
Administering batch environments, Version 8.5

Administering batch environments

SA32-1093-00

���

Note
Before using this information, be sure to read the general information under “Notices” on page 261.

Compilation date: June 1, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . vii

Using this PDF . ix

Chapter 1. Batch applications. 1
Batch overview . 1

Learn about batch applications . 1
Getting started with the batch environment . 3

Chapter 2. Administering the batch environment . 9
Configuring the batch environment . 9

Environment planning for transactional batch applications and compute-intensive applications 9
Configuring the unit test environment (UTE) in Rational Application Developer 11
Configuring the job scheduler . 11

Job scheduler WebSphere variables . 12
Job scheduler System Programming Interfaces (SPI) 13
Creating the job scheduler and grid endpoint database. 15
Verifying the job scheduler installation . 16

Securing the job scheduler . 16
Job scheduler security overview . 17
Securing the job scheduler using roles. 18
Securing the job scheduler using groups on distributed operating systems 20
Securing the job scheduler using roles and groups on distributed operating systems 21
Securing the job scheduler using groups on the z/OS operating system 22
Securing the job scheduler using roles and groups on the z/OS operating system. 24

Configuring WebSphere grid endpoints . 25
Endpoint WebSphere variables . 26

Running batch jobs under user credentials . 27
Batch jobs and their environment. 28

Job management console . 29
Command-line interface for batch jobs . 30
Job logs . 42
Job classes . 44

Creating and managing reports for batch statistics . 45
Job scheduler integration with external schedulers . 46

Integration of an external workload scheduler to manage batch workloads 46
Configuring the external scheduler interface. 47

Setting up the external scheduler interface using the default messaging provider 47
Setting up the external scheduler interface using WebSphere MQ 51

Requirements-based job scheduling. 53
Service policies for batch jobs . 54
Batch job classification . 55
Job usage data for charge-back accounting support . 57
Integrating batch features in z/OS operating systems 59

z/OS workload management and service policies . 60
Transaction class propagation on z/OS operating systems 60
Managing multi-user WLM environments . 61
Managing worker threads . 61
Enabling job usage information . 62

Rolling out batch application editions . 63
Job scheduler custom properties . 64

MaxConcurrentDispatchers . 64
UseHTTPSConnection . 64

© Copyright IBM Corp. 2012 iii

RECORD_SMF_SUBTYPES . 65
JOB_SECURITY_POLICY . 65
JOB_SECURITY_DEFAULT_GROUP . 65
JOB_SECURITY_ADMIN_GROUP . 66
UseAPCEndpointSelection . 66
WXDBulletinBoardProviderOption . 66

Port number settings for batch. 66
Batch administrator examples . 68

xJCL sample for a batch job . 68
XML schema for a batch job . 70
xJCL sample for a compute intensive job . 72
XML schema for a compute intensive job. 73
xJCL sample for a native execution job . 74
XML schema for a native execution job . 74
CommandRunner utility job step . 75

WSGrid properties file examples . 78
Example: Jobs from repository properties file . 78
Example: Compute-intensive properties file . 78
Example: Transactional batch properties file. 78
Example: Restart job properties file . 79
Example: xJCL file . 80
Example: Control file . 80

Chapter 3. Scripting batch applications . 81
jobrecovery.bat|.sh batch script . 81
uteconfig.bat|.sh batch script . 81
configCGSharedLib.py batch script . 82
removePGC.py batch script . 83
redeployLRS.py batch script . 83
wsgridConfig.py batch script . 84
JobSchedulerCommands command group for the AdminTask object 85

Chapter 4. Developing batch applications . 91
Transactional batch and compute-intensive batch programming models 91
COBOL container overview . 91
Developing COBOL container batch applications . 93

Creating a COBOL call stub Java class . 93
Compiling COBOL call stub Java classes. 94
Dynamically updating a COBOL module . 94
COBOL call stub Java class usage example . 94
COBOL RETURNING, RETURN-CODE, getReturnValue, and getReturnCode parameters. 95
COBOL container for batch troubleshooting . 96

Generating COBOL call stubs . 96
Creating a call stub generator configuration file . 98
Invoking the call stub generator from a command line 101
Invoking the call stub generator from an Ant task 103
Invoking the call stub generator from a graphical interface 106
Call stub generator CSG.xml file . 107
Call stub generator CSGBatch.xml file . 110

Developing a simple compute-intensive application . 111
Compute-intensive programming model . 113

Developing a simple transactional batch application 115
Components of a batch application . 120
Batch programming model. 121
Skip-record processing . 127
Retry-step processing . 129

iv Administering batch environments

Configurable transaction mode . 131
Developing a parallel job management application . 131

Parallel job manager (PJM) . 133
Parallel job manager application programming interfaces (APIs) 135
Other considerations for the parallel job manager 136

Using the batch data stream framework . 136
Batch data stream framework and patterns . 138
Implementing the generic batch step (GenericXDBatchStep) 157
Implementing the error tolerant step . 158
Declaring the percentage-based threshold policy (PercentageBasedThresholdPolicy) 159
Declaring the record based threshold policy (RecordBasedThresholdPolicy) 160

Chapter 5. Deploying batch applications . 161
Packaging EJB modules in a batch application using Rational Application Developer 161
Installing the batch application . 161
Deploying an OSGi batch application . 162

OSGi batch applications . 164
Submitting batch jobs . 164

xJCL elements . 165
Submitting batch jobs using the job scheduler EJB interface 171
Submitting batch jobs using the job scheduler web service interface 192
Submitting jobs from an external job scheduler . 248

Chapter 6. Troubleshooting batch applications . 257
Adding log and trace settings to the batch environment 257
Batch common problems . 257
Diagnosing batch problems using job logs . 258
BusinessGridStatsCache log file . 259

Notices . 261

Trademarks and service marks . 263

Index . 265

Contents v

vi Administering batch environments

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 vii

viii Administering batch environments

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 ix

x Administering batch environments

Chapter 1. Batch applications

Learn about what the batch function is, the major components, the batch environment, and the grid
endpoints.

Batch overview
The Java Platform, Enterprise Edition (Java EE) applications that are typically hosted by the product
perform short, lightweight, transactional units of work. In most cases, an individual request can be
completed with seconds of processor time and relatively little memory. Many applications, however, must
complete batch work that is computational and resource intensive.

The batch function extends the application server to accommodate applications that must perform batch
work alongside transactional applications, as shown in the following graphic. Batch work might take hours
or even days to finish and uses large amounts of memory or processing power while it runs.

Computationally intensive workloads Transactional batch workloads

Mixed workloads

Batch support includes a web-based application for managing jobs, called the job management console.
Through this console, you can submit jobs, monitor job execution, perform operational actions against
jobs, and view job logs.

Jobs express units of batch work. A job describes the work, identifies the application to perform the work,
and can include additional information to help the product handle the work effectively and efficiently. Jobs
are specified in an XML dialect called xJCL and can be submitted programmatically or through a
command-line interface. As part of a job submission, the job is persisted in an external database and given
to the job scheduler. The job scheduler distributes waiting jobs to available grid endpoints to run.

Learn about batch applications
Find links to batch resources for learning, including “How do I?...” topics, conceptual overviews, and
samples.

© Copyright IBM Corp. 2012 1

How do I?...

Configure the batch environment and administer
batch applications
Configure the job scheduler
Use the job scheduler and job management console to
administer the batch environment
Run batch scripts or wsadmin job scheduler commands
Secure the job scheduler
Configure WebSphere grid endpoints
Configure the external scheduler interface
Configure the unit test environment (UTE)
Run batch jobs under user credentials
Create and manage reports for batch statistics

Develop batch applications
Develop COBOL container batch applications
Generate COBOL call stubs
Develop a simple compute-intensive application
Develop a simple transactional batch application
Develop a parallel job management application
Use the batch data stream framework

Deploy batch applications
Package EJB modules in a batch application using
Rational Application Developer
Install a batch application
Deploy an OSGi batch application
Submit batch jobs
Troubleshoot batch applications

Conceptual overviews

Batch overview
Getting started with the batch environment
Understanding the elements in the batch environment
Batch applications, jobs, and job definitions
Grid endpoints
Unit test environment topology
Batch jobs and their environment
Transactional batch and compute-intensive batch
programming models
COBOL container overview

Samples

The product offers Java Batch samples. You can use
these samples to explore batch capability. The samples
are downloadable from the Samples information center.
Samples include detailed deployment instructions in a
readme.html file.
xJCL samples and XML schemas for batch jobs, native
jobs, and compute-intensive jobs
WSGrid properties file examples

2 Administering batch environments

Getting started with the batch environment
The major components of the batch environment include the job scheduler, the interfaces to the job
scheduler, the job database, and grid endpoints.

The following diagram shows the major components. You can use the command-line interface, the
Enterprise JavaBeans (EJB) interface, the web services interface, and the job management console to
communicate with the job scheduler. The job scheduler has a job database that contains all the jobs. The
job scheduler in the diagram communicates with two node endpoints. An application server that is doing
transactional work runs on another node, but does not communicate with the job scheduler. This
application server is not part of the batch environment.

The job management console provides a graphical user interface (GUI) with which you can perform job
management functions. Most of the function from other interfaces is also available from the job
management console.

With the command-line interface, you can submit and control the batch jobs in the system. The enterprise
bean and web services interfaces provide similar function to both Java Platform, Enterprise Edition (Java

Figure 1. Batch components

Chapter 1. Batch applications 3

EE) and non-Java EE programs through programmatic interfaces. The administrative console provides a
graphical user interface (GUI) with which you can configure the job scheduler, and view the location of
endpoint servers.

Batch administrators and submitters can use the job management console to view, manage and perform
job-related actions that include submitting a job, viewing of jobs, canceling or suspending a job, and
resuming a suspended job.

The job scheduler accepts and schedules the execution of batch jobs. It manages the job database,
assigns job IDs, and selects where jobs run.

The grid endpoints are application servers that are augmented to provide the runtime environments
needed by batch applications.

v The grid endpoints support batch applications that are compute-intensive. Compute-intensive batch
applications are built using a simple programming model based on asynchronous beans. Read about
compute-intensive programming for more information.

v The batch system supports transactional batch applications. These applications perform record
processing like more traditional Java EE applications, but are driven by batch inputs rather than
interactive users. This environment builds on familiar Plain Old Java Objects (POJOs) to provide batch
applications with a rich programming model that supports container-managed restartable processing and
the ability to pause and cancel running jobs. Read about the batch programming model for more
information.

Understanding the elements in the batch environment
A typical batch environment consists of a job scheduler, batch container, batch applications, jobs,
interfaces for management functions, and database tables.

The following diagram depicts the elements of the basic batch environment:

The following list describes the items in the diagram:

Figure 2. The batch elements

4 Administering batch environments

v Job scheduler

The job scheduler is the batch component that provides all job management functions, such as submit,
cancel, and restart. It maintains a history of all jobs, including those waiting to run, those running, and
those having already run. The job scheduler is hosted in an application server. In a Network
Deployment environment, the job scheduler can also be hosted in a cluster.

v Batch container

The batch container is the batch component that provides the execution environment for the batch jobs.
Java Platform, Enterprise Edition (Java EE) based batch applications run inside the batch container.
The batch container is hosted in an application server. In a Network Deployment environment, the batch
container can also be hosted in a cluster.

v Java EE batch application

Java EE batch applications are regular Java EE applications, deployed as Enterprise Archive (EAR)
files, that contain implementations of one or more Java batch applications. These Java batch
applications follow either the transactional batch or compute-intensive programming models.

v xJCL

Jobs are described using a job control language. The batch jobs use an XML-based job control
language. The job description identifies which application to run, its inputs, and outputs.

v Web, Shell, API

The job scheduler exposes three API types to access its management functions: A web interface called
the job management console, a shell command line called lrcmd, and APIs, available as either web
services or EJBs.

v Scheduler tables

The job scheduler uses a relational database to store job information. It can be any relational database
supported by WebSphere® Application Server. If the job scheduler is clustered, the database must be a
network database, such as DB2®.

v Container tables

The batch container uses a relational database to store checkpoint information for transactional batch
applications. The database can be any relational database supported by WebSphere Application Server.
If the batch container is clustered, the database must be a network database, such as DB2.

v JDBC

The JDBC is standard JDBC connectivity to the scheduler and container tables, as supported by the
WebSphere Application Server connection manager.

Batch applications, jobs, and job definitions
A batch application is a Java Platform, Enterprise Edition (Java EE) application that conforms to one of the
batch programming models. Batch work is expressed as jobs. Jobs are made up of steps. All steps in a
job are processed sequentially.

All jobs contain the following information:

v The identity of the batch application that performs the work

v One or more job steps that must be performed to complete the work

v The identity of an artifact within the application that provides the logic for each job step

v Key and value pairs for each job step to provide additional context to the application artifacts

Jobs for batch applications contain additional information specific to the batch programming model:

v Definitions of sources and destinations for data

v Definitions of checkpoint algorithms

xJCL - job definition
Jobs are expressed using an XML dialect called XML Job Control Language (xJCL). This dialect
has constructs for expressing all of the information needed for both compute-intensive and batch

Chapter 1. Batch applications 5

jobs, although some elements of xJCL are only applicable to compute-intensive or batch jobs. See
the xJCL provided with the Sample applications and the xJCL schema document for more
information about xJCL. The xJCL definition of a job is not part of the batch application. This
definition is constructed separately and submitted to the job scheduler to run. The job scheduler
uses information in the xJCL to determine where and when the job runs.

Interfaces used to submit and control jobs
xJCL jobs can be submitted and controlled through the following interfaces:

v A command-line interface

v An EJB interface described by the com.ibm.ws.batch.JobScheduler interface. For more
information, see the API documentation for this interface.

v A web service interface

v The job management console

The grid endpoint
Batch applications run in a special runtime environment. This runtime environment is provided by a
product-provided Java EE application, the batch execution environment. This application is
deployed automatically by the system when a batch application is installed. The application serves
as an interface between the job scheduler and batch applications. It provides the runtime
environment for both compute-intensive and transactional batch applications.

Grid endpoints
The product packages and deploys batch applications as Java Platform, Enterprise Edition (Java EE)
enterprise archive (EAR) files.

Deploying a batch application is like deploying a transactional Java EE application. A batch application is
hosted in grid endpoints.

The deployment target is automatically enabled on the grid endpoints when you install or deploy a batch
application, whether it is a compute-intensive or a batch application.

Unit test environment topology
You can use a single server unit test environment topology. The unit test environment is integrated with the
product installation, and a script is provided to create the environment.

To create the environment, create a stand-alone application server. Next, use the uteconfig.sh/.bat script
to create the batch unit test environment within that application server profile. Running the script
configures the job scheduler. See topics on the uteconfig.bat|.sh script.

After the script is run, the unit test environment is integrated and all the necessary files are stored in the
targeted profile. The selected application server is configured to host the job scheduler and job execution
environment. The script also creates and configures local Derby databases to support the job components.

The following diagram shows the unit test environment topology:

Application server node

Application
Server

Job
scheduler

system
application

Derby
scheduler
database

Derby
checkpoint
database

Job
execution

environment
system

application

Client

6 Administering batch environments

Topology differences

Table 1. Differences in topology between the batch environment and the batch unit test environment. The table lists
the environment and the topology.
Environment Topology

Batch
v Network Deployment cell

v Derby database (default), DB2, Oracle

Batch unit test environment
v Stand-alone WebSphere Application Server

v Derby database (default)

Functional comparison

Table 2. Functional comparison between the batch environment and the batch unit test environment. The table
indicates whether a specific function is supported in the batch unit test environment and in the batch environment.
Function Batch unit test environment Batch environment

Supported workload types Batch and CI Batch, CI, and native

Batch programming model and container Yes Yes

Job checkpoint / restart Yes Yes

Job scheduler Yes Yes

Job management console Yes Yes

Job class Yes Yes

Job log Yes Yes

High availability job scheduler No Yes

Scalable scheduler and container No Yes

Service policies No Yes

WLM-based scheduling No Yes

Job usage accounting No Yes

Batch frequently asked questions
When you use batch, you might have questions about the functionality of some of its features.

What are the criteria that the job scheduler uses to select a JVM to run the job?

Availability, capability, and capacity.

Can the job scheduler be run in an active-active mode? What kind of control is used to
synchronize the state between them?

Yes, you can have multiple active-active job scheduler instances. For this, you must provide a network
database (like DB2) for the job scheduler to persist job and job definition information.

What control does the administrator have to control batch jobs and the job scheduler
from a user-interface perspective?

The product provides a job console that you can use to submit, monitor, and manage all jobs in the
domain from a single location. This job management console also includes support for creating and
managing job schedules (jobs that are run at a specific time or day once or repeatedly).

Chapter 1. Batch applications 7

8 Administering batch environments

Chapter 2. Administering the batch environment

You can configure the batch environment and manage batch jobs.

Configuring the batch environment
Configuring the batch environment includes configuring the job scheduler and grid endpoints. The job
scheduler accepts job submissions and determines where to run them. Configurations for the job
scheduler includes the selection of the deployment target, datasource JNDI name, database schema
name, and endpoint job log location to be configured for the schedule. Batch applications are hosted in
grid endpoints.

Environment planning for transactional batch applications and
compute-intensive applications
When planning your batch environment, consider certain factors that can help you design your
environment to best suit your needs.

Before you build your environment, carefully consider the goals that you want to accomplish. For example,
you can configure your batch environment in an existing cell or build a new cell. Also, you must decide
what relational database to use, the security you need, and what your availability requirements are. The
following sections contain information about each of these considerations.

New or existing cell

You can choose to configure your batch environment in an existing WebSphere Application Server cell or
you can build a new cell entirely. Your choice depends on whether you want a new environment isolated
from any existing WebSphere Application Server environment, or whether you want to add the capabilities
of batch to an existing environment.

On the application server nodes where you want the job scheduler and batch container functions, use the
administrative console to activate the functions. No action is necessary on the deployment manager node.

Job types

There are two job types. They are hosted in the WebSphere Application Server environment.

1. Transactional batch

Runs transactional batch applications that are written in Java and implement a WebSphere Application
Server programming model. They are packaged as enterprise archive (EAR) files and are deployed to
the batch container hosted in an application server or cluster.

The transactional batch programming model provides a container-managed checkpoint/restart
mechanism that enables batch jobs to be restarted from the last checkpoint if interrupted by a planned
or unplanned outage.

2. Compute-intensive

Runs compute-intensive applications that are written in Java and implement a WebSphere Application
Server programming model. They are packaged as EAR files and are deployed to the batch container
hosted in an application server or cluster.

The compute-intensive programming model provides a lightweight execution model based on the
common framework

For all batch environments, you must deploy the job scheduler on a WebSphere Application Server server
or cluster. To set up an environment to host transactional batch or compute-intensive job types, you must
deploy the batch container to at least one WebSphere Application Server server or cluster. The

© Copyright IBM Corp. 2012 9

transactional batch, compute-intensive applications, or both are installed on the same WebSphere
Application Server server or cluster.

Relational database

The job scheduler and batch container both require access to a relational database. The relational
database used is JDBC connected. Access to the relational database is through the underlying
WebSphere Application Server connection management facilities. The relational databases supported are
the same as those relational databases supported by WebSphere Application Server, including DB2,
Oracle, and others.

The simple file-based Apache Derby database is automatically configured for you by default so that you
can quickly get a functioning environment up and running. However, do not use the Derby database for
production use. Moreover, the default Derby database does not support a clustered job scheduler, nor a
clustered batch container.

A highly available environment includes both a clustered job scheduler, and one or more clustered batch
containers. Clustering requires a network database. Use production grade databases such as DB2for this
purpose. Network Derby works also, but lacks the robustness necessary for production purposes. Do not
use the network version in production.

Note: Application JPA settings always override the settings on this page.

Security considerations

Security for the batch environment is based on the following techniques:

1. WebSphere authentication for access to job scheduler interfaces. Users defined to the active
WebSphere security registry can authenticate and gain access to the web, command line, and
programmatic interfaces of the job scheduler.

2. Role-based security for permission rights to job. Authenticated users must be assigned to the
appropriate roles in order to perform actions against jobs. There are three roles:

lrsubmitter
Users in the lrsubmitter role can submit and operate on their own jobs, but on no others.

lradmin
Users in the lradmin role can submit jobs and operate on their own job or the jobs of anyone
else.

lrmonitor
Users assigned the lrmonitor role only can view jobs and job logs of all users.

You can assign these roles using the job scheduler configuration page in the administrative console.

High availability considerations

Use clustering for high availability of batch components. Deploy and operate on clusters using the job
scheduler and batch container.

Use typical application clustering techniques with the job scheduler to ensure that it is highly available. The
job scheduler supports multiple methods of access to its APIs: web application, command line, web
service, and Enterprise JavaBeans (EJB). Ensuring that highly available network access to a clustered job
scheduler depends on which job scheduler API access method. The batch container is made highly
available by deploying it to a cluster. The job scheduler automatically recognizes the batch container is
clustered and takes advantage of it to ensure a highly available execution environment for the batch jobs
that run there.

10 Administering batch environments

Configuring the unit test environment (UTE) in Rational Application
Developer
Configure the unit test environment (UTE) by using the uteconfig script on the WebSphere Application
Server profile that is used in Rational® Application Developer.

Before you begin

Your product installation must have a stand-alone application server profile; for example,
app_server_root/profiles/AppSrv01.

About this task

You can run the uteconfig script to create a job scheduler configuration on the application server profile.
The script creates Derby resources, deploys the job scheduler application, creates a work manager, and
otherwise configures a UTE on the profile.

Procedure
1. Locate the bin directory of the application server profile for which you want to configure a job

scheduler.

The uteconfig.bat|.sh script is located in the bin directory of the application server profile; for
example, app_server_root/profiles/AppSrv01/bin.

The uteconfig.bat|.sh script is also located in the main bin directory of the product; for example,
app_server_root/bin. To run the uteconfig script successfully from the main bin directory, your product
installation must have only one application server profile.

2. From a command prompt open on the bin directory, run the uteconfig script.

The script takes about one minute to run and provides progress messages.

Results

The WebSphere Application Server profile now has a UTE for testing applications developed with Rational
Application Developer.

Configuring the job scheduler
The job scheduler accepts job submissions and determines where to run them. As part of managing jobs,
the job scheduler stores job information in an external job database. Configurations for the job scheduler
includes the selection of the deployment target, data source JNDI name, database schema name, and
endpoint job log location to be configured for the scheduler.

Before you begin

See the topic about creating a non-default job scheduler and grid endpoint database.

About this task

Stand-alone application servers or clusters can host the job scheduler. The first time a server or cluster is
selected to host the grid scheduler, an embedded Apache Derby database is automatically created, and
configured to serve as the scheduler database if the default data source JNDI name jdbc/lrsched is
selected.

The job scheduler can be configured using the administrative console or by scripting. This topic discusses
how to configure the job scheduler using the administrative console. To configure the job scheduler using
the scripting language, see information on the job scheduler configuration administrative tasks.

Chapter 2. Administering the batch environment 11

Procedure
1. Choose the environment to host the job scheduler.

Use a stand-alone server for test environments. The stand-alone server can use the default Derby
database. Use a cluster host for production environments.

Although Derby is used as the default job scheduler database, you might want to use your own
database. See the topic on creating a job scheduler and grid endpoint database for more information.

2. Log on to the administrative console.

3. Click System administration > Job scheduler to view the Job scheduler page.

4. In the Scheduler hosted by list, select the deployment target.

5. Type the database schema name. The default is LRSSCHEMA.

6. Select the data source JNDI name from the list. If the default of (none) is selected, a default
embedded Derby job scheduler database is created with a value of jdbc/lrsched.

7. Type the directory where the job scheduler and the batch execution environment write the job logs.
The default is ${GRID_JOBLOG_ROOT}/joblogs.

8. Optional: Check a usage data check box.

Specifies if the scheduler records job usage data for charge-back purposes in the scheduler
database.

Specifies if job usage data for jobs are to be written in SMF.

Job usage data can be recorded with either SMF120 subtype 20 records or SMF120
subtype 9 records. Use the RECORD_SMF_SUBTYPES job scheduler custom property to indicate
the preferred subtype.

9. Click OK and save the configuration.

10. If administrative security is enabled, enable application security and secure the job scheduler.

See the topic on securing the job scheduler for more information. Only authorized users who are
granted the lrmonitor, lrsubmitter, and lradmin roles, or a combination of the roles, through the
administrative console are allowed access to the job management console.

Job scheduler WebSphere variables
Use WebSphere variables to modify the job scheduler configuration. You can configure the amount of time
that the job scheduler waits before signaling a problem with the endpoint and waits between polling the
endpoint.

GRID_ENDPOINT_MISSED_HEART_BEAT_TOLERANCE_INTERVAL
Define this WebSphere variable to configure the amount of time in milliseconds that the job scheduler
waits between polls of the endpoint heartbeat before signaling a problem.

Table 3. GRID_ENDPOINT_MISSED_HEART_BEAT_TOLERANCE_INTERVAL. The table includes the scope, valid
values, and default for the WebSphere variable.

Scope Valid values Default

Cell, job scheduler node, or job
scheduler server level

Time in milliseconds 5 minutes

GRID_ENDPOINT_HEART_BEAT_POLL_INTERVAL
Define this WebSphere variable to configure the amount of time in milliseconds the job scheduler waits
between polls of the endpoint heartbeat.

12 Administering batch environments

Table 4. GRID_ENDPOINT_HEART_BEAT_POLL_INTERVAL. The table includes the scope, valid values, and
default for the WebSphere variable.

Scope Valid values Default

Cell, job scheduler node, or job
scheduler server level

Time in milliseconds 1 minute

Job scheduler System Programming Interfaces (SPI)
Use SPIs to manage a list of groups to which a user is assigned, to control user actions against jobs, to
suppress the writing of log lines, and to provide an installation-specific audit string validation rule.

SPI properties file

The SPI class can be added to $WAS_HOME/lib/classes or to the job scheduler shared library. Use the
configCGSharedLib.py wsadmin script to assign the shared library to the job scheduler.

Table 5. Attributes of a property file. The table lists the property file and its attributes.
Property file Attribute

Name xd.spi.properties

Location app_server_root/properties

Format <SPI name>=<SPI implementation class>

Group membership filter SPI

Use the group membership filter system programming interface (SPI) to manage the list of groups to which
a user is assigned. You can use the SPI in two ways:

v To modify the list of groups that the federated repository returns

v To serve as an alternative to the federated repository. In this case, the SPI is the source of user and
group membership information that batch uses.

The SPI is called each time a user logs on to the job management console and each time a job operation
is performed.

Table 6. SPI name. The following table lists the name of the SPI.
Name

group.membership.manager

Job log filter SPI

Use the job log filter SPI to suppress the writing of log lines to logs from batch applications. You can
suppress writing the log lines to the server logs, job logs, or both types of logs. You can also override the
application log line.

Implement the com.ibm.wsspi.batch.joblog.JobLogFilter interface by implementing the getName() method
and the processJobLogLine() method. The getName() method is required for all SPI implementations. The
processJobLogLine() method returns a JobLogAction object to suppress where the job log line is written.
You can override the application log line with the JobLogFilterListener object. Call the JobLogFilterListener
object with the updated or replaced log line and job ID that would be written to log files based on the
provided JobLogAction object.

Table 7. SPI name. The following table lists the name of the SPI.
Name

spi.job.log.filter

Chapter 2. Administering the batch environment 13

Job log filter SPI example
package com.ibm.websphere.samples;
import com.ibm.websphere.grid.spi.SPI;
import com.ibm.wsspi.batch.joblog.JobLogFilter;
import com.ibm.wsspi.batch.joblog.JobLogFilterListener;
public class SampleJobLogFilter extends SPI implements JobLogFilter {
/**
* Input:
* jobid
* logline - line about to be logged
* JobLogFilterListener - call back to override logline
* Output:
* JobLogAction:
* SUPPRESS - do not log this line
* JOBLOGONLY - log only to job log (not server log)
* SERVERLOGONLY - log only to server log (not job log)
* JOBLOGSERVERLOG - log to both job log and server log
*(this is the default action)
*/
public JobLogAction processJobLogLine(
String jobid,
String logline,
JobLogFilterListener filterListener) {
filterListener.setLogLine(jobid, "MyCompanyName:" + logline);
return JobLogAction.JOBLOGONLY;
}
/**
* Required for all Batch SPI implementations
**/
public String getName() {
return SimpleCIJobLogFilter.class.getName();
}
}

The processJobLogLine() method returns a JobLogAction object to suppress the writing of application log
lines to the system logs. The call to the JobLogFilterListener object causes the job log lines to be
appended with a standard text.

Ensure that the servers load this job log filter SPI by including a reference to this implementation class in
the app_server_root/properties/xd.spi.properties file:
spi.job.log.filter=com.ibm.websphere.ci.samples.SimpleCIJobLogFilter

Ensure that the implementation class is available to the server through a server level shared library.

Job operation authorization SPI

The job operation authorization SPI provides administrators with further control over user actions against
jobs. You can exercise fine-grained access control over each user action by permitting or denying the
operation.

Invoke the SPI only after you apply the configured job security policy. The SPI is invoked only if the user is
authorized to perform the operation. The SPI can override the system when the system permits the
operation. However, the SPI cannot override the system when the system denies the operation. Therefore,
the JobOperationAuthorizer serves only to limit the range of operations a user is authorized to perform.
The SPI is not able to increase the range operations a user is authorized to perform.

Table 8. SPI name. The following table lists the name of the SPI.
Name

job.operation.authorizer

14 Administering batch environments

Audit string validation SPI

You can use the audit string validation SPI to provide an installation-specific audit string validation rule.
You can use the validation rule to enforce local auditing requirements and provide custom error messages
to guide the user to a successful save.

When the audit string validator is configured and installed, it is driven each time a repository job is saved
through any of the available interfaces, which include the job management console, the command-line
interface, or an API.

The audit string validator is driven and passed the name of the repository job, the current user, the xJCL,
the value of the audit string, and an AuditStringValidatorCallBack method. The audit string validator can
then decide whether the audit string is valid or not. If the audit string is valid, the audit string validator
returns true. If the audit string is not valid, the audit string validator returns false. If the audit string
validator returns false, you can supply text for an error message through the AuditStringValidatorCallBack
method.

Table 9. SPI name. The following table lists the name of the SPI.
Name

audit.string.validator

Creating the job scheduler and grid endpoint database
You can create a database for the job scheduler and grid endpoint if you do not use the default Apache
Derby database. The job scheduler stores job information in a relational database while the grid endpoint
uses the database to track the progress of a batch job.

Before you begin

When you install the product, one Derby Java Database Connectivity (JDBC) provider is created. The
Derby JDBC provider contains two data sources. One is the default Derby data source, JNDI name
jdbc/lrsched, that points to the default Derby job scheduler database. The other, JNDI name jdbc/pgc, is
the batch execution environment data source. If you decide to use the default data source you do not
need to create the job scheduler database. The default Derby database for the job scheduler is created
when the job scheduler host (deployment target) is selected through the administrative console. The
default Derby database for the endpoint is created when a batch application is first installed on a node.
Embedded Derby databases cannot be shared by multiple processes and are unsuitable for environments
where the job scheduler must move from one node to another. For example, the job scheduler must move
from one node to another in high availability scenarios.

About this task

The product supports Derby, DB2, and Oracle databases. You can use the following steps to configure the
job scheduler and grid endpoint database if you decide to use a database other than the Derby database.
When you create the database manually, the job scheduler and grid endpoint can use the same database.

Procedure
1. Select the correct file based on the type of database that you are going to use.

The product provides DDL files except for DB2 on the z/OS® operating system. Use the DDL files to
define the job scheduler database in the app_install_root/util/Batch directory. The DDL files for
creating the job scheduler database are named CreateLRSCHEDTablesXxx.ddl where Xxx indicates the
type of database manager that the scripts are intended for. These same DDL files are used for the grid
endpoint.

The product provides a SPUFI script for DB2 in the <WAS_install_root>/util/Batch
directory. The SPUFI script is SPFLRS.

Chapter 2. Administering the batch environment 15

2. See the documentation of your database vendor for details on customizing scripts and using the
database tools to run it.

What to do next

After creating the database, complete the following steps.

1. Define the XA JDBC provider for the database through the administrative console.

Consult the JDBC provider documentation for more information about defining a new JDBC provider.

2. Create the data source using the JDBC provider through the administrative console.

Define the data source at the cell level. Doing so guarantees that the database is available for each
application server that hosts the job scheduler.

3. Verify that the database has been created by testing the connection on the data source that you
created in the previous step.

4. Configure the job scheduler by selecting the JNDI name of the newly created data source in the job
scheduler panel.

5. Specify the JNDI name of the data source that you created in a previous step as the value of the
GRID_ENDPOINT_DATASOURCE variable.

Verifying the job scheduler installation
This topic describes how to verify that the job scheduler is installed correctly. The job scheduler is a
system application and is not in the list of installed applications on the Enterprise applications page of an
administrative console.

Before you begin

Privileges for the job scheduler differ, depending on the various roles. Roles include monitor, operator,
configurator, and administrator. If you are a user with either a monitor or an operator role, you can only
view the job scheduler information. If you have the role of configurator or administrator, you have all the
configuration privileges for the job scheduler.

Procedure
1. Verify that the job scheduler is installed correctly by restarting the application server or cluster

members where the job scheduler is configured.

If the application server or cluster members on which the job scheduler is installed have the started
icon in the status field, the job scheduler is usually running. However, the job scheduler might have a
problem and not start. You can verify whether the job scheduler started by checking the log files.

2. After the server is restarted, access the job management console through a web browser by typing
http://job_scheduler_server_host:grid_host/jmc.

The grid_host port is the WC_defaulthost port under the server that you chose for the job scheduler. To
find the grid_host port, go to your server in the administrative console, expand ports, and look for
WC_defaulthost.

If you cannot access the job management console, check the appropriate log. If you specified a server
in the web address, check the server log. If you specified a cluster member in the web address, check
the cluster member log.

Securing the job scheduler
You can secure the job scheduler using roles, groups, or a combination of groups and roles.

Procedure
v Secure the job scheduler using roles.

16 Administering batch environments

A user can take a job-related action only if the user's role permits the job action. A user can be granted
the lrsubmitter role, the lradmin role, or the lrmonitor role.

v Secure the job scheduler using groups on distributed operating systems.

You can secure the job scheduler using groups. A user can then act on a job only if the user and job
are members of the same group.

v Secure the job scheduler using roles and groups on distributed operating systems.

You can secure the job scheduler using roles and groups. A user can then act on a job if the user and
the job are members of the same group and the user's role permits the action.

v Secure the job scheduler using groups on z/OS operating systems.

You can secure the job scheduler using groups. A user can then act on a job only if the user and job
are members of the same group.

v Secure the job scheduler using roles and groups on z/OS operating systems.

You can secure the job scheduler using roles and groups. A user can then act on a job if the user and
the job are members of the same group and the user's role permits the action.

Results

You enabled security using roles, groups, or a combination of groups and roles.

What to do next

Manage jobs using the security option you selected.

Job scheduler security overview
The actions that a user can take against a job depend on the security model that is being enforced. User
actions against a job can be role based, group based, or a combination of the two.

Role based security

When role-based security is enabled, you must be granted the lrsubmitter role, the lradmin role, or the
lrmonitor role to act on a job. Users assigned the lradmin role have authority to perform all job scheduler
application actions on all jobs regardless of job ownership. Users assigned the lrsubmitter role can view
and act only on jobs that the submitter owns. Users assigned the lrmonitor role only can view jobs and job
logs of all users.

Group security

In the group security model, group-affiliation alone is the basis for all job-related security decisions. The
administrator does not assign job roles to specific users. A user can complete an action for a job only if the
user and job are members of the same group. For example, if two users are members of the same group
and each submits a job that is assigned to that same group, then both users can view and take actions
against either of the two jobs.

Because WebSphere Application Server does role-based checking on job scheduler operations, you must
make a single assignment of the lradmin role to All Authenticated in Application's Realm. Users in the
group have the same privileges as the lradmin role and can perform the same operations against a job in
the group that the lradmin role can perform.

User and group membership

The group security function requires either an implementation of the group membership SPI or a user
repository that supports group membership, such as Lightweight Directory Access Protocol (LDAP), and is
configured as a federated repository.

Chapter 2. Administering the batch environment 17

You can use the group membership filter SPI to augment the federated repository.

If you use a repository, you must configure the repository as a federated repository even if the WebSphere
Application Server configuration is using only a single repository. The federated repositories function
supports multiple repository technologies, including Local OS, LDAP, and Active Directory.

Additionally, the federated repositories function supports System Authorization Facility (SAF).

When you use a repository, you must define all WebSphere Application Server users and groups through
the management facilities of the configured repository technology.

Group and role security

In the group and role security model, both group-affiliation and role-based security governs job-related
security decisions. This means a user can take a job-related action only if the user and job are members
of the same group, and the user's role permits the job action.

For example, if two users are members of the same group and each submits a job that is assigned to that
same group, then both users can view and take actions against either of the two jobs, subject to their role
assignments. If the first user is in the lradmin role, that user can view and take job actions against both
jobs. If the second user is in the lrsubmitter role, that user can view and take job actions only against the
job that the second user submitted. If the second user is in the lrmonitor role instead of the lrsubmitter
role, that user is disallowed from submitting a job, but is permitted to view jobs submitted by the first user.

Securing the job scheduler using roles
You can secure the job scheduler by mapping users and groups to specific security roles.

Before you begin

Users who are assigned the lradmin role have the authority to perform all job scheduler application actions
on all jobs regardless of job ownership, while users who are assigned with the lrsubmitter role can only act
on jobs that are owned by the submitters themselves.

Users in the lrmonitor role can view and download all job logs, but cannot submit or operate on jobs.

Note: To start lrcmd.sh | .bat on an HTTPS port, you must configure SSL on the scheduler server.
Following the steps in part three of the series, location in the following DeveloperWorks topic, Build
Web services with transport-level security using Rational Application Developer V7, Part 3:
Configure HTTPS. In order to access topics, you must be a registered user for DeveloperWorks. If
you have not registered as a user for DeveloperWorks, follow the instructions on the IBM®

registration page.

If you use System Authorization Facility (SAF) EJBROLE profiles on the z/OS operating
system, define EJBROLE profiles for lradmin and lrsubmitter roles. Permit these roles to the appropriate
SAF user IDs. Do not control permissions through the administration console as described in the following
procedure.

About this task

This sample task assumes that the job scheduler is configured. You can use the administrative console to
specific security roles.

Procedure
1. Click Security > Global security.

2. Select administrative security and application security.

18 Administering batch environments

http://www.ibm.com/developerworks/webservices/tutorials/ws-radsecurity1/index.html
http://www.ibm.com/developerworks/webservices/tutorials/ws-radsecurity1/index.html
http://www.ibm.com/developerworks/webservices/tutorials/ws-radsecurity1/index.html
https://www.ibm.com/account/profile/us?page=reg&lang=en_US&appname=developerworks&d=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fdwwi%2FDWAuthRouter%3Fm%3Dreg%26lang%3Den_US%26d%3Dhttp%253A%252F%252Fwww-130.ibm.com%252Fdeveloperworks%252F
https://www.ibm.com/account/profile/us?page=reg&lang=en_US&appname=developerworks&d=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fdwwi%2FDWAuthRouter%3Fm%3Dreg%26lang%3Den_US%26d%3Dhttp%253A%252F%252Fwww-130.ibm.com%252Fdeveloperworks%252F

3. Configure the user account repository by specifying one of the available realm definitions.

4. After you have configured WebSphere Application Server Security, click Apply to save your
configuration.

5. Expand System administration > Job scheduler > Security role to user/group mapping.

6. Select the roles to be configured.

7. Click Look up users if one or more users are to be assigned the target role, or click Look up
groups if role assignment is at the group level.

8. Select the user or group to be assigned to the target role.

9. Click OK and save the configuration.

10. Restart the cell.

What to do next

With security enabled, provide a valid user ID and password for job actions that are performed through the
command-line interface. Submit a job action through the command-line interface with the user name and
password information. See the following example:
<app_server_root>/bin/lrcmd.[bat|sh]
-cmd=<name_of_command> <command_arguments> [-host=<host> -port=<port>]
-userid=<user_ID> -password=<password>

where:

v <host> is the job scheduler server host name. If not specified, the default is localhost.

v <port> is the scheduler server HTTP (HTTPS) port. If not specified, the default is 80.

See the following example:
D:\IBM\WebSphere\AppServer\bin\lrcmd -cmd=submit
-xJCL=D:\IBM\WebSphere\AppServer\samples\Batch\postingSampleXJCL.xml
-port=9445 -host=wasxd01.ibm.com -userid=mylradmin -password=w2g0u1tf

Job scheduler administrative roles and privileges
Job scheduler roles and privileges vary depending on your administrative role and the component.

Administrative roles and privileges

For definitions of administrative roles in WebSphere Application Server and how to assign them, see
Authorizing access to administrative roles.

Table 10. Administrative roles and privileges. The table lists each component for the graphical user interface (GUI)
and what privileges the component has for the monitor, operator, configurator, and administrator privileges.

GUI Monitor privileges Operator privileges Configurator privileges
Administrator
privileges

Job scheduler View the information. View the information. Has all privileges. Has all privileges.

Roles and privileges for securing the job scheduler
This topic describes the lradmin and lrsubmitter roles and privileges for securing the job scheduler.

Authority for different roles

You can secure the job scheduler application by enabling global security and application security.
Application security secures the job management console. The job scheduler application uses a
combination of both declarative and instance-based security approaches to secure jobs and commands,
where only users who are assigned with the lradmin or lrsubmitter role have the authority to perform grid
operations in a security-enabled environment.

Chapter 2. Administering the batch environment 19

As illustrated in the following table, users who are assigned with the lradmin role have the authority to
perform all job scheduler application actions on all jobs regardless of job ownership, while users who are
assigned with the lrsubmitter role can only act on jobs that are owned by the submitters themselves. The
X character represents authority in the following table.

Table 11. Authoritative roles. The table lists client commands and indicates with an X character whether the lradmin
role or the lrsubmitter role have authority for those commands.

Client commands lradmin role lrsubmitter role

submit -xJCL=<file> X X

submit -job=<job name> X X

submit -job=<job name> -add or
replace

X N/A This is an admin command.

cancel -jobid=<jobid> X X (only jobs owned)

purge -jobid=<jobid> X X (only jobs owned)

output -jobid=<jobid> X X (only jobs owned)

restart -jobid=<jobid> X X (only jobs owned)

remove -job=<jobname> X N/A This is an admin command.

suspend -jobid=<jobid> X X (only jobs owned)

resume -jobid=<jobid> X X (only jobs owned)

status (showAll) X N/A This is an admin command.

status -jobid=<jobid> X X (only jobs owned)

getBatchJobRC -jobid=<jobid> X X (only jobs owned)

help X X

If you use System Authorization Facility (SAF) EJBROLE profiles on the z/OS operating system
to administer role-based security, define EJBROLE profiles for lradmin and lrsubmitter roles. Permit these
roles to the appropriate SAF user IDs for batch job administrators and submitters.

Securing the job scheduler using groups on distributed operating
systems

You can secure the job scheduler using groups. A user can then act on a job only if the user and job are
members of the same group.

About this task

Create a group and a user that belongs to the group. Enable group security for the job scheduler by
mapping authenticated users to the lradmin administrative security role. Assign a group to a job.

Procedure
1. Create a group and a user that belongs to that group.

Read the section on assigning users and groups to roles in the WebSphere Application Server
documentation and follow the directions. For this task, an example user is user1 and an example
group is BATCHGROUP.

2. Enable group security for the job scheduler.

a. Click System administration > Job scheduler > Custom properties.

b. Click New and add JOB_SECURITY_POLICY for Name and GROUP for Value.

20 Administering batch environments

c. Click Apply to save your configuration.

d. Click System administration > Job scheduler > Security role to user/group mapping.

e. Select lradmin for the role, Map Special Subjects, and All authenticated in application realm.

f. Save the updates.

g. Restart the server.

h. Verify that group security is enabled.

If you see the following message in the SystemOut.log file, group security is enabled:
CWLRB5837I: The WebSphere Application Server Batch Feature is running under GROUP security policy.

3. Assign a group to a job.

A job belongs to a user group and an administrative group. If the JOB_SECURITY_ADMIN_GROUP
variable is not defined, the job scheduler automatically assigns the administrative group to each job.

v Configure the value of the administrative group name through the
JOB_SECURITY_ADMIN_GROUP job scheduler custom property:
JOB_SECURITY_ADMIN_GROUP=JSYSADMN

The default administrative group name is JSYSADMN.

v Assign the group using one of the following methods.

– Define the group on the group attribute in the xJCL, for example:
<job-name=”{jobname}” group=”{group-name}” ... />

– Set the job scheduler default group name using the JOB_SECURITY_DEFAULT_GROUP job
scheduler custom property:
JOB_SECURITY_DEFAULT_GROUP=JSYSDFLT

The default group name is JSYSDFLT.

The group attribute in the xJCL takes precedence over the job scheduler custom property. If you do
not specify a group name in your xJCL, the job scheduler assigns the default group name.

Results

You created a group and assigned a user to the group so that a user can manage jobs using group
security.

What to do next

Manage jobs using group security.

1. Submit the job.

2. Have the user1 user that you created in a previous step act on the job, by viewing the job log, for
example.

Securing the job scheduler using roles and groups on distributed
operating systems

You can secure the job scheduler using roles and groups. A user can then act on a job if the user and the
job are members of the same group and the user's role permits the action.

About this task

Create a group and a user that belongs to the group. Enable group security for the job scheduler by
mapping authenticated users to the lradmin administrative security role.

Chapter 2. Administering the batch environment 21

Procedure
1. Create a group and a user that belongs to that group.

Read the section on assigning users and groups to roles in the WebSphere Application Server
documentation and follow the directions. For this task, an example user is user2 and an example
group is BATCH2GROUP.

2. Enable group and role security for the job scheduler.

a. Click System administration > Job scheduler > Custom properties.

b. Click New and add JOB_SECURITY_POLICY for Name and GROUPROLE for Value.

c. Click Apply to save your configuration.

d. Click System administration > Job scheduler > Security role to user/group mapping.

e. Select lrsubmitter for the role, Map users... to map the user2 user to the lrsubmitter role.

The lrsubmitter role was used for this example. You can select a different role.

f. Save the updates.

g. Restart the server.

h. Verify that group and role security is enabled.

If you see the following message in the SystemOut.log file, group security is enabled:
CWLRB5837I: The WebSphere Application Server Batch Feature is running under GROUPROLE security policy.

3. Assign a group to a job.

A job belongs to a user group and an administrative group. If the JOB_SECURITY_ADMIN_GROUP
variable is not defined, the job scheduler automatically assigns the administrative group to each job.

v Configure the value of the administrative group name through the
JOB_SECURITY_ADMIN_GROUP job scheduler custom property:
JOB_SECURITY_ADMIN_GROUP=JSYSADMN

The default administrative group name is JSYSADMN.

v Assign the group using one of the following methods.

– Define the group on the group attribute in the xJCL, for example:
<job-name=”{jobname}” group=”{group-name}” ... />

– Set the job scheduler default group name using the JOB_SECURITY_DEFAULT_GROUP job
scheduler custom property:
JOB_SECURITY_DEFAULT_GROUP=JSYSDFLT

The default group name is JSYSDFLT.

The group attribute in the xJCL takes precedence over the job scheduler custom property. If you do
not specify a group name in your xJCL, the job scheduler assigns the default group name.

Results

You created a group and a user that belongs to the group. You mapped the authenticated user to the
lrsubmitter security role.

What to do next

Manage jobs using group and role security.

1. Submit the job.

2. Have the user2 user that you created in a previous step act on the job with an action that a user in the
lrsubmitter role can complete.

Securing the job scheduler using groups on the z/OS operating
system

22 Administering batch environments

You can secure the job scheduler using groups. A user can then act on a job only if the user and job are
members of the same group.

Before you begin

Start the deployment manager and all node agents.

About this task

Enable WebSphere Application Server global security. Configure the user registry bridge for federated
repositories. Install and configure a VMM SAF mapping module and add the module to three login
modules. Use RACF® to create a group and add a user to the group. Then assign a group to a job.

Procedure
1. Enable global security.

Read the section on enabling security in the WebSphere Application Server documentation and follow
the directions. On the Global Security pages, ensure that you select the following options.

v Enable administrative security and Enable application security

v Federated repositories for Available realm definitions

If this option is not selected, select it and click Set as current.

v Enable SAF Delegation for Authorization provider

2. Configure the user registry bridge for federated repositories.

Read the section on configuring the user registry bridge for federated repositories using wsadmin
scripting in the WebSphere Application Server documentation and follow the directions.

3. Install and configure the SampleVMMSAFMappingModule module.

Read the section on installing and configuring a custom System Authorization Facility mapping module
for WebSphere Application Server and follow the directions. You add the module to the
WEB_INBOUND, RMI_INBOUND, and DEFAULT login modules.

4. Synchronize your changes and restart the cell.

5. Create a group and add a user to the group.

Read the information about creating a group and adding a user to the group in the RACF user's guide,
Security Server RACF General User's Guide.

6. Assign a group to a job.

A job belongs to a user group and an administrative group. If the JOB_SECURITY_ADMIN_GROUP
variable is not defined, the job scheduler automatically assigns the administrative group to each job.

v Configure the value of the administrative group name through the
JOB_SECURITY_ADMIN_GROUP job scheduler custom property:
JOB_SECURITY_ADMIN_GROUP=JSYSADMN

The default administrative group name is JSYSADMN.

v Assign the group using one of the following methods.

– Define the group on the group attribute in the xJCL, for example:
<job-name=”{jobname}” group=”{group-name}” ... />

– Set the job scheduler default group name using the JOB_SECURITY_DEFAULT_GROUP job
scheduler custom property:
JOB_SECURITY_DEFAULT_GROUP=JSYSDFLT

The default group name is JSYSDFLT.

The group attribute in the xJCL takes precedence over the job scheduler custom property. If you do
not specify a group name in your xJCL, the job scheduler assigns the default group name.

Chapter 2. Administering the batch environment 23

Results

You created a group and assigned a user to the group so that a user can manage jobs using group
security.

What to do next

Manage jobs using group security.

1. Submit the job.

2. Have the user1 user that you created in a previous step act on the job, by viewing the job log, for
example.

Securing the job scheduler using roles and groups on the z/OS
operating system

You can secure the job scheduler using roles and groups. A user can then act on a job if the user and the
job are members of the same group and the user role permits the action.

Before you begin

Start the deployment manager and all node agents.

About this task

Enable WebSphere Application Server global security. Configure the user registry bridge for federated
repositories. Install and configure a VMM SAF mapping module and add the module to three login
modules. Then use RACF to create a group and add a user to the group. Assign a group to a job. Define
EJBROLE profiles for the lradmin and lrsubmitter roles.

Procedure
1. Enable global security.

Read the section on enabling security in the WebSphere Application Server documentation and follow
the directions. On the Global Security panels, ensure that you select the following options.

v Enable administrative security and Enable application security

v Federated repositories for Available realm definitions

v Enable SAF Delegation for Authorization provider

2. Configure the user registry bridge for federated repositories.

Read the section on configuring the user registry bridge for federated repositories using wsadmin
scripting in the WebSphere Application Server documentation and follow the directions.

3. Install and configure the SampleVMMSAFMappingModule module.

Read the section on installing and configuring a custom System Authorization Facility mapping module
for WebSphere Application Server and follow the directions. You add the module to the
WEB_INBOUND, RMI_INBOUND, and DEFAULT login modules.

4. Synchronize your changes and restart the cell.

5. Create a group and add a user to the group.

Read the information about creating a group and adding a user to the group in the RACF user's guide,
Security Server RACF General User's Guide.

6. Assign a group to a job.

A job belongs to a user group and an administrative group. If the JOB_SECURITY_ADMIN_GROUP
variable is not defined, the job scheduler automatically assigns the administrative group to each job.

24 Administering batch environments

v Configure the value of the administrative group name through the
JOB_SECURITY_ADMIN_GROUP job scheduler custom property:
JOB_SECURITY_ADMIN_GROUP=JSYSADMN

The default administrative group name is JSYSADMN.

v Assign the group using one of the following methods.

– Define the group on the group attribute in the xJCL, for example:
<job-name=”{jobname}” group=”{group-name}” ... />

– Set the job scheduler default group name using the JOB_SECURITY_DEFAULT_GROUP job
scheduler custom property:
JOB_SECURITY_DEFAULT_GROUP=JSYSDFLT

The default group name is JSYSDFLT.

The group attribute in the xJCL takes precedence over the job scheduler custom property. If you do
not specify a group name in your xJCL, the job scheduler assigns the default group name.

7. Define EJBROLE profiles for the lradmin and lrsubmitter roles.

If you use System Authorization Facility (SAF) EJBROLE profiles on the z/OS operating system to
administer role-based security, define EJBROLE profiles for the lradmin and lrsubmitter roles. Permit
these roles to the appropriate SAF user IDs for batch job administrators and submitters.

Results

You created a group and assigned a user to the group. You also permitted the user ID to the appropriate
role so that the user can manage jobs if the role permits the actions.

What to do next

Manage jobs using group and role security.

1. Submit the job.

2. Have the user that you created in a previous step act on the job, by viewing the job log, for example.

Configuring WebSphere grid endpoints
This topic explains how to set up a WebSphere grid endpoint.

Procedure
1. Install a batch application on a server or cluster using the administrative console, wsadmin commands,

or another supported method for deploying applications.

2. If the application is the first batch application installed on the server or cluster, restart the server or
cluster.

Results

The WebSphere grid endpoints are automatically set up. By installing the application on the deployment
target, the common batch container is automatically deployed on the server or cluster selected using the
default Apache Derby data source jdbc/pgc. The default file-based Derby data source can be used only
when using the batch function on a stand-alone application server. If you have a WebSphere Application
Server Network Deployment environment, you must use a network database.

If you use the default Derby data source, no further action is required. If you use a different data source,
complete the following steps to make the data source available to the WebSphere grid endpoints.

1. On the administrative console, click Environment > WebSphere variables.

Chapter 2. Administering the batch environment 25

2. Select the Cell scope from the list.

3. Edit the GRID_ENDPOINT_DATASOURCE variable to point to the JNDI lookup name of the job
scheduler data source.

4. Save your configuration.

5. Restart all endpoints.

Endpoint WebSphere variables
Use WebSphere variables to modify the endpoint configuration. You can do such things as enable jobs to
run under user credentials and configure the schema name of the grid endpoint database.

RUN_JOBS_UNDER_USER_CREDENTIAL
Define this WebSphere variable so that jobs can run under user credentials.

Table 12. RUN_JOBS_UNDER_USER_CREDENTIAL. The table includes the scope, valid values, and default for
the WebSphere variable.

Scope Valid values Default

Cell, endpoint node, or endpoint
server level

v true

Jobs are run under user
credentials

v false

Jobs are run under server
credentials

false

GRID_ENDPOINT_HEART_BEAT_INTERVAL
Define this WebSphere variable to configure the amount of time between heartbeat transmissions from the
grid endpoint to the job scheduler.

Table 13. GRID_ENDPOINT_HEART_BEAT_INTERVAL. The table includes the scope, valid values, and default for
the WebSphere variable.

Scope Valid values Default

Cell, endpoint node, or endpoint
server level

Time in milliseconds 30 seconds

GRID_ENDPOINT_DATABASE_SCHEMA
Define this WebSphere variable to override the default database schema name for a grid endpoint. Set
this variable if the grid endpoint database is different than the job scheduler database and uses a schema
name other than the default of LRSSCHEMA.

Table 14. GRID_ENDPOINT_DATABASE_SCHEMA. The table includes the scope, valid values, and default for the
WebSphere variable.

Scope Valid values Default

Cell, endpoint node, or endpoint
server level

Grid endpoint database name LRSSCHEMA

GRID_ENDPOINT_DATASOURCE
Define this WebSphere variable to configure the grid endpoint data source Java Naming and Directory
Interface (JNDI) name.

26 Administering batch environments

Table 15. GRID_ENDPOINT_DATASOURCE. The table includes the scope, valid values, and default for the
WebSphere variable.

Scope Valid values Default

Cell, endpoint node, or endpoint
server level

Grid endpoint data source JNDI name jdbc/pgc

GRID_MEMORY_OVERLOAD_PROTECTION
Define this WebSphere variable to enable memory-overload protection for the endpoint servers.
Memory-overload protection delays the running of a job in the endpoint server if insufficient Java heap
memory is available to run the job. The job is delayed until other currently running jobs complete and free
up enough memory.

The endpoint server determines the amount of available memory by querying the Java virtual machine
(JVM) and assessing the memory requirements of all active jobs currently running within the server.

You can specify the memory requirement for a job by defining the memory attribute of the job element in
the xJCL. If you do not specify the memory attribute, then the value of the
GRID_MEMORY_OVERLOAD_PROTECTION WebSphere variable is used as the default. If you define
the GRID_MEMORY_OVERLOAD_PROTECTION WebSphere variable as ?, then the endpoint server
estimates the average job memory requirement by assessing the current active job count and the amount
of memory currently in use.

If you do not define the GRID_MEMORY_OVERLOAD_PROTECTION WebSphere variable, then
memory-overload protection is disabled.

Table 16. GRID_MEMORY_OVERLOAD_PROTECTION. The table includes the scope, valid values, and default for
the WebSphere variable.

Scope Valid values Default

Cell, endpoint node, or endpoint
server level

v An integer value with a unit of KB
(kilobytes), MB (megabytes), or GB
(gigabytes). For example, specify
100MB or 25KB.

v A value of ?. The endpoint server
estimates the memory requirement
for any job that does not define the
memory attribute in the xJCL. The
estimate is computed by assessing
the current active job count and the
amount of memory currently in use.

None

Running batch jobs under user credentials
You can allow batch jobs to run under credentials of the user when WebSphere security is enabled.

About this task

The RUN_JOBS_UNDER_USER_CREDENTIAL variable allows users to enable or disable batch jobs to
run under credentials of the user. When the job is dispatched to the endpoint, the batch container switches
the credentials of the server to the credentials of the user. The credentials of the server are in the job step
thread.

RUN_JOBS_UNDER_USER_CREDENTIAL can be created at any scope level and accepts values true or
false. The default is false, which means that batch jobs run under server credentials.

Chapter 2. Administering the batch environment 27

When Java 2 Security is enabled, your batch applications must grant the following two permissions in the
was.policy file of the application:

v permission com.ibm.websphere.security.WebSphereRuntimePermission "SecOwnCredentials"

v permission com.ibm.websphere.security.WebSphereRuntimePermission
"ContextManager.getServerCredential"

The following steps describe how to create the custom property to enable or disable batch jobs to run
under the credentials of a user after logging on to the administrative console:

Procedure
1. Click Environment > WebSphere variables.

2. Select a configuration scope, then click New. The general properties page opens.

3. For Name, type RUN_JOBS_UNDER_USER_CREDENTIAL.

4. For Value, type True or False to enable or disable jobs to run under user credential.

5. Click OK, then click Save.

To enable jobs to run under user credentials on z/OS, also complete step 6.

6. Save the configuration and restart the server. To run jobs under credentials of
the user on the z/OS platform, follow these steps:

a. Go to the security administration pane and click z/OS security options.

b. Enable application server and z/OS thread identity synchronization. This option specifies that
application servers can process the syncToOSThread option for application components that
specify it. Local JCA connectors might honor the MVS™ identity for authentication and authorization
when an application requests a connection.

c. Enable the connection manager RunAs thread identity. This option sets the MVS identity
associated with the Java Platform, Enterprise Edition (Java EE) identity on the execution thread.

d. Click OK.

e. Save the configuration and restart the server.

What to do next

Stop and start the server where the batch execution environment is installed.

Batch jobs and their environment
The product provides ways of managing the scheduling and execution control of background activities in a
grid computing environment.

The various ways that you can manage your batch environment include using the job management
console, analyzing job logs, specifying job classes, and by using classification rules.

Through the job management console, you can:

v Submit jobs

v Monitor job execution

v Perform operational actions against jobs

v View job logs

v Manage the job repository

v Manage job schedules

28 Administering batch environments

Job logs

A job log is a file that contains a detailed record of the execution details of a job. It is composed of both
system and application messages. Job logs are stored on the endpoints where the job runs and on the
application server that hosts the job scheduler.

Job logs are viewable through the job management console and from the command line.

Job classes

A job class establishes a policy for a set of batch jobs to use resources. You can control the execution
time, number of concurrent jobs, job log, and job output queue storage through this policy. Each job is
assigned to a job class. A default job class is provided for jobs that do not specify a class.

Job classification

Classification rules are saved in the gridclassrules.xml configuration file under the configuration directory
of WebSphere Application Server. In batch, one gridclassrules.xml file exists per cell. Rules are ordered
based on the priority element.

Audit string

You can successfully save jobs to the repository using an audit string. The audit string is stored in a
database, but is not displayed in the job management console. You can retrieve the audit string through
standard database reporting facilities. In order to provide history, the audit string is saved each time you
save a job to the repository.

The database contains 1 to N versions of the audit string. N is the oldest save of the audit string and 1 is
the current save of the audit string.

Job management console
The job management console is a stand-alone web interface that you can use to perform job operations
such as submit, monitor, schedule, and manage.

The job management console is for managing jobs. This console provides controlled access when security
is enabled.

Only authorized users who are granted the lrsubmitter role, the lradmin role, or both roles through the
administrative console can be allowed access to the job management console.

When role-based security is enabled, you must be granted the lrsubmitter role, the lradmin role, or the
lrmonitor role through the administrative console to access the job management console. When
group-based security is enabled, you must be in the user group of the job or the administrative group to
access the job management console.

When the security enabled is based on the group and the role, you must be in the appropriate group and
the appropriate role to access the job management console. You must be in the user group of the job or
the administrative group. You must also be in the lrsubmitter role, the lradmin role, or the lrmonitor role.

Through the job management console you can:

v Submit jobs

v Monitor job execution

v Perform operational actions against jobs

v View job logs

Chapter 2. Administering the batch environment 29

v Manage the job repository

v Manage job schedules

Some of the specific actions that you can execute through the job management console include the
following:

v Submitting job schedules with a preferred processing time

v Configuring job schedules so that they can, for example, occur or recur on a specific time of day or
week

v Choosing to delay the submission of a job by specifying the start date and time of when you want to run
the job

To access the job management console:

1. Configure the job scheduler.

2. Ensure that the job scheduler is running.

If the application server or cluster members on which the job scheduler is installed have the started
icon in the status field, the job scheduler is usually running. However, the job scheduler might have a
problem and not start. You can verify whether the job scheduler started by checking the log files.

3. In a browser, type the web address: http://<job scheduler server host>:<port>/jmc.

4. If an on-demand router (ODR) is defined in the cell, type the web address: http://<odr host>:80/jmc.

5. If you cannot access the job management console, check the appropriate log. If you specified a server
in the web address, check the server log. If you specified a cluster member in the web address, check
the cluster member log.

To access the field help for the job management console, click ? in the upper right corner of every job
management panel.

Command-line interface for batch jobs
The command-line interface interacts with the job scheduler to submit and manipulate a batch job. It is
located in the app_server_root/bin directory as the lrcmd.sh or lrcmd.bat script and can be started from
any location in the WebSphere cell.

Use the lrcmd script to perform the following commands:

Table 17. lrcmd commands. The table includes arguments, a description, and additional information for the lrcmd
command.
Command Arguments Description Additional Information

Display usage information
for lrcmd.

None The command displays usage
information for the lrcmd
command.

Example: lrcmd

30 Administering batch environments

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Submit a job to the job
scheduler.

-cmd=submit
-xJCL=<xjcl_filename>
[-host=<host>]
[-port=<port>],
or
-cmd=submit -job=<job_name>
[-startDate=<startDate>
- startTime=<startTime>]
[-host=<host>]
[-port=<port>]

When an XML Job Control
Language (xJCL) file is
specified,
-xJCL=<xjcl_filename> specifies
the path of the xJCL to be
submitted from the file system
and optionally saved. Optional
arguments:

v Use -job=<job_name> as the
name of a saved XJCL in
xJCL repository to specify the
name to use when saving the
xJCL to the repository of job
xJCL. See -cmd=save for
additional information.

v Use -add to add the xJCL to
the repository of job xJCL
using the specified job name.

v Use -replace to replace or
add the xJCL to the repository
of job xJCL using the
specified job name.

v Use -startDate=<startDate>
as the date in which the job is
submitted to run where the
required startDate format is
yyyy-MM-dd. Requires the
-startTime parameter to be
defined.

v Use
startTime=<startTime>as the
time in which the job is
submitted to run where the
required startTime format is
HH:mm:ss. This parameter
requires you to define the
-startDate parameter as well.

v Use -host=<host> as the
on-demand router (ODR) host
name or job scheduler server
host name. If not specified,
the default is localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Both variations of the command
return a job ID for the submitted
job.

Examples:

v lrcmd -cmd=submit -xJCL=myxjcl.xml
-host=myhost -port=81

v lrcmd -cmd=submit -xJCL=myxjcl.xml

v lrcmd -cmd=submit -job=myjob

v lrcmd -cmd=submit -xJCL=myxjcl.xml -add
-job=myjob

v lrcmd -cmd=submit -xJCL=C:\\myXJCL -add
-job=MyJob -port=80-startDate=2005-11-25-
startTime=23:59:00

v lrcmd -cmd=submit -job=MyJob
-startDate=2005-11-25 -startTime=23:59:00

Chapter 2. Administering the batch environment 31

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Cancel a previously
submitted job.

-cmd=cancel
-jobid=<jobid>
[-<host>] [-port=<port>]

This command cancels the start
of a previously submitted job, or
cancels the execution of a
running job.

Use -jobid=<jobid> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

Optional arguments:

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Example:

lrcmd -cmd=cancel -jobid=myjob:2
-host=myLRShost -port=9083

Restart a job. -cmd=restart
-jobid=<jobid>
[-host=<host>] [-port=<port>]

This command restarts the start
of a job. Only jobs in restartable
state can be restarted.

Use -jobid=<jobid> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

Optional arguments:

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Only a batch job associated with batch
applications can be restarted. When a batch job is
canceled using the -cmd=cancel command, its
state is changed to restartable.

When the job is restarted, processing resumes
from the last successfully committed checkpoint.

Example:

lrcmd -cmd=restart -jobid=myjob:2
-host=myLRShost -port=9081

32 Administering batch environments

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Purge job information. -cmd=purge
-job=<jobid>
[-host=<host>] [-port=<port>]

This command purges job
information from the job
scheduler and grid endpoints.

The job scheduler maintains
information about a job after the
job has completed. The purge
command permanently deletes
job information from the job
scheduler and grid endpoint
databases. The command also
purges the job log of the job.

Use -jobid=<jobid> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

Optional arguments:

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

The job scheduler maintains information about a
job after the job has completed. The purge
command permanently deletes job information
from the job scheduler and grid endpoint
databases. The command also purges the job log
of the job.

Example:

lrcmd -cmd=purge -jobid=myjob:2

Save an xJCL to the job
repository.

-cmd=save
-xJCL=<xjcl_filename>
-job=<job_name>
[-host=<host>] [-port=<port>]

This command saves an xJCL
document in the job repository
for use by future -cmd=submit
commands.

v Use -xJCL=<xjcl_filename>
to specify the file name of the
xJCL file to be saved.

v Use -job=<job_name> to
specify the name to use when
saving the xJCL to the
repository of job xJCL.

v The job name can be used on
future -cmd=submit
commands to reference the
saved xJCL.

Optional arguments:

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Examples:

v lrcmd -cmd=save -xJCL=myxjcl.xml
-job=myjob -host=myODRHost -port=82

v lrcmd -cmd=submit -job=myjob

Chapter 2. Administering the batch environment 33

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Remove a job from the job
repository.

-cmd=remove
-job=<job_name>
[-host=<host>] [-port=<port>]

This command removes a
previously saved xJCL
document from the job
repository.

Use -job=<job_name> to specify
the name assigned to the job
when you previously saved the
file to the job repository.

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Example:

lrcmd -cmd=remove -jobid=myjob:2 -host=myhost
-port=9083

Show the status of a batch
job.

-cmd=status

or

-cmd=status
-jobid=<jobid>
[-host=<host>] [-port=<port>]

This command displays status
information about one or more
jobs in the job scheduler
database.

Optional argument:
-job=<jobid>, if specified,
indicates that only job
information for the specified job
is displayed.

Examples:

v lrcmd -cmd=status host=myODRHost -port=83

v lrcmd -cmd=submit -xJCL=myxjcl.xml (returns
job ID LongRunningScheduler:17)

v lrcmd -cmd=status
-jobid=LongRunningScheduler:17

Suspend a job. -cmd=suspend
-jobid=<jobid>
-seconds=<seconds>
[-host=<host>] [-port=<port>]

This command suspends the
start of a grid batch job for the
specified number of seconds.
Unless manually resumed (with
lrcmd -cmd=resume, for
example), the job automatically
resumes running after the
specified number of seconds.

Use -jobid=<jobid> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

Optional arguments:

Use -seconds=<seconds> to
indicate the number of seconds
that the job start is suspended. If
not specified, the default value
of 15 seconds is used. If
-seconds=0 is specified, the job
does not start until manually
resumed.

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

Examples:

lrcmd -cmd=submit -xJCL=myxjcl.xml (returns job
ID myjob:23). After job myjob:23 has begun
execution, it can be suspended for five minutes
(for example), with: lrcmd -cmd=suspend
-jobid=myjob:23 -seconds=300 -port=81
-host=myODRHost

Execution of the job can be resumed before the 5
minutes expires with: lrcmd -cmd=resume
-jobid=myjob:23

34 Administering batch environments

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Resume start of a
previously suspended job.

-cmd=resume
-jobid=<jobid>
[-host=<host>] [-port=<port>]

This command resumes start of
a previously suspended batch
job.

Use -jobid=<jobid> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

See description of -cmd=suspend.

Display the output for a
job.

-cmd=output
-jobid=<jobid>
[-host=<host>] [-port=<port>]

Displays the output generated
by the job scheduler and grid
endpoint during the execution of
the specified job.

Use -jobid=<jobid> as the ID
assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

(none)

Display the return code of
a batch job.

-cmd=getBatchJobRC
-jobid=<jobid>
[-host=<host>] [-port=<port>]

Displays the overall return code
produced by a grid batch job.

Use -jobid=<jobid> as the ID
assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job. The -cmd=status
command can also be used to
identify the job ID for a particular
job.

v Use -host=<host> as the
ODR host name or job
scheduler server host name.
If not specified, the default is
localhost.

v Use -port=<port> as the
ODR HTTP Proxy address or
job scheduler server HTTP
port. If not specified, the
default is 80.

(none)

Chapter 2. Administering the batch environment 35

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Submit a recurring job
request to the job
scheduler .

-cmd=submitRecurringRequest
-xJCL=<XML file name>
-request=<name of request>
-startDate=<date where first
job gets submitted>
-startTime=<time where job
gets submitted>
-interval=<time period between
job submissions>
[-host=<host>] [-port=<port>]

or

-cmd=submitRecurringRequestjob=
<job_name>
-request=<name of request>
-startDate=<date where first
job gets submitted>
-startTime=<time where job
gets submitted>
-interval=<time period between
job submissions>
[-host=<host>] [-port=<port>]

Submits a recurring job request
to the job scheduler. The job
scheduler submits a batch job
against the specified xJCL at
time intervals indicated by the
arguments.

v Use xJCL=<xjcl_filename> to
specify the path of the xJCL
to be submitted from the file
system and optionally saved.

v Use -request=<name of
request> as the unique name
of the request used to identify
this recurring job submission
request. Use-
startDate=<date where first
job gets submitted> as the
date in which the first job gets
submitted for start where the
required startDate format is
yyyy-MM-dd. Requires the
-startTime parameter to be
defined as well.

v Use -startTime=<time where
job gets submission> as the
time in which the first job and
all subsequent recurring jobs
get submitted for start where
the required startTime format
is HH:mm:ss. This parameter
requires the startDate
parameter to be defined as
well.

v Use -interval=<time period
between job submissions> as
the time period between two
job submissions for this
recurring job request, where
the supported time periods
are daily, weekly, and
monthly.

Optional arguments:

v The name of a saved XJCL in
xJCL repository. See
-cmd=save for additional
information.

v -host=<host> The ODR host
name or job scheduler server
host name. If not specified,
default is localhost.

v -port=<port> The ODR HTTP
Proxy address or job
scheduler server HTTP port. If
not specified, default is 80.

Examples:

v lrcmd :-cmd=submitRecurringRequest
-xJCL=C:\\myxJCL -port=81

-request=MyMonthlyReport
-interval=monthly
-startDate=2006-01-02
-startTime=23:59:00

v lrcmd -cmd=submitRecurringRequest
-job=WeeklyJob -request=MyWeeklyReport
-interval=weekly -startDate=2006-01-
02 -startTime=23:59:00

36 Administering batch environments

Table 17. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional Information

Modify an existing
recurring job request.

lrcmd
-cmd=modifyRecurringRequest
-request=<name of request>
-xJCL=<XML file name>
-interval=<time period between
job submissions>
-startDate=<date where first
job gets submitted>
-startTime=<time where job
gets submitted>

Arguments:

v Use <name of request>as the
unique name of the request
used to identify this recurring
job submission request
modification.

v Use <XML file name> as the
name of the XML file which
describes the batch job to be
scheduled to start.

v Use <time period between
job submissions> as the time
period between two job
submissions for this recurring
job request, where the
supported time periods are
daily, weekly, and monthly.

v Use <date where first job
gets submitted> as the date
in which the first job gets
submitted for start, where the
required startDate format is
yyyy-MM-dd. Requires the
-startTime parameter to be
defined as well.

v Use <time where job gets
submission>as the time in
which the first job and all
subsequent recurring jobs get
submitted to start, where the
required startTime format is
HH:mm:ss. Requires the
-startDate parameter to be
defined as well.

One of the following parameters
must be defined for this
command: -xJCL, -interval
(-startDate and -startTime).

Optional arguments:

v Use -port: as the ODR proxy
HTTP address or job
scheduler server HTTP port.
The default is 80.

v Use -host: as the ODR host
or job scheduler host. The
default is localhost.

Examples:

lrcmd -cmd=modifyRecurringRequest
-request=MyWeeklyReport -xJCL=C:\\myNewXJCL
-port=80

lrcmd -cmd=modifyRecurringRequest
-request=MyWeeklyReport
-startDate=2006-02-02 -startTime=22:30:00
-xJCL=C:\\myFebXJCL -port=80

Table 18. lrcmd commands. The table includes arguments, a description, and additional information for the lrcmd
command.
Command Arguments Description Additional information

Display usage information for lrcmd. None This command displays usage
information for the lrcmd command.

Example: lrcmd

Chapter 2. Administering the batch environment 37

Table 18. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional information

Stop the execution of a previously
submitted job.

-cmd=stop
[-jobid=<job_id>
[-host=<host>]
[-port=<port>]

This command stops the execution
of a previously submitted job when
a checkpoint occurs.

Use -jobid=<jobid> as the job ID
assigned to the job by the job
scheduler

Optional arguments:

v Use -host=<host> as the ODR
host name or job scheduler
server host name. If not
specified, the default is
localhost.

v Use -port=<port> as the ODR
HTTP Proxy address or job
scheduler server HTTP port. If
not specified, the default is 80.

Examples:

v lrcmd -cmd=stop -jobid=MyApp:1
-port=80 -host=myodrhost.com

v lrcmd -cmd=stop -jobid=MyApp:1
-port=9080 -host=mygshost.com
-userid=myname
-password=mypassword

Show the symbolic variables that
are referenced in the job definition
xJCL.

-cmd=getSymbolicVariables
-xJCL=<xjcl_file>
[-<host>] [-port=<port>]

This command shows the symbolic
variables which are referenced in
the job definition xJCL.

Use -jobid=<jobid> as the job ID
assigned to the job by the job
scheduler

Optional arguments:

v Use -XJCL=<xjcl_file> to
specify the path of the job
definition xJCL file which
describes the grid job.

v Use -job=<job_name> to specify
the job name, which is a key in
the job repository of the job
scheduler.

v Use -host=<host> as the ODR
host name or job scheduler
server host name. If not
specified, default is localhost.

v Use -port=<port> as the ODR
HTTP Proxy address or job
scheduler server HTTP port. If
not specified, the default is 80.

Examples:

v lrcmd
-cmd=getSymbolicVariables
-xJCL=C:\myXJCL -port=9080
-host=mygshost.com

v lrcmd
-cmd=getSymbolicVariables
-job=MyJob -port=80
-host=myodrhost.com
-userid=myname
-password=mypassword

38 Administering batch environments

Table 18. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional information

Save the job log. -cmd=saveJobLog
-jobid=<job_id>
[-host=<host>]
[-fileName=<fileName>]

This command saves the job log
associated with the requested job
identifier to the local file system.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job. The

Use -fileName=<fileName> to
indicate the name of a file on the
local file system where the
compressed job log data is to be
saved. The file is replaced if it
exists. The file name
<fileName>might not contain
embedded blanks.

Optional arguments:

v Use -host=<host> as the ODR
host name or job scheduler
server host name. If not
specified, the default is
localhost.

v Use -port=<port> as the ODR
HTTP Proxy address or job
scheduler server HTTP port. If
not specified, the default is 80.

Examples:

v lrcmd -cmd=saveJobLog
-jobid=MyApp:1
-fileName=/tmp/myZippedJobLog
-port=80 -host=myodrhost.com

v lrcmd -cmd=saveJobLog
-jobid=MyApp:1
-fileName=/tmp/mySavedJobLog
-port=9080
-host=mygshost.com
-userid=myname
-password=mypassword

Get job log. -cmd=getJobLog -jobid=<job_id> Displays the job log associated with
the requested job identifier.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job.

Optional arguments:

v Use -host=<host> as the ODR
host name or job scheduler
server host name. If not
specified, the default is
localhost.

v Use -port=<port> as the ODR
HTTP Proxy address or job
scheduler server HTTP port. If
not specified, the default is 80.

Examples:

v lrcmd -cmd=getJobLog
-jobid=MyApp:1 -port=80
-host=myodrhost.com

v lrcmd -cmd=getJobLog
-jobid=MyApp:1 -port=9080
-host=mygshost.com
-userid=myname
-password=mypassword

Chapter 2. Administering the batch environment 39

Table 18. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional information

Purge job log -cmd=getJobLog -jobid=<job_id>
-logTimeStamp=<logTimeStamp>

Removes the job log associated
with the requested job identifier and
log time stamp. A job log entry
remains in, for example:
/opt/IBM/WebSphere/AppServer/
profiles/scheduler/joblogs/
PostingsSampleEar_99/
14022007_164535/part.0.log. The
entry tracks the reason why the job
log was removed.

v Use -jobid=<job_id> as the job
ID assigned to the job by the job
scheduler. The job ID is returned
by the lrcmd -cmd=submit
command that initially submitted
the job.

v Use
-logTimeStamp=<logTimeStamp
to indicate the time stamp, the
subdirectory name, which
identifies the job log to be
removed. The time stamp is
returned by
-cmd=getLogMetaData.

v Use -userid=<user_id> to
specify the user ID required
when the job scheduler server is
running in secure mode.

v Use -password=<password> to
specify the password required
when the job scheduler server is
running in secure mode.

Examples:

v lrcmd -cmd=getLogMetaData
-jobid=PostingsSampleEar:99
-port=80 -host=myodrhost.com
-userid=myname
-password=mypassword

v lrcmd -cmd=purgeJobLog
-jobid=PostingsSampleEar:99
-port=80
-logTimeStamp=14022007_164535
-host=myodrhost.com
-userid=myname
-password=mypassword

Display the job log metadata for the
requested job identifier.

-cmd=getLogMetaData
-jobid=<job_id>

The job log metadata indicates the
log time stamps associated with the
requested job identifier. The
metadata or time stamp identifies a
unique instance of the job. Logs
from multiple different jobs with the
same job number can exist.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job.

Examples:

v lrcmd -cmd=getLogMetaData
-jobid=MyApp:1 -port=80
-host=myodrhost.com

v lrcmd -cmd=getLogMetaData
-jobid=MyApp:1 -port=9080
-host=mygshost.com

Display the job log part list. -cmd=getLogPartList
-jobid=<job_id>
-logTimeStamp=<logTimeStamp>

Displays the job log part list
associated with the requested job
identifier and log time stamp. Use
the command getLogMetaData to
return a timestamp to use with
-logTimeStamp=<timestamp>.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job.

Examples:

v lrcmd -cmd=getLogPartList
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=80 -host=myodrhost.com

v lrcmd -cmd=getLogPartList
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=9080
-host=myodrhost.com
-userid=myname
-password=mypassword

40 Administering batch environments

Table 18. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional information

Display the job log part. -cmd=getLogPart -jobid=<job_id>
-logTimeStamp=<logTimeStamp>
-logPart=<logPart>

Displays the job log part associated
with the requested job identifier, log
time stamp, and log part.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job.

Use
-logTimeStamp=<logTimeStamp>to
indicate the time stamp (the
subdirectory name), which identifies
the job log whose part list
information is to be returned. The
time stamp is returned by
-cmd=getLogMetaData.

Use -logPart=<logPart> to indicate
the portion of the job log associated
with the requested job identifier and
time stamp to be returned. The log
part information is returned by
-cmd=getLogPartList.

Examples:

v lrcmd -cmd=submit
-xJCL=myxjcl.xml -host=myhost
-port=80 (returns a job identifier
of PostingsSampleEar:99)

v lrcmd -cmd=getLogMetaData
-jobid=PostingsSampleEar:99
(returns the timestamp
14022007_164535)

v lrcmd -cmd=getLogPart
-jobid=PostingsSampleEar:99
-logTimeStamp=14022007_164535
-logPart=part.1.log

Display the size of the job log
associated with the requested job
identifier.

-cmd=getLogSize -jobid=<job_id>
-logTimeStamp=<logTimeStamp>

This command returns the size of
the job login bytes.

Use -jobid=<job_id> as the job ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job.

Use -logTimeStamp=<logTimeStamp>
to indicate the time stamp; that is,
the subdirectory name, which
identifies the job log whose part list
information is to be returned. The
time stamp is returned by
-cmd=getLogMetaData.

Examples:

v lrcmd -cmd=getLogSize
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=80 -host=myodrhost.com

v lrcmd -cmd=getLogSize
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=9080 -host=myodrhost.com
-userid=myname
-password=mypassword

Chapter 2. Administering the batch environment 41

Table 18. lrcmd commands (continued). The table includes arguments, a description, and additional information for
the lrcmd command.
Command Arguments Description Additional information

Return the age of the job log in the
seconds since it was last modified.

-cmd=getLogAge -jobid=<job_id>
-logTimeStamp=<logTimeStamp>

Displays the age of the

v lrcmd -cmd=getLogAge
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=80 -host=myodrhost.com

v lrcmd -cmd=getLogAge
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=9080
-host=myodrhost.com
-userid=myname
-password=mypassword

Job log associated with the
requested job identifier.

Use -jobid=<jobid> as the ID
assigned to the job by the job
scheduler. The job ID is returned by
the lrcmd -cmd=submit command
that initially submitted the job. The
-cmd=status command can also be
used to identify the job ID for a
particular job.

Use -logTimeStamp=<logTimeStamp>
to indicate the time stamp; that is,
the subdirectory name, which
identifies the job log whose part list
information is to be returned. The
time stamp is returned by
-cmd=getLogMetaData.

Examples:

v lrcmd -cmd=getLogAge
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=80 -host=myodrhost.com

v lrcmd -cmd=getLogAge
-jobid=MyApp:1
-logTimeStamp=20102006_155529
-port=9080
-host=myodrhost.com
-userid=myname
-password=mypassword

Example of retrieving output of a batch job:

lrcmd -cmd=output -jobid=mybatchjob:63 -host=myLRSHost -port=9081

Example results:
CWLRB4940I: com.ibm.websphere.batch.wsbatch : -cmd=output -jobid=mybatchjob:63

CWLRB5000I: Wed Jun 15 17:55:36 EDT 2005 : com.ibm.websphere.batch.wsbatch : response to output

CWLRB1740I: [Wed Jun 15 17:55:36 EDT 2005] Job [mybatchjob:63] is in job setup.
CWLRB1760I: [Wed Jun 15 17:55:37 EDT 2005] Job [mybatchjob:63] is submitted for execution.
CWLRB2420I: [Wed Jun 15 17:55:37 EDT 2005] Job [mybatchjob:63] Step [Step1] is in step setup.
CWLRB2440I: [Wed Jun 15 17:55:38 EDT 2005] Job [mybatchjob:63] Step [Step1] is dispatched.
CWLRB2460I: [Wed Jun 15 17:55:38 EDT 2005] Job [mybatchjob:63] Step [Step1] is in step breakdown.
CWLRB2600I: [Wed Jun 15 17:55:38 EDT 2005] Job [mybatchjob:63] Step [Step1] completed normally rc=0.
CWLRB2420I: [Wed Jun 15 17:55:39 EDT 2005] Job [mybatchjob:63] Step [Step2] is in step setup.
CWLRB2440I: [Wed Jun 15 17:55:39 EDT 2005] Job [mybatchjob:63] Step [Step2] is dispatched.
CWLRB2460I: [Wed Jun 15 17:55:40 EDT 2005] Job [mybatchjob:63] Step [Step2] is in step breakdown.
CWLRB2600I: [Wed Jun 15 17:55:40 EDT 2005] Job [mybatchjob:63] Step [Step2] completed normally rc=4.
End

Job logs
A job log is a file that contains a detailed record of the execution details of a job. System messages from
the batch container and output from the job executables are collected. By examining job logs, you can see
the life cycle of a batch job, including output from the batch applications themselves.

A job log is composed of the following three types of information:

1. xJCL - A job log contains a copy of the xJCL used to run the job, including xJCL substitution values.

42 Administering batch environments

2. System messages - A set of system messages that communicate the major life cycle events
corresponding to the job. The following system events are recorded in a job log:

v Begin and end of a job

v Begin and end of a step

v Begin and end of a checkpoint

v Open, close, and checkpoint of a batch data stream

v Checkpoint algorithm invocation / results

v Results algorithm invocation / results

3. Application messages - A set of messages written to standard out and standard error by a job step
program.

Job logs are viewable through the job management console. Since information is added dynamically to the
job log while the job is running, you can view the latest information by selecting Refresh from the job log
view. Jobs logs are viewable only if the owning scheduler is active. In addition, if the endpoint running the
job is unavailable, a partial job log is the result.

Output of a job log

Job log output is collected on the job scheduler node, and on the grid execution endpoint node. The output
is collected in a directory which has the format:
${GRID_JOBLOG_ROOT}/joblogs/<job-directory>/<timeStamp-directory>

where

${GRID_JOBLOG_ROOT}/joblogs - The base directory for all job logs on the node. It is configurable through
the endpoint job log location attribute of the job scheduler panel from the administration console. The
default value for ${GRID_JOBLOG_ROOT} is ${user.install.root}.

<job-directory> Is generated at run time from the job name. For example, if the job ID assigned by the
job scheduler is PostingsSampleEar:99, then the generated directory name is PostingsSampleEar_99

<timeStamp-directory>- Is generated at run time from the current date. It is in the format
ddmmyyy_hhmmss, where dd is the day of the month, mm is a month (00 - 11), and yyyy is the year. hh is
the hour of the day (00 - 23), mm is the minute of the hour (00 - 59) and ss is the seconds of the minutes
(00 - 59). For example, a timestamp directory with the name 14022007_164535 means that the job began
processing on 14 Mar 2007, at 16:45:35.

For example, job output from job PostingsSampleEar:99 might be collected in the directory
/opt/IBM/WebSphere/AppServer/profiles/scheduler/joblogs/PostingsSampleEar_99/14022007_164535.

Output on the scheduler node contains an echo of the job xJCL (before and after symbolic variable
substitution, if any, is performed) and job dispatch information. Job log output from the job scheduler is
collected in the job log directory in the file named part.0.log. Output on the execution endpoint node
contains both application output and grid endpoint runtime messages. This output includes any application
generated output directed to the System.out and System.err output streams. Job log output from the grid
endpoint is collected in the job log directory in files with names such as part.1.log and part.2.log. However,
if the job scheduler and grid endpoint are installed on the same application server, job log output from both
the scheduler and the grid endpoint is collected in the job log directory in the file named part.0.log. Each of
the log parts contains approximately 1000 records. The following example shows the contents of
part.1.log:
System.out: [03/13/07 08:25:32:708 EDT] Tue Mar 13 08:25:32 EDT 2007: SimpleCI application starting...
System.out: [03/13/07 08:25:32:708 EDT] -->Will loop processing a variety of math functions for approximately 30.0 seconds!
System.out: [03/13/07 08:26:02:752 EDT] Tue Mar 13 08:26:02 EDT 2007: SimpleCI application complete!
System.out: [03/13/07 08:26:02:753 EDT] -->Actual Processing time = 30.043 seconds!
CWLRB5764I: [03/13/07 08:26:03:069 EDT] Job SimpleCIEar:44 ended

Chapter 2. Administering the batch environment 43

Job classes
Job classes specify limits for resource consumption by batch jobs. A job class establishes a policy for
resource consumption by a set of batch jobs. Through this policy, execution time, number of concurrent
jobs, job log, and job output queue storage can be controlled. This topic lists the limits enforced by job
classes.

Job classes can be configured using the administrative console and stored in an .xml file called
jobclass.xml under a profile_root/config/cells/cell_name/gridjobclasses/ directory. Each job is
assigned to a job class.

A job class establishes policy for:

Execution time
Maximum time a job can run before being automatically canceled by the system.

Concurrent jobs
Maximum number of concurrently dispatched jobs of a given job class.

Job log retention
Specifies the rule for deleting aged job logs. Retention can be specified by either space or time:

Space Specified in megabytes. Job logs of the specified class are deleted from oldest to newest
on an endpoint if the sum of space used by job logs exceeds the specified maximum.

Time Specified as an integral number of days. Job logs of the specified class older than N days
old are automatically deleted by the system.

Job output queue
Specifies the rule for deleting jobs on the job output queue. A job is on the output queue after it
has either completed, or stopped, or canceled. Output queue policy allows for automatic purging of
the output queue by:

Number
Specified as an integral number of jobs. When jobs on the output queue of the specified
class exceed this number, they are deleted oldest to newest until the total is less than the
specified number.

Time Specified as an integral number of days. Job logs of the specified class older than N days
old are automatically deleted by the system.

Following are the limits enforced by job classes:

maxExecutionTime
An integer, which specifies the maximum number of seconds a job is allowed to run before it is
canceled.

maxConcurrentJob
An integer, which specifies the maximum number of jobs belonging to same job class that can be
dispatched to a cell. When this limit is reached, new jobs belonging to the same job class are not
dispatched until the ones that are currently running complete execution.

maxClassSpace
An integer that specifies the amount of space, in megabytes, that is allowed for a job log belonging to
this job class. When this limit is reached, job logs are deleted oldest to newest.

maxFileAge
An integer, which specifies the number of days a job log of this job class is stored. Job logs older than
the number of days are deleted.

maxJob
An integer, which specifies the maximum number of jobs of this class that are allowed on the output
queue. When this limit is exceeded, the job is automatically purged, oldest to newest.

44 Administering batch environments

maxJobAge
An integer value which specifies the maximum of number of days a job of this class is allowed on the
output queue. Jobs older than this value are automatically purged.

Creating and managing reports for batch statistics
You can generate reports to view statistics of the job scheduler and endpoints.

Before you begin

Reports are charts that show runtime data. You must configure your environment, including servers,
clusters, and applications to display data in the charts.

About this task

You can use the administrative console to generate reports and view statistics of the job scheduler and
endpoints.

Procedure
1. In the administrative console, click Runtime operations > Reports and go to the Reports tab.

2. Add a new chart.

Click Open a New Chart Tab. A new tab opens with a blank chart.

3. Specify the scope for the chart from which the charted data is derived.

a. Click Change Scope to specify the scope.

b. For Object type, select a node, dynamic cluster, cluster, or application server scope.

c. For Object instance, select an object instance of the scheduler or endpoints.

d. Click OK.

4. Set the data set type to Use current scope as the data set.

a. Click Add Data.

b. For Data Set Type, select Use current scope as the data set.

5. Choose metrics from the selected data set to add to the chart.

Table 19. Scheduler. The table lists each metric for the scheduler followed by a description.
Metric Description

Jobs queued Number of jobs that are queued at the scheduler

Jobs dispatched Number of jobs that are dispatched at the scheduler

Jobs error Number of dispatch errors that occurred for jobs

Jobs queue time The average time in milliseconds that a job spent in the queue

Jobs dispatch time The average time in milliseconds that a job spent being dispatched

Jobs dispatch error time The average time in milliseconds that a job spent being dispatched when dispatch error occurred

Table 20. Endpoints. The table lists each metric for the endpoints followed by a description.
Metric Description

Jobs requested Number of jobs which arrive at the execution environment (endpoint application) for processing.

Jobs completed Number of jobs which run to completion at the execution environment.

Jobs execution time The average time in milliseconds that a job spends running.

6. After you add data, click OK.

What to do next

Generate and view the report.

Chapter 2. Administering the batch environment 45

Job scheduler integration with external schedulers
You can integrate the job scheduler with an external workload scheduler by configuring and securing the
job scheduler, enabling the interface, and running batch jobs with the WSGrid utility.

See the following topics to learn more:

v “Integration of an external workload scheduler to manage batch workloads”

v For configuring an external scheduler interface, see “Configuring the external scheduler interface” on
page 47.

v For information about how to run batch jobs with the WSGrid utility, see “WSGrid command-line utility”
on page 249

Integration of an external workload scheduler to manage batch
workloads
Many customers already use an external workload scheduler to manage batch workloads on the z/OS
operating system. While Java batch running inside a WebSphere Application Server environment is
attractive, a way to control batch jobs through an external workload scheduler is important.

External scheduler integration

Since an external scheduler does not know how to directly manage batch jobs, a proxy model is used. The
proxy model uses a regular JCL job to submit, monitor, or submit and monitor the batch job. The JCL job
step invokes a special program provided by batch, named WSGRID. The WSGRID application submits
and monitors a specified batch job. WSGRID writes intermediary results of the job into the JCL job log.
WSGRID does not return until the underlying job is complete, consequently providing a synchronous
execution model. Since the external scheduler can manage JCL jobs, it can manage a JCL job that
invokes WSGRID. Using this pattern, the external scheduler can indirectly manage a job. An optional
plug-in interface in the job scheduler enables a user to add code that updates the external scheduler
operation plan to reflect the unique state of the underlying job, such as job started, step started, step
ended, job ended. The WSGRID program is written with special recovery processing so that if the JCL job
is canceled, the underlying job is canceled also, thus ensuring synchronized life cycle of the two jobs.

The following diagram shows the job control by an external workload
scheduler, but without JES being required.

46 Administering batch environments

The following diagram shows the job control by an external workload scheduler for the z/OS
platform environment. In this diagram, the Tivoli® Workload Scheduler is shown as an example workload
scheduler.

Configuring the external scheduler interface
You can configure an external scheduler interface to control the workload for batch jobs.

Before you begin

Ensure that you configure and secure the job scheduler.

About this task

You can set up the external scheduler interface by using the default messaging provider as a Java
Message Service (JMS) provider.

You also have the option of setting up the external scheduler interface by using WebSphere
MQ as a messaging provider.

Procedure
v Set up the external scheduler interface using the default messaging provider.

v Set up the external scheduler interface using WebSphere MQ.

Setting up the external scheduler interface using the default
messaging provider
The external scheduler interface uses Java Message Service (JMS) as its default messaging provider.
JMS is a bidirectional communication mechanism between an external client and the job scheduler.

Before you begin

Ensure that you configure and secure the job scheduler.

Chapter 2. Administering the batch environment 47

About this task

You can run the wsgridConfig.py script to enable the external scheduler interface.

The following diagram illustrates the elements that the script performs to set up the external scheduler
interface. These elements include the job scheduler server, the job scheduler bus, the
jms/com.ibm.ws.grid.InputQueue JMS input queue, and the jms/com.ibm.ws.grid.OutputQueue output
queue:

job scheduler bus

Destination:

com.ibm.ws.grid.InputQueue

Destination:

com.ibm.ws.grid.OutputQueue

jms/com.ibm.ws.grid.ConnectionFactory

jms/com.ibm.ws.grid.InputQueue

eis/com.ibm.ws.grid.ActivationSpec

jms/com.ibm.ws.grid.OutputQueue

job scheduler server

job scheduler MDI

application

Procedure
1. Run the wsgridConfig.py script to enable the external scheduler interface.

By running the script from the deployment manager, you configure the job scheduler message-driven
interface, the service integration bus and the JMS queues. For example:
wsadmin -user <username> -password <userpassword>
-f ../bin/wsgridConfig.py -install -node <nodeName>
-server <serverName>
-providers "<hostname>,<SIB_ENDPOINT_ADDRESS>"

or
wsadmin -user <username> -password <userpassword>
-f ../bin/wsgridConfig.py -install -cluster <clusterName>
-providers "<hostname>,<SIB_ENDPOINT_ADDRESS>;
<hostname>,<SIB_ENDPOINT_ADDRESS>;...;
<SIB_ENDPOINT_ADDRESS>;<hostname>,<SIB_ENDPOINT_ADDRESS>"

For more information about the command options, read the wsgridConfig.py topic.

2. If security is enabled on the administrative console, update the bus that was created.

a. On the administrative console, click Service integration > Buses; select the bus that was created
in the previous step.

The default bus name is JobSchedulerBus.

b. Click Security.

c. Clear Enable bus security.

d. For Permitted transports, select Allow the use of all defined transport channel chains.

e. Click Apply and save the changes.

3. Change values for the CSIv2 inbound and outbound communications.

a. On the administrative console, click Security > Global security > RMI/IIOP security > CSIv2
inbound communications.

b. For Transport, select SSL-supported instead of SSL-required.

c. Click Apply and save the changes.

48 Administering batch environments

d. On the administrative console, click Security > Global security > RMI/IIOP security > CSIv2
outbound communications.

e. For Transport, select SSL-supported instead of SSL-required.

f. Click Apply and save the changes.

4. Restart the cell for configuration changes to take effect.

What to do next

Submit a job from the external job scheduler interface to batch.

Securing the external scheduler interface when using default messaging
Securing the external scheduler interface requires securing the JobSchedulerMDI system application and
the JMS resources it uses.

About this task

The following diagram shows the actions required and the environmental artifacts to which they apply. The
steps in the diagram are the steps in the procedure.

Securing Job Scheduler Message-Driven Interface

JobSchedulerBus

Destination:
com.ibm.ws.grid.InputQueue

Destination:
com.ibm.ws.grid.OutputQueue

1. Enable bus security
4. Authenticate client
access to input queue

jms/com.ibm.ws.grid.OutputQueue

jms/com.ibm.ws.grid.InputQueue

eis/com.ibm.ws.grid.ActivationSpec

jms/com.ibm.ws.grid.ConnectionFactory

3. Assign roles

Job scheduler server

JobSchedulerMDI
application

2. Define JAAS alias for
JobSchedulerMDI

application

The following steps show you how to secure the external scheduler interface:

Procedure
1. Enable security for the job scheduler bus in the administrative console.

a. Select bus_name > Bus security > bus_name.

b. Check the Enable bus security check box.

c. Click OK, then Save your configuration.

2. Define a JAAS alias.

The JMS activation specification for the JobSchedulerMDI application requires a JAAS alias. The user
ID and password defined to this alias represents access to the job scheduler inbound JMS queue,
com.ibm.ws.grid.InputQueue. The JobSchedulerMDI application also uses the JAAS alias
programmatically for authenticating to the outbound queue that the job scheduler uses to communicate
with its clients. The outbound queue is com.ibm.ws.grid.OutputQueue. Define the JAAS alias in the
administrative console:

a. Select Security > Global security > Java Authentication and Authorization Service > J2C
authentication data > New.

Chapter 2. Administering the batch environment 49

b. Define the JAAS alias.

Give the JAAS alias a name of your choice. Specify a user ID and password that provides access
to the job scheduler inbound JMS queue, com.ibm.ws.grid.InputQueue, and enables authentication
to the outbound queue, com.ibm.ws.grid.OutputQueue.

c. Click OK and then Save to save your configuration.

d. Assign the JAAS alias to the activationSpec, com.ibm.ws.grid.ActivationSpec.

3. Set an inter-engine authentication alias.

a. Select Service integration > Buses > bus_name.

b. From the inter-engine authentication alias list, select the JAAS alias that you defined in the
previous step.

c. Click OK, then Save your configuration.

4. Set a container-managed authentication alias.

a. Select Resources > Resource Adapters > J2C connection factories >
com.ibm.ws.grid.ConnectionFactory.

b. From the container-managed authentication alias list, select the JAAS alias that you defined in a
previous step.

c. Click OK, then Save your configuration.

5. Assign roles.

Roles must be assigned to authorize access to the bus and input and output bus destinations. These
role assignments can be performed in the administrative console: Security > Bus security >
bus_name > Disabled > Users and groups in the bus connector role.

You can also assign roles using either of the following wsadmin commands:

v $AdminTask addUserToBusConnectorRole {-bus busName -user username}

v $AdminTask addGroupToBusConnectorRole {-bus busName –group groupname}

Make the following role assignments:

a. JobSchedulerBus Assign the BusConnector role to the following user IDs:

v com.ibm.ws.grid.ActivationSpec to permit the job scheduler to access the bus.

v Each identity used by WSGrid to authenticate client access to the input queue (see step 4). The
WSGrid invoker then has permission to access the bus.

b. Permit access to the com.ibm.ws.grid.InputQueue destination.

Permit access to this destination by assigning sender, receiver, and browser roles to the same user
IDs. These IDs are the same IDs that you assigned the BusConnector role in the previous step.
You can permit access only through wsadmin commands:

v In Jacl:
$AdminTask addUserToDestinationRole {-type queue –bus JobSchedulerBus
-destination com.ibm.ws.grid.InputQueue -role Sender -user userName}

or
$AdminTask addGroupToDestinationRole {-type queue –bus JobSchedulerBus
-destination com.ibm.ws.grid.InputQueue -role Sender –group groupName}

v In Jython:
AdminTask.setInheritDefaultsForDestination(’-bus WSS.JobScheduler.Bus -type queue
-destination com.ibm.ws.grid.InputQueue -inherit false’)

Repeat for receiver and browser roles.

c. com.ibm.ws.grid.OutputQueue

Permit access to this destination by assigning the same roles to destination
com.ibm.ws.grid.OutputQueue as were assigned for com.ibm.ws.grid.InputQueue in the previous
step.

6. Authenticate client access to the input queue.

50 Administering batch environments

a. Specify the user ID and password properties in the WSGrid input control properties file.
submitter-userid=username
submitter-password=password

b. Optional: Encode the password using the WebSphere PropFilePasswordEncoder utility.

Setting up the external scheduler interface using WebSphere MQ
You can install and configure the batch high performance external scheduler connector. This connector is
the native WSGrid connector that is implemented in a native compiled language and that uses WebSphere
MQ for communication.

About this task

The benefit of native WSGrid is twofold:

1. It makes more efficient use of z/OS system processors by preventing the need for Java virtual machine
(JVM) startup processing on each use.

2. It uses the most robust messaging service available on z/OS to ensure reliable operation with a
messaging service already known and used by most z/OS customers.

The authenticated user ID of the environment that starts WSGRID is propagated to the batch job
scheduler. The resulting batch job runs by using that user ID. This user ID must also have sufficient
WebSphere privileges to submit batch jobs, that is, lradmin or lrsubmitter roles. For example, if JCL job
WSGRID1 is submitted to run under technical user ID TECH1, the resultant batch job also runs under user
ID TECH1. User ID TECH1 must be permitted to get and put to and from the WebSphere MQ input and
output queues used by WSGRID.

Procedure
1. Define WebSphere MQ queues.

Queue manager must be local. Two queues are required: one for input, one for output. You can name
the queues according to your naming conventions. As an example, the name WASIQ is used for input
queues and the name WASOQ is used for output queues. The queues must be set in shared mode.

2. Update the MQ_INSTALL_ROOT WebSphere variable.

a. In the administrative console, click Environment > WebSphere variables.

b. Select the node scope where the job scheduler runs.

c. Select MQ_INSTALL_ROOT .

d. For Value, put in the directory path to where WebSphere MQ is installed.

For example, Value can be /USR/lpp/mqm/V6R0M0.

e. Click Apply and save the changes.

3. From the deployment manager, run the installWSGridMQ.py script with the following input parameters:

The installWSGridMQ.py script installs a system application, and then sets up the JMS connection
factory, JMS input and output queues, and other necessary parameters.

wsadmin.sh -f -user <username> -password <userpassword> installWSGridMQ.py

-install
{-cluster <clusterName> | -node <nodeName> -server <server>}

-remove
{-cluster <clusterName> | -node <nodeName> -server <server>}

-qmgr
<queueManagerName>

-inqueue
<inputQueueName>

Chapter 2. Administering the batch environment 51

-outqueue
<outputQueueName>

For example, for clusters:
wsadmin.sh -f installWSGridMQ.py -install -cluster <clusterName> -qmgr <queueManagerName>
-inqueue <inputQueueName> -outqueue <outputQueueName>

For example, for nodes:
wsadmin.sh -f installWSGridMQ.py -install -node <nodeName> -server <serverName>
-qmgr <queueManagerName> -inqueue <inputQueueName> -outqueue <outputQueueName>

4. Run osgiCfgInit.sh|.bat -all for each server whose MQ_INSTALL_ROOT WebSphere variable you
updated in a previous step.

The osgiCfgInit command resets the class cache that the OSGi runtime environment uses.

5. Create the WSGRID load module:

a. Locate the unpack script in the app_server_root/bin directory.

The unpackWSGRID script is a REXX script.

b. Perform an unpack using the unpackWSGrid script. To display the command options, issue the
unpackWSGRID script with no input: unpackWSGRID <was_home> [<hlq>] [<work_dir>] [<batch>]
[<debug>]

<was_home>
Specifies the required WebSphere Application Server home directory.

<hlq> Specifies the optional high-level qualifier of output data sets default = <user id>.

<work_dir>
Specifies the optional working directory. The default is /tmp.

<batch>
Specifies the optional run mode for this script. Specify batch or interactive. The default is
interactive.

<debug>
Specifies the optional debug mode. Specify debug or nodebug. The default is nodebug.

/u/USER26> unpackWSGRID /WebSphere/ND/AppServer

Sample output:
Unpack WSGRID with values:
WAS_HOME=/WebSphere/ND/AppServer
HLQ =USER26
WORK_DIR=/tmp
BATCH =INTERACTIVE
DEBUG =NODEBUG
Continue? (Y|N)
Y
User response: Y
Unzip /WebSphere/ND/AppServer/bin/cg.load.xmi.zip
extracted: cg.load.xmi
Move cg.load.xmi to /tmp
Delete old dataset ’USER26.CG.LOAD.XMI’
Allocate new dataset ’USER26.CG.LOAD.XMI’
Copy USS file /tmp/cg.load.xmi to dataset ’USER26.CG.LOAD.XMI’
Delete USS file /tmp/cg.load.xmi
Delete old dataset ’USER26.CG.LOAD’
Go to TSO and issue RECEIVE INDSN(’USER26.CG.LOAD.XMI’) to create
CG.LOAD

c. Go to TSO, ISPF, option 6, and do a receive operation.

For example:
RECEIVE INDSN(’USER26.CG.LOAD.XMI’)

The following output is the result:
Dataset BBUILD.CG.LOAD from BBUILD on PLPSC
The incoming data set is a ’PROGRAM LIBRARY’
Enter restore parameters or ’DELETE’ or ’END’ +

Click Enter to end. Output similar to the following output is displayed.

52 Administering batch environments

IEB1135I IEBCOPY FMID HDZ11K0 SERVICE LEVEL UA4
07.00 z/OS 01.07.00 HBB7720 CPU 2097
IEB1035I USER26 WASDB2V8 WASDB2V8 17:12:15 MON
COPY INDD=((SYS00006,R)),OUTDD=SYS00005
IEB1013I COPYING FROM PDSU INDD=SYS00006 VOL=CPD
USER26.R0100122
IEB1014I
IGW01551I MEMBER WSGRID HAS BEEN LOADED
IGW01550I 1 OF 1 MEMBERS WERE LOADED
IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE
Restore successful to dataset ’USER26.CG.LOAD’

6. Restart the servers that you just configured. Also, restart the node agents.

Results

You have configured an external job scheduler interface.

What to do next

Submit a job from the external job scheduler interface to batch.

Requirements-based job scheduling
Batch provides both implicit and explicit job scheduling requirements, which match against endpoints
based on an application name.

Implicit requirement matching

An implicit scheduling requirement determines which applications a job runs. In Java Platform, Enterprise
Edition (Java EE) applications, the application name of all Java EE applications installed in the scheduling
domain is known through the product configuration, because all Java EE applications are installed into this
environment through product administrative interfaces.

For batch utility applications, this information cannot be assumed. By default the information is unavailable,
since batch utility applications are installed outside the control of product administrative interfaces. For
these applications, the batch administrator can optionally enable application-name based endpoint
selection for particular nodes by setting the grid.apps node custom property.

Through this property, the administrator establishes configuration knowledge of the grid utility applications
available on that node. When the grid.apps node custom property is set for a node, that node is an eligible
endpoint for job dispatch if and only if all the batch utility applications named in a given xJCL are present
in the grid.apps list. If the grid.apps node custom property is not set on a node, then application names
are not considered during the endpoint selection process for that node. When there is a combination of
nodes that either specify or do not specify the grid.apps node custom property, an order of precedence
governs endpoint selection. The following code shows the order of precedence.
if any node published grid.apps then
attempt to match job using app names
if there is a match then
if job has required-capabilities then
candidate-nodes= $(apply required-capabilities to the set of nodes that have

matching apps)
else

candidate-nodes= $(nodes that have matching apps)
endif

else (no match based on grid.apps)
if job has required-capabilities then
candidate-nodes= $(apply required-capabilities to all nodes)

else
candidate-nodes= $(all nodes)

endif
endif

Chapter 2. Administering the batch environment 53

else (no nodes publish grid.apps)
if job has required-capabilities then

candidate-nodes= $(apply required-capabilities to all nodes)
else

candidate-nodes= $(all nodes)
endif

endif

Java EE type applications always use application name matching during endpoint selection.

Explicit requirement matching

Explicit requirement matching enables a job to specify particular requirements that must be met by eligible
endpoints. These requirements are specified in the batch job xJCL on the <required-capability> attribute.
When required capabilities are specified, only endpoints that advertise matching capabilities are eligible to
receive the job. The match expressions can specify any of the following node properties:

1. Node custom properties

2. Node metadata properties. For example, com.ibm.websphere.xdProductVersion

3. Node name and node host name

Requirements matching precedence

Implicit and explicit matching work together to determine eligible endpoints. For Java EE type jobs, the
implicit requirement, application name, is treated as an additional required capability; it is logically
appended with any explicitly specified requirements.

For batch utility jobs, an application name is a conditional requirement that applies only for batch utility
nodes that advertise their installed applications through the grid.apps property. The batch utility jobs for
which no application name match exists and that do not specify explicit requirements are eligible for
dispatch to any batch utility node that does not advertise its applications.

Service policies for batch jobs
Batch support provides a rule-based service policy methodology and a completion time service policy goal
type. It enhances workload management for batch because batch jobs and OLTP workloads can mix in the
same product installation.

You must have batch installed to define service policies. See topics about dynamic operations.

Service policy classification is controlled by a set of rules defined to the job scheduler. These rules can be
composed of Boolean expressions and can include the following operand types:

v Submitter identity

v Submitter group

v Job name

v Job class

v Application name

v Application type

v Platform

v Time

See “Batch job classification” on page 55 for details on the operand types.

54 Administering batch environments

Goals types
v Discretionary goals indicate work that does not have significant value. As a result, work of this type can

see a degradation in performance when resources are constrained.

v Average response time goals are indicative of work with a higher priority than discretionary. The
average response time goal is assigned a specific time goal.

v Percentile response time goals are another measure for work with a higher priority than discretionary.
The percentile response goals are defined with specific criteria. The percentile response time target is
the percentage of requests whose response time is T or less that should be P or more. A target has
particular values for T and P.

Default classification rules and precedence

Batch support provides two default classification rules:

1. A rule that assigns any job of type Java Platform, Enterprise Edition (Java EE) to the transaction class
defined by default IIOP work class of the named Java EE application.

2. A rule that assigns any job to the default transaction class, DEFAULT_TC

Both default rules can be edited and deleted. The order of the rules can be modified, and user-defined
classification can be added. The job scheduler evaluates the list of classification rules in order and assigns
the transaction class specified by the first matching rule. Only one classification rule set for a cell is
supported. A default configurable transaction class, named DEFAULT_TC by default, is associated with
this set. If none of the classifications rules match a job, then the default transaction class is applied to that
job. Graphical user interface (GUI) support for choosing a transaction class from a list while building a rule
is only present when batch support is installed. When batch alone exists, there is a text field where a
transaction class name is specified.

Batch job classification
The classification rules are composed of Boolean expressions composed of the operands listed in this
topic.

Classification rules are saved in a configuration file named gridclassrules.xml under the profile config
directory. The rules are ordered based on the priority element.

The batch runtime implementation iterates through these rules until it finds a matching rule. When a match
is found, the transaction class corresponding to that rule is applied to that job.

The following operands comprise the Boolean expressions in job classification rules:

submitterid
The submitter of a given job is obtained from com.ibm.ws.longrun.Job.getUser() API. It must match
the value of this operand for the rule to match.

submittergroup
The submitter group for a job is a list of strings obtained by iterating through the set of credentials
for that job submitter. If the value of this operand exists in the list, then the rule is matched and the
corresponding transaction class is assigned to the job.

jobname
The name attribute of the job element in xJCL specifies the job name. It must match the value of
this operand for the rule to match.

jobclass
The optional class attribute of the job element in xJCL specifies the job class. It must match the
value of this operand for the rule to match.

Chapter 2. Administering the batch environment 55

appname
The optional default-application-name attribute of the job element in xJCL specifies this name. If
this attribute is not specified, then appname defaults to job name. The application name of a given
job must match the value of this operand for the rule to match.

apptype
Valid values for this operand are GridUtility and J2EE. If the application type of the job matches
the value of this operand, then this rule is matched. The corresponding tx class of the rule is
assigned to the job.

platform
Valid values for this operand are zos, distributed, and mixed. If the platform composition of the
eligible endpoints for a given job matches the value of this operand, then the rule matches.

time Use the time operand to define the date and time of day that a given request must be honored.
Two optional fields are StartTime and EndTime. If a request is received outside of the defined
window, the request is not processed. The format for both fields is dayOfWeek/day/month/
year::hour:min:sec,, for example, Sat/01/Jan/2011::08:00:00.

dayOfWeek
Specifies one of the days of the week: Sun for Sunday, Mon for Monday, Tue for Tuesday,
Wed for Wednesday, Thu for Thursday, Fri for Friday, and Sat for Saturday.

day Specifies the day of the month.

month
Specifies one of the 12 months: Jan for January, Feb for February, Mar for March, Apr for
April, May for May, Jun for June, Jul for July, Aug for August, Sep for September, Oct for
October, Nov for November, Dec for December.

year Specifies the four-digit year.

hour Specifies the two-digit hour of the 24 hour clock.

min Specifies the two-digit value for minutes.

sec Specifies the two-digit value for seconds.

Sample classification rules
<matchRules xmi:id="MatchRule_1159377240783" matchAction=SimpleCI_TC" matchExpression="apptype=’j2ee’"
priority="1"/>

<matchRules xmi:id="MatchRule_1159377240783" matchAction="CompletionTime_TC"
matchExpression="appname=’MandlebrotCI" priority="2"/>

<matchRules xmi:id="MatchRule_1159377240783" matchAction="${default_iiop_transaction_class}"
matchExpression="submitterid=’admin’" priority="3"/>

Default classification rules and precedence

The default classification rule assigns any job to the default transaction class, DEFAULT_TC.

The default rule can be edited and deleted. User-defined classification can be added. The job scheduler
evaluates the list of classification rules in order and assigns the transaction class specified by the first
matching rule. Only one classification rule set per cell is supported. A default configurable transaction
class, named DEFAULT_TC by default, is associated with this set. If none of the classifications rules
match a job, then the default transaction class is applied to that job. GUI support for choosing a
transaction class from a list while building a rule is available only when Intelligent Management is installed.
When only batch exists in your environment, there is a text field where a transaction class name is
specified.

56 Administering batch environments

Note: Assign transaction classes to batch work on the Job scheduler Classification rules administrative
console page, not on the Resources > Asynchronous beans > Work managers >
BatchWorkManager page.

Job usage data for charge-back accounting support
The product provides charge-back accounting information for batch jobs for all operating systems. You can
use charge-back accounting to determine the computing costs of batch job execution for work that has
been performed by various users and groups.

The job scheduler records usage data for charge-back accounting when enabled through the
administrative console. This function is available for all operating systems and can be enabled and
disabled through configuration settings. Job usage information is not enabled by default.

Accounting information for each job includes:

v Job identity: The job identifier associated with the job, which is returned by the job scheduler when the
job is submitted

v Submitter identity: The identity (if any) of the submitter of the job

v CPU used: An integer that is the number of units of CPU used, where one unit is 10-6 second.

v Job state: The state of the job. That is, running or ended.

v Node name and server name: The node and server names where the job ran

v Job start time: The time the job began to run

v Last update time: The time of the last job usage update

v Accounting string: The job accounting information associated with the job

The DDL statements for the job scheduler JOBUSAGE table are defined in the CreateLRSCHEDTables*.ddl
files of the app_server_root/util/Batch directory. An example schema definition is:
CREATE TABLE "LRSSCHEMA"."JOBUSAGE" (
"JOBID" VARCHAR(250) NOT NULL ,
"SUBMITTER" VARCHAR(256),
"CPUCONSUMEDSOFAR" BIGINT NOT NULL,
"JOBSTATE" VARCHAR(32) NOT NULL,
"SERVER" VARCHAR(250) NOT NULL,
"NODE" VARCHAR(250) NOT NULL,
"STARTTIME" VARCHAR(64) NOT NULL,
"LASTUPDATE" VARCHAR(64) NOT NULL,
"ACCNTING" CHAR(64)) IN "USERSPACE1" ;

The table data can be accessed with an SQL query, for example:
select * from LRSSCHEMA.JOBUSAGE where JOBID=’PostingSampleEar:99’

Programmatic access to the scheduler job usage table data must specify an isolation level of read
uncommitted, to impede active job execution or the recording of accounting data. The STARTTIME and
LASTUPDATE represent the return value of System.currentTimeMillis(). See ++ in the following information
for more detail.

Job usage SMF record layout

The purpose of the JobUsage SMF record is to record information about a batch container job inside a
WebSphere Application Server for z/OS transaction server. The SMF type 120 record, subtype 20, is the
job usage record. There is one job usage section per record as shown in the following table:

Chapter 2. Administering the batch environment 57

Table 21. Job usage SMF record layout. The table includes the offset in decimal, the offset in hexadecimal, the
name, the length, the format, and a description.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120XVL 2 binary Length of the
JobUsage section

2 2 SM120XJL 1 binary Length of the job
identifier field;
maximum is 250

3 3 SM120XJ 250 EBCDIC Job identifier

254 FE SM120XT 32 EBCDIC Job submitter

286 11E SM120XSL 1 binary Length of the job state
field; maximum is 32

287 11F SM120XS 31 EBCDIC Job state (final). Can
be one of: ended,
execution failed, or
restartable

319 13F SM120XNL 1 binary Length of the server
name field; maximum
is 250

320 140 SM120XN 250 EBCDIC Server name.

570 23A SM120XOL 1 binary Length of the node
name field; maximum
is 250

571 23B SM120XO 250 EBCDIC Node name

821 335 SM120XAL 1 binary Length of the
accounting information
field; maximum is 64

822 336 SM120XA 64 EBCDIC Accounting information.

886 376 SM120XBL 1 binary Length of the job start
time field; maximum is
64

887 377 SM120XB 64 EBCDIC Job start time ++

951 3B7 SM120XLL 1 binary Length of the last
update time field;
maximum is 64

952 3B8 SM120XL 64 EBCDIC Last update time++

1016 3F8 SM120XPL 1 binary Length of the CPU
consumed field;
maximum is 64

1017 3F9 SM120XP 64 EBCDIC Total CPU consumed
in microseconds ^ ^

1081 439 SM120XZ 64 EBCDIC CPU time in
microseconds on
general purpose
processors ^ ^

** The offsets of the fields which follow are based upon a full field. The field contains data that is the
maximum field length. The actual offset in the record is the start of the field, plus the length of the field,
plus one.

++ Represented as a character string that is the number of milliseconds since January 1 1970, 00:00:00
GMT.

^ ^ Represented as a character string that is the number of units of CPU used, where one unit is 10-6

seconds. 10-6 means 10 raised to the -6th power; that is, .000001.

58 Administering batch environments

Job usage with SMF 120 subtype 9 records

Job usage information can be recorded with either SMF 120 subtype 20 records or SMF 120 subtype 9
records. SMF 120 subtype 20 records are described in this topic in the section on job usage SMF record
layout.

SMF 120 subtype 9 records contain many of the metrics included in the SMF 120 subtype 20 records.
Additionally, the batch container adds the job ID, the submitter ID, and the job accounting string to the
user data section of the SMF 120 subtype 9 record.

Note: SMF 120 subtype 9 support for batch jobs requires that SMF 120 subtype 9 recording for
asynchronous beans is enabled on the endpoint server. SMF 120 subtype 9 support for
asynchronous beans is available on WebSphere Application Server Version 8.0.0.1 or later. Earlier
versions are not supported. If you specify RECORD_SMF_SUBTYPES=9 on an earlier version, the job
scheduler issues a message. The message indicates that SMF 120 subtype 9 records are not
supported on earlier versions of WebSphere Application Server. The job scheduler reverts to SMF
120 subtype 20 records.

Note: If you specify RECORD_SMF_SUBTYPES=9 without also enabling SMF 120 subtype 9 recording for
asynchronous beans in the endpoint server, the endpoint server issues a message. The message
indicates that SMF 120 subtype 9 recording for asynchronous beans is not enabled. No SMF120
subtype 9 job usage records are collected.

The batch container user data type is 101 decimal or x65 hexadecimal. The data has a fixed length of 352
decimal or x160 hexadecimal. All of the fields have fixed lengths. The format of the user data is described
in the following table.

Table 22. Format of the user data. The table lists the decimal offset, the hexadecimal offset, the length, the format,
and the description of the user data.
Decimal Offset Hexadecimal offset Length Format Description

0 0 1 Binary Length of job ID

1 1 255 EBCDIC Job ID

256 100 32 EBCDIC Submitter ID

288 120 1 Binary Length of accounting
information

289 121 63 EBCDIC Accounting information

Formatting batch SMF records using the SMF Browser

Batch SMF 120 subtype 20 and subtype 9 records can be formatted using the batch add-on to the SMF
Browser for WebSphere Application Server for z/OS.

Follow the instructions packaged within the add-on and within the SMF Browser utility to invoke the
browser.

Integrating batch features in z/OS operating systems
Use these tasks to integrate batch features into the z/OS environment.

Procedure
v Manage multi-user Workload Manger (WLM) environments. See “Managing multi-user WLM

environments” on page 61 for more information.

v Manage worker threads. See “Managing worker threads” on page 61 for more information.

Chapter 2. Administering the batch environment 59

z/OS workload management and service policies
If users who work in a multi-user address space are assigned to the same service policy, normal WLM
behavior is assured. All user work in such an address space receives equal treatment. In an operating
system dispatcher queue priority, the z/OS workload management (WLM) manages running work at the
address space level.

Since traditional z/OS workloads were either one job or one online user at a time per address space, the
service policy of the address space is considered when determining dispatcher priority. When multi-user
address spaces, such as CICS® or WebSphere Application Server were introduced, the fundamental
WLM/dispatcher model was not changed, but rather accommodated.

However, in a multi-user address space where the user work is assigned to mixed service policies, only
the most aggressive service policy is considered for purposes of managing dispatcher priority. The service
policy with the most stringent performance goal and highest importance governs the dispatch priority of
such an address space.

Running mixed service policy in a single address space has a negative consequence. The work of lesser
importance in such an address space receives the same dispatcher prioritization as the most important
work in the address. This situation occurs because the most aggressive service policy governs that
prioritization. An attempt by the user to achieve service policy differentiated resource management is
undermined.

Transaction class propagation on z/OS operating systems
Service policies contain one or more transaction class definitions. The service policy creates the goal,
while the job transaction class is used to connect the job to that goal. When working with z/OS resident
applications, the goal defined in the service policy is only used for monitoring and reporting rather than
active workload management. The transaction class also serves the purpose of providing the TCLASS
value that is propagated to the request and used by Workload Manager for z/OS (WLM).

Transaction classes

Transaction classes are a subcontainer of the service policy for work being classified into the service
policy that can be used for finer-grained monitoring. The relationship between service policies and
transaction classes is one to many: A single service policy can have multiple transaction class definitions,
but each transaction class belongs to exactly one service policy. Every service policy has a default
transaction class, which in most scenarios is sufficient. Additional transaction classes are created when
finer-grained monitoring is necessary for the environment. Each transaction class name must be unique
within the cell.

In the batch environment each job is assigned to a job class. A job class establishes a policy for resource
consumption by a set of batch jobs. If a job does not specify a job class, a default one is provided.

Service policy classification in the batch environment is controlled by a set of rules defined to the job
scheduler: A rule that assigns any job to the default transaction class DEFAULT_TC.

The job scheduler evaluates the list of classification rules in order and assigns the transaction class
specified by the first matching rule. Only one classification rule set per cell is supported. A default
configurable transaction class, DEFAULT_TC by default, is associated with this set. If none of the
classification rules match a job, then the default transaction class is applied to that job. When only a batch
environment exists there is a field where you specify a transaction class name.

When a job dispatch request reaches the control region, the TCLASS is extracted from the HTTP request
header and used to associate the request with a WLM for z/OS service class. An enclave is created
having the indicated service class and it is dispatched using WLM to a servant region where the job is run.
Queuing and prioritization to achieve service class goals is done by WLM for z/OS.

60 Administering batch environments

Managing multi-user WLM environments
Use the WebSphere Application Server workload management (WLM) to control the performance of and
the number of application server regions in z/OS.

Before you begin

You must define one or more server instances on one or more systems within the WebSphere node. Each
server instance consists of a controller region and one or more servant regions. You must start controller
regions as MVS started tasks, while servant regions are started automatically by WLM on an as-needed
basis.

About this task

You can deploy applications within a WebSphere generic server. WebSphere servers are configured, by
default, to allow only one servant region. The application server administrator must use the administrative
console to allow the generation of multiple servant regions.

Procedure
v Configure the application servants setting. Configure the application server minimum/maximum servants

setting as follows:

Min servants <= number of possible service policies <= max servants

v To change the minimum and maximum number of servant instances using the administrative console,
select Servers > Server Types > WebSphere application servers > server_name. Click Java and
Process Management > Server instance. Check the box Multiple Instances Enabled and type the
minimum and maximum number of servant instances.

Managing worker threads
Use this topic to support Object Request Broker (ORB) service advanced settings. The workload profile
specifies the server workload profile, which can be ISOLATE, IOBOUND, CPUBOUND, or LONGWAIT.

About this task

Not only does workload management (WLM) dispatch work to servants according to service policy, but it
also does so only if it has available worker threads. WLM worker threads are regular threads that
specifically register with WLM as work receivers. In the WebSphere Application Server for z/OS
implementation, this pool of threads is static. The pool in an address space does not grow or contract. The
number of worker threads governs the maximum number of concurrent requests that WLM accepts in a
servant. However, this situation applies only to HTTP, IIOP, and Java Message Service (JMS) driven
requests. This thread pool does not handle asynchronous beans. The number of threads allocated to this
pool is governed by an external object known as the ORB Workload profile.

Procedure
1. To configure the workload profile in the administrative console, click Servers > Server Types >

WebSphere application servers > server_name > Container services > ORB service > z/OS
additional settings.

ISOLATE
Number of threads is 1. Specifies that the servants are restricted to a single application thread.
Use ISOLATE to ensure that concurrently dispatched applications do not run in the same
servant. Two requests processed in the same servant can cause one request to corrupt
another.

IOBOUND
Default - Number of threads is 3 * Number of processors. Specifies more threads in
applications that perform I/O-intensive processing on the z/OS operating system. The

Chapter 2. Administering the batch environment 61

calculation of the thread number is based on the number of processors. IOBOUND is used by
most applications that have a balance of processor intensive and remote operation calls. A
batch job is an example that uses the IOBOUND profile.

CPUBOUND
Number of threads is the number of processors. Specifies that the application performs
processor-intensive operations on the z/OS operating system, and therefore, would not benefit
from more threads than the number of processors. The calculation of the thread number is
based on the number of processors. Use the CPUBOUND profile setting in processor intensive
applications, like compute-intensive (CI) jobs, XML parsing, and XML document construction,
where the vast majority of the application response time is spent using the processor.

LONGWAIT
Number of threads is 40. Specifies more threads than IOBOUND for application processing.
LONGWAIT spends most of its time waiting for network or remote operations to complete. Use
this setting when the application makes frequent calls to another application system, like
Customer Information Control System (CICS) screen scraper applications, but does not do
much of its own processing.

2. To change the minimum and maximum number of servant instances using the administrative console,
select Servers > Server Types > WebSphere application servers > server_name. Under Server
Infrastructure, click Java and Process Management > Server Instance. Check the box Multiple
Instances Enabled , and type the minimum and maximum number of servant instances.

Min servants <= number of possible service policies <= max servants

Results

Number of processors is the number of processors online when the controller starts. You can look at
message BBOO0234I in the controller job log to check the number of worker threads.

Enabling job usage information
The job scheduler records usage data for charge-back accounting when enabled through the
administrative console. This function is available for all operating systems and can be enabled and
disabled through configuration settings. Job usage information is not enabled by default.

Before you begin

Configure the job scheduler.

Read the topic about the SMF record type 120. Also, see the z/OS MVS System Management
Facility (SMF) manual, order number SA22-7630, for additional information about using SMF records.

Procedure
1. In the administrative console, click System administration > Job scheduler.

The Job scheduler page provides configuration settings for job usage.

2. Select Record usage data in scheduler database to record job usage information to the job usage
database table.

3. Select to record job usage information to the System Management Facility (SMF) data set.

SMF recording is activated and deactivated along with the activation and deactivation of SMF
recording for the Java Platform, Enterprise Edition (Java EE) container.

Job usage data can be recorded with either SMF 120 subtype 9 records or SMF 120 subtype 20
records. Use the RECORD_SMF_SUBTYPES job scheduler custom property to indicate the preferred
subtype.

a. If you are collecting SMF 120 subtype 9 records, set properties that enable SMF request activity.

62 Administering batch environments

You can use the administrative console or MVS Modify commands to set properties that enable
SMF request activity.

v Using the administrative console:

1) Click Servers > Server Types > WebSphere application servers > server_name > Java
and Process Management > Process definition > Environment entries > New.

2) Create two environment entry properties.

– Specify a name of server_SMF_request_activity_enabled and value of 1 (or true) for
one property.

– Specify a name of server_SMF_request_activity_async and value of 1 (or true) for the
other property.

v Using the MVS Modify commands, set the properties to on:

– f server_name,smf,request,on

– f server_name,smf,request,async,on

b. On the Job scheduler page of the administrative console, select Record usage data in SMF (z/OS
only).

c. Click Custom properties to go to the Job scheduler custom property page. Set the
RECORD_SMF_SUBTYPES custom property to 9 for subtype 9 records or to 20 for subtype 20
records.

Rolling out batch application editions
Batch applications are Java Platform, Enterprise Edition (Java EE) applications that conform to one of the
batch programming models. By rolling out an edition, you replace an active edition with a new edition.

Before you begin

You must have an application edition that is installed and started, and have configurator or administrator
administrative privileges to perform this task.

Note: Application edition rollout fails when two user IDs on two administrative consoles attempt a parallel
application edition rollout.

About this task

The new edition might be a simple modification to the application, such as a bug fix, or a more substantial
change. As long as the new edition is compatible with earlier versions, you can perform a rollout to replace
the active edition without affecting existing clients. To roll out a new edition, you must first install the
application edition with the new edition information.

Procedure
1. Install the new edition. Specify your new edition information. Use the following example to specify the

new edition.

a. Type 2.0 in the Application edition field.

b. Type Second edition in the Application description field.

c. Select the same deployment targets that are used for the current edition.

2. Save and synchronize your nodes.

3. Start the rollout. Click OK. This action starts an interruption-free replacement of the older edition with
your new edition.

Chapter 2. Administering the batch environment 63

Results

For an edition that is not in validation mode, the new edition replaces the current edition after the rollout
completes. An edition that is in validation rolls out on the original deployment target and the cloned
environment is deleted. If the jobs of the batch rollout application are running on the quiesced endpoint,
the job scheduler will cancel the jobs after the drainage time.

What to do next

To validate the results, select Applications > Edition Control Center > application_name. Your new
edition is the active edition on the deployment target. The new edition automatically starts, because it
replaces a running edition.

When an application edition in validation mode is rolled out, the binding names must be changed back to
the original values. For example: /clusters/cluster1-validation/jdbc/CustomerData must be changed
back to /clusters/cluster1/jdbc/CustomerData.

Job scheduler custom properties
Custom properties modify the job scheduler configuration. You can use these settings to tune the job
scheduler behavior beyond the settings that are in the administrative console.

You can use the custom properties page to define the following job scheduler custom properties:

v “MaxConcurrentDispatchers”

v “UseHTTPSConnection”

v “RECORD_SMF_SUBTYPES” on page 65

v “JOB_SECURITY_POLICY” on page 65

v “JOB_SECURITY_DEFAULT_GROUP” on page 65

v “JOB_SECURITY_ADMIN_GROUP” on page 66

v “UseAPCEndpointSelection” on page 66

v “WXDBulletinBoardProviderOption” on page 66

MaxConcurrentDispatchers
Define this custom property if jobs are being dispatched slowly when large numbers of jobs are submitted.
By default, MaxConcurrentDispatchers is set to 100. MaxConcurrentDispatchers is an optional custom
property.

Table 23. MaxConcurrentDispatchers custom property values. The table includes the scope, valid values, and
default for the custom property.
Scope Valid values Default

Job scheduler Integer value greater than 0 100

UseHTTPSConnection
Define this custom property if you want to enable HTTP SSL connections between the job scheduler and
the common batch container. By default, HTTP SSL connections are disabled. UseHTTPSConnection is an
optional custom property.

64 Administering batch environments

Table 24. UseHTTPSConnection custom property values. The table includes the scope, valid values, and default for
the custom property.
Scope Valid values Default

Job scheduler
v true

Enables HTTP SSL connections

v false

Disables HTTP SSL connections

false (disabled)

RECORD_SMF_SUBTYPES
Define this property to indicate which SMF 120 record subtype you want to use to record job usage data.
By default, SMF 120 subtype 20 records are used. RECORD_SMF_SUBTYPES is an optional custom
property.

Table 25. RECORD_SMF_SUBTYPES custom property values. The table includes the scope, valid values, and
default for the custom property.
Scope Valid values Default

Job scheduler cell
v 20

Use SMF120 subtype 20 records.

v 9

Use SMF120 subtype 9 records.
Note: SMF 120 subtype 9 support for batch jobs requires that SMF 120 subtype 9 recording
for asynchronous beans is enabled on the endpoint server. SMF 120 subtype 9 support for
asynchronous beans is available on WebSphere Application Server Version 8.0.0.1 or later.
Earlier versions are not supported. If you specify RECORD_SMF_SUBTYPES=9 on an earlier
version, the job scheduler issues a message. The message indicates that SMF 120 subtype
9 records are not supported on earlier versions of WebSphere Application Server. The job
scheduler reverts to SMF 120 subtype 20 records.
Note: If you specify RECORD_SMF_SUBTYPES=9 without also enabling SMF 120 subtype 9
recording for asynchronous beans in the endpoint server, the endpoint server issues a
message. The message indicates that SMF 120 subtype 9 recording for asynchronous
beans is not enabled. No SMF120 subtype 9 job usage records are collected.

v ALL

Use both SMF120 subtype 20 and SMF120 subtype 9 records.

20

JOB_SECURITY_POLICY
Define this property to indicate whether administrative roles, groups, or a combination of the two can act
on a set of jobs.

Table 26. JOB_SECURITY_POLICY custom property values. The table includes the scope, valid values, and default
for the custom property.
Scope Valid values Default

Job scheduler
v ROLE

Specifies that the batch domain applies role-based job security. This behavior is consistent
with version 6.1.1 of batch.

v GROUP

Specifies that the batch domain uses only group-affiliation as the basis for job security.

v GROUPROLE

This setting specifies that the batch domain uses group and role as the basis for job security.

ROLE

JOB_SECURITY_DEFAULT_GROUP
Define this custom property so that you can assign a user group to a job. You can use this property if
either group or group and role security is active.

Chapter 2. Administering the batch environment 65

You can also assign a group to a job using the group attribute on the job definition in the xJCL. The group
attribute takes precedence over the value on the JOB_SECURITY_DEFAULT_GROUP custom property. If
you do not specify the group attribute on the job definition or this custom property, the job scheduler
assigns the default group name.

Table 27. JOB_SECURITY_DEFAULT_GROUP custom property values. The table includes the scope, valid values,
and default for the custom property.
Scope Valid values Default

Job scheduler A user-defined user group name JSYSDFLT

JOB_SECURITY_ADMIN_GROUP
Define this custom property so that you can assign an administrative group to each job.

Table 28. JOB_SECURITY_ADMIN_GROUP custom property values. The table includes the scope, valid values,
and default for the custom property.
Scope Valid values Default

Job scheduler A user defined administrative group name JSYSADMN

UseAPCEndpointSelection
Define this property if you want to use the application placement controller for job placement. You cannot
use the application placement controller for job placement on the z/OS platform. Setting this property
allows the application placement controller to select the endpoint. Otherwise, the grid application
placement does the selection.

Table 29. WXDBulletinBoardProviderOption custom property values. The table includes the scope, valid values, and
default for the custom property.
Scope Valid values Default

Job scheduler true false

WXDBulletinBoardProviderOption
Define this property if you want to use the application placement controller for job placement. You cannot
use the application placement controller for job placement on the z/OS platform. Setting this custom
property with a value of HAMBB overlays the base bulletin board for Intelligent Management with the high
availability manager bulletin board. Batch and Intelligent Management can then use the same bulletin
board to talk to each other.

Table 30. WXDBulletinBoardProviderOption custom property values. The table includes the scope, valid values, and
default for the custom property.
Scope Valid values Default

Job scheduler cell HAMBB None

Port number settings for batch
Identify the default port numbers used in the various configuration processes to avoid port conflicts.

Open certain ports in any firewalls that are running between the deployment manager and node agent
server processes to avoid conflicts with other assigned ports when configuring resources or assigning port
numbers to other applications. Additionally, when you configure a firewall, enable access to specific port
numbers.

If you modify the ports, or if you want to confirm the assigned port, check the port assignments in the
app_install_root/config/cells/cell_name/nodes/node_name/serverindex.xml file. If more than one node
exists, you must check the port assignment for each node.

66 Administering batch environments

The following table is a list of port assignments that the node agent server uses by default. When you
federate an application server node into a deployment manager cell, the deployment manager instantiates
the node agent server process on the application server node. The node agent server uses these port
assignments by default. When multiple processes share a port on the same node, the configuration uses
the next number in the sequence for the additional processes. For example, if three processes are
running, the BOOTSTRAP_ADDRESS port for each process is 2809, 2810, and 2811.

For a complete list of default port definitions, see the topic on port settings. For information about security
ports, see the topic on inbound ports.

Table 31. Default port definitions for the node agent server process. The table lists the port name, then a description
and default value for the port.
Port Name Description Default Value (increments

for multiple processes)

BOOTSTRAP_ADDRESS The TCP/IP port on which the name service listens. This port is
also the RMI connector port. Specify this port with the
administrative console or with the chgwassvr script.

2809

ORB_LISTENER_ADDRESS The TCP/IP port on which the application server Object Request
Broker (ORB) listens for requests. The location service daemon
for the node also listens on this port. Specify this port with the
administrative console or with the chgwassvr script.

9100

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS The TCP/IP port on which the Secure Association Services
(SAS) listen for inbound authentication requests. Specify this port
with the administrative console or with the chgwassvr script.

9901

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS The TCP/IP port on which the Common Secure Interoperability
Version 2 (CSIV2) Service listens for inbound client
authentication requests. Specify this port with the administrative
console or with the chgwassvr script.

9202

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS The TCP/IP port on which the Common Secure Interoperability
Version 2 (CSIV2) Service listens for inbound server
authentication requests. Specify this port with the administrative
console or with the chgwassvr script.

9201

NODE_DISCOVERY_ADDRESS The TCP/IP port on which the node discovery service for the
node agent listens. Specify this port with the administrative
console or with the chgwassvr script.

7272

NODE_MULTICAST_DISCOVERY_ADDRESS The TCP/IP port for the multicast discovery service on which the
node agent listens. Specify this port with the administrative
console or with the chgwassvr script.

5000

SOAP_CONNECTOR_ADDRESS This port is required by every WebSphere process to enable
SOAP connectivity for JMX calls when using the wsadmin script.

8879

OVERLAY_UDP_LISTENER_ADDRESS Used for peer-to-peer (P2P) communication. The ODC (On
Demand Configuration) and asynchronous PMI components use
P2P as their transport. This port is required by every WebSphere
Extended Deployment process.

11001

OVERLAY_TCP_LISTENER_ADDRESS Used for P2P communication. The ODC (On Demand
Configuration) and asynchronous PMI components use P2P as
their transport. This port is required by every WebSphere
Extended Deployment process.

11002

XD_AGENT_PORT The deployment manager, the node agents, and the middleware
agents each have one XD_AGENT_PORT. Unlike the OVERLAY
ports, the application servers are not configured with
XD_AGENT_PORT ports. Used to enable communication
between the deployment manager, the node agents, and the
middleware agents. The ODR uses this port to collect information
from other servers, including node agents. Ensure that this port
is available to all servers that the Intelligent Management ODR is
managing.

7061

DRS_CLIENT_ADDRESS Deprecation: This port is deprecated and is no longer used in
the current version of the product.

7873

During the addNode command operation, the filetransfer application uses port 9090 by default. The
filetransfer application uses the same HTTP transport port that is used by the administrative console. If
security is enabled, the default secured port 9043 must be opened in the firewall. If you modify the ports,
or if you want to confirm the assigned port, check the port assignments in the app_install_root/config/
cells/cell_name/nodes/node_name/servers/dmgr/server.xml file.

Chapter 2. Administering the batch environment 67

Table 32. Default port definitions for the filetransfer application. The tables includes the port number and its
default value.
Port Name Default Value

Default filetransfer application Port 9090

Secured - Default filetransfer application port 9043

When you federate an application server node with the embedded messaging server feature into a
deployment manager cell, the deployment manager instantiates a Java Message Service (JMS) server
process, jmsserver, on the application server node. The following table lists the port assignments that the
JMS server uses by default:

Table 33. Default port definitions for the JMS server. The tables includes the port number and its default value.
Port Name Default Value

JMSSERVER_DIRECT_ADDRESS 5559

JMSSERVER_QUEUED_ADDRESS 5558

SOAP_CONNECTOR_ADDRESS 8879

JMSSERVER SECURITY PORT 5557

Batch administrator examples
Batch administrator examples are examples of code snippets, command syntax, and configuration values
that are relevant to performing administrative and deployment tasks in the batch environment.

The samples in this section consist of xJCL samples and XML schemas for batch jobs, native jobs, and
compute-intensive jobs.

xJCL sample for a batch job
The following sample illustrates a batch job, which demonstrates that you can invoke existing session
beans from within job steps.
<job name="PostingsSampleEar" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<jndi-name>ejb/com/ibm/websphere/samples/PostingsJob</jndi-name>

<step-scheduling-criteria>
<scheduling-mode>sequential</scheduling-mode>
</step-scheduling-criteria>

<checkpoint-algorithm name="${checkpoint}">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.${checkpoint}</classname>
<props>
<prop name="interval" value="${checkpointInterval}" />
</props>
</checkpoint-algorithm>

<results-algorithms>
<results-algorithm name="jobsum">
<classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>
</results-algorithm>
</results-algorithms>

<substitution-props>
<prop name="wsbatch.count" value="5" />
<prop name="checkpoint" value="timebased" />
<prop name="checkpointInterval" value="15" />
<prop name="postingsDataStream" value="${was.install.root}${file.separator}temp${file.separator}postings" />

</substitution-props>

68 Administering batch environments

<job-step name="Step1">

<jndi-name>ejb/DataCreationBean</jndi-name>

<!-- apply checkpoint policy to step1 -->
<checkpoint-algorithm-ref name="${checkpoint}" />

<results-ref name="jobsum"/>

<batch-data-streams>
<bds>

<logical-name>myoutput</logical-name>

<impl-class>com.ibm.websphere.samples.PostingOutputStream</impl-class>

<props>

<prop name="FILENAME" value="${postingsDataStream}" />

</props>
</bds>
</batch-data-streams>

<props>

<prop name="wsbatch.count" value="${wsbatch.count}" />
</props>
</job-step>

<job-step name="Step2">

<step-scheduling condition="OR">
<returncode-expression step="Step1" operator="eq" value="0" />

<returncode-expression step="Step1" operator="eq" value="4" />
</step-scheduling>

<jndi-name>ejb/PostingAccountData</jndi-name>
<checkpoint-algorithm-ref name="${checkpoint}" />
<results-ref name="jobsum"/>

<batch-data-streams>
<bds>

<logical-name>myinput</logical-name>
<impl-class>com.ibm.websphere.samples.PostingStream</impl-class>

<props>
<prop name="FILENAME" value="${postingsDataStream}" />
</props>

</bds>
</batch-data-streams>
</job-step>

<job-step name="Step3">
<step-scheduling>

<returncode-expression step="Step2" operator="eq" value="4" />
</step-scheduling>

<jndi-name>ejb/OverdraftAccountPosting</jndi-name>
<checkpoint-algorithm-ref name="${checkpoint}" />
<results-ref name="jobsum" />

Chapter 2. Administering the batch environment 69

<batch-data-streams>
<bds>

<logical-name>dbread</logical-name>
<impl-class>com.ibm.websphere.samples.OverdraftInputStream</impl-class>

</bds>
</batch-data-streams>

</job-step>
</job>

XML schema for a batch job
The following example shows the XML schema for a batch job:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="classname" type="xsd:string" />
<xsd:element name="impl-class" type="xsd:string" />
<xsd:element name="jndi-name" type="xsd:string" />
<xsd:element name="logical-name" type="xsd:string" />

<xsd:element name="scheduling-mode">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="sequential"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="required" >
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="[YNyn]"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="batch-data-streams">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="bds" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="required-capability" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="bds">
<xsd:complexType>

<xsd:all>
<xsd:element ref="logical-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="impl-class" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="checkpoint-algorithm">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="classname" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />

70 Administering batch environments

</xsd:complexType>
</xsd:element>

<xsd:element name="checkpoint-algorithm-ref">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="required-capability">
<xsd:complexType>

<xsd:attribute name="expression" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="results-algorithm">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="classname" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="required" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="results-algorithms">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="results-algorithm" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="results-ref">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="substitution-props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="jndi-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="job-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="step-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="checkpoint-algorithm" maxOccurs="unbounded" minOccurs="1"/>
<xsd:element ref="results-algorithms" maxOccurs="1" minOccurs="0"/>
<xsd:element ref="substitution-props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="job-step" maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class" type="xsd:string" use="optional" />
<xsd:attribute name="accounting" type="xsd:string" use="optional" />
<xsd:attribute name="default-application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="job-step">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="step-scheduling" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="jndi-name" minOccurs="1" maxOccurs="1"/>

Chapter 2. Administering the batch environment 71

<xsd:element ref="checkpoint-algorithm-ref" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="results-ref" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="batch-data-streams" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="prop">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="returncode-expression">
<xsd:complexType>

<xsd:attribute name="step" type="xsd:string" use="required" />
<xsd:attribute name="operator" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="step-scheduling">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="returncode-expression" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="condition" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="step-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="scheduling-mode" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

xJCL sample for a compute intensive job
The xJCL sample is a generic compute intensive sample.
<?xml version="1.0" encoding="UTF-8" ?>
<job name="OpenGrid" class="xyz" accounting="accounting info" default-application-name="tryit"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<job-scheduling-criteria>
<required-capability expression="someExpression" />
<required-capability expression="anotherExpression" />
</job-scheduling-criteria>

<substitution-props>
<prop name="PATH" value="C:\\windows;C:\\java\\jre\\bin" />
</substitution-props>

<job-step name="Step1" application-name="tryit">

72 Administering batch environments

<env-entries>
<env-var name="PATH" value="${PATH}" />
<env-var name="CLASSPATH" value="C:\\windows" />
</env-entries>

<exec executable="java">
<arg line="command line args here" />
<arg line=" and more command line args here" />
</exec>

</job-step>

</job>

XML schema for a compute intensive job
The following example shows the XML schema for a compute-intensive job:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="classname" type="xsd:string" />
<xsd:element name="jndi-name" type="xsd:string" />

<xsd:element name="required-capability">
<xsd:complexType>

<xsd:attribute name="expression" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="substitution-props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="required-capability" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="jndi-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="job-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="substitution-props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="job-step" maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class" type="xsd:string" use="optional" />
<xsd:attribute name="accounting" type="xsd:string" use="optional" />
<xsd:attribute name="default-application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="job-step">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="classname" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

Chapter 2. Administering the batch environment 73

<xsd:element name="prop">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

xJCL sample for a native execution job
The native execution sample is for a single-step job, which are the only type of jobs that are supported.
<?xml version="1.0"?>
<job name="GridUtilitySample" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<job-step name="Step1" application-name="tryit">
<env-entries>
<env-var name="PATH" value="/opt/IBM/WebSphere/AppServer/java/jre/bin"/>
<env-var name="CLASSPATH" value="/user/classes"/>

</env-entries>
<exec executable="java">

<arg line="GridUtilitySample"/>
</exec>

</job-step>
</job>

XML schema for a native execution job
This XML schema example can be used with xJCL to implement a native execution job.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="arg">
<xsd:complexType>

<xsd:attribute name="line" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="required-capability">
<xsd:complexType>

<xsd:attribute name="expression" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="substitution-props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="env-entries">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="env-var" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="env-var">
<xsd:complexType>

74 Administering batch environments

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="exec">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="arg" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="executable" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="job-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="required-capability" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="job-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="substitution-props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="job-step" maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class" type="xsd:string" use="optional" />
<xsd:attribute name="accounting" type="xsd:string" use="optional" />
<xsd:attribute name="default-application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="job-step">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="env-entries" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="exec" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="prop">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

CommandRunner utility job step
Use the CommandRunner utility job step to run shell command lines as job steps. The shell command
lines can include shell commands, shell scripts, and compiled programs.

The CommandRunner utility runs the specified shell command line in an operating system process.
Standard output and standard error streams are captured and written to the job log. The command-line
return code is captured and set as the step return code. If the job step is canceled, the return code is -8.

Command syntax

Use the following syntax for the CommandRunner utility:

Chapter 2. Administering the batch environment 75

<job-step name={step_name}>
<classname>com.ibm.websphere.batch.utility.CommandRunner</classname>
{job_step_properties}
</job-step>

For example, the following job step code runs a command-line Java program:
<job-step name="RunJava">
<classname>com.ibm.websphere.batch.utility.CommandRunner</classname>
<props>
<prop name="com.ibm.websphere.batch.cmdLine"

value="java.exe com.ibm.websphere.batch.samples.TestCase" />
<prop name="CLASSPATH" value="${user.dir}\testcases;${user.dir}\bin" />
<prop name="Path" value="${java.home}\bin;${env:Path}" />
</props>
</job-step>

Required job step property

The following property is required for the CommandRunner utility job step.

com.ibm.websphere.batch.cmdLine
Specifies the command-line invocation, including arguments.

For example, run the java.exe file as the command line:
<prop name="com.ibm.websphere.batch.cmdLine"

value="java.exe com.ibm.websphere.batch.samples.TestCase" />

Optional job step properties

The following properties are optional for the CommandRunner utility job step.

com.ibm.websphere.batch.workingDir
Specifies working directory in which the specified command-line runs.

For example, enable /tmp as the working directory on Linux:
<prop name="com.ibm.websphere.batch.workingDir" value="/tmp" />

The default is undefined.

com.ibm.websphere.batch.debug
Specifies true or false to indicate whether the command line runs in debug mode or not. Debug
mode prints debug messages to assist you in resolving problems with variable substitution and
other issues that prevent command lines from running correctly.

For example, enable the debug mode:
<prop name="com.ibm.websphere.batch.debug" value="true" />

The default is false.

com.ibm.websphere.batch.expansion
Specifies true or false to enable or disable job step property expansion, also known as property
substitution. Disable this feature to improve step performance for steps with large property maps
that do not depend on property expansion.

For example, disable property expansion:
<prop name="com.ibm.websphere.batch.expansion" value="false" />

The default is true.

com.ibm.websphere.batch.shell.executor
Specifies the shell executor command. Use this property to specify a custom shell as your
command-line executor.

For example, specify a custom shell as fastshell:
<prop name="com.ibm.websphere.batch.shell.executor" value="fasthell" />

76 Administering batch environments

The default is the value of the com.ibm.websphere.batch.command.runner.shell.executor system
property.

com.ibm.websphere.batch.shell.failure.rc
Specifies the shell execution failure return code. This return code is returned by the shell executor
to indicate the specified command line can not be run. When the shell executor return code
matches the shell failure return code value, the CommandRunner utility job sets the job step return
code to the value of com.ibm.websphere.batch.step.failure.rc property.

For example, the shell returns -1 when the specified command line fails to run:
<prop name="com.ibm.websphere.batch.shell.failure.rc" value="-1" />

The default is the value of the com.ibm.websphere.batch.command.runner.shell.failure_rc system
property.

com.ibm.websphere.batch.step.failure.rc
Specifies the job step return code when the command line fails to execute. This job step return
code is returned when the shell executor return code matches the value of
com.ibm.websphere.batch.shell.failure.rc.

For example, the job step returns -1 when the shell fails to run:
<prop name="com.ibm.websphere.batch.step.failure.rc" value="-1" />

System properties

All the CommandRunner utility system properties are optional.

com.ibm.websphere.batch.command.runner.shell.executor
Specifies the default value for the com.ibm.websphere.batch.shell.executor job step property.

The default is cmd.exe /c.

The default is sh –c.

com.ibm.websphere.batch.command.runner.shell.failure_rc
Specifies the default value for the com.ibm.websphere.batch.shell.failure.rc job step property.

The default is 1.

The default is 127.

Property substitution

The CommandRunner utility job step supports property substitution for expansion. You can do expansion
using xJCL substitution properties, Java system properties, and process variables as demonstrated in the
following examples.

xJCL substitution property
The following example substitutes the testcase.dir xJCL substitution property as a working
directory.
<prop name="com.ibm.websphere.batch.workingDir" value="${testcase.dir}" />

Java system property
The following example substitutes the user.dir Java system property in CLASSPATH process
variable:
<prop name="CLASSPATH" value="${user.dir}/classes" />

Process variable
The following example substitutes the PATH process variable in the new value of the PATH
process variable:
<prop name="PATH" value="/tmp:${env:PATH}" />

Chapter 2. Administering the batch environment 77

Important: Substitution properties are treated as Java system properties, if they are displayed in
the Java system properties list. Otherwise, they are treated as xJCL substitution
properties. Process variable substitution is denoted by the special ${env:<variable
name>} syntax.

Process variables

The CommandRunner utility adds all job step properties, after substitution, to the process variable pool for
the process in which the specified command-line runs.

WSGrid properties file examples
Use the WSGRid properties file examples in your job submissions.

Example: Jobs from repository properties file
WSGrid can submit jobs stored in the job repository. You can use a repository properties file to specify the
saved job definition and its substitution properties.

If the PostingsSample job is stored in the repository under the name PostingsSample, you can use the
following properties file, named WSGrid.repo-postings.job, to specify the saved job definition and its
substitution properties:
This specifies which job from the repository to submit.
repository-job=PostingsSample

The following substitution property values will be passed to the job.
substitution-prop.wsbatch.count=5
substitution-prop.checkpoint=timebased
substitution-prop.checkpointInterval=15
substitution-prop.postingsDataStream=${was.install.root}/temp/postings"

The WSGrid invocation to submit the job described by the preceding properties file is:
WSGrid WGrid.cntl WSGrid.repo-postings.job

Example: Compute-intensive properties file
The example file WSGrid.ci.job illustrates the properties necessary to define the single step of the
SimpleCI compute intensive job.
Specify name by which this job is known job-name=SimpleCIEar

Note, if not specified application-name defaults to job-name.

This is the jndi name of the Compute Intensive Controller system SLSB.
controller-jndi-name=ejb/com/ibm/ws/ci/SimpleCIEJB

This is the name of the compute intensive POJO class that implements the
business logic
ci-class-name=com.ibm.websphere.ci.samples.SimpleCIWork
The following properties are passed to SimpleCIWork
prop.calculationTimeInSecs=30
prop.outputFileName=/temp/ci.out

The WSGrid invocation to submit the job described by the preceding properties file is:
WSGrid WGrid.cntl WSGrid.ci.job

Example: Transactional batch properties file
The example file WSGrid.batch.job illustrates the properties necessary to define the first step of the
PostingsSample batch job.

78 Administering batch environments

Specify name by which this job is known job-name=PostingsSample

Use default job class - uncomment to specify custom class
job-class=<enter class name here>

This is the JNDI name of the BatchController system SLSB.
controller-jndi-name=ejb/com/ibm/websphere/samples/PostingsJob

Specify name of target Java(TM) Platform, Enterprise Edition (Java EE)application.
application-name=PostingsSampleEar

A time-based checkpoint algorithm is provided.

checkpoint-algorithm=com.ibm.wsspi.batch.checkpointalgorithms.timebased

Use the interval property of the algorithm, specified in seconds, to decide
how often to commit the global transaction when invoking a batch job step.
checkpoint-algorithm.interval=10

This is a logical JNDI name for the batch step; it has to match the ejb-reference declared
in the system SLSB for this batch step entity bean.

batch-bean-jndi-name=ejb/DataCreationBean

This is the output bds used by the DataCreationBean.
The logical name expected by the DataCreationBean is ’myoutput’

bds.myoutput=com.ibm.websphere.samples.PostingOutputStream

Specify the implementation class and bds input property named ’FILENAME’, expected
by this bds class. Change the value of the ’FILENAME’ property to a path
in the filesystem to write the postings output file.

bds.myoutput.FILENAME=/root/bds/sample/myostingsfile
Generic properties can be passed to the Batch Step. The DataCreationBean step uses
this property to control how many postings to create in the file associated with
PostingsOutputStream.
prop.name.wsbatch.count=5

Example: Restart job properties file
Use the WSGrid utility to restart jobs that are in the restartable state by using the job ID of the restartable
job of the properties file.

For example, if PostingSample:0001 ended in a restartable state, you can restart it by using the
restart.props file, which contains restart-job=postingSample:0001.

From the command prompt, issue this command:
>wsgrid.sh cntl.props restart.prop

The job specified in restart-prop is restarted.

Using the WSGrid utility to create restart.prop

Specify a file name using the third argument, as shown in the following:

>wsgrid.sh cntl.props job.props restart.prop

If a job ends in a restartable state, a file named restart.prop is created and the job ID is written as
shown in the example.

Chapter 2. Administering the batch environment 79

Example: xJCL file
Use the WSGrid invocation to submit a job for a pre-existing xJCL file.

The following invocation includes a pre-existing xJCL file job.xml and a sample control file WSGrid.cntl:
WSGrid WSGrid.cntl job.xml

Example: Control file
A control file can contain the following properties.
host of my job scheduler
scheduler-host=zwasc013.lab.ibm.com
http port of my job scheduler server
scheduler-port=9182
user id of job submitter
submitter-userid=jobman
job submitter password
submitter-password=pass2wrd

enable debug
debug=true
increase timeout to 8 seconds per message
timeout=8000

Example control file with encoded password

The password in the control file can be encoded for security purposes by using the
PropFilePasswordEncoder utility. For file WSGrid.cntl, which contains the control properties from the
previous example, the encoding utility is invoked as:
PropFilePasswordEncoder WSGrid.cntl submitter-password

After the PropFilePasswordEncoder is run against WSGrid.cntl file, the value of the submitter-password is
encoded in the WSGrid.cntl file. For example:
submitter-password={xor}OTAwPT4tbj4=

80 Administering batch environments

Chapter 3. Scripting batch applications

After you install the product, you can use scripts to complete various tasks.

jobrecovery.bat|.sh batch script
You can use the jobrecovery script to enable a secondary site to take over when the primary site fails.

Purpose

In this scenario, each site has a separate WebSphere cell where an active job is running on the primary
site, and a stopped or job scheduler is on the secondary site. The batch cells on the primary and
secondary sites are expected to be clones of one another with the same topography and the same names.
They share the same database, not replicas of a database.

Location

The jobrecovery script is located either in the app_server_root/bin directory or in the
app_server_root/profiles/{LRS_profiles}/bin directory on the designated LRS backup server. If the
script is run from the app_server_root/bin directory, the profileName option must be specified. Otherwise,
do not specify the profileName option. The user name and password options are required if security is
enabled on the server which is running the LRS. Run on the backup cell after the primary cell is shut
down. After it is run, the backup cell can be started.

Usage

When the primary site fails, you are instructed to follow a takeover procedure that includes the following
steps:

1. Ensure that all batch servers on the primary site are stopped.

2. Run the jobrecovery script on the secondary site.

3. Start the job scheduler on the secondary site.
./jobRecovery.sh server [options]

Options

-profileName profile
Use this optional parameter to specify the stand-alone application server profile name when the script
is run from the app_server_root/bin directory.

-username authentication username
Use this optional parameter to specify a user name.

-password authentication password
Use this optional parameter to specify an authentication password for the user name.

Example
./jobRecovery.sh server1 -profileName AppSrv01 -username wsadmin -password wspassword

uteconfig.bat|.sh batch script
You can use the uteconfig script to configure the unit test environment (UTE). Run the script to create a
job scheduler configuration on the WebSphere Application Server profile that is used in Rational
Application Developer.

© Copyright IBM Corp. 2012 81

Purpose

Use the uteconfig script to create a job scheduler configuration on the application server profile. The script
creates Derby resources, deploys the job scheduler application (LongRunningScheduler.ear), creates a
work manager, and otherwise configures a UTE on the profile. The UTE provides an environment for
testing applications developed with Rational Application Developer.

Location

The uteconfig.bat|.sh script is located in the bin directory of an application server profile; for example,
app_server_root/profiles/AppSrv01/bin. You must have a stand-alone application server profile to run the
script.

The uteconfig.bat|.sh script also is located in the main bin directory of the product; for example,
app_server_root/bin.

Usage
1. Open a command prompt on a bin directory that has the uteconfig.bat|.sh script.

It is recommended to run the uteconfig script from the bin directory of the application server profile. To
run the uteconfig script successfully from the main bin directory, app_server_root/bin, your product
installation must have only one application server profile.

2. Run the uteconfig.bat|.sh script.

The script takes about one minute to run and provides progress messages.

Options

None

Example
./uteconfig.sh

configCGSharedLib.py batch script
You can use the configCGSharedLib.py Jython script to assign the shared library to the job scheduler.

Purpose

The configCGSharedLib.py script is provided with the product. The configCGSharedLib.py script assigns
the shared library to the job scheduler.

Location

At installation, the configCGSharedLib.py script is copied onto the installation target in the
app_server_root/bin directory.

Usage

To run the configCGSharedLib.py script with the wsadmin utility, use this command:
wsadmin -lang jython -f configCGSharedLib.py <option>

You might have to modify the wsadmin command to wsadmin.sh or wsadmin.bat, depending on your
operating system environment.

To see a list of all available operations, use the following command:

82 Administering batch environments

wsadmin -lang jython -f configCGSharedLib.py --help

removePGC.py batch script
You can use the removePGC.py Jython script to remove the common batch container from your deployment
target.

Purpose

The removePGC.py script is provided with the product. The removePGC.py script removes the common batch
container from your deployment target or removes it when your deployment target is the only target.

Location

At installation, removePGC.py is copied onto the installation target machines in the app_server_root/bin
directory.

Usage

To run removePGC.py script with the wsadmin utility, use this command:
wsadmin -lang jython -f removePGC.py <option>

You might have to modify the wsadmin command to wsadmin.sh or wsadmin.bat, depending on your
operating system environment.

To see a list of all available operations, use the following command:
wsadmin -lang jython -f removePGC.py --help

Operations

Use the following option with this command:

--list
Lists the targets that have the common batch container.

Example

Use following command to list the targets which have the common batch container:
wsadmin -lang jython -f removePGC.py --list

For example:
>> wsadmin -lang jython -f removePGC.py --list
INFO: Grid Execution Environment was found on following targets:

cell=myCell,cluster=Endpoint1
cell=myCell,cluster=Endpoint2
cell=myCell,node=myNode01,server=server1

redeployLRS.py batch script
You can use the redeployLRS.py Jython script to redeploy the job scheduler on your deployment target.

Purpose

The redeployLRS.py script is provided with the product. The redeployLRS.py script redeploys the job
scheduler on your deployment target.

Chapter 3. Scripting batch applications 83

Location

At installation, redeployLRS.py is copied onto the installation target in the app_server_root/bin directory.

Usage

To run redeployLRS.py script with the wsadmin utility, use this command:
wsadmin -lang jython -f redeployLRS.py <option>

Modify the wsadmin command to wsadmin.sh or wsadmin.bat, depending on your operating system
environment.

To see a list of all available operations, use the following command:
wsadmin -lang jython -f redeployLRS.py --help

wsgridConfig.py batch script
Use the wsgridConfig.py script to configure the three steps that are required for configuring the external
scheduler interface.

Purpose

The wsgridConfig.py script performs the following three steps required for configuring the external
scheduler interface:

1. Installs JobSchedulerMDI.ear.

2. Configures the service integration bus.

3. Configures JMS artifacts.

Location

At installation, wsgridConfig.py is copied onto the installation target machines in the app_server_root/bin
directory.

Example

To configure WSGrid on a scheduler cluster, use the following command:
wsadmin.sh -user username -password userpassword -f ../bin/wsgridConfig.py

-install -cluster clusterName -providers providerList

where clusterName is the scheduler cluster name.

To configure WSGrid on a single scheduler server, use the following command:
wsadmin.sh -user username -password userpassword -f ../bin/wsgridConfig.py

-install -node nodeName -server serverName -providers providerList

where nodeName is the node name of the scheduler server.

providerList identifies a list of provider endpoints in the format
hostname1,portnumber1[;hostname2,portnumber2...], where portnumber identifies the
SIB_ENDPOINT_ADDRESS or SIB_ENDPOINT_SECURE_ADDRESS port of the scheduler server, and
hostname1 and hostname2 identifies the host name of the servers in the scheduler cluster.

To remove WSGrid configurations, use the following commands:
wsadmin.sh -user username -password userpassword -f ../bin/wsgridConfig.py
-remove -cluster clusterName

84 Administering batch environments

wsadmin.sh -user username -password userpassword -f ../bin/wsgridConfig.py
-remove -node nodeName -server serverName

JobSchedulerCommands command group for the AdminTask object
You can use the Jython or Jacl scripting languages to configure the job scheduler with the wsadmin tool.
The commands and parameters in the JobSchedulerCommands command group can be used to manage
configuration attributes and custom properties.

Use the following commands to manage the job scheduler:

v “showJobSchedulerAttributes”

v “modifyJobSchedulerAttribute” on page 86

v “createJobSchedulerProperty” on page 86

v “modifyJobSchedulerProperty” on page 87

v “removeJobSchedulerProperty” on page 88

v “listJobSchedulerProperties” on page 88

showJobSchedulerAttributes

The showJobSchedulerAttributes command shows all configuration attributes of the job scheduler.

Target object

None

Required parameters

None

Optional parameters

None

Return value

The command returns a list of all attributes of the job scheduler.

Batch mode example usage

v Using Jacl
$AdminTask showJobSchedulerAttributes

v Using Jython
AdminTask.showJobSchedulerAttributes()

Interactive mode example usage

v Using Jacl:
$AdminTask showJobSchedulerAttributes

v Using Jython:
AdminTask.showJobSchedulerAttributes()

Chapter 3. Scripting batch applications 85

modifyJobSchedulerAttribute

The modifyJobSchedulerAttribute command modifies a configuration attribute of the job scheduler.

Target object

None

Required parameters

-name
Specifies the name of the attribute to modify. (String)

The following attributes are supported.

1. datasourceJNDIName (default value is jdbc/lrsched)

2. databaseSchemaName (default value is LRSSCHEMA)

3. deploymentTarget (default value is none)

4. endpointJobLogLocation (default value is ${GRID_JOBLOG_ROOT})

5. enableUsageRecording (default value is false)

6. enableUsageRecordingZOS (default value is false)

Optional parameters

-value
Specifies the value of the attribute. (String) If not specified, the default value for the respective
attributes is assigned.

Return value

The command returns the job scheduler object ID.

Batch mode example usage

v Using Jacl:
$AdminTask modifyJobSchedulerAttribute {-name datasourceJNDIName -value "jdbc/ds"}

v Using Jython:
AdminTask.modifyJobSchedulerAttribute(’[-name datasourceJNDIName -value jdbc/ds]’)

Interactive mode example usage

v Using Jacl:
$AdminTask modifyJobSchedulerAttribute {-interactive}

v Using Jython:
AdminTask.modifyJobSchedulerAttribute(’[-interactive]’)

createJobSchedulerProperty

The createJobSchedulerProperty command creates custom properties for the job scheduler.

Target object

None

Required parameters

-name
Specifies the name of the custom property to create. (String)

86 Administering batch environments

-value
Specifies the value of the custom property. (String)

Optional parameters

-description
Specifies the description of the custom property. (String)

Return value

The command returns the properties object ID.

Batch mode example usage

v Using Jacl:
$AdminTask createJobSchedulerProperty {-name bjsProp1 -value "bjsprop1"}

v Using Jython:
AdminTask.createJobSchedulerProperty(’[-name bjsProp1 -value bjsprop1]’)

Interactive mode example usage

v Using Jacl:
$AdminTask createJobSchedulerProperty {-interactive}

v Using Jython:
AdminTask.createJobSchedulerProperty(’[-interactive]’)

modifyJobSchedulerProperty

The modifyJobSchedulerProperty command modifies custom properties for the job scheduler.

Target object

None

Required parameters

-name
Specifies the name of the custom property to modify. (String)

-value
Specifies the value of the custom property. (String)

Optional parameters

-description
Specifies the description of the custom property. (String)

Return value

The command returns the properties object ID.

Batch mode example usage

v Using Jacl:
$AdminTask modifyJobSchedulerProperty {-name bjsProp1 -value "bjsprop1"}

v Using Jython:
AdminTask.modifyJobSchedulerProperty(’[-name bjsProp1 -value bjsprop1]’)

Interactive mode example usage

Chapter 3. Scripting batch applications 87

v Using Jacl:
$AdminTask modifyJobSchedulerProperty {-interactive}

v Using Jython:
AdminTask.modifyJobSchedulerProperty(’[-interactive]’)

removeJobSchedulerProperty

The removeJobSchedulerProperty command removes custom properties of the job scheduler.

Target object

None

Required parameters

-name
Specifies the name of the custom property to remove. (String)

Optional parameters

None

Return value

The command returns the properties object ID.

Batch mode example usage

v Using Jacl:
$AdminTask removeJobSchedulerProperty {-name bjsProp1}

v Using Jython:
AdminTask.removeJobSchedulerProperty(’[-name bjsProp1]’)

Interactive mode example usage

v Using Jacl:
$AdminTask removeJobSchedulerProperty {-interactive}

v Using Jython:
AdminTask.removeJobSchedulerProperty(’[-interactive]’)

listJobSchedulerProperties

The listJobSchedulerProperties command lists all of the custom properties the job scheduler.

Target object

None

Required parameters

None

Optional parameters

None

Return value

88 Administering batch environments

The command returns a list of all of the custom properties of the job scheduler.

Batch mode example usage

v Using Jacl:
$AdminTask listJobSchedulerProperties

v Using Jython:
AdminTask.listJobSchedulerProperties()

Interactive mode example usage

v Using Jacl:
$AdminTask listJobSchedulerProperties

v Using Jython:
AdminTask.listJobSchedulerProperties()

Chapter 3. Scripting batch applications 89

90 Administering batch environments

Chapter 4. Developing batch applications

This section covers such areas as a procedure for developing batch applications, xJCL elements, and
sample batch applications.

Transactional batch and compute-intensive batch programming
models
The product provides a transactional batch programming model and a compute-intensive programming
model.

Both the transactional batch and compute-intensive programming models are implemented as Java
objects. They are packaged into an enterprise archive (EAR) file for deployment into the application server
environment. The individual programming models provide details on how the life cycle of the application
and jobs submitted to it are managed by the grid endpoints. Central to all batch applications is the concept
of a job to represent an individual unit of work to be run.

You can mix transactional batch, compute intensive, and native execution job steps. The run time uses a
controller that is the same for every job, regardless of the type of steps that the job contains. The
controller runs appropriate logic for the step, whether the step is a batch, compute-intensive, or native
execution step. These different job step types can also be run in parallel.

The Java Platform, Enterprise Edition (Java EE) applications that the application server hosts typically
perform short, lightweight, transactional units of work. In most cases, an individual request can be
completed with seconds of processor time and relatively little memory. Many applications, however, must
complete batch work that is computational and resource intensive. The batch function extends the
application server to accommodate applications that must perform batch work alongside transactional
applications. Batch work might take hours or even days to finish and uses large amounts of memory or
processing power while it runs.

COBOL container overview
The COBOL container enables COBOL modules to be loaded into the batch address space, and they are
invoked directly.

The container can be created and destroyed multiple times within the lifecycle of an application server.
Each container is created with a Language Environment® (LE) enclave separate from the server. The
container is assured of a clean LE each time it is created.

Java programs can pass parameters into COBOL and retrieve the results. The COBOL call stub generator
tool. is provided to create the Java call stubs and data bindings based on the data and linkage definitions
in the COBOL source. Additionally, JDBC Type 2 connections created by the Java program can be shared
with the COBOL program under the same transactional context.

Value of the COBOL container

The product provides a comprehensive execution environment for Java batch processing. Part of the
design of batch support is the integration with other information processing. COBOL has been a part of
batch processing since the very early days of computers, and there is significant investment in COBOL
assets. The COBOL container provides a means of direct integration of COBOL into Java processing.

© Copyright IBM Corp. 2012 91

Programming restrictions for COBOL programs

COBOL programs that run in the product environment have the following programming restrictions:

v User-defined error handlers are not allowed.

v Explicit transaction control is not allowed: for example, no COMMIT or ROLLBACK.

v DB2 special registers. such as SOLID or SCHEMA, cannot be set.

v DD access requires user code to dynamically allocate or deallocate the DD.

v Java invocation of ENTRY labels is not supported.

v COBOL invocation of Java code is not supported

COBOL compilation requirements

You must compile all COBOL modules that you use in the environment with the following options:

dll COBOL modules must be in DLL format.

rent COBOL modules must contain reentrant code.

thread
COBOL modules must be thread safe.

outdd(WCGILOUT)
Required for COBOL DISPLAY output to appear in product job logs.

SQL('ATTACH(RRSAF)')
Required for DB2 access.

You can specify these options in the COBOL source:
cbl dll,lib,rent,thread,outdd(wcgilout)

You can also specify these options as inputs to the COBOL compiler. For example, enter the following on
the cob2 command line:
cob2 -c -bdll,rent,thread,lib,list ’-qOUTDD(WCGILOUT)’ sample.cbl

Restrictions for the COBOL container

The product hosting the COBOL container must be configured with a workload profile of ISOLATE.

For information about how to configure the workload profile, read about ORB services advanced settings
on the z/OS platform.

JDBC data source restrictions for the COBOL container

The restrictions listed in this section apply to any JDBC data source that contains DB2 type-2 connections
that are shared between the Java and COBOL code through ILContainer.setDB2Connection. [Also, specify
the object type for ILContainer.setDB2Connection.]

These restrictions ensure that any DB2 data constructs that are opened by the COBOL code and that
persist across COMMIT boundaries, such as WITH HOLD CURSORs, are properly cleaned up when the
JDBC connection is closed.

Connection pooling must be DISABLED. You can disable connection pooling by using the
disableWASConnectionPooling property. To set this property using the administrative console, click
Resources > JDBC > Data sources > data_source_name > Custom properties > New. Add a custom
property named disableWASConnectionPooling and set the value to true.

92 Administering batch environments

Connection sharing must be set to UNSHARED. Connection sharing for the data source can be set to
UNSHARED by using the globalConnectionTypeOverride property. To set this property using the
administrative console, click Resources > JDBC > Data sources > data_source_name > Connection
pool properties > Connection pool custom properties > New. Add a custom property named
globalConnectionTypeOverride and set the value to unshared.

For more information about these properties, read about Tuning connection pools.

Developing COBOL container batch applications
You can use the COBOL container within the product to invoke COBOL modules from a Java-based batch
application.

Before you begin

Read the COBOL container overview topic for more detailed information.

About this task

The COBOL container provides a means of direct integration of COBOL into Java batch processing.

Procedure
1. Create a COBOL call stub Java class

If you want to call a COBOL module from a Java batch plain old Java object (POJO) in the batch
environment, you must first create a COBOL call stub Java class.

2. Compile a COBOL call stub Java class

You can compile COBOL call stubs with the marshal.jar and ilcontainer.jar files on the classpath.
The marshal.jar and ilcontainer.jar files are included with the COBOL call stub generator tool.

3. Invoke a COBOL call stub Java class.

Invoke the Java call stub from your batch application. Read the COBOL call stub Java class usage
example topic for more information.

4. Optional: Dynamically update a COBOL module

You can dynamically update a COBOL module without having to restart the application server.

Creating a COBOL call stub Java class
If you want to call a COBOL module from a Java batch plain old Java object (POJO) in the batch
environment, you must first create a COBOL call stub Java class.

Procedure
1. Install the COBOL call stub generator.

The COBOL call stub generator tool compressed file can be found in the <was-home>/lib directory of
your batch installation. Extract the file anywhere on your workstation.

Note: The COBOL call stub generator tool requires Java 1.6.

2. Create a COBOL call stub generator properties file for your system. Read the Creating a call stub
generator configuration file topic for more information.

3. Use the COBOL call stub generator tool to create a COBOL call stub Java class; for example:
$ cd COBOLCallStubGenerator
$ java –jar lib/COBOLCallStubGenerator.jar testcases/Sample01.cbl \

-configFile csg.properties
–callStubPackage com.ibm.ws.batch.ilc.sample \
-callStubClass Sample

Chapter 4. Developing batch applications 93

The COBOL call stub generator tool can also be invoked from within Rational Application Developer.
Read the Generating COBOL call stubs topic for more information about the tool.

The generated code is written to the src directory of the Rational Application Developer workspace and
project directory you specify on the WorkSpace and EclipseProjectName properties in the
csg.properties file, which is found in the COBOL call stub generator install directory
(/COBOLCallStubGenerator).

The COBOL call stub generator tool then writes Sample.java to the following directory:
${WorkSpace}/${EclipseProjectName}/src/com/ibm/ws/batch/ilc/sample

and any data binding classes for the linkage section variable used on the PROCEDURE statement to
the following directory:
${WorkSpace}/${EclipseProjectName}/src/com/ibm/ws/batch/ilc/sample/parameters

Compiling COBOL call stub Java classes
COBOL call stub Java classes must be compiled with the marshal.jar and ilcontainer.jar files on the
class path. The marshal.jar and ilcontainer.jar files are included with the COBOL call stub generator
tool.

Procedure
1. To compile the data bindings classes, use the following example:

$ CSG_LIB=/COBOLCallStubGenerator/lib
$ javac –cp ./;$CSG_LIB/marshal.jar;$CSG_LIB/ilcontainer.jar \
com/ibm/ws/batch/ilc/sample/parameters/*.java

2. To compile the call stub, use the following example:
$ javac –cp ./;$CSG_LIB/marshal.jar;$CSG_LIB/ilcontainer.jar \
com/ibm/ws/batch/ilc/sample/*.java

Note: Add the marshal.jar and ilcontainer.jar files to your IBM Rational Application Developer for
WebSphere Software product build path to compile the stub and data bindings classes.

Dynamically updating a COBOL module
You can dynamically update a COBOL module without having to restart the batch application server.

About this task

The COBOL module DLL is loaded by the ILContainer upon first invocation of the COBOL procedure, and
is released by the ILContainer when the ILContainer is destroyed, which is at the end of the batch step.

This function enables you to dynamically update the COBOL module between batch jobs or steps without
having to restart the batch application server. The updated COBOL module is dynamically loaded by the
ILContainer that is created during the next batch step.

Procedure
1. Update the COBOL module.

2. Run the batch application.

For more information about running batch applications, read about the batch programming model.

COBOL call stub Java class usage example
The COBOL call stub Java class usage example shows how a batch application can invoke a COBOL
procedure using the COBOL container.

In the example, the events take place in the following order:

1. The COBOL container is created.

94 Administering batch environments

2. The COBOL procedure call stub is created.

3. The parameter data is set into the COBOL procedure call stub.

4. A shared DB2 connection is set on the container.

5. The COBOL procedure is invoked using the container.

Steps 1, 2 and 5 are the minimum steps required to invoke a COBOL procedure using the container.
Steps 3 and 4 are optional. Step 3 is necessary only if the COBOL procedure receives parameters, and
step 4 is necessary only if the COBOL procedure accesses DB2.
import com.ibm.websphere.batch.ilc.ILContainerFactory;
import com.ibm.websphere.batch.ilc.ILContainer;
import com.ibm.websphere.batch.ilc.ILContainerException;
import com.ibm.websphere.batch.ilc.ILProcedureException;

import com.ibm.ws.batch.ilc.sample.Sample;
import com.ibm.ws.batch.ilc.sample.parameters.SampleDataBinding;

import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;

try {
// Create the container.
ILContainer container = ILContainerFactory.getFactory().create();

// Create target procedure using call stub.
Sample proc = new Sample();

// Set parameters.
SampleDataBinding binding = proc.getSampleDataBinding();
binding.setCDummy("foo");
binding.setIlen((short)employeeNumber);

// Set db2 connection for use by COBOL (if necessary).
// InitialContext ic = new InitialContext();
// DataSource datasourceType2 = (DataSource) ic.lookup(jdbcJndi);
// Connection connectionType2 = datasourceType2.getConnection();
// container.setDB2Connection(connectionType2);

// Invoke the COBOL procedure.
int rc = container.invokeProcedure(proc);
}
catch (ILProcedureException) {
...
}
catch (ILContainerException) {
...
}

COBOL RETURNING, RETURN-CODE, getReturnValue, and
getReturnCode parameters
If the COBOL module specifies a RETURNING parameter, it can be retrieved from the stub using the
stub.getReturnValue() method. The method returns the Java object representation of the RETURNING
parameter, which is the data bindings class generated by the COBOL call stub generator tool.

See the following information about the COBOL module and its parameters:

v If the COBOL module does not specify a RETURNING parameter, then the getReturnValue() method is
not generated for the stub.

v If the COBOL module sets the RETURN-CODE special register, its value can be retrieved from the stub
using the stub.getReturnCode() method. The method returns an int.

v If the COBOL module does not set the RETURN-CODE special register, then the getReturnCode()
method always returns 0.

Chapter 4. Developing batch applications 95

v If the COBOL module specifies a RETURNING parameter, and sets the RETURN-CODE special
register, then COBOL ignores the RETURN-CODE register. In this case, the stub.getReturnValue()
method returns the RETURNING parameter, and the stub.getReturnCode() method always returns 0.

Table 34. stub.getReturnValue() and stub.getReturnCode() methods return summary. This table summarizes what is
returned by the stub.getReturnValue() and stub.getReturnCode() methods based on what is specified in the
COBOL code.
COBOL specifies: stub.getReturnValue() stub.getReturnCode()

RETURNING The RETURNING parm 0

RETURN-CODE (not generated) RETURN-CODE

Both RETURNING and RETURN-CODE The RETURNING parm 0

Neither (not generated) 0

COBOL container for batch troubleshooting
If you encounter problems when using COBOL container for batch troubleshooting, there are a number of
options that are available to you.

Debug trace

To enable tracing of the COBOL container code, add the following to the Java trace specification:
com.ibm.ws.batch.ilc.*=all
com.ibm.websphere.batch.ilc.*=all

Performance trace

To monitor performance of COBOL container invocations, activate the following Java trace specification:
com.ibm.ws.batch.ilc.impl.LEChildEnvironment.invokeProcedure=all

When activated, the trace prints the following line to the job log after each COBOL invocation:
Returned from procedure {name}, duration=1335875 ns, rc=0

The reported duration includes the execution time of the COBOL procedure and of the surrounding
container code.

Common errors

Table 35. Common errors and suggested solutions when running the COBOL container. This table lists common
errors encountered while running the COBOL container, along with suggested solutions. If you encounter a listed
error, try the suggested solution.
Error Suggested solution

com.ibm.websphere.batch.ilc.ILContainerException: mkfifo failed
with rc=-1

Ensure that the ${GRID_JOBLOG_ROOT}/joblogs directory exists and is
writeable by the WebSphere Application Server SR user ID.

com.ibm.websphere.batch.ilc.ILContainerException:
LEChildEnvironment.create failed (CEEPIPI function:0x5A
rc:0x0000006F rsn:0x5B400002)

Ensure that PIPIENV is on the LIBPATH (server_region_libpath) and is
executable by the WebSphere Application Server SR user ID.

java.lang.UnsatisfiedLinkError: LECENV (Not found in
java.library.path)

Ensure that libLECENV.so is on the LIBPATH (server_region_libpath) and
is executable by the WebSphere Application Server SR user ID.

Generating COBOL call stubs
You can use the COBOL call stub generator to create a Java call stub to invoke a COBOL program. You
add the call stub to a Java-based batch application.

96 Administering batch environments

Before you begin

Read the COBOL container overview topic.

Install the following products, which are required to use the COBOL call stub generator:

v IBM Rational Application Developer for WebSphere Software, Version 7.5 or later, which provides the
J2EE Connector (J2C) tools

v Java Runtime Environment (JRE), Version 1.6.0 or later

To verify that the Java EE Connector (J2C) tools are enabled, start Rational Application Developer, select
the Java EE perspective, and select File > New > Other. If the J2C wizard is available, then you can
create a J2C project and the J2C tools are enabled.

If the Rational Application Developer installation does not have the Java EE Connector (J2C) tools, use
Installation Manager to modify your Rational Application Developer installation and install the J2C tools:

1. Start Installation Manager.

2. On the Modify Packages page, select IBM Rational Application Developer for WebSphere Software
> J2EE Connector (J2C) tools > Next.

3. Complete the installation of the J2C tools.

About this task

You can run the COBOL call stub generator from a command line, an Ant task, or the graphical interface
of the Rational Application Developer product.

The COBOL call stub generator performs the following steps:

1. Parses the COBOL source program.

2. Generates the Java code for the call stub to invoke the COBOL program.

3. Generates the Java code for the data bindings for the parameter inputs and return value that are used
by the COBOL program. The source program is assumed to be a valid COBOL program that has been
parsed and compiled by a COBOL compiler.

The Java data binding classes for the COBOL parameters and return value are generated by the J2C data
binding tool, which is part of the Java EE Connector tools of the Rational Application Developer product.
When you run the COBOL call stub generator from a command line, the call stub generator and the data
binding tool run in a headless Eclipse session. The headless Eclipse session is launched as a separate
Java process. When you run the COBOL call stub generator from the graphical interface, the call stub
generator and the data binding tool run within the active Rational Application Developer session.

Procedure
1. Create a Rational Application Developer project for the generated code.

2. Check the PROCEDURE statement in the COBOL source file.

The PROCEDURE statement must be listed in the COBOL source file, not in a copybook included by
the source file. If the call stub generator does not find the PROCEDURE statement in the COBOL
source file, the call stub generator fails with an error:
com.ibm.ws.batch.cobol.csgen.exceptions.COBOLParserException:
Unable to find PROCEDURE statement in file COBOL_source_file

Also, the PROCEDURE statement must not contain duplicate parameter names in the USING clause.
If the USING clause contains a duplicate parameter name, the call stub generator fails with an error:
com.ibm.ws.batch.cobol.csgen.exceptions.COBOLParserException:
Detected duplicate COBOLDataElement: parameter name

3. Update the call stub generator configuration file.

See the topic about the call stub generator configuration file.

Chapter 4. Developing batch applications 97

4. Run the COBOL call stub generator.

You can run the call stub generator in three ways:

From a command line

a. Create a script that invokes the call stub generator.

b. Run the script.
$ java –jar lib/COBOLCallStubGenerator.jar script_path/Sample01.cbl –configFile csg.properties –callStubPackage my.pkg

See the topic about invoking the call stub generator from a command line.

From an Ant program

a. Define an Ant task that invokes the call stub generator.

b. Specify an Ant build file, such as the CSG.xml file that is provided with the COBOL call stub
generator, to run the call stub generator.

c. Run the Ant build file.

See the topic about invoking the call stub generator from an Ant task.

From the Rational Application Developer graphical interface

a. Configure an Ant build under the Run > External Tools > External Tools Configuration
menu that invokes the call stub generator.

b. Specify that Ant build file, such as CSG.xml, run the call stub generator.

c. Run the Ant build file.

See the topic about invoking the call stub generator from a graphical interface.

Results

If the call stub generator invocation is successful, the call stub generator creates a Java call stub to invoke
a COBOL program.

With a headless Rational Application Developer invocation, an error might result when the call stub
generator runs. Running the call stub generator from a command line or Ant task uses a headless
invocation. Examine the following logs to troubleshoot an error:

workspace_path/.metadata/.log
The log identifies whether problems with the Eclipse-based tools, such as the headless invocation
did not start, caused the error.

user_home/.eclipse/ibm.software.delivery.platform_7.5.0/configuration
Each headless invocation might create log files in the configuration directory. If the log files exist,
they might provide troubleshooting information on the error.

What to do next

Use the generated Java call stub to invoke a COBOL program.

Creating a call stub generator configuration file
You can create the call stub to identify your Rational Application Developer installation location and to
control Java data binding code generation

Before you begin

Create a Rational Application Developer project for the code that is generated by the COBOL call stub
generator.

98 Administering batch environments

About this task

The call stub generator configuration file contains settings to identify your Rational Application Developer
installation location and to control Java data binding code generation. The configuration file location is
specified by the -configFile setting for command-line invocations or by the configFile attribute in the <csg>
tag for Ant invocations.

Ensure that the EclipseHome, WorkSpace, and EclipseProjectName required settings in the configuration
file are correct for your Rational Application Developer installation.

Procedure
1. Open an editor and create a call stub generator configuration file.

The call stub generator configuration file can have any name. Examples for the COBOL call stub
generator in this information center use the csg.properties file name.

2. Specify COBOL call stub generator settings in the configuration file.

The following table describes the call stub generator settings.

Table 36. Properties to configure COBOL call stub generator. Use these properties to specify the Rational
Application Developer installation location and to control Java data binding code generation.

Name Default value
Required or
Optional Description

EclipseHome

/opt/IBM/SDP

C:/Program
Files/IBM/SDP

Required Specifies the fully qualified path to the root directory where Rational
Application Developer, or Eclipse, is installed in the file system.
Note: Use forward slashes (/), or remember to escape the back
slashes (\\), in all path names.

WorkSpace Required Specifies the fully qualified path to the root directory of the Rational
Application Developer, or Eclipse, workspace to be used to create the
Java data binding class.

EclipseProjectName Required Specifies the name of the project in the Rational Application
Developer, or Eclipse, workspace that provides the home for the
generated Java class.

The project must exist before running the call stub generator.

Platform Win32 Optional Specifies the target operating system. Supported values include Win32,
AIX, and z/OS. The value is case sensitive.

CodePage ISO-8859-1 Optional Specifies the code page of the COBOL data.

FloatingPointFormat IEEE 754 Specifies the format of floating points. Supported values include IEEE
754 and IBM Hexadecimal.

ExternalDecimalSign ASCII Optional Specifies the external decimal sign. Supported values include ASCII,
EBCDIC, and EBCDIC Custom.

Endian Little Optional Specifies the endian of the COBOL data. Supported values include
Little and Big.

RemoteEndian Little Optional Specifies the remote endian of the COBOL data. Supported values
include Little and Big.

Quote DOUBLE Optional Specifies the quotation format. Supported values include DOUBLE and
SINGLE.

Trunc STD Optional Specifies the way fields are truncated during COBOL move or
arithmetic operations. Supported values include STD, BIN, and OPT.

Nsymbol DBCS Optional Specifies the way the N symbol is used in literals and PICTURE
clauses, indicating whether to use national or DBCS processing.
Supported values include DBCS and NATIONAL.

OverwriteExistingClass true Optional Specifies whether the call stub generator overwrites a class with the
same name that is already present in the output directory. Supported
values include true and false.

GenerationStyle Default Optional Specifies the generation style. Supported values include Default,
Preserve case of names, and Shorten names.

Verbose false Optional Specifies whether to set the trace level to debug. Supported values
include true and false.

3. Save the configuration file to a location that the Rational Application Developer product can access.

Chapter 4. Developing batch applications 99

Example

See the following sample csg.properties call stub generator configuration file:
Configuration file for COBOLCallStubGenerator
#####
EclipseHome specifies the installation location of Rational Application Developer.
#
EclipseHome=full_path_to_Eclipse_directory

#####
Workspace specifies the location of the Rational Application Developer workspace.
If it does not exist, the COBOLCallStubGenerator creates the workspace.
#
WorkSpace=full_path_to_workspace_directory

######
EclipseProjectName specifies the project in the workspace
that will receive the generated call stubs and bindings.
#
EclipseProjectName=Eclipse_project_name

#####
The target operating system. The permitted options are: Win32, AIX and z/OS.
#
PARAMETER - Required
Platform=Win32
Platform=z/OS

#####
The target codepage.
#
PARAMETER - Required
CodePage=IBM1047

#####
The floating point format has only two possible values:
IEEE 754
IBM Hexadecimal
The default is IEEE 54
#
PARAMETER - Required
FloatingPointFormat=IBM Hexadecimal

PARAMETER - Required
ExternalDecimalSign=EBCDIC

PARAMETER - Required
Endian=Big

PARAMETER - Required
RemoteEndian=Little

PARAMETER - Required
Quote=DOUBLE

PARAMETER - Required
Trunc=STD

PARAMETER - Required
Nsymbol=DBCS

#####
Possible values for overwriteExistingClass are true or false.
#
PARAMETER - Required
OverwriteExistingClass=true

#####
Possible values for GenerationStyle are:
Default, "Preserve case of names" or "Shorten names"
Be sure to use quotes for values with space characters in them.

100 Administering batch environments

#
PARAMETER
GenerationStyle=Default

#####
Verbose sets the trace level to "debug".
Values for Verbose are either true or false.
#
PARAMETER - Optional
Verbose=false

What to do next

Run the COBOL call stub generator. You can run the call stub generator from a command line, an Ant
task, or the Rational Application Developer graphical interface.

Specify the fully qualified path to the call stub generator configuration file name when running the COBOL
call stub generator. For command-line invocations, use the -configFile setting to specify the file name. For
Ant and graphical interface invocations, use the configFile attribute in the <csg> task to specify the file
name.

Invoking the call stub generator from a command line
You can run the COBOL call stub generator from a command line.

Before you begin

Create a Rational Application Developer project for the code that is generated by the COBOL call stub
generator.

Create a call stub generator configuration file. Ensure that the settings for the EclipseHome, WorkSpace,
and EclipseProjectName required properties are correct.

Check the PROCEDURE statement for the COBOL source file.

About this task

To run the COBOL call stub generator from a command line, you must run a command that specifies
values for the configFile and callStubPackage required parameters. You also can specify values for
optional parameters in the command.

The command that runs the COBOL call stub generator must use the following syntax:
java –jar COBOLCallStubGenerator.jar

{input cobol file}
-configFile configuration_file_name
-callStubPackage package_name
[-callStubClass class_name]
[-cobolModule COBOL_module]
[-workSpace path_name]
[-eclipseProjectName project_name]
[-build build_string]
[-mockPackage package_name]
[-mockClass class_name]
[-v | -verbose]
[-? | -h]

Table 37. Command parameters to run the COBOL call stub generator. Command parameters have the following
definitions.

Name Default value
Required or
Optional Description

configFile Required Specifies the name of the call stub generator configuration file.

Chapter 4. Developing batch applications 101

Table 37. Command parameters to run the COBOL call stub generator (continued). Command parameters have the
following definitions.

Name Default value
Required or
Optional Description

callStubPackage Required Specifies the package name, and the file path of generated file,
to use for the generated call stub.

callStubClass COBOL PROGRAM-ID Optional Specifies the class name to use for the generated call stub.

cobolModule COBOL PROGRAM-ID Optional Specifies the name of the COBOL module or DLL file that
contains the COBOL program.

workSpace Optional Specifies the fully qualified path to the root directory of the
Rational Application Developer or Eclipse workspace to be used
to create the Java data binding class.

Any value that is specified for workSpace overrides the
WorkSpace value in the call stub generator configuration file,
which is identified by the configFile value.

eclipseProjectName Optional Specifies the name of the project in the Rational Application
Developer or Eclipse workspace that provides the home for the
generated Java class.

The project must exist before running the call stub generator.

Any value that is specified for eclipseProjectName overrides the
EclipseProjectName value in the call stub generator
configuration file, which is identified by the configFile value.

build Unknown Build Optional Specifies a user-assigned build identifier.

mockPackage Optional Specifies the name of the package for the mock class.

mockClass Optional Specifies the name of the class to use for the mock test
harness.

Procedure
1. Create a script that runs the call stub generator.

2. Ensure that a Rational Application Developer session is not currently active for the workspace.

3. Run the script.

For example, run the following command to run the Sample01.cbl script. The configuration file is
named csg.properties and the stub package is named my.pkg.
$ java –jar lib/COBOLCallStubGenerator.jar script_path/Sample01.cbl –configFile csg.properties –callStubPackage my.pkg

Results

The command runs the call stub generator. If the command is successful, the call stub generator creates a
COBOL call stub Java class.

When running the command, the call stub generator creates a temporary Ant build file,
system_temp_directory/CSG.temp.xml, and then runs the file in a headless Eclipse session. The temporary
file is deleted after the command runs.

The Java data binding classes for the COBOL parameters and return value are generated by the J2C data
binding tool, which is part of the Java EE Connector tools of IBM Rational Application Developer for
WebSphere Software, Version 7.5 or later. The call stub generator and the J2C data binding tool run in the
headless Eclipse session, which is launched as a separate Java process.

The headless invocation of Eclipse attempts to obtain a workspace lock before running the Ant build file. If
a Rational Application Developer session is currently active for the workspace, Eclipse cannot obtain a
workspace lock and the command fails.

102 Administering batch environments

What to do next

Use the generated COBOL call stub Java class.

Invoking the call stub generator from an Ant task
You can run the COBOL call stub generator from an Ant task.

Before you begin

Create a Rational Application Developer project for the code that is generated by the COBOL call stub
generator.

Create a call stub generator configuration file. Ensure that the settings for the EclipseHome, WorkSpace,
and EclipseProjectName required properties are correct.

Check the PROCEDURE statement for the COBOL source file.

About this task

To run the COBOL call stub generator from an Ant task, you must create a <csg> task that specifies
values for required attributes that identify the call stub generator configuration file and the COBOL source
files that are used as source for the call stub generator. You also can specify values for optional attributes
in the task. Table 1 describes supported <csg>, <cobolModule>, and <dataElement> attributes and nested
elements that you can use in the <csg> task.

In some of the <csg> attributes and nested elements, you can specify internal call stub generator
properties as substitution variables. For example, for the <callStubPackage> element, you can specify the
COBOL PROGRAM-ID:
<callStubPackage>com.ibm.cobol.$_ProgramId_$</callStubPackage>

At run time, the $_ProgramId_$ variable is substituted with the COBOL PROGRAM-ID. If several COBOL
files are specified by the input <fileset> or <filelist>, then $_ProgramId_$ is substituted with the
PROGRAM-ID of each COBOL file as the call stub generator iterates over the input file list.

Table 38. <csg> attributes and elements to run the COBOL call stub generator. You must specify values for the
required attributes and elements in the <csg> task. Many of the optional attributes and elements have a default
value. The table first describes <csg> attributes and nested elements, then <cobolModule> attributes and a nested
element, and finally <dataElement> attributes.
Name Default value Required or Optional Description

<csg> attributes and nested elements

configFile Required Specifies the fully qualified path to the call stub generator configuration file.

workSpace Optional Specifies the fully qualified path to the root directory of the Rational Application
Developer or Eclipse workspace to be used to create the Java data binding class.

Any value that is specified for workSpace overrides the WorkSpace value in the call
stub generator configuration file, which is identified by the configFile value.

eclipseProjectName Optional Specifies the name of the project in the Rational Application Developer or Eclipse
workspace that provides the home for the generated Java class.

The project must exist before running the call stub generator.

Any value that is specified for eclipseProjectName overrides the EclipseProjectName
value in the call stub generator configuration file, which is identified by the configFile
value.

antBuildFile ${workSpace}/
${eclipseProjectName}/src/
GenAllBindings.xml

Optional Specifies the output location for the data binder Ant build file that is generated by the
<csg> task.

<fileset>, <filelist> Required Specifies one or more COBOL source files that provide input to the call stub
generator. You can specify multiple <fileset> and <filelist> types. <fileset> and
<filelist> types that are specified outside of a <cobolModule> element use the
COBOL PROGRAM-ID as the COBOL module name.

Chapter 4. Developing batch applications 103

Table 38. <csg> attributes and elements to run the COBOL call stub generator (continued). You must specify values
for the required attributes and elements in the <csg> task. Many of the optional attributes and elements have a
default value. The table first describes <csg> attributes and nested elements, then <cobolModule> attributes and a
nested element, and finally <dataElement> attributes.
Name Default value Required or Optional Description

<cobolModule> Optional Specifies the name of the COBOL module or DLL file that is associated with all the
<fileset> and <filelist> files that are nested within the <cobolModule> element. You
can specify multiple <cobolModule> elements.

<callStubPackage> Required Specifies the package name and the file path of generated file to use for the
generated call stub.

For this element, you can specify an internal call stub generator property for the
substitution variables $_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$,
the COBOL module.

For example: <callStubPackage>com.ibm.cobol.$_ProgramId_$</callStubPackage>

At run time, the $_ProgramId_$ variable is substituted with the COBOL PROGRAM-ID.

<callStubClass> COBOL program PROGRAM-ID Optional Specifies the class name to use for the generated call stub.

For this element, you can specify an internal call stub generator property for the
substitution variables $_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$,
the COBOL module.

<build> Unknown Build Optional Specifies a user-assigned build identifier.

<mockPackage> Optional Specifies the name of the package for the mock class.

<mockClass> Optional Specifies the name of the class to use for the mock test harness.

<dataElementsPackage> {callStubPackage}.parameters Optional Specifies the package name to use for the data binding classes of one or more
COBOL parameters and the return value.

For this element, you can specify an internal call stub generator property for the
substitution variables $_DataElementName_$, the COBOL parameter name,
$_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$, the COBOL module.

<dataElementsClass> Parameter name Optional Specifies the class name to use for the data binding classes of one or more COBOL
parameters and the return value.

For this element, you can specify an internal call stub generator property for the
substitution variables $_DataElementName_$, the COBOL parameter name,
$_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$, the COBOL module.

For example, to prepend the PROGRAM-ID onto the class names for the COBOL
parameters and return value:
<dataElementsClass>$_ProgramId_$_$_DataElementName_$</dataElementsClass>

At run time, the $_ProgramId_$ variable is substituted with the COBOL PROGRAM-ID
and the $_DataElementName_$ variable is substituted with the name of the COBOL
parameter or return value. If the COBOL program has several parameters, then
$_DataElementName_$ is substituted with the name of each COBOL parameter as the
call stub generator iterates over them.

<dataElement> Optional Specifies a package and class name for a COBOL parameter or return value. The
parameter is identified using the name and programId attributes. The package and
class names are specified using the packageName and className attributes. You
can specify multiple <dataElement> elements.

<cobolModule> attributes and nested element

libname COBOL program PROGRAM-ID Optional Specifies the name of the COBOL module or DLL file that contains one or more
COBOL programs.

<fileset>, <filelist> Required Specifies one or more COBOL source files that provide input to the call stub
generator. Each COBOL file is associated with the COBOL module that is defined by
libname.

<dataElement> attributes

name Required Specifies the name of the COBOL PROCEDURE parameter.

programId Required Specifies the PROGRAM-ID of the COBOL program that contains the parameter.

packageName ${callStubPackage}.parameters Optional Specifies the package name to use for the data binding class for this COBOL
parameter or return value.

For this attribute, you can specify an internal call stub generator property for the
substitution variables $_DataElementName_$, the COBOL parameter name,
$_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$, the COBOL module.

className Parameter name Optional Specifies the class name to use for the data binding class for this specific COBOL
parameter or return value.

For this attribute, you can specify an internal call stub generator property for the
substitution variables $_DataElementName_$, the COBOL parameter name,
$_ProgramId_$, the COBOL PROGRAM-ID, or $_CobolModule_$, the COBOL module.

104 Administering batch environments

Procedure
1. Define an Ant <csg> task to run the call stub generator.

The call stub generator provides a sample Ant build file, CSG.xml, that you can modify and use. See
the topic about the call stub generator CSG.xml file.

2. Use an Ant build file to run the call stub generator.

The Ant build file starts the data binder and generates the data binding classes for one or more
COBOL parameters and a return value. The data binder Ant build file is run on the last line using the
<ant> task.

The following code runs the call stub generator using the <csg> task:
<!-- Declare the <csg> task -->
<taskdef resource="com/ibm/ws/batch/cobol/ant/callstub/antlib.xml"

classpath="${csgDir}/lib/COBOLCallStubGenerator.jar"/>

<csg configFile="${csgDir}/csg.properties" antBuildFile="${antBuildFile}" >

<!-- Input can be a <fileset> or <filelist>. In this example, it is a single file fileset. -->
<fileset file="${cobolSource}" />

<!-- Specify the package for the generated Java call stub class.
The parameter classes are generated under ${callStubPackage}.parameters. -->

<callStubPackage>${callStubPackage}</callStubPackage>

</csg>

<!-- Run the data binder Ant build file that is generated by the <csg> task. -->
<ant antfile="${antBuildFile}" />

In this example, a <fileset> type is used to specify a single input COBOL source file. COBOL source
files used as input to <csg> are specified using one or more <fileset> or <filelist> types. The nested
<callStubPackage> element is required. It specifies the package to use for the Java call stub. The data
binding classes are generated by default under the ${callStubPackage}.parameters package.

The following example provides a full description of the <csg> task:
<taskdef resource="com/ibm/ws/batch/cobol/ant/callstub/antlib.xml"

classpath="${csgDir}/lib/COBOLCallStubGenerator.jar"/>

<csg configFile="#REQUIRED"
workSpace="#OPTIONAL:overrides value in configFile"
eclipseProjectName="#OPTIONAL:overrides value in configFile"
antBuildFile="#OPTIONAL:default=${workSpace}/${eclipseProjectName}/src/GenAllBindings.xml" >

<fileset />
<filelist />

<cobolModule #OPTIONAL libname="#OPTIONAL:default=${ProgramId}">
<fileset />
<filelist />

</cobolModule>

<callStubPackage>#REQUIRED</callStubPackage>
<callStubClass>#OPTIONAL:default=${ProgramId}</callStubClass>

<build>#OPTIONAL:default=”Unknown Build”</build>
<mockPackage>#OPTIONAL</mockPackage>
<mockClass>#OPTIONAL</mockClass>

<dataElementsPackage>#OPTIONAL:default=${callStubPackage}.parameters</dataElementsPackage>
<dataElementsClass>#OPTIONAL:default=${dataElementName}</dataElementsClass>

<dataElement #OPTIONAL
name="#REQUIRED"
programId="#REQUIRED"
packageName="#OPTIONAL:default=${callStubPackage}.parameters"
className="#OPTIONAL:default=${dataElementName}" />

</csg>

Note: The <csg> task and the data binder Ant build file have runtime dependencies on some Eclipse
classes, including the Java EE Connector (J2C) tools. Run the <csg> task within Rational

Chapter 4. Developing batch applications 105

Application Developer as an Ant build to obtain all the prerequisites. You also can use CSG.xml
to run the call stub generator within Rational Application Developer. See the topic about
invoking the call stub generator using the graphical interface

Results

The command runs the call stub generator. If the command is successful, the call stub generator creates a
Java call stub to run a COBOL program.

What to do next

Use the generated Java call stub to run a COBOL program.

Invoking the call stub generator from a graphical interface
You can run the COBOL call stub generator as an Ant build from the Rational Application Developer
graphical interface.

Before you begin

Create a Rational Application Developer project for the code that is generated by the COBOL call stub
generator.

Create a call stub generator configuration file. Ensure that the settings for the EclipseHome, WorkSpace,
and EclipseProjectName required properties are correct.

Check the PROCEDURE statement for the COBOL source file.

About this task

To run the COBOL call stub generator from the Rational Application Developer graphical interface, specify
the <csg> task file to use and run the task file in the same Java runtime environment (JRE) as the
workspace.

For the <csg> task file, you can use the sample Ant build file, CSG.xml, that is available with the call stub
generator of the IBM Rational Application Developer for WebSphere Software product. For CSG.xml input
property descriptions, see the topic about the call stub generator CSG.xml file. For descriptions of the
<csg> attributes and elements, see the topic about invoking the call stub generator from an Ant task.

The <csg> task and the data binder Ant build file have runtime dependencies on some Eclipse classes,
including the Java EE Connector (J2C) tools. When you run the <csg> task within Rational Application
Developer as an Ant build, the product obtains all the prerequisites.

Procedure
1. Configure Ant builds to run the <csg> task file.

Specify the <csg> task file on the External Tools Configuration page.

a. Click Run > External Tools > External Tools Configurations.

b. For Buildfile on the Main tab, specify the full path name for the <csg> task file.

For example, to use the CSG.xml Ant build file, specify:
product_installation_root/CobolCallStubGenerator.V1.2/CSG.xml

c. For Arguments on the Main tab, specify values for the required CSG.xml input properties.

For example, for the CSG.xml Ant build file, specify values such as the following for required
properties:

106 Administering batch environments

-DcobolSource=${resource_loc}
-DworkSpace=${workspace_loc}
-DeclipseProjectName=${project_name}
-DcallStubPackage=${string_prompt:callStubPackage}

For property descriptions, including descriptions of the built-in variables such as resource_loc, see
the topic about the call stub generator CSG.xml file.

d. On the Main tab, select Set an Input handler

e. On the JRE tab, select Run in the same JRE as the workspace.

This setting ensures that the JRE contains the required Java EE Connector (J2C) tools.

f. Optional: On the Refresh tab, specify that the Ant build tool build the project or workspace before
the tool runs.

g. Optional: On the Build tab, specify that the Ant build tool refresh the project or workspace after the
tool runs.

h. Click Apply to save the configuration.

2. Optional: Set the copybook include path for the Rational Application Developer workspace.

See the topic about setting COBOL importer preferences in the Rational documentation.

3. Run the call stub generator.

a. On the Package Explorer view, select a COBOL source file.

For example, if your COBOL source file is named my_source.cbl, select my_source.cbl in the
navigation tree of the Package Explorer.

b. From the Run menu, select External Tools > 1 CSG Ant to run the call stub generator.

The first time that you run the tool, the call stub generator Ant file might not show up as an option
under the External Tools menu. To fix this problem, run the tool from the External Tools
Configuration page.

Results

The call stub generator is run and the output is printed to the Rational Application Developer console. The
call stub generator creates a COBOL call stub Java class.

What to do next

Use the generated COBOL call stub Java class.

Call stub generator CSG.xml file
The CSG.xml file provides a complete example of how to start the COBOL call stub generator from Ant
using the <csg> custom task or within Rational Application Developer as an Ant build.

CSG.xml input properties

The following table describes the CSG.xml input properties. If you run the <csg> task in the Rational
Application Developer graphical interface, you can define the properties using the
-Dproperty_name=property_value format.

Table 39. CSG.xml input properties. Specify values for these properties in the CSG.xml file.

Name
Required or
Optional Description

cobolSource Required Specifies the fully qualified path to the COBOL source file.
Note: Use forward slashes (/), or remember to escape the back slashes (\\), in
all path names.

In the Rational Application Developer graphical interface, you can use the
${resource_loc} built-in variable, which is substituted with the fully qualified path
of the resource currently selected on the Package Explorer.

Chapter 4. Developing batch applications 107

Table 39. CSG.xml input properties (continued). Specify values for these properties in the CSG.xml file.

Name
Required or
Optional Description

workSpace Required Specifies the fully qualified path to the root directory of the Rational Application
Developer or Eclipse workspace to be used to create the Java data binding
class.

In the Rational Application Developer graphical interface, you can use the
${workspace_loc} built-in variable, which is substituted with the fully qualified
path of the current active workspace.

eclipseProjectName Required Specifies the name of the project in the Rational Application Developer or Eclipse
workspace that provides the home for the generated Java class.

In the Rational Application Developer graphical interface, you can use the
${project_name} built-in variable, which is substituted with the project name of
the resource currently selected on the Package Explorer.

The project must exist before running the call stub generator.

callStubPackage Required Specifies the package name to use for the generated call stub.

In the Rational Application Developer graphical interface, you can use the
${string_prompt:callStubPackage} built-in variable. At run time, Rational
Application Developer prompts you for a string value. The title of the prompt
dialog box is callStubPackage.

File location

The CSG.xml Ant build file has a location such as:
product_installation_root/CobolCallStubGenerator.V1.2/CSG.xml

CSG.xml contents

The CSG.xml file that is provided with the product resembles the following example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- ... -->
<!-- This Ant build file is used for invoking the COBOLCallStubGenerator (CSG)

within Rational Application Developer. It has two steps:
1. Calls CSG for the given cobolSource file.

CSG is invoked using the custom <csg> task.
<csg> generates the Java call stub and the data binder Ant file.

2. Invokes the data binder Ant file that is generated by <csg>.
The data binder Ant file invokes the data binder and generates
the data binding Java classes for the COBOL parameters.

To configure this file for use within Rational Application Developer:
1. Run -> External Tools -> External Tools Configuration.
2. New Ant Build

Buildfile: full_path_to_this_file.xml
Arguments: -DcobolSource=${resource_loc}

-DworkSpace=${workspace_loc}
-DeclipseProjectName=${project_name}
-DcallStubPackage=${string_prompt:callStubPackage}

Refresh: project
Build: project
JRE: same as workspace (needs J2C tools installed)

Usage instructions:
1. Load the COBOL source into the project.
2. Select the COBOL source file or source directory in Project Explorer.
3. Click Run -> External Tools -> CSG Ant build. -->

<!-- ... -->

<project default="CSG">
<property name="csgDir" value="${basedir}" />
<property name="debug" value="false" />

108 Administering batch environments

<!-- Include the <csg> and <radlogcheck> task definitions -->
<taskdef resource="com/ibm/ws/batch/cobol/ant/callstub/antlib.xml"

classpath="${csgDir}/lib/COBOLCallStubGenerator.jar"/>

<!-- These input properties are required. They can be specified as arguments to the Ant build. -->
<property name="cobolSource" value="" /> <!-- full path to COBOL source file -->
<property name="workSpace" value="" /> <!-- full path to Eclipse workspace -->
<property name="eclipseProjectName" value="" />
<property name="callStubPackage" value="" />

<!-- The output from the <csg> task is the data binder Ant build file. The data binder Ant
build file invokes the data binder and generates the data binding classes for all
the COBOL parameters for all the COBOL files processed by <csg>. -->

<property name="antBuildFile" value="${workSpace}/${eclipseProjectName}/src/GenAllBindings.xml" />

<!-- Quick way to get the directory of the input COBOL file, in case you wanted to use it
to specify a list of files in the <fileset> type. -->

<dirname property="cobolSourceDir" file="${cobolSource}" />

<target name="CSG">

<csg configFile="${csgDir}/csg.properties"
workSpace="${workSpace}"
eclipseProjectName="${eclipseProjectName}"
antBuildFile="${antBuildFile}" >

<!-- In this example, the input is a single COBOL file, specified using a <fileset>.
You can modify the input to be a list of COBOL files, using either the
<fileset> or <filelist> types. For example, instead of using the cobolSource
property, you can use the cobolSourceDir property to specify all *.cbl files
in the directory or use <filelist> to list a subset of files in the directory.
Examples for setting the input to a list of files are included here, but commented out. -->

<fileset file="${cobolSource}" />
<!-- Example: Set the input to all *.cbl files in a directory: -->
<!-- <fileset dir="${cobolSourceDir}" includes="**/*.cbl" /> -->
<!-- Example: Set the input to a subset of files in a directory: -->
<!-- <filelist dir="${cobolSourceDir}" files="G10M0802.cbl primitve.ccp natltest.ccp" /> -->
<!-- Example: Associate all the nested files with the specified <cobolModule>: -->
<!-- <cobolModule libname="MyDLLName">

<fileset dir="${cobolSourceDir}" includes="**/*.ccp" />
</cobolModule> -->

<!-- You can specify multiple <cobolModule> elements. -->

<callStubPackage>${callStubPackage}</callStubPackage>
<!-- Example: You can use some internal call stub generator properties as substitution

variables. For example, to include the COBOL PROGRAM-ID ($_ProgramId_$) in the
callStubPackage: -->

<!-- <callStubPackage>${callStubPackage}.$_ProgramId_$</callStubPackage> -->

<!-- If not defined, the package name for the data binding classes is
${callStubPackage}.parameters. -->

<!-- <dataElementsPackage>${callStubPackage}.parameters</dataElementsPackage> -->

<!-- Example: Use substitution variables to prepend the COBOL PROGRAM-ID to the
parameter class name. -->

<!-- <dataElementsClass>$_ProgramId_$_$_DataElementName_$</dataElementsClass> -->

<!-- The Java package and class for the parameter identified by ’name’ in COBOL
program ’programId’ -->

<!-- <dataElement name="#REQUIRED" programId="#REQUIRED" packageName="" className="" /> -->
<!-- You can specify multiple <dataElement> elements. -->

</csg>

<!-- Refresh the workspace in order to compile the Java call stubs generated by <csg> -->
<eclipse.refreshLocal depth="infinite" resource="${eclipseProjectName}" />

<!-- radlogcheck first takes a snapshot of the Rational Application Developer log
(${workSpace}/.metadata/.log). Later, radlogcheck examines the log and searches
for any errors generated during this data binding step. -->

<radlogcheck workSpace="${workSpace}" stage="begin" />

Chapter 4. Developing batch applications 109

<!-- Now run the data binder Ant build file that is generated by the <csg> task. -->
<ant antfile="${antBuildFile}" />

<!-- Scan the log for any errors that occured during the data binding step.
If errors are detected, the product writes them to the console. -->

<radlogcheck workSpace="${workSpace}" stage="end" />

<!-- Delete the antBuildFile. It is no longer needed and is merely a build artifact. -->
<delete file="${antBuildFile}" failonerror="false"/>

</target>
</project>

Call stub generator CSGBatch.xml file
The CSGBatch.xml Ant build file provides an example for running <csg> against a batch of COBOL files,
such as all *.cbl files in a directory. The call stub generator and CSGBatch.xml file are available with the
IBM Rational Application Developer for WebSphere Software product.

CSGBatch.xml input properties

CSGBatch.xml uses the same input properties as the CSG.xml file. For CSG.xml input property descriptions,
see the topic about the call stub generator CSG.xml file. For descriptions of the <csg> attributes and
elements, see the topic about invoking the call stub generator from an Ant task.

If you run the <csg> task in the Rational Application Developer graphical interface, you can define the
properties using the -Dproperty_name=property_value format.

CSGBatch.xml uses the $_ProgramId_$ and $_DataElementName_$ substitution variables to manipulate the
package name and parameter names generated for each COBOL file.

File location

The CSGBatch.xml Ant build file has a location such as:
product_installation_root/CobolCallStubGenerator.V1.2/CSGBatch.xml

CSGBatch.xml contents

The CSGBatch.xml file that is provided with the product resembles the following example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- .. -->
<!-- This Ant build file can run the COBOLCallStubGenerator (CSG) within Rational

Application Developer. See CSG.xml for a more complete description of this file.
Except this file takes a directory of COBOL files (*.cbl) and runs <csg> against
each file.

Note: This file is configured to append the COBOL PROGRAM-ID to the callStubPackage
and to prepend the PROGRAM-ID to each parameter name (see the <callStubPackage>
and <dataElementsClass> elements). -->

<!-- .. -->

<project default="CSGBatch">
<property name="csgDir" value="${basedir}" />
<property name="debug" value="false" />

<taskdef resource="com/ibm/ws/batch/cobol/ant/callstub/antlib.xml"
classpath="${csgDir}/lib/COBOLCallStubGenerator.jar"/>

<!-- These input properties are required. They can be specified as arguments to the Ant build. -->
<property name="cobolSourceDir" value="" /> <!-- full path to COBOL source directory -->
<property name="workSpace" value="" /> <!-- full path to Eclipse workspace -->
<property name="eclipseProjectName" value="" />
<property name="callStubPackage" value="" />
<property name="antBuildFile" value="${workSpace}/${eclipseProjectName}/src/GenAllBindings.xml" />

110 Administering batch environments

<target name="CSGBatch">
<csg configFile="${csgDir}/csg.properties"

workSpace="${workSpace}"
eclipseProjectName="${eclipseProjectName}"
antBuildFile="${antBuildFile}" >

<!-- Process all *.cbl files in the given cobolSourceDir. -->
<fileset dir="${cobolSourceDir}" includes="**/*.cbl" />

<!-- Append the COBOL PROGRAM-ID to the callStubPackage using substitution variables. -->
<callStubPackage>${callStubPackage}.$_ProgramId_$</callStubPackage>

<!-- Prepend the COBOL PROGRAM-ID to the parameter class name using substitution variables. -->
<dataElementsClass>$_ProgramId_$_$_DataElementName_$</dataElementsClass>

</csg>

<eclipse.refreshLocal depth="infinite" resource="${eclipseProjectName}" />

<!-- Run the data binder in a radlogcheck to detect and print errors. -->
<radlogcheck workSpace="${workSpace}" stage="begin" />
<ant antfile="${antBuildFile}" />
<radlogcheck workSpace="${workSpace}" stage="end" />

<!-- Delete the antBuildFile. It is no longer needed and is merely a build artifact. -->
<delete file="${antBuildFile}" failonerror="false"/>

</target>
</project

Developing a simple compute-intensive application
You can write a simple compute-intensive application using a compute-intensive job controller, the
command line, or the Apache ANT tool.

Procedure
v Create a compute-intensive job using a compute-intensive job controller.

1. Create a compute-intensive job step.

a. Create a Java class that implements the com.ibm.websphere.ci.CIWork interface.

b. Implement business logic.

2. Optional: For batch applications, provide a job listener.

Provide an implementation for the com.ibm.websphere.batch.listener.JobListener interface to add
additional initialization and clean up for jobs and steps. Specify the job listener in the xJCL using the
job-level listener element.

The job listener beforeJob() method is invoked before any user artifact is invoked. The job listener
afterJob() method is invoked after the last user artifact is invoked. The job listener beforeStep()
method is invoked before any step-related user artifact. The job listener afterStep() method is
invoked as the last step-related user artifact. Each time the job listener is invoked, it logs a message
to the job log.

3. Optional: For batch applications, obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

– Access to information that uniquely identifies the context in which the current batch job step runs,
for example, the job ID

– A user data area where application-specific information can be passed among the batch
programming framework methods during the life of the batch job step

– A transient user data area where application-specific information can be passed across steps

Chapter 4. Developing batch applications 111

– A persistent user data area where application-specific information is stored across
checkpoint/restart

You can use the PersistentMap helper class to simplify the storing of basic types such as boolean
and double in the persistent user data area of the job step context.

4. Declare a compute-intensive job controller.

a. Add a stateless session bean to your deployment descriptor and point to the implementation
class that the product provides.

Do so by specifying com.ibm.ws.ci.CIControllerBean as the bean class. Do this specification only
once per compute-intensive application.

b. Use com.ibm.ws.ci.CIControllerHome for the remote home interface class and
com.ibm.ws.ci.CIController for the remote interface class.

5. Configure the EJB deployment descriptor.

a. Configure a resource reference on the controller bean to the WorkManager wm/CIWorkManager
default of the type commonj.work.WorkManager.

v Create compute-intensive jobs using the command line.

1. Create a compute-intensive job step.

a. Create a Java class that implements the com.ibm.websphere.ci.CIWork interface.

b. Implement business logic.

2. Optional: For batch applications, obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

– Access to information that uniquely identifies the context in which the current batch job step runs,
for example, the job ID

– A user data area where application-specific information can be passed among the batch
programming framework methods during the life of the batch job step

– A transient user data area where application-specific information can be passed across steps

– A persistent user data area where application-specific information is stored across
checkpoint/restart

You can use the PersistentMap helper class to simplify the storing of basic types such as boolean
and double in the persistent user data area of the job step context.

3. Open a command prompt and ensure that the directory where your Java executable program is
located is included in your PATH variable so that you can run the Java command.

4. Issue a Java command.
java -jar pgcbatchpackager.jar -appname=<application name>
-jarfile=<jarfile containing POJO step classes> -earfile=<name of the output ear file without .ear>
[-utilityjars=<semicolon separated list of utility jars>] [-debug] [-gridjob]

For example for batch jobs, issue the command:
java –jar pgcbatchpackager.jar –appname=SimpleCI –jarfile=SimpleCIEJBs.jar
-earfile=SimpleCI –gridjob=true

v Create compute-intensive jobs using ANT.

1. Create the compute-intensive job step.

a. Create a Java class that implements the com.ibm.websphere.ci.CIWork interface.

b. Implement business logic.

2. Optional: For batch applications, obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

112 Administering batch environments

– Access to information that uniquely identifies the context in which the current batch job step runs,
for example, the job ID

– A user data area where application-specific information can be passed among the batch
programming framework methods during the life of the batch job step

– A transient user data area where application-specific information can be passed across steps

– A persistent user data area where application-specific information is stored across
checkpoint/restart

You can use the PersistentMap helper class to simplify the storing of basic types such as boolean
and double in the persistent user data area of the job step context.

3. For a compute-intensive job, ensure that pgcbatchpackager.jar is on the class path.

4. Declare the task.

Use the following command to declare the task:
<taskdef name="pgcpackager" classname="com.ibm.ws.batch.packager.PGCPackager"

classpath="${FEBaseDir}/grid.pgc.packager/build/lib/pgcbatchpackager.jar" />

5. After compiling the Java files in your application, invoke the pgcpackager task.
<pgcpackager appname="<appname>" earFile="<location name of EAR file to generate>"
jarfile="location of the POJO jar file" gridJob="true"/>

Results

You have developed a simple compute-intensive application using a compute-intensive job controller, the
command line, or ANT.

What to do next

Install the compute-intensive application and configure WebSphere grid endpoints.

Compute-intensive programming model
Compute-intensive applications are applications that perform computationally intensive work that does not
fit comfortably into the traditional Java Platform, Enterprise Edition (Java EE) request and response
paradigm.

Compute-intensive applications

There are a number of characteristics that can make these applications unsuitable for traditional Java EE
programming models:

v The need for asynchronous submission and start of work

v The need for work to run for extended periods of time

v The need for individual units of work to be visible to and manageable by operators and administrators

The compute-intensive programming model provides an environment that addresses these needs. The
compute-intensive programming model is centered around two basic concepts:

1. The use of jobs to submit and manage work asynchronously

2. A minor extension to the asynchronous beans programming model to support work that runs for an
extended period

The following sections provide additional information about the extensions to the asynchronous beans
programming model.

Controller bean

The controller bean is a stateless session bean defined in the compute-intensive application deployment
descriptor that allows the runtime environment to control jobs for the application. The implementation of

Chapter 4. Developing batch applications 113

this stateless session bean is provided by the application server. The application includes the stateless
session bean, shown in the following definition, in the deployment descriptor of one of its enterprise bean
modules. Exactly one controller bean must be defined for each compute-intensive application. Since the
implementation of the controller bean is provided in the application server runtime, application deployers
do not request deployment of enterprise beans during deployment of compute-intensive applications.
<session id="supply a suitable name here">

<ejb-name>CIController</ejb-name>
<home>com.ibm.ws.ci.CIControllerHome</home>
<remote>com.ibm.ws.ci.CIController</remote>
<ejb-class>com.ibm.ws.ci.CIControllerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<resource-ref id="WorkManager_ResourceRef">

<description>
WorkManager that is used to execute jobs.

<res-ref-name>wm/CIWorkManager</res-ref-name>
<res-type>commonj.work.WorkManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

Packaging a compute-intensive application

The logic for a compute-intensive application with some number of CIWork objects plus the classes to
support those CIWork objects, is packaged in an enterprise bean module in a Java EE application
Enterprise Archive (EAR) file. The deployment descriptor for the enterprise bean module must contain the
definition of the stateless session bean previously described. If the application itself uses other enterprise
beans or resources, then the definitions for those beans and resources might also be in the deployment
descriptor. You can use Java EE development tools such as IBM Rational Application Developer to
develop and package compute-intensive applications in the same way that they are used to construct Java
EE applications containing enterprise bean modules and asynchronous beans. You can also use the
pgcpackager task to package compute-intensive applications.

Life cycle of a compute-intensive application

A compute-intensive application is started by the application server in the same way as other Java EE
applications. If the application defines any start-up beans, then those beans are run when the application
server starts. When a job arrives for the application to run, the compute-intensive execution environment
invokes the CIControllerBean stateless session bean defined in the application EJB module deployment
descriptor. The Java Naming and Directory Interface (JNDI) name of this stateless session bean is
specified in the XML Job Control Language (xJCL) for the job. For each job step, the CIControllerBean
stateless session bean completes the following actions:

1. Instantiates the application CIWork object specified by the class name element in the xJCL for the job
step using the no-argument constructor of the CIWork class.

2. Invokes the setProperties() method of the CIWork object to pass any properties defined in the xJCL for
the job step.

3. Looks up the work manager defined in the deployment descriptor of the enterprise bean module and
uses it to asynchronously call the run() method of the CIWork object.

If the job is canceled before the run() method returns, then the CIControllerBean invokes the CIWork
object release() method on a separate thread. It is up to the developer of the long-running application to
arrange for logic in the release() method to cause the run() method to return promptly. The job remains in
a cancel pending state until the run() method returns.

If the job is not canceled and the run() method returns without returning an exception, then the job
completed successfully. If the run() method returns an exception, then the job status is execution failed.
After the run() method returns either successfully or with an exception, no further calls are made to the
CIWork object. All references to the run() method are dropped.

114 Administering batch environments

Compute-intensive job step

Unlike other batch jobs, compute-intensive jobs consist of one job step. This job step is represented by an
instance of a class that implements the com.ibm.websphere.ci.CIWork interface. The CIWork interface
extends the commonj.Work work interface from the application server asynchronous beans programming
model and Java Specification Request (JSR) 237. These extensions consist of two methods that provide a
way to pass the job-step-specific properties specified in the job to the CIWork object.

See the API documentation for more details.

To learn about asynchronous beans, see Using asynchronous beans.

Developing a simple transactional batch application
You can write a simple batch application using a batch job controller and Enterprise JavaBeans (EJB) data
stream, the command line, or the Apache ANT tool.

About this task

Note: If the batch step uses a batch data stream (BDS) whose data is local to the file system of the
application server to which the batch application is deployed, then certain steps must be followed to
support job restart scenarios. If such a batch application is deployed to application servers that can
run on multiple machines, then there is no guarantee that the restart request is accepted by the
machine on which the batch job originally ran. This occurs when the batch application is deployed
to a cluster, and if a batch job that runs against such an application is canceled and then restarted.
In this scenario, the deployment might send the restart request to an application server that runs on
a different machine. Therefore, in cases where file-based affinity is required, you can apply the
following solutions to support the job restart scenario:

v Ensure that the data is equally available to every machine on which the batch application can be
started. Use a network file system for this example. This action might reduce performance of
application.

v Deploy the application on application servers that can only run on the machine where the local
data exists. Complete this action by deploying the application to a cluster that exists in a node
group that has only one member node.

Note: The batch application developer must ensure that transactional work done in the batch step
callback methods inherits the global transaction started by the grid endpoints. This action ensures
that work performed under a batch step only gets committed at every checkpoint and rolls back if
the step fails.

Some commands are split on multiple lines for printing purposes.

Procedure
v Create batch jobs using a batch job controller and an EJB data stream.

1. Create batch job steps.

a. Create a Java class that implements the com.ibm.websphere.BatchJobStepInterface interface.

b. Implement business logic.

If your step has one input and one output stream you can alternatively use the Generic batch
step of GenericXDBatchStep.

2. Create batch data streams.

a. Create a Java class that implements the interface com.ibm.websphere.batch.BatchDataStream.

Chapter 4. Developing batch applications 115

Batch data streams are accessed from the business logic, for example, from the batch job
steps by calling BatchDataStreamMgr with jobID and stepID. JobID and stepID are retrieved
from the step bean properties list using keys BatchConstants.JOB_ID and
BatchConstants.STEP_ID.

b. Map BatchConstants.JOB_ID to com.ibm.websphere.batch.JobID and map
BatchConstants.STEP_ID to com.ibm.websphere.batch.StepID.

You should already have access to the BatchConstants class.

The batch datastream framework provides several ready-to-use patterns to work with different
types of datastreams such as file and database. To use the batch datastream framework,
complete the following steps.

1) Identify the data stream type with which you want to operate, such as TextFile, ByteFile,
JDBC, or z/OS stream.

2) Identify whether you would read from the stream or write to the stream.

3) See the table in the batch data stream framework and patterns. Select the class from the
supporting classes column that matches your data stream type and operation. For example,
if you want to read data from a text file, then select TextFileReader.

4) Implement the interface listed in the pattern name column that corresponds to the
supporting class you selected in the previous step. The supporting class handles all the
book keeping activities related to the stream and the batch programming model. The
implementation class focuses on the stream processing logic.

5) Declare the supporting class and your implementation class in the xJCL.

6) Repeat this procedure for each datastream required in your step.

3. Optional: Obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

– Access to information that uniquely identifies the context in which the current batch job step
runs, for example, the job ID

– A transient user data area where application-specific information can be passed among the
batch programming framework methods during the life of the batch job step

– A persistent user data area where application-specific information can be passed across steps

You can use the PersistentMap helper class to simplify the storing of basic types such as Boolean
and double in the persistent user data area of the job step context.

4. Define batch data streams in xJCL.
<batch-data-streams>

<bds>
<logical-name>inputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="MyBDSStreamImplementationClass"/>
<prop name="file.encoding" value="8859_1"/>

<prop name="FILENAME" value="${inputDataStream}" />
<prop name="PROCESS_HEADER" value="true"/>
<prop name="AppendJobIdToFileName" value="true"/> </props>

<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader
</impl-class>
</bds>

The PATTERN_IMPL_CLASS class denotes the user implementation of the BDS framework
pattern and the impl-class property denotes the supporting class.

5. Optional: Enable skip-level processing.

Use skip-record processing to skip read and write record errors in transactional batch jobs. Specify
skip-record policies in the xJCL. Read the topic on skip record processing for further information.

6. Optional: Enable retry-step processing.

116 Administering batch environments

Use retry-step processing to try job steps again when the processJobStep method encounters
errors in a transactional batch job. Specify retry-step policies in the xJCL. Read the topic on
retry-step processing for further information.

7. Optional: Configure the transaction mode.

Use the transaction mode to define whether job-related artifacts are called in global transaction
mode or local transaction mode. Read the topic on the configurable transaction mode for further
information.

8. Optional: Provide a job listener.

Provide an implementation for the com.ibm.websphere.batch.listener.JobListener interface to add
additional initialization and clean up for jobs and steps. Specify the job listener in the xJCL using
the job-level listener element.

The job listener beforeJob() method is invoked before any user artifact is invoked. The job listener
afterJob() method is invoked after the last user artifact is invoked. The job listener beforeStep()
method is invoked before any step-related user artifact. The job listener afterStep() method is
invoked as the last step-related user artifact. Each time the job listener is invoked, it logs a
message to the job log.

9. Declare a batch job controller.

a. Add a stateless session bean to your deployment descriptor and point to the implementation
class that the product provides. Do so by specifying
com.ibm.ws.batch.BatchJobControllerBean as the bean class. Do this specification only once
per batch application.

b. Use com.ibm.ws.batch.BatchJobControllerHome for the remote home interface class and
com.ibm.ws.batch.BatchJobController for the remote interface class.

10. Configure the EJB deployment descriptor.

a. Configure a resource reference on the Controller bean to the default WorkManager
wm/BatchWorkManager of the type commonj.work.WorkManager.

Note: You must declare the deployment descriptor of the batch controller bean in the Enterprise
JavaBeans (EJB) deployment descriptor of a batch application. Only one controller bean
can be defined per batch application.

v Create batch jobs using the command line.

1. Create batch job steps.

a. Create a Java class that implements the com.ibm.websphere.BatchJobStepInterface interface.

b. Implement business logic.

If your step has exactly one input and one output stream you could alternatively use the Generic
batch step of GenericXDBatchStep.

2. Create batch data streams.

a. Create a Java class that implements the interface com.ibm.websphere.batch.BatchDataStream.

Batch data streams are accessed from the business logic, for example, from the batch job steps
by calling BatchDataStreamMgr with jobID and stepID. JobID and stepID are retrieved from the
step bean properties list using keys BatchConstants.JOB_ID and BatchConstants.STEP_ID.

b. Map BatchConstants.JOB_ID to com.ibm.websphere.batch.JobID and map
BatchConstants.STEP_ID to com.ibm.websphere.batch.StepID.

You should already have access to the BatchConstants class.

The batch datastream framework provides several ready-to-use patterns to work with different
types of datastreams such as file and database. To use the batch datastream framework,
complete the following steps.

1) Identify the data stream type with which you want to operate, such as TextFile, ByteFile,
JDBC, or z/OS stream.

2) Identify whether you would read from the stream or write to the stream.

Chapter 4. Developing batch applications 117

3) See the table in the batch data stream framework and patterns. Select the class from the
supporting classes column that matches your data stream type and operation. For example,
if you want to read data from a text file, then choose TextFileReader.

4) Implement the interface listed in the pattern name column that corresponds to the supporting
class you selected in the previous step. The supporting class handles all the book keeping
activities related to the stream and the batch programming model. The implementation class
focuses on the stream processing logic.

5) Declare the supporting class and your implementation class in the xJCL.

6) Repeat this procedure for each datastream required in your step.

3. Optional: Obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

– Access to information that uniquely identifies the context in which the current batch job step runs,
for example, the job ID

– A transient user data area where application-specific information can be passed among the batch
programming framework methods during the life of the batch job step

– A persistent user data area where application-specific information can be passed across steps

You can use the PersistentMap helper class to simplify the storing of basic types such as Boolean
and double in the persistent user data area of the job step context.

4. Open a command prompt and ensure that Java is on the path.

5. Issue the following command, all on a single line.

java -cp ${WAS_INSTALL_ROOT}/plugins/com.ibm.ws.batch.runtime.jar
com.ibm.ws.batch.packager.WSBatchPackager
-appname=<Application_Name>
-jarfile=<jarfile containing the POJO batch steps>
-earfile=<name of the output EAR file without the .ear extension>
[-utilityjars=<semicolon separated list of utility jars>]
[-debug]
[-gridJob]

For example, for batch jobs, issue
java -cp ${WAS_INSTALL_ROOT}/plugins/com.ibm.ws.batch.runtime.jar
com.ibm.ws.batch.packager.WSBatchPackager
-appname=XDCGIVT
-jarfile=XDCGIVTEJBs.jar
-earfile=XDCGIVT

java -cp ${WAS_INSTALL_ROOT}/plugins/com.ibm.ws.batch.runtime.jar
com.ibm.ws.batch.packager.WSBatchPackager
-Dfile.encoding=ISO8859-1
-appname=<Application_Name>
-jarfile=<jarfile containing the POJO batch steps>
-earfile=<name of the output EAR file without the .ear extension>
[-utilityjars=<semicolon separated list of utility jars>]
[-debug]
[-gridJob]

For example for batch jobs, issue
java -cp ${WAS_INSTALL_ROOT}/plugins/com.ibm.ws.batch.runtime.jar
com.ibm.ws.batch.packager.WSBatchPackager
-Dfile.encoding=ISO8859-1
-appname=XDCGIVT
-jarfile=XDCGIVTEJBs.jar
-earfile=XDCGIVT

Note: If you do not include -Dfile.encoding=ISO8859-1, code page differences result that yield
invalid EAR and Enterprise JavaBeans (EJB) Java archive (JAR) descriptors.

118 Administering batch environments

6. Package a batch application.

Use one of the following methods.

– Package the application using the WSBatchPackager script.

<WASHOME>/stack_products/WCG/bin/WSBatchPackager.sh
-appname=<application_name>
-jarfile=<jar_file_containing_POJO_step_classes>
-earfile=<output_ear_file_name>
[-utilityjars=<semicolon_separated_utility_jars>]
[-nonxadsjndiname=<non-xa_datasource_JNDI_name_for_CursorHoldableJDBCReader>;<non-XA_datasource_JNDI_name_2>;...]
[-debug]

For example, issue
./WSBatchPackager.sh -appname=XDCGIVT -jarfile=XDCGIVTEJBs.jar -earfile=XDCGIVT -utilityjars=myutility.jar -nonxadsjndiname=jdbc/ivtnonxa

<WASHOME>/stack_products/WCG/bin/WSBatchPackager.sh
-Dfile.encoding=ISO8859-1

-appname=<application_name>
-jarfile=<jar_file_containing_POJO_step_classes>
-earfile=<output_ear_file_name>
[-utilityjars=<semicolon_separated_utility_jars>]
[-nonxadsjndiname=<non-xa_datasource_JNDI_name_for_CursorHoldableJDBCReader>;<non-XA_datasource_JNDI_name_2>;...]
[-debug]

For example, issue
./WSBatchPackager.sh -Dfile.encoding=ISO8859-1 -appname=XDCGIVT -jarfile=XDCGIVTEJBs.jar -earfile=XDCGIVT -utilityjars=myutility.jar
-nonxadsjndiname=jdbc/ivtnonxa

Note: If you do not include -Dfile.encoding=ISO8859-1, code page differences result that yield
invalid EAR and Enterprise JavaBeans (EJB) Java archive (JAR) descriptors.

– Package the application using the java command.

Open a command prompt and ensure that java is on the path.

v Create batch jobs using ANT.

1. Create batch job steps.

a. Create a Java class that implements the com.ibm.websphere.BatchJobStepInterface interface.

b. Implement business logic.

If your step has exactly one input and one output stream you could alternatively use the Generic
batch step of GenericXDBatchStep.

2. Create batch data streams.

a. Create a Java class that implements the interface com.ibm.websphere.batch.BatchDataStream.

Batch data streams are accessed from the business logic, for example, from the batch job steps
by calling BatchDataStreamMgr with jobID and stepID. JobID and stepID are retrieved from the
step bean properties list using keys BatchConstants.JOB_ID and BatchConstants.STEP_ID.

b. Map BatchConstants.JOB_ID to com.ibm.websphere.batch.JobID and map
BatchConstants.STEP_ID to com.ibm.websphere.batch.StepID.

You should already have access to the BatchConstants class.

The batch datastream framework provides several ready-to-use patterns to work with different
types of datastreams such as file and database. To use the batch datastream framework,
complete the following steps.

1) Identify the data stream type with which you want to operate, such as TextFile, ByteFile,
JDBC, or z/OS stream.

2) Identify whether you would read from the stream or write to the stream.

3) See the table in the batch data stream framework and patterns. Select the class from the
supporting classes column that matches your data stream type and operation. For example,
if you want to read data from a text file, then select TextFileReader.

Chapter 4. Developing batch applications 119

4) Implement the interface listed in the pattern name column that corresponds to the supporting
class you selected in the previous step. The supporting class handles all the book keeping
activities related to the stream and the batch programming model. The implementation class
focuses on the stream processing logic.

5) Declare the supporting class and your implementation class in the xJCL.

6) Repeat this procedure for each datastream required in your step.

3. Optional: Obtain the job step context.
JobStepContext ctx= JobStepContextMgr.getContext();

The JobStepContextMgr service class enables the batch job step to obtain a reference to its
JobStepContext object. The job step context provides the following capabilities:

– Access to information that uniquely identifies the context in which the current batch job step runs,
for example, the job ID

– A transient user data area where application-specific information can be passed among the batch
programming framework methods during the life of the batch job step

– A persistent user data area where application-specific information can be passed across steps

You can use the PersistentMap helper class to simplify the storing of basic types such as Boolean
and double in the persistent user data area of the job step context.

4. For a batch job, ensure the com.ibm.ws.batch.runtime.jar file is on the class path.

5. Declare the task.

Use the following command to declare the task:
<taskdef name="pgcpackager" classname="com.ibm.ws.batch.packager.PGCPackager"
classpath="${WAS_INSTALL_ROOT}/plugins/com.ibm.ws.batch.runtime.jar" />

6. After compiling the Java files in your application, invoke the WSBatchPackager task.
<WSBatchPackager appname="<appname>" earFile="<location name of EAR file to generate>"
jarfile="location of the POJO jar file"/>

Results

You have developed a simple transactional batch application using a batch job controller and Enterprise
JavaBeans (EJB) data stream, the command line, or the ANT tool.

What to do next

Install the compute-intensive application and configure WebSphere grid endpoints.

Components of a batch application
The batch application developer and the batch run time environment provide the components of a batch
application.

The following tables describe the components of a batch application.

Table 40. Components of a batch application that are provided by the batch application developer. The table
includes the component, type, implementation, and provider.
Component Type Implementation Provider

Batch job step POJO com.ibm.websphere.BatchJobStepInterface Batch application

Checkpoint algorithm POJO com.ibm.wsspi.batchCheckpointAlgorithm Batch application (can use runtime-provided
implementation instead)

Results algorithm POJO com.ibm.wsspi.batchResultsAlgorithm Batch application (can use runtime-provided
implementation instead)

120 Administering batch environments

Table 41. Components of a batch application that are provided by the batch run time environment. The table
includes the component, type, implementation, and provider.
Component Type Implementation Provider

Batch job controller Session bean Batch run time environment

Checkpoint algorithm POJO Batch run time environment (applications can provide their own)

Results algorithm POJO Batch run time environment (applications can provide their own)

Batch programming model
Batch applications are Enterprise JavaBeans (EJB) based Java Platform, Enterprise Edition (Java EE)
applications. These applications conform to a few well-defined interfaces that allow the batch runtime
environment to manage the start of batch jobs destined for the application.

Batch job steps
A batch job can be composed of one or more batch steps. All steps in a job are processed
sequentially. Dividing a batch application into steps allows for separation of distinct tasks in a
batch application. You can create batch steps by implementing the
com.ibm.websphere.batch.BatchJobStepInterface interface. This interface provides the business
logic of the batch step that the batch run time starts to run the batch application.

Batch controller bean
A batch application includes a stateless session bean that the product run time provides. This
stateless session bean acts as a job step controller. The controller stateless session bean is
declared in the application deployment descriptor once per batch application.

Batch data streams
Methods on the BatchDataStream interface allow the batch runtime environment to manage the
data stream being used by a batch step. For example, one of the methods retrieves current cursor
information from the stream to track how much data has been processed by the batch step.

Checkpoint algorithms
The batch runtime environment uses checkpoint algorithms to decide how often to commit global
transactions under which batch steps are started. The XML Job Control Language (xJCL) definition
of a batch job defines the checkpoint algorithms to be used. Properties specified for checkpoint
algorithms in xJCL allow for checkpoint behavior, such as transaction timeouts and checkpoint
intervals, to be customized for batch steps. The product provides time-based and record-based
checkpoint algorithms. A checkpoint algorithm SPI is also provided for building additional custom
checkpoint algorithms.

Results algorithm
Results algorithms are an optional feature of the batch programming model. Results algorithms are
applied to batch steps through XML Job Control Language (xJCL). The algorithms are used to
manipulate the return codes of batch jobs. Additionally, these algorithms are place holders for
triggers based on step return codes.

Batch job return codes
Batch job return codes fall into two groups named system and user. System return codes are
defined as negative integers. User application return codes are defined as positive integers. Both
system and user ranges include the return code of zero (0). If a user application return code is
specified in the system return code range, a warning message is posted in the job and system
logs.

Batch job steps
You can separate tasks of a batch application into batch steps. Batch steps are implemented as Plain Old
Java Object (POJO) classes that implement the interface,
com.ibm.websphere.batch.BatchJobStepInterfance. Batch job steps are performed sequentially.

Callback methods in the BatchJobStepInterface allow the grid endpoints to run batch steps when it runs a
batch job.

Chapter 4. Developing batch applications 121

A batch step contains the batchable business logic to run for a portion of the batch job. Typically, a batch
step contains code to read a record from a batch data stream, perform business logic with that record and
then continue to read the next record. The processJobStep method of a batch step class is called by the
grid endpoints in a batch loop. This method contains all the logic that can be batched to perform on data.

The grid endpoints invoke batch step class methods in a global transaction. This global transaction is
managed by the grid endpoints. The behavior of the transaction, such as transaction timeout or transaction
commit interval, is controlled by the checkpoint algorithm associated with the batch job to which the step
belongs.

The following grid endpoints callback methods exist on the BatchJobStepInterface that are invoked by the
grid endpoints:

Table 42. Callback methods for grid endpoints. The table includes the callback method and a description.
Callback method Description

setProperties(java.util.Properties
properties)

Makes properties defined in XML Job Control Language (xJCL) available to batch step in a
java.util.Properties object. This method is invoked in a global transaction.

void createJobStep() Indicates to the step that it has been initialized. Initialization logic, such as retrieving a handle to a batch
data stream, can be placed here. This method is invoked in a global transaction.

int processJobStep() Repeatedly invoked by grid endpoints in a batch loop until the return code integer of this method indicates
that the step has finished processing. Review BatchConstants in the batch API to see which return codes
can be returned. A return code of BatchConstants.STEP_CONTINUE signals to the grid endpoints to
continue calling this method in the batch loop. A return code of BatchConstants.STEP_COMPLETE
indicates to the grid endpoints that the step has finished and to call destroyJobStep.

int destroyJobStep() Indicates to the step that completion has occurred. The integer return code of this method is arbitrary and
can be chosen by the batch application developer. This return code is saved in the grid endpoints database
and represents the return code of the batch step. If the results algorithm is associated with the batch job,
then this return code is passed to it. If there is a return code-based conditional logic in the xJCL of the
batch job, then the grid endpoints use this return code to evaluate that logic.

The getProperties() method on the BatchJobStepInterface is not currently called by the grid endpoints. The
method is included in the interface for symmetry and possible later use.

Batch return codes
The batch job return code is retrieved by using the getBatchJobRC EJB interface, the get BatchJobRC
web services interface, or the lrcmd getBatchJobRC command option.

The following table lists the system batch job return codes that the batch environment uses. Do not
confuse the batch job return code with either the job status constants (see the
com.ibm.websphere.longrun.JobStatusConstants API) or the job scheduler constants (see the
com.ibm.websphere.longrun.JobSchedulerConstants API). The JobStatusConstants represent the status of
the job such as submitted, ended, restartable, canceled, or execution failed.

The job status can be obtained by using the getJobStatus EJB interface, the getJobStatus web services
interface, or through the job management console. The JobSchedulerConstants represent operating
conditions returned by the job scheduler on requests involving multiple jobs. For example:
int[] cancelJob(String[] jobid))

These conditions include:

1. Job does not exist

2. Job is in an invalid state

3. Database exception has occurred.

Table 43. Batch job return codes. The table includes each return code with an explanation.
Return code Explanation

0 Job ended normally

-1 Internal protocol error - WSGrid utility

122 Administering batch environments

Table 43. Batch job return codes (continued). The table includes each return code with an explanation.
Return code Explanation

-2 Input parameter error - WSGrid utility

-4 Job was suspended

-8 Job was canceled

-10 Job was forcibly canceled (z/OS only)

-12 Job failed and is in restartable state

-14 Job failed and is in execution failed state**

-16 Catastrophic failure - WSGrid utility

Note: This return code value does not apply in the case where the application returns
BatchConstants.STEP_COMPLETE_EXECUTION_FAILED from the processJobStep method. In
this case, the return code is determined by the application.

There are two options that are used to report an error in a batch application. The first option is for the
application to produce an exception when an error is encountered. This results in termination of the job
with a batch job return code of -12 and a batch job status of restartable. The second option is for the
application to return a BatchConstants.STEP_COMPLETE_EXECUTION_FAILED return code (see the
com.ibm.websphere.batch.BatchConstants API) from the processJobStep method and return an
application-specific error return code from the destroyJobStep method. This results in termination of the
job and a batch job status of execution failed. The step return code set in the destroyJobStep method is
passed to any results algorithm specified on the job step and is used to influence the return code of the
job to indicate the specific cause of the failure.

Batch controller bean
In its deployment descriptor, a batch application is required to declare a special stateless session bean.
This bean acts as a batch job controller.

Each application can include only a single controller bean. You can only include a controller bean in a
single work class, and a batch application can only have a single work class defined. This single work
class is created when the application is installed. You can associate this work class with any service policy
that has discretionary or queue-time goal type. The implementation of this bean is provided by the product,
not by the batch application. The bean must be declared in the batch application deployment descriptor.
Only one controller bean per batch application can be defined. The resource references and EJB
references declared on the controller bean are available to batch data streams of the batch application in
which the controller bean is declared. For example, if a batch data stream in the application needs access
to a WebSphere Application Server data source, then a resource reference to that data source can be
declared on the controller bean, and the batch data stream can look up the data source at run time in the
java:comp/env name space.

Restrictions:

v The home interface must be com.ibm.ws.batch.BatchJobControllerHome.

v The remote interface must be com.ibm.ws.batch.BatchJobController.

v The EJB class must be com.ibm.ws.batch.BatchJobControllerBean.

v The transaction type can be bean or container.

v The session type must be stateless.

v There can be at most one batch controller stateless session bean per batch application.

The following example deployment descriptor illustrates a batch controller stateless session bean:
<session id="BatchController>

<ejb-name>BatchController</ejb-name>
<home>com.ibm.ws.batch.BatchJobControllerHome</home>
<remote>com.ibm.ws.batch.BatchJobController</remote>
<ejb-class>com.ibm.ws.batch.BatchJobControllerBean</ejb-class>

Chapter 4. Developing batch applications 123

<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<resource-ref id="ResourceRef_1117024737807">

<description></description>
<res-ref-name>wm/BatchWorkManager</res-ref-name>
<res-type>commonj.work.WorkManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
</session>

Batch data streams
Batch data streams (BDS) are Java objects that provide an abstraction for the data stream processed by a
batch step. A batch step can have one or more BDS objects associated with it. The grid endpoints make
the BDS associated with the batch step available at run time. The grid endpoints also manages the life
cycle of a BDS by invoking batch-specific callbacks.

A BDS object implements the com.ibm.websphere.batch.BatchDataStream interface. This interface is
server agnostic. The implementing object can retrieve data from any type of data source, for example, files
and databases. Call back methods on the BatchDataStream interface allow the grid endpoints to manage
the BDS at run time. One of the key features of a BDS is its capability to convey its current position in the
stream to the grid endpoints, and the capability to move itself to a given location in the data stream. This
feature allows the grid endpoints to record (in the grid endpoints database) how much data a batch step
has processed. This information is recorded on every checkpoint. Therefore, the grid endpoints can restart
a batch job from a recorded position in the data stream if the job is canceled or fails in a recoverable
manner.

The following lists the main methods that exist for the BatchDataStream interface. See the API for the
BatchDataStream interface for additional information.

void open()
Called by grid endpoints to open the BDS

void close()
Called by grid endpoints to close the BDS

void initialize(String ilogicalname, String ijobstepid)
Called by grid endpoints to initialize the BDS and let it know its logical name and batch step ID

String externalizeCheckpointInformation()
Called by grid endpoints prior to a checkpoint to record the current cursor of the BDS

void internalizeCheckpointInformation(String chkpointInfo()
Called by grid endpoints to inform the BDS of the previously recorded cursor, chkpointInfo.
Typically, the positionAtCurrentCheckpoint is called after this call to move the BDS to this cursor.

void positionAtCurrentCheckpoint()
Called by grid endpoints after calling internalizeCheckpointInformation to move the BDS to the
cursor indicated by the chkpointInfo passed in through the internalizeCheckpointInformation call

The BatchDataStream interface does not have methods for retrieving or writing data. There are no
getNextRecord and putNextRecord methods defined on the interface that a batch step calls to read or
write to the BDS object. Methods for passing data between the batch step and the BDS object are the
responsibility of the implementing BDS object. Review the batch Samples that this product supports to see
examples of how to implement batch data streams.

Transaction environment
All methods of a BDS object are called in a global transaction. There is no guarantee that any
consecutive method calls made to a BDS object happen in the same transaction because the
transaction is owned by the grid endpoints, not the BDS object.

124 Administering batch environments

Checkpoint algorithms
The grid endpoints use checkpoint algorithms to determine when to commit global transactions under
which batch steps are invoked. These algorithms are applied to a batch job through the XML Job Control
Language (xJCL) definition. Properties specified for checkpoint algorithms in xJCL allow for checkpoint
behavior, such as transaction timeouts and checkpoint intervals, to be customized for batch steps. The
product provides both a time-based checkpoint algorithm and a record-based algorithm, and defines a
service provider interface (SPI) for building additional custom checkpoint algorithms.

On each batch step iteration of the processJobStep method, the common batch container consults the
checkpoint algorithm applied to that step if it commits the global transaction or not. Call back methods on
the checkpoint algorithms allow the common batch container to inform the algorithm when a global
transaction is committed or started. This behavior enables the algorithm to tracks the global transaction life
cycle. On each iteration of the processJobStep method, the common batch container calls the
ShouldCheckpointBeExecuted callback method on the algorithm to determine if the transaction is
committed. The algorithm controls the checkpoint interval through this method.

Review the batch API for the checkpoint algorithm SPI, located in the Information Center reference
section, for the checkpoint algorithm SPI that you can use to create custom checkpoint algorithms. The
class name is com.ibm.wsspi.batch.CheckpointPolicyAlgorithm.

The product supports two checkpoint algorithms: the time-based algorithm and the record based algorithm.
Both are explained in the following sections.

Time-based algorithm

The time-based checkpoint algorithm commits global transactions at a specified time interval. The following
example declares a time-based algorithm in xJCL:
<checkpoint-algorithm name="timebased">

<classname>com.ibm.wsspi.batch.checkpointalgorithms.timebased</classname>
<props>

<prop name="interval" value="15" />
<prop name="TransactionTimeOut" value="30" />

</props>
</checkpoint-algorithm>

The units of interval and TransactionTimeOut properties in the previous example are expressed in
seconds.

Record-based algorithm

The record-based checkpoint algorithm commits global transactions at a specified number of iterations of
the processJobStep method of batch step. Each call to the processJobStep method is treated as iterating
through one record. The processJobStep method can retrieve multiple records from a batch data stream
on each call. However, for this checkpoint algorithm one record is the equivalent one call to the
processJobStep method.

The following example declares a record-based algorithm in xJCL:
<checkpoint-algorithm name="recordbased">

<classname>com.ibm.wsspi.batch.checkpointalgorithms.recordbased</classname>
<props>

<prop name="recordcount" value="1000" />
<prop name="TransactionTimeOut" value="60" />

</props>
</checkpoint-algorithm>

The unit of the TransactionTimeOut property in the previous example is expressed in seconds.

Chapter 4. Developing batch applications 125

If not specified in xJCL, the default transaction timeout is 60 seconds and the default record count is
10000.

Applying a checkpoint algorithm to a batch step

Checkpoint algorithms are applied to a batch job through xJCL. You can declare multiple checkpoint
algorithms in xJCL, and you can apply a different algorithm to each batch step. You can apply no more
than one checkpoint algorithm to a batch step.

The following example applies checkpoint algorithms in xJCL:
<job name="PostingsSampleEar">

<checkpoint-algorithm name="timebased">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.timebased</classname>
<props>

<prop name="interval" value="15" />
<prop name=" TransactionTimeOut" value="30" />

</props>
</checkpoint-algorithm>

<checkpoint-algorithm name="recordbased">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.recordbased</classname>
<props>

<prop name="recordcount" value="1000" />
<prop name="TransactionTimeOut" value="60" />

</props>
</checkpoint-algorithm>

<job-step name="Step1">
<checkpoint-algorithm-ref name="timebased" />

</job-step>

<job-step name="Step2">
<checkpoint-algorithm-ref name="recordbased" />

</job-step>
</job>

Results algorithms
Results algorithms are an optional feature of the batch programming model.

A results algorithm allows for two types of actions to occur at the end of a batch step:

v To influence the return code of the batch job based on the return code of the batch step that just ended.
There are two types of return codes: The return code of an individual batch step and the return code of
the batch job to which the step belongs.

v To provide a place holder for triggers or actions to take based on various step return codes.

Results algorithms are applied to a batch job through XML Job Control Language (xJCL). These
algorithms are declared in xJCL and then applied to batch steps.

At the end of a batch step, the grid endpoints check the xJCL of the batch job to determine which results
algorithm to invoke. For each results algorithm specified, the grid endpoints pass to the algorithm the
return code of the batch step, which is the integer returned by the destroyJobStep method of the step, and
the current return code of the batch job in the grid endpoints database. The results algorithm can then act
based on the return codes passed in. The algorithm then passes a return code for the batch job back to
the grid endpoints, which is persisted to the grid endpoints database as the current return code of the
batch job. This return code can be the same as the return code that the grid endpoints passed to the
results algorithm initially, or the return code can be different, depending on logic coded into the results
algorithm. If a results algorithm is not specified on a batch step, the job return code is that of the results
algorithm from the previous step. If no results algorithms are specified, the job return code is zero (0).

126 Administering batch environments

A results algorithm system programming interface (SPI) is also provided, which you can use to write your
own algorithms and apply them to batch jobs.

The jobsum results algorithm

The jobsum results algorithm returns the highest return code of job steps to the grid endpoints. For
example, there are three steps in the job (step1, step2, step3) where the following conditions exist:

v step1 returned 5

v step2 returned 8

v step3 returned 2. The jobsum algorithm ensures that 8 is passed to the grid endpoints as the final
return code of the job.

Example of applying a jobsum and custom results algorithm to steps
<job name="PostingSampleEar">

<results-algorithms>
<results-algorithm name="jobsum">

<classname>com.ibm.wsspi.resultsalgorithms.jobsum</classname>
</results-algorithm>

<results-algorithm name="custom_algorithm">
<classname>my_custom_algorithm</classname>

</results-algorithm>

</results-algorithms>

<job-step name="Step1">

<results-ref name="jobsum">
</job-step>

<job-step name="Step2">

<results-ref name="custom_algorithm">
</job-step>

</job>

Skip-record processing
Use skip-record processing to skip read and write record errors in transactional batch jobs. Specify
skip-record policies in the xJCL.

Skip-record processing

Each batch data stream has its own skip-record policy configuration. You enable skip-record processing by
specifying a non-zero value for the com.ibm.batch.bds.skip.count batch data stream property in the xJCL.

You can refine skip record processing by using the com.ibm.batch.bds.skip.include.exception.class.<n>
property to specify what record errors to skip and the com.ibm.batch.bds.skip.exclude.exception.class.<n>
property to specify what record errors not to skip. The two properties are mutually exclusive.

The batch framework tracks skip record processing on a per step basis in the local job status database.
This tracking is done only for batch data streams from the batch framework. At the end of step processing,
a message is written to the job log. The message indicates the number of records that were skipped per
batch data stream and the number of records per second per batch data stream. The number of records
per second might not match the number of records that were processed by the batch data stream. If the
actual number of records processed took less than a second, the value of the records per second is
extrapolated from the amount of time it took to process the actual number of records.

The following list contains each of the skip-record properties followed by a description.

com.ibm.batch.bds.skip.count

Chapter 4. Developing batch applications 127

Specifies the number of records that a batch data stream can skip due to an error in reading or
writing a record. After the limit is reached, the batch data stream does not skip any more read or
write errors.

When an input record is skipped, the batch data stream moves to the next record and fetches it.
Control does not return to the caller until a record is read successfully, an error that does not
involve skipping records occurs, or the skip limit is reached.

When an output record is skipped, the batch data stream returns to the caller normally.

If the batch data stream suffers a read or write error after the skip limit is reached, then the read
or write exception is returned to the caller. The record is not skipped.

If you register a skip listener with the batch data stream, the skip listener receives control on every
skipped record. For skipped reads, the SkipListener.onSkippedRead(Throwable t) method is
invoked. The skip listener receives control before the next record is fetched. For skipped writes,
the SkipListener.onSkippedWrite(Object record, Throwable t) method is invoked. The skipped
record is passed in the first argument. The skip listener receives control before the batch data
stream returns to the caller.

The running skip count for a batch data stream persists at every checkpoint. When a job step
starts again, the skip count is restored from the last committed checkpoint.

Skip-record processing is disabled by default.

Any batch data stream implementation that extends the
com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataInputStreamRecordMetrics
class or the
com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataOutputStreamRecordMetrics
class automatically inherits skip-record support. All batch data streams defined under the
com.ibm.websphere.batch.devframework.datastreams package contain skip-record support.

com.ibm.batch.bds.skip.include.exception.class.<n>

Specifies a list of exceptions for the batch data stream to skip when reading or writing records.
The batch data stream skips only the exceptions on the list.

The <n> variable is an integer. Start the variable at 1 and increment it by one for each exception.

If you do not specify any exceptions, then the default is that all exceptions are included in the list
of read/writer errors to skip.

The following example uses the property:
<batch-data-streams>

<bds>
<logical-name>inputBDS</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.ws.batch.sample.bds.WCGSampleBDS"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/tmp/input.txt" />
<prop name="com.ibm.batch.bds.skip.count" value="5" />
<prop name="com.ibm.batch.bds.skip.include.exception.class.1"

value="java.io.IOException" />
<prop name="com.ibm.batch.bds.skip.include.exception.class.2"

value="com.xyz.bds.error.BadDataException" />
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader</impl-class>

</bds>
</batch-data-streams>

The batch data stream skips records for input/output exceptions and for bad data exceptions.

com.ibm.batch.bds.skip.exclude.exception.class.<n>

Specifies a list of exceptions that cannot be skipped when reading or writing records.

The <n> variable is an integer. Start the variable at 1 and increment it by one for each exception.

128 Administering batch environments

If you do not specify any exceptions, then the default is that no records are excluded from the list
of read/write record errors to skip.

The following example uses the property:
<batch-data-streams>

<bds>
<logical-name>inputBDS</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.ws.batch.sample.bds.WCGSampleBDS"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/tmp/input.txt" />
<prop name="com.ibm.batch.bds.skip.count" value="3" />
<prop name="com.ibm.batch.bds.skip.exclude.exception.class.1"

value="java.io.FileNotFoundException" />
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader</impl-class>

</bds>
</batch-data-streams>

The batch data stream does not skip records for file not found exceptions.

Skip listeners

You can register a skip listener with a batch data stream to listen for skipped records. The skip listener
receives control whenever a record is skipped.

The following example code registers the skip listener.
AbstractBatchDataInputStream _inputBDS =

(AbstractBatchDataInputStream)BatchDataStreamMgr.getBatchDataStream("inputBDS", getJobStepID());
((AbstractBatchDataStreamRecordMetrics)_inputBDS).addSkipListener(new MySkipListener());

Retry-step processing
Use retry-step processing to try job steps again when the processJobStep method encounters errors in a
transactional batch job. Specify retry-step policies in the xJCL.

Each job step has its own retry-step policy configuration. You enable retry-step processing by specifying a
non-zero value for the com.ibm.batch.step.retry.count job step property in the xJCL.

You can refine retry-step processing by using the com.ibm.batch.step.retry.include.exception.class.<n>
property to specify what exceptions can be tried again when a step fails and the
com.ibm.batch.step.retry.exclude.exception.class.<n> property to specify what exceptions cannot be tried
again when a step fails. The two properties are mutually exclusive.

The batch framework tracks retry-step processing on a per step basis in the local job status database. At
the end of step processing, a message is written to the job log. The message indicates the number of
times that the step was tried again and the total clock time that the step used. The format of the clock time
is HH:MM:SS:MMM where HH is hours, MM is minutes, SS is seconds, and MMM is milliseconds.

The following list contains the retry-step properties followed by a description.

com.ibm.batch.step.retry.count

Specifies the number of times a step can be tried again due to an error in step processing for the
processJobStep method. When the limit is reached, no further step errors are tried again.

The BatchJobStepInterface.processJobStep method supports the throws java.lang.Exception
clause. Any exception from the processJobStep method is eligible for retry-step processing.

Trying a step again is equivalent to restarting it. The BatchJobStepInterface.destroyJobStep
method is called after the step error. The checkpoint transaction is rolled back before restarting the
step. The BatchJobStepInterface.createJobStep method is called when a step is tried again. All
batch data streams associated with the step are closed and reopened upon trying again.

Chapter 4. Developing batch applications 129

If an error occurs for the step after the limit for trying a step again is reached, then the step fails
and the job ends in the restartable state.

If you register a retry listener with the job step context, the retry listener receives control on every
exception that can be tried again. The RetryListener.onError(Throwable t) method is called before
the failed step enters the destroyJobStep method and before the checkpoint transaction is rolled
back. The RetryListener.onRetry(Throwable t) method receives control when the step is tried
again, but before the BatchJobStepInterface.createJobStep method is called.

The retry listener is unregistered immediately after the RetryListener.onRetry method is called. If
you want the batch application to listen for further attempts to try the step again, reregister the
retry listener.

The running count of the number of times a step can be tried again is reset to zero at every
checkpoint. This means that the retry limit is effectively a per-checkpoint limit.

Retry-step processing is disabled by default.

com.ibm.batch.step.retry.delay.time

Specifies the number of milliseconds to wait before trying the step again. The delay occurs after
the failed step goes through the destroyJobStep method and after the checkpoint transaction is
rolled back. However, the delay occurs before calling the RetryListener.onRetry method.

com.ibm.batch.step.retry.include.exception.class.<n>

Specifies a list of exceptions that can be tried again when a step fails.

The <n> is an integer. Start the variable at 1 and increment it by one for each exception.

If you do not specify any exceptions, then the default is that all exceptions are included in the list.

The following example uses the property:
<job-step name="WCGStep1">

<classname>com.ibm.ws.batch.sample.WCGSampleBDSBatchStep</classname>
<checkpoint-algorithm-ref name="chkpt"/>
<results-ref name="jobsum"/>
<props>
<prop name="com.ibm.batch.step.retry.count" value="1" />
<prop name="com.ibm.batch.step.retry.delay.time" value="3000" />
<prop name="com.ibm.batch.step.retry.include.exception.class.1" value="java.sql.SQLException" />

</props>

...
</job-step>

The WCGStep1 job step tries a job step again for a Structured Query Language (SQL) exception.

com.ibm.batch.step.retry.exclude.exception.class.<n>

Specifies a list of exceptions that cannot be tried again when a step fails.

The <n> variable is an integer. Start the variable at 1 and increment it by one for each exception.

If you do not specify any exceptions, then the default is that no exceptions are excluded from the
list.

The following example uses the property:
<job-step name="WCGStep1">

<classname>com.ibm.ws.batch.sample.WCGSampleBDSBatchStep</classname>
<checkpoint-algorithm-ref name="chkpt"/>
<results-ref name="jobsum"/>
<props>
<prop name="com.ibm.batch.step.retry.count" value="1" />
<prop name="com.ibm.batch.step.retry.delay.time" value="3000" />
<prop name="com.ibm.batch.step.retry.exclude.exception.class.1" value="java.sql.SQLException" />

</props>

...
</job-step>

130 Administering batch environments

The WCGStep1 job step does not try a job step again for a Structured Query Language (SQL)
exception.

Retry listeners

You can register a retry listener with the JobStepContext method to listen for exception to try again. The
retry listener receives control whenever an exception that can be tried again occurs and the step is tried
again.

The retry listener can be registered with the JobStepContext method through the addRetryListener
method:
JobStepContextMgr.getContext().addRetryListener(new MyRetryListener());

Configurable transaction mode
Use the transaction mode to define whether job-related artifacts are called in global transaction mode or
local transaction mode. Specify the transaction mode in the xJCL.

The following list describes the options for the com.ibm.websphere.batch.transaction.policy property.

global

Specifies that all job-related artifacts including listeners, batch data streams, and checkpoint
algorithms, are called in global transaction mode. This option is the default.

local Specifies that all job-related artifacts including listeners, batch data streams, and checkpoint
algorithms, are called in local transaction mode.

Updates to the local job status table and the database must be done through the same connection
to maintain transaction integrity.

Transaction mode xJCL example

Specify a job level property:
<job
...
<props>

<prop name="com.ibm.websphere.batch.transaction.policy" value="LOCAL"/>
</props>
....

Because the local transaction mode is specified, all user code must share the Java Database Connectivity
(JDBC) connection with the batch container. The batch container creates and saves a JDBC connection in
the job step context. You can fetch the job step context with the following code:
java.sql.Connection conn = JobStepContextMgr.getContext().getSharedSQLConnection();

Do not attempt to create a JDBC connection or close a connection obtained with the job step context.
Local transaction support is built into the batch data stream framework JDBC reader or JDBC writer
patterns. Setting the com.ibm.websphere.batch.transaction.policy property to local forces the batch data
stream framework to use the shared JDBC connection.

Developing a parallel job management application
You can build a transactional batch application as a job and divide the job into subordinate jobs so that the
subordinate jobs can run independently and in parallel. You use the parallel job manager to submit and
manage the transactional batch jobs.

Chapter 4. Developing batch applications 131

Before you begin

Note: Parallel job management applications built for prior versions of WebSphere Batch can run as is on
WebSphere Application Server Version 8.5. However, follow the same procedure as having two
xJCl files, an xd.spi.properties file, and a shared library configured for two SPI implementations.
When using the application as is, do not do the steps in the following procedure.

Note: You can migrate parallel job management applications to WebSphere Application Server Version
8.5. Add the API implementation classes to the application EAR. Reauthor the xJCL as described in
the following procedure.

About this task

You develop subordinate jobs for your job so that the subordinate jobs can run independently and in
parallel. First develop the criteria that breaks jobs into subordinate jobs. Then build a simple batch
application and make the pieces of the application parallel. Finally, create the xJCl for the subordinate jobs
so that in another procedure you can deploy the application following another procedure.

Procedure
1. Develop the criteria that breaks jobs into subordinate jobs.

For example, divide jobs into subordinate jobs based on bank branches, with the subordinate job for
each branch based on the location of the branch. For a given bank branch, have the subordinate job
compute the balance of each account at the end of the day based on the daily transactions for each
account.

2. Build a simple batch application to process the information as a job.

3. Make the pieces of the application parallel.

Implement the parameter API to divide the job for the batch application into multiple subordinate jobs.

4. Optional: Collect information about a subordinate job that is running.

Use the SubJobCollector API to collect the information.

5. Optional: Analyze information collected about the subordinate job.

Use the SubJobAnalyzer API to analyze the information.

6. Create the xJCL.

Start with xJCL from the job that you created for the simple batch application.

a. Specify the run element as a child of the job element.

1) Set the instances attribute on the run element to multiple.

2) Set the Java virtual machine (JVM) attribute on the run element to single or multiple.

Use the single attribute to run all subordinate jobs in the same JVM. Use the multiple attribute
to run the subordinate jobs on any valid JVM.

<run instances="multiple" jvm="multiple">

You can specify the run element as a child of a step. In this situation, the step is run as a parallel
job. The contents of the step xJCL are used to generate a one step subordinate job xJCL.

b. Specify one prop element as a child of the run element for each PJM API.

1) Specify the PJM API on the name attribute.

The following APIs are valid for the PJM:

v com.ibm.websphere.batch.parallel.parameterizer

v com.ibm.websphere.batch.parallel.synchronization

v com.ibm.websphere.batch.parallel.subjobanalyzer

v com.ibm.websphere.batch.parallel.subjobcollector

2) Set the value attribute to a name for the API.

c. Include a prop element to specify the subordinate job name.

132 Administering batch environments

1) Set the name attribute to com.ibm.wsspi.batch.parallel.subjob.name.

2) Set the value attribute to the name of the job.

d. Optional: Include a prop element to indicate the job count.

1) Set the name attribute to parallel.jobcount.

2) Set the value attribute to a value for the job count.

e. Specify any other job-level properties.
<run instances="multiple" jvm="multiple">

<props>
<prop name="com.ibm.websphere.batch.parallel.parameterizer"
value="com.ibm.websphere.samples.spi.MailerParameterizer"/>
<prop name="com.ibm.websphere.batch.parallel.synchronization"
value="com.ibm.websphere.samples.spi.MailerTXSynchronization"/>
<prop name="com.ibm.websphere.batch.parallel.subjobanalyzer"
value="com.ibm.websphere.samples.spi.MailerSubJobAnalyzer"/>
<prop name="com.ibm.websphere.batch.parallel.subjobcollector"
value="com.ibm.websphere.samples.spi.MailerSubJobCollector"/>

<prop name="com.ibm.wsspi.batch.parallel.subjob.name"
value="MailerSampleSubJob" />

<!-- The count of parallel sub jobs to be submitted -->
<prop name="parallel.jobcount" value="3" />

</props>
</run>

7. Include the same three step level properties in each step in the xJCL.
<prop name="com.ibm.wsspi.batch.parallel.jobname" value="${parallel.jobname}" />
<prop name="com.ibm.wsspi.batch.parallel.logicalTXID" value="${logicalTXID}" />
<prop name="com.ibm.wsspi.batch.parallel.jobmanager" value="${parallel.jobmanager}" />

Results

You have created a job with subordinate jobs that can run independently and in parallel.

What to do next

Deploy the application as you would other batch applications.

Parallel job manager (PJM)
The parallel job manager (PJM) provides a facility and framework for submitting and managing
transactional batch jobs that run as a coordinated collection of independent parallel subordinate jobs.

PJM basics
v The parallel job manager is in the batch container instead of in a separate system application.

v Only a single xJCL file is required. The xJCL combines the contents of the top-level job xJCL with the
contents of the subordinate job xJCLs.

v You do not need to create a separate database.

v Because the PJM is part of the batch container, you do not need to install and configure the PJM.

v You package the PJM APIs in the batch application as a utility Java archive (JAR). No shared library is
required.

v The contents of the xd.spi.properties file are part of the xJCL. No xd.spi.properties file is required.

The PJM operation and invocation of the APIs

The following two images depict the PJM architecture and the sequence of a parallel job. First, the xJCL is
submitted to the job scheduler. The job scheduler dispatches the xJCL to an endpoint that runs the
application that the xJCL references. The batch container determines that the job is to have subordinate

Chapter 4. Developing batch applications 133

jobs running in parallel from inspecting the run property of the job in the xJCL. The batch container
delegates the running to the PJM subcomponent. The PJM invokes the parameterizer API and uses the
information in the xJCL to help divide the job into subordinate jobs. The PJM then invokes the LogicalTX
synchronization API to indicate the beginning of the logical transaction. The PJM generates the
subordinate job xJCL and submits the subordinate jobs to the job scheduler. The job scheduler dispatches
the subordinate jobs to the batch container endpoints so that they can run. The batch container runs the
subordinate job. When a checkpoint is taken, the subordinate job collector API is invoked. This API collects
relevant state information about the subordinate job. This data is sent to the subordinate job analyzer API
for interpretation. After all subordinate jobs reach a final state, the beforeCompletion and afterCompletion
synchronization APIs are invoked. The analyzer API is also invoked to calculate the return code of the job.

A logical transaction is a unit of work demarcation that spans the running of a parallel job. Its life cycle
corresponds to the combined life cycle of the subordinate jobs of the parallel job. Because of an extension
mechanism, you can customize application-managed resources so that they can be controlled in this unit
of work scope for commit and rollback purposes.

PJM architecture and programming model

The following image summarizes the PJM architecture, which shows where the APIs are called:

Batch
container

xJCL

Job scheduler
submit

stateChanged

Batch
container

Parameterizer
API

parameterize

LogicalTX
synchronization API

Subordinate
job

analyzer API

begin
before/after
completion

rollback

analyze,
getReturnCode

submit dispatch

Subordinate
job

xJCL
from

Repository

Subordinate
job

collector API

collect

Sequence of a parallel job

The following image shows the order of events in a parallel job:

Job scheduler
Batch

container
Parameterizer Synchronization Subordinate job

collector

Subordinate job
analyzer

JVM-1 JVM-2 JVM-3 JVM-2

submit

dispatch

submit
subordinate

jobs

The batch container invokes the subordinate job collector API.

The batch container sends
intermediate data.

parameterize

begin

beforeCompletion

afterCompletion

analyze

getReturnCode

134 Administering batch environments

PJM job management

The top-level job submits the subordinate jobs and monitors their completion. The top-level job end state is
influenced by the outcome of the subordinate jobs as follows:

1. If all subordinate jobs complete in the ended state, that is, in a successful completion, then the
top-level job completes in the ended state.

2. If any subordinate job completes in the restartable state and no subordinate job has ended in the failed
state, then the top-level job completes in the restartable state.

3. If any subordinate job completes in the failed state, then the top-level job completes in the failed state.

4. If the top-level job and subordinate jobs are in the restartable state, restart only the top-level job. If any
subordinate jobs are restarted manually, then the top-level job does not process the logical transaction
properly.

Parallel job manager application programming interfaces (APIs)
Parallel job manager (PJM) SPIs in previous releases are now APIs. They are packaged as part of an
application.

Parameterizer API

The purpose of the parameterizer API is to divide the top-level job into multiple subordinate jobs. The
parameterizer API determines the number of subordinate jobs to create, and the input properties passed to
each subordinate job. Typically, the input properties contain information for which data chunks process a
particular subordinate job. Implementation of the parameterizer API is mandatory.

There is a default parameterizer API that provides the basic functions of the generic parameterizer. To
invoke this implementation, set the com.ibm.websphere.batch.parallel.parameterizer property to a value
of com.ibm.ws.batch.parallel.BuiltInParameterizer in the xJCL. To specify the number of subordinate
jobs, set the com.ibm.wsspi.batch.parallel.jobs input property to N, where N is the number of the
subordinate job. To specify a unique property to a specific subordinate job instance, use the property
com.ibm.wsspi.batch.parallel.prop.<property_name>.<subordinate_job>=<value> where subordinate_job
is the subordinate job instance (1< subordinate job < N). All other properties in <property_name>= <value>
format are visible to all subordinate jobs.

Synchronization API

The synchronization API gives you control during the various life cycle stages of the logical transaction.
For example, the Begin, beforeCompletion, and afterCompletion life stages. You can use these control
points to roll back the logical transaction if necessary.

SubJobCollector API

The SubJobCollector API collects information related to a subordinate job execution. In a typical
implementation, progress information about a subordinate job is stored as an externalizable object within
the subordinate job context. When the batch container starts the collector API, the information previously
stored within the subordinate job context is returned.

SubJobAnalyzer API

The SubJobAnalyzer API is used to analyze information collected previously by using the SubJobCollector
API. In a typical implementation, the SubJobAnalyzer API is used to aggregate information obtained from
all subordinate jobs to determine the consolidated return code for the top-level job. The SubJobAnalyzer
API is called during checkpoint processing and on job completion.

Chapter 4. Developing batch applications 135

Context objects

The batch runtime environment provides context objects that offer a common work area among APIs and
batch application programming model artifacts. A context object allows user code to save and retrieve a
Java Object and share it within the context scope. The batch runtime environment ensures appropriate
cleanup of context objects and end of scope. There are two context object types:

v ParallelJobManagerContext: Exists in the scope of a parallel job. The Parameters, SubJobAnalyzer, and
Synchronization APIs all have access to this context for a given parallel job instance.

v SubJobContext: Exists in the scope of a subordinate job. The SubJobCollector, and batch application
programming model artifacts, BatchDataStream, BatchJobStepInterface, CheckpointPolicyAlgorithm, and
ResultsAlgorithm all have access to this context for a given subordinate job instance.

Other considerations for the parallel job manager
There are other considerations that help you understand how to optimally use the parallel job manager.

Transaction timeouts

You can keep the default value for the TransactionTimeOut property in the top-level job xJCL. You can
alternatively adjust it depending on the transaction timeout of the subordinate job.

Job logs

You can view job logs for a subordinate job from the job management console. The PJM retrieves
subordinate job logs for its logical job and aggregates them into its top-level job log.

Failover scenarios

If the top-level job and several subordinate jobs are in the restartable state, then restart only the top-level
job. If you restart any of the subordinate jobs manually, then the top-level job does not process the logical
transaction properly.

Disaster recovery

You can use the jobrecovery script when a primary site fails to allow a secondary site to take over.

Using the batch data stream framework
This topic shows you an example of how to use the batch data stream (BDS) framework.

Before you begin

Identify the correct pattern to use. Select a pattern based on what type of data stream you need. For
example, if you want to read text from a file, then select the FileReaderPattern. See “Batch data stream
framework and patterns” on page 138 for a selection of patterns.

Procedure
1. Implement the pattern interface:

<codeblock>package com.ibm.websphere.samples;

import java.io.BufferedReader;
import java.io.IOException;
import java.util.Properties;

import com.ibm.websphere.batch.devframework.configuration.BDSFWLogger;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.FileReaderPattern;

// Implement the FileReaderPattern

136 Administering batch environments

public class TransactionListStream implements FileReaderPattern {
private Properties properties;
private BDSFWLogger logger;

/**
Save properties specified in the xJCL

*/

public void initialize(Properties props) {
// create logger
logger = new BDSFWLogger(props);

if (logger.isDebugEnabled())
logger.debug("entering TransactionListInputStream.initialize()");
properties = props;

}

// This method is where you should add the business logic of processing the read //string
public Object fetchRecord(BufferedReader reader) throws IOException {
String str = null;
Posting posting = null;
if (logger.isDebugEnabled())

logger.debug("Entering TransactionListInputStream.fetchRecord");
if(reader.ready()) {
str = reader.readLine();
}
if(str != null) {

posting = _generateRecord(str);

}

if (logger.isDebugEnabled())
logger.debug("Exiting TransactionListInputStream.fetchRecord with " + posting);
return posting;

}
// Helper method that parses the read string and creates an internal object for use
// by other parts of the code
private Posting _generateRecord(String str) {
Posting post = null;
String [] tokens = str.split(",", 3);

if(tokens.length == 3) {

String txTypeStr = tokens[0];
String actNoStr = tokens[1];
String amtStr = tokens[2];

int txType = Integer.parseInt(txTypeStr);
double amt = Double.parseDouble(amtStr);
post = new Posting(txType,actNoStr,amt);

} else {
logger.error("Invalid csv string" + str);
}
if(logger.isDebugEnabled())
logger.debug("Loaded posting record " + post);
return post;
}
public void processHeader(BufferedReader reader) throws IOException {
// NO OP for this sample

}

}
</codeblock>

2. Reference the class that you created in the previous step, along with the supporting class in the xJCL.

Chapter 4. Developing batch applications 137

xJCL example
<codeblock><batch-data-streams>
<bds>

<logical-name>txlististream</logical-name>
<props>

<prop name="IMPLCLASS" value= "com.ibm.websphere.samples.TransactionListStream"/>
<prop name="FILENAME" value="/opt/inputfile.txt"/>
<prop name="debug" value="true"/>

</props>
<impl-class> com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader </impl-class>
</bds>
</batch-data-streams>

</codeblock>

What to do next

Install the application.

Batch data stream framework and patterns
The batch environment provides a batch data stream (BDS) framework that includes pre-built code to work
with streams such as text, byte, database, and data sets. You can implement an interface where the
business logic for processing the stream is added. The pre-built code manages actions such as opening,
closing, and externalizing and internalizing checkpoints.

BDS framework patterns

A BDS framework pattern is a simple Java TM interface for a particular type of data stream that a user
implements to insert business logic. The BDS framework has several supporting classes for each pattern
that do most of the mundane tasks related to stream management. The following table shows the patterns
that the batch environment provides:

Table 44. BDS framework patterns. The table includes the pattern name, description, and supporting classes.
Pattern name Description Supporting classes

“JDBCReaderPattern” on page 139 Used to retrieve data from a database using a
JDBC connection.

v LocalJDBCReader

v JDBCReader

v CursorHoldableJDBCReader

“JDBCWriterPattern” on page 141 Used to write data to a database using a JDBC
connection.

v LocalJDBCWriter

v JDBCWriter

“ByteReaderPattern” on page 143 Used to read byte data from a file. FileByteReader

“ByteWriterPattern” on page 144 Used to write byte data from a file. FileByteWriter

“FileReaderPattern” on page 145 Used to read a text file. TextFileReader

“FileWriterPattern” on page 147 Used to write to a text file. TextFileWriter

“RecordOrientedDatasetReaderPattern” on page
148

Used to read a z/OS data set.
v ZFileStreamOrientedTextReader

v ZFileStreamOrientedByteReader

v ZFileRecordOrientedDataReader

“RecordOrientedDataSetWriterPattern” on page
150

Used to write to a z/OS data set.
v ZFileStreamOrientedTextWriter

v ZFileStreamOrientedByteWriter

v ZFileRecordOrientedDataReader

“JPAReaderPattern” on page 151 Used to retrieve data from a database using
OpenJPA

JPAReader

“JPAWriterPattern” on page 153 Used to write data to a database using a Java
Persistence API (JPA) connection.

JPAWriter

138 Administering batch environments

BDS framework steps

BDS framework steps minimize the amount of work to create a batch step by performing the bookkeeping
tasks related to step management and delegating the business logic to a class implemented by the user.

Table 45. BDS framework steps. The table includes the framework step and description.
Step Description

“Implementing the generic batch step (GenericXDBatchStep)” on page 157 A simple step that uses one input and one output stream.

“Implementing the error tolerant step” on page 158 A simple step that uses one input, one output stream, and one error
stream.

ThresholdPolicies

Table 46. ThresholdPolicies. The table includes the step and description.
Step Description

“Declaring the record based threshold policy
(RecordBasedThresholdPolicy)” on page 160

This policy provides a batch implementation of the ThresholdPolicy
interface.

“Declaring the percentage-based threshold policy
(PercentageBasedThresholdPolicy)” on page 159

This policy provides a batch implementation of the ThresholdPolicy
interface

JDBCReaderPattern
This pattern is used to retrieve data from a database using a Java Database Connectivity (JDBC)
connection.

Supporting classes
1. CursorHoldableJDBCReader

This class is referenced when the usage pattern of your JDBC input stream retrieves a set of results at
the beginning of the step, and then iterates over them throughout the step-processing logic. The
CursorHoldableJDBCReader uses a stateful session bean with a cursor holdable, non-XA data source.
A cursor holdable JDBCReader is a pattern that is implemented in such a way that the cursor is not
lost when the transaction is committed. As a result, ResultSets do not need to be repopulated after
every checkpoint, which improves performance. To use CursorHoldableJDBCReader, package the
CursorHoldableSessionBean in your application. To create the package, add the
nonxadsjndiname=jndi_name_of_a_non-XA_data_source_to_database property to the properties file that
is used by the BatchPackager. For example, nonxadsjndiname=jdbc/nonxads. If you want to add
multiple non-XA data sources enter the following: nonxadsjndiname=<jndi name1>;<jndi name2>...

Restriction: Currently, the resource reference name of the JDBC data source is the same as the Java
Naming and Directory Interface (JNDI) name.

2. JDBCReader

This class is referenced when the usage pattern of your JDBC input stream retrieves a single result
from a query, which is used and discarded after every iteration of the step.

3. LocalJDBCReader

This class is referenced when data is read from a local database.

Required properties

The following properties are required for the pattern.

Table 47. Required properties. The table includes each required property, its value, and whether the
LocalJDBCReader class, the CursorHoldableJDBCReader class, or the JDBCReader class is applicable.
Property Value LocalJDBCReader CursorHoldableJDBCReader JDBCReader

PATTERN_IMPL_CLASS Class implementing
JDBCReaderPattern interface

Applicable Applicable Applicable

ds_jndi_name Datasource JNDI name. Applicable Not applicable Applicable

Chapter 4. Developing batch applications 139

Table 47. Required properties (continued). The table includes each required property, its value, and whether the
LocalJDBCReader class, the CursorHoldableJDBCReader class, or the JDBCReader class is applicable.
Property Value LocalJDBCReader CursorHoldableJDBCReader JDBCReader

jdbc_url The JDBC URL. For example,
jdbc:derby:C:\\mysample\\
CREDITREPORT.

Applicable Not applicable Not applicable

jdbc_driver The JDBC driver. For example,
org.apache.derby.jdbc.EmbeddedDriver

Applicable Not applicable Not applicable

userid The user ID for the database. For
example, Myid

Applicable Not applicable Not applicable

pswd User password. For example, mypwd.
LocalJDBCReader only.

Applicable Not applicable Not applicable

Optional properties

The following properties are optional for the pattern.

Table 48. Optional properties. The table includes each optional property, its value and description, and whether the
LocalJDBCReader class, the CursorHoldableJDBCReader class, or the JDBCReader class is applicable.
Property name Value Description LocalJDBCReader CursorHoldableJDCReader JDBCReader

debug true or
false
(default is
false)

Enables detailed
tracing on this batch
datastream.

Applicable Applicable Applicable

EnablePerformanceMeasurement true or
false
(default is
false)

Calculates the total
time spent in the
batch data-streams
and the
processRecord
method, if you are
using the
GenericXDBatchStep.

Applicable Applicable Applicable

EnableDetailedPerformanceMeasurement true or
false
(default is
false)

Provides a more
detailed breakdown
of time spent in each
method of the batch
data-streams.

Applicable Applicable Applicable

Interface definition
public interface JDBCReaderPattern {

/**
* This method is invoked during the job setup phase.
*
* @param props properties provided in the xJCL
*/

public void initialize(Properties props);

/**
* This method should retrieve values for the various columns for the current row from the given resultset
* object. Typically this data would be used to populate an intermediate object which would be returned
* @param resultSet
* @return
*/
public Object fetchRecord(ResultSet resultSet);

/**
* This method should return a SQL query that will be used during setup of the stream to retrieve all
* relevant data that would be processed part of the job steps
* @return object to be used during process step.
*/
public String getInitialLookupQuery();

/**

140 Administering batch environments

* This method gets called during Job Restart. The restart token should be used to create an SQL query
* that will retrieve previously unprocessed records. Typically the restart token would be the primary
* key in the table and the query would get all rows with
* primary key value > restarttoken
* @param restartToken
* @return The restart query
*/
public String getRestartQuery(String restartToken);

/**
* This method gets called just before a checkpoint is taken.
* @return The method should return a string value identifying the last record read by the stream.
*/
public String getRestartTokens();

}

CursorHoldableJDBCReader xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="ds_jndi_name" value="jdbc/fvtdb"/>
<prop name="debug" value="true"/>
<prop name="DEFAULT_APPLICATION_NAME" value="XDCGIVT"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.CursorHoldableJDBCReader</impl-class>
</bds>
</batch-data-streams>

LocalJDBCReader xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCReader</impl-class>
</bds>
</batch-data-streams>

JDBCWriterPattern
The JDBCWriterPattern pattern is used to write data to a database using a JDBC connection.

Supporting classes
v JDBCWriter

v LocalJDBCWriter

Required properties

The following properties are required for the pattern.

Table 49. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value LocalJDBCWriter JDBCWriter

PATTERN_IMPL_CLASS Class implementing JDBCWriterPattern interface Applicable Applicable

ds_jndi_name Datasource JNDI name. Applicable Not applicable

jdbc_url The JDBC URL. For example, jdbc:derby:C:\\mysample\\
CREDITREPORT.

Applicable Not applicable

Chapter 4. Developing batch applications 141

Table 49. Required properties (continued). The table includes the name and value of each required property for the
pattern.
Property name Value LocalJDBCWriter JDBCWriter

jdbc_driver The JDBC driver. For example,
org.apache.derby.jdbc.EmbeddedDriver

Applicable Not applicable

user_id The user ID for the database. For example, Myid Applicable Not applicable

pswd User password. For example, mypwd. LocalJDBCReader only. Applicable Not applicable

Optional properties

The following properties are optional for the pattern.

Table 50. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description LocalJDBCReader JDBCWriter

debug true or false (default is
false)

Enables detailed tracing on this batch
datastream.

Applicable Applicable

EnablePerformanceMeasurement true or false (default is
false)

Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are
using the GenericXDBatchStep.

Applicable Applicable

EnableDetailedPerformanceMeasurement true or false (default is
false)

Provides a more detailed breakdown
of time spent in each method of the
batch data-streams.

Applicable Applicable

batch_interval Default value is 20.
Make the value less
than the checkpoint
interval for
record-based
checkpointing.

Denotes the number of SQL updates
to batch before committing.

Applicable Applicable

Interface definition
public interface JDBCWriterPattern {

public void initialize(Properties props);

/**
* This is typically an Update query used to write data into the DB
* @return
*/
public String getSQLQuery();

/**
* The parent class BDSJDBCWriter creates a new preparedstatement and
* passes it to this method. This method populates the preparedstatement
* with appropriate values and returns it to the parent class for execution
* @param pstmt
* @param record
* @return
*/
public PreparedStatement writeRecord(PreparedStatement pstmt, Object record);
}

JDBCWriter xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="ds_jndi_name" value="jdbc/fvtdb"/>
<prop name="debug" value="true"/>

142 Administering batch environments

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.JDBCWriter</impl-class>
</bds>
</batch-data-streams>

LocalJDCBWriter xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCWriter</impl-class>
</bds>
</batch-data-streams>

ByteReaderPattern
The ByteReaderPattern pattern is used to read byte data from a file.

Supporting classes

The FileByteReader class provides the logic for opening and reading byte data from the given file.

Required properties

The following properties are required for the pattern.

Table 51. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing ByteReaderPattern interface

FILENAME Complete path to the input file

Optional properties

The following properties are optional for the pattern.

Table 52. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch data stream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch data streams and
the processRecord method, if you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time spent in each
method of the batch data streams.

file.encoding Encoding of the file. For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file name before loading the file.

Interface definition
public interface ByteReaderPattern {

/**
* Is called by the framework during Step setup stage
* @param props
*/
public void initialize(Properties props);

Chapter 4. Developing batch applications 143

/**
*
* @param reader
* @throws IOException
*/

public void processHeader(BufferedInputStream reader) throws IOException;

/**
* Get the next record from the input stream
* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(BufferedInputStream reader) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>
</bds>
</batch-data-streams>

ByteWriterPattern
The ByteWriterPattern pattern is used to write byte data to a file.

Supporting classes

The FileByteWriter class provides the logic to open and write bytes to the given file. It can either append
or overwrite existing content, depending on the properties specified. During a restart, the file is always
opened in append mode.

Required properties

The following properties are required for the pattern.

Table 53. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing ByteWriterPattern interface

FILENAME Complete path to the input file

Optional properties

The following properties are optional for the pattern.

Table 54. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch
data-streams and the processRecord method, if
you are using the GenericXDBatchStep.

144 Administering batch environments

Table 54. Optional properties (continued). The table includes the name, value, and description of each optional
property for the pattern.
Property name Value Description

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time
spent in each method of the batch data-streams.

file.encoding Encoding of the file For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file name before
loading the file.

append true or false (default is true) Determines whether to open the file in append
mode.
Important: During a restart, the file is always
opened in append mode.

Interface definition
public interface ByteWriterPattern {

/**
* Invoked during the step setup phase
* @param props
*/
public void initialize(Properties props);

/**
* Writes the given object onto the given outputstream. Any processing
* that needs to be done before writing can be added here
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(BufferedOutputStream out, Object record) throws IOException;

/**
* Write header information if any
* @param out
* @throws IOException
*/
public void writeHeader(BufferedOutputStream out) throws IOException;

/**
* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
*/
public void writeHeader(BufferedOutputStream out, Object header) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>
</bds>
</batch-data-streams>

FileReaderPattern
The FileReaderPattern pattern is used to read text data from a file.

Chapter 4. Developing batch applications 145

Supporting classes

The TextFileReader class provides the logic to open and read text data line by line.

Required properties

The following properties are required for the pattern.

Table 55. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing FileReaderPattern interface

FILENAME Complete path to the input file

Optional properties

The following properties are optional for the pattern.

Table 56. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch
data-streams and the processRecord method, if
you are using the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time
spent in each method of the batch data-streams.

file.encoding Encoding of the file. For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file name before
loading the file.

Interface definition
public interface FileReaderPattern {

/**
* Invoked during the step setup phase
* @param props
*/
public void initialize(Properties props);
/**
* This method is invoked only once. It should be used
* to read any header data if necessary.
* @param reader
* @throws IOException
*/
public void processHeader(BufferedReader reader) throws IOException;

/**
* This method should read the next line from the reader
* and return the data in suitable form to be processed
* by the step.
* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(BufferedReader reader) throws IOException;

/**
* This method can be optionally invoked from the process step
* to obtain the header data that was previously obtained during the processHeader
* call
* @return

146 Administering batch environments

*/

public Object fetchHeader();
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader</impl-class>
</bds>
</batch-data-streams>

FileWriterPattern
The FileWriterPattern pattern is used to write text data to a file.

Supporting classes

The TextFileWriter class provides the logic to open and write string data to the given file. The file is
opened either in append or overwrite mode, depending on the properties specified. The file is always
opened in append mode during a job restart.

Required properties

The following properties are required for the pattern.

Table 57. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class that implements the FileWriterPattern interface

FILENAME Complete path to the input file

Optional properties

The following properties are optional for the pattern.

Table 58. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch
data-streams and the processRecord method, if
you are using the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time
spent in each method of the batch data-streams.

file.encoding Encoding of the file For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file name before
loading the file.

append true or false (default is true) Determines whether to open the file in append
mode.
Important: During a restart, the file is always
opened in append mode.

Chapter 4. Developing batch applications 147

Interface definition
public interface FileWriterPattern {

/**
* Invoked during step setup phase
* @param props
*/
public void initialize(Properties props);

/**
* This method should write the given record
* object to the bufferedwriter.
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(BufferedWriter out, Object record) throws IOException;

/**
* This method is invoked only once just after the bufferedwriter
* is opened. It should be used to write any header information
* @param out
* @throws IOException
*/
public void writeHeader(BufferedWriter out) throws IOException;

/**
* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
* @throws IOException
*/
public void writeHeader(BufferedWriter out, Object header) throws IOException;

}

xJCL sample
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileWriter</impl-class>
</bds>
</batch-data-streams>

RecordOrientedDatasetReaderPattern
The RecordOrientedDatasetReaderPattern pattern is used to read data from a z/OS data set.

Supporting classes
v ZFileStreamOrientedTextReader: Reads text data

v ZFileStreamOrientedByteReader: Reads byte data

v ZFileRecordOrientedDataReader: Reads sequential data

Required properties

The following properties are required for the pattern.

Table 59. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value Description

PATTERN_IMPL_CLASS Java class name Class that implements the RecordOrientedDatasetReaderPattern interface

148 Administering batch environments

Table 59. Required properties (continued). The table includes the name and value of each required property for the
pattern.
Property name Value Description

DSNAME Dataset name For example, USER216.BATCH.RECORD.OUTPUT

Optional properties

The following properties are optional for the pattern.

Table 60. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

ds_parameters Parameters used to open the data set. Default for ZFileRecordOrientedDataReader is
rb,recfm=fb,type=record,lrecl=80 and Default for
ZFileStreamOrientedByteReader and
ZFileStreamOrientedTextReader is rt

debug true or false (default is false) Enables detailed tracing on this batch datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch data-streams
and the processRecord method, if you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time spent in each
method of the batch data-streams.

file.encoding Encoding of the file. For example, 8859_1.

Interface definition
public interface RecordOrientedDatasetReaderPattern {

/**
* This method is invoked during the job setup phase.
* The properties are the ones specified in the xJCL.
* @param props
*/
public void initialize(Properties props);

/**
* This method is invoked only once immediately after
* the Zfile is opened. It should be used to process
* header information if any.
* @param reader
* @throws IOException
*/
public void processHeader(ZFile reader) throws IOException;

/**
* This method should read the next record from the Zfile
* and return it in an appropriate form (as an intermediate object)
* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(ZFile reader) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.INPUT"/>
<prop name="ds_parameters" value="rt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="true"/>

</props>

Chapter 4. Developing batch applications 149

<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteReader</impl-class>
</bds>

<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.OUTPUT"/>
<prop name="ds_parameters" value="wt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="${debug}"/>
</props>

<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteWriter</impl-class>
</bds>
</batch-data-streams>

RecordOrientedDataSetWriterPattern
The RecordOrientedDataSetWriterPattern pattern is used to write data to a z/OS data set.

Supporting classes
v ZFileStreamOrientedTextWriter: Writes text data

v ZFileStreamOrientedByteWriter: Writes byte data

v ZFileRecordOrientedDataWriter: Writes sequential data

Required properties

The following properties are required for the pattern.

Table 61. Required properties. The table includes the name, value, and description of each required property for the
pattern.
Property name Value Description

PATTERN_IMPL_CLASS Java class name Class implementing RecordOrientedDatasetWriterPattern
interface

DSNAME Data set name For example, USER216.BATCH.RECORD.OUTPUT

Optional properties

The following properties are optional for the pattern.

Table 62. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

ds_parameters Parameters used to open the data set. Default for ZFileRecordOrientedDataWriter is
wb,recfm=fb,type=record,lrecl=80 and

Default forZFileStreamOrientedByteWriter and
ZFileStreamOrientedTextWriter are wt

debug true or false (default is false) Enables detailed tracing on this batch datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch data-streams
and the processRecord method, if you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time spent in each
method of the batch data-streams.

file.encoding Encoding of the file. For example, CP1047

Interface definition
/**
*
* This pattern is used to write data to z/OS dataset using
* jzos apis
*/

150 Administering batch environments

public interface RecordOrientedDatasetWriterPattern {

/**
* This method is called during the job setup phase allowing
* the user to do initialization.
* The properties are the ones passed in the xJCL
* @param props
*/
public void initialize(Properties props);

/**
* This method should be used to write the given
* object into the dataset
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(ZFile out, Object record) throws IOException;

/**
* This method should be used to write header information
* if any
* @param out
* @throws IOException
*/
public void writeHeader(ZFile out) throws IOException;

/**
* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
*/
public void writeHeader(ZFile out, Object header);

}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.OUTPUT"/>
<prop name="ds_parameters" value="wt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="${debug}"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteWriter</impl-class>
</bds>
</batch-data-streams>

JPAReaderPattern
The JPAReaderPattern pattern is used to retrieve data from a database using OpenJPA.

Supporting classes

The JPAReader class performs the tasks of obtaining an entity manager, running user provided queries,
and iterating over the results of the query. A persistence.xml file needs to be packaged with the user
application.

Chapter 4. Developing batch applications 151

Required properties

The following properties are required for the pattern.

Table 63. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing JPAReader Pattern interface

PERSISTENT_UNIT The OpenJPA persistent unit name.

Optional properties

The following properties are optional for the pattern.

Table 64. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch data
stream.

openjpa.Log DefaultLevel=WARN,SQL=TRACE JPA log settings

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the batch data
streams and the processRecord method, if you
are using the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed breakdown of time
spent in each method of the batch data streams.

Interface definition
public interface JPAReaderPattern {

/**
* This method is invoked during the job setup phase.
*
* @param props properties provided in the xJCL
*/

public void initialize(Properties props);

/**
* This method should retrieve values for the various columns for the current row from
* the given Iterator object. Typically this data would be used to populate an intermediate
* object which would be returned.
* @param listIt
* @return
*/
public Object fetchRecord(Iterator listIt);

/**
* This method should return a JPQL query that will be used during setup of the stream to
* retrieve all relevant data that would be processed part of the job steps.
* @return object to be used during process step.
*/
public String getInitialLookupQuery();

/**
* This method gets called during Job Restart. The restart token should be used to create
* a JPQL query that retrieves previously unprocessed records. Typically the restart token
* is the primary key in the table and the query would get all rows with
* primary key value > restarttoken
* @param restartToken
* @return The restart query
*/
public String getRestartQuery(String restartToken);

/**
* This method gets called just before a checkpoint is taken.

152 Administering batch environments

* @return The method should return a string value identifying the last record read by the stream.
*/
public String getRestartTokens();

}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PERSISTENT_UNIT" value="hellojpa"/>
<prop name="debug" value="true"/>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.samples.JPAInputStream"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.JPAReader</impl-class>
</bds>
</batch-data-streams>

JPAWriterPattern
The JPAWriterPattern pattern is used to write data to a database using a Java Persistence API (JPA)
connection.

Supporting classes

The JPAWriter class implements the basic JPA operations of obtaining an EntityManager class and joining,
beginning, and committing transactions. By default the JPAWriter joins an existing global transaction.

Package a persistence.xml file that sets the transaction-type attribute to JTA and declares a
jta-data-source element. Optionally configure the JPAWriter class to begin and commit transactions in
synchronization with the global transactions. These transactions are used with non-jta-data-source
elements and connection URLs. In this case the persistence.xml file sets the transaction-type to
RESOURCE_LOCAL and declare a non-jta-data-source element or connection URLs.

Required properties

The following properties are required for the pattern.

Table 65. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing JPAWriterPattern interface

PERSISTENT_UNIT The OpenJPA persistent unit name

JPA properties that you set on the EntityManager class The value of these properties

Optional properties

The following properties are optional for the pattern.

Table 66. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (The default is false.) Enables detailed tracing on this batch data stream.

use_JTA_transactions true or false (The default is true.) If you use the non-jta-data-source element or connection URLs,
set the value to false.

EnablePerformanceMeasurement true or false (The default is false.) Calculates the total time spent in the batch data-streams and
the processRecord method, if you are using the
GenericXDBatchStep.

Chapter 4. Developing batch applications 153

Interface definition
public interface JPAWriterPattern {

/**
* This method is invoked during create job step to allow the JPAWriter stream to
* initialize.
* @param props Properties passed via xJCL
*/

public void initialize(Properties props);

/**
* This method is invoked to actually persist the passed object to the database
* using JPA EntityManager
* @param manager
* @param record
*/
public void writeRecord(EntityManager manager, Object record);
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="PERSISTENT_UNIT" value="mypersistentU"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.JPAWriter</impl-class>
</bds>
</batch-data-streams>

PureQueryWriterPattern
Use this pattern to write data to a database using IBM Optim™ pureQuery Runtime. The batch data stream
(BDS) framework completes the administrative tasks of opening and closing connections.

Supporting classes

The PureQueryWriter class implements the basic operations of opening and closing database connections,
obtaining the PureQuery data interface, and batching operations.

Required properties

The following properties are required for the pattern.

Table 67. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing PureQueryWriterPattern interface

PQ_DATA_BEAN_INTERFACE PureQuery data bean interface

ds_jndi_name Java Naming and Directory Interface (JNDI) name of the data source to access the database

Optional properties

The following properties are optional for the pattern.

Table 68. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (The default is false.) Enables detailed tracing on this batch data stream.

DB_SCHEMA null Database schema name

154 Administering batch environments

Table 68. Optional properties (continued). The table includes the name, value, and description of each optional
property for the pattern.
Property name Value Description

EnablePerformanceMeasurement true or false (The default is false.) Calculates the total time spent in the batch
data-streams and the processRecord method, if you
are using the GenericXDBatchStep

force_connection_recycle false Forces the connection to be closed and reopened
during checkpoint processing

Batch_interval 20 Number of operations to batch

Interface definition

The PureQueryWriterPattern Interface definition shows the methods that you must implement to support
the PureQueryWriterPattern interface.
public interface PureQueryWriterPattern {

public void initialize(Properties props);

/**
* The parent class passes the record to be written, the data interface, or the data interface
* user method in order to update the database. The application might use the data interface to
* run the pureQuery API method for in-line style or the data interface method for annotation style.
* The parent class passes the record to be written and the

* Data interface that may be used by the application to execute the pureQuery API method
* (for in-line style) or the Data interface user method (for annotation style) in order
* to update the database.
* @param
* @param record
* @return
*/
public void writeRecord(Data dataInterface, Object record);
}

xJCL example

The example shows xJCL that you can use to define a batch data stream which implements the
PureQueryWriterPattern interface in your application.
<batch-data-streams>
<bds>

<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN-IMPL-CLASS" value="com.ibm.MyWriterPattern"/>

<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>

<prop name="user_id" value="myid"/>
<prop name="pswd" value="mypwd"/>
<prop name="debug" value="true"/>
<prop name="DB_SCHEMA" value="PQDS"/>
<prop name="PQ_DATA_BEAN_INTERFACE" value="com.ibm..MyEmployeeData"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.PureQueryWriter</impl-class>

</bds>
</batch-data-streams>

PureQueryReaderPattern
Use this pattern is used to read data from a database using IBM Optim pureQuery Runtime. The batch
data stream (BDS) framework completes the administrative tasks of opening and closing connections.

Supporting classes

The PureQueryReader class implements the basic operations of opening and closing database
connections and obtaining the IBM Optim pureQuery Runtime data.

Chapter 4. Developing batch applications 155

Required properties

The following properties are required for the pattern.

Table 69. Required properties. The table includes the name and value of each required property for the pattern.
Property name Value

PATTERN_IMPL_CLASS Class implementing PureQueryReaderPattern interface

PQ_DATA_BEAN_INTERFACE PureQuery data bean interface

ds_jndi_name Java Naming and Directory Interface (JNDI) name of the data source to access the database

Optional properties

The following properties are optional for the pattern.

Table 70. Optional properties. The table includes the name, value, and description of each optional property for the
pattern.
Property name Value Description

debug true or false (The default is false.) Enables detailed tracing on this batch data
stream

DB_SCHEMA null Database schema name

EnablePerformanceMeasurement true or false (The default is false.) Calculates the total time spent in the batch
data-streams and the processRecord method, if
you are using the GenericXDBatchStep

Interface definition

The PureQueryReaderPattern Interface definition shows the methods that you must implement to support
the PureQueryReaderPattern interface.
public interface PureQueryReaderPattern
{

/**
* This method is called by the batch container during step setup. The properties passed
* in are the ones that you provide in the xJCL BDS level properties.
* @param properties
*/
public void initialize(Properties properties);

/**
* Invoked by the container during each iteration of the batch loop. This code obtains
* the next record using the given iterator object.
* @param iterator
* @return
*/
public Object fetchRecord(Iterator iterator);

/**
* Returns the iterator based on the passed data object that is used to iterate
* over the records
* @param data
* @return
*/
public Iterator getInitialIterator(Data data);

/**
* Returns the iterator based on the passed data object repositioned based on the restart
* token of restartToken.
* @param data
* @param s
* @return
*/
public Iterator getRestartIterator(Data data, String restartToken);

156 Administering batch environments

/**
* Invoked before a checkpoint is taken to save the restart token that is used in case
* of a restart
* @return
*/
public String getRestartTokens();

}

xJCL example

The example shows xJCL that you can use to define a batch datastream which implements the
PureQueryReaderPattern interface in your application.
<batch-data-streams>
<bds>

<logical-name>outputStream</logical-name>
<props>
<prop name="IMPLCLASS" value="com.ibm.MyWriterPattern"/>

<prop name="ds_jndi_name" value="jdbc/crreport"/>
<prop name="debug" value="true"/>
<prop name="DB_SCHEMA" value="PQDS"/>
<prop name="PQ_DATA_BEAN_INTERFACE" value="com.ibm.MyEmployeeData"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.PureQueryReader</impl-class>

</bds></batch-data-streams>

Implementing the generic batch step (GenericXDBatchStep)
A generic batch step works with one input and one output stream. This step during each iteration of the
batch loop reads a single entry from the BDS Input Stream passes it to the BatchRecordProcessor for
processing. The BatchRecordProcessor returns the processed data which is then passed to the BDS
output stream.

About this task

Use the following properties to implement the generic batch step.

Table 71. Required properties. The table includes the property name, property value, and property description.
Property name Value Description

BATCHRECORDPROCESSOR Java class name Class implementing the BatchRecordProcessor interface

Table 72. Optional properties. The table includes the property name, property value, and property description.
Property Value Description

debug true or false (default is false) Enable tracing and debugging on the step

EnablePerformanceMeasurement true or false (default is false) Measure time spent within the step

Procedure
1. Implement the

interfacecom.ibm.websphere.batch.devframework.steps.technologyadapters.BatchRecordProcessor to
provide the business logic for the step. In the xJCL for the step, declare a property
BATCHRECORDPROCESSOR with the value set to the implementation of the interface. For example:
...
<props>
<prop name="BATCHRECORDPROCESSOR"

value="com.ibm.websphere.batch.samples.tests.steps.InfrastructureVerificationTest"/>
</props>
...

2. Set the BDS input stream logical name to inputStream and a BDS output stream logical name to
outputStream. The logical names are declared in the xJCL. For example:

Chapter 4. Developing batch applications 157

<batch-data-streams>
<bds>

<logical-name>inputStream</logical-name>
<props>

....
</bds>
<bds>

<logical-name>outputStream</logical-name>
<props>
...
</bds>

</batch-data-streams>

3. While using the BatchPackager for packaging, the application for the job step class, jobstepclass, must
be set to com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep. For
example:
ejbname.1=IVTStep1
jndiname.1=ejb/GenericXDBatchStep
jobstepclass.1=com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

Implementing the error tolerant step
An error tolerant generic batch step works with one input, one output stream, and one error stream. This
step during each iteration of the batch loop reads a single entry from the batch data stream (BDS) input
stream and passes it to the BatchRecordProcessor property for processing.

Before you begin

The BatchRecordProcessor property might either return a valid data object or a null value in a tolerable
error. If the returned value is null, the record read from the input stream is logged on to the error stream
and the invalidRecordEncountered method is invoked on the ThresholdPolicy interface. The threshold
policy determines whether the error tolerance threshold has been reached. If so, it returns
STEP_CONTINUE_FORCE_CHECKPOINT_BEFORE_PROCESSING_CANCEL, which forces a
checkpoint and puts the job in the restartable state. Otherwise, the job continues as normal. If the data
returned by BatchRecordProcessor.processRecord is valid, then the data is passed to the BDS output
stream.

About this task

Use the following properties to implement the error tolerant step.

Table 73. Required properties. The table includes the property name, value, and description.
Property name Value Description

threshold_policy Java class name Class implementing the
com.ibm.websphere.batch.devframework.thresholdpolicies.ThresholdPolicy
interface

BATCHRECORDPROCESSOR Java class name Class implementing the BatchRecordProcessor interface

Table 74. Optional properties. The table includes the property name, value, and description.
Property Value Description

debug true or false (default is false) Enable tracing and debugging on the step

EnablePerformanceMeasurement true or false (default is false) Measure time spent within the step

Procedure
1. Implement the interface

com.ibm.websphere.batch.devframework.steps.technologyadapters.BatchRecordProcessor to provide
the business logic for the step.

In the xJCL for the step, declare a property BATCHRECORDPROCESSOR with the value set to the
implementation of the interface. For example:

158 Administering batch environments

...
<props>
<prop name="BATCHRECORDPROCESSOR"

value="com.ibm.websphere.batch.samples.tests.steps.InfrastructureVerificationTest"/>
</props>
...

2. Implement the interface com.ibm.websphere.batch.devframework.thresholdpolicies.ThresholdPolicy to
provide the threshold policy for the step. You can also use the product implementations such as
com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy or
com.ibm.websphere.batch.devframework.thresholdpolicies.RecordBasedThresholdPolicy.

Declare the ThresholdPolicy to use in the xJCL as shown in the following code snippet:
...
<props>
<prop name="threshold_policy"
value="com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy"/>

</props>
...

3. Set the BDS input stream logical name to inputStream and a BDS output stream logical name to
outputStream and the BDS output stream for errors to errorStream.

The logical names are declared in the xJCL. For example:
<batch-data-streams>

<bds>
<logical-name>inputStream</logical-name>
<props>

....
</bds>
<bds>

<logical-name>outputStream</logical-name>
<props>
...

</bds>
<bds>

<logical-name>errorStream</logical-name>
<props>
...

</bds>
</batch-data-streams>

4. While using the BatchPackager for packaging, the application for the job step class, jobstepclass, must
be set to com.ibm.websphere.batch.devframework.steps.technologyadapters.ThresholdBatchStep. For
example:
ejbname.1=IVTStep1
jndiname.1=ejb/MyThresholdBatchStep
jobstepclass.1=com.ibm.websphere.batch.devframework.steps.technologyadapters.ThresholdBatchStep

Declaring the percentage-based threshold policy
(PercentageBasedThresholdPolicy)
The PercentageBasedThresholdPolicy policy provides a batch implementation of the ThresholdPolicy
interface.

Before you begin

The percentageBasedThresholdPolicy policy applies only if the ThresholdBatchStep is used. It calculates
the percentage of the number of error records processed to the total number processed. If the result is
greater than the threshold, it forces the job to go into restartable state.

Chapter 4. Developing batch applications 159

About this task

Optionally use the following properties when you declare the percentage-based threshold policy.

Table 75. Optional properties. The table includes the property name, property value, and property description.
Property Value Description

debug true or false (default is false) Enable tracing and debugging on the step

minimum_threshold_sample_size Integer value (default is 20) The minimum number of records to process before checking for
threshold breach.

threshold_threshold Double value (default is 0.1) The acceptable percentage of errors.

Procedure

Declare the threshold policy to use in the xJCL as a property of the step as follows:
...
<props>
<prop name="threshold_policy"
value="com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy"/>

</props>
...

Declaring the record based threshold policy
(RecordBasedThresholdPolicy)
The RecordBasedThresholdPolicy policy provides a batch implementation of the ThresholdPolicy interface.

Before you begin

The record based threshold policy of RecordBasedThresholdPolicy is applicable only if the threshold batch
step of ThresholdBatchStep is used. It counts the number of error records processed. If the result is
greater than the threshold, it forces the job to go into restartable state.

About this task

Optionally use the following properties when you declare the record based threshold policy.

Table 76. Optional properties. The table includes the property name, property value, and property description.
Property Value Description

debug true or false (default is false) Enable tracing and debugging on the step

minimum_threshold_size Integer value (default is 20) The minimum number of records to process before checking for
threshold breach.

error_threshold Double value (default is 100) The number of error records.

Procedure

Declare the threshold policy to use in the xJCL as a property of the step as follows:
...
<props>
<prop name="threshold_policy"

value="com.ibm.websphere.batch.devframework.thresholdpolicies.RecordBasedThresholdPolicy"/>
</props>
...

160 Administering batch environments

Chapter 5. Deploying batch applications

This section covers such areas as packaging Enterprise JavaBeans (EJB) 3.0 and later modules and
installing batch applications.

Packaging EJB modules in a batch application using Rational
Application Developer
Use Rational Application Developer 8.0.1 or later to package Enterprise JavaBeans (EJB) 3.0 and later
modules.

Before you begin

Develop a batch application.

Procedure
1. Import your batch application EAR file into Rational Application Developer. Click File > Import.

a. Select Java EE - EAR file. Click Next.

b. Enter the location of your EAR file in the EAR file field.

c. Set the Target run time to a WebSphere Application Server Version 8.5 run time.

d. Clear everything on the EAR Module and Utility JAR Projects page (third page).

e. Click Finish.

2. Link in your EJB 3.0 or later JAR file.

a. Right-click on the newly created EAR project.

b. Select Properties > Java EE Module Dependencies

c. Click Add External JARs....

d. Select your EJB JAR file, such as an EJB3 JAR.

e. Click OK.

3. Export your EAR file.

a. Right-click on the EAR project.

b. Click Export > EAR file.

c. Enter a value in the Destination field.

d. Click Finish.

Installing the batch application
Install a batch application the same way that you install an enterprise application.

Before you begin

Develop a compute-intensive application or a transactional batch application. You can develop a compute
intensive application using a compute-intensive job controller, the command line, or the Apache ANT tool.
You can develop a transactional batch application using a batch job controller and Enterprise JavaBeans
(EJB) data stream, the command line, or the ANT tool.

About this task

A batch application is installed like Java Platform, Enterprise Edition (Java EE) transactional applications.

© Copyright IBM Corp. 2012 161

When mapping modules of the batch application to servers, select the server or cluster that you created
previously for the enterprise bean modules that contain the logic for a batch job.

Procedure
1. Install the batch application using the administrative console, using wsadmin scripting, or using another

supported way to install enterprise applications.

See topics on installing enterprise application files.

2. Verify that the application installed correctly.

For example, go to the Enterprise applications administrative console page by clicking Applications >
Application Types > WebSphere enterprise applications. If the application is not running, select the
application and click Start. Test the application to ensure that it operates correctly.

What to do next

Configure the job scheduler and submit batch jobs using the job scheduler.

Deploying an OSGi batch application
You can package an existing batch application as an OSGi application. You then deploy the package so
that you can expose batch artifacts as services, making those artifacts visible to the batch container.

About this task

Package an OSGi batch application, modify the Blueprint xml file to describe batch artifacts as services,
and export the OSGi batch application as an enterprise bundle archive (EBA). Then create the xJCL.
Finally, deploy the OSGi batch application.

Procedure
1. Package an OSGi batch application.

You package the OSGi batch application as an EBA. The EBA contains at least your batch bundle,
which is a Blueprint bundle. The API bundle and the dispatcher bundles are installed once into the
internal bundle repository.

Read the topic on creating a client bundle and follow the steps to package your OSGi application.

2. Author the Blueprint xml.

You must declare the job steps and batch data streams as services so that the scheduler can invoke
them. If your OSGi batch application implements a checkpoint policy algorithm or a results algorithm,
then you must also declare as a service each algorithm that the application implements.

a. Declare each job step as a Blueprint service.

1) Set the interface attribute.

a) If the step is a compute intensive step, set the attribute to com.ibm.websphere.ci.CIWork.

b) If the step is a transactional batch step, set the attribute to
com.ibm.websphere.batch.BatchJobStepInterface.

2) Set the ref attribute to the bean ID that declares the step bean.

3) Declare a property with the xjcl:classname key and a value that is the Java class that
implements the step.

4) Declare a bean for the Java class that implements the step.

5) Set the scope attribute to prototype.

Compute intensive step example:
<bean id="IVTStep1" class="com.ibm.websphere.batch.samples.tests.steps.GenerateDataStep" scope="prototype"/>

<service ref="IVTStep1" interface="com.ibm.websphere.ci.CIWork" id="step1">

162 Administering batch environments

<service-properties>
<entry key="xjcl:classname" value="com.ibm.websphere.batch.samples.tests.steps.GenerateDataStep"/>

</service-properties>
</service>

Transactional batch step example:
<bean id="EchoStep2" class="com.ibm.websphere.batch.samples.tests.steps.TestBatchJobStep" scope="prototype"/>

<service ref="EchoStep2" interface="com.ibm.websphere.batch.BatchJobStepInterface" id="echostep1">
<service-properties>

<entry key="xjcl:classname" value="com.ibm.websphere.batch.samples.tests.steps.TestBatchJobStep"/>
</service-properties>
</service>

b. Declare each batch data stream as a Blueprint service.

1) Set the interface attribute to com.ibm.websphere.batch.BatchDataStream.

2) Set the ref attribute to the bean ID that declares the batch data stream bean.

3) Declare a property with the xjcl:classname key and a value that is the Java class that
implements the batch data stream.

4) Declare a bean for the Java class that implements the batch data stream.

5) Set the scope attribute to prototype.

Batch data stream example:
<bean id="output" class="com.ibm.websphere.batch.samples.tests.bds.TestOutputBatchDataStream" scope="prototype"/>
<service ref="output" interface="com.ibm.websphere.batch.BatchDataStream" id="out1">
<service-properties>

<entry key="xjcl:impl-class" value="com.ibm.websphere.batch.samples.tests.bds.TestOutputBatchDataStream"/>
</service-properties>
</service>

c. Declare the checkpoint policy algorithm as a Blueprint service.

If your OSGi batch application implements a checkpoint policy algorithm, then declare the algorithm
as a Blueprint service. Otherwise, skip this step.

1) Set the interface attribute to com.ibm.wsspi.batch.CheckpointPolicyAlgorithm.

2) Set the ref attribute to the bean ID that declares the checkpoint bean.

3) Declare a property with the xjcl:classname key and a value that is the Java class that
implements the checkpoint policy algorithm.

4) Declare a bean for the Java class that implements the checkpoint policy algorithm.

5) Set the scope attribute to prototype.

Checkpoint policy algorithm example:
<bean id="chkpt" class="com.ibm.websphere.batch.samples.MyCheckpointAlgorithm" scope="prototype"/>
<service ref="chkpt" interface="com.ibm.wsspi.batch.CheckpointPolicyAlgorithm" id="ck1">
<service-properties>

<entry key="xjcl:impl-class" value="com.ibm.websphere.batch.samples.MyCheckpointAlgorithm"/>
</service-properties>
</service>

d. Declare the results algorithm as a Blueprint service.

If your OSGi batch application implements a results algorithm, then declare the algorithm as a
Blueprint service. Otherwise, skip this step.

1) Set the interface attribute to com.ibm.wsspi.batch.ResultsAlgorithm.

2) Set the ref attribute to the bean ID that declares the results algorithm bean.

3) Declare a property with the xjcl:classname key and a value that is the Java class that
implements the results algorithm.

4) Declare a bean for the Java class that implements the results algorithm.

5) Set the scope attribute to prototype.

Results algorithm example:
<bean id="myres" class="com.ibm.websphere.batch.samples.MyResultsAlgorithm" scope="prototype"/>
<service ref="myres" interface="com.ibm.wsspi.batch.ResultsAlgorithm" id="r1">
<service-properties>

<entry key="xjcl:impl-class" value="com.ibm.websphere.batch.samples.MyResultsAlgorithm"/>
</service-properties>
</service>

3. Export the OSGi batch application as an EBA.

Chapter 5. Deploying batch applications 163

4. Create the xJCL.

Create the xJCL as you would for other batch applications, with a few differences:

v Make the application-name attribute on the job step the deployed asset name. The deployed asset
is a composition unit.

v Make the classname subelement of the step match the xjcl:classname property of the step service.

The following example uses the xjcl:classname property of
com.ibm.websphere.batch.samples.tests.steps.TestBatchJobStep from the transactional batch step
example listed previously in this procedure.
<step id=”step1”>
<classname> com.ibm.websphere.batch.samples.tests.steps.TestBatchJobStep</classname>
</step>

5. Deploy the OSGi batch application.

Read the topic on deploying an OSGi application as a business-level application and follow the steps.

Results

You packaged an OSGi batch application, modified the Blueprint xml to describe batch artifacts as
services, and exported the OSGi batch application as an enterprise bundle archive (EBA). Then you
created the xJCL. Finally, you deployed the OSGi batch application.

OSGi batch applications
OSGI batch applications are batch applications that you can package and deploy as OSGI applications so
that you can expose batch artifacts as services.

An OSGI batch application has characteristics of both batch applications and OSGI applications. The batch
application characteristics include artifacts such as job steps and batch data streams. The OSGI batch
application is like as OSGI application because it exposes the batch artifacts as services through a
Blueprint bundle so that the batch artifacts are visible to the batch container.

The following diagram shows the bundle organization of a batch application in the batch container. The
batch artifact bundle contains the components of multiple job steps, multiple batch data streams, and a
checkpoint algorithm. It also contains a Blueprint XML file that defines and describes the assembly of the
components. The diagram shows that other bundles can exist in the batch container.

Batch artifact
bundle

Job step A

BDS A

BDS B

Checkpoint
algorithm

blueprint.xml

Job step B

Other bundles
that batch
artifacts exploit

Submitting batch jobs
You can submit batch applications using the job scheduler Enterprise JavaBeans (EJB) interface or the job
scheduler web services interface.

164 Administering batch environments

xJCL elements
Jobs are expressed using an Extensible Markup Language XML dialect called xJCL (XML Job Control
Language). This dialect has constructs for expressing all of the information needed for both
compute-intensive and batch jobs, although some elements of xJCL are only applicable to
compute-intensive or batch jobs. See the xJCL provided with the Sample applications, the xJCL table, and
xJCL XSD schema document for more information about xJCL. The xJCL definition of a job is not part of
the batch application, but is constructed separately and submitted to the job scheduler for to run. The job
scheduler uses information in the xJCL to determine where and when to run the job.

xJCL elements

The following table summarizes the xJCL elements.

Table 77. xJCL elements. The table includes xJCL elements, whether each xJCL element applies to Java Platform,
Enterprise Edition (Java EE) compute-intensive or batch jobs, and subelements, attributes, and descriptions for each
xJCL element.

Element

Java EE
compute-
intensive

Java EE
Batch Subelement Attributes Description

job yes yes Scopes the description of a batch job.

job yes yes name Name of the job. This name must match the name of the batch
application

job yes yes accounting Optional accounting information attribute.

job yes yes class Optional job class attribute, which identifies the job class under
which the job runs.

job yes yes default-
application-name

The application name to be used when no job step
application-name attribute is found.

The application name to be used. For OSGi batch applications,
format the name as osgi:<eba name>:<version>.

job yes yes jndi-name JNDI name that is given to the job controller stateless session
bean when the batch application is deployed into the product.

job yes yes job-scheduling
criteria

required-
capability

The required-capability of the job, which must be defined on an
endpoint for the job to be dispatched to that endpoint.

job yes yes step-scheduling
criteria

See
step-scheduling-
criteria element

job no yes checkpoint
algorithm

See
checkpoint-
algorithm element

job no yes results-algorithm See
results-algorithms
element

job yes yes substitution-
props++

See prop element The required-capability of the job, which must be defined on an
endpoint for the job to be dispatched to that endpoint

job-step yes* yes name Optional name of the step. This information is returned on
operational commands.

job-step yes* yes application-name Optional name of the application run by the step. The attribute
name is used if application-name is omitted and the job level
attribute default-application-name is omitted.

job-step no yes step-scheduling See
step-scheduling
element

Allows for conditional logic based on return codes of steps that
determines whether the batch step is invoked.

job-step yes yes classname Fully-qualified name of class that implements the compute
intensive job.

job-step yes no checkpoint-
algorithm-ref

Specifies the checkpoint algorithm to use for the batch job
step.

job-step no yes results-ref See results-ref
element

Specifies the results algorithm to use for the conditional batch
job step execution.

job-step no yes batch-data-
streams

See
batch-data-
streams element

A sequence of bds elements. Each bds is the configuration
information necessary to create a batch data stream.

Chapter 5. Deploying batch applications 165

Table 77. xJCL elements (continued). The table includes xJCL elements, whether each xJCL element applies to
Java Platform, Enterprise Edition (Java EE) compute-intensive or batch jobs, and subelements, attributes, and
descriptions for each xJCL element.

Element

Java EE
compute-
intensive

Java EE
Batch Subelement Attributes Description

job-step yes yes props See props
element

Name-value properties to pass to the step.

job-step no no exec See exec
element

Identifies the executable associated with the job step.

job-step no no env-entries See env-entries
element

Identifies the environmental properties associated with the job
step.

prop yes yes Single instance of a name value pair, that serves as a property.

prop yes yes name Name of the property.

prop yes yes value Value of the property.

props yes yes prop See prop element

env-entries no no Series of prop elements that are used to pass name-value pair
properties to steps, bds, checkpoint algorithms, and results
algorithms.

env-entries no no env-var See env-var
element

exec no no Series of prop elements that are used to pass name-value pair
properties to steps, bds, checkpoint algorithms, and results
algorithms.

exec no no executable The name of the executable associated with the job step.

exec no no arg See line element

line no no Command-line arguments passed to the job step executable.

bds no yes Single instance of a batch data stream implementation made
available to the batch job.

bds no yes logical-name A string that is embedded in batch step, which uses it to query
the batch runtime environment for a specific batch data stream
instance.

bds no yes impl-class Fully- qualified class name of the batch data stream
implementation class.

bds no yes props See props
elements

List of properties that are passed to the batch data stream
implementation class.

batch-data-
streams

no yes Series of bds elements

batch-data-
streams

no yes bds See bds element

step-
scheduling

no yes Applies to job-steps to create return code-based conditional
flows for a batch job. Compares values of return codes defined
for this batch job to decide whether a step is invoked or not
while processing a batch job. The values of return codes are
compared using the returncode-expression element.

step-
scheduling

no yes returncode-
expression

see
returncode-
expression

Returncode- expression to evaluate.

step-
scheduling

no yes condition If there is more than one returncode-expression element in the
step-scheduling element, conditional operators are applied to
them. Conditional operators supported are: AND, OR.

returncode-
expression

no yes Used under step-scheduling tags to decide whether a batch job
step runs based on return codes of other job steps.

returncode-
expression

no yes step Name of step whose return code is to be compared in this
expression.

returncode-
expression

no yes operator Operator to use for the return code expression. The supported
operators are eq for equals, lt for less than, gt for greater than,
le for less than or equal to, and ge for greater than or equal to.

returncode-
expression

no yes value The value with which to compare the return code.

step-
scheduling-
criteria

no yes Describes the sequence in which the job steps are processed.
Currently sequential scheduling is supported; for example,
steps get invoked in the order in which they exist in xJCL.

166 Administering batch environments

Table 77. xJCL elements (continued). The table includes xJCL elements, whether each xJCL element applies to
Java Platform, Enterprise Edition (Java EE) compute-intensive or batch jobs, and subelements, attributes, and
descriptions for each xJCL element.

Element

Java EE
compute-
intensive

Java EE
Batch Subelement Attributes Description

step-
scheduling-
criteria

no yes scheduling-mode Sequence in which to invoke steps, only possible value is
sequential right now.

checkpoint-
algorithm

no yes Declares a checkpoint algorithm that can be used for a batch
job step.

checkpoint-
algorithm

no yes name Name of algorithm.

checkpoint-
algorithm

no yes classname Class that implements this algorithm.

checkpoint-
algorithm

no yes props See props
element

Sequence of prop elements for the checkpoint algorithm.

checkpoint-
algorithm-
ref

no yes Reference to a checkpoint algorithm element.

checkpoint-
algorithm-
ref

no yes name Name of checkpoint algorithm to which you are referring.

checkpoint-
algorithm-
ref

no yes props See props
element.

Sequence of prop elements for the checkpoint algorithm.

++ The xJCL element substitution-props is discussed in the following section.

xJCL substitution-props

The job xJCL can contain symbolic variables. A symbolic variable is an expression of the form
${variable-name}, which is found outside a comment in an otherwise well-formed document. For example:
<checkpoint-algorithm-ref name="${checkpoint}" />

The xJCL element, substitution-props, defines a default name and value pairs for symbolic variables.
Following is an example of the substitution-props element, taken from the postingSampleXJCL.xml
document:
<substitution-props>
<prop name="wsbatch.count" value="5" />
<prop name="checkpoint" value="timebased" />
<prop name="checkpointInterval" value="15" />
<prop name="postingsDataStream" value="${was.install.root}${file.separator}temp${file.separator}postings" />
</substitution-props>

Substitution for symbolic variables occurs at run time. At run time, the string ${variable-name} is replaced
with the value of the property when the xJCL is submitted for execution. Using the properties in the
previous example, the string ${checkpoint} is replaced with the string time-based before the job is
submitted.

Symbolic variables can be indirect. For example: name=FILENAME value=${${filename}} used with the
name/value pair filename=postingsDataStream yields the same result as specifying name=FILENAME
value=${postingsDataStream}.

Symbolic variables can also be compound. For example, name=postingsDataStream
value=${was.install.root}${file.separator}temp${file.separator}postings.

The name/value pairs do not have to be defined in the job document substitution-props element. The
props name and value pairs defined in the substitution-props element are default values for the named
variables. If not defined in the substitution-props element, name/value pairs must be either passed in via

Chapter 5. Deploying batch applications 167

the job scheduler APIs when the job is submitted or defined in the system properties for the JVM. Every
symbolic variable defined in the body of a job document must be resolved for the xJCL to be considered
valid. Every name/value pair defined in the job document must resolve to a symbolic variable which is
found in the body of the xJCL for the xJCL to be considered valid.

If name/value pairs are both defined in the xJCL document and passed to the job scheduler APIs at job
submission time, the name/value pairs passed via the Job Scheduler APIs override the default values
defined in the xJCL document. If name/value pairs are neither passed in via the job scheduler APIs nor
defined as defaults in the xJCL document, name/value pairs for the symbolic variables must be defined in
the system JVM properties for the xJCL to be considered valid.

Symbolic variables are resolved by the job scheduler before job submission, except for the following
special variables, which are resolved at the grid endpoint. The following special variables all must be
defined as JVM system properties. They are:

v ${was.install.root}

v ${user.install.root}

v ${agent.home}

Batch job state table
As the job scheduler and grid endpoint process a batch job, the job state updates in the job scheduler
database. The diagram shows the relationship between states, and the following table lists the possible
batch job states and the events that trigger transitions between states. You can view the current state of a
batch job from the job management console, or retrieve it using the command line or Enterprise
JavaBeans (EJB) interface. If a failure occurs before a batch step initializes, then the batch job goes into
execution failed state. Otherwise, it goes into restartable state.

168 Administering batch environments

Table 78. Batch job states. The table includes each batch start state with its client command, system action, special
condition, numeric return code, and end state. An empty table cell indicates that there is not a client command,
system action, condition, or return code for the start state.
Start state Client command System action Special condition Return code End state

non-existent (delayed
submit)

submit pending submit

non-existent submit submitted

submitted dispatch 0 executing

submitted cancel 0 restartable

executing stop 0 restartable

executing cancel 4 cancel_pending

executing caught application
error*

4 restartable

executing Infrastructure problem** 4 restartable/unknown

executing suspend 4 suspend_pending

executing job completed 4 ended

executing Infrastructure problem in job
setup***

4 restartable

suspend_pending checkpoint 2 suspended

suspend_pending Infrastructure problem** 2 restartable/unknown

suspended resume 5 resume_pending

Chapter 5. Deploying batch applications 169

Table 78. Batch job states (continued). The table includes each batch start state with its client command, system
action, special condition, numeric return code, and end state. An empty table cell indicates that there is not a client
command, system action, condition, or return code for the start state.
Start state Client command System action Special condition Return code End state

suspended cancel 5 cancel_pending

suspended Infrastructure problem** 5 restartable/unknown

resume_pending job resumed 2 executing

resume_pending Infrastructure problem** 2 restartable/unknown

restartable restart 8 submitted

cancel_pending job canceled 1 restartable

cancel_pending Infrastructure problem** 1 restartable/unknown

restartable purge 8 non-existent

execution_failed purge 9 non-existent

ended purge 7 non-existent

Table 79. Notes for the batch job states table. The table includes each note with a description.
Note Description

* Application error The batch application failed at run time. The grid endpoints detected this failure.

** Infrastructure problem An unexpected error has occurred. See the following example for infrastructure problem in job setup.

*** Infrastructure problem in job
setup

An unexpected error that occurs when a batch job is set up for the first time by the grid endpoints. For example, if
there is an unexpected database failure, the job goes into execution_failed state.

v In this condition, the batch job is run for the first time and no steps are processed yet. Batch jobs go into the
restartable state under most failure conditions so that they can restart from checkpointed positions if the failure
condition can be overcome. However, in this instance of a failure condition, a batch job goes into
execution_failed state and cannot be restarted. Since this situation is a job setup scenario and work is not yet
processed by the batch job, batch work is not lost as a result of failure.

v If jobs are in a non-final state on the endpoint, the scheduler puts the jobs into an unknown state under two
conditions. The conditions are that the endpoint loses communications or the endpoint goes down. If the
endpoint comes back up, the scheduler synchronizes the job status with the endpoint. If the endpoint goes
down, all batch jobs are put into a restartable state and all compute- intensive jobs in an execution failed state.
If the endpoint has only lost communication with the scheduler and the jobs continue to run, the scheduler
updates its status. The status update is the final state of the jobs running on the endpoint at that point.

Native execution job state table
As the job scheduler and grid endpoint process a native execution job, the job state updates in the job
scheduler database.

The following table lists the possible states that a native execution job can have and the events that trigger
state transitions. You can view the current state of a native execution job in the administrative console job
management pages. You can retrieve the state using the command line, enterprise bean, or web service
interfaces to the job scheduler.

170 Administering batch environments

Non-existent

Submitted Executing Ended

Dispatch Completed

Execution failed

Infrastructure or
application problem

CancelCancel

Cancel pending Cancelled

Infrastructure problem
or cancel complete

Non-existent

Purge

common state

Native grid utility
specific state

Table 80. Native grid utility job state table. The table lists the start state, the client command, the grid action, the
special condition, and the end state. An empty table cell indicates that there is not a client command, action,
condition, or end state for the start state.
Start state Client command Grid action Special condition End state

non-existent submit submitted

submitted dispatch executing

submitted cancel canceled

executing job completed ended

executing cancel cancel-pending

cancel_pending job canceled canceled

cancel_pending Infrastructure problem execution_failed

canceled purge non-existent

execution_failed purge non-existent

ended purge non-existent

Submitting batch jobs using the job scheduler EJB interface
The job scheduler Enterprise JavaBeans (EJB) interface is used to programmatically submit and
manipulate a batch job. You can use the EJB interface with the base scheduler in WebSphere Application
Server to perform calendar-based submission of a batch job.

Before you begin

The job scheduler supports programmatic access to its functions over both an EJB interface for Java
Platform, Enterprise Edition (Java EE) applications and a web services interface for both Java EE and
non-Java EE applications. The EJB interface for the job scheduler is described by the interfaces found in
the API documentation. Consult this documentation for further information.

Develop and install your batch applications.

About this task

This topic describes how to submit a batch job to the job scheduler using the base scheduler. It includes a
code example that demonstrates how to invoke the job scheduler EJB.

Chapter 5. Deploying batch applications 171

Procedure
1. Create and configure a scheduler. Read about how to create and configure a scheduler in the topic on

developing and scheduling tasks.

2. Create a scheduler task for submitting batch work.

This scheduler task invokes the job scheduler EJB to submit a batch job. Read the instructions for
creating a task that invokes an EJB in the topic on developing a task that calls a session bean. This
topic also includes instructions for using the calendaring feature of the scheduler. The following
example demonstrates on how to invoke the job scheduler EJB:
// These are the import statements needed by the task
import javax.naming.*;

import com.ibm.websphere.longrun.JobScheduler;
import com.ibm.websphere.longrun.JobSchedulerHome

private JobSchedulerHome zjsHome = null;
private JobScheduler zjs = null;

public void process(TaskStatus task) ()
try{

//Ensure that the xJCL can be placed in a string, for example, by reading an xJCL
//File into a string
String xJCL = <xJCL as a string>;

//Obtain cell-level naming context
InitialContext ctxt = new InitialContext();
Hashtable env = new Hashtable();

env.put (Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,"corbaloc:rir:/NameServiceCellRoot");
ctxt = new InitialContext(env);

//To look up the LRS EJB from the cell context in the namespace,
//The name context to the application server or cluster to which the LRS
//Application is deployed has to be provided
//Eg: "nodes/myNode/servers/myServer" or "clusters/myCluster".

String longRunningContext = <long_running_context>;

zjsHome = (JobSchedulerHome) ctxt.lookup(longRunningContext +
"/ejb/com/ibm/websphere/longrun/JobSchedulerHome");
zjs = zjsHome.create();
zjs.submitJob(xJCL);

}catch (Exception e) {
System.out.println(e.getMessage());
}

3. Run the program to submit batch work.

Read the topic on submitting a task to a scheduler.

Job scheduler EJB interfaces
The job scheduler Enterprise JavaBeans (EJB) interface is used to programmatically submit a batch job to
the job scheduler and manipulate the job.

The following code is the remote interface to the job scheduler EJB. The code produces application
programming interfaces.

Some code is split on multiple lines for printing purposes.
/**
* This is the remote interface for the Job Scheduler EJB.
* Clients of this interface can programmatically submit and manipulate jobs to the

172 Administering batch environments

* Job Scheduler. Code similar to the following can be used to lookup and invoke
* the remote Job Scheduler EJB interface:
*
* InitialContext ctxt = new InitialContext();
* Hashtable env = new Hashtable();
*
* env.put (Context.INITIAL_CONTEXT_FACTORY,
* "com.ibm.websphere.naming.WsnInitialContextFactory");
* env.put(Context.PROVIDER_URL,
* "corbaloc:iiop:<schedulerHostName>:<schedulerBootstrapPort>/NameServiceCellRoot");
* ctxt = new InitialContext(env);
*
* // In order to lookup the Job Scheduler EJB from the cell context in the namespace,
* // the name context to the application server or cluster to which the Job Scheduler
* // application is deployed has to be provided.
* // Eg: "nodes/myNode/servers/myServer" or "clusters/myCluster".
*
* String jobSchedulerContext = clusters/myCluster;
*
* JobSchedulerHome zjsHome = (JobSchedulerHome)
* PortableRemoteObject.narrow(ctxt.lookup(jobSchedulerContext +
* "/ejb/com/ibm/websphere/longrun/JobSchedulerHome"),JobSchedulerHome.class);
*
* JobScheduler js = zjsHome.create();
*
*
* @ibm-api
*/
public interface JobScheduler extends javax.ejb.EJBObject {

/**
* Submits the specified job, saved in the xJCL repository, to the job scheduler
* @param job The name of the job that was stored to the xJCL repository
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the
* job scheduler while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*/
public String submitJobFromRepository(String job) throws

InvalidJobNameException,
SchedulerException,
JCLException,
JobSubmissionException,
java.rmi.RemoteException;

/**
* Submits the job, which is defined by the xJCL, to the job scheduler
*
* @param xJCL The xJCL for the job
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws SchedulerException if an unexpected error is thrown by the
* job scheduler while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*
*/
public String submitJob(String xJCL) throws

SchedulerException,
JCLException,
JobSubmissionException,
java.rmi.RemoteException;

/**

* Submits the job specified by the xJCL passed in to the job scheduler and

Chapter 5. Deploying batch applications 173

* saves the xJCL to the xJCL repository.
*
* @param xJCL The xJCL for the job
* @param job The name given to the saved job in the xJCL repository.
* This name can be used when invoking the submitJobFromRepository
* method.
* @param replace A boolean indicating if the xJCL in the repository should
* be replaced, in case a job by that name already exists
* in the xJCL repository.
*
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws InvalidOperationException if the job already exists in the xJCL repository
* and the replace parameter specified is false
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*
*/
public String saveJobToRepositoryAndSubmit(String xJCL, String job, boolean replace) throws

InvalidOperationException,
SchedulerException,
JCLException,
JobSubmissionException,
java.rmi.RemoteException;

/**
* Purges the job, identified by the job ID, from the job scheduler and the grid endpoint
* environments.
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* purging the job
* @throws java.rmi.RemoteException
*
* @param jobid The ID of the job to be purged
*/
public void purgeJob(String jobid) throws

InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**
* Cancels the job identified by the job ID
*
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws InvalidJobIDException if no job by the specified job id exists in the
* job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while canceling the job
* @throws java.rmi.RemoteException
*
* @param jobid The ID of the job
*/
public void cancelJob(String jobid) throws

InvalidOperationException,
InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**

* Forcibly cancels the job identified by the job ID
*
* Supported on z/OS only. The forcedCancelJob request will be processed as a
* cancelJob request on distributed platforms.
*
*
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws InvalidJobIDException if no job by the specified job ID exists in the

174 Administering batch environments

* job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while canceling the job
* @throws java.rmi.RemoteException
*
* @param jobid The ID of the job
*/
public void forcedCancelJob(String jobid) throws

InvalidOperationException,
InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**
* Restarts the job identified by the job ID. Only jobs in the restartable state can be
* restarted.
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the
* job scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* restarting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*
* @param jobid The ID of the job
*/
public void restartJob(String jobid) throws

InvalidJobIDException,
InvalidOperationException,
SchedulerException,
JCLException,
JobSubmissionException,
java.rmi.RemoteException;

/**
* Returns the job status for the given job ID. Refer to {@link JobStatusConstants
* JobStatusConstants} for a
* list of the job status codes returned by this method.
*
* @param jobid The ID of the job
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the
* job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
* @return the status of the job
*/
public int getJobStatus(String jobid) throws

InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**
* Returns the job output for a given job ID that displays the job’s progress. This only
* applies to batch jobs.
*
* @param jobid The ID of the job
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* processing the command
* @throws java.rmi.RemoteException
*
* @return the job output of the job
*/
public String getJobOutput(String jobid) throws

InvalidJobIDException,
SchedulerException,

Chapter 5. Deploying batch applications 175

java.rmi.RemoteException;

/**
* Returns the job details for the given job ID.
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* processing the command
* @throws java.rmi.RemoteException
*
* @return the details of the job such as job ID, status text, submitter and job type
*/

public String getJobDetails(String jobid) throws
InvalidJobIDException,SchedulerException,java.rmi.RemoteException;

/**

* Saves the xJCL passed in to the xJCL Repository.
*
* @param xJCL The xJCL for the job
* @param job The name given to the saved job in the xJCL repository. This name can
* be used when invoking the submitJobFromRepository
* method.
* @param replace A boolean indicating if the xJCL in the repository should be
* replaced, in case a job by that name already exists
* in the xJCL repository.
*
* @throws InvalidOperationException if the job already exists in the xJCL
* repository and the replace parameter specified is false
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws java.rmi.RemoteException
*
*/
public void saveJobToRepository(String xJCL, String job, boolean replace) throws

InvalidOperationException,
SchedulerException,
JCLException,
java.rmi.RemoteException;

/**

* Returns the xJCL from the xJCL repository for the given job name.
*
* @param job The name given to the saved job in xJCL repository. This name can be used
* when invoking the submitJobFromRepository
* method.
*
* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
* @return the xJCL for the given job
*/
public String showJobFromRepository(String job) throws

InvalidJobNameException,
SchedulerException,
java.rmi.RemoteException;

/**

* Removes the xJCL for the specifed job from the xJCL repository
*
* @param job The name given to the saved job in the xJCL repository.
*
* @throws InvalidJobNameException if the job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException

176 Administering batch environments

*
*/
public void removeJobFromRepository(String job) throws

InvalidJobNameException,
SchedulerException,
java.rmi.RemoteException;

/**
* Shows all jobs in the job scheduler
*
* @return the list of job IDs of all jobs in the job scheduler
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
*/
public String[] showAllJobs() throws

SchedulerException,
java.rmi.RemoteException;

/**
* Suspends the specified job for the number of seconds specified. Once the time period
* is up, the job automatically
* resumes. This only applies to batch jobs.
*
* @param jobid The ID of the job to suspend
* @param seconds The number of seconds to suspend the job
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the job scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while suspending the job
* @throws java.rmi.RemoteException
*
*/
public void suspendJob(String jobid, String seconds) throws

InvalidOperationException,
InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**
* Resumes execution of the specified job. This only applies to batch jobs.
*
* @param jobid The ID of the job to resume
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the
* job scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while resuming the job
* @throws java.rmi.RemoteException
*
*/
public void resumeJob(String jobid) throws

InvalidOperationException,
InvalidJobIDException,
SchedulerException,
java.rmi.RemoteException;

/**
* Returns the return code of the Batch job.
*
* @param jobid The ID of the job
* @return the return code of the Batch job
*
* @throws InvalidJobIDException if no job by the specified job ID exists in the job scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException

Chapter 5. Deploying batch applications 177

*
*/
public int getBatchJobRC(String jobid) throws InvalidOperationException,

InvalidJobIDException, SchedulerException, java.rmi.RemoteException;

/**

* Submits the job, which is defined by the xJCL, to the job scheduler at the specified
* start time.
*
* @param xJCL The xJCL for the job
* @param startTime The time at which the job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss.
* @return the job ID assigned by the job scheduler to the submitted job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is
* not in the required format
* @throws StaleTimeException if the start date and/or time is in the past based on
* current time
* @throws java.rmi.RemoteException
*/
public String submitDelayedJob(String xJCL, String startTime) throws
SchedulerException,

JCLException,
JobSubmissionException,
InvalidStartDateTimeFormatException,
StaleTimeException,
java.rmi.RemoteException;

/**

* Submits the job, saved in the xJCL repository, to the job scheduler at the specified
* start time.
*
* @param job The name of the job that was stored to the job repository
* @param startTime The time at which the job will be submitted. The format of the submit
* time is yyyy-mm-dd hh:mm:ss.
* @return the job ID assigned by the job scheduler to the submitted job
* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is
* not in the required format
* @throws StaleTimeException if the start date and/or time is in the past based
* on current time
* @throws java.rmi.RemoteException
*/
public String submitDelayedJobFromRepository(String job, String startTime) throws
InvalidJobNameException,
SchedulerException,
JCLException,
JobSubmissionException,
InvalidStartDateTimeFormatException,

StaleTimeException,
java.rmi.RemoteException;

/**

* Submits the delayed job specified by the xJCL passed in to the job scheduler and
* saves the xJCL to the xJCL repository.
*
* @param xJCL The xJCL for the job
* @param startTime The time at which the job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss.
* @param job The name given to the saved job in the xJCL repository. This name can
* be used when invoking the submitJobFromRepository

178 Administering batch environments

* method.
* @param replace A boolean indicating if the xJCL in the repository should be replaced,
* in case a job by that name already exists
* in the job repository.
* @return the job ID assigned by the job scheduler to the submitted job
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not in
* the required format
* @throws StaleTimeException if the start date and/or time is in the past based on
* current time
* @throws java.rmi.RemoteException
*/
public String saveDelayedJobToRepositoryAndSubmit(String xJCL, String job, boolean

replace, String startTime) throws
InvalidOperationException,
SchedulerException,
JCLException,
JobSubmissionException,
InvalidStartDateTimeFormatException,

StaleTimeException,
java.rmi.RemoteException;

/**
* Creates a job schedule to submit the job, defined by the xJCL, at the specified time and
* interval.
*
* @param reqId The name of the recurring job request
* @param xJCL The xJCL for the job
* @param startTime The time at which the first job will be submitted. The format of the
*submit time is yyyy-mm-dd hh:mm:ss.
* @param interval The time interval between jobs (For example daily, weekly, monthly)
*
* @throws InvalidOperationException if the operation is currently not allowed on the job

* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not
* in the required format
* @throws StaleTimeException if the start date and/or time is in the past
* based on current time
* @throws InvalidIntervalException if the interval specified is not one of the
* supported time interval

* @throws java.rmi.RemoteException
*/
public void submitRecurringRequest(String reqId, String xJCL, String startTime,

String interval) throws
InvalidOperationException,
SchedulerException,
JCLException,
InvalidStartDateTimeFormatException,
InvalidIntervalException,

StaleTimeException,
java.rmi.RemoteException;

/**

* Creates a job schedule to submit the specified job, saved in the xJCL repository, at the
* specified time and interval.

*
* @param jobName The name of the job that was stored to the job repository
* @param reqId The name of the recurring job request
* @param startTime The time at which the job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss..
* @param interval The time interval between jobs (For example daily, weekly, monthly)
*
* @throws InvalidOperationException if the operation is currently not allowed on the job

* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job

Chapter 5. Deploying batch applications 179

* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not
* in the required format
* @throws StaleTimeException if the start date and/or time is in the
* past based on current time
* @throws InvalidIntervalException if the interval specified is not one of the supported
* time interval

* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws java.rmi.RemoteException

*/
public void submitRecurringRequestFromRepository

(String jobName, String reqId, String startTime,
String interval) throws

InvalidOperationException,
SchedulerException,
JCLException,
InvalidStartDateTimeFormatException,
InvalidIntervalException,
StaleTimeException,
InvalidJobNameException,
java.rmi.RemoteException;

/**

* Cancel an existing job schedule
*
* @param reqId The name of the job schedule
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* canceling the job
* @throws java.rmi.RemoteException

*/
public void cancelRecurringRequest(String reqId) throws

InvalidOperationException,
SchedulerException,

java.rmi.RemoteException;

/**
* Returns details of an existing job schedule.
*
* @param reqId The name of the job schedule to be returned
* @return information about the schedule such as schedule name, job name, start time and
* interval
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job

* @throws java.rmi.RemoteException
*/
public String getRecurringRequestDetails(String reqId) throws
SchedulerException,
InvalidOperationException,
java.rmi.RemoteException;

/**

* Modify an existing job schedule.
*
* @param reqId The name of the job schedule to be modified
* @param xJCL The xJCL for the job
* @param startTime The time at which the first job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss.
* @param interval The time interval between jobs (For example daily, weekly, monthly)
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not in the
* required format
* @throws StaleTimeException if the start date and/or time is in the past based on
* current time
* @throws InvalidIntervalException if the interval specified is not one of the supported
* time interval

180 Administering batch environments

* @throws java.rmi.RemoteException
*/
public void modifyRecurringRequest(String reqId, String xJCL, String startTime,

String interval) throws
SchedulerException,
JCLException,
InvalidOperationException,
InvalidStartDateTimeFormatException,
StaleTimeException,
InvalidIntervalException,
java.rmi.RemoteException;

/**

* Lists all existing job schedules
*
* @return a list of all job schedules currently in the system
* @throws SchedulerException if an unexpected error is thrown by the job scheduler while
* processing the command
* @throws java.rmi.RemoteException

*/
public String[] showAllRecurringRequests() throws
SchedulerException,
java.rmi.RemoteException;

/**
* Show all jobs in the specified job schedule
*
* @param reqId the name of the job schedule
* @return the list of job IDs of jobs in the specified job schedule
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job

* @throws java.rmi.RemoteException
*/
public String[] showRecurringJobs(String reqId) throws
SchedulerException,
InvalidOperationException,
java.rmi.RemoteException;

/**
* Returns job status in XML format for the given job IDs.
*
* @param jobid List of job IDs
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
* @return Job status such as job ID, return code, status code and status text in XML format
*/
public String getJobsStatus(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Returns a list of job IDs that match the specified criteria. All conditions must apply
* for a match to occur.
*
* @param jobFilter SQL filter value to apply to the job ID (For example Postings%)
* @param submitterFilter SQL filter value to apply to the submitter
* @param nodeFilter SQL filter value to apply to the names of the nodes where the
* jobs executed (For example node_)
* @param appServerFilter SQL filter value to apply to the names of the application
* servers where the jobs executed
* @param stateFilter List of job states. Refer to {@link JobStatusConstants
* JobStatusConstants} for a
* list of the possible job states.
* @param sortBy - Field used to sort results (For example JOBID, STATUS, APPSERVER)
* @param ascending - flag indicating whether the results should be returned in
* ascending or descending order
* of the sortBy field.

Chapter 5. Deploying batch applications 181

*
* @return the list of job IDs that match the specified criteria
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*/
public String[] getJobsId(String jobFilter, String submitterFilter,

String nodeFilter, String appServerFilter, Integer[] stateFilter, String sortBy,
boolean ascending) throws

SchedulerException,
java.rmi.RemoteException;

/**
* Cancels the jobs identified by the list of job IDs
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while canceling the job
* @throws java.rmi.RemoteException
*
* @param jobid The list of job IDs to cancel
* @return List of return codes. Refer to {@link JobSchedulerConstants JobSchedulerConstants}
* for a list of the possible return codes.
*/
public int[] cancelJob(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Purges the jobs, identified by the list of job IDs, from the job scheduler and the
* grid endpoint environments.
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while purging the job
* @throws java.rmi.RemoteException
*
* @param jobid The list of job IDs to purge
* @return List of return codes. Refer to
* {@link JobSchedulerConstants JobSchedulerConstants} for a list of the possible
* return codes.
*/
public int[] purgeJob(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;
/**
* Restarts the jobs identified by the list of job IDs. Only jobs in the
* restartable state can be restarted.
*
* @throws SchedulerException if an unexpected error is thrown by the
* job scheduler while restarting the job
* @throws java.rmi.RemoteException
*
* @param jobid The list of job IDs to restart
* @return List of return codes. Refer to {@link JobSchedulerConstants
* JobSchedulerConstants} for a list of the possible return codes.
*/
public int[] restartJob(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Resumes execution of the jobs identified by the list of job IDs. This only
* applies to batch jobs.
*
* @param jobid The list of job IDs to resume
* @return List of return codes. Refer to {@link JobSchedulerConstants
* JobSchedulerConstants} for a list of the possible return codes.
*
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while resuming the job
* @throws java.rmi.RemoteException
*

182 Administering batch environments

*/
public int[] resumeJob(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Suspends the specified jobs for the number of seconds specified. Once the
* time period is up, the jobs automatically
* resume. This only applies to batch jobs.
*
* @param jobid The ID of the job to suspend
* @param seconds The number of seconds to suspend the job
* @return List of return codes. Refer to {@link JobSchedulerConstants
* JobSchedulerConstants} for a list of the possible return codes.
*
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the
* job scheduler while suspending the job
* @throws java.rmi.RemoteException
*
*/
public int[] suspendJob(String[] jobid, String seconds) throws
SchedulerException,
InvalidOperationException,
java.rmi.RemoteException;
/**

* Submits the specified job, saved in the xJCL repository, and any name/value pairs
* specified to the job scheduler at the specified
* start time.
*
* @param job The name of the job that was stored to the xJCL repository
* @param startTime The time at which the job will be submitted. The format of the submit
* time is yyyy-mm-dd hh:mm:ss.
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded with an
* encoding scheme of UTF-8 before being passed in on the request.
*
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws InvalidJobNameException if the job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not
* in the required format
* @throws StaleTimeException if the start date and/or time is in the past
* based on current time
* @throws java.rmi.RemoteException
*/

public String submitModifiableDelayedJobFromRepository(String job, String startTime,
String nameValuePairs)

throws InvalidJobNameException, SchedulerException, JCLException, JobSubmissionException,
InvalidStartDateTimeFormatException, StaleTimeException, java.rmi.RemoteException;

/**
* Submits the job, which is defined by the xJCL and any name/value pairs specified, to
* the job scheduler at the specified
* start time.
*
* @param xJCL The xJCL for the job
* @param startTime The time at which the job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss.
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded with
* an encoding scheme of UTF-8 before being passed in on the request.
*
* @return the job ID assigned by the job scheduler to the submitted job

Chapter 5. Deploying batch applications 183

*
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is
* not in the required format
* @throws StaleTimeException if the start date and/or time is in the past
* based on current time
* @throws java.rmi.RemoteException
*/

public String submitModifiableDelayedJob
(String xJCL, String startTime, String nameValuePairs)
throws SchedulerException, JCLException, JobSubmissionException,

InvalidStartDateTimeFormatException, StaleTimeException, java.rmi.RemoteException;

/**
* Submits the delayed job, which is defined by the xJCL and any name/value pairs
* specified, to the job scheduler and
* saves the xJCL to the xJCL repository.
*
* @param xJCL The xJCL for the job
* @param startTime The time at which the job will be submitted. The format of the
* submit time is yyyy-mm-dd hh:mm:ss.
* @param job The name given to the saved job in the xJCL repository. This name
* can be used when invoking the submitJobFromRepository
* method.
* @param replace A boolean indicating if the xJCL in the repository should be
* replaced, in case a job by that name already exists
* in the job repository.
* @param nameValuePairs The space delimited name=value pairs which are used
* to modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded
* with an encoding scheme of UTF-8 before being passed in on the request.
*
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is
* not in the required format
* @throws StaleTimeException if the start date and/or time is in the past based
* on current time
* @throws java.rmi.RemoteException
*/

public String saveModifiableDelayedJobToRepositoryAndSubmit
(String xJCL, String job, boolean replace, String startTime, String nameValuePairs)

throws InvalidOperationException, SchedulerException, JCLException, JobSubmissionException,
InvalidStartDateTimeFormatException, StaleTimeException, java.rmi.RemoteException;

/**
* Creates a job schedule to submit jobs at the specified time interval. The jobs
* are defined by the xJCL and any name/value pairs specified.
*
* @param reqId The name of the job schedule
* @param xJCL The xJCL for the job
* @param startTime The time at which the job will be submitted. The format of
* the submit time is yyyy-mm-dd hh:mm:ss.
* @param interval The time interval between jobs (For example daily, weekly, monthly)
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded
* with an encoding scheme of UTF-8 before being passed in on the request.
*
* @throws InvalidOperationException if the operation is currently not
* allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the

184 Administering batch environments

* job scheduler while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws InvalidStartDateTimeFormatException if the start date and/or time
* is not in the required format
* @throws StaleTimeException if the start date and/or time is in the past
* based on current time
* @throws InvalidIntervalException if the interval specified is not one of
* the supported time interval
* @throws java.rmi.RemoteException
*/

public void submitModifiableRecurringRequest
(String reqId, String xJCL, String startTime, String interval, String nameValuePairs)
throws InvalidOperationException, SchedulerException, JCLException,
InvalidStartDateTimeFormatException,

InvalidIntervalException, StaleTimeException, java.rmi.RemoteException;

/**
* Creates a job schedule to submit jobs at the specified time interval. The jobs
* are defined by the xJCL stored in the xJCL repository
* and any name/value pairs specified.
*
* @param jobName The name of the job that was stored to the job repository
* @param reqId The name of the recurring job request
* @param startTime The time at which the job will be submitted. The format of
* the submit time is yyyy-mm-dd hh:mm:ss.
* @param interval The time interval between jobs (For example daily, weekly, monthly)
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded with
* an encoding scheme of UTF-8 before being passed in on the request.
*
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while submitting the job
* @throws JCLException if the xJCL for the job is corrupted or not valid.
* @throws InvalidStartDateTimeFormatException if the start date and/or time is not
* in the required format
* @throws StaleTimeException if the start date and/or time is in the past
* based on current time
* @throws InvalidIntervalException if the interval specified is not one of the
* supported time interval
* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws java.rmi.RemoteException
*/

public void submitModifiableRecurringRequestFromRepository(String jobName, String
reqId, String startTime, String interval, String nameValuePairs)
throws InvalidOperationException, SchedulerException, JCLException,
InvalidStartDateTimeFormatException,

InvalidIntervalException, StaleTimeException, InvalidJobNameException,
java.rmi.RemoteException;

/**
* Submits the job, which is defined by the xJCL and any name/value pairs
* specified, to the job scheduler and
* saves the xJCL to the xJCL repository.
*
* @param xJCL The xJCL for the job
* @param job The name given to the saved job in xJCL repository. This name
* can be used when invoking the submitJobFromRepository
* method.
* @param replace A boolean indicating if the xJCL in the repository
* should be replaced, in case a job by that name already exists
* in the xJCL repository.
* @param nameValuePairs The space delimited name=value pairs which are
* used to modify the xJCL For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded
* with an encoding scheme of UTF-8 before being passed in on the request.
*
* @return the job ID assigned by the job scheduler to the submitted job
*

Chapter 5. Deploying batch applications 185

* @throws InvalidOperationException if the job already exists in the xJCL
* repository and the replace parameter specified is false
* @throws SchedulerException if an unexpected error is thrown by the
* job scheduler while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*
*/

public String saveModifiableJobToRepositoryAndSubmit(String xJCL, String job,
boolean replace, String nameValuePairs)

throws InvalidOperationException, SchedulerException, JCLException,
JobSubmissionException, java.rmi.RemoteException;

/**
* Submits the specified job, saved in the xJCL repository, and any name/value
* pairs specified to the job scheduler
*
* @param job The name of the job that was stored to the xJCL repository
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL (For example. "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded with
* an encoding scheme of UTF-8 before being passed in on the request.
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws InvalidJobNameException if job is not found in the xJCL repository.
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*/

public String submitModifiableJobFromRepository(String job, String nameValuePairs)
throws InvalidJobNameException, SchedulerException, JCLException, JobSubmissionException,
java.rmi.RemoteException;

/**
* Submits the job, which is defined by the xJCL and any name/value pairs specified,
* to the job scheduler
*
* @param xJCL The xJCL for the job
* @param nameValuePairs The space delimited name=value pairs which are used to
* modify the xJCL (For example "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded
* with an encoding scheme of UTF-8 before being passed in on the request.
* @return the job ID assigned by the job scheduler to the submitted job
*
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while submitting the job
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws JobSubmissionException if an error occurs while submitting the job
* @throws java.rmi.RemoteException
*
*/

public String submitModifiableJob(String xJCL, String nameValuePairs)
throws SchedulerException, JCLException, JobSubmissionException, java.rmi.RemoteException;

/**
* Modify an existing job schedule.
*
* @param reqId The name of the job schedule to be modified
* @param xJCL The xJCL for the job
* @param startTime The time at which the first job
* will be submitted. The format of the submit time is yyyy-mm-dd hh:mm:ss.
* @param interval The time interval between jobs
* (For example daily, weekly, monthly)
* @param nameValuePairs The space delimited name=value
* pairs which are used to modify the xJCL (For example "host=myhost port=myport")
* Any values that contain special characters or spaces must be URL encoded with

186 Administering batch environments

* an encoding scheme of UTF-8 before being passed in on the request.
* @throws SchedulerException if an unexpected error is thrown
* by the job scheduler while processing the command
* @throws JCLException if the xJCL for the job is corrupted
* or not valid.
* @throws InvalidOperationException if the operation is currently not
* allowed on the job
* @throws InvalidStartDateTimeFormatException if the start date and/or time is
* not in the required format
* @throws StaleTimeException if the start date and/or time is
* in the past based on current time
* @throws InvalidIntervalException if the interval specified is not
* one of the supported time interval
* @throws java.rmi.RemoteException
*/

public void modifyModifiableRecurringRequest(String reqId, String xJCL,
String startTime, String interval, String nameValuePairs)

throws SchedulerException, JCLException, InvalidOperationException,
InvalidStartDateTimeFormatException, StaleTimeException, InvalidIntervalException,
java.rmi.RemoteException;

/**
* Returns a list of job names in the job repository that match the specified
* criteria. All conditions must apply for a match to occur.
*
* @param jobNameFilter SQL filter value to apply to the job names (For example Postings%)
* @param jobDescFilter not used
* @param sortBy - Field used to sort results (For example JOBNAME, TXT)
* @param ascending - flag indicating whether the results should be returned in
* ascending or descending order
* of the sortBy field.
*
* @return the list of job names that match the specified criteria
*
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while processing the request
* @throws java.rmi.RemoteException
*/
public String[] getJobsName(String jobNameFilter, String jobDescFilter,

String sortBy, boolean ascending) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Stops the job identified by the job ID
*
* @throws InvalidOperationException if the operation is currently not
* allowed on the job
* @throws InvalidJobIDException if no job by the specified job ID exists
* in the job scheduler
* @throws SchedulerException if an unexpected error is thrown by the job
* scheduler while processing the request
* @throws java.rmi.RemoteException
*
* @param jobid The ID of the job
*/
public void stopJob(String jobid)
throws InvalidOperationException, InvalidJobIDException, SchedulerException,

java.rmi.RemoteException;

/**
* Stops the jobs identified by the list of job IDs
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while purging the job
* @throws java.rmi.RemoteException
*
* @param jobid The list of job IDs to stop
* @return List of return codes. Refer to {@link JobSchedulerConstants
* JobSchedulerConstants} for a list of the possible return codes.
*/

Chapter 5. Deploying batch applications 187

public int[] stopJob(String[] jobid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Parses the xJCL to produce a map of all symbolic variables used in the xJCL
* which are not system properties
* @param xJCL The xJCL for the job
* @return a map of defaulted name/value pairs; value==null ==> no default value
* in substitution-props
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws JCLException if the xJCL stored in the repository is corrupted or not valid.
* @throws java.rmi.RemoteException
*
*/

public String getSymbolicVariables(String clientXJCL)
throws SchedulerException, JCLException, java.rmi.RemoteException;

/**
* Returns job schedule information in XML format for the given job schedule names.
*
* @param requestid List of job schedule names
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
* @return Job schedule information in XML format, such as job schedule name,
* job name, start time and interval
*/
public String getRequests(String[] requestid) throws
SchedulerException,
java.rmi.RemoteException;

/**
* Returns a list of job schedule names that match the specified criteria. All conditions
* must apply for a match to occur.
*
* @param requestIdFilter SQL filter value to apply to the name of the job schedule
* (For example %Postings%)
* @param startTimeFilter SQL filter value to apply to the initial submit time of the
* jobs. The format of the submit time is yyyy-mm-dd hh:mm:ss.
* @param submitterFilter SQL filter value to apply to the submitter
* @param intervalFilter List of time periods between job submissions (For example daily,
* weekly, monthly)
* @param statusFilter List of job states. Refer to
* {@link JobStatusConstants JobStatusConstants} for a
* list of the possible job states.
* @param sortBy - Field used to sort results (For example REQUESTID, STARTTIME, INTERVAL)
* @param ascending - flag indicating whether the results should be returned in
* ascending or descending order
* of the sortBy field.
*
* @return the list of job schedule names that match the specified criteria
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*/
public String[] getRequestsId(String requestIdFilter, String startTimeFilter,

String submitterFilter, String[] intervalFilter, Integer[] statusFilter,
String sortBy, boolean ascending) throws

SchedulerException,
java.rmi.RemoteException;

/**
* Cancel existing job schedules
*
* @param reqId The list of job schedule names to cancel

188 Administering batch environments

* @return List of return codes. Refer to
* {@link JobSchedulerConstants JobSchedulerConstants} for a list of the
* possible return codes.
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while canceling the job
* @throws java.rmi.RemoteException

*/
public int[] cancelRecurringRequest(String[] reqId) throws

SchedulerException,
java.rmi.RemoteException;

/**
* Returns the compressed job log associated with the requested job ID
*
* @param jobid The ID of the job whose log file name is to be returned
* @return the file system name for the job log of the specified job
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler while
* processing the command
* @throws InvalidJobIDException if no job logs for the specified job ID are found by
* the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String getJobLog(String jobid) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Returns the job log meta-data associated with the requested job ID
* list of distinct job log subdirectories for the job ID)
*
* @param jobid The ID of the job whose meta-data is to be returned
* @return the job log meta-data for the specified job
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no job log meta-data for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getLogMetaData(String jobid) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Returns the job log part list associated with the requested job ID and log subdirectory
*
* @param jobid The ID of the job whose part information is to be returned
* @param logSubDirName The name of the log subdirectory of the job whose part
* information is to be returned
* @return the job log part information for the specified job
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no part information for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getLogPartList(String jobid, String logSubDirName) throws

SchedulerException, InvalidJobIDException, InvalidOperationException,
java.rmi.RemoteException;

/**
* Returns the contents of the job log file associated with the requested job ID,
* log subdirectory and part number
*
* @param jobid The ID of the job whose part information is to be returned
* @param logSubDirName The name of the log subdirectory of the job whose part
* information is to be returned
* @param partNumber The name of the job log chunk in the log subdirectory whose
* part information is to be returned
*
* @return the contents of the job log part for the specified job and log subdirectory

Chapter 5. Deploying batch applications 189

*
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no part information for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getLogPart(String jobid, String logSubDirName, String partNumber)

throws SchedulerException, InvalidJobIDException, InvalidOperationException,
java.rmi.RemoteException;

/**
* Returns the size in bytes of the job log file associated with the requested job ID
*
* @param jobid The ID of the job whose size information is to be returned
* @param logSubDirName The name of the log subdirectory of the job whose size
* information is to be returned
* @return the size of the job log for the specified job
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no size information for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String getLogSize(String jobid, String logSubDirName) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Returns the age of the job log file associated with the requested job ID and log
* subdirectory
*
* @param jobid The ID of the job whose age information is to be returned
* @param logSubDirName The name of the log subdirectory of the job whose age information
* is to be returned
*
* @return the age of the job log in days for the specified jobname and log subdirectory
*
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no age information for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public int getLogAge(String jobid, String logSubDirName) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Returns the job log list associated with the requested job class
*
* @param jobid The class identifier whose job list information is to be returned
* @param jobClass The class identifier on which to match
* @return a list of all job IDs whose class identifier matches the specified jobClass
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getJobsByClass(String jobClass) throws SchedulerException,

InvalidOperationException, java.rmi.RemoteException;

/**
* Removes the compressed job log associated with the requested job ID [this is the
* required complimentary action to {@link JobScheduler#getJobLog(String) getJobLog(jobid)]
*
* @param jobid The ID of the job whose compressed log file is to be removed
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no part information for the specified job ID is

190 Administering batch environments

* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public void removeJobLog(String jobid) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Purges the job log file associated with the requested job ID and log subDirectory
*
* @param jobid The ID of the job whose job log is to be purged
* @param logSubDirName The name of the log subdirectory of the job whose job log
* is to be purged
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if no job information for the specified job ID is
* found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public void purgeJobLog(String jobid, String logSubDirName) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
* Return the JMX addresses of the scheduler cluster
*
* @return the JMX addresses of the scheduler cluster
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getAdminAddresses() throws SchedulerException, InvalidOperationException,

java.rmi.RemoteException;

/**
* Retrieves a list of user preferences for the given user ID and the given scope.
* @param userId The user ID used to log into the Job Management Console
* @param prefScope The scope of the preferences within the Job Management Console.
* (For example JobCollectionForm, SavedJobCollectionForm,
* JobScheduleCollectionForm)
* @return a list of user preferences in the format of name=value
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
*/
public String[] getUserPrefs(String userId, String prefScope) throws

SchedulerException, java.rmi.RemoteException;

/**
* Saves the list of user preferences for the given user ID and the given scope.
* @param userId The user ID used to log into the Job Management Console
* @param prefScope The scope of the preferences within the Job Management Console.
* (For example JobCollectionForm, SavedJobCollectionForm,
* JobScheduleCollectionForm)
* @param prefNameValue The list of user preferences in the format of name=value
*
* @throws SchedulerException if an unexpected error is thrown by the job scheduler
* while processing the command
* @throws java.rmi.RemoteException
*
*/
public void saveUserPrefs(String userId, String prefScope, String[] prefNameValue)

throws SchedulerException, java.rmi.RemoteException;

/**
* Returns the job log list associated with the requested job class sorted by job log age
*
* @param jobClass The class identifier on which to match
* @return a list of all job IDs whose class identifier matches jobClass

Chapter 5. Deploying batch applications 191

* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getJobLogMetaDataByAgeForClass(String jobClass) throws

SchedulerException, InvalidOperationException, java.rmi.RemoteException;

/**
* Returns the job log list associated with the requested job class sorted by job log size
*
* @param jobClass The class identifier on which to match
* @return a list of all job IDs whose class identifier matches jobClass
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public String[] getJobLogMetaDataBySizeForClass(String jobClass) throws

SchedulerException, InvalidOperationException, java.rmi.RemoteException;

/**
* Stops user job logging
*
* @param jobid The ID of the job whose application job logging is to be stopped
* @throws SchedulerException if an unexpected error is thrown by the Job Scheduler
* while processing the command
* @throws InvalidJobIDException if the specified job ID is not found by the Job Scheduler
* @throws InvalidOperationException if the operation is currently not allowed on the job
* @throws java.rmi.RemoteException
*/
public void quiesceLogging(String jobid) throws SchedulerException,

InvalidJobIDException, InvalidOperationException, java.rmi.RemoteException;

/**
*
*
* @param jobid The ID of the job
* @param Status The status of the job
*
* @throws java.rmi.RemoteException
*/
public void sendCheckpointNotification(String jobid, String Status)

throws java.rmi.RemoteException;

/**
* Returns true if SAF authorization is enabled.
* Supported on z/OS only.
*
* @return true if SAF authorization is enabled, otherwise false.
* @throws java.rmi.RemoteException
*/
public boolean isSAF() throws java.rmi.RemoteException;

}

Submitting batch jobs using the job scheduler web service interface
The job scheduler web service interface is used to programmatically submit and manipulate a batch job.

Before you begin

The job scheduler supports programmatic access to its functions over both an EJB interface for Java
Platform, Enterprise Edition (Java EE) applications and a web service interface for both Java EE and
non-Java EE applications. The Web Services Description Language (WSDL) describes the web service
interface for the job scheduler.

Develop and install your batch applications.

192 Administering batch environments

About this task

This topic describes how to submit a batch job to the job scheduler. It includes a code example that
demonstrates how to invoke the job scheduler web service interface.

Procedure
1. Create a program for submitting batch work.

The following example demonstrates how to invoke the job scheduler web service interface to submit a
batch job.

Some statements are split on multiple lines for printing purposes.
import javax.xml.namespace.QName;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.encoding.XMLType;

Call call = null;
String lrsHostName = "localhost";
String lrsPort = "9080";

private String readXJCL() throws FileNotFoundException, IOException {
// Code to read xJCL file into a String
}

public void submitJob() {
String endPoint =

"http://"+lrsHostName+":"+lrsPort+"/LongRunningJobSchedulerWebSvcRouter/
services/JobScheduler";

try {
ServiceFactory serviceFactory = ServiceFactory.newInstance();
Service service = serviceFactory.createService(new

QName("http://longrun.websphere.ibm.com", "JobSchedulerService"));

call = (Call) service.createCall();
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,

"http://schemas.xmlsoap.org/soap/encoding/");
call.setProperty(Call.OPERATION_STYLE_PROPERTY, "wrapped");
call.setPortTypeName(new

QName("http://longrun.websphere.ibm.com", "JobSchedulerService"));
call.setTargetEndpointAddress(endPoint);

//remove all parameters from call object
call.removeAllParameters();
call.setReturnType(XMLType.SOAP_STRING, null);
call.addParameter("arg", XMLType.SOAP_STRING, ParameterMode.IN);
call.setOperationName(new QName("http://longrun.websphere.ibm.com","submitJob"));

String xjcl = readXJCL(); // Method to read xJCL file into a string

call.invoke(new Object[] {xjcl});
} catch (ServiceException se) {
System.out.println("Service Exception: " + se.getMessage());
se.printStackTrace();
} catch (java.rmi.RemoteException re) {
System.out.println("Remote Exception: " + re.getMessage());
re.printStackTrace();
}
}

2. Run the program to submit batch work.

Job scheduler web service interface
The job scheduler for web services provides the following interfaces for programmatically submitting and
manipulating a batch job from a web services client program:

The following code is the contents of the Web Services Description Language (WSDL) file.

Chapter 5. Deploying batch applications 193

Some code is split on multiple lines for printing purposes.
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://longrun.websphere.ibm.com"
xmlns:impl="http://longrun.websphere.ibm.com"
xmlns:intf="http://longrun.websphere.ibm.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:types>
<schema

targetNamespace="http://longrun.websphere.ibm.com"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:impl="http://longrun.websphere.ibm.com"
xmlns:intf="http://longrun.websphere.ibm.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<element name="submitJobFromRepositoryResponse">
<complexType>
<sequence>
<element name="submitJobFromRepositoryReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitJob">
<complexType>
<sequence>
<element name="arg_0_1" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitJobResponse">
<complexType>
<sequence>
<element name="submitJobReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="showAllJobs">
<complexType>
<sequence/>
</complexType>
</element>
<element name="showAllJobsResponse">
<complexType>
<sequence>
<element name="showAllJobsReturn" nillable="true" type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="saveJobToRepository">
<complexType>
<sequence>
<element name="arg_0_3" nillable="true" type="xsd:string"/>
<element name="arg_1_3" nillable="true" type="xsd:string"/>
<element name="arg_2_3" type="xsd:boolean"/>
</sequence>
</complexType>
</element>

<element name="saveJobToRepositoryResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="suspendJob">
<complexType>
<sequence>
<element name="arg_0_4" nillable="true" type="xsd:string"/>
<element name="arg_1_4" nillable="true" type="xsd:string"/>

194 Administering batch environments

</sequence>
</complexType>
</element>
<element name="suspendJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="modifyRecurringRequest">
<complexType>
<sequence>
<element name="arg_0_5" nillable="true" type="xsd:string"/>
<element name="arg_1_5" nillable="true" type="xsd:string"/>
<element name="arg_2_5" nillable="true" type="xsd:string"/>
<element name="arg_3_5" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="modifyRecurringRequestResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="saveDelayedJobToRepositoryAndSubmit">
<complexType>
<sequence>
<element name="arg_0_6" nillable="true" type="xsd:string"/>
<element name="arg_1_6" nillable="true" type="xsd:string"/>
<element name="arg_2_6" type="xsd:boolean"/>
<element name="arg_3_6" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="saveDelayedJobToRepositoryAndSubmitResponse">
<complexType>
<sequence>
<element name="saveDelayedJobToRepositoryAndSubmitReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobStatus">
<complexType>
<sequence>
<element name="arg_0_7" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobStatusResponse">
<complexType>
<sequence>
<element name="getJobStatusReturn" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="saveJobToRepositoryAndSubmit">
<complexType>
<sequence>
<element name="arg_0_8" nillable="true" type="xsd:string"/>
<element name="arg_1_8" nillable="true" type="xsd:string"/>
<element name="arg_2_8" type="xsd:boolean"/>
</sequence>
</complexType>
</element>
<element name="saveJobToRepositoryAndSubmitResponse">
<complexType>
<sequence>
<element name="saveJobToRepositoryAndSubmitReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="resumeJob">
<complexType>

Chapter 5. Deploying batch applications 195

<sequence>
<element name="arg_0_9" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="resumeJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="cancelRecurringRequest">
<complexType>
<sequence>
<element name="arg_0_10" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>

<element name="cancelRecurringRequestResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="getBatchJobRC">
<complexType>
<sequence>
<element name="arg_0_11" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getBatchJobRCResponse">
<complexType>
<sequence>
<element name="getBatchJobRCReturn" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="showAllRecurringRequests">
<complexType>
<sequence/>
</complexType>
</element>
<element name="showAllRecurringRequestsResponse">
<complexType>
<sequence>
<element name="showAllRecurringRequestsReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="showJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_13" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="showJobFromRepositoryResponse">
<complexType>
<sequence>
<element name="showJobFromRepositoryReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobOutput">
<complexType>
<sequence>
<element name="arg_0_14" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobOutputResponse">

196 Administering batch environments

<complexType>
<sequence>
<element name="getJobOutputReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="restartJob">
<complexType>
<sequence>
<element name="arg_0_15" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="restartJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="getRecurringRequestDetails">
<complexType>
<sequence>
<element name="arg_0_16" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getRecurringRequestDetailsResponse">
<complexType>
<sequence>
<element name="getRecurringRequestDetailsReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitDelayedJob">
<complexType>
<sequence>
<element name="arg_0_17" nillable="true" type="xsd:string"/>
<element name="arg_1_17" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitDelayedJobResponse">
<complexType>
<sequence>
<element name="submitDelayedJobReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitDelayedJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_18" nillable="true" type="xsd:string"/>
<element name="arg_1_18" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitDelayedJobFromRepositoryResponse">
<complexType>
<sequence>
<element name="submitDelayedJobFromRepositoryReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="cancelJob">
<complexType>
<sequence>
<element name="arg_0_19" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="forcedCancelJob">
<complexType>
<sequence>

Chapter 5. Deploying batch applications 197

<element name="arg_0_19" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="cancelJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="forcedCancelJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="submitRecurringRequestFromRepository">
<complexType>
<sequence>
<element name="arg_0_20" nillable="true" type="xsd:string"/>
<element name="arg_1_20" nillable="true" type="xsd:string"/>
<element name="arg_2_20" nillable="true" type="xsd:string"/>
<element name="arg_3_20" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitRecurringRequestFromRepositoryResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="removeJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_21" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="removeJobFromRepositoryResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="purgeJob">
<complexType>
<sequence>
<element name="arg_0_22" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="purgeJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="submitRecurringRequest">
<complexType>
<sequence>
<element name="arg_0_23" nillable="true" type="xsd:string"/>
<element name="arg_1_23" nillable="true" type="xsd:string"/>
<element name="arg_2_23" nillable="true" type="xsd:string"/>
<element name="arg_3_23" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitRecurringRequestResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="showRecurringJobs">
<complexType>
<sequence>
<element name="arg_0_24" nillable="true" type="xsd:string"/>

198 Administering batch environments

</sequence>
</complexType>
</element>
<element name="showRecurringJobsResponse">
<complexType>
<sequence>
<element name="showRecurringJobsReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="getJobDetails">
<complexType>
<sequence>
<element name="arg_0_25" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobDetailsResponse">
<complexType>
<sequence>
<element name="getJobDetailsReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_0" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_26" nillable="true" type="xsd:string"/>
<element name="arg_1_26" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableJobFromRepositoryResponse">
<complexType>
<sequence>
<element name="submitModifiableJobFromRepositoryReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableJob">
<complexType>
<sequence>
<element name="arg_0_27" nillable="true" type="xsd:string"/>
<element name="arg_1_27" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableJobResponse">
<complexType>
<sequence>
<element name="submitModifiableJobReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="saveModifiableDelayedJobToRepositoryAndSubmit">
<complexType>
<sequence>
<element name="arg_0_28" nillable="true" type="xsd:string"/>
<element name="arg_1_28" nillable="true" type="xsd:string"/>
<element name="arg_2_28" type="xsd:boolean"/>
<element name="arg_3_28" nillable="true" type="xsd:string"/>
<element name="arg_4_28" nillable="true" type="xsd:string"/>
</sequence>
</complexType>

Chapter 5. Deploying batch applications 199

</element>
<element name="saveModifiableDelayedJobToRepositoryAndSubmitResponse">
<complexType>
<sequence>
<element name="saveModifiableDelayedJobToRepositoryAndSubmitReturn" nillable="true"

type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="saveModifiableJobToRepositoryAndSubmit">
<complexType>
<sequence>
<element name="arg_0_29" nillable="true" type="xsd:string"/>
<element name="arg_1_29" nillable="true" type="xsd:string"/>
<element name="arg_2_29" type="xsd:boolean"/>
<element name="arg_3_29" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="saveModifiableJobToRepositoryAndSubmitResponse">
<complexType>
<sequence>
<element name="saveModifiableJobToRepositoryAndSubmitReturn" nillable="true"

type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableDelayedJob">
<complexType>
<sequence>
<element name="arg_0_30" nillable="true" type="xsd:string"/>
<element name="arg_1_30" nillable="true" type="xsd:string"/>
<element name="arg_2_30" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableDelayedJobResponse">
<complexType>
<sequence>
<element name="submitModifiableDelayedJobReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableDelayedJobFromRepository">
<complexType>
<sequence>
<element name="arg_0_31" nillable="true" type="xsd:string"/>
<element name="arg_1_31" nillable="true" type="xsd:string"/>
<element name="arg_2_31" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableDelayedJobFromRepositoryResponse">
<complexType>
<sequence>
<element name="submitModifiableDelayedJobFromRepositoryReturn" nillable="true"

type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableRecurringRequestFromRepository">
<complexType>
<sequence>
<element name="arg_0_32" nillable="true" type="xsd:string"/>
<element name="arg_1_32" nillable="true" type="xsd:string"/>
<element name="arg_2_32" nillable="true" type="xsd:string"/>
<element name="arg_3_32" nillable="true" type="xsd:string"/>
<element name="arg_4_32" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableRecurringRequestFromRepositoryResponse">

200 Administering batch environments

<complexType>
<sequence/>
</complexType>
</element>
<element name="submitModifiableRecurringRequest">
<complexType>
<sequence>
<element name="arg_0_33" nillable="true" type="xsd:string"/>
<element name="arg_1_33" nillable="true" type="xsd:string"/>
<element name="arg_2_33" nillable="true" type="xsd:string"/>
<element name="arg_3_33" nillable="true" type="xsd:string"/>
<element name="arg_4_33" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="submitModifiableRecurringRequestResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="modifyModifiableRecurringRequest">
<complexType>
<sequence>
<element name="arg_0_34" nillable="true" type="xsd:string"/>
<element name="arg_1_34" nillable="true" type="xsd:string"/>
<element name="arg_2_34" nillable="true" type="xsd:string"/>
<element name="arg_3_34" nillable="true" type="xsd:string"/>
<element name="arg_4_34" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="stopJob">
<complexType>
<sequence>
<element name="arg_0_35" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobsName">
<complexType>
<sequence>
<element name="arg_0_36" nillable="true" type="xsd:string"/>
<element name="arg_1_36" nillable="true" type="xsd:string"/>
<element name="arg_2_36" nillable="true" type="xsd:string"/>
<element name="arg_3_36" type="xsd:boolean"/>
</sequence>
</complexType>
</element>
<element name="getSymbolicVariables">
<complexType>
<sequence>
<element name="arg_0_37" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getSymbolicVariablesResponse">
<complexType>
<sequence>
<element name="getSymbolicVariablesReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobLog">
<complexType>
<sequence>
<element name="arg_0_38" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobLogResponse">
<complexType>
<sequence>

Chapter 5. Deploying batch applications 201

<element name="getJobLogReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogMetaData">
<complexType>
<sequence>
<element name="arg_0_39" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogMetaDataResponse">
<complexType>
<sequence>
<element name="getLogMetaDataReturn" nillable="true" type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="getLogPartList">
<complexType>
<sequence>
<element name="arg_0_40" nillable="true" type="xsd:string"/>
<element name="arg_1_40" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogPartListResponse">
<complexType>
<sequence>
<element name="getLogPartListReturn" nillable="true" type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="getLogPart">
<complexType>
<sequence>
<element name="arg_0_41" nillable="true" type="xsd:string"/>
<element name="arg_1_41" nillable="true" type="xsd:string"/>
<element name="arg_2_41" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogPartResponse">
<complexType>
<sequence>
<element name="getLogPartReturn" nillable="true" type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="getLogSize">
<complexType>
<sequence>
<element name="arg_0_42" nillable="true" type="xsd:string"/>
<element name="arg_1_42" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogSizeResponse">
<complexType>
<sequence>
<element name="getLogSizeReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLogAge">
<complexType>
<sequence>
<element name="arg_0_43" nillable="true" type="xsd:string"/>
<element name="arg_1_43" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>

202 Administering batch environments

<element name="getLogAgeResponse">
<complexType>
<sequence>
<element name="getLogAgeReturn" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="getJobsByClass">
<complexType>
<sequence>
<element name="arg_0_44" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobsByClassResponse">
<complexType>
<sequence>
<element name="getJobsByClassReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="removeJobLog">
<complexType>
<sequence>
<element name="arg_0_45" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="removeJobLogResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="purgeJobLog">
<complexType>
<sequence>
<element name="arg_0_46" nillable="true" type="xsd:string"/>
<element name="arg_1_46" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="purgeJobLogResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="getAdminAddresses">
<complexType>
<sequence/>
</complexType>
</element>
<element name="getAdminAddressesResponse">
<complexType>
<sequence>
<element name="getAdminAddressesReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="getJobLogMetaDataByAgeForClass">
<complexType>
<sequence>
<element name="arg_0_48" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobLogMetaDataByAgeForClassResponse">
<complexType>
<sequence>
<element name="getJobLogMetaDataByAgeForClassReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>

Chapter 5. Deploying batch applications 203

</sequence>
</complexType>
</element>
<element name="getJobLogMetaDataBySizeForClass">
<complexType>
<sequence>
<element name="arg_0_49" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getJobLogMetaDataBySizeForClassResponse">
<complexType>
<sequence>
<element name="getJobLogMetaDataBySizeForClassReturn" nillable="true"

type="impl:ArrayOf_xsd_nillable_string"/>
</sequence>
</complexType>
</element>
<element name="quiesceLogging">
<complexType>
<sequence>
<element name="arg_0_50" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="sendCheckpointNotification">
<complexType>
<sequence>
<element name="arg_0_51" nillable="true" type="xsd:string"/>
<element name="arg_1_51" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="sendCheckpointNotificationResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="quiesceLoggingResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="modifyModifiableRecurringRequestResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="stopJobResponse">
<complexType>
<sequence/>
</complexType>
</element>
<element name="getJobsNameResponse">
<complexType>
<sequence/>
</complexType>
</element>
<complexType name="InvalidJobNameException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="InvalidJobNameException" nillable="true" type="impl:InvalidJobNameException"/>
<complexType name="SchedulerException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="SchedulerException" nillable="true" type="impl:SchedulerException"/>
<complexType name="JCLException">
<sequence>

204 Administering batch environments

<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="JCLException" nillable="true" type="impl:JCLException"/>
<complexType name="JobSubmissionException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="JobSubmissionException" nillable="true" type="impl:JobSubmissionException"/>
<complexType name="ArrayOf_xsd_nillable_string">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="string" nillable="true"

type="xsd:string"/>
</sequence>
</complexType>
<complexType name="InvalidOperationException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="InvalidOperationException" nillable="true"

type="impl:InvalidOperationException"/>
<complexType name="InvalidJobIDException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="InvalidJobIDException" nillable="true" type="impl:InvalidJobIDException"/>
<complexType name="InvalidStartDateTimeFormatException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="InvalidStartDateTimeFormatException" nillable="true"

type="impl:InvalidStartDateTimeFormatException"/>
<complexType name="StaleTimeException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="StaleTimeException" nillable="true" type="impl:StaleTimeException"/>
<complexType name="InvalidIntervalException">
<sequence>
<element name="message" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
<element name="InvalidIntervalException" nillable="true" type="impl:InvalidIntervalException"/>
</schema>
</wsdl:types>

<wsdl:message name="showRecurringJobsRequest">

<wsdl:part element="impl:showRecurringJobs" name="parameters"/>

</wsdl:message>

<wsdl:message name="cancelRecurringRequestResponse">

<wsdl:part element="impl:cancelRecurringRequestResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitRecurringRequestRequest">

<wsdl:part element="impl:submitRecurringRequest" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableRecurringRequestRequest">

<wsdl:part element="impl:submitModifiableRecurringRequest" name="parameters"/>

Chapter 5. Deploying batch applications 205

</wsdl:message>

<wsdl:message name="InvalidJobNameException">

<wsdl:part element="impl:InvalidJobNameException" name="fault"/>

</wsdl:message>

<wsdl:message name="showAllJobsRequest">

<wsdl:part element="impl:showAllJobs" name="parameters"/>

</wsdl:message>

<wsdl:message name="getRecurringRequestDetailsRequest">

<wsdl:part element="impl:getRecurringRequestDetails" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobOutputRequest">

<wsdl:part element="impl:getJobOutput" name="parameters"/>

</wsdl:message>

<wsdl:message name="InvalidStartDateTimeFormatException">

<wsdl:part element="impl:InvalidStartDateTimeFormatException" name="fault"/>

</wsdl:message>

<wsdl:message name="resumeJobRequest">

<wsdl:part element="impl:resumeJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveDelayedJobToRepositoryAndSubmitRequest">

<wsdl:part element="impl:saveDelayedJobToRepositoryAndSubmit" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveModifiableDelayedJobToRepositoryAndSubmitRequest">

<wsdl:part element="impl:saveModifiableDelayedJobToRepositoryAndSubmit" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitDelayedJobResponse">

<wsdl:part element="impl:submitDelayedJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableDelayedJobResponse">

<wsdl:part element="impl:submitModifiableDelayedJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="removeJobFromRepositoryResponse">

<wsdl:part element="impl:removeJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="StaleTimeException">

<wsdl:part element="impl:StaleTimeException" name="fault"/>

206 Administering batch environments

</wsdl:message>

<wsdl:message name="getJobStatusResponse">

<wsdl:part element="impl:getJobStatusResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="cancelRecurringRequestRequest">

<wsdl:part element="impl:cancelRecurringRequest" name="parameters"/>

</wsdl:message>

<wsdl:message name="getBatchJobRCResponse">

<wsdl:part element="impl:getBatchJobRCResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobDetailsResponse">

<wsdl:part element="impl:getJobDetailsResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitJobRequest">

<wsdl:part element="impl:submitJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableJobRequest">

<wsdl:part element="impl:submitModifiableJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="purgeJobResponse">

<wsdl:part element="impl:purgeJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="removeJobFromRepositoryRequest">

<wsdl:part element="impl:removeJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobOutputResponse">

<wsdl:part element="impl:getJobOutputResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitJobFromRepositoryResponse">

<wsdl:part element="impl:submitJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableJobFromRepositoryResponse">

<wsdl:part element="impl:submitModifiableJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="JCLException">

<wsdl:part element="impl:JCLException" name="fault"/>

Chapter 5. Deploying batch applications 207

</wsdl:message>

<wsdl:message name="cancelJobResponse">

<wsdl:part element="impl:cancelJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="forcedCancelJobResponse">

<wsdl:part element="impl:forcedCancelJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitDelayedJobRequest">

<wsdl:part element="impl:submitDelayedJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableDelayedJobRequest">

<wsdl:part element="impl:submitModifiableDelayedJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="showAllJobsResponse">

<wsdl:part element="impl:showAllJobsResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="showJobFromRepositoryRequest">

<wsdl:part element="impl:showJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="JobSubmissionException">

<wsdl:part element="impl:JobSubmissionException" name="fault"/>

</wsdl:message>

<wsdl:message name="showAllRecurringRequestsResponse">

<wsdl:part element="impl:showAllRecurringRequestsResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="showAllRecurringRequestsRequest">

<wsdl:part element="impl:showAllRecurringRequests" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveDelayedJobToRepositoryAndSubmitResponse">

<wsdl:part element="impl:saveDelayedJobToRepositoryAndSubmitResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveModifiableDelayedJobToRepositoryAndSubmitResponse">

<wsdl:part element="impl:saveModifiableDelayedJobToRepositoryAndSubmitResponse"
name="parameters"/>

</wsdl:message>

<wsdl:message name="suspendJobResponse">

208 Administering batch environments

<wsdl:part element="impl:suspendJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitJobResponse">

<wsdl:part element="impl:submitJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableJobResponse">

<wsdl:part element="impl:submitModifiableJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="restartJobResponse">

<wsdl:part element="impl:restartJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveJobToRepositoryAndSubmitRequest">

<wsdl:part element="impl:saveJobToRepositoryAndSubmit" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveModifiableJobToRepositoryAndSubmitRequest">

<wsdl:part element="impl:saveModifiableJobToRepositoryAndSubmit" name="parameters"/>

</wsdl:message>

<wsdl:message name="restartJobRequest">

<wsdl:part element="impl:restartJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitRecurringRequestResponse">

<wsdl:part element="impl:submitRecurringRequestResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableRecurringRequestResponse">

<wsdl:part element="impl:submitModifiableRecurringRequestResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="purgeJobRequest">

<wsdl:part element="impl:purgeJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitDelayedJobFromRepositoryRequest">

<wsdl:part element="impl:submitDelayedJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableDelayedJobFromRepositoryRequest">

<wsdl:part element="impl:submitModifiableDelayedJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="getSymbolicVariablesRequest">

Chapter 5. Deploying batch applications 209

<wsdl:part element="impl:getSymbolicVariables" name="parameters"/>

</wsdl:message>

<wsdl:message name="cancelJobRequest">

<wsdl:part element="impl:cancelJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="forcedCancelJobRequest">

<wsdl:part element="impl:forcedCancelJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="getBatchJobRCRequest">

<wsdl:part element="impl:getBatchJobRC" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobStatusRequest">

<wsdl:part element="impl:getJobStatus" name="parameters"/>

</wsdl:message>

<wsdl:message name="modifyRecurringRequestResponse">

<wsdl:part element="impl:modifyRecurringRequestResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="modifyModifiableRecurringRequestResponse">

<wsdl:part element="impl:modifyModifiableRecurringRequestResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="stopJobResponse">

<wsdl:part element="impl:stopJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobsNameResponse">

<wsdl:part element="impl:getJobsNameResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveJobToRepositoryResponse">

<wsdl:part element="impl:saveJobToRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="resumeJobResponse">

<wsdl:part element="impl:resumeJobResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitRecurringRequestFromRepositoryResponse">

<wsdl:part element="impl:submitRecurringRequestFromRepositoryResponse" name="parameters"/>

</wsdl:message>

210 Administering batch environments

<wsdl:message name="submitModifiableRecurringRequestFromRepositoryResponse">

<wsdl:part element="impl:submitModifiableRecurringRequestFromRepositoryResponse"
name="parameters"/>

</wsdl:message>

<wsdl:message name="submitRecurringRequestFromRepositoryRequest">

<wsdl:part element="impl:submitRecurringRequestFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableRecurringRequestFromRepositoryRequest">

<wsdl:part element="impl:submitModifiableRecurringRequestFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveJobToRepositoryAndSubmitResponse">

<wsdl:part element="impl:saveJobToRepositoryAndSubmitResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveModifiableJobToRepositoryAndSubmitResponse">

<wsdl:part element="impl:saveModifiableJobToRepositoryAndSubmitResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitDelayedJobFromRepositoryResponse">

<wsdl:part element="impl:submitDelayedJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableDelayedJobFromRepositoryResponse">

<wsdl:part element="impl:submitModifiableDelayedJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getSymbolicVariablesResponse">

<wsdl:part element="impl:getSymbolicVariablesResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="SchedulerException">

<wsdl:part element="impl:SchedulerException" name="fault"/>

</wsdl:message>

<wsdl:message name="InvalidOperationException">

<wsdl:part element="impl:InvalidOperationException" name="fault"/>

</wsdl:message>

<wsdl:message name="InvalidIntervalException">

<wsdl:part element="impl:InvalidIntervalException" name="fault"/>

</wsdl:message>

<wsdl:message name="showJobFromRepositoryResponse">

<wsdl:part element="impl:showJobFromRepositoryResponse" name="parameters"/>

</wsdl:message>

Chapter 5. Deploying batch applications 211

<wsdl:message name="InvalidJobIDException">

<wsdl:part element="impl:InvalidJobIDException" name="fault"/>

</wsdl:message>

<wsdl:message name="submitJobFromRepositoryRequest">

<wsdl:part element="impl:submitJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="submitModifiableJobFromRepositoryRequest">

<wsdl:part element="impl:submitModifiableJobFromRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="modifyRecurringRequestRequest">

<wsdl:part element="impl:modifyRecurringRequest" name="parameters"/>

</wsdl:message>

<wsdl:message name="modifyModifiableRecurringRequestRequest">

<wsdl:part element="impl:modifyModifiableRecurringRequest" name="parameters"/>

</wsdl:message>

<wsdl:message name="stopJobRequest">

<wsdl:part element="impl:stopJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobsNameRequest">

<wsdl:part element="impl:getJobsName" name="parameters"/>

</wsdl:message>

<wsdl:message name="suspendJobRequest">

<wsdl:part element="impl:suspendJob" name="parameters"/>

</wsdl:message>

<wsdl:message name="saveJobToRepositoryRequest">

<wsdl:part element="impl:saveJobToRepository" name="parameters"/>

</wsdl:message>

<wsdl:message name="getRecurringRequestDetailsResponse">

<wsdl:part element="impl:getRecurringRequestDetailsResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobDetailsRequest">

<wsdl:part element="impl:getJobDetails" name="parameters"/>

</wsdl:message>

<wsdl:message name="showRecurringJobsResponse">

<wsdl:part element="impl:showRecurringJobsResponse" name="parameters"/>

</wsdl:message>

212 Administering batch environments

<wsdl:message name="getJobLogRequest">

<wsdl:part element="impl:getJobLog" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobLogResponse">

<wsdl:part element="impl:getJobLogResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogMetaDataRequest">

<wsdl:part element="impl:getLogMetaData" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogMetaDataResponse">

<wsdl:part element="impl:getLogMetaDataResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogPartListRequest">

<wsdl:part element="impl:getLogPartList" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogPartListResponse">

<wsdl:part element="impl:getLogPartListResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogPartRequest">

<wsdl:part element="impl:getLogPart" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogPartResponse">

<wsdl:part element="impl:getLogPartResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogSizeRequest">

<wsdl:part element="impl:getLogSize" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogSizeResponse">

<wsdl:part element="impl:getLogSizeResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogAgeRequest">

<wsdl:part element="impl:getLogAge" name="parameters"/>

</wsdl:message>

<wsdl:message name="getLogAgeResponse">

<wsdl:part element="impl:getLogAgeResponse" name="parameters"/>

</wsdl:message>

Chapter 5. Deploying batch applications 213

<wsdl:message name="getJobsByClassRequest">

<wsdl:part element="impl:getJobsByClass" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobsByClassResponse">

<wsdl:part element="impl:getJobsByClassResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="removeJobLogRequest">

<wsdl:part element="impl:removeJobLog" name="parameters"/>

</wsdl:message>

<wsdl:message name="removeJobLogResponse">

<wsdl:part element="impl:removeJobLogResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="purgeJobLogRequest">

<wsdl:part element="impl:purgeJobLog" name="parameters"/>

</wsdl:message>

<wsdl:message name="purgeJobLogResponse">

<wsdl:part element="impl:purgeJobLogResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getAdminAddressesRequest">

<wsdl:part element="impl:getAdminAddresses" name="parameters"/>

</wsdl:message>

<wsdl:message name="getAdminAddressesResponse">

<wsdl:part element="impl:getAdminAddressesResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobLogMetaDataByAgeForClassRequest">

<wsdl:part element="impl:getJobLogMetaDataByAgeForClass" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobLogMetaDataByAgeForClassResponse">

<wsdl:part element="impl:getJobLogMetaDataByAgeForClassResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobLogMetaDataBySizeForClassRequest">

<wsdl:part element="impl:getJobLogMetaDataBySizeForClass" name="parameters"/>

</wsdl:message>

<wsdl:message name="getJobLogMetaDataBySizeForClassResponse">

<wsdl:part element="impl:getJobLogMetaDataBySizeForClassResponse" name="parameters"/>

</wsdl:message>

214 Administering batch environments

<wsdl:message name="quiesceLoggingRequest">

<wsdl:part element="impl:quiesceLogging" name="parameters"/>

</wsdl:message>

<wsdl:message name="sendCheckpointNotificationRequest">

<wsdl:part element="impl:sendCheckpointNotification" name="parameters"/>

</wsdl:message>

<wsdl:message name="quiesceLoggingResponse">

<wsdl:part element="impl:quiesceLoggingResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="sendCheckpointNotificationResponse">

<wsdl:part element="impl:sendCheckpointNotificationResponse" name="parameters"/>

</wsdl:message>

<wsdl:portType name="JobScheduler">

<wsdl:operation name="submitJobFromRepository">

<wsdl:input message="impl:submitJobFromRepositoryRequest"
name="submitJobFromRepositoryRequest"/>

<wsdl:output message="impl:submitJobFromRepositoryResponse"
name="submitJobFromRepositoryResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="submitJob">

<wsdl:input message="impl:submitJobRequest" name="submitJobRequest"/>

<wsdl:output message="impl:submitJobResponse" name="submitJobResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="showAllJobs">

<wsdl:input message="impl:showAllJobsRequest" name="showAllJobsRequest"/>

<wsdl:output message="impl:showAllJobsResponse" name="showAllJobsResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="saveJobToRepository">

<wsdl:input message="impl:saveJobToRepositoryRequest"

Chapter 5. Deploying batch applications 215

name="saveJobToRepositoryRequest"/>

<wsdl:output message="impl:saveJobToRepositoryResponse"
name="saveJobToRepositoryResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="suspendJob">

<wsdl:input message="impl:suspendJobRequest" name="suspendJobRequest"/>

<wsdl:output message="impl:suspendJobResponse" name="suspendJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="modifyRecurringRequest">

<wsdl:input message="impl:modifyRecurringRequestRequest"
name="modifyRecurringRequestRequest"/>

<wsdl:output message="impl:modifyRecurringRequestResponse"
name="modifyRecurringRequestResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="saveDelayedJobToRepositoryAndSubmit">

<wsdl:input message="impl:saveDelayedJobToRepositoryAndSubmitRequest"
name="saveDelayedJobToRepositoryAndSubmitRequest"/>

<wsdl:output message="impl:saveDelayedJobToRepositoryAndSubmitResponse"
name="saveDelayedJobToRepositoryAndSubmitResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

216 Administering batch environments

<wsdl:operation name="getJobStatus">

<wsdl:input message="impl:getJobStatusRequest" name="getJobStatusRequest"/>

<wsdl:output message="impl:getJobStatusResponse" name="getJobStatusResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="saveJobToRepositoryAndSubmit">

<wsdl:input message="impl:saveJobToRepositoryAndSubmitRequest"
name="saveJobToRepositoryAndSubmitRequest"/>

<wsdl:output message="impl:saveJobToRepositoryAndSubmitResponse"
name="saveJobToRepositoryAndSubmitResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="resumeJob">

<wsdl:input message="impl:resumeJobRequest" name="resumeJobRequest"/>

<wsdl:output message="impl:resumeJobResponse" name="resumeJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="cancelRecurringRequest">

<wsdl:input message="impl:cancelRecurringRequestRequest"
name="cancelRecurringRequestRequest"/>

<wsdl:output message="impl:cancelRecurringRequestResponse"
name="cancelRecurringRequestResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getBatchJobRC">

<wsdl:input message="impl:getBatchJobRCRequest" name="getBatchJobRCRequest"/>

<wsdl:output message="impl:getBatchJobRCResponse" name="getBatchJobRCResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

Chapter 5. Deploying batch applications 217

<wsdl:operation name="showAllRecurringRequests">

<wsdl:input message="impl:showAllRecurringRequestsRequest"
name="showAllRecurringRequestsRequest"/>

<wsdl:output message="impl:showAllRecurringRequestsResponse"
name="showAllRecurringRequestsResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="showJobFromRepository">

<wsdl:input message="impl:showJobFromRepositoryRequest"
name="showJobFromRepositoryRequest"/>

<wsdl:output message="impl:showJobFromRepositoryResponse"
name="showJobFromRepositoryResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="getJobOutput">

<wsdl:input message="impl:getJobOutputRequest" name="getJobOutputRequest"/>

<wsdl:output message="impl:getJobOutputResponse" name="getJobOutputResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="restartJob">

<wsdl:input message="impl:restartJobRequest" name="restartJobRequest"/>

<wsdl:output message="impl:restartJobResponse" name="restartJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="getRecurringRequestDetails">

<wsdl:input message="impl:getRecurringRequestDetailsRequest"
name="getRecurringRequestDetailsRequest"/>

<wsdl:output message="impl:getRecurringRequestDetailsResponse"
name="getRecurringRequestDetailsResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="submitDelayedJob">

218 Administering batch environments

<wsdl:input message="impl:submitDelayedJobRequest" name="submitDelayedJobRequest"/>

<wsdl:output message="impl:submitDelayedJobResponse" name="submitDelayedJobResponse"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="submitDelayedJobFromRepository">

<wsdl:input message="impl:submitDelayedJobFromRepositoryRequest"
name="submitDelayedJobFromRepositoryRequest"/>

<wsdl:output message="impl:submitDelayedJobFromRepositoryResponse"
name="submitDelayedJobFromRepositoryResponse"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="cancelJob">

<wsdl:input message="impl:cancelJobRequest" name="cancelJobRequest"/>

<wsdl:output message="impl:cancelJobResponse" name="cancelJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="forcedCancelJob">

<wsdl:input message="impl:forcedCancelJobRequest" name="forcedCancelJobRequest"/>

<wsdl:output message="impl:forcedCancelJobResponse" name="forcedCancelJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="submitRecurringRequestFromRepository">

Chapter 5. Deploying batch applications 219

<wsdl:input message="impl:submitRecurringRequestFromRepositoryRequest"
name="submitRecurringRequestFromRepositoryRequest"/>

<wsdl:output message="impl:submitRecurringRequestFromRepositoryResponse"
name="submitRecurringRequestFromRepositoryResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="removeJobFromRepository">

<wsdl:input message="impl:removeJobFromRepositoryRequest"
name="removeJobFromRepositoryRequest"/>

<wsdl:output message="impl:removeJobFromRepositoryResponse"
name="removeJobFromRepositoryResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="purgeJob">

<wsdl:input message="impl:purgeJobRequest" name="purgeJobRequest"/>

<wsdl:output message="impl:purgeJobResponse" name="purgeJobResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="submitRecurringRequest">

<wsdl:input message="impl:submitRecurringRequestRequest"
name="submitRecurringRequestRequest"/>

<wsdl:output message="impl:submitRecurringRequestResponse"
name="submitRecurringRequestResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

220 Administering batch environments

<wsdl:operation name="showRecurringJobs">

<wsdl:input message="impl:showRecurringJobsRequest" name="showRecurringJobsRequest"/>

<wsdl:output message="impl:showRecurringJobsResponse" name="showRecurringJobsResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getJobDetails">

<wsdl:input message="impl:getJobDetailsRequest" name="getJobDetailsRequest"/>

<wsdl:output message="impl:getJobDetailsResponse" name="getJobDetailsResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableJobFromRepository">

<wsdl:input message="impl:submitModifiableJobFromRepositoryRequest"
name="submitModifiableJobFromRepositoryRequest"/>

<wsdl:output message="impl:submitModifiableJobFromRepositoryResponse"
name="submitModifiableJobFromRepositoryResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableJob">

<wsdl:input message="impl:submitModifiableJobRequest"
name="submitModifiableJobRequest"/>

<wsdl:output message="impl:submitModifiableJobResponse"
name="submitModifiableJobResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="saveModifiableDelayedJobToRepositoryAndSubmit">

<wsdl:input message="impl:saveModifiableDelayedJobToRepositoryAndSubmitRequest"
name="saveModifiableDelayedJobToRepositoryAndSubmitRequest"/>

<wsdl:output message="impl:saveModifiableDelayedJobToRepositoryAndSubmitResponse"
name="saveModifiableDelayedJobToRepositoryAndSubmitResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

Chapter 5. Deploying batch applications 221

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="saveModifiableJobToRepositoryAndSubmit">

<wsdl:input message="impl:saveModifiableJobToRepositoryAndSubmitRequest"
name="saveModifiableJobToRepositoryAndSubmitRequest"/>

<wsdl:output message="impl:saveModifiableJobToRepositoryAndSubmitResponse"
name="saveModifiableJobToRepositoryAndSubmitResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableDelayedJob">

<wsdl:input message="impl:submitModifiableDelayedJobRequest"
name="submitModifiableDelayedJobRequest"/>

<wsdl:output message="impl:submitModifiableDelayedJobResponse"
name="submitModifiableDelayedJobResponse"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableDelayedJobFromRepository">

<wsdl:input message="impl:submitModifiableDelayedJobFromRepositoryRequest"
name="submitModifiableDelayedJobFromRepositoryRequest"/>

<wsdl:output message="impl:submitModifiableDelayedJobFromRepositoryResponse"
name="submitModifiableDelayedJobFromRepositoryResponse"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JobSubmissionException" name="JobSubmissionException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableRecurringRequestFromRepository">

222 Administering batch environments

<wsdl:input message="impl:submitModifiableRecurringRequestFromRepositoryRequest"
name="submitModifiableRecurringRequestFromRepositoryRequest"/>

<wsdl:output message="impl:submitModifiableRecurringRequestFromRepositoryResponse"
name="submitModifiableRecurringRequestFromRepositoryResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

<wsdl:fault message="impl:InvalidJobNameException" name="InvalidJobNameException"/>

</wsdl:operation>

<wsdl:operation name="submitModifiableRecurringRequest">

<wsdl:input message="impl:submitModifiableRecurringRequestRequest"
name="submitModifiableRecurringRequestRequest"/>

<wsdl:output message="impl:submitModifiableRecurringRequestResponse"
name="submitModifiableRecurringRequestResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="modifyModifiableRecurringRequest">

<wsdl:input message="impl:modifyModifiableRecurringRequestRequest"
name="modifyModifiableRecurringRequestRequest"/>

<wsdl:output message="impl:modifyModifiableRecurringRequestResponse"
name="modifyModifiableRecurringRequestResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidIntervalException" name="InvalidIntervalException"/>

<wsdl:fault message="impl:StaleTimeException" name="StaleTimeException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:InvalidStartDateTimeFormatException"
name="InvalidStartDateTimeFormatException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="stopJob">

Chapter 5. Deploying batch applications 223

<wsdl:input message="impl:stopJobRequest" name="stopJobRequest"/>

<wsdl:output message="impl:stopJobResponse" name="stopJobResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getJobsName">

<wsdl:input message="impl:getJobsNameRequest" name="getJobsNameRequest"/>

<wsdl:output message="impl:getJobsNameResponse" name="getJobsNameResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getSymbolicVariables">

<wsdl:input message="impl:getSymbolicVariablesRequest"
name="getSymbolicVariablesRequest"/>

<wsdl:output message="impl:getSymbolicVariablesResponse"
name="getSymbolicVariablesResponse"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

<wsdl:fault message="impl:JCLException" name="JCLException"/>

</wsdl:operation>

<wsdl:operation name="getJobLog">

<wsdl:input message="impl:getJobLogRequest" name="getJobLogRequest"/>

<wsdl:output message="impl:getJobLogResponse" name="getJobLogResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getLogMetaData">

<wsdl:input message="impl:getLogMetaDataRequest" name="getLogMetaDataRequest"/>

<wsdl:output message="impl:getLogMetaDataResponse" name="getLogMetaDataResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getLogPartList">

<wsdl:input message="impl:getLogPartListRequest" name="getLogPartListRequest"/>

<wsdl:output message="impl:getLogPartListResponse" name="getLogPartListResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

224 Administering batch environments

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getLogPart">

<wsdl:input message="impl:getLogPartRequest" name="getLogPartRequest"/>

<wsdl:output message="impl:getLogPartResponse" name="getLogPartResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getLogSize">

<wsdl:input message="impl:getLogSizeRequest" name="getLogSizeRequest"/>

<wsdl:output message="impl:getLogSizeResponse" name="getLogSizeResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getLogAge">

<wsdl:input message="impl:getLogAgeRequest" name="getLogAgeRequest"/>

<wsdl:output message="impl:getLogAgeResponse" name="getLogAgeResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getJobsByClass">

<wsdl:input message="impl:getJobsByClassRequest" name="getJobsByClassRequest"/>

<wsdl:output message="impl:getJobsByClassResponse" name="getJobsByClassResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="removeJobLog">

<wsdl:input message="impl:removeJobLogRequest" name="removeJobLogRequest"/>

<wsdl:output message="impl:removeJobLogResponse" name="removeJobLogResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

Chapter 5. Deploying batch applications 225

</wsdl:operation>

<wsdl:operation name="purgeJobLog">

<wsdl:input message="impl:purgeJobLogRequest" name="purgeJobLogRequest"/>

<wsdl:output message="impl:purgeJobLogResponse" name="purgeJobLogResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getAdminAddresses">

<wsdl:input message="impl:getAdminAddressesRequest" name="getAdminAddressesRequest"/>

<wsdl:output message="impl:getAdminAddressesResponse" name="getAdminAddressesResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getJobLogMetaDataByAgeForClass">

<wsdl:input message="impl:getJobLogMetaDataByAgeForClassRequest"
name="getJobLogMetaDataByAgeForClassRequest"/>

<wsdl:output message="impl:getJobLogMetaDataByAgeForClassResponse"
name="getJobLogMetaDataByAgeForClassResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="getJobLogMetaDataBySizeForClass">

<wsdl:input message="impl:getJobLogMetaDataBySizeForClassRequest"
name="getJobLogMetaDataBySizeForClassRequest"/>

<wsdl:output message="impl:getJobLogMetaDataBySizeForClassResponse"
name="getJobLogMetaDataBySizeForClassResponse"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="quiesceLogging">

<wsdl:input message="impl:quiesceLoggingRequest" name="quiesceLoggingRequest"/>

<wsdl:output message="impl:quiesceLoggingResponse" name="quiesceLoggingResponse"/>

<wsdl:fault message="impl:InvalidJobIDException" name="InvalidJobIDException"/>

<wsdl:fault message="impl:InvalidOperationException" name="InvalidOperationException"/>

<wsdl:fault message="impl:SchedulerException" name="SchedulerException"/>

</wsdl:operation>

<wsdl:operation name="sendCheckpointNotification">

226 Administering batch environments

<wsdl:input message="impl:sendCheckpointNotificationRequest"
name="sendCheckpointNotificationRequest"/>

<wsdl:output message="impl:sendCheckpointNotificationResponse"
name="sendCheckpointNotificationResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="JobSchedulerSoapBinding" type="impl:JobScheduler">

<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="submitJobFromRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="submitJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="submitJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

Chapter 5. Deploying batch applications 227

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="showAllJobs">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="showAllJobsRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="showAllJobsResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="saveJobToRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="saveJobToRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="saveJobToRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

228 Administering batch environments

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="suspendJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="suspendJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="suspendJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="modifyRecurringRequest">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="modifyRecurringRequestRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="modifyRecurringRequestResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>

</wsdl:fault>

Chapter 5. Deploying batch applications 229

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="saveDelayedJobToRepositoryAndSubmit">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="saveDelayedJobToRepositoryAndSubmitRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="saveDelayedJobToRepositoryAndSubmitResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

230 Administering batch environments

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobStatus">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getJobStatusRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="getJobStatusResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="saveJobToRepositoryAndSubmit">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="saveJobToRepositoryAndSubmitRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="saveJobToRepositoryAndSubmitResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

Chapter 5. Deploying batch applications 231

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="resumeJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="resumeJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="resumeJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="cancelRecurringRequest">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="cancelRecurringRequestRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="cancelRecurringRequestResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

232 Administering batch environments

</wsdl:operation>

<wsdl:operation name="getBatchJobRC">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getBatchJobRCRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="getBatchJobRCResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="showAllRecurringRequests">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="showAllRecurringRequestsRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="showAllRecurringRequestsResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="showJobFromRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="showJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

Chapter 5. Deploying batch applications 233

<wsdl:output name="showJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobOutput">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getJobOutputRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="getJobOutputResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="restartJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="restartJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="restartJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

234 Administering batch environments

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getRecurringRequestDetails">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getRecurringRequestDetailsRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="getRecurringRequestDetailsResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitDelayedJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitDelayedJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="submitDelayedJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

Chapter 5. Deploying batch applications 235

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitDelayedJobFromRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitDelayedJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="submitDelayedJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

236 Administering batch environments

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="cancelJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="cancelJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="cancelJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="forcedCancelJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="forcedCancelJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="forcedCancelJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

Chapter 5. Deploying batch applications 237

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitRecurringRequestFromRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitRecurringRequestFromRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="submitRecurringRequestFromRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>

</wsdl:fault>

238 Administering batch environments

</wsdl:operation>

<wsdl:operation name="removeJobFromRepository">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="removeJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="removeJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="purgeJob">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="purgeJobRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="purgeJobResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitRecurringRequest">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="submitRecurringRequestRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

Chapter 5. Deploying batch applications 239

<wsdl:output name="submitRecurringRequestResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="showRecurringJobs">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="showRecurringJobsRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="showRecurringJobsResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>

</wsdl:fault>

<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>

</wsdl:fault>

240 Administering batch environments

</wsdl:operation>

<wsdl:operation name="getJobDetails">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobDetailsRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobDetailsResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableJobFromRepository">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableJob">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableJobRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableJobResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="saveModifiableDelayedJobToRepositoryAndSubmit">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="saveModifiableDelayedJobToRepositoryAndSubmitRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="saveModifiableDelayedJobToRepositoryAndSubmitResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="StaleTimeException">

Chapter 5. Deploying batch applications 241

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="saveModifiableJobToRepositoryAndSubmit">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="saveModifiableJobToRepositoryAndSubmitRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="saveModifiableJobToRepositoryAndSubmitResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableDelayedJob">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableDelayedJobRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableDelayedJobResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableDelayedJobFromRepository">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableDelayedJobFromRepositoryRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableDelayedJobFromRepositoryResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="StaleTimeException">

242 Administering batch environments

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JobSubmissionException">

<wsdlsoap:fault name="JobSubmissionException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableRecurringRequestFromRepository">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableRecurringRequestFromRepositoryRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableRecurringRequestFromRepositoryResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobNameException">

<wsdlsoap:fault name="InvalidJobNameException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="submitModifiableRecurringRequest">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="submitModifiableRecurringRequestRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="submitModifiableRecurringRequestResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>

Chapter 5. Deploying batch applications 243

</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="modifyModifiableRecurringRequest">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="modifyModifiableRecurringRequestRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="modifyModifiableRecurringRequestResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidIntervalException">

<wsdlsoap:fault name="InvalidIntervalException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="StaleTimeException">

<wsdlsoap:fault name="StaleTimeException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidStartDateTimeFormatException">

<wsdlsoap:fault name="InvalidStartDateTimeFormatException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="stopJob">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="stopJobRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="stopJobResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobsName">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobsNameRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobsNameResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getSymbolicVariables">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getSymbolicVariablesRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getSymbolicVariablesResponse">

244 Administering batch environments

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="JCLException">

<wsdlsoap:fault name="JCLException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobLog">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobLogRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobLogResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getLogMetaData">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLogMetaDataRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLogMetaDataResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getLogPartList">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLogPartListRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLogPartListResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getLogPart">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLogPartRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>

Chapter 5. Deploying batch applications 245

<wsdl:output name="getLogPartResponse">
<wsdlsoap:body use="literal"/>

</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getLogSize">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLogSizeRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLogSizeResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getLogAge">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLogAgeRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLogAgeResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobsByClass">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobsByClassRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobsByClassResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="removeJobLog">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="removeJobLogRequest">

<wsdlsoap:body use="literal"/>

246 Administering batch environments

</wsdl:input>
<wsdl:output name="removeJobLogResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="purgeJobLog">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="purgeJobLogRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="purgeJobLogResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">

<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getAdminAddresses">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getAdminAddressesRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getAdminAddressesResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobLogMetaDataByAgeForClass">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobLogMetaDataByAgeForClassRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobLogMetaDataByAgeForClassResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getJobLogMetaDataBySizeForClass">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getJobLogMetaDataBySizeForClassRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getJobLogMetaDataBySizeForClassResponse">

Chapter 5. Deploying batch applications 247

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="quiesceLogging">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="quiesceLoggingRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="quiesceLoggingResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="InvalidOperationException">

<wsdlsoap:fault name="InvalidOperationException" use="literal"/>
</wsdl:fault>
<wsdl:fault name="InvalidJobIDException">
<wsdlsoap:fault name="InvalidJobIDException" use="literal"/>

</wsdl:fault>
<wsdl:fault name="SchedulerException">

<wsdlsoap:fault name="SchedulerException" use="literal"/>
</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="sendCheckpointNotification">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="sendCheckpointNotificationRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="sendCheckpointNotificationResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="JobSchedulerService">
<wsdl:port binding="impl:JobSchedulerSoapBinding" name="JobScheduler">

<wsdlsoap:address
location="http://localhost:9080/LongRunningJobSchedulerWebSvcRouter/services/JobScheduler"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Submitting jobs from an external job scheduler
You can submit jobs from an external job scheduler to batch using the WSGrid utility.

Before you begin

Set up the external scheduler interface.

About this task

If an external interface is configured to use the default messaging system,
you can use the WSGrid command line script to submit a job to the job scheduler.

If an external interface is configured to use the default messaging system, you can use the
WSGrid command line script or JZOS Batch Toolkit for z/OS SDKs to submit a job to the job scheduler. If
an external interface is configured to use WebSphere MQ, you can use JCL to submit a job to the
scheduler.

248 Administering batch environments

Procedure
v If an external interface is configured to use the default messaging system, use the WSGrid.sh|bat

command-line script to submit a job to the scheduler.

1. Prepare the job properties file and the control properties file to use as input for WSGrid.sh|bat.

2. Run the WSGrid.sh|bat script located in the app_install_root/stack_products/WCG/bin directory.

v If an external interface is configured to use the default messaging system, use JZOS Batch
Toolkit for z/OS SDKs to submit the job to the scheduler using the WSGrid utility.

1. Update the relevant fields in the WSGrid JCL template to use with JZOS Batch Toolkit for z/OS
SDKs.

2. Enter the z/OS submit command to submit the JCL.

v If an external interface is configured to use WebSphere MQ, use JCL to submit a job to the
scheduler.

1. Update the relevant fields in the WSGrid job template.

2. Enter the submit command to submit the JCL.

Results

You have submitted a job from an external job scheduler to batch using the WSGrid utility.

What to do next

Review the output of the WSGrid utility.

WSGrid command-line utility
The WSGrid utility is a client application of the job scheduler message-driven interface. Use the WSGrid
utility to facilitate control of WebSphere batch jobs by external workload schedulers, such as Tivoli
Workload Scheduler.

The WSGrid utility is invoked by an external workload scheduler as part of a larger task choreography. The
WSGrid utility submits a WebSphere batch job, then waits for its completion. The job log from the batch
job is written to the standard output stream of the environment in which the WSGrid utility was invoked.

WSGrid supports three distinct ways of specifying a batch job. You can specify:

1. An xJCL file.

2. The name of an xJCL file in the job repository.

3. A set of simple properties that describe the batch job.

Invocation

Use the following syntax for invoking the WSGrid utility:

Syntax:

v WSGrid{.bat|.sh}<job properties file> - The job properties file is a fully qualified path name to the
file containing the WSGrid job properties. If specified alone, it must also contain WSGrid control
properties.

v WSGrid{.bat|.sh}<control properties file><job properties file> - The control properties file is a
fully qualified path name to the file containing the WSGrid control properties.

v WSGrid{.bat|.sh}<control properties file><xJCL file> - The xJCL file is a fully qualified path name
to the file containing an xJCL job definition.

Chapter 5. Deploying batch applications 249

WSGrid job template
The WSGrid job template is an input to the WSGrid utility. The template contains the properties that the
WSGrid utility uses to interact with a batch job.
v “WSGrid job template”
v “Example JCL to submit a new job” on page 251
v “Example JCL to restart a job” on page 252

WSGrid job template
//WSGRIDT JOB (),MSGCLASS=H
//RUN EXEC PGM=WSGRID
//***
//*
//* WSGrid Job Template
//*
//* WSGrid is a Java utility that runs under control of JZOS for the
//* purpose of sub-dispatching a batch job. The utility submits the
//* batch job, writes the batch joblog to STDOUT DD as the WCG job runs
//* and then ends with a return code indicating the RC of the batch job.
//*
//* RC codes
//* --------
//*
//* 0-3040 - user range
//*
//* This is a user defined return code returned by a completed
//* WCG job.
//*
//* 3041-4096 - system ran
//*
//* This is a return codes set by system prior to completion of
//* a WCG job. The following return codes are defined:
//*
//* 4084 (-12) - WCG job ended in restartable state
//* 4080 (-16) - fatal system error
//*
//***
//*
//* Required settings:
//*
//* 1) WGCNTL symbol must be set to the path-qualified file
//* containing the WSGRID control properties. See comment
//* block near WGCNTL DD for further information.
//*
//* 2) WGSUB symbol must be set to the path-qualified file
//* containing a WCG xJCL job definition.
//*
//* 3) WAS_HOME environment variable must be set to name of
//* WAS home directory. Find this variable under the STDENV DD.
//*
//* Optional settings:
//*
//* 1) WGSUBS symbol is set to the path-qualified file
//* containing WCG job substitution properties.
//*
//* 2) WGRSTRT symbol is set to the path-qualified file
//* used for restart processing output/input. See
//* comment block near WGRSTRT DD for further information.
//*
//***
// SET WGCNTL=<path-qualified file name>
// SET WGJOB=<path-qualified file name>
//*SET WGSUBS=<path-qualified file name>
//*SET WGRSTRT=<path-qualified file name>
//***
//*
//* WSGrid Control Properties - required DD
//*
//* queue-manager-name=<MQ queue manager name>
//* scheduler-input-queue=<MQ input queue as defined during configuration>

250 Administering batch environments

//* scheduler-output-queue=<MQ output queue as defined during configuration>
//* timeout=<in milliseconds for WSGRID to wait for next outputmessage from job scheduler>
//* debug=<true|false>
//*
//***
//WGCNTL DD PATH=’&WGCNTL.’
//*
//***
//*
//* WSGrid Job Definition - required DD
//*
//* File must contain valid WCG JCL job definition.
//*
//***
//WGJOB DD PATH=’&WGJOB.’
//*
//***
//*
//* WSGrid Job Substitutions - optional DD
//*
//* Values are of form:
//*
//* substitution-prop.<property name>=<property value>
//*
//***
//*WGSUBS DD PATH=’&WGSUBS.’
//*
//***
//*
//* WSGrid Restart Token - optional DD
//*
//* Note: restart token is written if and only if this job step ends
//* with RC=4084 (-12).
//*
//* The WGRSTRT DD takes precedence over the WGJOB DD, so
//* if this job is restarted with a non-empty restart file
//* the WCG job identified by the token will be restarted - a
//* new job instance based on the job definition in WGJOB is
//* not created.
//*
//* restart-job=<job_id of the job to restart. specify only when restart a job>
//***
//*WGRSTRT DD PATH=’&WGRSTRT.’
//* PATHOPTS=(ORDWR,OCREAT),
//* PATHMODE=(SIRUSR,SIWUSR)
//*
//***

Example JCL to submit a new job

Use the following example when you want to submit a job through the WSGrid utility.
//WSGRIDCI JOB 1,’HUTCH’,MSGCLASS=O
//SUBMIT EXEC PGM=WSGRID,REGION=0M
//STEPLIB DD DSN=B7CELL.WSGRID.LOAD,DISP=SHR
// DD DISP=SHR,DSN=SYS1.MQM.SCSQLOAD
// DD DISP=SHR,DSN=SYS1.MQM.SCSQAUTH
//***
//SYSPRINT DD SYSOUT=*
//***
//WGCNTL DD *
queue-manager-name=MQW1
scheduler-input-queue=WASIQCG
scheduler-output-queue=WASOQCG
timeout=5000
submit-timeout=30000
//WGJOB DD PATH=’/u/hutch/cg/jcl/SimpleCIxJCL_Ebc.xml’
//WGSUBS DD *
substitution-prop.calctime=5
//*

Chapter 5. Deploying batch applications 251

Example JCL to restart a job

Use the following example when you want to restart a job through the WSGrid utility.
//B7WSRST4 JOB 1,’Restart IVT’,MSGCLASS=O,NOTIFY=?
//SUBMIT EXEC PGM=WSGRID,REGION=0M
//STEPLIB DD DSN=B7CELL.WSGRID.LOAD,DISP=SHR
// DD DISP=SHR,DSN=SYS1.MQM.SCSQLOAD
// DD DISP=SHR,DSN=SYS1.MQM.SCSQAUTH
//SYSPRINT DD SYSOUT=*
//WGCNTL DD *
queue-manager-name=MQW1
scheduler-input-queue=WASIQ
scheduler-output-queue=WASOQ
timeout=5000
restart-job=XDCGIVTtxt-Long:00004
//WGJOB DD PATH=’/u/hutch/cg/jcl/EBCxJCL-XDCGIVT-Text_Long.xml’

WSGrid JCL template to use with JZOS Batch Toolkit for z/OS SDKs
The WSGrid job template is an input to the WSGrid utility. Use the WSGrid utility to submit a job to the
batch scheduler that has an external interface configured to use the default messaging system. Use the
template with JZOS Batch Toolkit for z/OS software development kits.
//WSGRIDT JOB (),MSGCLASS=H
//***
//*
//* WSGrid Job Template
//*
//* WSGrid is a batch Java utility that runs under control of JZOS
//* for the purpose of sub-dispatching a WCG job. The utility submits
//* the WCG job, writes the WCG joblog to STDOUT DD as the WCG job runs
//* and then ends with a return code indicating the RC of the WCG job.
//*
//* RC codes
//* --------
//*
//* 0-3040 - user range
//*
//* This is a user defined return code returned by a completed
//* WCG job.
//*
//* 3041-4096 - system ran
//*
//* This is a return codes set by system prior to completion of
//* a WCG job. The following return codes are defined:
//*
//* 4084 (-12) - WCG job ended in restartable state
//* 4080 (-16) - fatal system error
//*
//***
//*
//* Required settings:
//*
//* 1) WGCNTL symbol must be set to the path-qualified file
//* containing the WSGRID control properties. See comment
//* block near WGCNTL DD for further information.
//*
//* 2) WGSUB symbol must be set to the path-qualified file
//* containing a WCG xJCL job definition.
//*
//* 3) WAS_HOME environment variable must be set to name of
//* WAS home directory. Find this variable under the STDENV DD.
//*
//* Optional settings:
//*
//* 1) WGSUBS symbol is set to the path-qualified file
//* containing WCG job substitution properties.
//*
//* 2) WGRSTRT symbol is set to the path-qualified file
//* used for restart processing output/input. See
//* comment block near WGRSTRT DD for further information.
//*
//***

252 Administering batch environments

// SET WGCNTL=<path-qualified file name>
// SET WGJOB=<path-qualified file name>
//*SET WGSUBS=<path-qualified file name>
//*SET WGRSTRT=<path-qualified file name>
//***
//*
//* Start WSGrid with JZOS Launcher
//*
//***
//JAVA EXEC PROC=JVMPRC50,
// JAVACLS=’com.ibm.ws.bootstrap.WSLauncher’
//MAINARGS DD *
com.ibm.ws.grid.comm.WSGrid
//***
//*
//* WSGrid Control Properties - required DD
//*
//* scheduler-host=<host name of job scheduler server>
//* scheduler-port=<HTTP port of job scheduler server>
//* submitter-userid=<authorized userid>
//* submitter-password=<password - may be encoded with WAS utility>
//* timeout=<JMS receive timeout in milliseconds>
//* debug=<true|false>
//*
//***
//WGCNTL DD PATH=’&WGCNTL.’
//*
//***
//*
//* WSGrid Job Definition - required DD
//*
//* File must contain valid WCG JCL job definition.
//*
//***
//WGJOB DD PATH=’&WGJOB.’
//*
//***
//*
//* WSGrid Job Substitutions - optional DD
//*
//* Values are of form:
//*
//* substitution-prop.<property name>=<property value>
//*
//***
//*WGSUBS DD PATH=’&WGSUBS.’
//*
//***
//*
//* WSGrid Restart Token - optional DD
//*
//* Note: restart token is written if and only if this job step ends
//* with RC=4084 (-12).
//*
//* The WGRSTRT DD takes precedence over the WGJOB DD, so
//* if this job is restarted with a non-empty restart file
//* the WCG job identified by the token will be restarted - a
//* new job instance based on the job definition in WGJOB is
//* not created.
//*
//***
//*WGRSTRT DD PATH=’&WGRSTRT.’
//* PATHOPTS=(ORDWR,OCREAT),
//* PATHMODE=(SIRUSR,SIWUSR)
//*
//***
//*
//* Environment Variable Section
//*
//***
//STDENV DD *
#

Chapter 5. Deploying batch applications 253

#---
Required: specify WAS home directory
#---
#
WAS_HOME="<WAS home directory - e.g. /WebSphere/AppServer>"
#
#---
Configure JVM options
#---
#
Heap size
#
#---
IJO="-Xms256m -Xmx512m"
#---
#
DD encodings
#
Values: IBM-1047 (ebcdic - default)
ISO8859-1 (ascii)
#
#---
#IJO="$IJO -Dcom.ibm.ws.grid.dd.wgcntl.encoding=ISO8859-1"
#IJO="$IJO -Dcom.ibm.ws.grid.dd.wgjob.encoding=ISO8859-1"
#IJO="$IJO -Dcom.ibm.ws.grid.dd.wgsubs.encoding=ISO8859-1"
#IJO="$IJO -Dcom.ibm.ws.grid.dd.wgrstrt.encoding=ISO8859-1"
#---
#
Enable verbose:class to debug ClassNotFoundException
#
#---
#IJO="$IJO -verbose:class"
#---

REPLACE_WAS_HOME=$WAS_HOME

JAVA_HOME=$WAS_HOME/java
PATH=/bin:/usr/bin:$JAVA_HOME/bin:$WAS_HOME/bin:$PATH
LIBPATH=/lib:/usr/lib:$JAVA_HOME/bin:$JAVA_HOME/bin/classic:$LIBPATH

. $WAS_HOME/bin/setupCmdLine.sh

ENCODE_ARGS="-Xnoargsconversion -Dfile.encoding=ISO8859-1"

JMS_PATH=$WAS_HOME/lib/WMQ/java/lib/com.ibm.mq.jar:$WAS_HOME/lib/WMQ/java/lib/co

CLASSPATH=$JAVA_HOME:$WAS_HOME/lib/launchclient.jar:$WAS_CLASSPATH:$JMS_PATH

IBM_JAVA_OPTIONS="$IJO \
-Dwas.install.root=$WAS_HOME \
-Dws.ext.dirs=$WAS_EXT_DIRS \
-Dfile.encoding=ISO8859-1 "

export IBM_JAVA_OPTIONS JAVA_HOME PATH LIBPATH CLASSPATH WAS_HOME

//

Batch job properties
Use the WSGrid command-line utility to facilitate control of WebSphere batch jobs by external workload
schedulers such as the Tivoli Workload Scheduler. You can use these job properties to describe any job
type.

Batch control properties:

Properties specified through the WSGrid properties file describe the batch job to be run under the control
of WSGrid. This topic describes a set of control properties.

254 Administering batch environments

Table 81. Control properties. The table includes a list of property names with a description for each.
Property name Description

scheduler-connection-factory The JNDI name of the Java Message Service (JMS) connection factory for the job scheduler message-driver
interface application. The default value is jms/com.ibm.ws.grid.ConnectionFactory.

scheduler-host Specifies the host address of the job scheduler server

scheduler-input-queue The JNDI name of the JMS input queue for the job scheduler message-driver interface application. The default
value is jms/com.ibm.ws.grid.InputQueue.

scheduler-output-queue The JNDI name of the JMS output queue for the job scheduler message-driver interface application. The default
value is jms/com.ibm.ws.grid.OutputQueue.

scheduler-port Specifies the HTTP port address of job scheduler server.

submitter-userid Specifies the identity of the job submitter. This ID must be assigned to either the lrsubmitter role or lradmin role in
order to submit jobs.

submitter-password Specifies the password of the job submitter. The password might be obfuscated using the WebSphere
PropFilePasswordEncoder utility.

debug Specify true to send debug output to the standard output stream.

timeout Specifies the timeout value for individual messages sent back from the job scheduler. Units are in milliseconds. The
default is 5000.

submit-timeout Specifies the amount of time in milliseconds the WSGRID utility waits for an initial response from the job scheduler.
If this timeout expires, WSGRID concludes the job scheduler is not up and exits with an error message and
RC=4084 (-16).

restart-job Specifies the job ID of the job to restart, for example, restart-job=postingSample:0001.

Common batch job properties:

Properties specified through the WSGrid properties file describe the batch job to be run under the control
of WSGrid. This topic describes a set of common properties.

Common properties

The following properties can be specified for any job type. For example, transactional batch,
compute-intensive, or native execution.

Table 82. Common properties. The table lists each property followed by a description.
Property name Description

job-name Specifies the name of the job.

job-class Specifies the requested job class.

application-name Specifies the name of the required application.

controller-jndi-name Specifies the JNDI lookup name of the job controller bean. Applicable only to transactional batch and
compute-intensive jobs types.

repository-job Specifies the name of an xJCL definition stored in the job repository. This property is mutually exclusive with
both an xJCL file specified on the WSGrid command line and a property-specified job definition.

substitution-prop<prop-name> Specifies the value of a named substitution property. For example, substitution-prop.interval=10 specifies a
value of 10 for the substitution property named interval. This property can be specified multiple times, once for
each distinctly named substitution property of the target job.

prop<prop-name> Specifies the value of a named input property that is passed to the job. This property applies to transactional
batch and compute intensive job types only. That is, prop.interval=10 specifies a value of 10 for the input
property named interval. This property can be specified multiple times, once for each distinctly named input
property of a given job step.

Transactional batch properties:

Properties specified through the WSGrid properties file describe the batch job to be run under the control
of WSGrid. This topic describes a set of transactional batch properties.

The following properties are used to describe a transactional batch job composed of a single step. Using
properties provides a methodology for describing a transactional batch job without using xJCL. Specifying
these properties is mutually exclusive with specification of an xJCL file on the WSGrid command-line
invocation and with use of the repository-job property.

Chapter 5. Deploying batch applications 255

Table 83. Transactional batch properties. The table includes a list of property names with a description for each.
Property name Description

checkpoint-algorithm Specifies the class name of a checkpoint algorithm implementation. For example, a built-in
checkpoint algorithm: com.ibm.wsspi.batch.checkpointalgorithms.timebased

checkpoint-algorithm-prop.<prop-name> Specifies the value of a named checkpoint algorithm property. For example,
checkpoint-algorithm.prop.interval=10 specifies a value of 10 for the checkpoint property
named interval. This property can be specified multiple times, once for each distinctly named
checkpoint algorithm property of the specified checkpoint algorithm.

batch-bean-jndi-name Specifies the JNDI lookup name of the transactional batch bean. For the POJO programming
model, this value is com.ibm.ws.batch.DefaultBatchJobStepBean.

bds.<bds name> Specifies the class name of a named batch data stream (BDS): bds.input=com.cpv.bds. Input
specifies a batch data stream with the logical name of input and the implementation class of
com.cpv.bds.Input.

bds-prop.<bds-name>.<prop-name> Specifies the value of a named BDS property. bds-prop.input.interval=10 specifies a value
of 10 for the BDS property named interval belonging to the bds named input. This property
can be specified multiple times, once for each distinctly named BDS property of a named
bds.

Compute-intensive and native-execution properties:

Properties specified through the WSGrid properties file describe the batch job to be run under the control
of WSGrid. This topic describes a set of compute-intensive and native-execution properties.

Compute-intensive properties

The following properties describe a compute intensive job composed of a single step, providing an
xJCL-less methodology for describing a compute intensive job. Specifying these properties is mutually
exclusive with specification of an xJCL file on the WSGrid command-line invocation and with use of the
repository-job property.

Table 84. Compute-intensive properties. The table lists each property followed by a description.
Property name Description

ci-class-name Specifies the name of the implementation class for the compute intensive batch job step.

Native-execution properties

The following properties describe a native execution job composed of a single step, providing an xJCL-less
methodology for describing a native execution job. Specifying these properties is mutually exclusive with
specification of an xJCL file on the WSGrid command-line invocation and with use of the repository-job
property.

Table 85. Native-execution properties. The table lists each property followed by a description.
Property name Description

executable Specifies the command-line string to run in a native process.

arg-line Specifies the command-line argument string to pass to the native executable.

env-var.<envvar name> Specifies the value of a name environment variable to set in the native process. This property can be specified
multiple times, once for each unique environment variable to set for the specified executable.

256 Administering batch environments

Chapter 6. Troubleshooting batch applications

You can troubleshoot batch application issues using such things as messages and logging and tracing.

Adding log and trace settings to the batch environment
The batch environment uses the WebSphere Application Server logging and tracing system.

Log and trace settings

Specify the following settings depending on the component:

Table 86. Settings for logging and tracing. The table includes the component in the description column and the
settings for the component.
Description Setting

Scheduler com.ibm.ws.batch.*=all

com.ibm.ws.grid.* = all

com.ibm.ws.gridcontainer.*=all

Endpoints com.ibm.ws.batch.*=all

com.ibm.ws.ci.* = all

com.ibm.ws.grid.* = all

com.ibm.ws.gridcontainer.*=all

Location of log and trace files

Table 87. Log and trace files. The table includes the component in the description column and the location of the log
and trace files for the component in the location column.
Description Location

Schedulers <user_install_root>/logs/<server_name>

Endpoints <user-install-root>/logs/<server_name>

Batch common problems
Occasionally, you might encounter behavior in the batch component that is not expected.

Troubleshooting

Use this section to look for solutions to problems when batch is not working, or not working the way that
you expect it to.

Job submission fails due to database failures with the default Apache Derby
database
v Check for the successful creation of the LRSCHED database in the <user_install_root>/gridDatabase

directory.

v Check the file permissions of the database.

v Derby is only supported on a single scheduler configuration. Use a shared RDBMS for cells configured
with more than one scheduler. For example, DB2.

Job submission fails when submitting the job definition file

The following message is returned:
Unable to submit the job definition <xJCL file> because the application
that it runs has not been deployed to an endpoint

© Copyright IBM Corp. 2012 257

v Ensure that the application is installed on an endpoint server.

v Ensure the job name or the application name specified in the XJCL matches the name of the
application.

Job dispatching slowly when large number of jobs (hundreds or thousands) are
submitted

Increase the number of dispatcher threads by setting the MaxConcurrentDispatchers custom property in
the job scheduler custom properties panel in the administrative console.

Job execution fails due to database failures with the default Derby database
v Check for the successful creation of the LRSCHED database in the <user_install_root>/gridDatabase

directory

v Check the file permissions of the database.

Database errors during the execution of batch jobs with DB2
v Check for the successful creation of the LRSCHED database.

v Do not use default the Derby data source JNDI name (jdbc/lree) with DB2. Create a data source for
non-default Derby databases.

v Check that the WebSphere variable of GRID_ENDPOINT_DATASOURCE is set to the newly created
non-default data source.

Jobs are creating files with the server identity

Set the WebSphere variable RUN_JOBS_UNDER_USER_CREDENTIAL to run jobs under the credential
of the submitter. Although jobs can run under the credential of the user on distributed and z/OS operating
systems, they work slightly differently. On distributed operating systems, files are created with the identity
of the server even if the thread has the credential of the user. On z/OS, the Java thread synchronizes with
the operating system thread and files are created with the identity of the user.

Batch applications not working with Java 2 Security

Set the WebSphere variable RUN_JOBS_UNDER_USER_CREDENTIAL to run jobs under the credential
of the submitter. Although jobs can run under the credential of the user on distributed and z/OS operating
systems, they work slightly differently. On distributed operating systems, files are created with the identity
of the server even if the thread has the credential of the user. On z/OS, the Java thread synchronizes with
the operating system thread and files are created with the identity of the user.

v Ensure that application security is turned on.

v Grant permissions, SecOwnCredentials, and ContextManager.getServerCredential, in the policy file of
the application.

Job log viewing from the Job Management Console fails with the following error:
Unable to read the job log.

If administrative security is enabled, ensure that application security is also enabled.

Diagnosing batch problems using job logs
Occasionally, you might encounter behavior in the batch component that is not expected.

CWLRB5586I

Job remains in submitted state with the following message: CWLRB5586I: Job cannot be dispatched at
this time. Waiting for an endpoint, a job application, or both to become active.

258 Administering batch environments

v Ensure that the application and endpoint servers are running.

CWLRB3112E

Job remains in submitted state with the following message: CWLRB3112E: Job could not be dispatched.
Required capability was not found.

v Ensure the required-capability operands are configured correctly.

v If the problem remains, recycle the scheduler and endpoint servers.

BusinessGridStatsCache log file
This log file describes the business batch statistics cache.

Location

This file is in the log_root/visualization directory.

Usage notes

node Specifies the node name.

server Specifies the server name.

tcname
Specifies the transaction class name.

appname
Specifies the application name.

j2eemodname
Specifies the Java Platform, Enterprise Edition (Java EE) module name.

version
Specifies the node version.

dtname
Specifies the deployment target name.

scname
Specifies the service policy name.

nodegroup
Specifies the node group name.

cell Specifies the cell name.

updateTime
Specifies the time of the update.

stats num_requested
Specifies the number of jobs which arrive at the runtime environment (endpoint application) for
processing.

num_completed
Specifies the number of jobs which run to completion int the runtime environment.

exec_time
Specifies the average time in milliseconds that jobs spend running.

max_concurrency
Specifies the maximum concurrency level that is attained.

Chapter 6. Troubleshooting batch applications 259

num_queued
Specifies the number of jobs that are queued at the scheduler.

num_dispatched
Specifies the number of jobs that are dispatched at the scheduler.

num_failed
Specifies the number of jobs that failed in the runtime environment.

num_errors
Specifies the number of dispatch errors that occurred for jobs.

queue_time
Specifies the average time in milliseconds that a job spent in the queue.

dispatch_time
Specifies the average time in milliseconds that a job spent being dispatched.

dispatch_error_time
Specifies the average time in milliseconds for jobs spent being dispatched when a dispatch error
occurred.

260 Administering batch environments

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 261

262 Administering batch environments

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 263

http://www.ibm.com/legal/copytrade.shtml

264 Administering batch environments

Index

A
AdminTasks

grid scheduler 85
application edition manager 63
authority

scheduler
securing the job scheduler application 19, 20,

21, 23, 24
Autonomic request flow manager

APC 11
endpoint selection 11
tuning 11
UseAPCEndpointSelection 11

B
batch 115

POJO 91, 93, 94, 96, 97, 98, 101, 103, 106, 107,
110

batch application
RAD 161

batch job steps 121

C
clone 63
credentials

securing the job scheduler application 27

E
endpoints

grid scheduler 25

G
generic batch step

batch 157, 158, 160
grid scheduler

command line interface 30
Web services interface 193

I
installing the long-running application

grid scheduler 161

J
job logs 42

P
parallel job manager

configuring
batch job 81

patterns
batch 151, 153, 154, 155

POJO
batch 120
programming model 120

policy
batch 159

R
required-capability 53
requirements-based job scheduling

grid.apps 53
job scheduler 53

rollout 63

S
scheduler 18, 47
security 18, 47
set up the scheduler database

scheduler 15, 16

T
tutorial 70, 115

U
unit test environment

configuring
batch job 82

V
verify

grid scheduler 16

W
work class 63

© Copyright IBM Corp. 2012 265

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Batch applications
	Batch overview
	Learn about batch applications
	Getting started with the batch environment
	Understanding the elements in the batch environment
	Batch applications, jobs, and job definitions
	Grid endpoints
	Unit test environment topology
	Batch frequently asked questions

	Chapter 2. Administering the batch environment
	Configuring the batch environment
	Environment planning for transactional batch applications and compute-intensive applications

	Configuring the unit test environment (UTE) in Rational Application Developer
	Configuring the job scheduler
	Job scheduler WebSphere variables
	GRID_ENDPOINT_MISSED_HEART_BEAT_TOLERANCE_INTERVAL
	GRID_ENDPOINT_HEART_BEAT_POLL_INTERVAL

	Job scheduler System Programming Interfaces (SPI)
	Creating the job scheduler and grid endpoint database
	Verifying the job scheduler installation

	Securing the job scheduler
	Job scheduler security overview
	Securing the job scheduler using roles
	Job scheduler administrative roles and privileges
	Roles and privileges for securing the job scheduler

	Securing the job scheduler using groups on distributed operating systems
	Securing the job scheduler using roles and groups on distributed operating systems
	Securing the job scheduler using groups on the z/OS operating system
	Securing the job scheduler using roles and groups on the z/OS operating system

	Configuring WebSphere grid endpoints
	Endpoint WebSphere variables
	RUN_JOBS_UNDER_USER_CREDENTIAL
	GRID_ENDPOINT_HEART_BEAT_INTERVAL
	GRID_ENDPOINT_DATABASE_SCHEMA
	GRID_ENDPOINT_DATASOURCE
	GRID_MEMORY_OVERLOAD_PROTECTION

	Running batch jobs under user credentials
	Batch jobs and their environment
	Job management console
	Command-line interface for batch jobs
	Job logs
	Job classes

	Creating and managing reports for batch statistics
	Job scheduler integration with external schedulers
	Integration of an external workload scheduler to manage batch workloads

	Configuring the external scheduler interface
	Setting up the external scheduler interface using the default messaging provider
	Securing the external scheduler interface when using default messaging

	Setting up the external scheduler interface using WebSphere MQ

	Requirements-based job scheduling
	Service policies for batch jobs
	Batch job classification
	Job usage data for charge-back accounting support
	Integrating batch features in z/OS operating systems
	z/OS workload management and service policies
	Transaction class propagation on z/OS operating systems
	Managing multi-user WLM environments
	Managing worker threads
	Enabling job usage information

	Rolling out batch application editions
	Job scheduler custom properties
	MaxConcurrentDispatchers
	UseHTTPSConnection
	RECORD_SMF_SUBTYPES
	JOB_SECURITY_POLICY
	JOB_SECURITY_DEFAULT_GROUP
	JOB_SECURITY_ADMIN_GROUP
	UseAPCEndpointSelection
	WXDBulletinBoardProviderOption

	Port number settings for batch
	Batch administrator examples
	xJCL sample for a batch job
	XML schema for a batch job
	xJCL sample for a compute intensive job
	XML schema for a compute intensive job
	xJCL sample for a native execution job
	XML schema for a native execution job
	CommandRunner utility job step

	WSGrid properties file examples
	Example: Jobs from repository properties file
	Example: Compute-intensive properties file
	Example: Transactional batch properties file
	Example: Restart job properties file
	Example: xJCL file
	Example: Control file

	Chapter 3. Scripting batch applications
	jobrecovery.bat|.sh batch script
	uteconfig.bat|.sh batch script
	configCGSharedLib.py batch script
	removePGC.py batch script
	redeployLRS.py batch script
	wsgridConfig.py batch script
	JobSchedulerCommands command group for the AdminTask object

	Chapter 4. Developing batch applications
	Transactional batch and compute-intensive batch programming models
	COBOL container overview
	Developing COBOL container batch applications
	Creating a COBOL call stub Java class
	Compiling COBOL call stub Java classes
	Dynamically updating a COBOL module
	COBOL call stub Java class usage example
	COBOL RETURNING, RETURN-CODE, getReturnValue, and getReturnCode parameters
	COBOL container for batch troubleshooting

	Generating COBOL call stubs
	Creating a call stub generator configuration file
	Invoking the call stub generator from a command line
	Invoking the call stub generator from an Ant task
	Invoking the call stub generator from a graphical interface
	Call stub generator CSG.xml file
	Call stub generator CSGBatch.xml file

	Developing a simple compute-intensive application
	Compute-intensive programming model

	Developing a simple transactional batch application
	Components of a batch application
	Batch programming model
	Batch job steps
	Batch return codes
	Batch controller bean
	Batch data streams
	Checkpoint algorithms
	Results algorithms

	Skip-record processing
	Retry-step processing
	Configurable transaction mode

	Developing a parallel job management application
	Parallel job manager (PJM)
	Parallel job manager application programming interfaces (APIs)
	Other considerations for the parallel job manager

	Using the batch data stream framework
	Batch data stream framework and patterns
	JDBCReaderPattern
	JDBCWriterPattern
	ByteReaderPattern
	ByteWriterPattern
	FileReaderPattern
	FileWriterPattern
	RecordOrientedDatasetReaderPattern
	RecordOrientedDataSetWriterPattern
	JPAReaderPattern
	JPAWriterPattern
	PureQueryWriterPattern
	PureQueryReaderPattern

	Implementing the generic batch step (GenericXDBatchStep)
	Implementing the error tolerant step
	Declaring the percentage-based threshold policy (PercentageBasedThresholdPolicy)
	Declaring the record based threshold policy (RecordBasedThresholdPolicy)

	Chapter 5. Deploying batch applications
	Packaging EJB modules in a batch application using Rational Application Developer
	Installing the batch application
	Deploying an OSGi batch application
	OSGi batch applications

	Submitting batch jobs
	xJCL elements
	Batch job state table
	Native execution job state table

	Submitting batch jobs using the job scheduler EJB interface
	Job scheduler EJB interfaces

	Submitting batch jobs using the job scheduler web service interface
	Job scheduler web service interface

	Submitting jobs from an external job scheduler
	WSGrid command-line utility
	WSGrid job template
	WSGrid JCL template to use with JZOS Batch Toolkit for z/OS SDKs
	Batch job properties

	Chapter 6. Troubleshooting batch applications
	Adding log and trace settings to the batch environment
	Batch common problems
	Diagnosing batch problems using job logs
	BusinessGridStatsCache log file

	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	E
	G
	I
	J
	P
	R
	S
	T
	U
	V
	W

