
WebSphere Application Server

Programming Guide for Edge Components
Version 8.5

���

WebSphere Application Server

Programming Guide for Edge Components
Version 8.5

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
57.

First edition (May 2012)

This edition applies to:
WebSphere Application Server, Version 8.5

and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

About this book vii
Who should read this book vii
What you should already know vii
Conventions and terminology used in this book . . vii
Accessibility viii
Related documents and Web sites viii
How to send your comments viii

Chapter 1. Overview of Edge
components customization 1
Caching Proxy customization 1
Load Balancer customization 1
Locating sample code 2

Chapter 2. The Caching Proxy API . . . 3
Overview of the Caching Proxy API 3
General procedure for writing API programs . . . 3

Server process steps 4
Guidelines 7
Plug-in functions 8
Predefined functions and macros 15
Caching Proxy configuration directives for API
steps 21

Compatibility with other APIs 24
Porting CGI programs 24

Caching Proxy API reference information 24

Variables 24
Authentication and authorization 33
Variant caching 36
API examples. 36

Chapter 3. Custom advisors 37
Advisors provide load-balancing information . . . 37

Standard advisor function 37
Creating a custom advisor 38

Normal mode and replace mode 38
Advisor naming conventions 39
Compilation 39
Running a custom advisor 40
Required routines 40
Search order 40
Naming and file path 40
Custom advisor methods and function calls . . 41

Examples 44
Standard advisor 44
Side stream advisor. 45
Two port advisor 46
WebSphere Application Server advisor 51
Using data returned from advisors 53

Notices 57
Trademarks 58

Index 61

© Copyright IBM Corp. 2012 iii

iv WebSphere Application Server: Programming Guide for Edge Components

Figures

1. Flowchart of steps in the proxy server process 5
2. HTTP_ and PROXY_ variable prefixes . . . 25

3. Proxy server authentication and authorization
process 34

© Copyright IBM Corp. 2012 v

vi WebSphere Application Server: Programming Guide for Edge Components

About this book

This section describes the purpose, organization, and conventions of this
document, the WebSphere® Application Server Programming Guide for Edge
Components.

Who should read this book
This book describes the application programming interfaces (APIs) that are
available for customizing the Edge components of WebSphere Application Server,
Version 8.5. This information is intended for programmers who write plug-in
applications and make other customizations. Network designers and system
administrators also might be interested in this information as an indication of the
types of customization that are possible.

What you should already know
Using the information in this book requires understanding of programming
procedures using the Java or C programming languages, depending on the API
that you plan to use. The methods and structures available in each exposed
interface are documented, but you must know how to construct your own
application, compile it for your system, and test it. Sample code is provided for
some interfaces, but the samples are provided only as examples for constructing
your own application.

Conventions and terminology used in this book
This documentation uses the following typographical and keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold When referring to graphical user interfaces (GUIs), bold face indicates menus, menu
items, labels, buttons, icons, and folders. It also can be used to emphasize command
names that otherwise might be confused with the surrounding text.

Monospace Indicates text you must enter at a command prompt. Monospace also indicates screen
text, code examples, and file excerpts.

Italics Indicates variable values that you must provide (for example, you supply the name of
a file for fileName). Italics also indicates emphasis and the titles of books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For example,
Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left arrow.

% Represents the Linux and UNIX command-shell prompt for a command that does not
require root privileges.

Represents the Linux and UNIX command-shell prompt for a command that requires
root privileges.

C:\ Represents the Windows command prompt.

Entering commands When instructed to “enter” or “issue” a command, type the command and then press
Return. For example, the instruction “Enter the ls command” means type ls at a
command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

© Copyright IBM Corp. 2012 vii

Table 1. Conventions used in this book (continued)

Convention Meaning

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in { }(braces) in syntax descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding item one or
more times. Ellipses in examples indicate that information was omitted from the
example for the sake of brevity.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in WebSphere Application Server, Version 8.5:
v You can use screen-reader software and a digital speech synthesizer to hear what

is displayed on the screen. You can also use voice recognition software, such as
IBM® ViaVoice®, to enter data and to navigate the user interface.

v You can operate features by using the keyboard instead of the mouse.
v You can configure and administer Application Server features by using standard

text editors or command-line interfaces instead of the graphical interfaces
provided. For more information about the accessibility of particular features,
refer to the documentation about those features.

Related documents and Web sites
v Concepts, Planning, and Installation for Edge Components

v Caching Proxy Administration Guide, GC31-6920-00
v Load Balancer Administration Guide, GC31-6921-00
v IBM home Web site www.ibm.com/

v IBM WebSphere Application Server www.ibm.com/software/webservers/appserv/

v IBM WebSphere Application Server library Web site www.ibm.com/software/
webservers/appserv/library.html

v IBM WebSphere Application Server support Web site www.ibm.com/software/
webservers/appserv/support.html

v IBM WebSphere Application Server Information Center www.ibm.com/software/
webservers/appserv/infocenter.html

v IBM WebSphere Application Server Edge Components Information Center
www.ibm.com/software/webservers/appserv/ecinfocenter.html

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
documentation about the Edge components of WebSphere Application Server:
v Send your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the

name of the book, the part number of the book, the version of WebSphere
Application Server, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

viii WebSphere Application Server: Programming Guide for Edge Components

http://www.ibm.com/
http://www.ibm.com/software/webservers/appserv/
http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
mailto:wasdoc@us.ibm.com

Chapter 1. Overview of Edge components customization

This book discusses the application programming interfaces (APIs) provided for
the Edge components of WebSphere Application Server. (The Edge components of
WebSphere Application Server include Caching Proxy and Load Balancer.) Several
interfaces are provided that enable administrators to customize their installations,
to alter how the Edge components interact with each other, or to enable interaction
with other software systems.

IMPORTANT: Caching Proxy is available on all Edge component installations, with
the following exceptions:
v Caching Proxy is not available for Edge component installations that run on

Itanium 2 or AMD Opteron 64-bit processors.
v Caching Proxy is not available for Edge component installations of Load

Balancer for IPv4 and IPv6.

The APIs in this document address several categories.

Caching Proxy customization
The Caching Proxy has several interfaces written into its processing sequence
where custom processing can be added or substituted for standard processing.
Customizations that can be executed include altering or augmenting tasks like the
following:
v Client authentication
v Request authorization
v Translating URLs to physical file paths
v Servicing requests
v Logging
v Responding to error conditions

Custom application programs, which are also known as Caching Proxy plug-ins,
are called at predetermined points in the proxy server's processing sequence.

The Caching Proxy API has been used to implement certain system features. For
example, the proxy server's LDAP support is implemented as a plug-in.

Chapter 2, “The Caching Proxy API,” on page 3 describes the interface in detail
and includes steps for configuring the proxy server to use plug-in programs.

Load Balancer customization
The Load Balancer can be customized by writing your own advisors. Advisors
perform the actual load measurement on the servers. With a custom advisor, you
can use a method that you provide and that is relevant to your system to measure
the load. This is especially important if you have customized or proprietary Web
server systems.

Chapter 3, “Custom advisors,” on page 37 provides detailed information about
writing and using custom advisors. It includes sample advisor code.

© Copyright IBM Corp. 2012 1

Locating sample code
Sample code for these APIs is included on the Edge Components CD-ROM, in the
samples directory. Additional code samples are available from the WebSphere
Application Server Web site, www.ibm.com/software/webservers/appserv/

2 WebSphere Application Server: Programming Guide for Edge Components

http://www.ibm.com/software/webservers/appserv/

Chapter 2. The Caching Proxy API

This section discusses the Caching Proxy application programming interface (API):
what it is, why it is useful, and how it works.

IMPORTANT: Caching Proxy is available on all Edge component installations, with
the following exceptions:
v Caching Proxy is not available for Edge component installations that run on

Itanium 2 or AMD Opteron 64-bit processors.
v Caching Proxy is not available for Edge component installations of Load

Balancer for IPv4 and IPv6.

Overview of the Caching Proxy API
The API is an interface to the Caching Proxy that enables you to extend the proxy
server's base functions. You can write extensions, or plug-ins, to do customized
processing, including the following examples:
v Enhancing the basic authentication routine, or replacing it with a site-specific

process.
v Adding error-handling routines to track problems or alert for serious conditions.
v Detecting and tracking information that comes in from the requesting client,

such as server referrals and user agent codes.

The Caching Proxy API provides the following benefits:
v Efficiency

– The API is designed specifically for the threaded processing system used by
the Caching Proxy.

v Flexibility

– The API contains rich and versatile functions.
– The API is platform independent and language neutral. It runs on all Caching

Proxy platforms, and plug-in applications can be written in most of the
programming languages supported by these platforms.

v Ease of use

– Simple data types are passed by reference instead of by value (for example,
long *, char *).

– Each function has a fixed number of parameters.
– Includes bindings for the C language.
– Plug-ins do not impact allocated memory; plug-in applications allocate and

free memory independently of other Caching Proxy processes.

General procedure for writing API programs
Before writing your Caching Proxy plug-in programs, you need to understand how
the proxy server works. The behavior of the proxy server can be divided into
several distinct processing steps. For each of these steps, you can supply your own
customized functions using the API. For example, do you want to do something
after a client request is read but before performing any other processing? Or maybe
you want to perform special routines during authentication and then again after
the requested file is sent.

© Copyright IBM Corp. 2012 3

A library of predefined functions is provided with the API. Your plug-in programs
can call the predefined API functions in order to interact with the proxy server
process (for example, to manipulate requests, to read or write request headers, or
to write to the proxy server's logs). These functions should not be confused with
the plug-in functions that you write, which are called by the proxy server. The
predefined functions are described in “Predefined functions and macros” on page
15.

You instruct the proxy server to call your plug-in functions at the appropriate steps
by using the corresponding Caching Proxy API directives in your server
configuration file. These directives are described in “Caching Proxy configuration
directives for API steps” on page 21.

This document includes the following:
v A basic explanation of the Caching Proxy steps that can be customized (see

“Server process steps”)
v Guidelines for writing plug-ins (see “Guidelines” on page 7)
v Prototypes for the customized functions that you can write for each step

performed by the server, and their return codes (see “Plug-in function
prototypes” on page 8)

v Definitions of predefined functions and macros that you can call from within
your plug-ins, and their return codes (see “Predefined functions and macros” on
page 15)

v Caching Proxy API configuration directives (see “Caching Proxy configuration
directives for API steps” on page 21)

You can use these components and procedures to write your own Caching Proxy
plug-in programs.

Server process steps
The basic operation of the proxy server can be broken up into steps based on the
type of processing that the server performs during that phase. Each step includes a
juncture at which a specified part of your program can run. By adding API
directives to your Caching Proxy configuration file (ibmproxy.conf), you indicate
which of your plug-in functions you want to be called during a particular step.
You can call several plug-in functions during a particular process step by including
more than one directive for that step.

Some steps are part of the server request process. In other words, the proxy server
executes these steps each time it processes a request. Other steps are performed
independently of request processing; that is, the server executes these steps
regardless of whether a request is being processed.

Your compiled program resides in a shared object, for example, a DLL or .so file,
depending on your operating system. As the server proceeds through its request
process steps, it calls the plug-in functions associated with each step until one of
the functions indicates that it has handled the request. If you specify more than
one plug-in function for a particular step, the functions are called in the order in
which their directives appear in the configuration file.

If the request is not handled by a plug-in function (either you did not include a
Caching Proxy API directive for that step, or your plug-in function for that step
returned HTTP_NOACTION), the server performs its default action for that step.

4 WebSphere Application Server: Programming Guide for Edge Components

Note: This is true for all steps except the Service step; the Service step does not
have a default action.

Figure 1 depicts the steps of the proxy server process and defines the processing
order for the steps that are related to request processing.

Four of the steps on the diagram are executed independently from the processing
of any client request. These steps are related to the running and maintenance of the
proxy server. They include the following:
v Server Initialization
v Midnight
v GC Advisor
v Server Termination

Server Initialization

PreExit

Name Translation

Authorization

Object Type

Service

Transmogrifier

Log

Server Termination

Authentication

Error

. . . Read request from client

. . . Send request to next server

. . . Receive response from next server

CGI
Proxy Advisor
Static File (cache or file system)

Open
Write
Close
Error

Midnight

PostExit

GC Advisor

PostAuthorization

Figure 1. Flowchart of steps in the proxy server process

Chapter 2. The Caching Proxy API 5

The following list explains the purpose of each step pictured in Figure 1 on page 5.
Note that not all steps are guaranteed to be called for a particular request.

Server Initialization
Performs initialization when the proxy server is started and before any
client requests are accepted.

Midnight
Runs a plug-in at midnight, with no request context. This step is shown
separately in the diagram because it is not part of the request process; in
other words, its execution is independent of any request.

GC Advisor
Influences garbage collection decisions for files in the cache. This step is
shown separately in the diagram because it is not part of the request
process; in other words, its execution is independent of any request.
Garbage collection is done when the cache size reaches the maximum
value. (Information about configuring cache garbage collection is included
in the WebSphere Application Server Caching Proxy Administration Guide.)

PreExit

Performs processing after a request is read but before anything else is
done.

If this step returns an indication that the request was processed
(HTTP_OK), the server bypasses the other steps in the request process and
performs only the Transmogrifier, Log, and PostExit steps.

Name Translation
Translates the virtual path (from a URL) to the physical path.

Authorization

Uses stored security tokens to check the physical path for protections,
ACLs, and other access controls, and generates the WWW-Authenticate
headers required for basic authentication. If you write your own plug-in
function to replace this step, you must generate these headers yourself.

See “Authentication and authorization” on page 33 for more information.

Authentication

Decodes, verifies, and stores security tokens.

See “Authentication and authorization” on page 33 for more information.

Object Type
Locates the file system object indicated by the path.

Post Authorization

Performs processing after authorization and object location but before the
request is satisfied.

If this step returns an indication that the request was processed
(HTTP_OK), the server bypasses the other steps in the request process and
performs only the Transmogrifier, Log, and PostExit steps.

Service
Satisfies the request (by sending the file, running the CGI, etc.)

Proxy Advisor
Influences proxy and caching decisions.

6 WebSphere Application Server: Programming Guide for Edge Components

Transmogrifier
Gives write access to the data portion of the response sent to the client.

Log Enables customized transaction logging.

Error Enables customized responses to error conditions.

PostExit
Cleans up resources allocated for request processing.

Server Termination
Performs clean-up processing when an orderly shutdown occurs.

Guidelines
v Write your program, following the syntax and guidelines provided for the

server's plug-in functions. Give each of your plug-in functions a unique function
name and call the server's predefined functions as needed.
On AIX® systems, you need an export file (for example, libmyapp.exp) that lists
your plug-in functions, and you must link with the Caching Proxy API import
file, libhttpdapi.exp.
On Linux, HP-UX, and Solaris systems, you must link with the libhttpdapi and
libc libraries.
On Windows systems, you need a module definition file (.def) that lists your
plug-in functions, and you must link with HTTPDAPI.LIB.
Be sure to include HTAPI.h and to use the HTTPD_LINKAGE macro in your
function definitions. This macro ensures that all the functions use the same
calling conventions.

v The server runs in a multithreaded environment; therefore, your plug-ins must
be thread safe. If your application is reentrant, performance does not decrease.

v Keep the actions in your plug-ins to a thread scope. Do not perform any actions
at a process scope, for example, exiting, changing the user ID, or registering a
signal handler.

v Do not use global variables, or, if you must use them, protect global variables
with a mutual exclusion semaphore.

v Remember to set the Content-Type header if you are using the HTTPD_write()
function to send data back to the client.

v Always check return codes and provide conditional processing where necessary.
v Compile and link your program, referring to the documentation for your

compiler to build a shared object (for example, a DLL or .so file) as required for
your operating system.
Use the following compile and link commands as a guideline.
– AIX, using IBM CSet++

- Compile:
cc_r -c -qdbxextra -qcpluscmt foo.c

- Link:
cc_r -bM:SRE -bnoentry -o libfoo.so foo.o -bI:libhttpdapi.exp

-bE:foo.exp

(This command is shown on two lines for readability only.)
– HP-UX, using HP C/ANSI C Developer's Bundle and HP aC++ Compiler

- Compile:
cc -Ae -c +Z +DAportable

- Link:

Chapter 2. The Caching Proxy API 7

aCC +Z -mt -c +DAportable

– Linux, using the Gnu Compiler C (GCC) Version 3.2.X
- Compile:

gcc -c foo.c

- Link:
ld -G -Bsymbolic -o libfoo.so foo.o -lhttpdapi -lc

– Solaris, using Sun Workshop
- Compile:

cc -mt -Bsymbolic -c foo.c

- Link:
cc -mt -Bsymbolic -G -o libfoo.so foo.o -lhttpdapi -lc

– Windows, using Microsoft Visual C++
- Compile:

cl /c /MD /DWIN32 foo.c

- Link:
link httpdapi.lib foo.obj /def:foo.def /out:foo.dll /dll

To specify exports, use one of these methods:
– Add _declspec(dllexport) definitions in the source.
– Specify /EXPORT:entryname on the LIB command line.
– Create a module definition file with an EXPORTS statement.

v Add Caching Proxy API directives to your configuration file to associate your
program's plug-in functions with the appropriate steps. There is a separate
directive for each step in the server request process. Stop and restart your server
to make the new directives take effect.

Note: The Caching Proxy does not unload shared objects (DLL or .so files) even
at restart. You must stop and then start the server in order to release
shared objects.

v Test your program rigorously before using it in a production environment.
Because the Caching Proxy is a threaded server, you must apply more rigorous
testing than is necessary for a forking server. Errors in your program can cause
the proxy server to fail because the proxy server calls your program directly, and
they both run in the same process space.

Plug-in functions
Follow the syntax presented in “Plug-in function prototypes” to write your own
program functions for the defined request processing steps.

Each of your functions must fill in the return code parameter with a value that
indicates what action was taken:
v The code HTTP_NOACTION (value 0) means that no relevant action was taken. If

this code is returned, the proxy server takes its default action for this step.
v One of the valid HTTP return codes indicates that the plug-in function handled

the step. (See “HTTP return codes and values” on page 14 for a list of valid
return codes.) If a valid HTTP return code is given, no other plug-in functions
are called to handle that step of this request.

Plug-in function prototypes
The function prototypes for each Caching Proxy step show the format to use and
explain the type of processing they can perform. Note that the function names are

8 WebSphere Application Server: Programming Guide for Edge Components

not predefined. You must give your functions unique names, and you can choose
your own naming conventions. For ease of association, this document uses names
that relate to the server's processing steps.

In each of these plug-in functions, certain predefined API functions are valid. Some
predefined functions are not valid for all steps. The following predefined API
functions are valid when called from all of these plug-in functions:
v HTTPD_set
v HTTPD_extract
v httpd_setvar
v httpd_getvar
v HTTPD_log* functions

Additional valid or invalid API functions are noted in the function prototype
descriptions.

The value of the handle parameter sent to your functions can be passed as the first
argument to the predefined functions. Predefined API functions are described in
“Predefined functions and macros” on page 15.

Server Initialization
void HTTPD_LINKAGE ServerInitFunction (

unsigned char *handle,
unsigned long *major_version,
unsigned long *minor_version,
long *return_code
)

A function defined for this step is called once when your module is loaded
during server initialization. It is your opportunity to perform initialization
before any requests have been accepted.

Although all server initialization functions are called, a error return code
from a function in this step causes the server to ignore all other functions
configured in the same module as the function that returned the error
code. (That is, any other functions contained in the same shared object as
the function that returned the error are not called.)

The version parameters contain the proxy server's version number; these
are supplied by the Caching Proxy.

PreExit
void HTTPD_LINKAGE PreExitFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request after the request
has been read but before any processing has occurred. A plug-in at this
step can be used to access the client's request before it is processed by the
Caching Proxy.

Valid return codes for the preExit function are the following:
v 0 (HTTP_NOACTION)
v 200 (HTTP_OK)
v HTTP errors in the 4xx or 5xx series (for example, 404,

HTTP_NOT_FOUND)

Other return codes must not be used.

Chapter 2. The Caching Proxy API 9

If this function returns HTTP_OK, the proxy server assumes that the
request has been handled. All subsequent request processing steps are
bypassed, and only the response steps (Transmogrifier, Log, and PostExit)
are performed.

All predefined API functions are valid during this step.

Midnight
void HTTPD_LINKAGE MidnightFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step runs daily at midnight and contains no
request context. For example, it can be used to invoke a child process to
analyze logs. (Note that extensive processing during this step can interfere
with logging.)

Authentication
void HTTPD_LINKAGE AuthenticationFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request based on the
request's authentication scheme. This function can be used to customize
verification of the security tokens that are sent with a request.

Name Translation
void HTTPD_LINKAGE NameTransFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request. A URL template
can be specified in the configuration file directive if you want the plug-in
function to be called only for requests that match the template. The Name
Translation step occurs before the request is processed and provides a
mechanism for mapping URLs to objects such as file names.

Authorization
void HTTPD_LINKAGE AuthorizationFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request. A URL template
can be specified in the configuration file directive if you want the plug-in
function to be called only for requests that match the template. The
Authorization step occurs before the request is processed and can be used
to verify that the identified object can be returned to the client. If you are
doing basic authentication, you must generate the required
WWW-Authenticate headers.

Object Type
void HTTPD_LINKAGE ObjTypeFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request. A URL template
can be specified in the configuration file directive if you want the plug-in
function to be called only for requests that match the template. The Object

10 WebSphere Application Server: Programming Guide for Edge Components

Type step occurs before the request is processed and can be used to check
whether the object exists, and to perform object typing.

PostAuthorization
void HTTPD_LINKAGE PostAuthFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called after the request has been
authorized but before any processing has occurred. If this function returns
HTTP_OK, the proxy server assumes that the request has been handled.
All subsequent request steps are bypassed, and only the response steps
(Transmogrifier, Log, and PostExit) are performed.

All server predefined functions are valid during this step.

Service
void HTTPD_LINKAGE ServiceFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request. A URL template
can be specified in the configuration file directive if you want the plug-in
function to be called only for requests that match the template. The Service
step satisfies the request, if it was not satisfied in the PreExit or
PostAuthorization steps.

All server predefined functions are valid during this step.

Refer to the Enable directive in the WebSphere Application Server Caching
Proxy Administration Guide for information on configuring your Service
function to be executed based on the HTTP method rather than on the
URL.

Transmogrifier
The functions called in this process step can be used to filter response data
as a stream. Four plug-in functions for this step are called in sequence, and
each acts as a segment of pipe through which the data flows. That is, the
open, write, close, and error functions that you provide are called, in that
order, for each response. Each function processes the same data stream, in
turn.

For this step, you must implement the following four functions. (Your
function names do not need to match these names.)
v Open

void * HTTPD_LINKAGE openFunction (
unsigned char *handle,
long *return_code
)

The open function performs any initialization (such as buffer allocation)
required to process the data for this stream. Any return code other than
HTTP_OK causes this filter to abort (the write and close functions are
not called). Your function can return a void pointer so that you can
allocate space for a structure and have the pointer passed back to you in
the correlator parameter of the subsequent functions.

v Write
void HTTPD_LINKAGE writeFunction (

unsigned char *handle,
unsigned char *data, /* response data sent by the

Chapter 2. The Caching Proxy API 11

origin server */
unsigned long *length, /* length of response data */
void *correlator, /* pointer returned by the

’open’ function */
long *return_code
)

The write function processes the data and can call the server's
predefined HTTPD_write() function with the new or changed data. The
plug-in must not attempt to free the buffer passed to it or expect the
server to free the buffer it receives.
If you decide not to change the data during the scope of your write
function, you still must call the HTTPD_write() function during the
scope of either your open, write, or close function in order to pass the
data for the response to the client. The correlator argument is the pointer
to the data buffer that was returned in your open routine.

v Close
void HTTPD_LINKAGE closeFunction (

unsigned char *handle,
void *correlator,
long *return_code
)

The close function performs any clean-up actions (such as flushing and
freeing the correlator buffer) required to complete processing the data
for this stream. The correlator argument is the pointer to the data buffer
that was returned in your open routine.

v Error
void HTTPD_LINKAGE errorFunction (

unsigned char *handle,
void *correlator,
long *return_code
)

The error function enables performance of clean-up actions, such as
flushing or freeing the buffered data (or both) before an error page is
sent. At this point, your open, write, and close functions are called to
process the error page. The correlator argument is the pointer to the data
buffer that was returned in your open routine.

Notes:

v When writing a plug-in for the Transmogrifier step, you must call
HTTPD_open(), HTTPD_write(), and HTTPD_close() at some time
during the scope of your open, write, and close functions.
HTTPD_write() can be called only after the HTTPD_open() function has
been called. The purpose of these predefined functions is to give control
to the server so that the next function in the sequence can be invoked.

v Calling the HTTPD_* functions is necessary for your Transmogrifier API
step and the server to perform correctly. For example, if HTTPD_open()
and HTTPD_close() are not called, headers are not returned to the client.

v Be aware that undesirable effects can occur if data filtering applications
are not properly selective in their filtering of data streams. It is possible
that CGIs will not work if filtered incorrectly, GIF files will not be
displayed, and other binary streams will not work as expected.

v It is not necessary for the plug-in to buffer content body. The Caching
Proxy automatically determines the content length.

12 WebSphere Application Server: Programming Guide for Edge Components

v It is desirable to call HTTPD_open() when you are ready to give control
of the headers to the server. However, if you need to set a header later
in the API program, you can wait until the write or close function to call
the HTTPD_open() function.

Note: You must set any headers by using HTTPD_set() or httpd_setvar()
before calling the HTTPD_open() function.

v The data stream does not include headers. Plug-ins must use set and
extract functions to manipulate headers. The plug-in's open function is
not invoked until all headers have been read.

v You can use multiple transmogrifier plug-ins, which are invoked in the
order in which they appear in the configuration file.

v SSL tunneling is not passed through the transmogrifier plug-ins.

GC Advisor
void HTTPD_LINKAGE GCAdvisorFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each file in the cache during
garbage collection. This function enables you to influence which files are
kept and which files are discarded. For more information, see the GC_*
variables.

Proxy Advisor
void HTTPD_LINKAGE ProxyAdvisorFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is invoked during service of each proxy
request. For example, it can be used to set the USE_PROXY variable.

Log
void HTTPD_LINKAGE LogFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request after the request
has been processed and the communication to the client has been closed. A
URL template can be specified in the configuration file directive if you
want the plug-in function to be called only for requests that match the
template. This function is called regardless of the success or failure of the
request processing. If you do not want your log plug-in to override the
default log mechanism, set your return code to HTTP_NOACTION instead
of HTTP_OK.

Error
void HTTPD_LINKAGE ErrorFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request that fails. A URL
template can be specified in the configuration file directive if you want the
plug-in function to be called only for failed requests that match the
template. The Error step provides an opportunity for you to customize the
error response.

Chapter 2. The Caching Proxy API 13

PostExit
void HTTPD_LINKAGE PostExitFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called for each request, regardless of the
success or failure of the request. This step enables you to do clean-up tasks
for any resources allocated by your plug-in to process the request.

Server Termination
void HTTPD_LINKAGE ServerTermFunction (

unsigned char *handle,
long *return_code
)

A function defined for this step is called when an orderly shutdown of the
server occurs. It enables you to clean up resources allocated during the
Server Initialization step. Do not call any HTTP_* functions in this step
(the results are unpredictable). If you have more than one Caching Proxy
API directive in your configuration file for Server Termination, they will all
be called.

Note: Because of a current limitation in Solaris code, the Server
Termination plug-in step is not executed when the ibmproxy -stop
command is used to shut down the Caching Proxy on Solaris
platforms. Refer to the WebSphere Application Server Caching Proxy
Administration Guide for information about starting and stopping the
Caching Proxy.

HTTP return codes and values
These return codes follow the HTTP 1.1 specification, RFC 2616, published by the
World Wide Web Consortium (www.w3.org/pub/WWW/Protocols/). Your plug-in
functions must return one of these values.

Table 2. HTTP return codes for Caching Proxy API functions

Value Return code

0 HTTP_NOACTION

100 HTTP_CONTINUE

101 HTTP_SWITCHING_PROTOCOLS

200 HTTP_OK

201 HTTP_CREATED

202 HTTP_ACCEPTED

203 HTTP_NON_AUTHORITATIVE

204 HTTP_NO_CONTENT

205 HTTP_RESET_CONTENT

206 HTTP_PARTIAL_CONTENT

300 HTTP_MULTIPLE_CHOICES

301 HTTP_MOVED_PERMANENTLY

302 HTTP_MOVED_TEMPORARILY

302 HTTP_FOUND

303 HTTP_SEE_OTHER

304 HTTP_NOT_MODIFIED

14 WebSphere Application Server: Programming Guide for Edge Components

Table 2. HTTP return codes for Caching Proxy API functions (continued)

305 HTTP_USE_PROXY

307 HTTP_TEMPORARY_REDIRECT

400 HTTP_BAD_REQUEST

401 HTTP_UNAUTHORIZED

403 HTTP_FORBIDDEN

404 HTTP_NOT_FOUND

405 HTTP_METHOD_NOT_ALLOWED

406 HTTP_NOT_ACCEPTABLE

407 HTTP_PROXY_UNAUTHORIZED

408 HTTP_REQUEST_TIMEOUT

409 HTTP_CONFLICT

410 HTTP_GONE

411 HTTP_LENGTH_REQUIRED

412 HTTP_PRECONDITION_FAILED

413 HTTP_ENTITY_TOO_LARGE

414 HTTP_URI_TOO_LONG

415 HTTP_BAD_MEDIA_TYPE

416 HTTP_BAD_RANGE

417 HTTP_EXPECTATION_FAILED

500 HTTP_SERVER_ERROR

501 HTTP_NOT_IMPLEMENTED

502 HTTP_BAD_GATEWAY

503 HTTP_SERVICE_UNAVAILABLE

504 HTTP_GATEWAY_TIMEOUT

505 HTTP_BAD_VERSION

Predefined functions and macros
You can call the server's predefined functions and macros from your own plug-in
functions. You must use their predefined names and follow the format described
below. In the parameter descriptions, the letter i indicates an input parameter, the
letter o indicates an output parameter, and i/o indicates that a parameter is used
for both input and output.

Each of these functions returns one of the HTTPD return codes, depending on the
success of the request. These codes are described in “Return codes from predefined
functions and macros” on page 21.

Use the handle provided to your plug-in as the first parameter when calling these
functions. Otherwise, the function returns an HTTPD_PARAMETER_ERROR error
code. NULL is not accepted as a valid handle.

HTTPD_authenticate()
Authenticates a user ID or password, or both. Valid only in PreExit,
Authentication, Authorization, and PostAuthorization steps.

Chapter 2. The Caching Proxy API 15

void HTTPD_LINKAGE HTTPD_authenticate (
unsigned char *handle, /* i; handle */
long *return_code /* o; return code */
)

HTTPD_cacheable_url()
Returns whether the specified URL content is cacheable according to the
Caching Proxy's standards.
void HTTPD_LINKAGE HTTPD_cacheable_url (

unsigned char *handle, /* i; handle */
unsigned char *url, /* i; URL to check */
unsigned char *req_method, /* i; request method for the URL */
long *retval /* o; return code */
)

The return value HTTPD_SUCCESS indicates that the URL content is
cacheable; HTTPD_FAILURE indicates the content is not cacheable.
HTTPD_INTERNAL_ERROR also is a possible return code for this
function.

HTTPD_close()
(Valid only in the Transmogrifier step.) Transfers control to the next close
routine in the stream stack. Call this function from the Transmogrifier
open, write, or close functions after any desired processing is done. This
function notifies the proxy server that the response has been processed and
the Transmogrifier step is complete.
void HTTPD_LINKAGE HTTPD_close (

unsigned char *handle, /* i; handle */
long *return_code /* o; return code */
)

HTTPD_exec()
Executes a script to satisfy this request. Valid in the PreExit, Service,
PostAuthorization, and Error steps.
void HTTPD_LINKAGE HTTPD_exec (

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of script to run */
unsigned long *name_length, /* i; length of the name */
long *return_code /* o; return code */
)

HTTPD_extract()
Extracts the value of a variable associated with this request. The valid
variables for the name parameter are the same as those used in the CGI.
See “Variables” on page 24 for more information. Note that this function is
valid in all steps; however, not all variables are valid in all steps.
void HTTPD_LINKAGE HTTPD_extract (

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of variable to extract */
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* o; buffer in which to put

the value */
unsigned long *value_length, /* i/o; buffer size */
long *return_code /* o; return code */
)

If this function returns the code HTTPD_BUFFER_TOO_SMALL, the buffer
size you requested was not big enough for the extracted value. In this case,
the function does not use the buffer but updates the value_length
parameter with the buffer size that you need in order to successfully
extract this value. Retry the extraction with a buffer that is at least as big
as the returned value_length.

16 WebSphere Application Server: Programming Guide for Edge Components

Note: If the variable being extracted is for an HTTP header, the
HTTPD_extract() function will extract only the first matching
occurrence, even if the request contains multiple headers with the
same name. The httpd_getvar() function can be used instead of
HTTPD_extract(), and also offers other benefits. Refer to the section
on the “httpd_getvar() function” for more information.

HTTPD_file()
Sends a file to satisfy this request. Valid only in the PreExit, Service, Error,
PostAuthorization, and Transmogrifier steps.
void HTTPD_LINKAGE HTTPD_file (

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of file to send */
unsigned long *name_length, /* i; length of the name */
long *return_code /* o; return code */
)

httpd_getvar()
The same as HTTPD_extract(), except that it is easier to use because the
user does not have to specify lengths for the arguments.
const unsigned char * /* o; value of variable */
HTTPD_LINKAGE
httpd_getvar(

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; variable name */
unsigned long *n /* i; index number for the array

containing the header */
)

The index for the array containing the header begins with 0. To obtain the
first item in the array, use the value 0 for n; to obtain the fifth item, use the
value 4 for n.

Note: Do not discard or change the contents of the returned value. The
returned string is null terminated.

HTTPD_log_access()
Writes a string to the server's access log.
void HTTPD_LINKAGE HTTPD_log_access (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */
long *return_code /* o; return code */
)

Note that escape symbols are not required when writing the percent
symbol (%) in server access logs.

HTTPD_log_error()
Writes a string to the server's error log.
void HTTPD_LINKAGE HTTPD_log_error (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */
long *return_code /* o; return code */
)

Note that escape symbols are not required when writing the percent
symbol (%) in server error logs.

Chapter 2. The Caching Proxy API 17

HTTPD_log_event()
Writes a string to the server's event log.
void HTTPD_LINKAGE HTTPD_log_event (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */
long *return_code /* o; return code */
)

Note that escape symbols are not required when writing the percent
symbol (%) in server event logs.

HTTPD_log_trace()
Writes a string to the server's trace log.
void HTTPD_LINKAGE HTTPD_log_trace (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to write */
unsigned long *value_length, /* i; length of the data */
long *return_code /* o; return code */
)

Note that escape symbols are not required when writing the percent
symbol (%) in server trace logs.

HTTPD_open()
(Valid only in the Transmogrifier step.) Transfers control to the next routine
in the stream stack. Call this from the Transmogrifier open, write, or close
functions after any desired headers are set and you are ready to begin the
write routine.
void HTTPD_LINKAGE HTTPD_open (

unsigned char *handle, /* i; handle */
long *return_code /* o; return code */
)

HTTPD_proxy()
Makes a proxy request. Valid in the PreExit, Service, and PostAuthorization
steps.

Note: This is a completion function; the request is complete after this
function.
void HTTPD_LINKAGE HTTPD_proxy (

unsigned char *handle, /* i; handle */
unsigned char *url_name, /* i; URL for the

proxy request */
unsigned long *name_length, /* i; length of URL */
void *request_body, /* i; body of request */
unsigned long *body_length, /* i; length of body */
long *return_code /* o; return code */
)

HTTPD_read()
Reads the body of the client's request. Use HTTPD_extract() for headers.
Valid only in the PreExit, Authorization, PostAuthorization, and Service
steps and is useful only if a PUT or POST request has been done. Call this
function in a loop until HTTPD_EOF is returned. If there is no body for this
request, this function fails.
void HTTPD_LINKAGE HTTPD_read (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; buffer for data */

18 WebSphere Application Server: Programming Guide for Edge Components

unsigned long *value_length, /* i/o; buffer size
(data length) */

long *return_code /* o; return code */
)

HTTPD_restart()
Restarts the server after all active requests have been processed. Valid in all
steps except for Server Initialization, Server Termination, and
Transmogrifier.
void HTTPD_LINKAGE HTTPD_restart (

long *return_code /* o; return code */
)

HTTPD_set()
Sets the value of a variable associated with this request. The variables that
are valid for the name parameter are the same as those used in the CGI.
See “Variables” on page 24 for more information.

Note that you can also create variables with this function. Variables that
you create are subject to the conventions for HTTP_ and PROXY_ prefixes,
which are described in “Variables” on page 24. If you create a variable that
begins with HTTP_, it is sent as a header in the response to the client,
without the HTTP_ prefix. For example, to set a Location header, use
HTTPD_set() with the variable name HTTP_LOCATION. Variables created
with a PROXY_ prefix are sent as headers in the request to the content
server. Variables created with a CGI_ prefix are passed to CGI programs.

This function is valid in all steps; however, not all variables are valid in all
steps.
void HTTPD_LINKAGE HTTPD_set (

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; name of value to set */
unsigned long *name_length, /* i; length of the name */
unsigned char *value, /* i; buffer with value */
unsigned long *value_length, /* i; length of value */
long *return_code /* o; return code */
)

Note: You can use the httpd_setvar() function to set a variable value
without having to specify a buffer and length. Refer to the section
on “httpd_setvar() function” for information.

httpd_setvar()
The same as HTTPD_set(), except that it is easier to use because the user
does not have to specify lengths for the arguments.
long /* o; return code */
HTTPD_LINKAGE httpd_setvar (

unsigned char *handle, /* i; handle */
unsigned char *name, /* i; variable name */
unsigned char *value, /* i; new value */
unsigned long *addHdr /* i; add header or replace it */
)

The addHdr parameter has four possible values:
v HTTPD_SETVAR_REPLACE — Replace all occurrences of the header

variable with the new value.
v HTTPD_SETVAR_REPLACE_ADD — If the header variable exists,

replace its first occurrence with the new value; if the variable does not
exist, append the new value to the headers.

v HTTPD_SETVAR_ADD — Append this value to the headers.

Chapter 2. The Caching Proxy API 19

v HTTPD_SETVAR_REMOVE_ALL — Delete all occurrences of this header
variable.

These values are defined in HTAPI.h.

httpd_variant_insert()
Inserts a variant into the cache.
void HTTPD_LINKAGE httpd_variant_insert (

unsigned char *handle, /* i; handle */
unsigned char *URI, /* i; URI of this object */
unsigned char *dimension, /* i; dimension of variation */
unsigned char *variant, /* i; value of the variant */
unsigned char *filename, /* i; file containing the object */
long *return_code /* o; return code */
)

Notes:

1. The dimension argument refers to the header by which this object
varies from the URI. For instance, in the example above, a possible
dimension value is User-Agent.

2. The variant argument refers to the value of the header for the header
given in the dimension argument. This varies from the URI. For
instance, in the example above, a possible value for the variant
argument is the following:
Mozilla 4.0 (compatible; BatBrowser 94.1.2; Bat OS)

3. The filename argument must point to a null-terminated copy of the file
name in which the user has saved the modified content. The user is
responsible for removing the file; this action is safe after return from
this function. The file contains only the body with no headers.

4. When caching variants, the server updates the content-length header
and adds a Warning: 214 header. Strong entity tags are removed.

httpd_variant_lookup()
Determines if a given variant exists in the cache.
void HTTPD_LINKAGE httpd_variant_lookup (

unsigned char *handle, /* i; handle */
unsigned char *URI, /* URI of this object */
unsigned char *dimension, /* i; dimension of variation */
unsigned char *variant, /* i; value of the variant */

long *return_code); /* o; return code */

HTTPD_write()
Writes the body of the response. Valid in the PreExit, Service, Error, and
Transmogrifier steps.

If you do not set the content type before calling this function for the first
time, the server assumes that you are sending a CGI data stream.
void HTTPD_LINKAGE HTTPD_write (

unsigned char *handle, /* i; handle */
unsigned char *value, /* i; data to send */
unsigned char *value_length, /* i; length of the data */

long *return_code); /* o; return code */

Note: To set response headers, refer to the section on the “HTTPD_set()
function” on page 19.

Note: After an HTTPD_* function returns, it is safe for you to free any memory
that you passed with it.

20 WebSphere Application Server: Programming Guide for Edge Components

Return codes from predefined functions and macros
The server will set the return code parameter to one of these values, depending on
the success of the request:

Table 3. Return codes

Value Status code Explanation

-1 HTTPD_UNSUPPORTED The function is not supported.

0 HTTPD_SUCCESS The function succeeded, and the output
fields are valid.

1 HTTPD_FAILURE The function failed.

2 HTTPD_INTERNAL_ERROR An internal error was encountered and
processing for this request cannot
continue.

3 HTTPD_PARAMETER_ERROR One or more invalid parameters was
passed.

4 HTTPD_STATE_CHECK The function is not valid in this process
step.

5 HTTPD_READ_ONLY (Returned only by HTTPD_set and
httpd_setvar.) The variable is read-only
and cannot be set by the plug-in.

6 HTTPD_BUFFER_TOO_SMALL (Returned by HTTPD_set, httpd_setvar,
and HTTPD_read.) The buffer provided
was too small.

7 HTTPD_AUTHENTICATE_FAILED (Returned only by HTTPD_authenticate.)
The authentication failed. Examine the
HTTP_RESPONSE and HTTP_REASON
variables for more information.

8 HTTPD_EOF (Returned only by HTTPD_read.)
Indicates the end of the request body.

9 HTTPD_ABORT_REQUEST The request was aborted because the
client provided an entity tag that did not
match the condition specified by the
request.

10 HTTPD_REQUEST_SERVICED (Returned by HTTPD_proxy.) The
function that was called completed the
response for this request.

11 HTTPD_RESPONSE_ALREADY_
COMPLETED

The function failed because the response
for that request has already been
completed.

12 HTTPD_WRITE_ONLY The variable is write-only and cannot be
read by the plug-in.

Caching Proxy configuration directives for API steps
Each step in the request process has a configuration directive that you use to
indicate which of your plug-in functions you want to call and execute during that
step. You can add these directives to your server's configuration file
(ibmproxy.conf) by manually editing and updating it, or by using the API Request
Processing form in the Caching Proxy Configuration and Administration forms.

Chapter 2. The Caching Proxy API 21

API usage notes
v Except for the Service and NameTrans directives, the API directives for each step

do not need to appear in any particular order in the configuration file. Note that
the order of multiple entries for one API directive is significant, as described
later in this list.

v It is not necessary to include an entry for every API step. If you do not have a
plug-in for a particular step, omit the corresponding directive and the standard
processing for that step will be used.

v The Service and NameTrans directives work like the other mapping directives
(for example, the Pass directive) and are dependent on their occurrence and
placement relative to other mapping directives within the configuration file. For
example, a rule for /cgi-bin/foo.so must appear before the rule for /cgi-bin/*.
This means that the server processes the Service, NameTrans, Exec, Fail, Map,
Pass, Proxy, ProxyWAS, and Redirect directives in their sequence within the
configuration file. When the server successfully maps a URL to a file, it does not
read or process any other of these directives. (The Map directive is an exception.
Refer to the WebSphere Application Server Caching Proxy Administration Guide for
complete information about proxy server mapping rules.)

v You can have more than one configuration directive for a step. For example, you
can include two NameTrans directives, each pointing to a different plug-in
function. When the server performs the name translation step, it processes your
name translation functions in the order in which they appear within the
configuration file.

Note: If a plug-in function provided with the Caching Proxy uses the same API
directive as a plug-in you have written, place your plug-in's directive after
the system plug-in directive.

v Certain plug-in functions do not have to be executed for every request:
– Several directives include a URL mask. Specifying a URL mask with these

directives causes the plug-in application to be called only for requests whose
URLs match that pattern. Refer to “API directives and syntax” for information
about which steps can use URL masks and to “API directive variables” on
page 23 for information about how to use this feature.

– Specify an authentication scheme with the Authentication directive to indicate
that you want the plug-in to be called only for certain types of authentication.
Currently, only basic authentication is supported by the HTTP protocol. See
“API directive variables” on page 23 for additional information.

v If the server fails to load a specific plug-in function, or if you have a ServerInit
directive that does not return an OK return code, no other plug-in functions for
that compiled Caching Proxy plug-in are called. Any processing specific to that
plug-in that was done up to this point is ignored. Other Caching Proxy plug-ins
that you include in these directives, and their functions, are not affected.

API directives and syntax
These configuration file directives must appear in the ibmproxy.conf file as one
line, with no spaces other than those explicitly specified here. Although line breaks
appear for readability in some of the syntax examples, there must be no spaces at
those points in the actual directive.

Table 4. Caching Proxy plug-in API directives

ServerInit /path/file:function_name init_string

PreExit /path/file:function_name

Authentication type /path/file:function_name

22 WebSphere Application Server: Programming Guide for Edge Components

Table 4. Caching Proxy plug-in API directives (continued)

NameTrans /URL /path/file:function_name

Authorization /URL /path/file:function_name

ObjectType /URL /path/file:function_name

PostAuth /path/file:function_name

Service /URL /path/file:function_name

Midnight /path/file:function_name

Transmogrifier /path/file:open_function_name: write_function_name:
close_function_name:error_function

Log /URL /path/file:function_name

Error /URL /path/file:function_name

PostExit /path/file:function_name

ServerTerm /path/file:function_name

ProxyAdvisor /path/file:function_name

GCAdvisor /path/file:function_name

API directive variables
The variables in these directives have the following meanings:

type Used only with the Authentication directive to specify whether or not your
plug-in function is called. Valid values are the following:
v Basic — The plug-in function is called only for basic authentication

requests.
v * — The plug-in function is called for all requests. Currently, only basic

authentication is supported by HTTP protocol. For nonbasic
authentication requests, you can return an error code indicating that this
type of authentication is not supported.

URL Specifies the requests for which your plug-in function is called. Requests
with URLs that match this template will cause the plug-in function to be
used. URL specifications in these directives are virtual (they do not include
the protocol) but are preceded by a slash (/). For example,
/www.ics.raleigh.ibm.com is correct, but http://www.ics.raleigh.ibm.com
is not. You can specify this value as a specific URL or as a template.
v specific URL — The plug-in function is called only for that exact URL.
v URL template — The plug-in function is called for all URLs that match

the template. Templates can include the wildcard character * and can be
specified in the forms /URL* or /* or *

Note: A URL template is required with the Service directive if you want
path translation to occur.

path/file
The fully qualified file name of your compiled program.

function_name
The name that you gave your plug-in function within your program.

The Service directive requires an asterisk (*) after the function name if you
want to have access to path information.

Chapter 2. The Caching Proxy API 23

init_string
This optional part of the ServerInit directive can contain any text that you
want to pass to your plug-in function. Use httpd_getvar() to extract the
text from the INIT_STRING variable.

For additional information, including syntax, for these directives, see the WebSphere
Application Server Caching Proxy Administration Guide.

Compatibility with other APIs
The Caching Proxy API is backward-compatible with ICAPI and GWAPI, through
version 4.6.1.

Porting CGI programs
Use the following guidelines for porting CGI applications written in C to use the
Caching Proxy API:
v Remove your main() entry point, or rename it so that you can build a DLL.
v Eliminate global variables or protect them with a mutual exclusion semaphore.
v Change the following calls in your programs:

– Change printf() header calls to HTTPD_set() or httpd_setvar().
– Change printf() data calls to HTTPD_write().
– Change getenv() calls to HTTPD_extract() or httpd_getvar(). Be aware that

these calls will return unallocated memory, so you must perform a free() call
on the result to prevent a memory leak.

v Remember that the server runs in a multithreaded environment, and your
plug-in functions must be thread safe. If the functions are reentrant, performance
does not decrease.

v Remember to set the Content-Type header if you are using HTTPD_write() to
send data back to the client.

v Check your code meticulously for memory leaks.
v Think about your error paths. If you generate error messages yourself and send

them back as HTML, you must return HTTPD_OK from your service function or
functions.

Caching Proxy API reference information

Variables
When writing API programs, you can use Caching Proxy variables that provide
information about the remote client and server system.

Notes:

v User-defined variable names cannot have a prefix of SERVER_. The Caching
Proxy API function reserves any variable starting with SERVER_ for the server
and, therefore, these variables are read-only. In addition, the prefixes HTTP_ and
PROXY_ also are reserved for HTTP headers.

v All request headers sent by the client (such as Set-Cookie) are prefixed by
HTTP_, and their values can be extracted. To access variables that are request
headers, prefix the variable name with HTTP_. You can also create new variables
using the httpd_setvar() predefined function. For details about these headers, see
“Return codes from predefined functions and macros” on page 21.

24 WebSphere Application Server: Programming Guide for Edge Components

v Two variable prefixes, HTTP_ and PROXY_, are used to denote whether a
variable applies to headers for the request or for the response. The HTTP_ prefix
refers to variables that flow between the client and the Caching Proxy. The
PROXY_ prefix refers to variables that flow between the Caching Proxy and the
origin server (or the next server in a proxy chain). These variables are valid only
during the request processing steps.
– Extracting an HTTP_* variable gives you the value of a header that was in the

client's request to the proxy server.
– Setting an HTTP_* variable sets the response header that is sent from the

proxy server to the client.
– Extracting a PROXY_* variable gives you the value for a header returned

from the content server to the proxy server.
– Setting a PROXY_* variable sets the request header that is sent from the

proxy server to the content server (or to the next server in a proxy chain).

Figure 2 demonstrates the use of these prefixes as the Caching Proxy handles a
client request.

v Some variables are read-only. Read-only variables represent values that you can
extract from a request or a response and use in the httpd_getvar() predefined
function. A return code of HTTPD_READ_ONLY results if you try to change
read-only variables by using the httpd_setvar() function.

v Variables not identified as read-only can be read and set in the httpd_getvar() or
httpd_setvar() predefined functions. These variables represent values that you
can extract from a request or response; or values that you can set or create when
processing a request or response.

Variable definitions

Note: Header variables that do not begin with HTTP_ or PROXY_ prefixes are
ambiguous. To avoid ambiguity, always use the HTTP_ or PROXY_ prefix
with variable names for headers.

ACCEPT_RANGES
Contains the value of the Accept-Ranges response header, which specifies
whether the content server can respond to range requests. Use
PROXY_ACCEPT_RANGES to extract the header value that is sent by the
content server to the proxy. Use HTTP_ACCEPT_RANGES to set the
header value that is sent from the proxy to the client.

Note: ACCEPT_RANGES is ambiguous. To eliminate ambiguity, use
HTTP_ACCEPT_RANGES and PROXY_ACCEPT_RANGES instead.

Figure 2. HTTP_ and PROXY_ variable prefixes. Legend: 1—Client machine 2—Caching
Proxy 3—Origin server

Chapter 2. The Caching Proxy API 25

ALL_VARIABLES
Read-only. Contains all of the CGI variables. For example:

ACCEPT_RANGES BYTES
CLIENT_ADDR 9.67.84.3

AUTH_STRING
Read-only. If the server supports client authentication, this string contains
the undecoded credentials to be used to authenticate the client.

AUTH_TYPE
Read-only. If the server supports client authentication and the script is
protected, this variable contains the method used to authenticate the client.
For example, Basic.

CACHE_HIT
Read-only. Identifies whether or not the proxy request was found in the
cache. Values returned include the following:
v 0 - The request was not found in the cache.
v 1 - The request was found in the cache.

CACHE_MISS
Write-only. Used to force a cache miss. Valid values are the following:
v 0 - Do not force a cache miss.
v 1 - Force a cache miss.

CACHE_TASK
Read-only. Identifies whether the cache was used. Values returned include
the following:
v 0 - The request did not access or update the cache.
v 1 - The request was served from cache.
v 2 - The requested object was in the cache but needed to be revalidated.
v 3 - The requested object was not in the cache and possibly has been

added.

This variable can be used in the PostAuthorization, PostExit, ProxyAdvisor,
or Log steps.

CACHE_UPDATE
Read-only. Identifies whether or not the proxy request updated the cache.
Values returned include the following:
v 0 - The cache was not updated.
v 1 - The cache was updated.

CLIENT_ADDR or CLIENTADDR
Same as REMOTE_ADDR.

CLIENTMETHOD
Same as REQUEST_METHOD.

CLIENT_NAME or CLIENTNAME
Same as REMOTE_HOST.

CLIENT_PROTOCOL or CLIENTPROTOCOL
Contains the name and version of the protocol that the client is using to
make the request. For example, HTTP/1.1.

CLIENT_RESPONSE_HEADERS
Read-only. Returns a buffer containing the headers that the server sends to
the client.

26 WebSphere Application Server: Programming Guide for Edge Components

CONNECTIONS
Read-only. Contains the number of connections being served, or the
number of active requests. For example, 15.

CONTENT_CHARSET
Character set of the response for text/*, for example, US ASCII. Extracting
this variable applies to the content-charset header from the client. Setting it
affects the content-charset header in the request to the content server.

CONTENT_ENCODING
Specifies the encoding used in the document, for example, x-gzip.
Extracting this variable applies to the content-encoding header from client.
Setting it affects the content-encoding header in the request to the content
server.

CONTENT_LENGTH
Extracting this variable applies to the header from the client's request.
Setting it affects the value of the header in the request to the content
server.

Note: CONTENT_LENGTH is ambiguous. To eliminate ambiguity, use
HTTP_CONTENT_LENGTH and PROXY_CONTENT_LENGTH.

CONTENT_TYPE
Extracting this variable applies to the header from the client's request.
Setting it affects the value of the header in the request to the content
server.

Note: CONTENT_TYPE is ambiguous. To eliminate ambiguity, use
HTTP_CONTENT_TYPE and PROXY_CONTENT_TYPE.

CONTENT_TYPE_PARAMETERS
Contains other MIME attributes, but not the character set. Extracting this
variable applies to the header from the client request. Setting it affects the
value of header in the request to the content server.

DOCUMENT_URL
Contains the Uniform Request Locator (URL). For example:
http://www.anynet.com/~userk/main.htm

DOCUMENT_URI
Same as DOCUMENT_URL.

DOCUMENT_ROOT
Read-only. Contains the document root path, as defined by pass rules.

ERRORINFO
Specifies the error code to determine the error page. For example, blocked.

EXPIRES
Defines when documents stored in a proxy's cache expire. Extracting this
variable applies to the header from client request. Setting it affects the
value of header in the request to the content server. For example:
Mon, 01 Mar 2002 19:41:17 GMT

GATEWAY_INTERFACE
Read-only. Contains the version of the API that the server is using. For
example, ICSAPI/2.0.

GC_BIAS
Write-only. This floating-point value influences the garbage collection
decision for the file being considered for garbage collection. The value

Chapter 2. The Caching Proxy API 27

entered is multiplied by the Caching Proxy's quality setting for that file
type to determine ranking. Quality settings range from 0.0 to 0.1 and are
defined by the AddType directives in the proxy configuration file
(ibmproxy.conf).

GC_EVALUATION
Write-only. This floating-point value determines whether to remove (0.0) or
keep (1.0) the file being considered for garbage collection. Values between
0.0 and 1.0 are ordered by rank, that is, a file with the GC_EVALUATION
value 0.1 is more likely to be removed than a file with the
GC_EVALUATION value 0.9.

GC_EXPIRES
Read-only. Identifies how many seconds remain until the file under
consideration expires in the cache. This variable can be extracted only by a
GC Advisor plug-in.

GC_FILENAME
Read-only. Identifies the file being considered for garbage collection. This
variable can be extracted only by a GC Advisor plug-in.

GC_FILESIZE
Read-only. Identifies the size of the file being considered for garbage
collection. This variable can be extracted only by a GC Advisor plug-in.

GC_LAST_ACCESS
Read-only. Identifies when the file was last accessed. This variable can be
extracted only by a GC Advisor plug-in.

GC_LAST_CHECKED
Read-only. Identifies when the files were last checked. This variable can be
extracted only by a GC Advisor plug-in.

GC_LOAD_DELAY
Read-only. Identifies how long it took to retrieve the file. This variable can
be extracted only by a GC Advisor plug-in.

HTTP_COOKIE
When read, this variable contains the value of the Set-Cookie header set by
the client. It can also be used to set a new cookie in the response stream
(between the proxy and the client). Setting this variable causes the creation
of a new Set-Cookie header in the document request stream, regardless of
whether or not a duplicate header exists.

HTTP_HEADERS
Read-only. Used to extract all of the client request headers.

HTTP_REASON
Setting this variable affects the reason string in the HTTP response. Setting
it also affects the reason string in the proxy's response to the client.
Extracting this variable returns the reason string in the response from the
content server to the proxy.

HTTP_RESPONSE
Setting this variable affects the response code in the HTTP response.
Setting it also affects the status code in the proxy's response to the client.
Extracting this variable returns the status code in the response from the
content server to the proxy.

HTTP_STATUS
Contains the HTTP response code and reason string. For example, 200 OK.

28 WebSphere Application Server: Programming Guide for Edge Components

HTTP_USER_AGENT
Contains the value of the User-Agent request header, which is the name of
the client Web browser, for example, Netscape Navigator / V2.02. Setting
this variable affects the header in the proxy's response to the client.
Extracting it applies to the header from the client's request.

INIT_STRING
Read-only. The ServerInit directive defines this string. This variable can be
read only during the Server Initialization step.

LAST_MODIFIED
Extracting this variable applies to the header from the client request.
Setting it affects the value of the header in the request to the content
server. For example:
Mon, 01 Mar 1998 19:41:17 GMT

LOCAL_VARIABLES
Read-only. All the user-defined variables.

MAXACTIVETHREADS
Read-only. The maximum number of active threads.

NOTMODIFIED_TO_OK
Forces a full response to the client. Valid in the PreExit and ProxyAdvisor
steps.

ORIGINAL_HOST
Read-only. Returns the host name or destination IP address of a request.

ORIGINAL_URL
Read-only. Returns the original URL sent in the client request.

OVERRIDE_HTTP_NOTRANSFORM
Enables modification of data in the presence of a Cache-Control:
no-transform header. Setting this variable affects the response header to the
client.

OVERRIDE_PROXY_NOTRANSFORM
Enables modification of data in the presence of a Cache-Control:
no-transform header. Setting this variable affects the request to the content
server.

PASSWORD
For basic authentication, contains the decoded password. For example,
password.

PATH Contains the fully translated path.

PATH_INFO
Contains the additional path information as sent by the Web browser. For
example, /foo.

PATH_TRANSLATED
Contains the decoded or translated version of the path information
contained in PATH_INFO. For example:
d:\wwwhome\foo

/wwwhome/foo

PPATH
Contains the partially translated path. Use this in the Name Translation
step.

Chapter 2. The Caching Proxy API 29

PROXIED_CONTENT_LENGTH
Read-only. Returns the length of the response data actually transferred
through the proxy server.

PROXY_ACCESS
Defines whether the request is a proxy request. For example, NO.

PROXY_CONTENT_TYPE
Contains the Content-Type header of the proxy request made through
HTTPD_proxy(). When information is sent with the method of POST, this
variable contains the type of data included. You can create your own
content type in the proxy server configuration file and map it to a viewer.
Extracting this variable applies to the header value from the content server
response. Setting it affects the header for the request to the content server.
For example:
application/x-www-form-urlencoded

PROXY_CONTENT_LENGTH
The Content-Length header of the proxy request made through
HTTPD_proxy(). When information is sent with the method of POST, this
variable contains the number of characters of data. Servers typically do not
send an end-of-file flag when they forward the information using standard
input. If needed, you can use the CONTENT_LENGTH value to determine
the end of the input string. Extracting this variable applies to the header
value from the content server response. Setting it affects the header for the
request to the content server. For example:
7034

PROXY_COOKIE
When read, this variable contains the value of the Set-Cookie header set by
the origin server. It also can be used to set a new cookie in the request
stream. Setting this variable causes the creation of a new Set-Cookie header
in the document request stream, regardless of whether or not a duplicate
header exists.

PROXY_HEADERS
Read-only. Used to extract the Proxy headers.

PROXY_METHOD
Method for the request made through HTTPD_proxy(). Extracting this
variable applies to the header value from the content server response.
Setting it affects the header for the request to the content server.

QUERY_STRING
When information is sent by using a method of GET, this variable contains
the information that follows a question mark (?) in a query. This
information must be decoded by the CGI program. For example:
NAME=Eugene+T%2E+Fox&ADDR=etfox%7Cibm.net&INTEREST=xyz

RCA_OWNER
Read-only. Returns a numeric value, giving the node that owned the
requested object. This variable can be used in the PostExit, ProxyAdvisor,
or Log steps, and is meaningful only when the server is part of a cache
array using remote cache access (RCA).

RCA_TIMEOUTS
Read-only. Returns a numeric value, containing the total (aggregate)
number of timeouts on RCA requests to all peers. You can use this variable
in any step.

30 WebSphere Application Server: Programming Guide for Edge Components

REDIRECT_*
Read-only. Contains a redirection string for the error code that corresponds
to the variable name (for example, REDIRECT_URL). A list of possible
REDIRECT_ variables can be found in online documentation for the
Apache Web server at http://httpd.apache.org/docs-2.0/custom-error.html.

REFERRER_URL
Read-only. Contains the last URL location of the browser. It allows the
client to specify, for the server's benefit, the address (URL) of the resource
from which the Request-URL was obtained. For example:
http://www.company.com/homepage

REMOTE_ADDR
Contains the IP address of the Web browser, if available. For example,
45.23.06.8.

REMOTE_HOST
Contains the host name of the Web browser, if available. For example,
www.raleigh.ibm.com.

REMOTE_USER
If the server supports client authentication and the script is protected, this
variable contains the user name passed for authentication. For example,
joeuser.

REQHDR
Read-only. Contains a list of the headers sent by the client.

REQUEST_CONTENT_TYPE
Read-only. Returns the content type of the request body. For example:
application/x-www-form-urlencoded

REQUEST_CONTENT_LENGTH
Read-only. When information is sent with the method of POST, this
variable contains the number of characters of data. Servers typically do not
send an end-of-file flag when they forward the information using standard
input. If needed, you can use the CONTENT_LENGTH value to determine
the end of the input string. For example, 7034.

REQUEST_METHOD
Read-only. Contains the method (as specified with the METHOD attribute
in an HTML form) used to send the request. For example, GET or POST.

REQUEST_PORT
Read-only. Returns the port number specified in the URL, or a default port
based on the protocol.

RESPONSE_CONTENT_TYPE
Read-only. When information is sent with the method of POST, this
variable contains the type of data included. You can create your own
content type in the proxy server configuration file and map it to a viewer.
For example, text/html.

RESPONSE_CONTENT_LENGTH
Read-only. When information is sent with the method of POST, this
variable contains the number of characters of data. Servers typically do not
send an end-of-file flag when they forward the information using standard
input. If needed, you can use the CONTENT_LENGTH value to determine
the end of the input string. For example, 7034.

Chapter 2. The Caching Proxy API 31

RULE_FILE_PATH
Read-only. Contains the fully qualified file system path and file name of
the configuration file.

SSL_SESSIONID
Read-only. Returns the SSL session ID if the current request is received on
an SSL connection. Returns NULL if the current request is not received on
an SSL connection.

SCRIPT_NAME
Contains the URL of the request.

SERVER_ADDR
Read-only. Contains the local IP address of the proxy server.

SERVER_NAME
Read-only. Contains the proxy server host name or IP address of the
content server for this request. For example, www.ibm.com.

SERVER_PORT
Read-only. Contains the port number of the proxy server to which the
client request was sent. For example, 80.

SERVER_PROTOCOL
Read-only. Contains the name and version of the protocol used to make the
request. For example, HTTP/1.1.

SERVER_ROOT
Read-only. Contains the directory where the proxy server program is
installed.

SERVER_SOFTWARE
Read-only. Contains the name and version of the proxy server.

STATUS
Contains the HTTP response code and reason string. For example, 200 OK.

TRACE
Determines how much information will be traced. Returned values include:
v OFF - No tracing.
v V - Verbose mode.
v VV - Very Verbose mode.
v MTV - Much Too Verbose mode.

URI Read/Write. Same as DOCUMENT_URL.

URI_PATH
Read-only. Returns the path portion only for a URL.

URL Read/Write. Same as DOCUMENT_URL.

URL_MD4
Read-only. Returns the file name of the potential cache file for the current
request.

USE_PROXY
Identifies the proxy with which to associate the current request. Specify the
URL. For example, http://myproxy:8080.

USERID
Same as REMOTE_USER.

32 WebSphere Application Server: Programming Guide for Edge Components

USERNAME
Same as REMOTE_USER.

Authentication and authorization
First, a short review of the terminology:

Authentication
The verification of the security tokens associated with this request in order
to ascertain the identity of the requester.

Authorization
A process that uses security tokens to determine whether the requester has
access to the resource.

Figure 3 on page 34 depicts the proxy server's authentication and authorization
process.

Chapter 2. The Caching Proxy API 33

As demonstrated in Figure 3, the initiation of the authorization process is the first
step in the server's authorization and authentication process.

In the Caching Proxy, authentication is part of the authorization process; it occurs
only when authorization is required.

Authentication and authorization process
The proxy server follows these steps when processing a request that requires
authorization.
1. First, the proxy server examines its configuration file to determine whether or

not there is an authorization directive.
v If an authorization directive is present in the configuration file, the server

calls the authorization function defined in the directive and begins
authentication with step 2 on page 35.

Figure 3. Proxy server authentication and authorization process

34 WebSphere Application Server: Programming Guide for Edge Components

v If there is no authorization directive, the server performs a default
authorization and then proceeds directly to the authentication procedures in
step 3.

2. The proxy server begins the authentication process by checking to see if the
HTTP_authenticate header is present in the client request.
v If the header is present, the server continues the authentication process (see

step 3).
v If the header is not present, authentication must be performed by another

method.
3. The proxy server checks to see if there is an authentication directive present in

the proxy configuration file.
v If an authentication directive is present in the configuration file, the server

calls the authentication function defined in the directive.
v If there is no directive, the server performs a default authentication.

If your Caching Proxy plug-in provides its own authorization process, it overrides
the default server authorization and authentication. Therefore, if you have
authorization directives in your configuration file, the plug-in functions associated
with them must also handle any necessary authentication. The predefined
HTTPD_authenticate() function is provided for you to use.

There are three ways to provide for authentication in your authorization plug-ins:
v Write your own separate authorization and authentication plug-ins. In your

proxy configuration file, use both the Authorization and the Authentication
directives to specify these functions. Be sure to include the
HTTPD_authenticate() function call in your authorization plug-in function.
When the Authorization step is executed, it performs your authorization plug-in
function, which, in turn, calls your authentication plug-in function.

v Write your own authorization plug-in function, but have it call the default server
authentication. In your proxy configuration file, use the Authorization directive
to specify your function. In this case, you do not need the Authentication
directive. Be sure to call the HTTPD_authenticate() function in your
authorization plug-in function.
When the Authorization step is executed, it performs your authorization plug-in
function, which, in turn, calls the default server authentication.

v Write your own authorization plug-in function and include all required
authentication processing in it. Do not use the HTTPD_authenticate() function in
your authorization plug-in. In your proxy configuration file, use the
Authorization directive to specify your authorization plug-in. In this case, you
do not need the Authentication directive.
When the Authorization step is executed, it performs your authorization plug-in
function and any authentication it includes.

If your Caching Proxy plug-in does not provide its own authorization process, you
can still provide customized authentication by using the following method:
v Write your own authentication plug-in function. In your proxy configuration file,

use the Authentication directives to specify your function. In this case, you do
not need the Authorization directive.

When the Authorization step is executed, it performs the default server
authorization, which, in turn, calls your authentication plug-in function.

Remember the following points:

Chapter 2. The Caching Proxy API 35

v If you do not have any Authorization directives in your configuration file, or if
their specified plug-in functions decline to handle the request by returning
HTTP_NOACTION, the server's default authorization occurs.

v If you have Authorization directives in your configuration file and their plug-in
functions include HTTPD_authenticate(), the server calls any authentication
functions specified in the Authentication directives. If you have not defined any
Authentication directives, or if their specified plug-in functions decline to handle
the request by returning HTTP_NOACTION, the server's default authentication
occurs.

v If you have Authorization directives in your configuration file but their plug-in
functions do not include HTTPD_authenticate(), no authentication functions are
called by the server. You must write your own authentication processing as part
of your authorization plug-in functions or make your own calls to other
authentication modules.

v The Caching Proxy automatically generates a challenge (prompting the browser
to return a user ID and password) if your authorization function returns the
codes 401 or 407. However, you must still configure a protection setup in the
Caching Proxy so that this action occurs correctly.

Variant caching
Use variant caching to cache data that is a modified form of the original document
(the URI). The Caching Proxy handles variants generated by the API. Variants are
different versions of a base document.

In general, when origin servers send variants, they fail to identify them as such.
The Caching Proxy supports only variants created by plug-ins (for example, code
page conversion). If a plug-in creates a variant based on criteria that are not in the
HTTP header, it must include a PreExit or PostAuthorization step function to
create a pseudoheader so that the Caching Proxy can correctly identify the existing
variant.

For example, use a Transmogrifier API program to modify the data that users
request based on the value of the User-Agent header that the browser sends. In the
close function, save the modified content to a file or specify a buffer length and
pass the buffer as the data argument. Then use the variant caching functions
httpd_variant_insert() and httpd_variant_lookup() to put the content in the cache.

API examples
To help you get started with your own Caching Proxy API functions, look at the
sample programs provided in the samples directory of the Edge components
installation CD-ROM. Additional information is available on the WebSphere
Application Server Web site, www.ibm.com/software/webservers/appserv/.

36 WebSphere Application Server: Programming Guide for Edge Components

http://www.ibm.com/software/webservers/appserv/

Chapter 3. Custom advisors

This section discusses writing custom advisors for the Load Balancer.

Advisors provide load-balancing information
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

By writing your own advisors for the Load Balancer, you can customize how your
server machines' load is determined.

Standard advisor function
In general, advisors work to enable load balancing in the following manner.
1. Periodically, the advisor opens a connection with each server and sends it a

request message. The content of the message is specific to the protocol running
on the server; for instance, the HTTP advisor sends a HEAD request to the
server.

2. The advisor listens for a response from the server. After getting the response,
the advisor calculates and reports the load value for that server. Different
advisors calculate the load value in different ways, but most standard advisors
measure the time the server takes to respond, then reports that value in
milliseconds as the load.

3. The advisor reports the load to the Load Balancer's manager function. The load
appears in the Port column of the manager report. The manager uses the
advisor's reported load along with weights set by the administrator to
determine how to load balance incoming requests to the servers.

4. If a server does not respond, the advisor returns a negative value (-1) for the
load. The manager uses this information to determine when to suspend service
for a particular server.

Standard advisors provided with the Load Balancer include advisors for the
following functions. Detailed information about these advisors is available in the
WebSphere Application Server Load Balancer Administration Guide

v Connect
v DB2
v DNS
v FTP
v HTTP
v HTTPS
v IMAP
v LDAP
v NNTP
v Ping
v POP3

© Copyright IBM Corp. 2012 37

v Reach
v Self
v SIP
v SMTP
v SSL
v Telnet
v WebSphere Application Server
v WebSphere Application Server Caching Proxy
v Workload Manager

To support proprietary protocols for which standard advisors are not provided,
you must write custom advisors.

Creating a custom advisor
A custom advisor is a small piece of Java code, provided as a class file, that is
called by the Load Balancer base code to determine the load on a server. The base
code provides all necessary administrative services, including starting and
stopping an instance of the custom advisor, providing status and reports, recording
history information in a log file, and reporting advisor results to the manager
component.

When the Load Balancer base code calls a custom advisor, the following steps
happen.
1. The Load Balancer base code opens a connection with the server machine.
2. If the socket opens, the base code calls the specified advisor's GetLoad function.
3. The advisor's GetLoad function performs the steps that the user has defined for

evaluating the server's status, including waiting for a response from the server.
The function terminates execution when the response is received.

4. The Load Balancer base code closes the socket with the server and reports the
load information to the manager. Depending on whether the custom advisor
operates in normal mode or in replace mode, the base code sometimes does
additional calculations after the GetLoad function terminates.

Normal mode and replace mode
Custom advisors can be designed to interact with the Load Balancer in either
normal mode or replace mode.

The choice for the mode of operation is specified in the custom advisor file as a
parameter in the constructor method. (Each advisor operates in only one of these
modes, based on its design.)

In normal mode, the custom advisor exchanges data with the server, and the base
advisor code times the exchange and calculates the load value. The base code then
reports this load value to the manager. The custom advisor returns the value zero
to indicate success, or negative one to indicate an error.

To specify normal mode, set the replace flag in the constructor to false.

In replace mode, the base code does not perform any timing measurements. The
custom advisor code performs whatever operations are specified, based on its
unique requirements, and then returns an actual load number. The base code
accepts the load number and reports it, unaltered, to the manager. For best results,

38 WebSphere Application Server: Programming Guide for Edge Components

normalize your load numbers between 10 and 1000, with 10 representing a fast
server and 1000 representing a slow server.

To specify replace mode, set the replace flag in the constructor to true.

Advisor naming conventions
Custom advisor file names must follow the form ADV_name.java, where name is
the name that you choose for your advisor. The complete name must start with the
prefix ADV_ in uppercase letters, and all subsequent characters must be lowercase
letters. The requirement for lowercase letters ensures that the command for
running the advisor is not case sensitive.

According to Java conventions, the name of the class defined within the file must
match the name of the file.

Compilation
You must write custom advisors in the Java language and compile them with a
Java compiler that is at the same level as the Load Balancer code. To check the
version of Java on your system, run the following command from the
install_path/java/bin directory:
java -fullversion

If the current directory is not part of your path, you will need to specify that Java
should be run from the current directory to ensure you are getting the correct
version information. In this case, run the following command from
theinstall_path/java/bin directory:
./java -fullversion

The following files are referenced during compilation:
v The custom advisor file
v The base classes file, ibmnd.jar, which is found in the install_path/servers/lib

directory

Your classpath environment variable must point to both the custom advisor file
and the base classes file during the compilation. A compile command might have
the following format: For Microsoft Windows systems, a sample compile command
is:
install_path/java/bin/javac -classpath /opt/ibm/edge/lb/servers/lib/ibmlb.jar ADV_name.java

where:
v Your advisor file is named ADV_name.java
v Your advisor file is stored in the current directory.

The output of the compilation is a class file, for example, ADV_name.class. Before
starting the advisor, copy the class file to the install_path/servers/lib/
CustomAdvisors/ directory.

Note: You can compile custom advisors on one operating system and run on
another operating system. For example, you can compile your advisor on a
Windows system, copy the resulting class file, in binary format, to a Linux
machine, and run the custom advisor there. For AIX, HP-UX, Linux, and
Solaris operating systems, the syntax is similar.

Chapter 3. Custom advisors 39

Running a custom advisor
To run the custom advisor, you must first copy the advisor's class file to the
lib/CustomAdvisors/ subdirectory on the Load Balancer machine. For example,
for a custom advisor named myping, the file path is install_path/servers/lib/
CustomAdvisors/ADV_myping.class

Configure the Load Balancer, start its manager function, and issue the command to
start your custom advisor. The custom advisor is specified by its name, excluding
the ADV_ prefix and the file extension:
dscontrol advisor start myping port_number

The port number specified in the command is the port on which the advisor will
open a connection with the target server.

Required routines
Like all advisors, a custom advisor extends the functionality of the advisor base
class, which is called ADV_Base. The advisor base performs most of the advisor's
functions, such as reporting loads back to the manager for use in the manager's
weight algorithm. The advisor base also performs socket connect and close
operations and provides send and receive methods for use by the advisor. The
advisor is used only for sending and receiving data on the specified port for the
server that is being investigated. The TCP methods provided within the advisor
base are timed to calculate load. A flag within the constructor of the advisor base
overwrites the existing load with the new load returned from the advisor, if
desired.

Note: Based on a value set in the constructor, the advisor base supplies the load to
the weight algorithm at specified intervals. If the advisor has not completed
processing and cannot return a valid load, the advisor base uses the
previously reported load.

Advisors have the following base class methods:
v A constructor routine. The constructor calls the base class constructor.
v An ADV_AdvisorInitialize method. This method provides a way to perform

additional steps after the base class completes its initialization.
v A getLoad routine. The base advisor class performs the socket opening; the

getLoad function only needs to issue the appropriate send and receive requests
to complete the advising cycle.

Details about these required routines appear later in this section.

Search order
Custom advisors are called after native, or standard, advisors have been searched.
If the Load Balancer does not find a specified advisor among the list of standard
advisors, it consults the list of custom advisors. Additional information about using
advisors is available in the WebSphere Application Server Load Balancer Administration
Guide.

Naming and file path
Remember the following requirements for custom advisor names and paths.
v The custom advisor must be named in lowercase alphabetic characters in order

to eliminate case sensitivity when an operator types commands on a command
line. The advisor name must be prefixed with ADV_

40 WebSphere Application Server: Programming Guide for Edge Components

v The custom advisor class must be located within the subdirectory
lib/CustomAdvisors. The default location for this directory is
/opt/ibm/edge/lb/servers/lib/CustomAdvisors on Linux and UNIX systems,
and C:\Program Files\IBM\edge\lb\servers\lib\CustomAdvisors\ on
Windows systems.

Custom advisor methods and function calls

Constructor (provided by advisor base)
public <advisor_name> (

String sName;
String sVersion;
int iDefaultPort;
int iInterval;
String sDefaultLogFileName;
boolean replace

)

sName
The name of the custom advisor.

sVersion
The version of the custom advisor.

iDefaultPort
The port number on which to contact the server if no port number is specified
in the call.

iInterval
The interval at which the advisor will query the servers.

sDefaultLogFileName
This parameter is required but not used. The only acceptable value is a null
string, ""

replace
Whether or not this advisor functions in replace mode. Possible values are the
following:
v true – Replace the load calculated by the advisor base code with the value

reported by the custom advisor.
v false – Add the load value reported by the custom advisor to the load value

calculated by the advisor base code.

ADV_AdvisorInitialize()
void ADV_AdvisorInitialize()

This method is provided to perform any initialization that might be required for
the custom advisor. This method is called after the advisor base module starts.

In many cases, including the standard advisors, this method is not used and its
code consists of a return statement only. This method can be used to call the
suppressBaseOpeningSocket method, which is valid only from within this method.

getLoad()
int getLoad(

int iConnectTime;
ADV_Thread *caller

)

iConnectTime
The length of time, in milliseconds, that it took the connection to complete.

Chapter 3. Custom advisors 41

This load measurement is performed by the advisor base code and passed to
the custom advisor code, which can use or ignore the measurement when
returning the load value. If the connection fails, this value is set to -1.

caller
The instance of the advisor base class where advisor base methods are
provided.

Function calls available to custom advisors
The methods, or functions, described in the following sections can be called from
custom advisors. These methods are supported by the advisor base code.

Some of these function calls can be made directly, for example, function_name(),
but others require the prefix caller. Caller represents the base advisor instance that
supports the custom advisor that is being executed.

ADVLOG()
The ADVLOG function allows a custom advisor to write a text message to the
advisor base log file. The format follows:
void ADVLOG (int logLevel, String message)

logLevel
The status level at which the message is written to the log file. The advisor log
file is organized in stages; the most urgent messages are given status level 0
and less urgent messages receive higher numbers. The most verbose type of
message is given status level 5. These levels are used to control the types of
messages that the user receives in real time (The dscontrol command is used to
set verbosity). Catastrophic errors should always be logged at level 0.

message
The message to write to the log file. The value for this parameter is a standard
Java string.

getAdvisorName()
The getAdvisorName function returns a Java string with the suffix portion of your
custom advisor's name. For example, for an advisor named ADV_cdload.java, this
function returns the value cdload.

This function takes no parameters.

Note that it is not possible for this value to change during one instantiation of an
advisor.

getAdviseOnPort()
The getAdviseOnPort function returns the port number on which the calling
custom advisor is running. The return value is a Java integer (int), and the function
takes no parameters.

Note that it is not possible for this value to change during one instantiation of an
advisor.

caller.getCurrentServerId()
The getCurrentServerId function returns a Java string which is a unique
representation for the current server.

Typically, this value changes each time you call your custom advisor, because the
advisor base code queries all server machines in series.

42 WebSphere Application Server: Programming Guide for Edge Components

This function takes no parameters.

caller.getCurrentClusterId()
The getCurrentClusterId function call returns a Java string which is a unique
representation for the current cluster.

Typically, this value changes each time you call your custom advisor, because the
advisor base queries all clusters in series.

This function takes no parameters.

caller.getSocket()
The getSocket function call returns a Java socket which represents the socket
opened to the current server for communication.

This function takes no parameters.

getInterval()
The getInterval function returns the advisor interval, that is, the number of seconds
between advisor cycles. This value is equal to the default value set in the custom
advisor's constructor, unless the value has been modified at run time by using the
dscontrol command.

The return value is a Java integer (int). The function takes no parameters.

caller.getLatestLoad()
The getLatestLoad function allows a custom advisor to obtain the latest load value
for a given server object. The load values are maintained in internal tables by the
advisor base code and the manager daemon.
int caller.getLatestLoad (String clusterId, int port, String serverId)

The three arguments together define one server object.

clusterId
The cluster identifier of the server object for which to obtain the current load
value. This argument must be a Java string.

port
The port number of the server object for which to obtain the current load
value.

serverId
The server identifier of the server object for which to obtain the current load
value. This argument must be a Java string.

The return value is an integer.
v A positive return value represents the actual load value assigned for the object

that was queried.
v The value -1 indicates that the server asked about is down.
v The value -2 indicates that the status of the server asked about is unknown.

This function call is useful if you want to make the behavior of one protocol or
port dependent on the behavior of another. For example, you might use this
function call in a custom advisor that disabled a particular application server if the
Telnet server on that same machine was disabled.

Chapter 3. Custom advisors 43

caller.receive()
The receive function gets information from the socket connection.
caller.receive(StringBuffer *response)

The parameter response is a string buffer into which the retrieved data is placed.
Additionally, the function returns an integer value with the following significance:
v 0 indicates data was sent successfully.
v A negative number indicates an error.

caller.send()
The send function uses the established socket connection to send a packet of data
to the server, using the specified port.
caller.send(String command)

The parameter command is a string containing the data to send to the server. The
function returns an integer value with the following significance:
v 0 indicates data was sent successfully.
v A negative number indicates an error.

suppressBaseOpeningSocket()
The suppressBaseOpeningSocket function call allows a custom advisor to specify
whether the base advisor code opens a TCP socket to the server on the custom
advisor's behalf. If your advisor does not use direct communication with the server
to determine its status, it might not be necessary to open this socket.

This function call can be issued only once, and it must be issued from the
ADV_AdvisorInitialize routine.

The function takes no parameters.

Examples
The following examples show how custom advisors can be implemented.

Standard advisor
This sample source code is similar to the standard Load Balancer HTTP advisor. It
functions as follows:
1. A send request, a "HEAD/HTTP" command, is issued.
2. A response is received. The information is not parsed, but the response causes

the getLoad method to terminate.
3. The getLoad method returns 0 to indicate success or -1 to indicate a failure.

This advisor operates in normal mode, so the load measurement is based on the
elapsed time in milliseconds required to perform the socket open, send, receive,
and close operations.
package CustomAdvisors;
import com.ibm.internet.lb.advisors.*;
public class ADV_sample extends ADV_Base implements ADV_MethodInterface {

static final String ADV_NAME ="Sample";
static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;
static final String ADV_SEND_REQUEST =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

44 WebSphere Application Server: Programming Guide for Edge Components

//--------
// Constructor

public ADV_sample() {
super(ADV_NAME, "3.0.0.0-03.31.00",

ADV_DEF_ADV_ON_PORT, ADV_DEF_INTERVAL, "",
false);

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return; // usually an empty routine

}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // initialize to inaccessible

iRc = caller.send(ADV_SEND_REQUEST); // send the HTTP request to
// the server

if (0 <= iRc) { // if the send is successful
StringBuffer sbReceiveData = new StringBuffer(""); // allocate a buffer

// for the response
iRc = caller.receive(sbReceiveData); // receive the result

// parse the result here if you need to

if (0 <= iRc) { // if the receive is successful
iLoad = 0; // return 0 for success

} // (advisor’s load value is ignored by
} // base in normal mode)
return iLoad;

}
}

Side stream advisor
This sample illustrates suppressing the standard socket opened by the advisor
base. Instead, this advisor opens a side stream Java socket to query a server. This
procedure can be useful for servers that use a different port from normal client
traffic to listen for an advisor query.

In this example, a server is listening on port 11999 and when queried returns a
load value with a hexadecimal int "4". This sample runs in replace mode, that is,
the last parameter of the advisor constructor is set to true and the advisor base
code uses the returned load value rather than the elapsed time.

Note the call to supressBaseOpeningSocket() in the initialization routine.
Suppressing the base socket when no data will be sent is not required. For
example, you might want to open the socket to ensure that the advisor can contact
the server. Examine the needs of your application carefully before making this
choice.
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;

Chapter 3. Custom advisors 45

import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

public class ADV_sidea extends ADV_Base implements ADV_MethodInterface {
static final String ADV_NAME = "sidea";
static final int ADV_DEF_ADV_ON_PORT = 12345;
static final int ADV_DEF_INTERVAL = 7;

// create an array of bytes with the load request message
static final byte[] abHealth = {(byte)0x00, (byte)0x00, (byte)0x00,

(byte)0x04};

public ADV_sidea() {
super(ADV_NAME, "3.0.0.0-03.31.00", ADV_DEF_ADV_ON_PORT,

ADV_DEF_INTERVAL, "",
true); // replace mode parameter is true

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize()
{

suppressBaseOpeningSocket(); // tell base code not to open the
// standard socket

return;
}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1
int iControlPort = 11999; // port on which to communicate with the server

String sServer = caller.getCurrentServerId(); // address of server to query
try {

socket soServer = new Socket(sServer, iControlPort); // open socket to
// server

DataInputStream disServer = new DataInputStream(
soServer.getInputStream());

DataOutputStream dosServer = new DataOutputStream(
soServer.getOutputStream());

int iRecvTimeout = 10000; // set timeout (in milliseconds)
// for receiving data

soServer.setSoTimeout(iRecvTimeout);

dosServer.writeInt(4); // send a message to the server
dosServer.flush();

iLoad = disServer.readByte(); // receive the response from the server

} catch (exception e) {
system.out.println("Caught exception " + e);

}
return iLoad; // return the load reported from the server

}
}

Two port advisor
This custom advisor sample demonstrates the capability to detect failure for one
port of a server based upon both its own status and on the status of a different
server daemon that is running on another port on the same server machine. For

46 WebSphere Application Server: Programming Guide for Edge Components

example, if the HTTP daemon on port 80 stops responding, you might also want to
stop routing traffic to the SSL daemon on port 443.

This advisor is more aggressive than standard advisors, because it considers any
server that does not send a response to have stopped functioning, and marks it as
down. Standard advisors consider unresponsive servers to be very slow. This
advisor marks a server as down for both the HTTP port and the SSL port based on
a lack of response from either port.

To use this custom advisor, the administrator starts two instances of the advisor:
one on the HTTP port, and one on the SSL port. The advisor instantiates two static
global hash tables, one for HTTP and one for SSL. Each advisor tries to
communicate with its server daemon and stores the results of this event in its hash
table. The value that each advisor returns to the base advisor class depends on
both the ability to communicate with its own server daemon and the ability of the
partner advisor to communicate with its daemon.

The following custom methods are used.
v ADV_nte() is a simple container object to hold information about a server. These

objects are stored in the hash table as table elements. Each object has a time
stamp that is used to determine whether the element is current.

v putNte() and getNte() are synchronized methods that ensure that the two
advisor instances access the hash table in a controlled fashion.

v getLoadHTTP is a method that queries the responsiveness of an HTTP server. It
is a low-level routine and does not gather or use information about SSL.

v getLoadSSL() is a method that queries the responsiveness of an SSL server. It is a
low-level routine and does not gather or use information about HTTP.

v getLoad() is the entry point routine for this custom advisor. It can handle both
protocols and can store and fetch information from the hash table. This is the
routine that links the two ports.

The following error conditions are detected.
v Unresponsive server machine — The base advisor classes periodically send a

ping signal to the server address. If the address is not reachable, the base
advisor classes marks the server down. Neither of the two instances of the
custom advisor is called, and both servers on that machine are marked down.

v One daemon on a server machine becomes unresponsive, but the other is
working — When the base code attempts to open a socket with the server, the
connection is refused, and the base advisor for this protocol marks the server as
down. The custom advisor code for that protocol is not called. Although the
custom advisor for the other protocol continues communicating with its server, it
learns from the hash table that the other custom advisor cannot communicate
with its server daemon. Therefore, the second protocol's advisor also marks its
server as down.

v One daemon does not send a response, but the other daemon does — The
custom advisor for the unresponding protocol detects the failure to
communicate, marks the server as down, and stores the data in the hash table.
The custom advisor for the other port learns that information from the hash
table and marks its server as down.

This sample is written to link ports 80 for HTTP and 443 for SSL, but it can be
tailored to any combination of ports.

Chapter 3. Custom advisors 47

package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;
import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.manager.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

//--------
// Define the table element for the hash tables used in this custom advisor

class ADV_nte implements Cloneable {
private String sCluster;
private int iPort;
private String sServer;
private int iLoad;
private Date dTimestamp;

//--------
// constructor

public ADV_nte(String sClusterIn, int iPortIn, String sServerIn,
int iLoadIn) {

sCluster = sClusterIn;
iPort = iPortIn;
sServer = sServerIn;
iLoad = iLoadIn;
dTimestamp = new Date();

}

//--------
// check whether this element is current or expired

public boolean isCurrent(ADV_twop oThis) {
boolean bCurrent;
int iLifetimeMs = 3 * 1000 * oThis.getInterval(); // set lifetime as

// 3 advisor cycles
Date dNow = new Date();
Date dExpires = new Date(dTimestamp.getTime() + iLifetimeMs);

if (dNow.after(dExpires)) {
bCurrent = false;

} else {
bCurrent = true;

}
return bCurrent;

}

//--------
// value accessor(s)

public int getLoadValue() { return iLoad; }

//--------
// clone (avoids corruption between threads)

public synchronized Object Clone() {
try {

return super.clone();
} catch (cloneNotSupportedException e) {

return null;
}

}

}

48 WebSphere Application Server: Programming Guide for Edge Components

//--------
// define the custom advisor

public class ADV_twop extends ADV_Base
implements ADV_MethodInterface, ADV_AdvisorVersionInterface {

static final int ADV_TWOP_PORT_HTTP = 80;
static final int ADV_TWOP_PORT_SSL = 443;

//--------
// define tables to hold port-specific history information

static HashTable htTwopHTTP = new Hashtable();
static HashTable htTwopSSL = new Hashtable();

static final String ADV_TWOP_NAME = "twop";
static final int ADV_TWOP_DEF_ADV_ON_PORT = 80;
static final int ADV_TWOP_DEF_INTERVAL = 7;
static final String ADV_HTTP_REQUEST_STRING =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_LB_Custom_Advisor\r\n\r\n";

//--------
// create byte array with SSL client hello message

public static final byte[] abClientHello = {
(byte)0x80, (byte)0x1c,
(byte)0x01, // client hello
(byte)0x03, (byte)0x00, // SSL version
(byte)0x00, (byte)0x03, // cipher spec len (bytes)
(byte)0x00, (byte)0x00, // session ID len (bytes)
(byte)0x00, (byte)0x10, // challenge data len (bytes)
(byte)0x00, (byte)0x00, (byte)0x03, // cipher spec
(byte)0x1A, (byte)0xFC, (byte)0xE5, (byte)Ox20, // challenge data
(byte)0xFD, (byte)0x3A, (byte)0x3C, (byte)0x18,
(byte)0xAB, (byte)0x67, (byte)0xB0, (byte)0x52,
(byte)0xB1, (byte)0x1D, (byte)0x55, (byte)0x44, (byte)0x0D, (byte)0x0A };

//--------
// constructor

public ADV_twop() {
super(ADV_TWOP_NAME, VERSION, ADV_TWOP_DEF_ADV_ON_PORT,

ADV_TWOP_DEF_INTERVAL, "",
false); // false = load balancer times the response

setAdvisor (this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return;

}

//--------
// synchronized PUT and GET access routines for the hash tables

synchronized ADV_nte getNte(Hashtable ht, String sName, String sHashKey) {
ADV_nte nte = (ADV_nte)(ht.get(sHashKey));
if (null != nte) {

nte = (ADV_nte)nte.clone();
}
return nte;

}
synchronized void putNte(Hashtable ht, String sName, String sHashKey,

ADV_nte nte) {

Chapter 3. Custom advisors 49

ht.put(sHashKey,nte);
return;

}

//--------
// getLoadHTTP - determine HTTP load based on server response

int getLoadHTTP(int iConnectTime, ADV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;

int iRc = caller.send(ADV_HTTP_REQUEST_STRING); // send request message
// to server

if (0 <= iRc) { // did the request return a failure?
StringBuffer sbReceiveData = new StringBuffer("") // allocate a buffer

// for the response
iRc = caller.receive(sbReceiveData); // get response from server

if (0 <= iRc) { // did the receive return a failure?
if (0 < sbReceiveData.length()) { // is data there?

iLoad = SUCCESS; // ignore retrieved data and
// return success code

}
}

}
return iLoad;

}

//--------
// getLoadSSL() - determine SSL load based on server response

int getLoadSSL(int iConnectTime, ASV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;
int iRc;

CMNByteArrayWrapper cbawClientHello = new CMNByteArrayWrapper(
abClientHello);

Socket socket = caller.getSocket();

try {
socket.getOutputStream().write(abClientHello);
// Perform a receive.
socket.getInputStream().read();
// If receive is successful, return load of 0. We are not concerned with
// data’s contents, and the load is calculated by the ADV_Thread thread.
iLoad = 0;

} catch (IOException e) {
// Upon error, iLoad will default to it.

}
return iLoad;

}

//--------
// getLoad - merge results from the HTTP and SSL methods

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iLoadHTTP;
int iLoadSSL;
int iLoad;
int iRc;

String sCluster = caller.getCurrentClusterId(); // current cluster address
int iPort = getAdviseOnPort();
String sServer = caller.getCurrentServerId();
String sHashKey = sCluster = ":" + sServer; // hash table key

if (ADV_TWOP_PORT_HTTP == iPort) { // handle an HTTP server
iLoadHTTP = getLoadHTTP(iConnectTime, caller); // get the load for HTTP

50 WebSphere Application Server: Programming Guide for Edge Components

ADV_nte nteHTTP = newADV_nte(sCluster, iPort, sServer, iLoadHTTP);
putNte(htTwopHTTP, "HTTP", sHashKey, nteHTTP); // save HTTP load

// information
ADV_nte nteSSL = getNte(htTwopSSL, "SSL", sHashKey); // get SSL

// information
if (null != nteSSL) {

if (true == nteSSL.isCurrent(this)) { // check the time stamp
if (ADV_HOST_INACCESSIBLE != nteSSL.getLoadValue()) { // is SSL

// working?
iLoad = iLoadHTTP;

} else { // SSL is not working, so mark the HTTP server down
iLoad= ADV_HOST_INACCESSIBLE;

}
} else { // SSL information is expired, so mark the

// HTTP server down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about SSL, report

// getLoadHTTP() results
iLoad = iLoadHTTP;

}
}
else if (ADV_TWOP_PORT_SSL == iPort) { // handle an SSL server

iLoadSSL = getLoadSSL(iConnectTime, caller); // get load for SSL

ADV_nte nteSSL = new ADV_nte(sCluster, iPort, sServer, iLoadSSL);
putNte(htTwopSSL, "SSL", sHashKey, nteSSL); // save SSL load info.

ADV_nte nteHTTP = getNte(htTwopHTTP, "SSL", sHashKey); // get HTTP
// information

if (null != nteHTTP) {
if (true == nteHTTP.isCurrent(this)) { // check the timestamp

if (ADV_HOST_INACCESSIBLE != nteHTTP.getLoadValue()) { // is HTTP
// working?

iLoad = iLoadSSL;
} else { // HTTP server is not working, so mark SSL down

iLoad = ADV_HOST_INACCESSIBLE;
}

} else { // expired information from HTTP, so mark SSL down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about HTTP, report

// getLoadSSL() results
iLoad = iLoadSSL;

}
}

//--------
// error handler

else {
iLoad = ADV_HOST_INACCESSIBLE;

}
return iLoad;

}
}

WebSphere Application Server advisor
A sample custom advisor for WebSphere Application Server is included in the
install_path/servers/samples/CustomAdvisors/ directory. The full code is not
duplicated in this document.
v ADV_was.java is the advisor source code file that is compiled and run on the

Load Balancer machine.

Chapter 3. Custom advisors 51

v LBAdvisor.java.servlet is the servlet source code that must be renamed to
LBAdvisor.java, compiled, and run on the WebSphere Application Server
machine.

The complete advisor is only slightly more complex than the sample. It adds a
specialized parsing routine that is more compact than the StringTokenizer example
shown above.

The more complex part of the sample code is in the Java servlet. Among other
methods, the servlet contains two methods required by the servlet specification:
init() and service(), and one method, run(), that is required by the Java.lang.thread
class.
v init() is called once by the servlet engine at initialization time. This method

creates a thread named _checker that runs independently of calls from the
advisor and sleeps for a period of time before resuming its processing loop.

v service() is called by the servlet engine each time the servlet is invoked. In this
case, the method is called by the advisor. The service() method sends a stream of
ASCII characters to an output stream.

v run() contains the core of the code execution. It is called by the start() method
that is called from within the init() method.

The relevant fragments of the servlet code appear below.
...

public void init(ServletConfig config) throws ServletException {
super.init(config);
...
_checker = new Thread(this);
_checker.start();

}

public void run() {
setStatus(GOOD);

while (true) {
if (!getKeepRunning())

return;
setStatus(figureLoad());
setLastUpdate(new java.util.Date());

try {
_checker.sleep(_interval * 1000);

} catch (Exception ignore) { ; }
}

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

ServletOutputStream out = null;
try {

out = res.getOutputStream();
} catch (Exception e) { ... }
...
res.setContentType("text/x-application-LBAdvisor");
out.println(getStatusString());
out.println(getLastUpdate().toString());
out.flush();
return;

}

...

52 WebSphere Application Server: Programming Guide for Edge Components

Using data returned from advisors
Whether you use a standard call to an existing part of the application server or
add a new piece of code to be the server-side counterpart of your custom advisor,
you possibly want to examine the load values returned and change server
behavior. The Java StringTokenizer class, and its associated methods, make this
investigation easy to do.

The content of a typical HTTP command might be GET /index.html HTTP/1.0

A typical response to this command might be the following.
HTTP/1.1 200 OK
Date: Mon, 20 November 2000 14:09:57 GMT
Server: Apache/1.3.12 (Linux and UNIX)
Content-Location: index.html.en
Vary: negotiate
TCN: choice
Last-Modified: Fri, 20 Oct 2000 15:58:35 GMT
ETag: "14f3e5-1a8-39f06bab;39f06a02"
Accept-Ranges: bytes
Content-Length: 424
Connection: close
Content-Type: text/html
Content-Language: en

<!DOCTYPE HTML PUBLIC "-//w3c//DTD HTML 3.2 Final//EN">
<HTML><HEAD><TITLE>Test Page</TITLE></HEAD>
<BODY><H1>Apache server</H1>
<HR>
<P><P>This Web server is running Apache 1.3.12.
<P><HR>
<P>
</BODY></HTML>

The items of interest are contained in the first line, specifically the HTTP return
code.

The HTTP specification classifies return codes that can be summarized as follows:
v 2xx return codes are successes
v 3xx return codes are redirections
v 4xx return codes are client errors
v 5xx return codes are server errors

If you know very precisely what codes the server can possibly return, your code
might not need to be as detailed as this example. However, keep in mind that
limiting the return codes you detect might limit the future flexibility of your
program.

The following example is a stand-alone Java program that contains a minimal
HTTP client. The example invokes a simple, general-purpose parser for examining
HTTP responses.
import java.io.*;
import java.util.*;
import java.net.*;

public class ParseTest {
static final int iPort = 80;
static final String sServer = "www.ibm.com";
static final String sQuery = "GET /index.html HTTP/1.0\r\n\r\n";
static final String sHTTP10 = "HTTP/1.0";
static final String sHTTP11 = "HTTP/1.1";

Chapter 3. Custom advisors 53

public static void main(String[] Arg) {
String sHTTPVersion = null;
String sHTTPReturnCode = null;
String sResponse = null;
int iRc = 0;
BufferedReader brIn = null;
PrintWriter psOut = null;
Socket soServer= null;
StringBuffer sbText = new StringBuffer(40);

try {
soServer = new Socket(sServer, iPort);
brIn = new BufferedReader(new InputStreamReader(

soServer.getInputStream()));
psOut = new PrintWriter(soServer.getOutputStream());
psOut.println(sQuery);
psOut.flush();
sResponse = brIn.readLine();
try {

soServer.close();
} catch (Exception sc) {;}

} catch (Exception swr) {;}

StringTokenizer st = new StringTokenizer(sResponse, " ");
if (true == st.hasMoreTokens()) {

sHTTPVersion = st.nextToken();
if (sHTTPVersion.equals(sHTTP110) || sHTTPVersion.equals(sHTTP11)) {

System.out.println("HTTP Version: " + sHTTPVersion);
} else {

System.out.println("Invalid HTTP Version: " + sHTTPVersion);
}

} else {
System.out.println("Nothing was returned");
return;

}

if (true == st.hasMoreTokens()) {
sHTTPReturnCode = st.nextToken();
try {

iRc = Integer.parseInt(sHTTPReturnCode);
} catch (NumberFormatException ne) {;}

switch (iRc) {
case(200):

System.out.println("HTTP Response code: OK, " + iRc);
break;

case(400): case(401): case(402): case(403): case(404):
System.out.println("HTTP Response code: Client Error, " + iRc);
break;

case(500): case(501): case(502): case(503):
System.out.println("HTTP Response code: Server Error, " + iRc);
break;

default:
System.out.println("HTTP Response code: Unknown, " + iRc);
break;

}
}

if (true == st.hasMoreTokens()) {
while (true == st.hasMoreTokens()) {

sbText.append(st.nextToken());
sbText.append(" ");
}

54 WebSphere Application Server: Programming Guide for Edge Components

System.out.println("HTTP Response phrase: " + sbText.toString());
}

}
}

Chapter 3. Custom advisors 55

56 WebSphere Application Server: Programming Guide for Edge Components

Notices

First edition (May 2012)

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Corporation
Attn.: G71A/503
P.O. box 12195
3039 Cornwallis Rd.
Research Triangle Park, N.C. 27709-2195
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the document. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012 57

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222-9183
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v IBM
v ViaVoice
v WebSphere

58 WebSphere Application Server: Programming Guide for Edge Components

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 59

60 WebSphere Application Server: Programming Guide for Edge Components

Index

A
ADV_AdvisorInitialize() 40, 41
ADV_Base 40
advisor 1, 36

custom 38
library functions 40
naming conventions 39
standard 37

advisor constructor 41
advisor cycle 37
ADVLOG() 42
API functions

Caching Proxy 15
authentication 33

calling plug-ins for Basic type
only 22

configuration file directive 22
function prototype 10
proxy server step 6
using the Caching Proxy plug-in

API 35
authorization 33

configuration file directive 23
function prototype 10
proxy server step 6
using the Caching Proxy plug-in

API 35

C
caching

variant 36
Caching Proxy plug-in API

compiling programs 7
configuration directives 21
configuration file directives 22

order for different processing
steps 22

order for one processing step 22
order for Service and Name

Translation processing steps 22
function prototypes 8
guidelines for writing programs 7
overview 3
procedure for writing programs 3

Caching Proxy plug-in functions
calling for particular requests

only 22
Caching Proxy steps 4
caller.getCurrentServerId() 42
caller.getLatestLoad() 43
caller.receive() 43
caller.send() 44
CGI programs

porting to the Caching Proxy plug-in
API 24

code samples 2, 36
compiling

Caching Proxy plug-in API
programs 7

compiling (continued)
custom advisors 39

configuration file directives (Caching
Proxy) 22

constructor 40
custom advisor 38

constructor 41
library functions 40
naming conventions 39

custom advisor modes 38
custom advisors 1, 36

E
error

configuration file directive 23
function prototype 13
proxy server step 7

examples
for the Caching Proxy plug-in

API 36
examples (See also sample code) 2

custom advisors 44

G
GC advisor

configuration file directive 23
function prototype 13
proxy server step 6

getAdviseOnPort() 42
getAdvisorName() 42
getCurrentServerId() 42
getInterval() 43
getLatestLoad() 43
getLoad() 38, 40, 41
guidelines for Caching Proxy plug-in API

programs 7
GWAPI 24

H
HTTP return codes 14

for Caching Proxy plug-in API
functions 14

HTTPD_authenticate() 15, 35, 36
HTTPD_cacheable_url() 16
HTTPD_close() 16
HTTPD_exec() 16
HTTPD_extract() 16
HTTPD_file() 17
httpd_getvar() 17
HTTPD_log_access() 17
HTTPD_log_error() 17
HTTPD_log_event() 18
HTTPD_log_trace() 18
HTTPD_open() 18
HTTPD_proxy() 18
HTTPD_read() 18
HTTPD_restart() 19

HTTPD_set() 19
httpd_setvar() 19
httpd_variant_insert() 20, 36
httpd_variant_lookup() 20, 36
HTTPD_write() 20

I
ibmnd.jar file 39
ibmproxy.conf file 21, 22
ICAPI 24
iConnectTime 41

L
library functions

Caching Proxy plug-in API (See also
HTTPD_*) 15

Load Balancer custom advisors 40
Load Balancer advisors 1, 36
log

configuration file directive 23
function prototype 13
proxy server step 7

M
method handler 11
midnight

configuration file directive 23
function prototype 10
proxy server step 6

N
name translation

configuration file directive 23
function prototype 10
proxy server step 6

naming conventions for custom
advisors 39

normal mode 38

O
object type

configuration file directive 23
function prototype 10
proxy server step 6

P
porting CGI programs for the Caching

Proxy plug-in API 24
post authorization

function prototype 11
proxy server step 6

© Copyright IBM Corp. 2012 61

postAuthorization
configuration file directive 23

postExit
configuration file directive 23
function prototype 14
proxy server step 7

predefined functions
Caching Proxy 15

preExit
configuration file directive 22
function prototype 9
proxy server step 6

proxy advisor
configuration file directive 23
function prototype 13
proxy server step 6

proxy configuration file modifications for
plug-ins 21

R
receive() 43
replace mode 38
return codes

for Caching Proxy plug-in API library
functions 21

HTTP 14

S
sample code 2

custom advisors 2, 44
for the Caching Proxy plug-in API 2,

36
processing returned advisor data 53
side stream advisor 45
standard advisor 44
two-port advisor 46
WebSphere Application Server

advisor 51
search order

for Load Balancer advisors 40
send() 44
server initialization

configuration file directive 22
function prototype 9
proxy server step 6

server process
steps 4

server request process
steps 4

server termination
configuration file directive 23
function prototype 14
proxy server step 7

service
configuration file directive 23
function prototype 11
proxy server step 6

side stream advisor
code sample 45

standard advisor 37
code sample 44

steps
Caching Proxy 4

suppressBaseOpeningSocket() 44

suppressBaseOpeningSocket() (continued)
example 45

system plug-ins (Caching Proxy) 22

T
transmogrifier

configuration file directive 23
function prototype 11
proxy server step 7

two-port advisor
code sample 46

U
URL template for Caching Proxy plug-in

API directives 23

V
variant caching 36

W
WebSphere Application Server

custom advisor code sample 51

62 WebSphere Application Server: Programming Guide for Edge Components

����

Printed in USA

S
pi

ne
in

fo
rm

at
io

n:

�
�

�
W

eb
Sp

he
re

Ap
pl

ic
at

io
n

Se
rv

er
Pr

og
ra

m
m

in
g

G
ui

de
fo

r
Ed

ge
Co

m
po

ne
nt

s
Ve

rs
io

n
8.

5

	Contents
	Figures
	About this book
	Who should read this book
	What you should already know
	Conventions and terminology used in this book
	Accessibility
	Related documents and Web sites
	How to send your comments

	Chapter 1. Overview of Edge components customization
	Caching Proxy customization
	Load Balancer customization
	Locating sample code

	Chapter 2. The Caching Proxy API
	Overview of the Caching Proxy API
	General procedure for writing API programs
	Server process steps
	Guidelines
	Plug-in functions
	Plug-in function prototypes
	HTTP return codes and values

	Predefined functions and macros
	Return codes from predefined functions and macros

	Caching Proxy configuration directives for API steps
	API usage notes
	API directives and syntax
	API directive variables

	Compatibility with other APIs
	Porting CGI programs

	Caching Proxy API reference information
	Variables
	Variable definitions

	Authentication and authorization
	Authentication and authorization process

	Variant caching
	API examples

	Chapter 3. Custom advisors
	Advisors provide load-balancing information
	Standard advisor function

	Creating a custom advisor
	Normal mode and replace mode
	Advisor naming conventions
	Compilation
	Running a custom advisor
	Required routines
	Search order
	Naming and file path
	Custom advisor methods and function calls
	Constructor (provided by advisor base)
	ADV_AdvisorInitialize()
	getLoad()
	Function calls available to custom advisors
	ADVLOG()
	getAdvisorName()
	getAdviseOnPort()
	caller.getCurrentServerId()
	caller.getCurrentClusterId()
	caller.getSocket()
	getInterval()
	caller.getLatestLoad()
	caller.receive()
	caller.send()
	suppressBaseOpeningSocket()

	Examples
	Standard advisor
	Side stream advisor
	Two port advisor
	WebSphere Application Server advisor
	Using data returned from advisors

	Notices
	Trademarks

	Index
	A
	C
	E
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

