relationships 1790
business-level applications

SCA 2140
administrative console 2141, 2171

business-level applications 656, 673, 678, 2093,
2095, 2098

C
cache

web services client tokens
SAML 1485

cachespec.xml file 243, 245
CDI 1109

development 1109
CEA

Asynchronous API 1040
development 113

Asynchronous Invocation API 1039
JSF 289 1036
JSR 289 1038
SIP applications 113
SIP headers 114

classes
primary -key 349

client bindings
development 1256

client bundles 653
client detection support 1058
client policies 1338, 1340, 1342, 1343
client_types.xml file 1059, 1060
collection certificate stores

client configuration
assembly tool 1683

server configuration
assembly tool 1683

commands
create stubs 312
enabling endpoints 1290
endptEnabler 1290
JAX-WS

wsgen 1164
JAX-WS applications

wsimport 1184
JAXB

xjc 1131
schemagen

JAXB applications 1133
wsappid 484
wsdbgen 495
wsenhancer 485
wsmapping 487
wsreversemapping 490
wsschema 492

composite bundles 647, 659, 2093, 2098, 2111
composition units

settings 2149

composition units 2093, 2095, 2098
configurations

page list servlet clients 1056
consumer signing

information verification
message protection 1640

context
caller 530, 547

Context and Dependency Injection 1109
cookies

HTTP cookie retrieval
example 950

CosNaming
developing applications 627

custom object pools
settings 638

custom operating selectors
invoking operations 793

custom properties
CDI 1110

D
decryption

methods 1638
methods for consumer bindings 1633
web services security

WSSDecryptPart 1636
deployment

business-level applications 2131
deployment descriptors

development
JAX-WS clients 1202

webservices.xml 1243, 1252
directory

installation
conventions 236, 502, 643, 1139, 1162, 1172,

1177, 1191, 1196, 1439, 2070, 2076, 2081

E
EBA assets 2093, 2095, 2098, 2111
EBA files 656, 673, 678, 2093, 2098
EJB applications

programmatic API development 903
EJB bundles 661
EJB dependencies

configuring 647
EJB JAR files

converting to OSGi 661
EJB queries

deployment 294
development 263
dynamic query service 286

access intents 293
performance 292

limitations 280
restrictions 280
subqueries 280

EJB references
SCA references 833

2246 Developing WebSphere applications

EJB references 2098
encoding

autoRequestEncoding 1066
autoResponseEncoding 1066

encryption
adding parts

SOAP messages 1501, 1544
methods 1499, 1542
methods for generator bindings 1495, 1538
SOAP headers 1670

endpoint references 1299, 1302, 1304, 1308, 1310,
1313, 1314, 1353

endpoint URL information
configuration

for HTTP bindings 2210
JMS bindings 2212

HTTP 2211
Enterprise applications

converting to OSGi 661, 662, 663
Converting to OSGi 660

enterprise beans
application code

example 905
Enterprise JavaBeans (EJB)

and OSGi 670
assembling 415, 449
deployment 2078

overview 2079
development 297, 340, 345

embeddable EJB container 349
enterprise beans

deployment 2075
development 299

in WAR modules 450
JNDI names for beans 461
metadata annotations 305
modules 449
references 460
settings 2075

asynchronous methods 375, 391
binding EJB business settings 462

specification 346
troubleshooting

EJBDEPLOY relationships 2081
entity beans

applying lightweight local mode 319
assembling 464
development 317, 462
read-only usage 320

entity keys 1778
events

application life cycle 1067
exceptions

applications 300
data access 200

F
Federal Information Processing Standard

JSSE files 918
file serving 1116

files
cachespec.xml file 243
client_types.xml 1059, 1060
generated .java files 1072

packages and directories 1072
plugin.xml file 1107
web.xml 1114

FIPS
JSSE files 918

form login processing
servlet filters configuration 913

G
GetMessages operation 1410

H
HTTP basic authentication 1573
HTTP session management

development 1118
in servlets 1118

HTTP sessions
assembling 1120

I
IBM JAX-RS

getting started 1435
interface attribute 649, 653
interfaces

AccessIntent 463
web services security

provider programming 1677

J
JAAS Subject

token retrieval 1675, 1676
JAS-WS

client applications
security tokens 1673

JASPI
authentication provider deletion

administrative console 977
JASPI authentication providers 978, 979
Java 2 security

API protection
application development 874

converting to OSGi 663
editing policies

PolicyTool 875
policies

was.policy file 883, 888
policy files

configuration 877
resource protection

application development 874
static policy files

configuration 890

Index 2247

Java Servlet 3.0
considerations 1062
methods 1063

JavaServer Faces 1095
JAX-RPC

applications 1401
assembly properties 1265
clients 1403, 1407
configuration

client deployment descriptor 1259
custom binding providers 1270
custom data binders 1268
deployment

web services client 1259
development

Java artifacts 1248
message-level security 1675
web services 1220
with WSDL files 1247

extensions implementation 1267
interfaces

CustomBinder 1273
receiving implicit SOAP headers 1278
sending implicit SOAP headers 1276
sending transport headers 1279
services 1407, 1408, 1409, 1410, 1411
transport headers retrieval 1280
usage patterns

custom data binders deployment 1275
web services client deployment 1259
web services client development 1256

JAX-RPC
clients 1409, 1410
services 1403

JAX-RPC web services
HTTP basic authentication

assembly tool 1680
programmatic configuration 1457

JAX-RS
configuration

using methods 1441
deployment 2225
development 1135

web applications 1435
development environment setup 1437
disabling runtime environments 1452
methods 1441
planning 1421
RESTful services 1421
web application configuration 1441

JAX-WAS web services
message-level security 1458

JAX-WS
application deployment model 2201
application development

token retrieval 1674
applications 1159, 1401, 1408
asynchronous response servlet usage 2235
client development 1199
development

WSDL files 1180

JAX-WS (continued)
EJB implementation 1179, 1198
invocation

HTTP transports 2235
JavaBeans implementation 1179, 1198
listeners

JMS asynchronous response message 2237
third-party engine 2202
transport headers retrieval 1218
web services invocation 1206, 1354

SAOP over JMS transports 2237
JAX-WS

applications 1400, 1403
JAXB

JAXB class generation 1128
runtime environment

marshalling 1130
unmarshalling 1130

schemagen tooling 1124
xjc tooling 1128
XML data binding 1123
XML schema files 1124

JAXR provider 1792, 1795, 1797, 1798, 1799
JDBC

dynamic objects 169
mediator paging 179
mediator serialization 180
mediator service 166
static objects 169

JMS
binding settings

SCA composites 2153
JMS bindings

invoking operations 791
JMS resources

deployment 785
JMS user properties

invoking operations 792
JNDI

business interface 621
CosNaming mapping 627
EJB home 621
interoperability 624
lookup caching 625
settings

cache 625
JPA

access intent usage 506
assembling 504, 505
bean validation 37, 475
database generation 499
development 470, 472
mapping persistent properties 500

JSF files
configuration 1117
deployment 2185
development 1095
JWL 1096
widget library 1096

JSP classes
file generation 1069

2248 Developing WebSphere applications

JSP files
deployment 2185
development 1069

JVM arguments 347

K
key generators 1778
key spaces 1778
keys

locator configuration 1684

L
listeners

application life cycle 1067
development 19

login modules
custom authorization tokens

example 941
LTPA 1748

server configuration
authentication information validation 1747

token authentication
client configuration 1744
method information collection 1745

M
mail sessions

troubleshooting 561
mappings

JAX-WS 1167
ports 2208

message content filters 1402, 1403
message-driven beans

development 343, 407, 600
message-level security

development
JAX-WAS web services 1458

messages
asynchronous response listener usage 2236

Meta-Persistence header 664
methods

authentication
identity assertion 1724, 1729

BasicAuth 1721
decryption 1638

client configuration 1717, 1718
encryption 1499, 1542
identity assertion 1728
Java Servlet 3.0 1063
response signature verification

clients 1650
server configuration

response encryption 1715
servlet security 898
signature authentication 1736
XML encryption

web services security 1708

N
naming

applications 611
CosNaming 627

default initial context 616
EJB home

CosNaming 630
initial context

CosNaming 628
provider URL 619

provider URL 620
non-SCA applications

running as SCA implementations 823
notification consumer web service skeletons 1413
NotificationConsumer portType 1399, 1413

O
object pool managers 634

MBeans 640
object pool services

settings 639
object pools

MBeans 640
resources for learning 639
settings 637
usage 633

ORB
development 641
services 641

OSGi
applications

SCA 2178
SCA component implementations 834

OSGi application design guidelines 647
OSGi applications 660, 661, 662, 663, 670
OSGi applications

deploying 2093
developing 647, 648

OSGi bundles 662, 663
debugging 2119, 2122

OSGi bundles 649, 653
OSGi services 647, 649, 656

P
page lists 1058
password encryption

plug points 968
plugpoint enablement 967

permissions
policies

app.policy file 879
client.policy file 893
filter.policy files 881
java.policy file 891
library.policy file 886
server.policy file 892
spi.policy file 885

Index 2249

persistence archives
converting to OSGi 663

persistent beans
container-managed 299

plugin.xml file 1107
policies

access intent 465
configuration

WS-Addressing 1327
policy sets 1315, 1319, 1330, 1333, 1337, 1338, 1342,

1343
attaching to service artifacts 1329
settings

attaching 2145
policy sets and bindings

references 2162
service provider 2160

portlets
assembling 698

programmatic security
application development 873

proxy server
web services

endpoints 743
publisher registration role 1403, 1411
pull style consumer role 1410
pull style notification 1409

R
RAR

bean validation 35, 117
installation 2050, 2052, 2072, 2074

reference element 647, 670
RegisterPublisher operation 1408, 1411
registries

custom properties 867
getGroups methods 867
getUsers methods 867
stand-alone custom development 865

reliable messaging 1419
sequences 1416

reliable web service applications 1415
request decryption

server configuration
decryption methods 1712
message parts 1711

request digital signature
server configuration 1693

request digital signatures
server configuration 1691

request encryption
client configuration

message parts 1709
method information collection 1710

request signing
client configuration 1687, 1689
client methods 1514, 1557

resource adapter archive
installation 2050, 2072

resource adapters
installation 2051, 2073

resource environment references 2098
resource references 2098, 2111
response digital signatures

client configuration 1698, 1700
response encryption

server configuration 1714
response signing

server configuration 1695
digital signature methods 1697

RESTful applications
HTTP headers 1427
HTTP response codes 1427
media types definitions 1428
parameter definitions 1431
resource definitions 1422
resource methods definition 1425
URI pattern definitions 1423

RESTful web services
implementation

clients 1450
roles

RunAs
SCA composites 2149

root registries 1778
RunAs role 2098

S
SAML

token propagation 2227
tokens

attribute creation 2231
user attributes 2232
web services

client token cache 1485
SAML applications

deployment 2227
development 1463

sample OSGi applications 672
SCA

annotations 832
message-driven beans 830
session beans 828
web modules 827

applicaitons
EJB bindings 726

applications
atom bindings 795
HTTP bindings 800
Spring containers 840, 1043

business exceptions 722
business-level applications

administrative console 2171
component implementations 825
composite

implementation type 701
composite artifacts

updating 2173
composite definitions 2174

2250 Developing WebSphere applications

SCA (continued)
default bindings 731, 735
deployment 2138
domain information 2175
environments

bindings 729
implementation packaging 2180
implementations

Java EE components 821
Java EE composition unit relationships 2144
Java serialization

default bindings 733
JMS bindings 758

references and services 2175
request and response wire formats 779
transactions 784
wire formats 766

message types
binding wire formats 771

OSGi applications 837
references 809
security

atom bindings 797
services

default bindings 735
development 703, 708
HTTP requests 811
process server 813

services clients
development 712

settings
component references 2159
component services 2159
composite components 2158
HTTP endpoint URLs 2157
service clients 2168
service provider 2164
virtual hosts 2144

Spring implementation features 844
web services bindings 736

SOAP over JMS 743
schedulers

scheduling tasks 845
task development 845

secure transports
programming interfaces

JCE 914
JSSE 914

security
authorization token implementation

example 938
SCA

mapping roles to users 2147
services

HTTP bindings 802
settings

web authentication 901
security attributes

propagation
custom Java serialization objects 958

security infrastructure
extension development 865

servers
identity assertion validation 1732

service provider policies 1338, 1343
servlet filtering 1065
servlet filters

for form login processing 910
servlets

development 1056
session beans

development 377
signature authentication

client configuration
authentication information collection 1737

server configuration 1738
Version 5.x web services 1734

signature confirmation 1672
single sign-on

implementation
example 945

token login module
example 948

tokens
security attribute propagation 943

SIP 1028
applications 113
classes 1031
deployment 2183

wsadmin scripting 2184
development 1027

PRACK 1027
headers 114
routers 1037
servlets 1030

proxy servlet 1035
sendOnServlet class 1034
simple proxy 1032

SOAP
changing message encoding 1258

SPIs 1462
Spring application 664
Spring applications 1043
Spring framework 664
SQLJ profiles 2064
SSL transport configuration 1343
startup beans 981

enabling 982
startup beans services

settings 983
Stub object 1304
subscriber client applications 1401
subscriber role 1407, 1409

T
technical models 1789, 1791
timer managers

application assembly 26, 27

Index 2251

token login modules
custom authentication

example 957
custom propagation

example 935
tokens

consumers
configuration 1662
message protection 1656

custom authorization implementation
security attribute propagation 936

implementation
security attribution propagation 929
token propagation 931

implementations
token authentication 953

pluggable configuration 1741
Version 5.x web services 1741

SAML bearer
API 1474

SAML bearer tokens
external STS 1598
self-issued 1573

SAML holder-of-keys
API 1477
asymmetric keys 1594
external STS 1617, 1618
symmetric keys 1592

SAML sender-vouches
external STS 1604, 1611
message-level protection 1580
SSL transport protection 1587

security attribute propagation
authentication token 952
propagation token 930

web services security 1619
transactional recoverable messaging 1418
transport policies 1337
trust anchors

configuration
assembly tool 1681

trust associations
custom interceptor development 962
interceptor support

subject creation 965

U
UDDI registry 1782

application development 1771, 1772, 1774
user interface 1786, 1788, 1789, 1791

utility JAR files
converting to OSGi 662

V
virtual hosts 2095, 2098

W
web application archive files

converting to OSGi 661
web application bundles 661
web applications

assembling 1114
settings

initial parameters for servlets 1064
web services

client bindings 2207
client bindings configuration 2206
clients

port information 2209
deployment 2197
enabling

EAR files 1289
settings

options to perform web services
deployment 2198

publish WSDL compressed files 2217
web services applications

application server deployment 2197
deployment

for clients 2205
Web Services Base Notification specification 1403
web services security

application development 1457
configuration 1665

during application assembly 1679
default policy sets 1324
HTTP outbound transport communications

assembly tool 1679
identity assertion

Version 5.x web services 1727
SAML bearer tokens

self-issued 1573
Version 5.x applications 1741

identity assertion authentication 1727
signature authentication 1734

web.xml file 1114, 1445
configuration

for JAX-RS servlets 1443
webservices.xml

configuration 1243, 1252
JAX-WS application development 1176, 1195

widget implementation
JavaScript

atom bindings 799, 805
HTTP bindings 804, 805

wire format handlers
creating 815
errors 817

work managers
application assembly 26, 28

work objects
development 15

WS-Addressing 1315, 1357, 1359
WS-MetadataExchange 1330, 1337, 1343
WS-MetadataExchange requests 1337, 1343
WS-Notification

consumers 1399

2252 Developing WebSphere applications

WS-Notification (continued)
publishers 1411

WS-Notification
consumers 1403
subscriptions 1407

WS-Policy 1315, 1337, 1350
WS-Policy assertion 1315
WS-ReliableMessaging 1415, 1418

administering 1419
policy sets 1415
sequences 1416

wsadmin commands
web services deployment

wsdeploy 2199
wsdeploy 2199

WSDL
bindings enforcement

for JAX-WS web services 1174, 1193
exporting documents 2177

WSDL (continued)
file publication 2216

using URLs 2218

X
XML basic authentication

configuration
Version 5.x web services 1719

XML digital signatures
configuration

Version 5.x web services 1681
web services security 1685

XML encryption
configuration

Version 5.x web services 1707
XSD

exporting documents 2177

Index 2253

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Developing ActivitySessions
	Developing an enterprise application to use ActivitySessions
	Developing an enterprise bean or enterprise application client to manage ActivitySessions
	ActivitySession service application programming interfaces

	Assembling applications that use ActivitySessions
	Setting EJB module ActivitySession deployment attributes
	Setting Web module ActivitySession deployment attributes

	Chapter 2. Developing Application profiling
	Using the TaskNameManager interface
	TaskNameManager interface

	Assembling applications for application profiling

	Chapter 3. Developing Asynchronous beans
	Developing work objects, event listeners, and asynchronous scopes
	Developing work objects to run code in parallel
	Work objects
	Example: Creating work objects

	Developing event listeners
	Using the application notification service
	Example: Firing a listenerCountChanged event

	Developing asynchronous scopes
	Asynchronous scopes
	Alarms
	Subsystem monitors
	Asynchronous scopes: Dynamic message bean scenario

	Assembling timer and work managers
	Assembling applications that use work managers and timer managers
	Assembling applications that use a CommonJ WorkManager
	Assembling applications that use timer managers
	Assembling applications that use asynchronous beans work managers

	Chapter 4. Developing applications that use the Bean Validation API
	Bean Validation
	Bean validation built-in constraints
	Using bean validation in the product
	Bean validation in RAR modules
	Bean validation in JPA

	Chapter 5. Developing Client applications
	Developing client applications
	Choosing a type of client
	Installing, updating, rolling back, and uninstalling the Application Client for IBM WebSphere Application Server
	Installing the Application Client using the GUI
	Installing the Application Client using response files
	Installing the Application Client using the command line
	Installing and removing features in the Application Client
	Installing fix packs on the Application Client using the GUI
	Uninstalling fix packs from the Application Client using the GUI
	Uninstalling the Application Client using the GUI
	Uninstalling the Application Client using response files
	Uninstalling the Application Client using the command line

	Developing stand-alone thin client applications
	Using JMS resources

	Developing a Java EE client application
	Java EE client application class loading
	Assembling Java EE client applications

	Developing a Java thin client application
	Developing ActiveX client application code
	Example: Using an ActiveX client application to access a Java class or object
	Example: ActiveX client application calling Java methods
	ActiveX client programming best practices
	ActiveX client programming, tips for passing arrays
	ActiveX client programming, Java field programming tips
	ActiveX client programming, JClassProxy and JObjectProxy classes
	ActiveX client programming, Java virtual machine initialization tips
	ActiveX to Java primitive data type conversion values
	ActiveX client programming, handling error codes
	ActiveX client programming, threading tips
	Example: Enabling logging and tracing for activeX client applications
	Example: Viewing a System.out message

	Developing applet client code
	Example: Applet client tag requirements
	Example: Applet client code requirements

	Running the Pluggable Application Client code
	Installing and uninstalling the Pluggable Application Client for WebSphere Application Server

	Example: Enabling logging and tracing for application clients

	Chapter 6. Developing Communications Enabled Applications
	Developing communications enabled applications
	Developing SIP communications applications
	Domain Resolver API
	SIP proprietary header fields

	Chapter 7. Developing data access resources
	Developing data access applications
	Developing data access applications
	Using Bean Validation in RAR modules
	JCA 1.6 support for annotations in RAR modules
	Extensions to data access APIs
	Recreating database tables from the exported table data definition language
	Container managed persistence bean associated technologies
	Manipulating synchronization of entity beans and datastores
	Avoiding ejbStore invocations on non-modified EntityBean instances
	Resource reference benefits
	Accessing data using Java EE Connector Architecture connectors
	JDBC application cursor holdability support
	Data access bean types
	Accessing data from application clients
	Service Data Objects version 2.1.1
	Data access with Service DataObjects, API versions 1.0 and 2.01
	Using the Java Database Connectivity data mediator service for data access
	Using the EJB data mediator service for data access
	Developing a custom DataStoreHelper class

	Example: Setting client information with the setClientInformation(Properties) API
	Changing the error detection model to use the Exception Checking Model
	Exceptions pertaining to data access
	Directory conventions

	Assembling data access applications
	Creating or changing a resource reference
	Assembling resource adapter (connector) modules

	Chapter 8. Developing Dynamic caching
	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page

	cachespec.xml file
	Example: Configuring the dynamic cache service
	cacheinstances.properties file

	Chapter 9. Developing Dynamic and EJB query
	Developing applications that use EJB query
	EJB query language
	FROM clause
	Inheritance in EJB query
	Path expressions
	WHERE clause
	Scalar functions
	Aggregation functions
	SELECT clause
	ORDER BY clause
	UNION clause operation
	Subqueries
	EJB query language limitations and restrictions
	EJB query compatibility issues with SQL
	Database restrictions for EJB query
	Rules for data type manipulation in EJB query
	EJB query: Reserved words
	EJB query: BNF syntax
	EJB specification and WebSphere query language comparison

	Using the dynamic query service
	Example: Using the remote interface for Dynamic query
	Example: Using the local interface for Dynamic query
	Dynamic query performance considerations
	Access intent implications for dynamic query
	Dynamic query API: prepareQuery() and executePlan() methods
	Dynamic and deployment EJB query services comparison

	Chapter 10. Developing EJB applications
	Developing EJB 2.x enterprise beans
	Partial column update feature for container managed persistence
	Setting partial update for container-managed persistent beans

	Developing EJB 3.x enterprise beans
	Enterprise JavaBeans (EJB) 3.1 specification
	Enterprise JavaBeans (EJB) 3.0 specification
	Application exceptions
	EJB 3.x module considerations
	EJB metadata annotations
	EJB 3.x interceptors
	Create stubs command
	Create stubs command

	Developing entity beans
	Defining data sources for entity beans
	Lightweight local operational mode for entity beans
	Applying lightweight local mode to an entity bean
	Marker interface technique

	Developing read-only entity beans
	Example: Using a read-only entity bean

	Creating timers using the EJB timer service for enterprise beans
	Clustered environment considerations for timer service
	Timer service commands

	Developing enterprise beans
	Developing message-driven beans
	Enterprise bean development best practices
	WebSphere extensions to the Enterprise JavaBeans specification
	Setting the run time for batched commands with JVM arguments
	Setting the run time for deferred create with JVM arguments
	Setting persistence manager cache invalidation
	Setting the system property to enable remote EJB clients to receive nested or root-cause exceptions
	Unknown primary-key class

	Developing applications using the embeddable EJB container
	Embeddable EJB container
	Running an embeddable container
	Embeddable EJB container functions
	Embeddable EJB container configuration properties

	Configuring EJB 3.1 session bean methods to be asynchronous
	Configuring remote asynchronous EJB method results
	Configuring EJB asynchronous methods using scripting
	EJB 3.1 asynchronous methods
	Developing client code that calls EJB asynchronous methods
	Client programming model for EJB asynchronous methods

	Bean implementation programming model for EJB asynchronous methods
	EJB container work manager for asynchronous methods
	EJB asynchronous methods settings
	Use this work manager for asynchronous methods
	Use custom work manager instance
	Maximum number of threads
	Work request queue size
	Work request queue full action
	Work Manager JNDI name
	Remote future object duration

	Developing session beans
	Configuring EJB 3.1 session bean methods to be asynchronous
	Configuring remote asynchronous EJB method results
	Configuring EJB asynchronous methods using scripting
	EJB 3.1 asynchronous methods
	Developing client code that calls EJB asynchronous methods
	Bean implementation programming model for EJB asynchronous methods
	EJB container work manager for asynchronous methods
	EJB asynchronous methods settings

	Developing stateful session beans
	Developing a session bean to have a No-Interface Local view
	No-Interface Local View
	A session bean might now subclass another session bean

	Developing singleton session beans
	Changing singleton session bean locking policy

	Programming to use message-driven beans
	Developing message-driven beans
	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans

	Assembling EJB 2.1 enterprise beans
	Assembling EJB 2.x modules
	Sequence grouping for container-managed persistence in assembled EJB modules
	Setting the run time for CMP sequence groups

	Assembling EJB 3.x enterprise beans
	EJB 3.0 and EJB 3.1 application bindings overview
	EJB 3.x module packaging overview
	Assembling EJB 3.x modules

	Assembling EJB modules
	EJB modules
	EJB content in WAR modules
	EJB 3.x module packaging overview
	Defining container transactions for EJB modules
	References in application deployment descriptor files
	EJB references
	Module
	Bean
	URI
	Resource Reference
	Class
	Target Resource JNDI Name

	EJB JNDI names for beans
	Module
	Bean
	URI
	Target Resource JNDI name

	Bind EJB business settings
	Module
	Bean
	URI
	Business Interface
	JNDI Name

	Developing EJB 2.x entity beans that use access intents
	Using the AccessIntent API
	AccessIntent interface

	Assembling access intents to EJB 2.x entity beans
	Applying access intent policies to beans
	Configuring read-read consistency checking with an assembly tool
	Example: Read-read consistency checking

	Access intent service
	Applying access intent policies to methods

	Developing applications that use the Java Persistence API
	Developing JPA 2.x applications for a Java EE environment
	Developing JPA 2.x applications for a Java SE environment
	Bean validation in JPA
	wsjpa properties
	wsjpa.AccessIntent
	wsjpa.jdbc.Schema
	wsjpa.jdbc.CollectionId

	Criteria API
	wsappid command
	wsenhancer command
	wsmapping command
	wsreversemapping command
	wsschema command
	wsdbgen command
	ANT task WsJpaDBGenTask
	SQL statement batching for JPA applications
	Database generated version ID with JPA
	Mapping persistent properties to XML columns for JPA
	Directory conventions

	Assembling applications that use the Java Persistence API
	Assembling a JPA application in a Java EE environment
	Assembling JPA applications for a Java SE environment
	Using JPA access intent
	Setting a TaskName using TaskNameAccessor API
	Specifying TaskName in a JPA persistence unit

	Associating persistence providers and data sources

	Chapter 11. Developing Internationalization service
	Task overview: Globalizing applications
	Globalization
	Working with locales and character encodings
	Language versions offered by this product
	Globalization: Resources for learning

	Task overview: Internationalizing interface strings (localizable-text API)
	Identifying localizable text
	Creating message catalogs
	Composing language-specific strings
	Localization API support
	LocalizableTextFormatter class
	Creating a formatter instance
	Setting optional localization values
	Generating localized text

	Preparing the localizable-text package for deployment
	LocalizableTextEJBDeploy command

	Task overview: Internationalizing application components (internationalization service)
	Internationalization service
	Assembling internationalized applications
	Setting the internationalization type for servlets
	Configuring container internationalization for servlets
	Setting the internationalization type for enterprise beans
	Configuring container internationalization for enterprise beans

	Using the internationalization context API
	Gaining access to the internationalization context API
	Accessing caller locales and time zones
	Accessing invocation locales and time zones
	Internationalization context API: Programming reference

	Administering the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Enabling the internationalization service for EJB clients
	Internationalization service settings
	Internationalization service errors

	Chapter 12. Developing Mail, URLs, and other Java EE resources
	Developing applications that use the JavaMail API
	JavaMail API
	Debugging mail sessions

	Chapter 13. Developing Messaging resources
	Programming to use asynchronous messaging
	Programming to use JMS and messaging directly
	Designing an enterprise application to use JMS
	Developing an enterprise application to use JMS
	Developing a JMS client

	Programming for interoperation with WebSphere MQ
	Designing an application for interoperation with WebSphere MQ
	Mapping the message body to and from WebSphere MQ format
	Mapping the message header fields and properties to and from WebSphere MQ format
	Mapping the JMS delivery option and message reliability to and from the WebSphere MQ persistence value
	Mapping destinations to and from WebSphere MQ queues, topics, and destinations
	Mapping MQMD Report fields to JMS provider-specific properties
	Mapping additional MQRFH2 header fields in service integration
	How to process WebSphere MQ message headers
	WebSphere MQ functions not supported by service integration

	Programming to use message-driven beans
	Developing message-driven beans
	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans

	Chapter 14. Developing Naming and directory
	Developing applications that use JNDI
	Example: Getting the default initial context
	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the namespace root property

	Example: Looking up an EJB home or business interface with JNDI
	JNDI interoperability considerations
	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	JNDI to CORBA name mapping considerations

	Developing applications that use CosNaming (CORBA Naming interface)
	Example: Getting an initial context with CosNaming
	Obtaining an ORB reference
	Using an ORB reference to get an initial naming reference
	Using an existing ORB and invoking string_to_object with a CORBA object URL

	Example: Looking up an EJB home with CosNaming
	CosNaming resolve operation using a qualified name
	ORB string_to_object operation using an unqualified stringified name

	Chapter 15. Developing Object pools
	Using object pools
	Object pool managers
	Object pool managers collection
	Name
	JNDI name
	Scope
	Description
	Category
	Object pool managers settings

	Object pool service settings
	Enable service at server startup

	Object pools: Resources for learning
	MBeans for object pool managers and object pools

	Chapter 16. Developing Object Request Broker (ORB)
	Developing Object Request Brokers
	Client-side programming tips for the Object Request Broker service
	Resolution of initial references to services
	Preferred API for obtaining an ORB instance
	API restrictions with sharing an ORB instance among Java EE application components
	Required use of rmic and idlj that ship with the IBM Developer Kit

	Directory conventions

	Chapter 17. Developing OSGi applications
	OSGi application design guidelines
	Developing an OSGi application
	Creating a service bundle
	Creating a client bundle
	Creating an OSGi application
	Creating an OSGi application using Apache Ant

	Developing a composite bundle
	Converting existing applications to OSGi applications
	Converting an enterprise application to an OSGi application
	Converting a web application archive file to an OSGi web application bundle
	Converting an EJB JAR file to an OSGi EJB bundle
	Converting a utility JAR file to an OSGi bundle
	Converting a persistence archive file to an OSGi bundle
	Converting Java 2 security settings in an enterprise application to OSGi

	Converting a Spring application to an OSGi application

	Accessing Enterprise JavaBeans in OSGi applications
	Sample OSGi applications
	OSGi blog sample application
	OSGi blabber sample application

	Chapter 18. Developing Portlet applications
	Portlet aggregation and preferences
	Supported optional features of the JSR-286 Portlet Specification
	Aggregation tag library attributes
	Example: Using the portlet aggregation tag library

	Portlet aggregation using JavaServer Pages
	Aggregation tag library attributes
	Example: Using the portlet aggregation tag library

	Portlet preferences
	Portlet coordination
	Converting portlet fragments to an HTML document

	Assembling portlets
	Portlet Uniform Resource Locator (URL) addressability
	Example: Configuring the extended portlet deployment descriptor to disable PortletServingServlet

	Chapter 19. Developing SCA composites
	Selecting the implementation type for an SCA composite
	Developing Service Component Architecture (SCA) services
	Developing SCA services from existing WSDL files
	Developing SCA services with existing Java code
	Developing SCA service clients
	Developing asynchronous SCA services and clients
	Developing asynchronous SCA services
	Developing asynchronous SCA clients

	Using business exceptions with SCA interfaces
	Considerations for developing SCA applications using EJB bindings

	Specifying bindings in an SCA environment
	Configuring the SCA default binding
	Configuring Java serialization for the SCA default binding

	Using the SCA default binding to find and locate SCA services
	Configuring the SCA web service binding
	Configuring web service binding custom endpoints to support a proxy server
	Configuring the SCA web service binding to transport SOAP messages over JMS

	Configuring EJB bindings in SCA applications
	Using EJB bindings in SCA applications in a cluster environment

	Configuring EJB bindings in SCA OASIS applications
	Configuring the SCA JMS binding
	Configuring SCA JMS binding wire formats
	Configuring transactions for the SCA JMS binding
	Dynamic JMS resource creation during deployment
	Invoking operations using JMS binding operation selection
	Invoking operations using JMS user property operation selection
	Invoking operations using custom operation selectors

	Using Atom bindings in SCA applications
	Securing data exposed by Atom bindings
	Using Widget implementation in JavaScript with Atom bindings

	Using HTTP bindings in SCA applications
	Securing services exposed by HTTP bindings
	Using Widget implementation in JavaScript with HTTP bindings

	Using Widget implementation in JavaScript with Atom or HTTP bindings
	Resolving SCA references
	Routing HTTP requests to an SCA service when using an external web server
	Interoperability between Open SCA client services and WebSphere Process Server SCA modules

	Creating wire format handlers
	Wire format handler errors

	Interoperating between SCA OASIS and OSOA composites
	Using existing Java EE modules and components as SCA implementations
	Using non-SCA enhanced Java EE applications as SCA component implementations
	Using SCA enhanced Java EE applications as SCA component implementations
	Using SCA annotations with web modules
	Using SCA annotations with session beans
	Using SCA annotations with message-driven beans

	SCA annotations
	Rewiring EJB references to SCA references

	Using OSGi applications as SCA component implementations
	SCA programming model support in OSGi applications

	Using Spring 2.5.5 containers in SCA applications
	Additional Spring component implementation features

	Chapter 20. Developing Scheduler service
	Developing and scheduling tasks
	Accessing schedulers
	Developing a task that calls a session bean
	Developing a task that sends a Java Message Service message
	Scheduling long-running tasks
	Receiving scheduler notifications
	Submitting a task to a scheduler
	Task management methods using a scheduler
	Identifying tasks that are currently running
	Stopping tasks that are failing
	Scheduler tasks and Java EE context
	Transactions and schedulers
	Scheduler task user authorization

	Securing scheduler tasks
	Scheduler configuration or topology
	Scheduler interface
	TaskInfo interface
	TaskHandler interface
	NotificationSink interface
	UserCalendar interface

	Chapter 21. Developing security
	Developing extensions to the WebSphere security infrastructure
	Developing stand-alone custom registries
	Result.java file
	UserRegistry.java files

	Implementing custom password encryption
	Developing applications that use programmatic security
	Protecting system resources and APIs (Java 2 security) for developing applications
	Developing with programmatic security APIs for web applications
	Developing with programmatic APIs for EJB applications

	Customizing web application login
	Developing servlet filters for form login processing

	Secure transports with JSSE and JCE programming interfaces
	Configuring Federal Information Processing Standard Java Secure Socket Extension files
	WebSphere Application Server security standards configurations
	Convert certificates
	Manage FIPS

	Configuring WebSphere Application Server for the Suite B security standard
	Transitioning WebSphere Application Server to the SP800-131 security standard
	Configuring WebSphere Application Server for SP800-131 standard strict mode
	Implementing tokens for security attribute propagation
	Implementing a custom propagation token for security attribute propagation
	Implementing a custom authorization token for security attribute propagation
	Implementing a custom single sign-on token for security attribute propagation
	Implementing a custom authentication token for security attribute propagation
	Propagating a custom Java serializable object for security attribute propagation

	Developing a custom interceptor for trust associations
	Trust association interceptor support for Subject creation

	Enabling a plugpoint for custom password encryption
	Plug point for custom password encryption

	Implementing a custom authentication provider using JASPI
	Developing a custom JASPI authentication provider
	Configuring a new JASPI authentication provider using the administrative console
	Modifying an existing JASPI authentication provider using the administrative console
	Deleting a JASPI authentication provider using the administrative console
	Enabling JASPI authentication using the Map JASPI provider option during application deployment
	JASPI authentication providers collection
	JASPI authentication provider details
	JASPI authentication enablement for applications

	Chapter 22. Developing Startup beans
	Using startup beans
	Enabling startup beans in the administrative console
	Startup beans service settings
	Enable service at server startup

	Chapter 23. Developing Service integration
	Programming mediations
	Serializing the content of SIMessage
	Writing a mediation handler
	Adding mediation function to handler code
	Example: Using mediations to trace, monitor and log messages
	Working with the message context
	Working with message properties
	Working with the message header
	Working with the message payload

	Writing a routing mediation
	Writing a mediation that maps between attachment encoding styles

	Using durable subscriptions
	Sending web service messages directly over the bus from a JAX-RPC client
	sib: URL syntax

	Chapter 24. Developing Session Initiation Protocol (SIP) applications
	Developing SIP applications
	Developing SIP applications that support PRACK
	Setting up SIP application composition
	SIP servlets
	SIP SipServletRequest and SipServletResponse classes
	SIP SipSession and SipApplicationSession classes
	Example: SIP servlet simple proxy
	Example: SIP servlet SendOnServlet class
	Example: SIP servlet Proxy servlet class
	JSR 289 overview

	Developing applications that use the Asynchronous Invocation API
	Asynchronous Invocation API

	Chapter 25. Developing Spring applications
	Configuring access to a Spring application data source

	Chapter 26. Developing Transactions
	Developing components to use transactions
	Configuring transactional deployment attributes
	Using component-managed transactions
	Using one-phase and two-phase commit resources in the same transaction
	Assembling an application to use one-phase and two-phase commit resources in the same transaction
	Coordination of access to one-phase commit and two-phase commit capable resources in the same transaction

	Chapter 27. Developing web applications
	Developing web applications
	Developing servlets
	Developing servlets with WebSphere Application Server extensions

	Developing JSP files
	JSP class file generation
	Web container configuration for JavaServer Pages static file access
	Packages and directories for generated .java and .class files
	JSP batch compilation
	Global tag libraries (deprecated)

	Developing JSF files
	JavaServer Faces
	JavaServer Faces widget library (JWL)
	Configuring Portlet Bridge for JavaServer Faces
	Configuring JavaServer Faces implementation

	Defining an extension for the registry filter
	Application extension registry
	Application extension registry filtering
	plugin.xml file

	Contexts and Dependency Injection (CDI)
	Developing applications that use Contexts and Dependency Injection (CDI)
	Contexts and Dependency Injection (CDI)

	Developing servlet applications using asyncrhonous request dispatcher
	Developing servlet applications using asynchronous request dispatcher

	Assembling web applications
	Assembling web applications
	web.xml file
	File serving

	Configuring JavaServer Faces implementation
	Configuring JavaServer Faces implementation

	Developing session management in servlets
	Assembling so that session data can be shared

	Chapter 28. Developing web services
	Using JAXB for XML data binding
	Using JAXB schemagen tooling to generate an XML schema file from a Java class
	Using JAXB xjc tooling to generate JAXB classes from an XML schema file
	Using the JAXB runtime to marshal and unmarshal XML documents
	xjc command for JAXB applications
	schemagen command for JAXB applications

	Developing JAX-WS web services (bottom-up)
	Setting up a development environment for web services
	Developing JAX-WS web services with annotations
	Directory conventions
	Exposing methods in SEI-based JAX-WS web services
	JAX-WS annotations

	Generating Java artifacts for JAX-WS applications
	Directory conventions
	wsgen command for JAX-WS applications
	Mapping between Java language, WSDL and XML for JAX-WS applications

	Enabling MTOM for JAX-WS web services
	Directory conventions

	Enforcing adherence to WSDL bindings in JAX-WS web services
	Developing a webservices.xml deployment descriptor for JAX-WS applications
	Directory conventions

	Completing the JavaBeans implementation for JAX-WS applications
	Completing the EJB implementation for JAX-WS applications

	Developing JAX-WS web services with WSDL files (top-down)
	Setting up a development environment for web services
	Generating Java artifacts for JAX-WS applications from a WSDL file
	wsimport command for JAX-WS applications

	Enabling MTOM for JAX-WS web services
	Directory conventions

	Enforcing adherence to WSDL bindings in JAX-WS web services
	Developing a webservices.xml deployment descriptor for JAX-WS applications
	Directory conventions

	Completing the JavaBeans implementation for JAX-WS applications
	Completing the EJB implementation for JAX-WS applications

	Developing JAX-WS clients
	Developing a JAX-WS client from a WSDL file
	Developing deployment descriptors for a JAX-WS client
	Developing a dynamic client using JAX-WS APIs
	Invoking JAX-WS web services asynchronously
	Implementing extensions to JAX-WS web services clients
	Example: Using JAX-WS properties to manipulate SOAP headers in a JAX-WS handler
	Sending implicit SOAP headers with JAX-WS
	Receiving implicit SOAP headers with JAX-WS
	Transport header properties best practices
	Sending transport headers with JAX-WS
	Retrieving transport headers with JAX-WS

	Developing JAX-RPC web services
	Setting up a development environment for web services
	Developing a service endpoint interface from JavaBeans for JAX-RPC applications
	Developing a service endpoint interface from enterprise beans for JAX-RPC applications
	Developing a WSDL file for JAX-RPC applications
	Java2WSDL command for JAX-RPC applications
	Mapping between Java language, WSDL and XML for JAX-RPC applications
	Developing JAX-RPC web services deployment descriptor templates for a JavaBeans implementation
	Developing JAX-RPC web services deployment descriptor templates for an enterprise bean implementation

	Completing the JavaBeans implementation for JAX-RPC applications
	Completing the EJB implementation for JAX-RPC applications
	Configuring the webservices.xml deployment descriptor for JAX-RPC web services
	Configuring the webservices.xml deployment descriptor for handler classes
	Configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web services
	JAX-RPC web services enabled module - deployment descriptor settings (ibm-webservices-bnd.xmi file)

	Developing JAX-RPC web services with WSDL files (top-down)
	Setting up a development environment for web services
	Developing Java artifacts for JAX-RPC applications from a WSDL file
	Developing EJB implementation templates and bindings from a WSDL file for JAX-RPC web services
	Completing the JavaBeans implementation for JAX-RPC applications
	Completing the EJB implementation for JAX-RPC applications
	Configuring the webservices.xml deployment descriptor for JAX-RPC web services
	Configuring the webservices.xml deployment descriptor for handler classes
	Configuring the ibm-webservices-bnd.xmi deployment descriptor for JAX-RPC web services
	JAX-RPC web services enabled module - deployment descriptor settings (ibm-webservices-bnd.xmi file)

	Developing JAX-RPC web services clients
	Developing client bindings from a WSDL file for a JAX-RPC Web services client
	Changing SOAP message encoding to support WSI-Basic Profile
	Configuring the JAX-RPC web services client deployment descriptor with an assembly tool
	Configuring the JAX-RPC client deployment descriptor for handler classes
	Handler class properties with JAX-RPC
	Example: Configuring handler classes for web services deployment descriptors

	Configuring the JAX-RPC web services client bindings in the ibm-webservicesclient-bnd.xmi deployment descriptor
	ibm-webservicesclient-bnd.xmi assembly properties for JAX applications

	Implementing extensions to JAX-RPC web services clients
	Custom data binders for JAX-RPC applications
	Custom binding providers for JAX-RPC applications
	CustomBinder interface for JAX-RPC applications
	Usage patterns for deploying custom data binders for JAX-RPC applications
	Sending implicit SOAP headers with JAX-RPC
	Receiving implicit SOAP headers with JAX-RPC
	Sending transport headers with JAX-RPC
	Retrieving transport headers with JAX-RPC

	Assembling web services applications
	Assembling web services applications
	Assembling a JAR file that is enabled for web services from an enterprise bean
	Assembling a web services-enabled enterprise bean JAR file from a WSDL file
	Assembling a WAR file that is enabled for web services from Java code
	Assembling a web services-enabled WAR file from a WSDL file
	Assembling an enterprise bean JAR file into an EAR file
	Assembling a web services-enabled WAR into an EAR file
	Enabling an EAR file for EJB modules that contain web services

	Assembling web services-enabled clients
	Assembling a web services-enabled client JAR file into an EAR file
	Assembling a web services-enabled client WAR file into an EAR file

	Chapter 29. Developing web services - Addressing (WS-Addressing)
	Using the Web Services Addressing APIs: Creating an application that uses endpoint references
	Creating a JAX-WS web service application that uses Web Services Addressing
	Creating endpoint references by using the JAX-WS Web Services Addressing API

	Creating a JAX-RPC web service application that uses Web Services Addressing
	Creating endpoint references by using the IBM proprietary Web Services Addressing API

	Example: Creating a web service that uses the JAX-WS Web Services Addressing API to access a generic web service resource ins

	Using the IBM proprietary Web Services Addressing SPIs: Performing more advanced Web Services Addressing tasks
	Specifying and acquiring message-addressing properties by using the IBM proprietary Web Services Addressing SPIs
	Interoperating with Web Services Addressing endpoints that do not support the default specification supported by WebSphere Ap

	Enabling Web Services Addressing support for JAX-WS applications
	Enabling Web Services Addressing support for JAX-WS applications using policy sets
	Creating policy sets using the administrative console
	Configuring the WS-Addressing policy
	Attaching a policy set to a service artifact
	Configuring a service provider to share its policy configuration
	Configuring the client policy to use a service provider policy

	Enabling Web Services Addressing support for JAX-WS applications using deployment descriptors
	Enabling Web Services Addressing support for JAX-WS applications using addressing annotations
	Enabling Web Services Addressing support for JAX-WS applications using addressing features
	Enabling Web Services Addressing support for JAX-WS applications using WS-Policy
	Web Services Addressing annotations
	Web Services Addressing security
	Invoking JAX-WS web services asynchronously

	Enabling Web Services Addressing support for JAX-RPC applications
	Disabling Web Services Addressing support

	Chapter 30. Developing web services - Invocation framework (WSIF)
	Using WSIF to invoke web services
	Linking a WSIF service to the underlying implementation of the service
	Linking a WSIF service to a SOAP over HTTP service
	Linking a WSIF service to a JMS-provided service
	Writing the WSDL extension that lets your WSIF service invoke a method on a local Java object
	Writing the WSDL extension that lets your WSIF service invoke an enterprise bean

	Developing a WSIF service
	Using complex types
	Using WSIF to bind a JNDI reference to a web service
	Example: Passing SOAP messages with attachments by using WSIF

	Interacting with the Java EE container in WebSphere Application Server
	Invoking a WSDL-based web service through the WSIF API
	WSIFService interface
	WSIFServiceFactory class
	WSIFPort interface
	WSIFOperation interface

	Running WSIF as a client

	Chapter 31. Developing web services - Notification (WS-Notification)
	Developing applications that use WS-Notification
	Writing a WS-Notification application that exposes a web service endpoint
	Writing a WS-Notification application that does not expose a web service endpoint
	Filtering the message content of publications
	Example: Subscribing a WS-Notification consumer
	Example: Pausing a WS-Notification subscription
	Example: Publishing a WS-Notification message
	Example: Creating a WS-Notification pull point
	Example: Getting messages from a WS-Notification pull point
	Example: Registering a WS-Notification publisher
	Example: Creating a Notification consumer web service skeleton

	Chapter 32. Developing web services - Reliable messaging (WS-ReliableMessaging)
	Developing a reliable web service application
	Controlling WS-ReliableMessaging sequences programmatically
	Providing transactional recoverable messaging through WS-ReliableMessaging
	Configuring endpoints to only support clients that use WS-ReliableMessaging

	Chapter 33. Developing web services - RESTful services
	Planning JAX-RS web applications
	Planning to use JAX-RS to enable RESTful services
	Defining the resources in RESTful applications
	Defining the URI patterns for resources in RESTful applications
	Defining resource methods for RESTful applications
	Defining the HTTP headers and response codes for RESTful applications
	Defining media types for resources in RESTful applications
	Defining parameters for request representations to resources in RESTful applications
	Defining exception mappers for resource exceptions and errors

	Developing JAX-RS web applications
	Getting started with IBM JAX-RS
	Setting up a development environment for JAX-RS applications
	Development and assembly tools
	Directory conventions
	Configuring JAX-RS web applications
	Configuring JAX-RS applications using JAX-RS 1.1 methods
	Configuring the web.xml file for JAX-RS servlets
	Configuring the web.xml file for JAX-RS filters

	Implementing clients using the Apache Wink REST client
	Implementing a client using the unmanaged RESTful web services JAX-RS client
	Migrating a Feature Pack for Web 2.0 JAX-RS application to WebSphere Version 8
	Disabling the JAX-RS runtime environment

	Assembling JAX-RS web applications

	Chapter 34. Developing web services - Security (WS-Security)
	Developing applications that use Web Services Security
	Configuring HTTP basic authentication for JAX-RPC web services programmatically
	Developing message-level security for JAX-WS web services
	Web Services Security API programming model
	Service Programming Interfaces (SPI)
	Developing SAML applications
	Securing web services applications using the WSS APIs at the message level
	Developing JAX-WS based web services client applications that retrieve security tokens
	Developing JAX-WS based web services server applications that retrieve security tokens

	Developing message-level security for JAX-RPC web services
	Developing web services clients that retrieve tokens from the JAAS Subject in an application
	Developing web services applications that retrieve tokens from the JAAS Subject in a server application

	Web Services Security service provider programming interfaces

	Configuring Web Services Security during application assembly
	Configuring HTTP outbound transport level security with an assembly tool
	Configuring HTTP basic authentication for JAX-RPC web services with an assembly tool
	Configuring XML digital signature for Version 5.x web services with an assembly tool
	Configuring trust anchors using an assembly tool
	Configuring the client-side collection certificate store using an assembly tool
	Configuring the server-side collection certificate store using an assembly tool
	Configuring key locators using an assembly tool
	Securing web services for Version 5.x applications using XML digital signature
	Configuring the client for request signing: digitally signing message parts
	Configuring the client for request signing: choosing the digital signature method
	Configuring the server for request digital signature verification: Verifying the message parts
	Configuring the server for request digital signature verification: choosing the verification method
	Configuring the server for response signing: digitally signing message parts
	Configuring the server for response signing: choosing the digital signature method
	Configuring the client for response digital signature verification: verifying the message parts
	Configuring the client for response digital signature verification: choosing the verification method
	Configuring the client security bindings using an assembly tool
	Configuring the server security bindings using an assembly tool

	Configuring XML encryption for Version 5.x web services with an assembly tool
	Securing web services for Version 5.x applications using XML encryption
	Configuring the client for request encryption: Encrypting the message parts
	Configuring the client for request encryption: choosing the encryption method
	Configuring the server for request decryption: decrypting the message parts
	Configuring the server for request decryption: choosing the decryption method
	Configuring the server for response encryption: encrypting the message parts
	Configuring the server for response encryption: choosing the encryption method
	Configuring the client for response decryption: decrypting the message parts
	Configuring the client for response decryption: choosing a decryption method

	Configuring XML basic authentication for Version 5.x web services with an assembly tool
	Securing web services for Version 5.x applications using basic authentication
	Configuring the client for basic authentication: specifying the method
	Configuring the client for basic authentication: collecting the authentication information
	Configuring the server to handle basic authentication information
	Configuring the server to validate basic authentication information

	Configuring identity assertion for Version 5.x web services with an assembly tool
	Securing web services for Version 5.x applications using identity assertion authentication
	Configuring the client for identity assertion: specifying the method
	Configuring the client for identity assertion: collecting the authentication method
	Configuring the server to handle identity assertion authentication
	Configuring the server to validate identity assertion authentication information

	Configuring signature authentication for Version 5.x web services with an assembly tool
	Securing web services for version 5.x applications using signature authentication
	Configuring the client for signature authentication: specifying the method
	Configuring the client for signature authentication: collecting the authentication information
	Configuring the server to support signature authentication
	Configuring the server to validate signature authentication information

	Configuring pluggable tokens for Version 5.x web services with an assembly tool
	Securing web services for version 5.x applications using a pluggable token
	Configuring pluggable tokens using an assembly tool
	Configuring the client for LTPA token authentication: specifying LTPA token authentication
	Configuring the client for LTPA token authentication: collecting the authentication method information
	Configuring the server to handle LTPA token authentication information
	Configuring the server to validate LTPA token authentication information

	Chapter 35. Developing web services - Transaction support (WS-Transaction)
	Creating an application that uses the Web Services Business Activity support
	Business activity API

	Chapter 36. Developing web services - Transports
	Configuring the SOAP over JMS transport for JAX-WS web services
	SOAP over JMS protocol
	JMS endpoint URL syntax
	IBM proprietary SOAP over JMS protocol (deprecated)
	IBM proprietary JMS endpoint URL syntax (deprecated)
	Invoking web service requests transactionally using SOAP over JMS transport
	Invoking one-way JAX-RPC web service requests transactionally using the JMS transport (deprecated)
	Configuring SOAP over JMS message types

	Chapter 37. Developing web services - UDDI registry
	Developing with the UDDI registry
	UDDI registry client programming
	Inquiry API for the UDDI Version 3 registry
	Publish API for the UDDI Version 3 registry
	Custody and Ownership Transfer API for the UDDI Version 3 registry
	Security API for the UDDI Version 3 registry
	UDDI registry Version 3 entity keys
	Digital signatures and the UDDI registry
	UDDI Version 3 Client
	HTTP GET services for UDDI registry data structures
	UDDI registry SOAP service end points
	UDDI4J programming interface (Deprecated)
	Using the UDDI EJB Interface (Deprecated)

	Using the UDDI registry user interface
	Finding an entity by using the UDDI registry user interface
	Publishing an entity by using the UDDI registry user interface
	Editing or deleting an entity by using the UDDI registry user interface
	Creating business relationships by using the UDDI registry user interface
	Example: Publishing a business, service, and technical model using the UDDI registry user interface

	Using the JAXR provider for UDDI
	Java API for XML Registries (JAXR) provider for UDDI
	Using SSL with the UDDI JAXR provider
	Creating a custom internal taxonomy for the JAXR provider
	JAXR provider for UDDI internal taxonomies
	JAXR provider logging and messages

	Chapter 38. Developing Work area
	Developing applications that use work areas
	Developing applications that use work areas

	Configuring work area partitions
	Configuring work area partitions
	Work area partition service
	The Work area partition manager interface
	Example: Using the work area partition manager
	Work area partition collection
	Name
	Description
	Enable service at server startup
	Bidirectional
	Maximum send size
	Maximum receive size
	Deferred attribute serialization
	Enable Web service propagation
	Work area partition settings
	Name
	Description
	Enable service at server startup
	Bidirectional
	Maximum send size
	Maximum receive size
	Deferred attribute serialization
	Enable Web service propagation

	Accessing a user defined work area partition
	Propagating work area context over Web services

	Chapter 39. XML applications
	Overview of XML support
	XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions

	Overview of the XML Samples application
	Using the XML API to perform operations
	Building and running a sample XML application
	Running the IBM Thin Client for XML
	Performing basic operations
	Overview of the XML API
	Choosing between the compiler and the interpreter
	Using static and dynamic contexts
	Mapping XML types to Java types
	Performing basic XPath operations
	Performing basic XSLT operations
	Performing basic XQuery operations
	Viewing the results
	Serializing the results
	Navigating with XSequenceCursor
	Navigating with XTreeCursor

	Precompiling
	Precompiling using the command-line tools
	Precompiling using ANT tasks
	Precompiling in Java
	Loading a precompiled executable

	Using resolvers
	Using source and result resolvers
	Registering a collection resolver
	Registering a schema resolver
	Using an unparsed text resolver
	Using resolvers in a J2EE context
	Using a module resolver

	Using external variables and functions
	Using external variables
	Using external functions

	Creating items and sequences
	Creating items and sequences using the XItemFactory
	Using sequence types

	Working with collations
	Executing using the command-line tools
	Using a message handler and managing exceptions
	Using a message handler
	Managing exceptions

	Chapter 40. Deploying client applications
	Deploying applet client code
	Running an ActiveX client application
	Starting an ActiveX application and configuring service programs
	Starting an ActiveX application and configuring non-service programs
	setupCmdLineXJB.bat, launchClientXJB.bat and other ActiveX batch files

	Deploying and running a Java EE client application
	Deploying a Java EE client application
	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Deploying a resource adapter for a Java EE client application
	Enabling client use of data sources
	Configuring mail providers and sessions for application clients
	Configuring new mail sessions for application clients
	Configuring new URL providers for application clients
	Configuring new URLs with the Application Client Resource Configuration Tool
	Configuring Java messaging client resources
	Configuring new JMS connection factories for application clients
	Configuring new JMS destinations for application clients
	Configuring new resource environment providers for application clients
	Configuring new resource environment entries for application clients

	Running a Java EE client application with launchClient
	launchClient tool
	Specifying the directory for an expanded EAR file

	Downloading and running a Java EE client application using Java Web Start
	Java Web Start architecture for deploying application clients
	Client application Java Network Launcher Protocol deployment descriptor file
	Preparing the application client run time dependency component for Java Web Start
	Using the Java Web Start sample
	Installing Java Web Start
	Using a static JNLP file with Java Web Start for Application clients

	Running the IBM Thin Client for Enterprise JavaBeans (EJB)
	Running Java thin client applications
	Running a Java thin client application on a client machine
	Running a Java thin client application on a server machine

	Chapter 41. Deploying data access resources
	Deploying data access applications
	Available resources
	Select
	JNDI name
	Scope
	Description

	Map data sources for all 1.x CMP beans
	Select
	EJB
	EJB Module
	URI
	JNDI name
	User name

	Map default data sources for modules containing 1.x entity beans
	Select
	EJB Module
	URI
	JNDI name
	User name

	Map data sources for all 2.x CMP beans settings
	Set Multiple JNDI names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB
	EJB Module
	URI
	Target resource JNDI name
	Resource authorization

	Map data sources for all 2.x CMP beans
	Set Multiple JNDI Names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization
	Extended Datasource Properties

	Installing a resource adapter archive
	Installing resource adapters embedded within applications
	Install RAR
	Scope
	Local file system
	Remote file system

	Deploying SQLJ applications
	Deploying SQLJ applications that use container-managed persistence (CMP)
	Deploying SQLJ applications that use container-managed persistence (CMP) with the ejbdeploy tool

	Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans
	Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications
	Customizing and binding SQLJ profiles with the db2sqljcustomize tool
	SQLJ profiles and pureQuery bind files settings
	Download SQLJ profile group
	Review results

	Using embedded SQLJ with the DB2 for z/OS Legacy driver
	Directory conventions

	Installing a resource adapter archive
	Installing resource adapters embedded within applications
	Install RAR
	Scope
	Local file system
	Remote file system

	Chapter 42. Deploying EJB applications
	Deploying EJB 3.x enterprise beans
	EJB module settings
	URI
	Alternate deployment descriptor
	Starting weight

	Directory conventions

	Deploying EJB modules
	EJB 3.0 and EJB 3.1 deployment overview
	EJBDEPLOY relationships – troubleshooting tips
	Directory conventions

	Chapter 43. Deploying messaging resources
	Deploying enterprise applications
	Deploying an enterprise application to use JMS
	Deploying enterprise applications developed as message-driven beans
	Deploying an enterprise application to use message-driven beans with JCA 1.5-compliant resources
	Deploying an enterprise application to use message-driven beans with listener ports

	Chapter 44. Deploying OSGi applications
	Deploying an OSGi application as a business-level application
	Adding an EBA asset to a composition unit by using the administrative console
	Adding an EBA asset to a composition unit by using wsadmin commands
	Adding an EBA asset that includes composite bundles by using the addCompUnit command

	Debugging bundles at run time
	Debugging bundles at run time by using the WebSphere Application Server administrative console
	Debugging bundles at run time by using the command-line console

	Chapter 45. Deploying SCA composites
	Deploying SCA business-level applications
	Importing assets
	Upload asset settings
	Asset settings

	SCA application package deployment
	Creating SCA business-level applications
	Creating SCA business-level applications with the console
	Composition unit settings
	JMS binding settings for SCA composites
	Provide HTTP endpoint URL information settings for SCA composites
	SCA composite component settings
	SCA component reference settings
	SCA component service settings
	Service provider policy sets and bindings collection for SCA composites
	References policy sets and bindings collection for SCA composites
	SCA service provider settings
	SCA service client settings
	Example: Creating an SCA business-level application with the console

	Updating SCA composite artifacts
	Viewing SCA composite definitions
	Viewing SCA domain information
	Viewing and editing JMS bindings on references and services of SCA composites
	Exporting WSDL and XSD documents

	Deploying OSGi applications that use SCA
	Multiple SCA implementation packaging considerations

	Chapter 46. Deploying SIP applications
	Deploying SIP applications through the console
	Deploying SIP applications through scripting

	Chapter 47. Deploying web applications
	Deploying JavaServer Pages and JavaServer Faces files
	JSP class loading settings
	JavaServer Pages (JSP) runtime reloading settings
	JSP and JSF option settings
	Web module
	URI
	JSP enable class reloading
	JSP reload interval in seconds
	Sun Reference Implementation 1.2
	MyFaces 2.0

	JSP run time compilation settings
	Provide options to compile JavaServer Pages settings
	Web module
	URI
	JSP class path
	Use full package names
	JDK source level
	Disable JSP runtime compilation

	Chapter 48. Deploying web services
	Deploying web services applications onto application servers
	Provide options to perform the web services deployment settings
	Deploy web services option - Classpath
	Deploy web services option - Extension Directories

	wsdeploy command
	JAX-WS application deployment model

	Using a third-party JAX-WS web services engine
	Deploying web services client applications
	Making deployed web services applications available to clients
	Configuring web services client bindings
	Web services client bindings

	Configuring endpoint URL information for HTTP bindings
	Provide HTTP endpoint URL information

	Configuring endpoint URL information for JMS bindings
	Provide JMS and EJB endpoint URL information

	Configuring endpoint URL information to directly access enterprise beans
	Publishing WSDL files using the administrative console
	Publish WSDL compressed files settings

	Publishing WSDL files using a URL

	Running an unmanaged web services JAX-RPC client
	Running an unmanaged web services JAX-WS client
	Testing web services-enabled clients

	Chapter 49. Deploying web services - RESTful services
	Deploying JAX-RS web applications

	Chapter 50. Deploying web services - Security (WS-Security)
	Deploying applications that use SAML
	Propagating SAML tokens
	Creating SAML attributes in SAML tokens
	SAML user attributes

	Establishing security context for web services clients using SAML security tokens

	Chapter 51. Deploying web services - Transports
	Invoking JAX-WS web services asynchronously using the HTTP transport
	Using the JAX-WS asynchronous response servlet
	Using the JAX-WS asynchronous response listener

	Invoking JAX-WS web services asynchronously using the SOAP over JMS transport
	Using the JAX-WS JMS asynchronous response message listener

	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

