IBM WebSphere Application Server Network Deployment
for IBM i, Version 8.0

Troubleshooting and support

..lli

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 207

Compilation date: July 29, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments
Changes to serve you more quickly .
Chapter 1. How do | troubleshoot?.

Chapter 2. Debugging applications.

Debugging components in the IBM Rational Applrcatron Developer for WebSphere .

Debugging Service details.
Enable service at server startup
JVM debug port
JVM debug arguments .
Debug class filters

Chapter 3. Adding logging and tracing to your appllcatlon
Using Java logging in an application . . .
Using a logger .
Java logging .
Configuring the Iogger h|erarchy
Creating log resource bundles and message flles
Logger.properties file for configuring logger settings .
Configuring applications to use Jakarta Commons Logging .
Jakarta Commons Logging .
Configurations for the WebSphere Applrcatron Server Iogger
Programming with the JRas framework
JRas logging toolkit.
JRas Extensions.
JRas messages and trace event types
Instrumenting an application with JRas extensrons
Logging Common Base Events in WebSphere Application Server
The Common Base Event in WebSphere Application Server.
Logging with Common Base Event APl and the Java logging API .
java.util.logging -- Java logging programming interface . .
Logger.properties file .
Logging Common Base Events in WebSphere Applrcatron Server
Showlog commands for Common Base Events

Chapter 4. Configuring Java logging using the administrative console .
Log streams and expected output
Log level settings
Changing the message IDs used in Iog flles
Converting log files to use IBM unique Message IDs
convertlog command .
MessageConverter class. .
HTTP error, FRCA, and NCSA access Iog settrngs .
Enable logging service at server start-up .
Enable NCSA access logging .
NCSA access log file path .
NCSA access log maximum size .
Maximum number of historical files .
NCSA access log format .
Enable error logging
Error log file path

© Copyright IBM Corp. 2011

. Vi

Error log maximum size . .
Maximum number of historical frles .
Error log level .

Chapter 5. Using HPEL to troubleshoot applications .
High Performance Extensible Logging (HPEL) .

Basic mode and HPEL mode . . .
Changing from basic mode to HPEL Ioggmg and tracrng .
Changing from HPEL to basic mode logging and tracrng .
Configuring HPEL .

Configuring HPEL with wsadmln scrrptrng

HPEL logging and trace settings

HPEL log configuration settings .

HPEL trace configuration settings .

HPEL text log configuration settings .

Log viewer settings

Log view table .

Content and filtering detarls

Server instance.

View contents

System Out .

System Error.

Logs and trace .

Filtering

Include Ioggers

Exclude loggers

Message contents.

Event timing .

From .

On (first occurrence)

Until .

On (second occurrence)

LogViewer command-line tool
Developing log and trace reading appllcatlons

Determining which of basic mode and HPEL mode is enabled

Chapter 6. Using sensitive log and trace guard .
Sensitive log and trace guard.

Enabling and disabling sensitive log and trace guard
Maintaining sensitive log and trace guard lists

Chapter 7. Diagnosing problems (using diagnosis tools) .

Chapter 8. Diagnosing problems with message logs .
Viewing JVM logs . G e

JVM log interpretation

Configuring the JVM logs .

Java virtual machine (JVM) log settrngs .
Monitoring application logging using JMX notifications
Process logs.

Configuring the service Iog

IBM service log settings

Viewing the service log .

Chapter 9. Working with trace.
Enabling trace on client and stand-alone appllcatlons

iV Troubleshooting and support

. 87
. 87
. 87

. 89

. 89

. 94

. 96

. 97

. 99
.. 99
. 101
. 102
. 103
. 105
. 107
. 107
. 108
. 108
. 108
. 108
. 109
. 109
. 109
. 109
. 109
. 109
. 109
. 109
. 110
. 110
. 110
. 110
. 112
.12

. 115
. 115
. 116
. 116

. 119

. 121
. 122
. 123
. 124
. 125
. 127
. 129
. 129
. 130
. 131

. 133
. 133

Tracing and logging configuration .

Enabling trace at server startup .

Enabling trace on a running server

Managing the application server trace service

Trace output . .

Diagnostic trace service settlngs
Trace Output.

Trace Output Format.
Runtime tab .
Trace Output.

Select a server to conflgure Ioggmg and tracmg
Server .
Node
Host name
Version .

Type.
Status . .

Log and trace settmgs .

Switch to HPEL Mode button
Diagnostic Trace .
Java virtual machine (JVM) Logs .
Process Logs

IBM Service Logs . .

Change Log Level Details .

NCSA access and HTTP error Ioggmg

Chapter 10. Troubleshooting class loaders
Class loading exceptions . .
Class loader viewer service settmgs .
Enable service at server startup.
Enterprise application topology .
Enterprise applications topology.
Class loader viewer settings .
Class Loader
Search settings.
Search type .
Search terms

Chapter 11. Configuring the hang detection policy
Hung threads in Java Platform, Enterprise Edition applications
Example: Adjusting the thread monitor to affect server hang detection.

Chapter 12. Working with troubleshooting tools
Gathering information with the collector tool (deprecated)
Collector tool output .
collector command - summary optlon
First failure data capture (FFDC)
Configuring first failure data capture log file purges

Chapter 13. Working with Dlagnostlc Providers .
Diagnostic Providers . e
Diagnostic Provider IDs.

Diagnostic Provider configuration dumps state dumps and self tests .

Diagnostic Provider registered attributes and registered tests .
Diagnostic Provider names .
The simpler interfaces provided by the Dlagnostlc Serwce MBean .

. 134
. 138
. 139
. 139
. 140
141
. 142
. 142
. 143
. 143
. 143
. 144
. 144
. 144
. 144
. 144
. 144
. 144
. 145
. 145
. 145
. 145
. 145
. 145
. 145

. 147
. 149
. 154
. 154
. 154
. 154
. 155
. 155
. 156
. 156
. 157

. 159
. 160
. 161

. 163
. 163
. 165
. 165
. 166
. 167

. 169
. 169
. 170
171
. 172
. 174
. 174

Contents

\'}

Creating a Diagnostic Provider T L

Diagnostic Provider Extensible Markup Language e e
Choosing a Diagnostic Providername .176
Implementing a Diagnostic Provider . . . T V4
Creating a Diagnostic Provider registration XML f|Ie T e et
Associating a Diagnostic Provider ID with a logger. 183
Static Assignment. .. .1883
Dynamic Assignment. . . . P < 16
Using Diagnostic Providers from wsadmm scrlpts S 184
Viewing the run time configuration of a component using Dlagnostlc Prowders185
Configuration data quick link or server selection. 186
Diagnostic Providers (selection). e e e86
Configuration data. . . . 187
Viewing the run time state data or conflgurmg the state data collectlon specmcatlons for a Dlagnostlc
Provider . . . e k<Y
Diagnostic Prowder State CoIIect|on Spe0|f|cat|on e e e e88
State Data Quick Link or Server Selecton. .189
State data. . . . P K< 1)
Detailed state speC|f|cat|on P £° 0]
Change state specification. . . . T Ee 0]
Modifying the State Collection SpeC|f|cat|on from wsadmln scnpts e Ko 10]
Running a self diagnostic on a Diagnostic Provider191
Tests Quick Link or Server Selection . 19
Testselection L L L L oL s s a 192
TestResults o . L oL 192
Testresult details o . oL oL L Lo o192
Chapter 14. Troubleshooting help fromiBM .19
Diagnosing and fixing problems: Resources for learning.19
Using IBM Support Assistant. . . . e 1018
Diagnosing problems using IBM Support ASS|stant toolmg I AT
Chapter 15. Collecting Java dumps and core files using the administrative console 201
Java dump and core collection L ... L0201
Chapter 16. Directory conventions. .Z203
Appendix. Directory conventions .205
Notices L . L ..o e0r
Trademarks and servicemarks .20
Index L L L L L oL s s s a2

Vi Troubleshooting and support

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 vii

Viii Troubleshooting and support

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 ix

X Troubleshooting and support

Chapter 1. How do | troubleshoot?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM® Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

IAdd tracing and logging to your applications|

* For more detailed information on enabling traces by using scripting, see the Troubleshooting with
scripting chapter in the Administering applications and their environment PDF book.

Collect details for IBM Support

[Creating Common Base Events|

[Debug WebSphere® applications during development|

[Detect hung threads|

[Detect product configuration file problems|

[Set traces and logs with the console|

[Set traces and logs with scripting?|

[Work with message logs|

[Using Common Base Events for logging

[Using IBM Support Assistant|

[Using HPEL to troubleshoot applications|

[Using JSR47 for logging|

[Using JSR47 for logging: Configuring access logs|

© IBM Corporation 2003

2 Troubleshooting and support

Chapter 2. Debugging applications

To debug your application, you must use a development environment like the IBM Rational® Application
Developer for WebSphere to create a Java project. You must then import the program that you want to
debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java

project. Two debugging styles are available:

» Step-by-step debugging mode prompts you whenever the server calls a method on a web object. A
dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when
you are finished using it.

» Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of
the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which web
objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your
program into the project, some of the source might not compile. You can still debug the project. Most
features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You
must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These
features let you select an expression in the source view and evaluate it.

Procedure

Create a Java Project by opening the New Project dialog.

Select Java from the left side of the dialog and Java Project in the right side of the dialog.
Click Next and specify a name for the project, for example, WASExamples.

Click Finish to create the project.

Select the new project, choose File > Import > File System, then Next to open the import file
system dialog.

6. Browse the directory for files.

Go to the following directory: [profile_rool/ installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This
imports the JavaServer Pages files and Java source for the examples into your project.

8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the
Libraries tab. Click Add External JARs to add the following JAR files:

. 1' nstalledApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the
Increment. jar file because it contains both the source and class files.

* |app_server_root/dev/JavakE/j2ee. jar

* |app_server_root/plugins//com.ibm.ws.runtime.jar

* lapp_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as
step-by-step mode will prompt you whenever the server calls a method on a web object. Step-by-step
mode is explained in more detail below.

ok w2

© IBM Corporation 2004, 2008 3

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make
note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open
Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing
Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other
category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server
Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).
Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next

To learn more about debugging, launch the The IBM Rational Application Developer for WebSphere, select
Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn about known
limitations and problems that are associated with the IBM Rational Application Developer for WebSphere,
see the IBM Rational Application Developer for WebSphere release notes. For current information
available from IBM Support on known problems and their resolution, see the page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the [Must gatherl documents page for information to gather to send to IBM
Support.

Debugging components in the IBM Rational Application Developer for
WebSphere

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server
on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench.
Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To
learn more about the debug components, launch the IBM Rational Application Developer for WebSphere,
select Help > Help Contents and choose the Developing > Debugging applications bookshelf entries.

The IBM Rational Application Developer for WebSpheret includes the following components:

The WebSphere Application Server debug adapter
which allows you to debug web objects that are running on WebSphere Application Server and
that you have launched in a browser. These objects include enterprise beans, JavaServer Pages
files, and servlets.

The JavaScript debug adapter
which enables server-side JavaScript debugging.

The Compiled language debugger
which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger
which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for
debugging locally and for remote debugging. To learn more about the debug components, launch the IBM
Rational Application Developer for WebSphere, select Help > Help Contents and choose the Developing
> Debugging applications bookshelf entries.

Debugging Service details
Use this page to view and modify the settings used by the Debugging Service.

4 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

To view this administrative console page, click Servers > Servers Types>WebSphere application
servers > server name > Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging
can prove useful when your program behaves differently on the application server than on your local
system.

Enable service at server startup
Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port

Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters

Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the
debugger will not stop in classes that match a filter entry.

Chapter 2. Debugging applications

5

6 Troubleshooting and support

Chapter 3. Adding logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in
WebSphere Application Server.

About this task

Deprecation: The JRas framework that is described in this information center is deprecated. However, you
can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as
servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes,
might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.printIn statements to your code:

* Your messages are displayed in the WebSphere Application Server standard log files, using a standard
message format with additional data, such as a date and time stamp that are added automatically.

* You can more easily correlate problems and events in your own application to problems and events that
are associated with WebSphere Application Server components.

* You can take advantage of the WebSphere Application Server log file management features.

3 User Handler1 Cutput
Handler) i davice
Application com.xyz.abc. def (
code » [Logger)
com_xyz.abc
(Logger) [|
Uszer Handler2 Output
Application com.XyZ.abec.ghi T::-Ilan::ar: = d i3 p
code » [Logger)
A
Application Anonymous
code (Logger) [|
Applications root Applications
__ > { Logger } WobSohere
WebSphere Application Server 49 WebSphere
v Application Server
. WebSphere
i i O t
I i ::-nm_:bm.ws.wz com.ibm.ws Soolicaton. | [d"“f]”
broker (Logger { Logger) Server handlers e
Procedure
1. Enable and configure any of the supported types of logging as needed. Use one of the following
methods:

« Configuring Java logging using the administrative console
« |[Configuring applications to use Jakarta Commons Logging|

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,
specify the number of logs to be kept, and specify a format for log output.

« Configuring Java logging using the administrative console

© Copyright IBM Corp. 2011 7

3. If you do not want log and trace from Jakarta Commons Logging to use the WebSphere log and trace
infrastructure, reconfigure the Jakarta Commons Logging.

« [“‘Configuring applications to use Jakarta Commons Logging” on page 23]

Note: Use the WebSphere log and trace infrastructure for all of your log content to make problem
source identification simpler.

4. Restart the application server after making static configuration changes.
Example

The sample security policy that follows grants access to the file system and runtime classes. Include this
security policy, with the entry permission java.util.logging.LoggingPermission "control", in the
META-INF directory of your application if you want your applications to programmatically alter controlled
properties of loggers and handlers. The META-INF file is located in the following locations for the different
module types:

EJB projects ejbModule/META-INF/MANIFEST.MF
Application client projects appClientModule/META-INF/MANIFEST.MF
Dynamic web projects WebContent/META-INF/MANIFEST.MF
Connector projects connectorModule/META-INF/MANIFEST.MF

Below is a sample security policy that grants permission to modify logging properties:
I 010010 1111111111111
/]

// WebSphere Application Server Security Policy
//
[T i rrreeriieliieelieilliieiii

[ITTTTIIEEIEEIT LTI i i iiriiiriieriieliieiiiellieilieiiiiieil
// Allow all access to the file system and runtime classes
HITTTTIIEEIEE LTI i iiriiiiieriiilrieilieiiieilieiiiiieil
grant codeBase "file:${application}" {

permission java.util.logging.LoggingPermission "control";
1

Using Java logging in an application

This topic describes how to use Java logging within an application.
About this task
To create an application using Java logging, perform the following steps:

Procedure
1. Optional: Create the necessary handler, formatter, and filter classes if you need your own log files.

Note: Use the WebSphere log and trace infrastructure to make problem source identification simpler,
rather than creating separate log files.

2. Optional: If localized messages are used by the application, create a resource bundle, as described in
r‘Creating log resource bundles and message files” on page 20.|

3. In the application code, get a reference to a logger instance, as described in |“Using a logger” on page|

4. |Insert the appropriate message and trace logging statements in the application, as described in
la logger” on page 9.|

8 Troubleshooting and support

Using a logger

You can use Java logging to log messages and add tracing.
About this task

Java provides a log and trace package, java.util.logging, that you can use to instrument your applications.
This topic provides recommendations about how to use the log and trace package.

Procedure

1. Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere
Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel
class.

For messages use:

WslLevel.FATAL
Level.SEVERE
Level.WARNING
WsLevel .AUDIT
Level.INFO
Level.CONFIG
WsLevel .DETAIL

For trace use:

Level.FINE
Level .FINER
Level .FINEST

2. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for
class name and method name. The log and logrb methods will generally try to infer this information,
but the performance penalty is prohibitive. In general, the logp method has less performance impact
than the log or the logrb method.

3. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor
performance.

4. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For
example:

if (logger.isLoggable(Level.FINEST)) {
String s = dumpComponentState(); // some expensive to compute method
logger.logp(Level .FINEST, className, methodName, "componentX state
dump:\n{0}", s);
}

Example

The following sample applies to localized messages:

// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with
// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
String resourceBundleName = "com.ibm.websphere.componentX.Messages";
Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.SEVERE))
Togger.severe("MSG_KEY_01");

if (Togger.isLoggable(Level.WARNING))
Togger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))
Togger.info("MSG_KEY_01");

if (logger.isLoggable(Level.CONFIG))
Togger.config("MSG_KEY_01");

Chapter 3. Adding logging and tracing to your application 9

// 1og methods are not generally used due to lTack of class and method
names

// - enable use of WebSphere Application Server-specific Tevels
// - enable use of message substitution parameters
// - cannot specify class and method names

if (logger.isLoggable(WsLevel.FATAL))
Togger.log(WsLevel .FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
Togger.log(Level .SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
Togger.log(Level .WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel .AUDIT))
Togger.log(WsLevel .AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
Togger.log(Level .INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
Togger.log(Level .CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel .DETAIL))
logger.log(WsLevel .DETAIL, "MSG_KEY_01", "parameter 1");

// Togp methods are the way to log

// - enable use of WebSphere Application Server-specific Tevels
// - enable use of message substitution parameters
// - enable use of class and method names

if (logger.isLoggable(WsLevel.FATAL))
Togger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.SEVERE))
Togger.logp(Level .SEVERE, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.WARNING))
Togger.logp(Level .WARNING, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
Togger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.INFO))
Togger.logp(Level.INFO, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.CONFIG))
Togger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel .DETAIL))
Togger.logp(WsLevel .DETAIL, className, methodName, "MSG_KEY_01",
"parameter 1");

// logrb methods are not generally used due to diminished performance
of switching resource bundles dynamically

// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names

String resourceBundleNameSpecial =
"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))
Togger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
Togger.logrb(Level .WARNING, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel .AUDIT))
Togger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");
if (logger.isLoggable(Level.CONFIG))

Togger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,

10 Troubleshooting and support

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.logrb(WsLevel .DETAIL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:

// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,
// INFO, CONFIG, DETAIL levels for trace
// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods
if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName, "method paraml");

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use
logp with a throwable parameter instead

if (logger.isLoggable(Level.FINER))

logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))
logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))

logger.finest("This is my trace");

// 1og methods are not generally used due to Tack of class and
method names

// - enable use of WebSphere Application Server-specific Tevels
// - enable use of message substitution parameters
// - cannot specify class and method names

if (logger.isLoggable(Level.FINE))
logger.log(Level .FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))
logger.log(Level .FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.log(Level .FINEST, "This is my trace", "parameter 1");

// Togp methods are the recommended way to log

// - enable use of WebSphere Application Server-specific Tevels
// - enable use of message substitution parameters
// - enable use of class and method names

if (logger.isLoggable(Level.FINE))
logger.logp(Level .FINE, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINER))
logger.logp(Level .FINER, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.logp(Level .FINEST, className, methodName, "This is my trace",
"parameter 1");

// Togrb methods are not applicable for trace logging because no localization
is involved

Example: Creating custom log handlers with java.util.logging. There may be occasions when you
want to propagate log records to your own log handlers rather than participate in integrated logging. To
use a stand-alone log handler, set the useParentHandlers flag to false in your application.The mechanism

Chapter 3. Adding logging and tracing to your application 11

for creating a customer handler is the Handler class support that is provided by the IBM Developer Kit,
Java Technology Edition. If you are not familiar with handlers, as implemented by the Developer Kit, you
can get more information from various texts, or by reading the APl documentation for the java.util.logging
API. The following sample shows a custom handler:

import java.io.FileOutputStream;
import java.io.PrintWriter;

import java.util.logging.Handler;
import java.util.logging.LogRecord;

[**

* MyCustomHandler outputs contents to a specified file
*/

public class MyCustomHandler extends Handler {

FiTleOutputStream fileOutputStream;
PrintWriter printWriter;

public MyCustomHandler(String filename) {
super();

// check input parameter
if (filename == null || filename == "")
filename = "mylogfile.txt";

try {
// initialize the file
fileOutputStream = new FileOutputStream(filename);
printWriter = new PrintWriter(fileOutputStream);
setFormatter(new SimpleFormatter());
}
catch (Exception e) {
// implement exception handling...
}
1

/* (non-API documentation)
* @see java.util.logging.Handler#publish(java.util.logging.LogRecord)
*
/
public void publish(LogRecord record) {
// ensure that this Tog record should be logged by this Handler
if (!isLoggable(record))
return;

// Output the formatted data to the file
printWriter.printin(getFormatter().format(record));

}

/* (non-API documentation)

* @see java.util.logging.Handler#flush()
*/

public void flush() {
printWriter.flush();

1

/* (non-API documentation)
* @see java.util.logging.Handler#close()
*
/
public void close() throws SecurityException {
printWriter.close();
1
}

Example: Creating a custom filter. A custom filter provides optional, secondary control over what is
logged, beyond the control that is provided by the level. The mechanism for creating a custom filter is the
Filter interface support that is provided by the IBM Developer Kit, Java Technology Edition. If you are not

12 Troubleshooting and support

familiar with filters, as implemented by the Developer Kit, you can get more information from various texts,
or by reading the API documentation the for the java.util.logging API.

The following example shows a custom filter:

[*x

* This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJO350E.
*/

import java.util.logging.Filter;

import java.util.logging.Handler;

import java.util.logging.Logger;

import java.util.logging.LogRecord;

public class MyFilter implements Filter {
public boolean isLoggable(LogRecord 1r) {
String msg = Tr.getMessage();
if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJO373E") || msg.startsWith("SECJO350E")) {
return false;

}

return true;

}
//This code will register the above log filter with the root Logger's handlers (including the WAS system Tlogs):

Logger rootlLogger = Logger.getLogger("");
rootLogger.setFilter(new MyFilter());

Example: Creating a custom formatter. A formatter formats events. Handlers are associated with one or
more formatters. The mechanism for creating a custom formatter is the Formatter class support that is
provided by the IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as
implemented by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.logging API.

The following example shows a custom formatter:

import java.util.Date;
import java.util.logging.Formatter;
import java.util.logging.LogRecord;

[x%

* MyCustomFormatter formats the LogRecord as follows:
* date Tevel Tlocalized message with parameters
*/

public class MyCustomFormatter extends Formatter {

public MyCustomFormatter() f{
super();

public String format(LogRecord record) {

// Create a StringBuffer to contain the formatted record
// start with the date.
StringBuffer sb = new StringBuffer();

// Get the date from the LogRecord and add it to the buffer
Date date = new Date(record.getMillis());
sh.append(date.toString());

sbh.append(" ");

// Get the level name and add it to the buffer
sbh.append(record.getLevel().getName());
sh.append(" ");

// Get the formatted message (includes localization

// and substitution of paramters) and add it to the buffer
sbh.append(formatMessage(record));

sbh.append("\n");

Chapter 3. Adding logging and tracing to your application 13

return sb.toString();
}
}

Example: Creating custom log files. Adding custom handlers, filters, and formatters enables you to
customize your logging environment beyond what can be achieved by the configuration of the default
WebSphere Application Server logging infrastructure. The following example demonstrates how to add a
new handler to process requests to the com.myCompany subtree of loggers (see[‘Configuring the logger]
|hierarchy” on page 19b. The main method in this sample gives an example of how to use the newly

configured logger.

import java.util.Vector;

import java.util.logging.Filter;
import java.util.logging.Formatter;
import java.util.logging.Handler;
import java.util.logging.Level;
import java.util.logging.Logger;

public class MyCustomLogging {
public MyCustomLogging() {
super();
1
public static void initializelLogging() {

// Get the logger that you want to attach a custom Handler to
String defaultResourceBundleName = "com.myCompany.Messages";

Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

// Set up a custom Handler (see MyCustomHandler example)
Handler handler = new MyCustomHandler("MyOutputFile.log");

// Set up a custom Filter (see MyCustomFilter example)
Vector acceptablelLevels = new Vector();
acceptablelevels.add(Level.INFO);
acceptablelevels.add(Level.SEVERE);

Filter filter = new MyCustomFilter(acceptablelLevels);

// Set up a custom Formatter (see MyCustomFormatter example)
Formatter formatter = new MyCustomFormatter();

// Connect the filter and formatter to the handler
handler.setFilter(filter);
handler.setFormatter(formatter);

// Connect the handler to the logger
logger.addHandler(handler);

// avoid sending events logged to com.myCompany showing up in WebSphere
// Application Server logs
logger.setUseParentHandlers(false);

}

public static void main(String[] args) {
initializelogging();

Logger logger = Logger.getLogger("com.myCompany");

logger.info("This is a test INFO message");
logger.warning("This is a test WARNING message");

logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");
}

14 Troubleshooting and support

When the above program is run, the output of the program is written to the MyOutputFile.log file. The
content of the log is in the expected log file, as controlled by the custom handler, and is formatted as
defined by the custom formatter. The warning message is filtered out, as specified by the configuration of
the custom filter. The output is as follows:

C:\>type MyOutputFile.log

Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message

Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Loggers
Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server
completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a
message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs
a clear view of what is occurring in each component to understand what might be going wrong. Logged
events are often the only events available when a problem is first detected, and are used during both
problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger
to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses
the same resource bundle as its parent.

You can configure loggers with a . If specified, the level is compared by the logger to incoming
events. The events that are less severe than the level set for the logger are ignored by the logger. If the
level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is
Level.INFO.

Loggers can have zero or more attached . If supplied, all events that are logged to the logger are
passed to the attached handlers. Handlers write events to output destinations such as log files or network
sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that
logger, the logger passes the event to the handlers that are attached to the parents of the logger. This
process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere
Application Server are attached to the root logger. Set the useParentHandlers logger property to false to
prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a If supplied, the filter is invoked for each incoming event to tell the logger whether
or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the
Logger.getLogger method with a name for the logger. Typically, the logger name is either the package
qualified class name or the name of the package that the logger is used by. The hierarchical logger
namespace is automatically created by using the dots in the logger name. For example, the
com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The
parent at the top of the hierarchy is referred to as the root logger. This root logger is created during
initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger
can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event
filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager
function.

Loggers create log records. A log record is the container object for the data of an event. This object is
used by filters, handlers, and formatters in the logging infrastructure.

Chapter 3. Adding logging and tracing to your application 15

The logger provides several sets of methods for generating log messages. Some log methods take only a
level and enough information to construct a message. Other, more complex logp (log precise) methods
support the caller in passing class name and method name attributes, in addition to the level and message
information. The logrb (log with resource bundle) methods add the capability of specifying a resource
bundle as well as the level, message information, class name, and method name. Using methods such as
severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on
logging and how to use it in your applications read |“Using Java logging in an application” on page 8] For a
complete list of methods, see the java.util.logging documentation at |http://java.sun.com/javase/.

Log handlers
Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to
the attached handlers, if handlers are supplied.

You can configure handlers with a The handler compares the level that is specified in the logged
object to the level that is specified for the handler. If the level of the logged object is less severe than the
level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Handlers can have a If a filter is supplied, the filter is invoked for each incoming object to tell the
handler whether or not to ignore it.

Handlers can have a If a formatter is supplied, the formatter controls how the logged objects are
formatted. For example, the formatter can decide to first include the time stamp, followed by a string
representation of the level, followed by the message that is included in the logged object. The handler
writes this formatted representation to the output device.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements
to be output. For example, you can set the logger level to FINE, but if the handler level is set at
WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your
log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger
never sends messages lower than WARNING to the log handler.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Log levels
Levels control which events are processed by Java logging. WebSphere Application Server controls the
levels of all loggers in the system.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The level value is set from configuration data when the logger is created and can be changed at run time

from the administrative console. If a level is not set in the configuration data, a level is obtained by
proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each

16 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

handler to indicate which events are published to an output device. When you change the level for a
logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all
levels above the set level.

Table 1. Valid log levels. This table lists valid logging levels.

Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace

Finer Trace information - Detailed trace + method entry / exit / return values

Finest Trace information - A more detailed trace - Includes all the detail that is needed to debug
problems

All All events are logged. If you create custom levels, All includes your custom levels, and can
provide a more detailed trace than Finest.

For instructions on how to set logging levels, read the topic about configuring Java logging using the
administrative console.

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to
the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,
Finer, or Finest does not effect the logged data.

Log filters
Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by
setting the Applications can apply a filter mechanism to control logging output through the logging
APls. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. For a complete list of
filter methods, see the java.util.logging documentation at |http:/java.sun.com/javase/

Log formatters
Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is
represented by the log record object, is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which writes the output to the output device.

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle
that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

Chapter 3. Adding logging and tracing to your applicaton 17

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

You can find the java.util.logging documentation at |http://java.sun.com/javase/}

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Java logging

Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a
standard logging API for your applications.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important
differences. These differences are important for application developers to understand to use these tools
properly. The following operational definitions of messages and trace are provided.

Message
A message entry is an informational record that is intended for end users, systems administrators,
and support personnel to view. The text of the message must be clear, concise, and interpretable
by an end user. Messages are typically localized and displayed in the national language of the end
user. Although the destination and lifetime of messages might be configurable, enable some level
of message logging in normal system operation. Use message logging judiciously because of
performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
As such, a trace record might be considerably more complex, verbose, and detailed than a
message entry. Localization support is typically not used for trace entries. Trace entries can be
fairly inscrutable, understandable only by the appropriate developer or service personnel. It is
assumed that trace entries are not written during normal runtime operation, but can be enabled as
needed to gather diagnostic information.

The application server redirects the system streams at the server startup. There is no way to allow the
application to output logging to the console because the system streams can not be obtained by the
application. If you would like to use console to monitor the application without using the console handler,
you can either monitor theSystemOut.1og file, or monitor a file created by another file handler.

Note: The application server uses Java logging internally and therefore certain restrictions apply for using
system streams with this logging API by applications. During server startup, the standard output and
error streams are replaced with special streams that write to the logging infrastructure, in order to
include the output of the system streams in the log files. Because of this, applications can not use
java.util.Togging.ConsoleHandler, or any handler writing to System.err or System.out streams,
attached to the root logger. If the user does attach the handler to the root logger, an infinite loop is
created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so
that it does not publish log records to parent handlers. The data written to the system streams is
then formatted and written to the corresponding system stream log file. To monitor what is being
written system streams, the configured log files (SystemQut.log and SystemErr.Tog by default) can
be monitored.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemQut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using

18 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Configuring the logger hierarchy

WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the
logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by
WebSphere Application Server handlers.

About this task

You can configure your application server to handle logs in many different ways. Configure your log
settings based upon your configuration and the logging structure that best suits your needs.

Procedure

» Forward all application logging requests to the WebSphere Application Server handlers. This behavior is
the default.

» Forward all application logging requests to your own custom handlers. Set the useParentHandlers
option to false on one of your custom loggers, and then attach your handlers to that logger.

» Forward all application logging requests to both WebSphere Application Server handlers, and your
custom handlers, but do not forward WebSphere Application Server logging requests to your custom
handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then
attach your handlers to that logger.True is the default setting.

* Forward all WebSphere Application Server logging requests to both WebSphere Application Server
handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application
Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach
your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the
WebSphere Application Server handlers.

Chapter 3. Adding logging and tracing to your application 19

Example

The following example shows how these requirements can be met using the Java logging infrastructure:

3 User Handler1 e Qutput
Handler) device
Application com.xyz.abc.def (
code — ™ (Logger)
com.xyz.abc
(Logger)] User Handler2 Output
Application com.xyz.abe.ghi S:::an::tr ? = d o p
code » [Logger)
A
Application Anonymous
code {Logger) | |
Applications root Applications
-- > [Logger) WobSuhore
WebSphere Application Server WebSphere
¥ Application Server
5 WebSphere
i i O t
Sarvice mm.:bm.ws. XYZ com.ibm.ws Application - o "“F""
broker { Logger) {Logger) Server handlers SE

Creating log resource bundles and message files

You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. Messages that are displayed on the administrative console, which can be running in
a different location than the server process, can be localized using the late binding process. Late binding
means that WebSphere Application Server does not localize messages when they are logged, but defers
localization to the process that displays the message.

About this task

Every method that accepts messages localizes those messages. The mechanism for providing localized
messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If
you are not familiar with resource bundles as implemented by the Developer Kit, you can get more
information from various texts, or by reading the APl documentation for the java.util. ResourceBundle,
java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the
java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it.

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.
This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a
different location. However, you can use the early binding technique to localize messages as they log. An
application that uses early binding must localize the message before logging it. The application looks up

20 Troubleshooting and support

the localized text in the resource bundle and formats the message. Use the early binding technique to
package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

Procedure

1. Create a text properties file that lists message keys and the corresponding messages. The properties
file must have the following characteristics:

» Each property in the file is terminated with a line-termination character.

» If a line contains white space only, or if the first non-white space character of the line is the pound
sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

» Each line in the file, unless it is a comment or consists of white space only, denotes a single
property. A backslash (\) is treated as the line-continuation character.

« The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

» The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but doing this process is not recommended, because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

* White space after the key and separator is ignored until the first non-white space character is
encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a
file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for
German and DefaultMessages ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the
application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource
bundle. Messages logged with the Logger API use this resource bundle when message localization is
performed. At run time, the user locale setting determines the properties file from which to extract the
message that is specified by a message key, ensuring that the message is delivered in the correct
language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.
Example

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a properties resource bundle. This example shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the
creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat
class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable
characters. WebSphere Application Server does not support the use of extended formatting conventions
that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (for example, baseDir/subDirl/subDir2/resources). To allow the messages file to
resolve, the subDirl.subDir2.resources.DefaultMessage name is used to identify the property resource
bundle and is passed to the message logger.

Chapter 3. Adding logging and tracing to your application 21

For this sample, the properties file is named DefaultMessages.properties.

Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parml={0
MSG_KEY_02=A message with two substitution parameters: parml={

}
0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parml={0}, parm2 = {

1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is located in the
baseDir/subDirl/subDir2/resources directory and baseDir is in the class path, the name
subdirl.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

Logger.properties file for configuring logger settings
Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within
an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital "L" in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties
files are loaded. Applications can provide Logger.properties files in:

» the META-INF directory of the Java archive (JAR) file for the application
 directories included in the class path of an application module
» directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

» Logger control information
— Minimum localization level: The minimum LogRecord level for which localization is attempted
— Group: The logical group that this component belongs to

— Event factory: The Common Base Event template file to use with the event factory. The naming
convention for this template is the fully qualified component name, with a file extension of
.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called
com.ibm.compXYZ.event.xml.

* Logger data information
— Product name
— Organization name
— Component name
— Extensions and additional properties

Syntax of the Logger.properties file
Use the following syntax to set logger properties:
<logger base name>.<property>=value

where:

22 Troubleshooting and support

logger base name is the starting part of the logger name to which the property applies. All loggers with
names starting with this string have the property applied.

property is one of the following properties:
* organization

* product

e component

* minimum_localization_level

s group

» eventfactory

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the
com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration
file.

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory
Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and
com.ibm.morestuff:

com.ibm.stuff.group=MyTraceGroup
com.ibm.morestuff.group=MyTraceGroup

Configuring applications to use Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The
support does not change interfaces defined by Jakarta Commons Logging.

Before you begin

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging
facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle
logging objects defined by either of the following:

- Java Logging found in [Java Specification Request 47: Logging API Specification|
+ [Common Base Event|

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read |Jakarta Commons| and the specifications for Java
Logging and for Common Base Event. To better understand use of the WebSphere Application Server
logger, read [“‘Jakarta Commons Logging” on page 24

About this task

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its Tibraries
directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and
JDK14Logger.

best-practices: The default configuration of Jakarta Commons Logging is stored in the
commons-Togging.properties file. To specify the factory class to use with Jakarta
Commons Logging in an application, provide a file named

Chapter 3. Adding logging and tracing to your application 23

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/

org.apache.commons.logging.LogFactory, located in META-INF/services directory, that
contains the name of the factory class on the first line. This is the configuration
mechanism for the JAR file service provider, as defined in JDK 1.3 and above.

For an application to use the WebSphere Application Server logger, the application must provide its own
configuration for the logger. To configure an application to use the WebSphere Application Server logger,
complete the steps that follow.

Procedure

1. Examine [‘Configurations for the WebSphere Application Server logger” on page 27 and determine
which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server
logger.

Results

After the application starts, Jakarta Commons Logging routes the application's logging output to the
WebSphere Application Server logger.

Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. The logging interface enables application logging to be simple and independent of the logging
system that the application uses. You can change the logging implementation for a deployed application
without having to change the application logging code. However, the simplicity of the logging interface
prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application
Server:

+ [“Support for Jakarta Commons Logging’|

+ [“Benefits of support for Jakarta Commons Logging’]

+ [‘Overview of the process for using Jakarta Commons Logging” on page 25|

+ [“Classes used to obtain a logger factory and logger” on page 25

* [‘Logger level configuration and mapping” on page 26|

Support for Jakarta Commons Logging

The product supports Jakarta Commons Logging| by providing a logger, a thin wrapper for the WebSphere
Application Server logging facility. The logger can handle both [Java Logging| (JSR-47) and
logging objects. A logging object is an object that holds logging entry information.

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta
Commons Logging.

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:
* WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere
Application Server component. Logging calls are routed by default to the underlying WebSphere
Application Server logging facility.

* Alogger that uses the WebSphere Application Server logging facility.

24 Troubleshooting and support

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Applications and components can pass both Java Logging and Common Base Event logging objects to
the WebSphere Application Server logger without conversion to strings, providing applications with
enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere
Application Server administrative facilities.

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. |“Configurations for the|

|WebSphere Application Server logger” on page 27| provides details on configuring your application to use

the WebSphere Application Server logger.

1.

Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet
your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to
instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application
Server components can provide their own configuration if they use a different logger factory
implementation. Applications can use more than one factory.

Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is
implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.
The logging methods take at least one argument, which can be any Java object. The WebSphere
Application Server logger, the WsJDK14Logger logger described in [‘Classes used to obtain a logger
[factory and logger,] handles the following objects passed into the following logging methods:
CommonBaseEvent

Wrapped into CommonBaseEventLogRecord
CommonBaseEventLogRecord

Passed without change
LogRecord

Passed without change
Other objects

Converted to String
Applications or WebSphere Application Server components can provide their own configuration if they

use an implementation of a logger that is not specific to WebSphere Application Server. An application
must know what factory is being used in order to configure it.

Start your application. Jakarta Commons Logging routes the application's logging output to the
designated logger

Classes used to obtain a logger factory and logger

Table 2. Jakarta Commons Logging class descriptions. Use the classes for a logger factory instance and logger.

Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory

is an abstract class that every logger factory implementation has to extend. It provides static
methods for obtaining:

* An instance of a factory class

» Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods
delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The
instances in a cache can be released. This functionality is designed for platform container
implementations rather than for applications.

Chapter 3. Adding logging and tracing to your application 25

Table 2. Jakarta Commons Logging class descriptions (continued). Use the classes for a logger factory instance
and logger.

Class name Description

LogFactorylmpl LogFactorylmpl is a Jakarta Commons Logging concrete class that implements the default
logger factory using methods in LogFactory. To use Java Logging, there must always be at least
one instance of a logger factory class, even if the application has not explicitly obtained one. If
the configuration does not name a logger factory class, LogFactorylmpl is used as the default.

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to
implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any
logging system, the Log interface defines a small set of common logging methods. In
WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere
Application Server uses the default logger factory provided in Jakarta Commons Logging, which
keeps instantiated loggers in cache, on a per context class loader basis.

WsJDK14Logger | WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons
Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the
Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base
Event objects to be passed over without converting them into String objects. This prevents any
information loss the conversion to String might cause as well as allows the logging output to be
more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta
Commons Logging converts objects passed into the logging calls to String objects before
passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do
not have their own level, but use the level of the logger from the underlying logging system. Although the
underlying system can provide methods for changing level, there are no methods for changing level
defined on the Log interface, which all Jakarta Commons Logging loggers must implement.
WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within
WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the
right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging
JDK14Logger to the Java Logging levels.

Table 3. Mapping of WsJDK14Logger levels to Java Logging levels. Compare the logging levels.

Java Logging in WebSphere
WsJDK14Logger Application Server Java Logging JDK14Logger
Fatal Fatal
Error Severe Severe Fatal, Error
Warning Warning Warning Warning
Audit
Info Info Info Info
Config Config
Detail
Debug Fine Fine Debug
Finer Finer
Trace Finest Finest Trace

26 Troubleshooting and support

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere
Application Server administration controls the WsJDK14Logger level.

Configurations for the WebSphere Application Server logger
This topic describes several ways to configure an application to use the WebSphere Application Server

logger.

The type of configuration that best suits an application depends upon the following:

* Whether the class loader order setting for the application is Classes loaded with parent class Toader
first (Parent First) or Classes Toaded with application class loader first (Parent Last), you can
set the class loader delegation mode on a console page. For more details about class load order and
delegation, consult the class loading chapter in the Developing and deploying applications PDF book

* Whether Jakarta Commons Logging is bundled with the application configuration

* Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere

Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with the application

Table 4. Conditions required to use logger.

application.

When Parent First and Jakarta Commons Logging is bundled with an

Jakarta Commons Logging
configuration

LogFactory
instance

Log instance

Comments

The application provides the
configuration by either of the
following:

* The properties file
commons-1logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
properties file first.

* The class name is read from
the file

META-INF/services/
org.apache.commons
.Togging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

* The Log
implementation
specified in the
WebSphere
Application Server
default configuration

* An application-
specific

Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere default
configuration.

The log used is the
Log implementation
specified in the
WebSphere default
configuration.

The Jakarta Commons Logging
bundled with the application is not
used.

Class loader mode is Parent First and Jakarta Commons Logging is not bundled with the

application

Chapter 3. Adding logging and tracing to your application

27

Table 5. Conditions required to use logger.

application.

When Parent First and Jakarta Commons Logging is not bundled with an

Jakarta Commons Logging
configuration

LogFactory
instance

Log instance

Comments

The application provides the
configuration by either of the
following:

» The properties file
commons-1logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
Application Server properties
file first.

* The class name is read from
the file

META-INF/services/
org.apache.commons
.Togging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

* The Log
implementation
specified in the
WebSphere
Application Server
default configuration

* An
application-specific
Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with the application

Table 6. Conditions required to use logger.

application.

When Parent Last and Jakarta Commons Logging is bundled with an

Jakarta Commons Logging
configuration

LogFactory
instance

Log instance

Comments

The application provides the
configuration by either of the
following:

» The properties file
commons-1logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

* The class name is read from
the file
META-INF/services/

org.apache.commons
.logging.LogFactory

The log factory
used is either of
the following:

* The default
Jakarta Commons
Logging
LogFactory

* The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

The application class loader is the
first class loader to load the Jakarta
Commons Logging code. The
application bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the
application class loader.

28 Troubleshooting and support

Table 6. Conditions required to use logger (continued). When Parent Last and Jakarta Commons Logging is

bundled with an application.

Jakarta Commons Logging
configuration

LogFactory
instance

Log instance

Comments

Not provided by the application

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled with the

application

Table 7. Conditions required to use logger.

application.

When Parent Last and Jakarta Commons Logging is not bundled with an

Jakarta Commons Logging
configuration

LogFactory
instance

Log instance

Comments

The application provides the
configuration by either of the
following:

» The properties file
commons-logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

* The class name is read from
the file

META-INF/services/
org.apache.commons
.Togging.LogFactory

The log factory
used is either of
the following:

* The default
Jakarta Commons
Logging
LogFactory

* The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

There is no Jakarta Commons Logging
code at the application class loader.
Thus, the WebSphere bundle that
supports Jakarta Commons Logging
provides the LogFactory static code
that looks up the LogFactory
configuration attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Programming with the JRas framework

Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application

Server applications.

Chapter 3. Adding logging and tracing to your application

29

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application
Server applications. They are based on the stand-alone JRas logging toolkit.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.Tog ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Retrieve a reference to the JRas manager.
2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace
entries, as appropriate.

JRas logging toolkit

The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or
tune application performance.

Note: The JRas framework that is described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running
application encounters an unexpected condition, it might not be able to complete a requested operation. In
such a case, you might want the application to inform the administrator that the operation failed and
provide information. This action enables the administrator to take the proper corrective action. Those who
develop or maintain applications might need to gather detailed information relating to the path of a running
application to determine the root cause of a failure that is due to a code bug. The facilities that are used
for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have
important differences. It is important for application developers to understand these differences to use
these tools properly. To start with, the following operational definitions of messages and trace are provided.
Message
A message entry is an informational record that is intended for end users, systems administrators
and support personnel to view. The text of the message must be clear, concise, and interpretable.
Messages are typically localized, meaning that they display in the national language of the end
user. Although the destination and lifetime of messages might be configurable, some level of
message logging is always enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
This trace record might be considerably more complex, verbose, and detailed than a message
entry. Localization support is typically not used for trace entries. Trace entries can be fairly
inscrutable, understandable only by the appropriate developer or service personnel. It is assumed
that trace entries are not written during normal runtime operation, but might be enabled as needed
to gather diagnostic information.

30 Troubleshooting and support

WebSphere Application Server provides a message logging and diagnostic trace API that applications can
use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The
stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product or platform. The
stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as
systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for
integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise
Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set
of extension classes to address these shortcomings. This collection of extension classes is referred to as
the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the
stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual
structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It
is equally applicable to the JRas extensions.

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the
stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this
logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More
detailed information, including code examples, is available in|JRas extensions|and its subtopics, including
in the API documentation for the various interfaces and classes that make up the logging toolkit.
Event types
The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event
types for trace. Examples of message types include informational, warning, and error. Examples of
trace types include entry, exit, and trace.
Event classes
The stand-alone JRas logging toolkit defines both message and trace event classes.
Loggers
A logger is the primary object with which the user code interacts. Two types of loggers are defined:
message loggers and trace loggers. The set of methods on message loggers and trace loggers
are different because they provide different functionality. Message loggers create message records
only and trace loggers create trace records only. Both types of loggers contain masks that indicate
which categories of events the logger processes and which to ignore. Although every JRas logger
is defined to contain both a message and trace mask, the message logger uses only the message
mask and the trace logger uses the trace mask only. For example, by setting a message logger
message mask to the appropriate state, it can be configured to process only error messages and
ignore informational and warning messages. Changing the trace mask state of a message logger
has no effect.

A logger contains one or more handlers to which it forwards events for further processing. When
the user calls a method on the logger, the logger compares the event type that is specified by the
caller to its current mask value. If the specified type passes the mask check, the logger creates an
event object to capture the information relating to the event that passed to the logger method. This
information can include information, such as the names of the class and method which logs the
event, a message, and parameters to log, among others. When the logger creates the event
object, it forwards the event to all handlers currently registered with the logger.

Methods that are used within the logging infrastructure do not make calls to the logger method.
When an application uses an object that extends a thread class, implements the hashCode
method, and makes a call to the logging infrastructure from that method, the result is a recursive
loop.

Handlers
A handler provides an abstraction over an output device or event consumer. An example is a file
handler, which knows how to write an event to a file. The handler also contains a mask that is
used to further restrict the categories of events the handler processes. For example, a message

Chapter 3. Adding logging and tracing to your application ~ 31

logger might be configured to pass both warning and error events, but a handler attached to the
message logger might be configured to pass error events only. Handlers also include formatters,
which the handler invokes to format the data in the passed event before it is written to the output
device.

Formatters
Handlers are configured with formatters, which know how to format events of certain types. A
handler can contain multiple formatters, each of which knows how to format a specific class of
event. The event object is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which then writes it to the output device.

JRas Extensions

JRas extensions are the collection of implementation classes that support JRas integration into the
WebSphere Application Server environment.

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that
implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general
purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that
are necessary for use in the WebSphere Application Server product. In addition, many of the
implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition
(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the
appropriate implementation classes that support integration into the WebSphere Application Server
environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:

Integrated
In this mode, message and trace records are written only to logs that are defined and maintained
by the WebSphere Application Server run time. This mode is the default mode of operation and is
equivalent to the WebSphere Application Server V4.0 mode of operation.

Stand-alone
In this mode, message and trace records are written solely to stand-alone logs that are defined
and maintained by the user. You control which categories of events are written to which logs, and
the format in which entries are written. You are responsible for configuration and maintenance of
the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined
In this mode, message and trace records are written to both WebSphere Application Server
runtime logs and to stand-alone logs that you must define, control, and maintain. You can use
filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of
operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed
by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.
A set of user extension points are defined that support JRas extensions in either a stand-alone or
combined mode of operations.

JRas extension classes

WebSphere Application Server provides a base set of implementation classes that are collectively referred
to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,
handlers, and formatters for use in a WebSphere Application Server environment.

32 Troubleshooting and support

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the
JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class
that are provided by the extensions, but you must provide your own implementations of handlers and
formatters.

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be
directly used in the WebSphere Application Server environment. The JRas extensions provide the
appropriate logger implementation classes. Instances of these message and trace logger classes are
obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot
directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from
the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server
Manager class are subclasses of the RASMessagelLogger and RASTracelLogger classes that are provided
by the stand-alone JRas logging toolkit. The RASMessagelLogger and RASTracelLogger classes define the
set of methods that are directly available. Public methods that are introduced by the JRas extensions
logger subclasses cannot be called directly by user code because it is a violation of the programming
model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a
logger, the caller is required to specify a name for the logger. The Manager class maintains a
name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime
of a process. The first call to the Manager class with a particular name results in the logger, which is
configured by the Manager class. The Manager class caches a reference to the instance, then returns it to
the caller. Subsequent calls to the Manager class that specify the same name result in a returned
reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You
can use a single name obtain both a message logger and a trace logger from the Manager, without
ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an

entire application. You might determine that having a logger per class is more effective, or the appropriate

granularity might be somewhere in between. Partitioning an application into logging domains is determined
by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are
thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the
serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual
machine instance and are not serializable. Attempting to serialize a logger is a violation of the
programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server
environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and
trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere
Application Server handler to write to any other destination. The creation of a WebSphere Application
Server handler is a restricted operation and is not available to user code. Every logger that is obtained
from the Manager comes preconfigured with an instance of this handler already installed. You can remove
the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.

Chapter 3. Adding logging and tracing to your application 33

When you remove it, you cannot add the WebSphere Application Server handler again to the logger from
which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere
Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,
to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server
handler to a logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data
that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server
formatter is a restricted operation and not available to user code. No mechanism exists that allows the
user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change
the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All
message and trace loggers must be obtained from this Manager class. A reference to the Manager class is
obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the
createRASMessagelLogger method on the Manager class. Trace loggers are obtained by calling the
createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group
abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.
WebSphere Application Server provides the appropriate systems management facilities to manipulate the
trace setting of a group, similar to the way the trace settings of an individual trace logger work.

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a
separate trace logger. All 10 trace loggers in the component are registered as members of the same
group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on
trace for all 10 classes in a single operation using the group name, if you want a component trace. Group
names are maintained within the namespace for trace loggers.

JRas framework (deprecated)

Because the JRas extensions classes do not provide the flexibility and behavior that are required for many
scenarios, a variety of extension points are defined. You can write your own implementation classes to
obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar
results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace
logger. No provision is made for you to provide your own message or trace logger subclasses. In general,
user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the
integrated mode of operation is solely determined by the WebSphere Application Server run time and the
JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this
interface. You can write your own handler classes that implement the RASIHandler interface. Directly
create instances of user-defined handlers and add them to the loggers that are obtained from the Manager
class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler
classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You

34 Troubleshooting and support

cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas
logging toolkit. Doing so is a violation of the programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement
this interface. You can write your own formatter classes that implement the RASIFormatter interface. You
can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be
configured to use user-defined formatters. Instead, directly create instances of your formatters and add
them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.
Direct use of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In
addition, the WebSphere Application Server reserves a range of message event types for future use. The
RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08
through 0x8000 are reserved for future use. You can provide your own message event types by extending
this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or
process all message event types defined in the RASIMessageEvent interface. To process user-defined
message types, you must manually set the message logger mask to the appropriate state by user code
after the message logger is obtained from the Manager class. WebSphere Application Server does not
provide any built-in systems management support for managing message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message
logging method is called on the message logger, and the message type is currently enabled, the logger
creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You
must directly create instances of such user-defined message event classes. When it is created, pass your
message event to the message logger by calling the message logger's fireRASEvent method directly.
WebSphere Application Server message loggers cannot directly create instances of user-defined types in
response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined
message types are never processed by the WebSphere Application Server handler. You cannot create
instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide
your own trace event types by extending this interface appropriately. In such a case, you must ensure that
the values for the user-defined trace event types do not collide with the values of the types that are
defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all
types. A different starting state can be specified by using WebSphere Application Server systems
management facilities. In addition, you can change the state of the trace mask for a logger at run-time,
using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state
by user code. WebSphere Application Server systems management facilities cannot be used to manage

Chapter 3. Adding logging and tracing to your application 35

user-defined trace types, either at start time or run time.
Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging
method is called on the WebSphere Application Server trace logger and the type is currently enabled, the
logger creates and distributes an event of this class to all the handlers that are currently registered with
that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent
interface. You must create instances of such user-defined event classes directly. When it is created, pass
the trace event to the trace logger by calling the trace logger's fireRASEvent method directly. WebSphere
Application Server trace loggers cannot directly create instances of user-defined types in response to
calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace
types are never processed by the WebSphere Application Server handler. You cannot create instances of
the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,
or user-defined message or trace event classes. Message and trace entries of either a user-defined type
or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected
resources such as the file system and sockets. Because user-written extensions typically access such
protected resources, user-written extensions must contain the appropriate security checking calls, using
AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate
policy file. In general, locating user-written extensions in a separate package is a good practice. It is your
responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the
RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the
methods that are introduced by each of these interfaces follows, along with implementation pointers. For
more in-depth information on any of the particular interfaces or methods, see the corresponding product
API documentation.

RASIODbject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are

stateful or configurable, such as loggers, handlers, and formatters.

* The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To
implement this configuration support, the configuration state is stored as a set of key-value pairs in a
properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are
used to get and set the configuration state. The JRas extensions do not support properties-based
configuration. Implement these methods as no-operations. You can implement your own
properties-based configuration using these methods.

36 Troubleshooting and support

» Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the
user to provide a name for the loggers that are retrieved from the manager. You can name your
handlers. The public String getName and public void setName(String name) methods are provided to
get or set the name field. The JRas extensions currently do not call these methods on user handlers.
You can implement these methods as you want, including as no operations.

» Loggers, handlers, and formatters can also contain a description field. The public String getDescription
and public void setDescription(String desc) methods can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement these methods as you
want, including as no operations.

» The public String getGroup method is provided for use by the RASManager interface. Since the JRas
extensions provide their own Manager class, this method is never called. Implement this as a
no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for
filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By
definition, an object that implements this interface contains both a message mask and a trace mask,
although both need not be used. For example, message loggers contain a trace mask, but the trace mask
is never used because the message logger never generates trace events. Handlers, however, can actively
use both mask values. For example, a single handler can handle both message and trace events.
* The public long getMessageMask and public void setMessageMask(long mask) methods are used to
get or set the value of the message mask. The public long getTraceMask and public void
setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes

state. The callback object must implement the RASIMaskChangeListener interface.

* The public void addMaskChangeListener(RASIMaskChangelListener listener) and public void
removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove
listeners to the handler. The public Enumeration getMaskChangeListeners method returns an
enumeration over the list of currently registered listeners. The public void
fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered
listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to
the logger mask. The logger composite mask is formed by logically oriing the appropriate masks of all
handlers that are registered to that logger, then and'ing the result with the logger mask. For example, the
message logger composite mask is formed by or'ing the message masks of all handlers that are registered
with that logger, then and'ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is
instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener
method. When either the message mask or trace mask of the handler is changed, the logger must be
called back to inform it of the mask change. With this process, the logger can dynamically maintain the
composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that
class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all
message and trace event classes that the implementing object process. The intent of these methods is to
support a management program such as a graphical user interface to retrieve the list of names, introspect
the classes to determine the event types that they might possibly process and display the results. The
JRas extensions do not ever call these methods, so they can be implemented as no operations.

Chapter 3. Adding logging and tracing to your application 37

* The public void addMessageEventClass(String name) and public void
removeMessageEventClass(String name) methodscan be called to add or remove a message event
class name from the list. The method public Enumeration getMessageEventClasses returns an
enumeration over the list of message event class names. Similarly, the public void
addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can
be called to add or remove a trace event class name from the list. The public Enumeration
getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface
The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that
run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by
the calling thread and then written by a worker thread. Because spawning of threads is not supported in
the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,
although this activity is not expressly prohibited.

* The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods
create I11egalStateException exceptions to manage the maximum queue size. The public int
getQueueSize method is provided to query the actual queue size.

* The public int getRetrylnterval and public void setRetrylnterval(int interval) methods support the notion
of error retry, which implies some type of queueing.

» The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter
formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters
that the handler can be configured with. Different formatters can be provided for different event classes,
if appropriate.

* The public void openDevice, public void closeDevice and public void stop methods are provided to
manage the underlying device that the handler abstracts.

* The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are
provided to pass events to the handler for processing.

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends
the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers
and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface
follows. For more in-depth information on the methods introduced by this interface, see the corresponding
product APl documentation.

RASIFormatter interface

» The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete
RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a
particular formatter is the default formatter. Because these RASHandler classes must never be used in
a WebSphere Application Server environment, the semantic significance of these methods can be
determined by the user.

* The public void addEventClass(String name), public void removeEventClass(String name) and public
Enumeration getEventClasses methods are provided to determine which event classes a formatter can
use to format. You can provide the appropriate implementations.

» The public String format(RASIEvent event) method is called by handler objects and returns a formatted
String representation of the event.

Programming model summary

The programming model that is described in this section builds upon and summarizes some of the
concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the
WebSphere Application Server JRas extensions in a manner that does not conform to the following
programming guidelines is prohibited.

38 Troubleshooting and support

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The

programming models concepts and restrictions apply equally across all modes of operation.

* You must not use implementation classes that are provided by the stand-alone JRas logging toolkit
directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM
Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by
the stand-alone JRas logging toolkit.

* You must obtain message and trace loggers directly from the Manager class. You cannot directly
instantiate loggers.

* You cannot replace the WebSphere Application Server message and trace logger classes.

* You must guarantee that the logger names that are passed to the Manager class are unique, and follow
the documented naming constraints. When a logger is obtained from the Manager class, you must not
attempt to change the name of the logger by calling the setName method.

* Named loggers can be used more than once. For any given name, the first call to the Manager class
results in the Manager class creating a logger that is associated with that name. Subsequent calls to the
Manager class that specify the same name result in a returned reference to the existing logger.

* The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified
class name to identify any logger. Other than dots or periods, logger names cannot contain any
punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

» Group names must comply with the same naming restrictions as logger names.

* The loggers returned from the Manager class are subclasses of the RASMessagelogger and the
RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any
public method that is defined by the RASMessagelLogger and RASTraceLogger classes. You cannot call
any public method that is introduced by the provided subclasses.

» If you want to operate in either stand-alone or combined mode, you must provide your own Handler
and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the
stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented
guidelines.

» Loggers that are obtained from the Manager class come with a WebSphere Application Server handler
installed. This handler writes message and trace records to logs that are defined by the WebSphere
Application Server run time. Manage these logs using the provided systems management interfaces.

* You can programmatically add and remove user-defined handlers from a logger at any time. Multiple
additions and removals of user defined handlers are supported. You are responsible for creating an
instance of the handler to add, configuring the handler by setting the handler mask value and formatter
appropriately, then adding the handler to the logger using the addHandler method. You are responsible
for programmatically updating the masks of user-defined handlers, as appropriate.

* You might get a reference to the handler that is installed within a logger by calling the getHandlers
method on the logger and processing the results. You must not call any methods on the handler that are
obtained in this way. You can remove the WebSphere Application Server handler from the logger by
calling the logger removeHandler method, passing in the reference to the WebSphere Application
Server handler. When removed, the WebSphere Application Server handler cannot be added again to
the logger.

* You can define your own message type. The behavior of user-defined message types and restrictions
on their definitions is discussed in|[Extending the JRas framework!

* You can define your own message event classes. The use of user-defined message event classes is
discussed in [Extending the JRas framework}

* You can define your own trace types. The behavior of user-defined trace types and restrictions on your
definitions is discussed in [Extending the JRas framework.

* You can define your own trace event classes. The use of user-defined trace event classes is discussed
in [Extending the JRas framework}

* You must programmatically maintain the bits in the message and trace logger masks that correspond to
any user-defined types. If WebSphere Application Server facilities are used to manage the predefined

Chapter 3. Adding logging and tracing to your application 39

types, these updates must not modify the state of any of the bits that correspond to those types. If you
are assuming ownership responsibility for the predefined types, then you can change all bits of the
masks.

JRas messages and trace event types

The basic JRas message and event types are not the same as those natively recognized by WebSphere
Application Server, so the JRas types are mapped onto the types that are native to the runtime
environment. You can control the way JRas message and trace events are processed using custom filters

and message controls.
Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not
the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,
the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The
mapping is discussed in the following section.

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server
runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging
toolkit.

Table 8. Platform message event types. These message types are mapped onto the native message types, as
follows.

WebSphere Application Server native type JRas RASIMessageEvent type
Audit TYPE_INFO, TYPE_INFORMATION
Warning TYPE_WARN, TYPE_WARNING
Error TYPE_ERR, TYPE_ERROR

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time
are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The
RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple
set of levels, as well as a set of enumerated types.

» For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE LEVEL]L,
TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels
are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

» For users who prefer a more complex set of values that can be OR'd together, the RASITraceEvent
interface provides TYPE_API, TYPE CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR EXC, TYPE_MISC DATA,
TYPE_OBJ_CREATE, TYPE_OBJ DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Table 9. WebSphere Application Server native types and JRas RASITraceEvent level types. Mapping WebSphere
Application Server trace types to the JRas RASITraceEvent level types.

WebSphere Application Server native type JRas RASITraceEvent level type
Event TYPE_LEVELA
EntryExit TYPE_LEVEL2

40 Troubleshooting and support

Table 9. WebSphere Application Server native types and JRas RASITraceEvent level types (continued). Mapping
WebSphere Application Server trace types to the JRas RASITraceEvent level types.

Debug TYPE_LEVEL3

Table 10. WebSphere Application Server native types and JRas RASITraceEvent enumerated types. Mapping
WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,
TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used
consistently throughout the application. If you decide to use the non-level types, choose one type from
each category and use those types consistently throughout the application, to avoid confusion.

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable
parameter types. WebSphere Application Server processes and formats the various parameter types as
follows:

Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be

directly passed to one of these methods. A primitive value must be transformed to a proper Object

type (Integer, Long) before passing as a parameter.
Object

The toString method is called on the object and the resulting String is displayed. Implement the

toString method appropriately for any object that is passed to a message logging or trace method.

It is the responsibility of the caller to guarantee that the toString method does not display

confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]

The Object[] type is provided for the case when more than one parameter is passed to a message

logging or trace method. The toString method is called on each Object in the array. Nested arrays

are not handled, that is none of the elements in the Object array belong in an array.
Throwable

The stack trace of the Throwable type is retrieved and displayed.
Array of primitives

An array of primitive, for example, byte[], int[], is recognized as an Object, but is loosely

associated by Java code. In general, avoid arrays of primitives, if possible. If arrays of primitives

are passed, the results are indeterminate and can change, depending on the type of array passed,
the API used to pass the array, and the release of the product. For consistent results, user code
needs to preprocess and format the primitive array into some type of String form before passing it
to the method. If such preprocessing is not performed, the following problems can result:

» [B@924586a0b - This message is deciphered as a byte array at location X. This message is
typically returned when an array is passed as a member of an Object[] type and results from
calling the toString method on the byte][] type.

* lllegal trace argument : array of long. This response is typically returned when an array of
primitives is passed to a method taking an Object.

* 01040703: The hex representation of an array of bytes. Typically this problem can occur when a
byte array is passed to a method taking a single Object. This behavior is subject to change and
cannot be relied on.

Chapter 3. Adding logging and tracing to your application 41

« "1" "2": The String representation of the members of an int[] type formed by converting each
element to an integer and calling the toString method on the integers. This behavior is subject
to change and cannot be relied on.

» [Ljava.lang.Object; @9136fa0b : An array of objects. Typically this response is seen when an
array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three

levels of filtering or screening:

1. The message event type must be one of the message event types that is defined in the
RASIMessageEvent interface.

2. Logging of that message event type must be enabled by the state of the message logger mask.

3. The message event type must pass any filtering criteria that is established by the WebSphere
Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the
mask forwards all native message event types to the WebSphere Application Server handler. It is possible
to control what messages get logged by programmatically setting the state of the message logger mask.

Some editions of the product support user specified message filter levels for a server process. When such
a filter level is set, only messages at the specified severity levels are written to WebSphere Application
Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere
Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can
support static trace enablement (trace settings are specified before the server is started), dynamic trace
enablement (trace settings for a running server process can be dynamically modified), or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels

of filtering or screening:

1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent
interface.

2. Logging of that trace event type must be enabled by the state of the trace logger mask.

3. The trace event type must pass any filtering criteria that is established by the WebSphere Application
Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace
types. The exception to this rule is the case where the WebSphere Application Server run time supports
static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike
message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a
trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that
corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application
Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state
change is reflected both in the application server run time and the trace mask of the trace logger. If user
code programmatically changes the bits in the trace mask corresponding to the values that are defined by
in the RASITraceEvent interface, the mask state of the trace logger and the run time state become
unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask
corresponding to the values that are defined in the RASITraceEvent interface is not supported.

42 Troubleshooting and support

Instrumenting an application with JRas extensions
You can create an application using JRas extensions.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

To create an application using the WebSphere Application Server JRas extensions, perform the following
steps:

Procedure
1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and
formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger
instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files

The WebSphere Application Server message logger provides the message and msg methods so the user
can log localized messages. In addition, the message logger provides the textMessage method to log
messages that are not localized. Applications can use either or both, as appropriate.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The mechanism for providing localized messages is the resource bundle support that is provided by the
IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented
by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util. ResourceBundle, java.util.ListResourceBundle and
java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas
extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that
are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. For example, messages that are displayed on the administrative console, which can
be running in a different location than the server process, can be localized using the /ate binding process.
Late binding means that WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it. If you do not want to take these steps, you
can use the early binding technique to localize messages as they are logged.

Chapter 3. Adding logging and tracing to your application 43

The two techniques are described as follows:
Early binding

The application must localize the message before logging it. The application looks up the localized
text in the resource bundle and formats the message. When formatting is complete, the application
logs the message using the textMessage method. Use this technique to package the application
resource bundles with the application.

Late binding

The application can choose to have the WebSphere Application Server run time localize the
message in the process where it displays. Using this technique, the resource bundles are
packaged in a stand-alone . jar file, separately from the application. You must then install the
resource bundle . jar file on every machine in the installation from which an administrative console
or log viewing program might be run. You must install the .jar file in a directory that is part of the
extensions class path. In addition, if you forward logs to IBM service, you must also forward the
.Jjar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

Procedure

1.

5.

Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

» Each property in the file is terminated with a line-termination character.

 If a line contains only white space, or if the first non-white space character of the line is the number
sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

* Each line in the file, unless it is a comment or consists only of white space, denotes a single
property. A backslash (\) is treated as the line-continuation character.

* The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

* The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but using this approach is not recommended because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

* White space after the key and separator is ignored until the first non-white space character is
encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and
construction of properties files.

Translate the file into localized versions of the file with language-specific file names for example, the
DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German
and DefaultMessages ja.properties for Japanese.

When the translated resource bundles are available, write them to a system-managed persistent
storage medium. Resource bundles are used to convert the messages into the requested national
language and locale.

When a message logger is obtained from the JRas manager, configure the logger to use a particular
resource bundle. Messages logged through the message API use this resource bundle when message
localization is performed. At run time, the user's locale setting is used to determine the properties file
from which to extract the message that is specified by a message key, ensuring that the message is

delivered in the correct language.

If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is in the

44 Troubleshooting and support

baseDir/subDirl/subDir2/resources directory and baseDir is in the class path, the name
subdiri.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

JRas resource bundles:

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a
properties file.

Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,
the creator must be aware of other restrictions that are imposed on the values by the Java
MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the
use of non-portable characters. WebSphere Application Server does not support the use of extended
formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the
subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource
bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:

Contents of the DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parml={0}

MSG_KEY_02=A message with two substitution parameters: parml={0}, parm2 = {1}
MSG_KEY_03=A message with three substitution parameters: parml={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

JRas manager and logger instances

You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the
application varies depending on the mode of operation, but use of the loggers to log message or trace
entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the
WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and
user-defined logs.

In the stand-al