
IBM WebSphere Application Server - Express for
Distributed Platforms, Version 8.0

Troubleshooting and support

���

Note
Before using this information, be sure to read the general information under “Notices” on page 211.

Compilation date: July 29, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . vii

Changes to serve you more quickly . ix

Chapter 1. How do I troubleshoot? . 1

Chapter 2. Debugging applications . 3
Debugging components in the IBM Rational Application Developer for WebSphere 4
Debugging Service details . 5

Enable service at server startup . 5
JVM debug port . 5
JVM debug arguments . 5
Debug class filters . 5

Chapter 3. Adding logging and tracing to your application 7
Using Java logging in an application . 8

Using a logger . 9
Java logging . 18
Configuring the logger hierarchy . 19
Creating log resource bundles and message files . 20
Logger.properties file for configuring logger settings 22

Configuring applications to use Jakarta Commons Logging 23
Jakarta Commons Logging . 24
Configurations for the WebSphere Application Server logger 27

Programming with the JRas framework . 30
JRas logging toolkit . 31
JRas Extensions . 32
JRas messages and trace event types . 40
Instrumenting an application with JRas extensions 43

Logging Common Base Events in WebSphere Application Server 50
The Common Base Event in WebSphere Application Server 50
Logging with Common Base Event API and the Java logging API 64
java.util.logging -- Java logging programming interface 73
Logger.properties file . 74
Logging Common Base Events in WebSphere Application Server 75
Showlog commands for Common Base Events . 76

Chapter 4. Configuring Java logging using the administrative console 77
Log streams and expected output . 78
Log level settings . 81
Changing the message IDs used in log files . 83

Converting log files to use IBM unique Message IDs 85
convertlog command . 85
MessageConverter class . 85

HTTP error, FRCA, and NCSA access log settings . 86
Enable logging service at server start-up . 86
Enable NCSA access logging . 87
NCSA access log file path . 87
NCSA access log maximum size . 87
Maximum number of historical files . 87
NCSA access log format . 87
Enable error logging . 87
Error log file path . 87

© Copyright IBM Corp. 2011 iii

Error log maximum size . 87
Maximum number of historical files . 87
Error log level . 87

Chapter 5. Using HPEL to troubleshoot applications 89
High Performance Extensible Logging (HPEL) . 89

Basic mode and HPEL mode . 94
Changing from basic mode to HPEL logging and tracing 96
Changing from HPEL to basic mode logging and tracing 97
Configuring HPEL . 98

Configuring HPEL with wsadmin scripting . 98
HPEL logging and trace settings . 101
HPEL log configuration settings . 102
HPEL trace configuration settings . 103
HPEL text log configuration settings . 105

Log viewer settings . 107
Log view table . 107
Content and filtering details . 108
Server instance . 108
View contents . 108
System Out . 108
System Error . 108
Logs and trace . 108
Filtering . 109
Include loggers . 109
Exclude loggers . 109
Message contents . 109
Event timing . 109
From . 109
On (first occurrence) . 109
Until . 110
On (second occurrence) . 110

LogViewer command-line tool . 110
Developing log and trace reading applications . 112

Determining which of basic mode and HPEL mode is enabled 112

Chapter 6. Using sensitive log and trace guard . 115
Sensitive log and trace guard . 115
Enabling and disabling sensitive log and trace guard 116
Maintaining sensitive log and trace guard lists . 116

Chapter 7. Diagnosing problems (using diagnosis tools) 119

Chapter 8. Diagnosing problems with message logs 121
Viewing JVM logs . 122
JVM log interpretation . 123
Configuring the JVM logs . 124

Java virtual machine (JVM) log settings . 125
Monitoring application logging using JMX notifications 127
Process logs . 129
Configuring the service log . 129

IBM service log settings . 130
Viewing the service log . 131

Chapter 9. Working with trace . 133
Enabling trace on client and stand-alone applications 133

iv Troubleshooting and support

Tracing and logging configuration . 134
Enabling trace at server startup . 138
Enabling trace on a running server . 139
Managing the application server trace service . 139
Trace output . 140
Diagnostic trace service settings . 141

Trace Output . 142
Trace Output Format . 142
Trace Output . 143

Select a server to configure logging and tracing . 143
Server . 144
Host name . 144
Version . 144
Type . 144
Status . 144

Log and trace settings . 144
Switch to HPEL Mode button . 144
Diagnostic Trace . 144
Java virtual machine (JVM) Logs . 144
Process Logs . 145
IBM Service Logs . 145
Change Log Level Details . 145
NCSA access and HTTP error logging . 145

Chapter 10. Troubleshooting class loaders . 147
Class loading exceptions . 149
Class loader viewer service settings . 154

Enable service at server startup . 154
Enterprise application topology . 154

Enterprise applications topology . 155
Class loader viewer settings . 155

Class Loader . 155
Search settings . 156

Search type . 157
Search terms . 157

Chapter 11. Configuring the hang detection policy 159
Hung threads in Java Platform, Enterprise Edition applications 160
Example: Adjusting the thread monitor to affect server hang detection 161

Chapter 12. Working with troubleshooting tools 163
Gathering information with the collector tool (deprecated) 163

Collector tool output . 165
collector command - summary option . 166

First failure data capture (FFDC) . 166
Configuring first failure data capture log file purges 167

Chapter 13. Working with Diagnostic Providers . 169
Diagnostic Providers . 169

Diagnostic Provider IDs . 170
Diagnostic Provider configuration dumps, state dumps, and self tests 171
Diagnostic Provider registered attributes and registered tests 172
Diagnostic Provider names . 174
The simpler interfaces provided by the Diagnostic Service MBean 174

Creating a Diagnostic Provider . 174
Diagnostic Provider Extensible Markup Language 175

Contents v

Choosing a Diagnostic Provider name . 176
Implementing a Diagnostic Provider . 177
Creating a Diagnostic Provider registration XML file 182

Associating a Diagnostic Provider ID with a logger . 183
Static Assignment . 183
Dynamic Assignment . 183

Using Diagnostic Providers from wsadmin scripts . 184
Viewing the run time configuration of a component using Diagnostic Providers 185

Configuration data quick link or server selection . 186
Diagnostic Providers (selection) . 186
Configuration data . 187

Viewing the run time state data or configuring the state data collection specifications for a Diagnostic
Provider . 187
Diagnostic Provider State Collection Specification 188
State Data Quick Link or Server Selection . 189
State data . 189
Detailed state specification . 190
Change state specification . 190
Modifying the State Collection Specification from wsadmin scripts 190

Running a self diagnostic on a Diagnostic Provider 191
Tests Quick Link or Server Selection . 191
Test selection . 192
Test Results . 192
Test result details . 192

Chapter 14. Troubleshooting help from IBM . 195
Diagnosing and fixing problems: Resources for learning 196
Using IBM Support Assistant . 196
Diagnosing problems using IBM Support Assistant tooling 198

Chapter 15. Collecting Java dumps and core files using the administrative console 201
Java dump and core collection . 201

Chapter 16. Directory conventions . 203

Appendix. Directory conventions . 207

Notices . 211

Trademarks and service marks . 213

Index . 215

vi Troubleshooting and support

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 vii

viii Troubleshooting and support

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 ix

x Troubleshooting and support

Chapter 1. How do I troubleshoot?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM® Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

Add tracing and logging to your applications

* For more detailed information on enabling traces by using scripting, see the Troubleshooting with
scripting chapter in the Administering applications and their environment PDF book.

Collect details for IBM Support

Creating Common Base Events

Debug WebSphere® applications during development

Detect hung threads

Detect product configuration file problems

Set traces and logs with the console

Set traces and logs with scripting*

Work with message logs

Using Common Base Events for logging

Using IBM Support Assistant

Using HPEL to troubleshoot applications

Using JSR47 for logging

Using JSR47 for logging: Configuring access logs

© IBM Corporation 2003 1

2 Troubleshooting and support

Chapter 2. Debugging applications

To debug your application, you must use a development environment like the IBM Rational® Application
Developer for WebSphere to create a Java project. You must then import the program that you want to
debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java
project. Two debugging styles are available:
v Step-by-step debugging mode prompts you whenever the server calls a method on a web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when
you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of
the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which web
objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your
program into the project, some of the source might not compile. You can still debug the project. Most
features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You
must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These
features let you select an expression in the source view and evaluate it.

Procedure
 1. Create a Java Project by opening the New Project dialog.

 2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

 3. Click Next and specify a name for the project, for example, WASExamples.

 4. Click Finish to create the project.

 5. Select the new project, choose File > Import > File System, then Next to open the import file
system dialog.

 6. Browse the directory for files.

Go to the following directory: profile_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

 7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This
imports the JavaServer Pages files and Java source for the examples into your project.

 8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the
Libraries tab. Click Add External JARs to add the following JAR files:
v profile_root/installedApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the
Increment.jar file because it contains both the source and class files.

v app_server_root/dev/JavaEE/j2ee.jar
v app_server_root/plugins/com.ibm.ws.runtime.jar
v app_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

 9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as
step-by-step mode will prompt you whenever the server calls a method on a web object. Step-by-step
mode is explained in more detail below.

© IBM Corporation 2004, 2008 3

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make
note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open
Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing
Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other
category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server
Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).
Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next

To learn more about debugging, launch the The IBM Rational Application Developer for WebSphere, select
Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn about known
limitations and problems that are associated with the IBM Rational Application Developer for WebSphere,
see the IBM Rational Application Developer for WebSphere release notes. For current information
available from IBM Support on known problems and their resolution, see the IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents page for information to gather to send to IBM
Support.

Debugging components in the IBM Rational Application Developer for
WebSphere

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server
on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench.
Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To
learn more about the debug components, launch the IBM Rational Application Developer for WebSphere,
select Help > Help Contents and choose the Developing > Debugging applications bookshelf entries.

The IBM Rational Application Developer for WebSpheret includes the following components:
The WebSphere Application Server debug adapter

which allows you to debug web objects that are running on WebSphere Application Server and
that you have launched in a browser. These objects include enterprise beans, JavaServer Pages
files, and servlets.

The JavaScript debug adapter
which enables server-side JavaScript debugging.

The Compiled language debugger
which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger
which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for
debugging locally and for remote debugging. To learn more about the debug components, launch the IBM
Rational Application Developer for WebSphere, select Help > Help Contents and choose the Developing
> Debugging applications bookshelf entries.

4 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

To learn more about Log and Trace Analyzer, launch the IBM Rational Application Developer for
WebSphere, and select Help > Help Contents. To learn about known limitations and problems that are
associated with the IBM Rational Application Developer for WebSphere, see the IBM Rational Application
Developer for WebSphere release notes.

Debugging Service details
Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Servers Types>WebSphere application
servers > server name > Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging
can prove useful when your program behaves differently on the application server than on your local
system.

Enable service at server startup
Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port
Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters
Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the
debugger will not stop in classes that match a filter entry.

Chapter 2. Debugging applications 5

6 Troubleshooting and support

Chapter 3. Adding logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in
WebSphere Application Server.

About this task

Deprecation: The JRas framework that is described in this information center is deprecated. However, you
can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as
servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes,
might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.println statements to your code:
v Your messages are displayed in the WebSphere Application Server standard log files, using a standard

message format with additional data, such as a date and time stamp that are added automatically.
v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.
v You can take advantage of the WebSphere Application Server log file management features.
v You can view your messages with the Log and Trace Analyzer tool.

Procedure
1. Enable and configure any of the supported types of logging as needed. Use one of the following

methods:

v Configuring Java logging using the administrative console

v Configuring applications to use Jakarta Commons Logging

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,
specify the number of logs to be kept, and specify a format for log output.

© Copyright IBM Corp. 2011 7

v Configuring Java logging using the administrative console

3. If you do not want log and trace from Jakarta Commons Logging to use the WebSphere log and trace
infrastructure, reconfigure the Jakarta Commons Logging.

v “Configuring applications to use Jakarta Commons Logging” on page 23

Note: Use the WebSphere log and trace infrastructure for all of your log content to make problem
source identification simpler.

4. Restart the application server after making static configuration changes.

Example

The sample security policy that follows grants access to the file system and runtime classes. Include this
security policy, with the entry permission java.util.logging.LoggingPermission "control", in the
META-INF directory of your application if you want your applications to programmatically alter controlled
properties of loggers and handlers. The META-INF file is located in the following locations for the different
module types:

 EJB projects ejbModule/META-INF/MANIFEST.MF

Application client projects appClientModule/META-INF/MANIFEST.MF

Dynamic web projects WebContent/META-INF/MANIFEST.MF

Connector projects connectorModule/META-INF/MANIFEST.MF

Below is a sample security policy that grants permission to modify logging properties:
//
//
// WebSphere Application Server Security Policy
//
//

//
// Allow all access to the file system and runtime classes
//
grant codeBase "file:${application}" {
 permission java.util.logging.LoggingPermission "control";
};

Using Java logging in an application
This topic describes how to use Java logging within an application.

About this task

To create an application using Java logging, perform the following steps:

Procedure
1. Optional: Create the necessary handler, formatter, and filter classes if you need your own log files.

Note: Use the WebSphere log and trace infrastructure to make problem source identification simpler,
rather than creating separate log files.

2. Optional: If localized messages are used by the application, create a resource bundle, as described in
“Creating log resource bundles and message files” on page 20.

3. In the application code, get a reference to a logger instance, as described in “Using a logger” on page
9.

8 Troubleshooting and support

4. Insert the appropriate message and trace logging statements in the application, as described in “Using
a logger.”

Using a logger
You can use Java logging to log messages and add tracing.

About this task

Java provides a log and trace package, java.util.logging, that you can use to instrument your applications.
This topic provides recommendations about how to use the log and trace package.

Procedure
1. Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel
class.

For messages use:
WsLevel.FATAL
Level.SEVERE
Level.WARNING
WsLevel.AUDIT
Level.INFO
Level.CONFIG
WsLevel.DETAIL

For trace use:
Level.FINE
Level.FINER
Level.FINEST

2. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for
class name and method name. The log and logrb methods will generally try to infer this information,
but the performance penalty is prohibitive. In general, the logp method has less performance impact
than the log or the logrb method.

3. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor
performance.

4. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For
example:

if (logger.isLoggable(Level.FINEST)) {
 String s = dumpComponentState(); // some expensive to compute method
 logger.logp(Level.FINEST, className, methodName, "componentX state
dump:\n{0}", s);
 }

Example

The following sample applies to localized messages:
// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with
// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
String resourceBundleName = "com.ibm.websphere.componentX.Messages";
Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.SEVERE))
 logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))
 logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))
 logger.info("MSG_KEY_01");

Chapter 3. Adding logging and tracing to your application 9

if (logger.isLoggable(Level.CONFIG))
 logger.config("MSG_KEY_01");

// log methods are not generally used due to lack of class and method
names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(WsLevel.FATAL))
 logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
 logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
 logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
 logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
 logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
 logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
 logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// logp methods are the way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(WsLevel.FATAL))
 logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.SEVERE))
 logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.WARNING))
 logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
 logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.INFO))
 logger.logp(Level.INFO, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.CONFIG))
 logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
 logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01",
"parameter 1");

// logrb methods are not generally used due to diminished performance
of switching resource bundles dynamically
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
String resourceBundleNameSpecial =
"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))
 logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
 logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
 logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
 logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
 logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,

10 Troubleshooting and support

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
 logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
 logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:
// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,
// INFO, CONFIG, DETAIL levels for trace
// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods
if (logger.isLoggable(Level.FINER))
 logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))
 logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))
 logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))
 logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use
logp with a throwable parameter instead
if (logger.isLoggable(Level.FINER))
 logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
 logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))
 logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))
 logger.finest("This is my trace");

// log methods are not generally used due to lack of class and
method names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
 logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))
 logger.log(Level.FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))
 logger.log(Level.FINEST, "This is my trace", "parameter 1");

// logp methods are the recommended way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(Level.FINE))
 logger.logp(Level.FINE, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINER))
 logger.logp(Level.FINER, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINEST))
 logger.logp(Level.FINEST, className, methodName, "This is my trace",
"parameter 1");

// logrb methods are not applicable for trace logging because no localization
is involved

Chapter 3. Adding logging and tracing to your application 11

Example: Creating custom log handlers with java.util.logging. There may be occasions when you
want to propagate log records to your own log handlers rather than participate in integrated logging. To
use a stand-alone log handler, set the useParentHandlers flag to false in your application.The mechanism
for creating a customer handler is the Handler class support that is provided by the IBM Developer Kit,
Java Technology Edition. If you are not familiar with handlers, as implemented by the Developer Kit, you
can get more information from various texts, or by reading the API documentation for the java.util.logging
API. The following sample shows a custom handler:
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

/**
 * MyCustomHandler outputs contents to a specified file
 */
public class MyCustomHandler extends Handler {

 FileOutputStream fileOutputStream;
 PrintWriter printWriter;

 public MyCustomHandler(String filename) {
 super();

 // check input parameter
 if (filename == null || filename == "")
 filename = "mylogfile.txt";

 try {
 // initialize the file
 fileOutputStream = new FileOutputStream(filename);
 printWriter = new PrintWriter(fileOutputStream);
 setFormatter(new SimpleFormatter());
 }
 catch (Exception e) {
 // implement exception handling...
 }
 }

 /* (non-API documentation)
 * @see java.util.logging.Handler#publish(java.util.logging.LogRecord)
 */
 public void publish(LogRecord record) {
 // ensure that this log record should be logged by this Handler
 if (!isLoggable(record))
 return;

 // Output the formatted data to the file
 printWriter.println(getFormatter().format(record));
 }

 /* (non-API documentation)
 * @see java.util.logging.Handler#flush()
 */
 public void flush() {
 printWriter.flush();
 }

 /* (non-API documentation)
 * @see java.util.logging.Handler#close()
 */
 public void close() throws SecurityException {
 printWriter.close();
 }
}

12 Troubleshooting and support

Example: Creating a custom filter. A custom filter provides optional, secondary control over what is
logged, beyond the control that is provided by the level. The mechanism for creating a custom filter is the
Filter interface support that is provided by the IBM Developer Kit, Java Technology Edition. If you are not
familiar with filters, as implemented by the Developer Kit, you can get more information from various texts,
or by reading the API documentation the for the java.util.logging API.

The following example shows a custom filter:
/**
 * This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJ0350E.
 */
import java.util.logging.Filter;
import java.util.logging.Handler;
import java.util.logging.Logger;
import java.util.logging.LogRecord;

public class MyFilter implements Filter {
 public boolean isLoggable(LogRecord lr) {
 String msg = lr.getMessage();
 if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJ0373E") || msg.startsWith("SECJ0350E")) {
 return false;
 }
 return true;
 }
}

//This code will register the above log filter with the root Logger’s handlers (including the WAS system logs):
...
Logger rootLogger = Logger.getLogger("");
rootLogger.setFilter(new MyFilter());

Example: Creating a custom formatter. A formatter formats events. Handlers are associated with one or
more formatters. The mechanism for creating a custom formatter is the Formatter class support that is
provided by the IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as
implemented by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.logging API.

The following example shows a custom formatter:
import java.util.Date;
import java.util.logging.Formatter;
import java.util.logging.LogRecord;

/**
 * MyCustomFormatter formats the LogRecord as follows:
 * date level localized message with parameters
 */
public class MyCustomFormatter extends Formatter {

 public MyCustomFormatter() {
 super();
 }

 public String format(LogRecord record) {

 // Create a StringBuffer to contain the formatted record
 // start with the date.
 StringBuffer sb = new StringBuffer();

 // Get the date from the LogRecord and add it to the buffer
 Date date = new Date(record.getMillis());
 sb.append(date.toString());
 sb.append(" ");

 // Get the level name and add it to the buffer
 sb.append(record.getLevel().getName());
 sb.append(" ");

 // Get the formatted message (includes localization
 // and substitution of paramters) and add it to the buffer
 sb.append(formatMessage(record));

Chapter 3. Adding logging and tracing to your application 13

sb.append("\n");

 return sb.toString();
 }
}

Example: Creating custom log files. Adding custom handlers, filters, and formatters enables you to
customize your logging environment beyond what can be achieved by the configuration of the default
WebSphere Application Server logging infrastructure. The following example demonstrates how to add a
new handler to process requests to the com.myCompany subtree of loggers (see “Configuring the logger
hierarchy” on page 19). The main method in this sample gives an example of how to use the newly
configured logger.
import java.util.Vector;
import java.util.logging.Filter;
import java.util.logging.Formatter;
import java.util.logging.Handler;
import java.util.logging.Level;
import java.util.logging.Logger;

public class MyCustomLogging {

 public MyCustomLogging() {
 super();
 }

 public static void initializeLogging() {

 // Get the logger that you want to attach a custom Handler to
 String defaultResourceBundleName = "com.myCompany.Messages";
 Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

 // Set up a custom Handler (see MyCustomHandler example)
 Handler handler = new MyCustomHandler("MyOutputFile.log");

 // Set up a custom Filter (see MyCustomFilter example)
 Vector acceptableLevels = new Vector();
 acceptableLevels.add(Level.INFO);
 acceptableLevels.add(Level.SEVERE);
 Filter filter = new MyCustomFilter(acceptableLevels);

 // Set up a custom Formatter (see MyCustomFormatter example)
 Formatter formatter = new MyCustomFormatter();

 // Connect the filter and formatter to the handler
 handler.setFilter(filter);
 handler.setFormatter(formatter);

 // Connect the handler to the logger
 logger.addHandler(handler);

 // avoid sending events logged to com.myCompany showing up in WebSphere
 // Application Server logs
 logger.setUseParentHandlers(false);

 }

 public static void main(String[] args) {
 initializeLogging();

 Logger logger = Logger.getLogger("com.myCompany");

 logger.info("This is a test INFO message");

14 Troubleshooting and support

logger.warning("This is a test WARNING message");
 logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");
 }
}

When the above program is run, the output of the program is written to the MyOutputFile.log file. The
content of the log is in the expected log file, as controlled by the custom handler, and is formatted as
defined by the custom formatter. The warning message is filtered out, as specified by the configuration of
the custom filter. The output is as follows:
C:\>type MyOutputFile.log
Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message
Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Loggers
Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server
completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a
message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs
a clear view of what is occurring in each component to understand what might be going wrong. Logged
events are often the only events available when a problem is first detected, and are used during both
problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger
to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses
the same resource bundle as its parent.

You can configure loggers with a level. If specified, the level is compared by the logger to incoming
events. The events that are less severe than the level set for the logger are ignored by the logger. If the
level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is
Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are
passed to the attached handlers. Handlers write events to output destinations such as log files or network
sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that
logger, the logger passes the event to the handlers that are attached to the parents of the logger. This
process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere
Application Server are attached to the root logger. Set the useParentHandlers logger property to false to
prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether
or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the
Logger.getLogger method with a name for the logger. Typically, the logger name is either the package
qualified class name or the name of the package that the logger is used by. The hierarchical logger
namespace is automatically created by using the dots in the logger name. For example, the
com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The
parent at the top of the hierarchy is referred to as the root logger. This root logger is created during
initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger
can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event
filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager
function.

Chapter 3. Adding logging and tracing to your application 15

Loggers create log records. A log record is the container object for the data of an event. This object is
used by filters, handlers, and formatters in the logging infrastructure.

The logger provides several sets of methods for generating log messages. Some log methods take only a
level and enough information to construct a message. Other, more complex logp (log precise) methods
support the caller in passing class name and method name attributes, in addition to the level and message
information. The logrb (log with resource bundle) methods add the capability of specifying a resource
bundle as well as the level, message information, class name, and method name. Using methods such as
severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on
logging and how to use it in your applications read “Using Java logging in an application” on page 8. For a
complete list of methods, see the java.util.logging documentation at http://java.sun.com/javase/.

Log handlers
Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to
the attached handlers, if handlers are supplied.

You can configure handlers with a level. The handler compares the level that is specified in the logged
object to the level that is specified for the handler. If the level of the logged object is less severe than the
level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the
handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are
formatted. For example, the formatter can decide to first include the time stamp, followed by a string
representation of the level, followed by the message that is included in the logged object. The handler
writes this formatted representation to the output device.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements
to be output. For example, you can set the logger level to FINE, but if the handler level is set at
WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your
log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger
never sends messages lower than WARNING to the log handler.

WebSphere Application Server uses the following set of log handlers that are available to all loggers:

v Diagnostic trace

v Java Management Extensions (JMX) notification object

v Service log

v SystemErr

v SystemOut

For instructions on how to configure these log handlers, see Configuring Java logging using the
administrative console.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

16 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Log levels
Levels control which events are processed by Java logging. WebSphere Application Server controls the
levels of all loggers in the system.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The level value is set from configuration data when the logger is created and can be changed at run time
from the administrative console. If a level is not set in the configuration data, a level is obtained by
proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each
handler to indicate which events are published to an output device. When you change the level for a
logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all
levels above the set level.

 Table 1. Valid log levels. This table lists valid logging levels.

Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace

Finer Trace information - Detailed trace + method entry / exit / return values

Finest Trace information - A more detailed trace - Includes all the detail that is needed to debug
problems

All All events are logged. If you create custom levels, All includes your custom levels, and can
provide a more detailed trace than Finest.

For instructions on how to set logging levels, read the topic about configuring Java logging using the
administrative console.

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to
the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,
Finer, or Finest does not effect the logged data.

Log filters
Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by
setting the level. Applications can apply a filter mechanism to control logging output through the logging
APIs. An example of filter usage is to suppress all the events with a particular message key.

Chapter 3. Adding logging and tracing to your application 17

A filter is attached to a logger or log handler using the appropriate setFilter method. For a complete list of
filter methods, see the java.util.logging documentation at http://java.sun.com/javase/

Log formatters
Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is
represented by the log record object, is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which writes the output to the output device.

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle
that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

With WebSphere Application Server, you can configure the formatter to work with trace, the
SystemOut.log, and theSystemErr.log log files:

v Basic (Compatible): Preserves only basic trace information. With this option, you can minimize the
amount of space taken by the trace output.

v Advanced: Preserves more specific trace information. You can see detailed trace information for
troubleshooting and problem determination.

v Log analyzer trace format: Preserves trace information in the same format as produced by Showlog
tool.

You can select a formatter for a handler using the administrative console panels. See Diagnostic trace
service settings for details.

You can find the java.util.logging documentation at http://java.sun.com/javase/.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Java logging
Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a
standard logging API for your applications.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important
differences. These differences are important for application developers to understand to use these tools
properly. The following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators,
and support personnel to view. The text of the message must be clear, concise, and interpretable
by an end user. Messages are typically localized and displayed in the national language of the end
user. Although the destination and lifetime of messages might be configurable, enable some level
of message logging in normal system operation. Use message logging judiciously because of
performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
As such, a trace record might be considerably more complex, verbose, and detailed than a
message entry. Localization support is typically not used for trace entries. Trace entries can be

18 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is
assumed that trace entries are not written during normal runtime operation, but can be enabled as
needed to gather diagnostic information.

The application server redirects the system streams at the server startup. There is no way to allow the
application to output logging to the console because the system streams can not be obtained by the
application. If you would like to use console to monitor the application without using the console handler,
you can either monitor theSystemOut.log file, or monitor a file created by another file handler.

Note: The application server uses Java logging internally and therefore certain restrictions apply for using
system streams with this logging API by applications. During server startup, the standard output and
error streams are replaced with special streams that write to the logging infrastructure, in order to
include the output of the system streams in the log files. Because of this, applications can not use
java.util.logging.ConsoleHandler, or any handler writing to System.err or System.out streams,
attached to the root logger. If the user does attach the handler to the root logger, an infinite loop is
created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so
that it does not publish log records to parent handlers. The data written to the system streams is
then formatted and written to the corresponding system stream log file. To monitor what is being
written system streams, the configured log files (SystemOut.log and SystemErr.log by default) can
be monitored.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Configuring the logger hierarchy
WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the
logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by
WebSphere Application Server handlers.

About this task

You can configure your application server to handle logs in many different ways. Configure your log
settings based upon your configuration and the logging structure that best suits your needs.

Procedure
v Forward all application logging requests to the WebSphere Application Server handlers. This behavior is

the default.

v Forward all application logging requests to your own custom handlers. Set the useParentHandlers
option to false on one of your custom loggers, and then attach your handlers to that logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your
custom handlers, but do not forward WebSphere Application Server logging requests to your custom
handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then
attach your handlers to that logger.True is the default setting.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server
handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application

Chapter 3. Adding logging and tracing to your application 19

Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach
your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the
WebSphere Application Server handlers.

Example

The following example shows how these requirements can be met using the Java logging infrastructure:

Creating log resource bundles and message files
You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. Messages that are displayed on the administrative console, which can be running in
a different location than the server process, can be localized using the late binding process. Late binding
means that WebSphere Application Server does not localize messages when they are logged, but defers
localization to the process that displays the message.

About this task

Every method that accepts messages localizes those messages. The mechanism for providing localized
messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If
you are not familiar with resource bundles as implemented by the Developer Kit, you can get more
information from various texts, or by reading the API documentation for the java.util.ResourceBundle,
java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the
java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it.

20 Troubleshooting and support

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.
This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a
different location. However, you can use the early binding technique to localize messages as they log. An
application that uses early binding must localize the message before logging it. The application looks up
the localized text in the resource bundle and formats the message. Use the early binding technique to
package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains white space only, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists of white space only, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but doing this process is not recommended, because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a
file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for
German and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the
application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource
bundle. Messages logged with the Logger API use this resource bundle when message localization is
performed. At run time, the user locale setting determines the properties file from which to extract the
message that is specified by a message key, ensuring that the message is delivered in the correct
language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.

Example

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a properties resource bundle. This example shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the
creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat
class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable
characters. WebSphere Application Server does not support the use of extended formatting conventions
that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Chapter 3. Adding logging and tracing to your application 21

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to
resolve, the subDir1.subDir2.resources.DefaultMessage name is used to identify the property resource
bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is located in the
baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

Logger.properties file for configuring logger settings
Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within
an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital "L" in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties
files are loaded. Applications can provide Logger.properties files in:

v the META-INF directory of the Java archive (JAR) file for the application

v directories included in the class path of an application module

v directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

v Logger control information

– Minimum localization level: The minimum LogRecord level for which localization is attempted

– Group: The logical group that this component belongs to

– Event factory: The Common Base Event template file to use with the event factory. The naming
convention for this template is the fully qualified component name, with a file extension of
.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called
com.ibm.compXYZ.event.xml.

v Logger data information

– Product name

– Organization name

– Component name

– Extensions and additional properties

22 Troubleshooting and support

Syntax of the Logger.properties file

Use the following syntax to set logger properties:

<logger base name>.<property>=value

where:

logger base name is the starting part of the logger name to which the property applies. All loggers with
names starting with this string have the property applied.

property is one of the following properties:

v organization

v product

v component

v minimum_localization_level

v group

v eventfactory

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the
com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration
file.
com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and
com.ibm.morestuff:
com.ibm.stuff.group=MyTraceGroup
com.ibm.morestuff.group=MyTraceGroup

Configuring applications to use Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The
support does not change interfaces defined by Jakarta Commons Logging.

Before you begin

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging
facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle
logging objects defined by either of the following:

v Java Logging found in Java Specification Request 47: Logging API Specification

v Common Base Event

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java
Logging and for Common Base Event. To better understand use of the WebSphere Application Server
logger, read “Jakarta Commons Logging” on page 24.

Chapter 3. Adding logging and tracing to your application 23

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/

About this task

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries
directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and
JDK14Logger.

best-practices: The default configuration of Jakarta Commons Logging is stored in the
commons-logging.properties file. To specify the factory class to use with Jakarta
Commons Logging in an application, provide a file named
org.apache.commons.logging.LogFactory, located in META-INF/services directory, that
contains the name of the factory class on the first line. This is the configuration
mechanism for the JAR file service provider, as defined in JDK 1.3 and above.

For an application to use the WebSphere Application Server logger, the application must provide its own
configuration for the logger. To configure an application to use the WebSphere Application Server logger,
complete the steps that follow.

Procedure
1. Examine “Configurations for the WebSphere Application Server logger” on page 27 and determine

which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server
logger.

Results

After the application starts, Jakarta Commons Logging routes the application's logging output to the
WebSphere Application Server logger.

Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. The logging interface enables application logging to be simple and independent of the logging
system that the application uses. You can change the logging implementation for a deployed application
without having to change the application logging code. However, the simplicity of the logging interface
prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application
Server:
v “Support for Jakarta Commons Logging”
v “Benefits of support for Jakarta Commons Logging” on page 25
v “Overview of the process for using Jakarta Commons Logging” on page 25
v “Classes used to obtain a logger factory and logger” on page 26
v “Logger level configuration and mapping” on page 26

Support for Jakarta Commons Logging

The product supports Jakarta Commons Logging by providing a logger, a thin wrapper for the WebSphere
Application Server logging facility. The logger can handle both Java Logging (JSR-47) and Common Base
Event logging objects. A logging object is an object that holds logging entry information.

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta
Commons Logging.

24 Troubleshooting and support

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:

v WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere
Application Server component. Logging calls are routed by default to the underlying WebSphere
Application Server logging facility.

v A logger that uses the WebSphere Application Server logging facility.

Applications and components can pass both Java Logging and Common Base Event logging objects to
the WebSphere Application Server logger without conversion to strings, providing applications with
enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere
Application Server administrative facilities.

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the
WebSphere Application Server logger” on page 27 provides details on configuring your application to use
the WebSphere Application Server logger.

1. Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet
your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to
instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application
Server components can provide their own configuration if they use a different logger factory
implementation. Applications can use more than one factory.

2. Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is
implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.
The logging methods take at least one argument, which can be any Java object. The WebSphere
Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger
factory and logger” on page 26, handles the following objects passed into the following logging
methods:
CommonBaseEvent

Wrapped into CommonBaseEventLogRecord
CommonBaseEventLogRecord

Passed without change
LogRecord

Passed without change
Other objects

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they
use an implementation of a logger that is not specific to WebSphere Application Server. An application
must know what factory is being used in order to configure it.

3. Start your application. Jakarta Commons Logging routes the application's logging output to the
designated logger

Chapter 3. Adding logging and tracing to your application 25

Classes used to obtain a logger factory and logger

 Table 2. Jakarta Commons Logging class descriptions. Use the classes for a logger factory instance and logger.

Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory
is an abstract class that every logger factory implementation has to extend. It provides static
methods for obtaining:
v An instance of a factory class
v Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods
delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The
instances in a cache can be released. This functionality is designed for platform container
implementations rather than for applications.

LogFactoryImpl LogFactoryImpl is a Jakarta Commons Logging concrete class that implements the default
logger factory using methods in LogFactory. To use Java Logging, there must always be at least
one instance of a logger factory class, even if the application has not explicitly obtained one. If
the configuration does not name a logger factory class, LogFactoryImpl is used as the default.

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to
implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any
logging system, the Log interface defines a small set of common logging methods. In
WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere
Application Server uses the default logger factory provided in Jakarta Commons Logging, which
keeps instantiated loggers in cache, on a per context class loader basis.

WsJDK14Logger WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons
Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the
Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base
Event objects to be passed over without converting them into String objects. This prevents any
information loss the conversion to String might cause as well as allows the logging output to be
more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta
Commons Logging converts objects passed into the logging calls to String objects before
passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do
not have their own level, but use the level of the logger from the underlying logging system. Although the
underlying system can provide methods for changing level, there are no methods for changing level
defined on the Log interface, which all Jakarta Commons Logging loggers must implement.
WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within
WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the
right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging
JDK14Logger to the Java Logging levels.

 Table 3. Mapping of WsJDK14Logger levels to Java Logging levels. Compare the logging levels.

WsJDK14Logger
Java Logging in WebSphere
Application Server Java Logging JDK14Logger

Fatal Fatal

Error Severe Severe Fatal, Error

Warning Warning Warning Warning

26 Troubleshooting and support

Table 3. Mapping of WsJDK14Logger levels to Java Logging levels (continued). Compare the logging levels.

WsJDK14Logger
Java Logging in WebSphere
Application Server Java Logging JDK14Logger

Audit

Info Info Info Info

Config Config

Detail

Debug Fine Fine Debug

Finer Finer

Trace Finest Finest Trace

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere
Application Server administration controls the WsJDK14Logger level.

Configurations for the WebSphere Application Server logger
This topic describes several ways to configure an application to use the WebSphere Application Server
logger.

The type of configuration that best suits an application depends upon the following:

v Whether the class loader order setting for the application is Classes loaded with parent class loader
first (Parent First) or Classes loaded with application class loader first (Parent Last), you can
set the class loader delegation mode on a console page. For more details about class load order and
delegation, consult the class loading chapter in the Developing and deploying applications PDF book

v Whether Jakarta Commons Logging is bundled with the application configuration

v Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere
Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with the application

Chapter 3. Adding logging and tracing to your application 27

Table 4. Conditions required to use logger. When Parent First and Jakarta Commons Logging is bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
properties file first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

v The Log
implementation
specified in the
WebSphere
Application Server
default configuration

v An application-
specific
Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere default
configuration.

The log used is the
Log implementation
specified in the
WebSphere default
configuration.

The Jakarta Commons Logging
bundled with the application is not
used.

Class loader mode is Parent First and Jakarta Commons Logging is not bundled with the
application

 Table 5. Conditions required to use logger. When Parent First and Jakarta Commons Logging is not bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
Application Server properties
file first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

v The Log
implementation
specified in the
WebSphere
Application Server
default configuration

v An
application-specific
Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

28 Troubleshooting and support

Table 5. Conditions required to use logger (continued). When Parent First and Jakarta Commons Logging is not
bundled with an application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with the application

 Table 6. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is either of
the following:

v The default
Jakarta Commons
Logging
LogFactory

v The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

The application class loader is the
first class loader to load the Jakarta
Commons Logging code. The
application bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the
application class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled with the
application

Chapter 3. Adding logging and tracing to your application 29

Table 7. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is not bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is either of
the following:

v The default
Jakarta Commons
Logging
LogFactory

v The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

There is no Jakarta Commons Logging
code at the application class loader.
Thus, the WebSphere bundle that
supports Jakarta Commons Logging
provides the LogFactory static code
that looks up the LogFactory
configuration attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Programming with the JRas framework
Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application
Server applications.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application
Server applications. They are based on the stand-alone JRas logging toolkit.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

30 Troubleshooting and support

Procedure
1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace
entries, as appropriate.

JRas logging toolkit
The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or
tune application performance.

Note: The JRas framework that is described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running
application encounters an unexpected condition, it might not be able to complete a requested operation. In
such a case, you might want the application to inform the administrator that the operation failed and
provide information. This action enables the administrator to take the proper corrective action. Those who
develop or maintain applications might need to gather detailed information relating to the path of a running
application to determine the root cause of a failure that is due to a code bug. The facilities that are used
for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have
important differences. It is important for application developers to understand these differences to use
these tools properly. To start with, the following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators
and support personnel to view. The text of the message must be clear, concise, and interpretable.
Messages are typically localized, meaning that they display in the national language of the end
user. Although the destination and lifetime of messages might be configurable, some level of
message logging is always enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
This trace record might be considerably more complex, verbose, and detailed than a message
entry. Localization support is typically not used for trace entries. Trace entries can be fairly
inscrutable, understandable only by the appropriate developer or service personnel. It is assumed
that trace entries are not written during normal runtime operation, but might be enabled as needed
to gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace API that applications can
use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The
stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product or platform. The
stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as
systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for
integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise
Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set
of extension classes to address these shortcomings. This collection of extension classes is referred to as
the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the
stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual
structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It
is equally applicable to the JRas extensions.

Chapter 3. Adding logging and tracing to your application 31

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the
stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this
logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More
detailed information, including code examples, is available in JRas extensions and its subtopics, including
in the API documentation for the various interfaces and classes that make up the logging toolkit.
Event types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event
types for trace. Examples of message types include informational, warning, and error. Examples of
trace types include entry, exit, and trace.

Event classes
The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers
A logger is the primary object with which the user code interacts. Two types of loggers are defined:
message loggers and trace loggers. The set of methods on message loggers and trace loggers
are different because they provide different functionality. Message loggers create message records
only and trace loggers create trace records only. Both types of loggers contain masks that indicate
which categories of events the logger processes and which to ignore. Although every JRas logger
is defined to contain both a message and trace mask, the message logger uses only the message
mask and the trace logger uses the trace mask only. For example, by setting a message logger
message mask to the appropriate state, it can be configured to process only error messages and
ignore informational and warning messages. Changing the trace mask state of a message logger
has no effect.

 A logger contains one or more handlers to which it forwards events for further processing. When
the user calls a method on the logger, the logger compares the event type that is specified by the
caller to its current mask value. If the specified type passes the mask check, the logger creates an
event object to capture the information relating to the event that passed to the logger method. This
information can include information, such as the names of the class and method which logs the
event, a message, and parameters to log, among others. When the logger creates the event
object, it forwards the event to all handlers currently registered with the logger.

Methods that are used within the logging infrastructure do not make calls to the logger method.
When an application uses an object that extends a thread class, implements the hashCode
method, and makes a call to the logging infrastructure from that method, the result is a recursive
loop.

Handlers
A handler provides an abstraction over an output device or event consumer. An example is a file
handler, which knows how to write an event to a file. The handler also contains a mask that is
used to further restrict the categories of events the handler processes. For example, a message
logger might be configured to pass both warning and error events, but a handler attached to the
message logger might be configured to pass error events only. Handlers also include formatters,
which the handler invokes to format the data in the passed event before it is written to the output
device.

Formatters
Handlers are configured with formatters, which know how to format events of certain types. A
handler can contain multiple formatters, each of which knows how to format a specific class of
event. The event object is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which then writes it to the output device.

JRas Extensions
JRas extensions are the collection of implementation classes that support JRas integration into the
WebSphere Application Server environment.

32 Troubleshooting and support

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that
implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general
purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that
are necessary for use in the WebSphere Application Server product. In addition, many of the
implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition
(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the
appropriate implementation classes that support integration into the WebSphere Application Server
environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:
Integrated

In this mode, message and trace records are written only to logs that are defined and maintained
by the WebSphere Application Server run time. This mode is the default mode of operation and is
equivalent to the WebSphere Application Server V4.0 mode of operation.

Stand-alone
In this mode, message and trace records are written solely to stand-alone logs that are defined
and maintained by the user. You control which categories of events are written to which logs, and
the format in which entries are written. You are responsible for configuration and maintenance of
the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined
In this mode, message and trace records are written to both WebSphere Application Server
runtime logs and to stand-alone logs that you must define, control, and maintain. You can use
filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of
operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed
by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.
A set of user extension points are defined that support JRas extensions in either a stand-alone or
combined mode of operations.

JRas extension classes
WebSphere Application Server provides a base set of implementation classes that are collectively referred
to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,
handlers, and formatters for use in a WebSphere Application Server environment.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the
JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class
that are provided by the extensions, but you must provide your own implementations of handlers and
formatters.

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be
directly used in the WebSphere Application Server environment. The JRas extensions provide the
appropriate logger implementation classes. Instances of these message and trace logger classes are
obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot

Chapter 3. Adding logging and tracing to your application 33

directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from
the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server
Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided
by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the
set of methods that are directly available. Public methods that are introduced by the JRas extensions
logger subclasses cannot be called directly by user code because it is a violation of the programming
model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a
logger, the caller is required to specify a name for the logger. The Manager class maintains a
name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime
of a process. The first call to the Manager class with a particular name results in the logger, which is
configured by the Manager class. The Manager class caches a reference to the instance, then returns it to
the caller. Subsequent calls to the Manager class that specify the same name result in a returned
reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You
can use a single name obtain both a message logger and a trace logger from the Manager, without
ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an
entire application. You might determine that having a logger per class is more effective, or the appropriate
granularity might be somewhere in between. Partitioning an application into logging domains is determined
by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are
thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the
serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual
machine instance and are not serializable. Attempting to serialize a logger is a violation of the
programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server
environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and
trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere
Application Server handler to write to any other destination. The creation of a WebSphere Application
Server handler is a restricted operation and is not available to user code. Every logger that is obtained
from the Manager comes preconfigured with an instance of this handler already installed. You can remove
the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.
When you remove it, you cannot add the WebSphere Application Server handler again to the logger from
which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere
Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,
to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server
handler to a logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data
that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server
formatter is a restricted operation and not available to user code. No mechanism exists that allows the
user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change
the formatter a WebSphere Application Server handler is configured to use.

34 Troubleshooting and support

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All
message and trace loggers must be obtained from this Manager class. A reference to the Manager class is
obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the
createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the
createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group
abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.
WebSphere Application Server provides the appropriate systems management facilities to manipulate the
trace setting of a group, similar to the way the trace settings of an individual trace logger work.

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a
separate trace logger. All 10 trace loggers in the component are registered as members of the same
group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on
trace for all 10 classes in a single operation using the group name, if you want a component trace. Group
names are maintained within the namespace for trace loggers.

JRas framework (deprecated)
Because the JRas extensions classes do not provide the flexibility and behavior that are required for many
scenarios, a variety of extension points are defined. You can write your own implementation classes to
obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar
results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace
logger. No provision is made for you to provide your own message or trace logger subclasses. In general,
user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the
integrated mode of operation is solely determined by the WebSphere Application Server run time and the
JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this
interface. You can write your own handler classes that implement the RASIHandler interface. Directly
create instances of user-defined handlers and add them to the loggers that are obtained from the Manager
class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler
classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You
cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas
logging toolkit. Doing so is a violation of the programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement
this interface. You can write your own formatter classes that implement the RASIFormatter interface. You
can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be
configured to use user-defined formatters. Instead, directly create instances of your formatters and add
them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.
Direct use of these formatter classes is not supported.

Chapter 3. Adding logging and tracing to your application 35

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In
addition, the WebSphere Application Server reserves a range of message event types for future use. The
RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08
through 0x8000 are reserved for future use. You can provide your own message event types by extending
this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or
process all message event types defined in the RASIMessageEvent interface. To process user-defined
message types, you must manually set the message logger mask to the appropriate state by user code
after the message logger is obtained from the Manager class. WebSphere Application Server does not
provide any built-in systems management support for managing message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message
logging method is called on the message logger, and the message type is currently enabled, the logger
creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You
must directly create instances of such user-defined message event classes. When it is created, pass your
message event to the message logger by calling the message logger's fireRASEvent method directly.
WebSphere Application Server message loggers cannot directly create instances of user-defined types in
response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined
message types are never processed by the WebSphere Application Server handler. You cannot create
instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide
your own trace event types by extending this interface appropriately. In such a case, you must ensure that
the values for the user-defined trace event types do not collide with the values of the types that are
defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all
types. A different starting state can be specified by using WebSphere Application Server systems
management facilities. In addition, you can change the state of the trace mask for a logger at run-time,
using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state
by user code. WebSphere Application Server systems management facilities cannot be used to manage
user-defined trace types, either at start time or run time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging
method is called on the WebSphere Application Server trace logger and the type is currently enabled, the
logger creates and distributes an event of this class to all the handlers that are currently registered with
that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent
interface. You must create instances of such user-defined event classes directly. When it is created, pass
the trace event to the trace logger by calling the trace logger's fireRASEvent method directly. WebSphere
Application Server trace loggers cannot directly create instances of user-defined types in response to
calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace

36 Troubleshooting and support

types are never processed by the WebSphere Application Server handler. You cannot create instances of
the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,
or user-defined message or trace event classes. Message and trace entries of either a user-defined type
or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

 General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected
resources such as the file system and sockets. Because user-written extensions typically access such
protected resources, user-written extensions must contain the appropriate security checking calls, using
AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate
policy file. In general, locating user-written extensions in a separate package is a good practice. It is your
responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the
RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the
methods that are introduced by each of these interfaces follows, along with implementation pointers. For
more in-depth information on any of the particular interfaces or methods, see the corresponding product
API documentation.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are
stateful or configurable, such as loggers, handlers, and formatters.
v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a
properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are
used to get and set the configuration state. The JRas extensions do not support properties-based
configuration. Implement these methods as no-operations. You can implement your own
properties-based configuration using these methods.

v Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the
user to provide a name for the loggers that are retrieved from the manager. You can name your
handlers. The public String getName and public void setName(String name) methods are provided to
get or set the name field. The JRas extensions currently do not call these methods on user handlers.
You can implement these methods as you want, including as no operations.

v Loggers, handlers, and formatters can also contain a description field. The public String getDescription
and public void setDescription(String desc) methods can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement these methods as you
want, including as no operations.

v The public String getGroup method is provided for use by the RASManager interface. Since the JRas
extensions provide their own Manager class, this method is never called. Implement this as a
no-operation.

Chapter 3. Adding logging and tracing to your application 37

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for
filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By
definition, an object that implements this interface contains both a message mask and a trace mask,
although both need not be used. For example, message loggers contain a trace mask, but the trace mask
is never used because the message logger never generates trace events. Handlers, however, can actively
use both mask values. For example, a single handler can handle both message and trace events.
v The public long getMessageMask and public void setMessageMask(long mask) methods are used to

get or set the value of the message mask. The public long getTraceMask and public void
setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes
state. The callback object must implement the RASIMaskChangeListener interface.
v The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove
listeners to the handler. The public Enumeration getMaskChangeListeners method returns an
enumeration over the list of currently registered listeners. The public void
fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered
listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to
the logger mask. The logger composite mask is formed by logically or'ing the appropriate masks of all
handlers that are registered to that logger, then and'ing the result with the logger mask. For example, the
message logger composite mask is formed by or'ing the message masks of all handlers that are registered
with that logger, then and'ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is
instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener
method. When either the message mask or trace mask of the handler is changed, the logger must be
called back to inform it of the mask change. With this process, the logger can dynamically maintain the
composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that
class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all
message and trace event classes that the implementing object process. The intent of these methods is to
support a management program such as a graphical user interface to retrieve the list of names, introspect
the classes to determine the event types that they might possibly process and display the results. The
JRas extensions do not ever call these methods, so they can be implemented as no operations.
v The public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) methodscan be called to add or remove a message event
class name from the list. The method public Enumeration getMessageEventClasses returns an
enumeration over the list of message event class names. Similarly, the public void
addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can
be called to add or remove a trace event class name from the list. The public Enumeration
getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that
run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by

38 Troubleshooting and support

the calling thread and then written by a worker thread. Because spawning of threads is not supported in
the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,
although this activity is not expressly prohibited.
v The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods

create IllegalStateException exceptions to manage the maximum queue size. The public int
getQueueSize method is provided to query the actual queue size.

v The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion
of error retry, which implies some type of queueing.

v The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter
formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters
that the handler can be configured with. Different formatters can be provided for different event classes,
if appropriate.

v The public void openDevice, public void closeDevice and public void stop methods are provided to
manage the underlying device that the handler abstracts.

v The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are
provided to pass events to the handler for processing.

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends
the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers
and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface
follows. For more in-depth information on the methods introduced by this interface, see the corresponding
product API documentation.

RASIFormatter interface
v The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a
particular formatter is the default formatter. Because these RASHandler classes must never be used in
a WebSphere Application Server environment, the semantic significance of these methods can be
determined by the user.

v The public void addEventClass(String name), public void removeEventClass(String name) and public
Enumeration getEventClasses methods are provided to determine which event classes a formatter can
use to format. You can provide the appropriate implementations.

v The public String format(RASIEvent event) method is called by handler objects and returns a formatted
String representation of the event.

Programming model summary
The programming model that is described in this section builds upon and summarizes some of the
concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the
WebSphere Application Server JRas extensions in a manner that does not conform to the following
programming guidelines is prohibited.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The
programming models concepts and restrictions apply equally across all modes of operation.
v You must not use implementation classes that are provided by the stand-alone JRas logging toolkit

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM
Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by
the stand-alone JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly
instantiate loggers.

v You cannot replace the WebSphere Application Server message and trace logger classes.

Chapter 3. Adding logging and tracing to your application 39

v You must guarantee that the logger names that are passed to the Manager class are unique, and follow
the documented naming constraints. When a logger is obtained from the Manager class, you must not
attempt to change the name of the logger by calling the setName method.

v Named loggers can be used more than once. For any given name, the first call to the Manager class
results in the Manager class creating a logger that is associated with that name. Subsequent calls to the
Manager class that specify the same name result in a returned reference to the existing logger.

v The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified
class name to identify any logger. Other than dots or periods, logger names cannot contain any
punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

v Group names must comply with the same naming restrictions as logger names.
v The loggers returned from the Manager class are subclasses of the RASMessageLogger and the

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any
public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call
any public method that is introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler
and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the
stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented
guidelines.

v Loggers that are obtained from the Manager class come with a WebSphere Application Server handler
installed. This handler writes message and trace records to logs that are defined by the WebSphere
Application Server run time. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple
additions and removals of user defined handlers are supported. You are responsible for creating an
instance of the handler to add, configuring the handler by setting the handler mask value and formatter
appropriately, then adding the handler to the logger using the addHandler method. You are responsible
for programmatically updating the masks of user-defined handlers, as appropriate.

v You might get a reference to the handler that is installed within a logger by calling the getHandlers
method on the logger and processing the results. You must not call any methods on the handler that are
obtained in this way. You can remove the WebSphere Application Server handler from the logger by
calling the logger removeHandler method, passing in the reference to the WebSphere Application
Server handler. When removed, the WebSphere Application Server handler cannot be added again to
the logger.

v You can define your own message type. The behavior of user-defined message types and restrictions
on their definitions is discussed in Extending the JRas framework.

v You can define your own message event classes. The use of user-defined message event classes is
discussed in Extending the JRas framework.

v You can define your own trace types. The behavior of user-defined trace types and restrictions on your
definitions is discussed in Extending the JRas framework.

v You can define your own trace event classes. The use of user-defined trace event classes is discussed
in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger masks that correspond to
any user-defined types. If WebSphere Application Server facilities are used to manage the predefined
types, these updates must not modify the state of any of the bits that correspond to those types. If you
are assuming ownership responsibility for the predefined types, then you can change all bits of the
masks.

JRas messages and trace event types
The basic JRas message and event types are not the same as those natively recognized by WebSphere
Application Server, so the JRas types are mapped onto the types that are native to the runtime
environment. You can control the way JRas message and trace events are processed using custom filters
and message controls.

40 Troubleshooting and support

Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not
the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,
the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The
mapping is discussed in the following section.

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server
runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging
toolkit.

 Table 8. Platform message event types. These message types are mapped onto the native message types, as
follows.

WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time
are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The
RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple
set of levels, as well as a set of enumerated types.
v For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1,

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels
are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

v For users who prefer a more complex set of values that can be OR'd together, the RASITraceEvent
interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA,
TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

 Table 9. WebSphere Application Server native types and JRas RASITraceEvent level types. Mapping WebSphere
Application Server trace types to the JRas RASITraceEvent level types.

WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

 Table 10. WebSphere Application Server native types and JRas RASITraceEvent enumerated types. Mapping
WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,
TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Chapter 3. Adding logging and tracing to your application 41

Table 10. WebSphere Application Server native types and JRas RASITraceEvent enumerated
types (continued). Mapping WebSphere Application Server trace types to the JRas RASITraceEvent enumerated
types.

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used
consistently throughout the application. If you decide to use the non-level types, choose one type from
each category and use those types consistently throughout the application, to avoid confusion.

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable
parameter types. WebSphere Application Server processes and formats the various parameter types as
follows:
Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be
directly passed to one of these methods. A primitive value must be transformed to a proper Object
type (Integer, Long) before passing as a parameter.

Object
The toString method is called on the object and the resulting String is displayed. Implement the
toString method appropriately for any object that is passed to a message logging or trace method.
It is the responsibility of the caller to guarantee that the toString method does not display
confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]
The Object[] type is provided for the case when more than one parameter is passed to a message
logging or trace method. The toString method is called on each Object in the array. Nested arrays
are not handled, that is none of the elements in the Object array belong in an array.

Throwable
The stack trace of the Throwable type is retrieved and displayed.

Array of primitives
An array of primitive, for example, byte[], int[], is recognized as an Object, but is loosely
associated by Java code. In general, avoid arrays of primitives, if possible. If arrays of primitives
are passed, the results are indeterminate and can change, depending on the type of array passed,
the API used to pass the array, and the release of the product. For consistent results, user code
needs to preprocess and format the primitive array into some type of String form before passing it
to the method. If such preprocessing is not performed, the following problems can result:
v [B@924586a0b - This message is deciphered as a byte array at location X. This message is

typically returned when an array is passed as a member of an Object[] type and results from
calling the toString method on the byte[] type.

v Illegal trace argument : array of long. This response is typically returned when an array of
primitives is passed to a method taking an Object.

v 01040703: The hex representation of an array of bytes. Typically this problem can occur when a
byte array is passed to a method taking a single Object. This behavior is subject to change and
cannot be relied on.

v "1" "2": The String representation of the members of an int[] type formed by converting each
element to an integer and calling the toString method on the integers. This behavior is subject
to change and cannot be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an
array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three
levels of filtering or screening:

42 Troubleshooting and support

1. The message event type must be one of the message event types that is defined in the
RASIMessageEvent interface.

2. Logging of that message event type must be enabled by the state of the message logger mask.
3. The message event type must pass any filtering criteria that is established by the WebSphere

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the
mask forwards all native message event types to the WebSphere Application Server handler. It is possible
to control what messages get logged by programmatically setting the state of the message logger mask.

Some editions of the product support user specified message filter levels for a server process. When such
a filter level is set, only messages at the specified severity levels are written to WebSphere Application
Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere
Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can
support static trace enablement (trace settings are specified before the server is started), dynamic trace
enablement (trace settings for a running server process can be dynamically modified), or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels
of filtering or screening:
1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent

interface.
2. Logging of that trace event type must be enabled by the state of the trace logger mask.
3. The trace event type must pass any filtering criteria that is established by the WebSphere Application

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace
types. The exception to this rule is the case where the WebSphere Application Server run time supports
static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike
message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a
trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that
corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application
Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state
change is reflected both in the application server run time and the trace mask of the trace logger. If user
code programmatically changes the bits in the trace mask corresponding to the values that are defined by
in the RASITraceEvent interface, the mask state of the trace logger and the run time state become
unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask
corresponding to the values that are defined in the RASITraceEvent interface is not supported.

Instrumenting an application with JRas extensions
You can create an application using JRas extensions.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

Chapter 3. Adding logging and tracing to your application 43

About this task

To create an application using the WebSphere Application Server JRas extensions, perform the following
steps:

Procedure
1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and
formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger
instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files
The WebSphere Application Server message logger provides the message and msg methods so the user
can log localized messages. In addition, the message logger provides the textMessage method to log
messages that are not localized. Applications can use either or both, as appropriate.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The mechanism for providing localized messages is the resource bundle support that is provided by the
IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented
by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and
java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas
extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that
are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. For example, messages that are displayed on the administrative console, which can
be running in a different location than the server process, can be localized using the late binding process.
Late binding means that WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it. If you do not want to take these steps, you
can use the early binding technique to localize messages as they are logged.

The two techniques are described as follows:
Early binding

The application must localize the message before logging it. The application looks up the localized
text in the resource bundle and formats the message. When formatting is complete, the application
logs the message using the textMessage method. Use this technique to package the application
resource bundles with the application.

Late binding
The application can choose to have the WebSphere Application Server run time localize the

44 Troubleshooting and support

message in the process where it displays. Using this technique, the resource bundles are
packaged in a stand-alone .jar file, separately from the application. You must then install the
resource bundle .jar file on every machine in the installation from which an administrative console
or log viewing program might be run. You must install the .jar file in a directory that is part of the
extensions class path. In addition, if you forward logs to IBM service, you must also forward the
.jar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains only white space, or if the first non-white space character of the line is the number

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but using this approach is not recommended because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names for example, the
DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German
and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, write them to a system-managed persistent
storage medium. Resource bundles are used to convert the messages into the requested national
language and locale.

4. When a message logger is obtained from the JRas manager, configure the logger to use a particular
resource bundle. Messages logged through the message API use this resource bundle when message
localization is performed. At run time, the user's locale setting is used to determine the properties file
from which to extract the message that is specified by a message key, ensuring that the message is
delivered in the correct language.

5. If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is in the
baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

JRas resource bundles:

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a
properties file.

Chapter 3. Adding logging and tracing to your application 45

Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,
the creator must be aware of other restrictions that are imposed on the values by the Java
MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the
use of non-portable characters. WebSphere Application Server does not support the use of extended
formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the
subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource
bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three substitution parameters: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

JRas manager and logger instances
You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the
application varies depending on the mode of operation, but use of the loggers to log message or trace
entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the
WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and
user-defined logs.

In the stand-alone mode, message and trace events are logged only to user-defined logs.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be
passed to the message loggers if the loggers are using the message API.
msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,
 methodName, "MSG_KEY_00");
... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,
 methodName, "MSG_KEY_01", "some string");

46 Troubleshooting and support

If message loggers use the msg API, you can specify a new resource bundle name.
msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,
 "ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.
msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",
"A String", new Integer(5));

Using a trace logger

Because trace is normally disabled, guard trace methods for performance reasons.
private void methodX(int x, String y, Foo z)
{
 // trace an entry point. Use the guard to make sure tracing is enabled.
Do this checking before you gather parameters to trace.
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {
 // I want to trace three parameters, package them up in an Object[]
 Object[] parms = {new Integer(x), y, z};
 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);
 }
... logic
 // a debug or verbose trace point
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {
 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");
 }
 ...
 // Another classification of trace event. An important state change is
 detected, so a different trace type is used.
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {
 trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
 }
 ...
 // ready to exit method, trace. No return value to trace
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");
 }
}

Setting up for integrated JRas operation
Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere
Application Server logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server
logs. This approach is the default mode of operation.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Declare logger references:
private RASMessageLogger msgLogger = null;
private RASTraceLogger trcLogger = null;

Chapter 3. Adding logging and tracing to your application 47

3. Obtain a reference to the Manager class and create the loggers. Because loggers are named
singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is
the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in
the ejbCreate method:
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());

// Configure the message logger to use the message file that is created
// for this application.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");
trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",
 myTestBean.class.getName());
mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation
Use JRas operation in combined mode to output trace data and logging messages to both WebSphere
Application Server and user-defined logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In combined mode, messages and trace are logged to both WebSphere Application Server logs and
user-defined logs. The following sample assumes that:

v You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types or events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;
 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());
 // Configure the message logger to use the message file defined
 // in the ResourceBundle sample.
 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Create the user handler and formatter. Configure the formatter,
 // then add it to the handler.
 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

48 Troubleshooting and support

RASIFormatter formatter = new SimpleFormatter("simple formatter");
 formatter.addEventClass("com.ibm.ras.RASMessageEvent");
 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the
 //handlers listeners, then set the handlers
 // mask, which updates the loggers composite mask appropriately.
 // WARNING - there is an order dependency here that must be followed.
 msgLogger.addHandler(handler);
 handler.addMaskChangeListener(msgLogger);
 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation
You can configure JRas operations to output trace data and logging messages to only user-defined
locations.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample
assumes that:

v You have a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types of events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;
 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());
 // Configure the message logger to use the message file that is defined in
 //the ResourceBundle sample.
 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Get a reference to the Handler and remove it from the logger.
 RASIHandler aHandler = null;
 Enumeration enum = msgLogger.getHandlers();
 while (enum.hasMoreElements()) {
 aHandler = (RASIHandler)enum.nextElement();
 if (aHandler instanceof WsHandler)
 msgLogger.removeHandler(wsHandler);

Chapter 3. Adding logging and tracing to your application 49

}

 // Create the user handler and formatter. Configure the formatter,
 // then add it to the handler.
 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
 RASIFormatter formatter = new SimpleFormatter("simple formatter");
 formatter.addEventClass("com.ibm.ras.RASMessageEvent");
 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the
 // handlers listeners, then set the handlers
 // mask, which will update the loggers composite mask appropriately.
 // WARNING - there is an order dependency here that must be followed.
 msgLogger.addHandler(handler);
 handler.addMaskChangeListener(msgLogger);
 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Logging Common Base Events in WebSphere Application Server
WebSphere Application Server uses Common Base Events within its basic logging framework. Common
Base Events can be created explicitly and then logged through the Java logging API, or can be created
implicitly by using the Java logging API directly.

About this task

Attention: Logging Common Base Events is not supported with the High Performance Extensible
Logging (HPEL) log and trace mode.

An event is a notification from an application or the application server that reports information that is
related to a specific problem or situation. Common Base Events provide you with a standard structure for
these event notifications, which allow you to correlate events that are received from different applications.
Log Common Base Events to capture events from different sources to help you fix a problem within an
application environment or to tune system performance.

For Common Base Event creation, the application server environment provides a Common Base Event
factory with a content handler that provides both runtime data and template data for Common Base
Events.

Procedure
1. Optional: Read about the Common Base Event types and how they are implemented within an

application server. Refer to “The Common Base Event in WebSphere Application Server.”

2. Read “Logging Common Base Events in WebSphere Application Server” on page 75.

3. Configure the Common Base Event framework for your application server using one of the following
methods:

v “Logging with Common Base Event API and the Java logging API” on page 64

v “Generate Common Base Event content with the default event factory” on page 65.

Results

Common Base Events will now be logged according to your configuration. Use these event logs to
determine the source of application problems.

The Common Base Event in WebSphere Application Server
The Common Base Event is an XML document that defines a common representation of events that is
intended for use by enterprise management and business applications. The Common Base Event defines
common fields, the values they can take, and the exact meanings of these values.

50 Troubleshooting and support

An application creates an event object whenever something happens that either needs to be recorded for
later analysis or which might require the trigger of additional work. An event is a structured notification that
reports information that is related to a situation. An event reports three kinds of information:
v The situation: What happened
v The identity of the affected component: For example, the server that shut down
v The identity of the component that is reporting the situation, which might be the same as the affected

component

The application that creates the event object is called the event source. Event sources can use a common
structure for the event. The accepted standard for such a structure is called the Common Base Event. The
Common Base Event is an XML document that is defined as part of the autonomic computing initiative.

The Common Base Event model is a standard that defines a common representation of events that is
intended for use by enterprise management and business applications. This standard, which is developed
by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management,
and business events using a common XML-based format. This format makes it possible to correlate
different types of events that originate from different applications. For more information about the Common
Base Event model, see the Common Base Event specification (Canonical Situation Data Format: The
Common Base Event V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the
specification.

Note:

For WebSphere Application Server Version 8.0, if you delete an application server that was
previously deployed with the Common Event Infrastructure (CEI) enabled and you did not uninstall
CEI before deleting the server, you must use a different name when creating an application server
that you want to deploy with CEI. If you deploy CEI on an application server that was created with
the exact same server name as the server that was previously deleted and CEI was not uninstalled,
the following error occurs:
com.ibm.websphere.management.exception.AdminException: ADMA5026E: No valid target is specified in ObjectName
WebSphere:cell=targetCell,node=targetNode,server=targetServer for module EventServerMdb.jar+META-INF/ejb-jar.xml

If you did not uninstall CEI before deleting the application server, you must ensure that you use a
name for the new application server that is different from the name of the server that was
previously deployed with the common event infrastructure.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that
happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a
failed user login. The Common Base Event model defines a set of standard situation types that
accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event contains all of the information that is needed by the consumers to understand
the event. This information includes data about the runtime environment, the business environment, and
the instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema that is included in the
Common Base Event specification document, at http://www.ibm.com/developerworks/autonomic/books/
fpy0mst.htm#HDRCBEDESC .

Types of problem determination events
Problem determination involves multiple types of data, including at least two different classes of event
data, log events, and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a
business application during normal deployment and operations. Log events might identify problems, but
these events are also normally available and emitted while an application and its components are in

Chapter 3. Adding logging and tracing to your application 51

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC

production mode. The target audience for log and message events is users and administrators of the
application and the components that make up the application. Log events are normally the only events
available when a problem is first detected, and are typically used during both problem recovery and
problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic
information about a component, and are usually not emitted or available during normal deployment and
operation. The target audience for diagnostic events is the developers of the components that make up the
business application. Diagnostic events are typically used when trying to resolve problems within a
component, such as a software failure, but are sometimes used to diagnose other problems, especially
when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events
are typically used when trying to resolve a problem.

A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event. Common Base Events are
primarily used to represent log events.

Common Base Event structure
A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event.

The Common Base Event contains several structural elements. These elements include:

v Common header information

v Component identification, both source and reporter

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all the fields in the Common Base Event and their usage
requirements for problem determination events.

 Table 11. Field name, log events, and base specification. This table shows whether a particular element or attribute
is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

Field name Log events Base specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

52 Troubleshooting and support

Table 11. Field name, log events, and base specification (continued). This table shows whether a particular element
or attribute is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific Situation Type elements) Required Required

msgDataElement* Recommended Optional

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

msgDataElement .msgLocale Recommended Optional

extensionName Recommended Optional

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Notes:

Chapter 3. Adding logging and tracing to your application 53

v Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in
those elements are listed in the table directly following the parent element name.

v Some of the elements are optional, but when included, they include sub elements and attributes that are
required. For example, the reporterComponentId element has a ComponentIdentification type. The
component attribute in ComponentIdentification is required. Therefore, the
reporterComponentId.component attribute is required, but only when the reporterComponentId parent
element is included.

v The extendedDataElements element can be included multiple times to supply extended data
information. See the Extended data section for more information on required and recommended
extended data element values.

v The contextDataElements element can be included multiple times to supply context data information.

v The associatedEvents element can be included multiple times to supply correlation data. No
recommended uses of this element exist for the producers of problem determination data, and the use
of this element is discouraged.

Common header information:

This topic provides additional information about how to format and use these fields for problem
determination events, which can be used to clarify and extend the information provided in the other
documents.

 The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

The common header information in the Common Base Event includes the following information about an
event:

v Version: The version of this Common Base Event

v creationTime: The date and time when the event generated

v Severity and priority: The severity of the condition (situation) that is identified by the event

v extensionName: The type of event that was captured

v localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event
within a set of events

v repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of
the same type, by consolidating those events into a single event

v sequenceNumber: Sequence information that supports a system to order a set of events in other ways
than time of capture

severity
All problem determination events must provide an indication as to the relative severity of the condition
(situation) being reported by providing appropriate values for the severity field in the Common Base
Event. The severity field is required for problem determination events. This field is more restrictive than
the base specification for the Common Base Event, which lists this field as optional because effective
and efficient problem determination requires the ability to quickly identify the information that is needed
to resolve a problem as well as prioritize the problems that need addressing.

 Table 12. Severity values. The following values are used for problem determination events:

10 Information Log information events, normal
conditions, and events that are
supplied to clarify operations, for
example, state transitions, operational
changes. These events typically do
not require administrator action or
intervention.

54 Troubleshooting and support

Table 12. Severity values (continued). The following values are used for problem determination events:

20 Harmless Similar to information events, but are
used to capture audit items, such as
state transitions or operational
changes. These events typically do
not require administrator action or
intervention.

30 Warning Warnings typically represent
recoverable errors, for example a
failure that the system can correct.
These events can require
administrator action or intervention.

40 Minor Minor errors describe events that
represent an unrecoverable error
within a component. The failure
affects the component ability to
service some requests. The business
application can continue to perform its
normal functions, but its overall
operation might be degraded. These
events require administrator action or
intervention to address the condition.

50 Critical Critical errors describe events that
represent an unrecoverable error
within a component. The failure
significantly affects the component
ability to service most requests. The
business application can continue
most, but not all of its normal
functions and its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

60 Fatal Fatal errors describe events that
represent an unrecoverable error
within a component. The failure
usually results in the complete failure
of the component. The business
application can continue some normal
functions, but its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

msg
Refer to “Message data” on page 59 for information on this attribute.

priority
The use of the priority field is discouraged for problem determination events. The severity field is
typically used to communicate and evaluate the importance of problem determination events. Use the
priority field to enhance the information that is provided in the severity field, that is. prioritize events of
the same severity.

extensionName
The extensionName field is used to communicate the type of event that is reported, for example, what
general class of events is being reported. In many cases this field provides an indication of what
additional data you can expect with the event, for example, optional data values.

Chapter 3. Adding logging and tracing to your application 55

repeatCount
The repeatCount field is valid for problem determination events, but is not typically used or supplied by
the event producers. This field is used for data reduction and consolidation by event management and
analysis systems.

elapsedTime
The elapsedTime field is valid for problem determination events, but is not typically used or supplied
by the event producers. This field is used for data reduction and consolidation by event management
and analysis systems.

sequenceNumber
The sequenceNumber field is valid for problem determination events. It is typically used only by event
producers when the granularity of the event time stamp (the creationTime field) is not sufficient in
ordering events. The sequenceNumber field is typically used to sequence events that have the same
time stamp value.

 Event management and analysis systems can use the sequenceNumber field for a number of reasons,
including providing alternative sequencing, not necessarily based on a time stamp. The
recommendations here are provided primarily for event producers.

Component identification for source and reporter:

The component identification fields in the Common Base Event are used to indicate which component in
the system is experiencing the condition that is described by the event (the sourceComponentID) and
which component emitted the event (the reporterComponentID).

 Typically, these components are the same, in which case only the sourceComponentID is supplied. Some
notes and scenarios on when to use these two elements in the Common Base Event:

v The sourceComponentID is always used to identify the component experiencing the condition that is
described by the event.

v The reporterComponentID is used to identify the component that actually produced and emitted the
event. This element is typically used only within events that are emitted by a component that is
monitoring another component and providing operational information regarding that component. The
monitoring component (for example, a Tivoli® agent or hardware device driver) is identified by the
reporterComponentID and the component being monitored (for example, a monitored server or
hardware device) is identified by the sourceComponentID.

A potential misuse of the reporterComponentID is to identify a component that provides event
conversion or management services for a component, for example, identifying an adapter that
transforms the events that are captured by a component into Common Base Event format. The event
conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is
the source component or reporter component.

 Table 13. Component identification for source and reporter. The information that is used to identify a component in
the system is the same, regardless of whether it is the source component or reporter component.

location locationType Component location Identifies the location of the
component.

component componentIdType Component name Identifies the asset name of the
component, as well as the type of
component.

subcomponent Subcomponent name Identifies a specific part or
subcomponent of a component, for
example a software module or
hardware part.

56 Troubleshooting and support

Table 13. Component identification for source and reporter (continued). The information that is used to identify a
component in the system is the same, regardless of whether it is the source component or reporter component.

application Business application name Identifies the business application or
process the component is a part of
and provides services for.

instanceId Operational instance Identifies the operational instance of a
component, that is the actual running
instance of the component.

processId threadId Operational instance Identifies the operational instance of a
component within the context of a
software operating system, that is he
operating system process and thread
running when the event was
produced.

executionEnvironment Operational instance Component
location

Provides additional information about
the operational instance of a
component or its location by
identifying the name of the
environment hosting the operational
instance of the component, for
example the operating system name
for a software application, the
application server name for a Java 2
Platform, Enterprise Edition (J2EE)
application, or the hardware server
type for a hardware part.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use some of these fields for problem
determination events, which can be used to clarify and extend the information that is provided in the other
documents.

Component
The Component field in a problem determination event is used to identify the manageable asset that is
associated with the event. A manageable asset is open for interpretation, but a good working definition
is a manageable asset represents a hardware or software component that can be separately obtained
or developed, deployed, managed, and serviced. Examples of typical component names are:

v IBM eServer™ xSeries® model x330

v IBM WebSphere Application Server version 5.1 (5.1 is the version number)

v The name of an internally developed software application for a component

subComponent
The Subcomponent field in a problem determination event identifies the specific part of a component
that is associated with the event. The subcomponent name is typically not a manageable asset, but
provides internal diagnostic information when diagnosing an internal defect within a component, that is
What part failed? Examples of typical subcomponents and their names are:

v Intel Pentium processor within a server system (Intel Pentium IV Processor)

v the enterprise bean container within a web application server (enterprise bean container)

v the task manager within an operating system (Linux Kernel Task Manager)

v the name of a Java class and method (myclass.mycompany.com or
myclass.mycompany.com.methodname).

Chapter 3. Adding logging and tracing to your application 57

The format of a subcomponent name is determined by the component, but use the convention shown
previously for naming a Java class or the combination of a Java class and method is followed. The
subcomponent field is required in the Common Base Event.

componentIdType
The componentIdType field is required by the Common Base Event specification, but provides minimal
value for problem determination events. For most problem determination events, it is encouraged to
use the value provided in the application field instead of the componentIdType. The componentIdType
field identifies the type of component; the application is identified by the application field.

application
The application field is listed as an optional value within the Common Base Event specification, but
provide it within problem determination events whenever it this value is available. The only reason this
field is not required for problem determination events is that instances exist where the issuing
component might not be aware of the overall business application.

instanceId
The instanceId field is listed as an optional value within the Common Base Event specification, but
provide this value within problem determination events whenever it is available.

 Always provide the instanceID when a software component is identified and identify the operational
instance of the component (for example, which operation instance of an installed software image is
actually associated with the event). Provide this value for hardware components when these
components support the concept of operational instances.

The format of the supplied value is defined by the component, but must be a value that an analysis
system can use (either human or programmatic) to identify the specific running instance of the
identified component. Examples include:

v cell, node, server name for the IBM WebSphere Application Server

v deployed EAR file name for a Java enterprise bean

v serial number for a hardware processor

processId
The processId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide this value for software-generated events, and identify the operating system process that is
associated with the component that is identified in the event. Match the format of the thread ID with
the format of the operating system (or other running environment, such as a Java virtual machine).
This field is typically not applicable or used for events that are emitted by hardware (for example,
firmware).

threadId
The threadId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide for software-generated events, and identify the active operating system thread when the event
was detected or issued. A notable exception to this recommendation is some operating systems or
running environments do not support threads. Match the format of the thread ID with the format of the
operating system (or other running environment, such as a Java virtual machine). This field is typically
not applicable or used for events that are emitted by hardware (for example, firmware).

executionEnvironment

The executionEnvironment field, when used, identifies the immediate running environment that is used by
the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard
Edition (J2SE) application.

v the web server name when the component is a servlet.

58 Troubleshooting and support

v the portal server name when the component is a portlet.

v the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

Situation information:

The situation information is used to classify the condition that is reported by an event into a common set of
situations.

 The Common Base Event specification [CBE101] provides information on the set of situations defined for
the Common Base Event, with the values and formats that are used to describe these situations. The
Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Consider the following points regarding situation information for problem determination events:

v Whenever possible, use the situation categorizations and qualifiers that are described in the base
Common Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions that are supplied in the base
Common Base Event specification. You can use the OtherSituation categorization to provide your own
situation information, but the recommended course of action for problem determination events is to use
the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (that is an event with severity=warning) typically
indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures
(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation
categorization so the severity setting indicates the severity of the situation, that is whether the
component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Message data:

All problem determination Common Base Events must provide human readable text that describes the
specific reported event within the msg field of the Common Base Event.

 The text that is associated with events representing actual messages or log entries is expected to be
translated and localized. Include the msgDataElement element in the Common Base Event whenever
internationalized text is provided in the event. This element provides information about how the message
text is created and how to interpret it. This information is particularly invaluable when trying to interpret the
event programmatically or when trying to interpret the message independent of the locale or language that
is used to format the message text.

Prerequisite: Understand the concepts that are associated with creating internationalized messages. A
good source of education on these concepts is provided by the documentation that is associated with
internationalization of Java information and the usage of resource bundles within the Java language.

The msgDataElement element in the Common Base Event includes the following information about the
value of the msg field that is provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the
message are formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier that is associated with the message that can be used to interpret the
message independent of the message language, message locale, and message format (msgId and
msgIdType).

v Information on how a translated message is created, including:

– The identifier that is used to retrieve the message template (msgCatalogId).

Chapter 3. Adding logging and tracing to your application 59

– The name and type of message catalog that are used to retrieve the message template (msgCatalog
and msgCatalogType).

– Any locale-independent information that is inserted into the message template to create the final
message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use these fields for problem
determination events.

msg
All message, log, and trace events must provide a human-readable message in the msg field of the
Common Base Event. The msg field is required for problem determination events, both log events and
diagnostic events. This field is more restrictive than the base specification for the Common Base
Event, which lists this field as optional; effective and efficient problem determination requires the ability
to quickly identify the reported condition. The format and usage of this message is component-specific,
but use the following general guidelines:

v Expect the message text that is supplied with messages and log events to be internationalized.

v Provide the locale of the supplied message text with the msgLocale field in the msgDataElement
element of the Common Base Event.

v Provide additional information regarding the format and construction of internationalized messages
whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale
Provide the message locale whenever message text is provided within the Common Base Event, as is
the case with all problem determination events. The msgLocale field is listed as an optional value
within the Common Base Event specification, but provide this information within problem determination
events whenever possible. The reason this field is not required for problem determination events is
that instances exist where the locale information is not provided or available when formatting the
Common Base Event.

msgId and msgIdType
Several companies include a locale-independent identifier within internationalized message text that
you can use to interpret the described condition by the message text, independent of the message.
For example, most messages issued by IBM software look like IEE890I WTO Buffers in console
backup storage = 1024, where a unique, locale-independent identifier IEE890I precedes the translated
message text. This identifier provides a way to uniquely detect and identify a message independent of
location and language. This detection is invaluable for locale-independent and programmatic analysis.

 The msgId field is listed as an optional value within the Common Base Event specification, but it must
be provided within problem determination events whenever this identifier is included in the message
text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event
specification, but it must be provided within problem determination events whenever a value is
supplied for msgId. Do not supply these fields when the message text is not translated or localized, for
example, for trace events.

msgCatalogId
The msgCatalogId field is listed as an optional value within the Common Base Event specification, but
provide this value whenever the Common Base Event includes localized or translated message text,
for example when providing problem determination events that represent issued messages or log
events. This field is not required for problem determination events because not all problem
determination events include translated message text Some cases exist where the value is not
provided or available when formatting the Common Base Event. Do not supply this field when the
message text is not translated or localized, for example, for trace events.

msgCatalogTokens
The msgCatalogTokens field is listed as an optional value within the Common Base Event
specification, but provide this value whenever the Common Base Event includes localized or translated

60 Troubleshooting and support

message text, for example when providing problem determination events that represent issued
messages or log events. This field is not required for problem determination events because not all
problem determination events include translated message text, and cases exist where the value is not
provided or available when formatting the Common Base Event. This value contains the list of
locale-independent values or message tokens that are inserted into the localized message text when
creating a translated message.

 These values are difficult to extract from a translated message without knowing the translated
message template that is used to create the message. Do not supply this field when the message text
is not translated or localized

The Common Base Event provides several mechanisms for providing additional data about an event,
including this field, extended data elements, and extensions to the schema. Always use the
msgCatalogTokens field to supply the list of message tokens that is included in the message text
associated with an event. These values can also be supplied in other parts of the Common Base
Event, but they must be included in this field.

msgCatalog and msgCatalogType
The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base
Event specification, but provide this value whenever the Common Base Event includes localized or
translated message text, for example when providing problem determination events that represent
issued messages or log events. These fields are not required for problem determination events
because not all problem determination events include translated message text, and cases exist where
the values are not provided or available when formatting the Common Base Event. Do not complete
these fields when the message text has is not translated or localized, for example, for trace events.

Extended data:

The Common Base Event provides several methods for including this additional data, including extending
the Common Base Event schema or supplying one or more ExtendedDataElement elements within the
Common Base Event, which is the preferred approach.

 The base information that is included in a Common Base Event might not be sufficient to represent all of
the information captured by a component when creating a problem determination event.

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can
contain more than one of these elements, essentially one for each additional data item. A hint to the
number and type of ExtendedDataElement elements is supplied by the extensionName value, but this
information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem
determination events is the same as those for any other Common Base Event.

Sample Common Base Event instance
This XML document is an example of a Common Base Event instance that is generated by a WebSphere
Application Server application.

Use the following example for reference:
<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"
 globalInstanceId="myhost:1095479647062:1899"
 msg="WSVR0024I: Server server1 stopped"
 severity="10"
 version="1.0.1">

 ... several extendedDataElements for internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"
 componentIdType="Unknown"
 executionEnvironment="Windows Vista[x86]#5.0"
 instanceId="myhost\myhost\server1"
 location="myhost"
 locationType="Hostname"
 processId="1095479647062"

Chapter 3. Adding logging and tracing to your application 61

subComponent="Unknown"
 threadId="Alarm : 0"
 componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>

 <msgDataElement msgLocale="en_US">
 <msgCatalogTokens value="server1"/>
 <msgId>WSVR0024I< /msgId>
 <msgCatalogId>WSVR0024I< /msgCatalogId>
 <msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>
 </msgDataElement>

 <situation categoryName="ReportSituation">
 <situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>
 </situation>

</CommonBaseEvent>

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but
are not for application use because these elements might change.

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of
attributes that are common for all Common Base Events. This set includes the extensionName attribute,
which defines the type or class of the Common Base Event instance, the creation time, severity, and
priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The
first of these elements is the situation element. This classification is standardized.

The CommonBaseEvent element also includes the sourceComponentId and the (optional)
reporterComponentId elements. The sourceComponentId element describes where the situation occurred;
the reporterComponentId describes where the situation is detected. If the sourceComponentId and the
reporterComponentId elements are the same, the reporterComponentId element is omitted.

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They
identify the component type, name, operating system, and network location. The content of these attributes
provides vertical correlation of the stack of IT resources that are active when the Common Base Event is
created.

Also included in the CommonBaseEvent element are contextDataElements elements that describe the
context in which the situation occurred. This context correlates Common Base Event instances that are
part of the same work. This correlation is called horizontal correlation because an instance of a particular
context type correlates events at the same level of abstraction, for example at the business level, the
application level, or at the middleware level.

Extended data elements contain additional data that is used to describe a situation. In this example, an
extended data element is added by WebSphere Application Server to describe the Java 2 Platform,
Enterprise Edition (J2EE) component that generated the Common Base Event instance and some
application data.

Sample Common Base Event template
The content handler uses template information to fill in blanks in the Common Base Event when the
Common Base Event complete method is called.

Components that use the WebSphere Application Server event factory home can include a Common Base
Event template XML file to provide data to populate Common Base Events. Information that is already
supplied in the event is not overridden if the same field is supplied in the template.

The following example illustrates a Common Base Event template:

62 Troubleshooting and support

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent
 version="1.0.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent
 <sourceComponentId application="My Application" component="com.ibm.componentX"/>
 <extendedDataElements name="Sample ExtendedDataElement name" type="string">
 <values>Sample ExtendedDataElement value</values>
 </extendedDataElements>
 </CommonBaseEvent>

</TemplateEvent>

Component identification for problem determination
This topic describes types of problem determination events.

A business application is made up of multiple components. A component can be made up of several
internal subcomponents. Consistent application of these concepts is critical for effective problem
determination of a business application; all of the parts of the application must use the same concepts and
assumptions when creating and formatting events. Use the following definitions and examples when
creating Common Base Events for problem determination.

Business application
A business application is the business logic and business data that is used to address a set of specific
business requirements. A business application consists of several components of multiple types,
combined in a unique manner by an enterprise, to provide the functions and resources that are
needed to address those requirements. The primary creator and manager of a business application is
the enterprise, and each enterprise or company creates unique business applications. Examples of
business applications are the Payroll Application for the ACME Corporation and the Inventory
Application for Spacely Sprockets.

Components
A business application is created and managed by the enterprise as a set of components.
Components are deployable assets, which are developed either by the enterprise or a vendor, and
managed by the enterprise. A component might be created by the enterprise, typically for use within a
specific business application. For example, the ACME Corporation might create a set of enterprise
beans to represent the business logic that is required by their Payroll Application. A component might
also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these
components are hardware products, such as IBM eServers or Sun Solaris systems, or software
products, such as IBM WebSphere Application Server, Oracle Database Servers.

Subcomponents
A specific component, depending on its complexity, might consist of several subcomponents. For
example, the IBM WebSphere Application Server consists of many subcomponents, such as the
enterprise bean container and the servlet engine. Subcomponent information is typically used only by
the creator of the component to service the component, and as such are not separately deployable or
manageable resources in the enterprise. The enterprise might deploy a change or update to a
subcomponent, but only upon guidance from the component vendor and as part of the vendor’s
component. For example, a software fix for the enterprise bean container of the IBM WebSphere
Application Server is packaged and deployed as a software update to the IBM WebSphere Application
Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a
part of the original deployed component, the IBM eServer.

Chapter 3. Adding logging and tracing to your application 63

Logging with Common Base Event API and the Java logging API
In cases where the events that are generated by the Java logging API are insufficient to describe the
event that needs capturing, you can create Common Base Events with the Common Base Event factory
APIs.

Before you begin

When you create a Common Base Event, you can add data to the Common Base Event before it is
logged. The following diagram illustrates how application code can create and log Common Base Events:

About this task

WebSphere Application Server is configured to use an event factory that automatically populates
WebSphere Application Server-specific information into the Common Base Events that it generates. In
general, it is good practice to create events using the WebSphere Application Server default Common
Base Event factory because this approach ensures consistency of Common Base Event content across
events. However, you can create and use other Common Base Event factories.

Common Base Events are initiated and logged in the following sequence:

1. Application code invokes the createCommonBaseEvent method on the EventFactory class to create a
CommonBaseEvent.

2. Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and
adds event-specific data.

3. Application code calls the CommonBaseEvent event complete method.

4. The CommonBaseEvent event invokes the ContentHandler completeEvent method.

5. The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all
ContentHandler handlers support templates.

6. The ContentHandler handler adds runtime data to the CommonBaseEvent event.

7. Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log
method.

8. Logger passes CommonBaseEventLogRecord record to Handlers.

64 Troubleshooting and support

9. Handlers format data and write to the output device.

Procedure
v You can use the default Common Base Event factory to generate content. Read “Generate Common

Base Event content with the default event factory” for more information.

v If you do not wish to use the default event factory, you can create custom content handlers and event
factories.

1. Create a custom factory home. Read “Creating custom Common Base Event factory homes” on
page 69.

2. Create a custom content handler. Read “Creating custom Common Base Event content handlers” on
page 68.

Results

After completing all the above steps you will have a Common Base event based on your configuration
settings.

Generate Common Base Event content with the default event factory
A default Common Base Event content handler populates Common Base Events with WebSphere
Application Server runtime information. This content handler can also use a Common Base Event template
to populate Common Base Events.

The default content handler is used when the server creates CommonBaseEventLogRecords as would be
the case in the following example:
// Get a named logger
Logger logger = Logger.getLogger("com.ibm.someLogger");
// Log to the logger -- implicitly the default content handler
// will be associated with the CommonBaseEvent contained in the
// CommonBaseEventLogRecord.
logger.warning("MSG_KEY_001");

To specify a Common Base Event template in the above case, a Logger.properties file would need to be
provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath,
then the Logger's event factory will use the specified template's content in addition to the WebSphere
Application Server runtime information when populating Common Base Events. If the template is not found
on the classpath, or is invalid, then the Logger's event factory will only use the WebSphere Application
Server runtime information when populating Common Base Events.

The default content handler is also associated with the event factory home supplied in the global event
factory context. This is convenient for creating Common Base Events that need to be populated with
content similar to that generated from the WebSphere Application Server:
// Request the event factory from the global event factory home
EventFactory eventFactory =
 EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);

// Create a Common Base Event
CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent();

// Complete the Common Base Event using content from the template (if specified above)
// and the server runtime information.
eventFactory.getContentHandler().completeEvent(commonBaseEvent);

In the above example, if the template referenced by templateName is found on the classpath, and the
template is valid, then the event factory home will return an event factory which uses a content handler
that combines the template's content with the WebSphere Application Server runtime information when
populating Common Base Events. If the template is not found on the classpath, or is invalid, then the

Chapter 3. Adding logging and tracing to your application 65

event factory home will return an event factory which uses a content handler that uses only the
WebSphere Application Server runtime information when populating Common Base Events.

The default content handler populates Common Base Events in the server environment with the following
runtime information:

CommonBaseEvent.globalInstanceId
Value: The unique_record_id

 Set this value only if the CommonBaseEvent.globalInstanceId value is null before the
completeEvent method is called.

CommonBaseEvent.msg
Value: A localized message that is based on the MsgDataElement element.

 Set this value only if the CommonBaseEvent.msg message is null before the completeEvent
method is called.

CommonBaseEvent.severity
Value: Set based on the value of level set on the CommonBaseEventLogRecord record, if level >=
Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10.

 Set this value only if the CommonBaseEvent.severity value is null before the completeEvent
method is called.

CommonBaseEvent.ComponentIdentification.component
Value:Set based on the LoggerName value that is set on the CommonBaseEventLogRecord
record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.componentIdType
Value: "Unknown"

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is
null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.executionEnvironment
Value: OSname[OSarch]#OSversion

 Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value
is null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.instanceId
Value: cellName\nodeName\serverName

 Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null
before the completeEvent method is called. Set only in a server environment because this value is
ignored in a client application.

CommonBaseEvent.ComponentIdentification.location
Value:The host name

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.locationType
Value: The host name

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

66 Troubleshooting and support

CommonBaseEvent.ComponentIdentification.processId
Value: An internally generated representation of the process number.

 Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null
before the completeEvent method is called

CommonBaseEvent.ComponentIdentification.subComponent
Value: Set based on values of the sourceClassName and the sourceMethodName names that are
set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord
record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null
before the completeEvent method is called and both the sourceClassName and the
sourceMethodName names are set.

CommonBaseEvent.ComponentIdentification.threadId
Value: Set to the value of the Java Virtual Machine (JVM) thread name.

 Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before
the completeEvent value is called.

CommonBaseEvent.ComponentIdentification.componentType
Value: http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is
null before the completeEvent method is called.

CommonBaseEvent.MsgDataElement.msgLocale
Value: Set based on the default locale of the JVM.

 Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method
is called.

CommonBaseEvent.Situation.categoryName
Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.type
Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reasoningScope
Value: EXTERNAL

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reportCategory
Value: LOG

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists
when the completeEvent method is invoked on the content handler. Otherwise, the
reporterComponentIdentification ID is populated instead.

Common Base Event content handler
Content handlers populate data into Common Base Events when the Common Base Event complete
method is invoked. You can associate content handlers with Common Base Event templates, which
provide default information to transfer into each Common Base Event.

Chapter 3. Adding logging and tracing to your application 67

Content handlers might also provide any other information that is relevant to completing the population of
the Common Base Event, such as appropriate runtime defaults. The use of content handlers ensures
consistency of field use in the Common Base Event within a component or within a set of components that
share the same runtime. For example, some content handlers support the specification of a template. If
used consistently across a component, this template ensures that all events for that component have the
same template information filled in. Similarly, some content handlers can also supply runtime information to
their associated Common Base Events. If consistently used throughout the entire runtime, runtime
information ensures that all events use runtime data in a similar way.

The event factory home that is used in the WebSphere Application Server runtime is associated with a
content handler that both reads from a template, and supplies runtime data. Have components use Event
Factories that are obtained from this event factory home with their own templates, to produce consistency
between application events and server events.

More details can be found in“Creating custom Common Base Event content handlers” or the API
documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at www.eclipse.org/hyades.

Creating custom Common Base Event content handlers
Create a custom Common Base Event content handler or template to automate configuration or values for
specific events.

Before you begin

A content handler is an object that automatically sets the property values of each event based on any
arbitrary policies that you want to use.

The following content handler classes were added to WebSphere Application Server to facilitate the use of
the Common Base Event infrastructure:

 Class Name Description

WsContentHandlerImpl This provides an implementation of
org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in
the WebSphere Application Server environment. This content handler
completes Common Base Events using information from the WebSphere
Application Server runtime, and it uses the same content handler as is used
internally by the WebSphere Application Server when completing Common
Base Events for logging.

WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends
the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl
class to enable the use of a Common Base Event template. Template
content takes precedence in cases where the template data specifies values
for the same Common Base Event fields as does the
WsContentHandlerImpl.

About this task

In some situations, you might want some event property data set automatically for every event that you
create. This automation is a way to fill in certain standard values that do not change, such as the
application name, or to set some properties based on information that is available from the runtime
environment, like creation time or thread information. You can set property data automatically by creating a
content handler.

Procedure
v Use the following code sample to implement the CustomContentHandler class:

68 Troubleshooting and support

http://www.eclipse.org/hyades

public class CustomContentHandler extends WsContentHandlerImpl {

 public CustomContentHandler() {
 super();
 // TODO Custom initialization code goes here
 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
 // following code will add WAS content to the Content Base Event
 super.completeEvent(cbe);
 // TODO Custom content can be added to the Content Base Event here
 }
}

v The following shows how to implement the CustomTemplateContentHandler class:
public class CustomTemplateContentHandler extends WsTemplateContentHandlerImpl {

 public CustomTemplateContentHandler() {
 super();
 // TODO Custom initialization code goes here
 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
 // following code will add WAS content to the Content Base Event
 super.completeEvent(cbe);
 // TODO Custom content can be added to the Content Base Event here
 }
}

Results

You now have a content handler or a custom content handler template based on the settings that you
specified.

Common Base Event factory home
Event Factory homes provide Event Factory instantiation that is based on a unique factory name.

Event factory home implementations are tightly coupled with content handlers that are used to populate
Common Base Events with template or default data. Event factory instances are maintained by the
associated event factory home, based on their unique name. For example, when application code requests
a named event factory, the newly created Event Factory instance is returned and persisted for future
requests for that named event factory. An abstract event factory home class provides the implementation
for the APIs in the event factory home interface. Implementers extend the abstract event factory home
class and implement the createContentHandler API to create a typed content handler that is based on the
type of event factory home implementation.

In WebSphere Application Server, the default event factory home that is obtained with a call to
EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler
handler capable of supplying both event template information, as well as WebSphere Application Server
runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades.

Creating custom Common Base Event factory homes
Use custom Common Base Event factory homes to control configuration and implementation of unique
event factories.

Chapter 3. Adding logging and tracing to your application 69

Before you begin

Event factory homes create and provide homes for Event Factory instances. Each event factory home has
a content handler. This content handler is assigned to every event factory the event factory home creates.
In turn, when a Common Base Event is created, the content handler from the event factory is assigned to
it. Event factory instances are maintained by the associated event factory home, based on their unique
name. For example, when application code requests a named event factory, the newly created event
factory instance is returned and persisted for future requests for that named event factory.

The following classes were added to facilitate the use of event eactory homes for logging Common Base
Events:

 Class Name Description

WsEventFactoryHomeImpl This class extends the
org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class.
This event factory home returns event factory instances associated with the
WsContentHandlerImpl content handler. The WsContentHandlerImpl is the
content handler used by the WebSphere Application Server by default when no
event factory template is in use.

WsTemplateEventFactory
HomeImpl

This class extends the
org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl
class. This event factory home returns event factory instances associated with
the WsTemplateContentHandlerImpl Content Handler. The
WsTemplateContentHandlerImpl is the content handler used by the WebSphere
Application Server when an Event Factory template is required.

About this task

Custom event factory homes support the use of Common Base Event for logging in WebSphere
Application Server and make logging easy and consistent between the WebSphere Application Server
runtime and the exploiters of this API. The CustomEventFactoryHome and
CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are
there to make sure the correct content handler is being used with a particular event factory. The
CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory
selection details from infrastructure users, using their own set of parameters to decide which the
appropriate event factory is.

Procedure
v The following code samples provide examples of how to implement and use the

CustomEventFactoryHome class.

1. Implementation of the CustomEventFactoryHome class is as follows:
public class CustomEventFactoryHome extends AbstractEventFactoryHome {

 public CustomEventFactoryHome() {
 super();
 // TODO Custom intialization code goes here
 }

 public ContentHandler createContentHandler(String arg0) {
 // Always use custom content handler
 return resolveContentHandler();
 }

 public ContentHandler resolveContentHandler() {

70 Troubleshooting and support

// Always use custom content handler
 return new CustomContentHandler();
 }
}

2. The following is an example of how to use the CustomEventFactoryHome class:
// get the event factory
 EventFactory eventFactory=(new CustomEventFactoryHome()).getEventFactory("XYZ");
 // create an event - call appropriate method
 eventFactory.createCommonBaseEvent();
 // log event ...

v For the CustomTemplateEventFactoryHome class you can use the following code for implementation
and use:

1. Implement the CustomTemplateEventFactoryHome class by using this code:
public class CustomTemplateEventFactoryHome extends
 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {
 super();
 // TODO Custom intialization code goes here
 }

 public ContentHandler createContentHandler(String arg0) {
 // Always use custom content handler
 return resolveContentHandler();
 }

 public ContentHandler resolveContentHandler() {
 // Always use custom content handler
 return new CustomTemplateContentHandler();
 }
}

2. Use the CustomTemplateEventFactoryHome class by following this sample code:
// get the event factory
 EventFactory eventFactory=(new
 CustomTemplateEventFactoryHome()).getEventFactory("XYZ");
 // create an event - call appropriate method
 eventFactory.createCommonBaseEvent();
 // log event ...

v The CustomEventFactoryHelper class can be implemented and used by following the code below:

1. Implement the custom CustomEventFactoryHelper class using this code:
public class CustomTemplateEventFactoryHome extends
 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {
 super();
 // TODO Custom intialization code goes here
 }

 public ContentHandler createContentHandler(String arg0) {
 // Always use custom content handler
 return resolveContentHandler();
 }

 public ContentHandler resolveContentHandler() {
 // Always use custom content handler
 return new CustomTemplateContentHandler();
 }
}
Figure 4 CustomTemplateEventFactoryHome class
public class CustomEventFactoryHelper {
 // name of the event factory to use
 public static final String FACTORY_NAME="XYZ";

Chapter 3. Adding logging and tracing to your application 71

public static EventFactory getEventFactory(String param1, String param2) {
 EventFactory factory=null;
 switch (resolveFactory(param1,param2)) {
 case 1:
 factory=(new CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);
 break;
 case 2:
 factory=(new
 CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);
 break;

 default:
 // Add default for event factory
 break;
 }
 return factory;
 }

 private static int resolveFactory(String param1, String param2) {
 int factory=0;
 // Add code here to resolve which factory to use
 return factory;
 }
}

2. To use the CustomEventFactoryHelper class, use the following code:
// get the event factory
 EventFactory eventFactory=
 CustomEventFactoryHelper.getEventFactory("param1","param2","param3");
 // create an event - call appropriate method
 eventFactory.createCommonBaseEvent();
 // log event ...

Results

Use the information provided here to implement a custom content factory home and the associated
classes based on the settings that you specify.

Common Base Event factory context
The event factory context provides a service to look up event factory homes. Retrieve the event factory
context using a call to the EventFactoryContext.getInstance method.

Using this class, you can look up the event factory homes by name, and avoid the need to include the
typed home in code. The EventFactoryHome name must be located on the class path to be found. The
EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained
with a call to the EventFactoryContext.getInstance.getEventFactoryHome method.

In WebSphere Application Server, the EventFactoryContext context is configured with a default
EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying
both event template information, as well as WebSphere Application Server runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Common Base Event factory
Use event factories to create Common Base Events and complete event properties with associated
content handlers.

Content handlers populate data into Common Base Events when the Common Base Event invokes the
complete method. All event properties set by the application code have priority over all properties that are
specified by the content handler. Event factory implementations are tightly coupled with the content

72 Troubleshooting and support

handler instance, which is associated with the event factory when the event factory is instantiated. Factory
instances can be retrieved only from their associated event factory home. Event factory instances are
retrieved and maintained based on unique names. Event factory names are hierarchical; they are
represented using the standard Java dot-delimited, name-space naming conventions.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

java.util.logging -- Java logging programming interface
The java.util.logging.Logger class provides a variety of methods with which data can be logged.

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates
Common Base Events for events that are logged at the WsLevel.DETAIL level or above (including
WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and
WsLevel.FATAL). These Common Base Events are created using the event factory that is associated with
the logger to which the message is logged. If no event factory is specified, WebSphere Application Server
uses a default event factory which automatically fills in WebSphere Application Server-specific information.

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that
automatically creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels

v logp: When used with the WsLevel.DETAIL level or more severe levels

v logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example,
loggers that are instantiated with calls, such as Logger.getLogger("com.xyz.SomeLoggerName"). Loggers
instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global
methods do not use the WebSphere Application Server implementation, and do not automatically create
Common Base Events for logging requests made to them. Log records that are logged directly with the
Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers
into Common Base Events.

The following diagram illustrates how application code can log Common Base Events:

Chapter 3. Adding logging and tracing to your application 73

The Java logging API processing of named loggers and message-level events proceeds as follows:

 1. Application code invokes the named logger (WsLevel.DETAIL or above) with event-specific data.

 2. The logger creates a Common Base Event using the createCommonBaseEvent method on the event
factory that is associated with the logger.

 3. The logger creates a Common Base Event using the event factory associated to the logger.

 4. The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds
event-specific data.

 5. The logger calls the Common Base Event complete method.

 6. The Common Base Event invokes the ContentHandler completeEvent method.

 7. The content handler adds XML template data to the Common Base Event (including for example, the
component name). Not all content handlers support templates.

 8. The content handler adds runtime data to the Common Base Event (including for example, the
current thread name).

 9. The logger passes the CommonBaseEventLogRecord record to the handlers.

10. The handlers format data and write to the output device.

Logger.properties file
Use the Logger.properties file to set logger attributes for your component.

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an
application. The Logger.properties file must be either on the WebSphere Application Server class path, or
the context class path.

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere
Application Server activity.log file. You can specify your own event factory template to be used with your
loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event
template” on page 62 for details on the Common Base Event template.

74 Troubleshooting and support

By convention, the name of the event factory template file should be the fully qualified package name of
the package using the template. The name of the file must end with the .event.xml extension. For
example, a valid event factory template file name for the com.abc.somepackage package is:
com.abc.somepackage.event.xml

When you specify the property value for the eventfactory property in the Logger.properties file, include
the full path name with no leading slash relative to the root of your class path entry. Do not include the
.event.xml extension.

For example, if the template files from the example above are located in the com/abc/templates directory,
the valid value for the eventfactory property is:
com/abc/templates/com.abc.somepackage

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the
following entry will appear in the Logger.properties file:
com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Logging Common Base Events in WebSphere Application Server
The following practices ensure consistent use of Common Base Events within your components, and
between your components and WebSphere Application Server components.

Follow these guidelines:

v Use a different logger for each component. Sharing loggers across components gets in the way of
associating loggers with component-specific information.

v Associate loggers with event templates that specify source component identification. This association
ensures that the source of all events created with the logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common
Base Event factories) and indirectly created Common Base Events (events created using the Java
logging API) within the same component.

v Avoid calling the complete method on Common Base Events until you are finished adding data to the
Common Base Event and are ready to log it. This approach ensures that any decisions made by the
content handler based on data already in the event are made using the final data.

The following sample Logger.properties file entry demonstrates how to associate the
com.ibm.componentX logger with the com.ibm.componentX event factory:
com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and
indirect (Part 2) Common Base Event logging:
<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent>
 version="1.0.1"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent>

Chapter 3. Adding logging and tracing to your application 75

<sourceComponentId application="My application" component="com.ibm.componentX"/>
 <extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">
 <values>Sample ExtendedDataElement value</values>
 </extendedDataElements>
 < /CommonBaseEvent>

< /TemplateEvent>

Showlog commands for Common Base Events
The showlog command converts the service log from binary format into plain text.

Purpose

These showlog commands to produce output in Common Base Event XML format.

v showlog -format CBE-XML-1.0.1 filename

where:

filename
Is the service log file name.

For examples of showlog scripts, see Viewing the service log.

76 Troubleshooting and support

Chapter 4. Configuring Java logging using the administrative
console

Java logging provides a standard logging API for your applications. Before applications can log diagnostic
information, you need to specify how you want the server to handle log output and what level of logging
you require.

About this task

Developing, deploying and maintaining applications are complex tasks. When an application encounters an
unexpected condition, it might not be able to complete a requested operation. You might want the
application to inform the administrator that the operation failed and tell the administrator why the operation
failed. This information enables the administrator to take the proper corrective action. Application
developers might need to gather detailed information that relates to the path of a running application to
determine the root cause of a failure that is due to a code bug. The facilities that are used for these
purposes are typically referred to as logging and tracing. For more information read “Java logging” on
page 18.

Using the administrative console, you can:

v Enable or disable a particular log, specify where log files are stored and how many log files are kept.

v Specify the level of detail in a log, and specify a format for log output.

v Set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect
applications when you start or restart the application server. Dynamic or run time configuration changes
apply immediately.

When a logger is created, the level value for that logger is set from the configuration data. If no
configuration data is available for a particular logger name, the level for that logger is obtained from the
parent of the logger. If no configuration data exists for the parent logger, the parent of that logger is
checked, and so on up the tree, until a logger with a non-null level value is found. When you change the
level of a logger, the change is propagated to the children of the logger, which recursively propagates the
change to their children, as necessary.

Procedure
1. Set the output properties for a log:

a. In the navigation pane, click Troubleshooting > Log and trace.

b. Click the name of the server that you want to work with.

c. Click the name of a system log to configure.

d. To make a static change to the system log configuration, click the Configuration tab. To change
the configuration dynamically, click the Runtime tab.

e. Change the properties for the selected log according to your needs.

f. Click Apply.

g. Click OK.

2. Set the logging levels for your logs:

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logs and Trace.

d. Click Change Log Detail levels.

© IBM Corporation 2002 77

e. To make a static change to the configuration, click the Configuration tab. A list of well-known
components, packages, and groups is displayed. To change the configuration dynamically, click the
Runtime tab. The list of components, packages, and groups displays all the components that are
currently registered on the running server.

f. Select a component, package, or group to set a logging level.

g. [High Performance Extensible Logging] Select whether or not you want to disable the logging and
tracing of potentially sensitive data.

h. Click Apply.

i. Click OK.

3. To have static configuration changes take effect, stop then restart the application server.

Log streams and expected output
Investigating the logging and tracing output for the application server is an excellent way to observe
performance, diagnose problems, and gain a general understanding of how the application server is
working within your environment. The expected output locations for logging and trace information can be
different depending on the operating system on which the application server is running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

 Table 14. Log and trace output for distributed and IBM i. This table lists the expected output for logging and tracing
output streams for distributed and IBM i operating systems

Log or trace stream
Expected output - basic log and trace
mode

Expected output - HPEL log and trace
mode

Java trace Trace.log. You must have tracing enabled.
v HPEL trace repository.

v HPEL TextLog*.log, when you enable
this log.

Java logs
v Trace.log, when you enable tracing.

v Activity.log. The Activity.log file is also
directed to the Showlog output.

v SystemOut.log

v HPEL log repository

v HPEL TextLog*.log, when you enable
this log.

System.out stream
v Trace.log

v SystemOut.log

v HPEL log repository

v HPEL TextLog*.log, when you enable
this log.

System.err stream SystemErr.log
v HPEL log repository

v HPEL TextLog*.log, when you enable
this log

cout (the C or C++ output stream) Native stdout Native stdout

cerr (the C or C++ error stream) Native stderr Native stderr

Distributed and IBM i - Basic log and trace mode

78 Troubleshooting and support

Java Trace

Java Logs

System.out

System.err

cout

cerr

Native stdout

Native stderr

Trace.log

Activity.log
Showlog

SystemOut.log

SystemErr.log

Distributed and IBM i - HPEL log and trace mode

Java Trace

Java Logs

System.out

System.err

cout

cerr

Text log

Native stdout

Native stderr

LogData

TraceData

LogViewer

HPEL

z/OS® - Traditional log and trace mode

Chapter 4. Configuring Java logging using the administrative console 79

Java Trace

z/OS Trace

z/OS

z/OS Logging

Java Logs

System.out

z/OS DD
(specified in
proc JCL)

zNative
Trace

Runtime

System.err

cout

cerr

zNative
Message
Runtime

CTRACE

z/OS SYSPRINT
DD

LogStream
(plain text)

z/OS SYSOUT
DD

Operator
Console

(WTO / WTOR)

File in HFS
or MVS

JES

z/OS - HPEL log and trace mode

80 Troubleshooting and support

Java Trace

z/OS Trace

z/OS

z/OS Logging

Java Logs

System.out

Text log

LogData

TraceData

LogViewer

HPEL

zNative
Trace

Runtime

System.err

cout

cerr

zNative
Message
Runtime

CTRACE

z/OS SYSPRINT
DD

LogStream
(plain text)

z/OS SYSOUT
DD

Operator
Console

(WTO / WTOR)

Log level settings
Use this topic to configure and manage log level settings.

Using log levels you can control which events are processed by Java logging. When you change the level
for a logger, the change is propagated to the children of the logger.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Disable logging and tracing of potentially sensitive data
The application server has a list of loggers which are known to potentially write sensitive
information to the log and trace when enabled. For example, enabling certain HTTP related
loggers at FINEST level may result in confidential user-specified information from HTTP requests
being stored in the trace files. If you want the server to avoid enabling these loggers at levels
which are known to be used for potentially sensitive information, check the "Disable logging and
tracing of potentially sensitive data" checkbox. When the server is started, or when the log detail
level specification is modified at runtime, the server will compare the list of loggers and levels
specified in the log detail level specification to the list of loggers and levels in the sensitive logger
list, and will update the log detail level specification as needed.

Chapter 4. Configuring Java logging using the administrative console 81

Change Log Detail Levels

 Enter a log detail level that specifies the components, packages, or groups to trace. The log detail
level string must conform to the specific grammar described in this topic. You can enter the log
detail level string directly, or generate it using the graphical trace interface.

If you select the Configuration tab, a static list of well-known components, packages, and groups is
displayed. This list might not be exhaustive.

If you select the Runtime tab, the list of components, packages, and group are displayed with all
the components that are registered on the running application server and in the static list.

The format of the log detail level specification is:
<component> = <level>

where <component> is the component for which to set a log detail level, and <level> is one of the
valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all).
Separate multiple log detail level specifications with colons (:).

Components correspond to Java packages and classes, or to collections of Java packages. Use
an asterisk (*) as a wildcard to indicate components that include all the classes in all the packages
that are contained by the specified component. For example:

* Specifies all traceable code running in the application server, including the product system
code and customer code.

com.ibm.ws.*
Specifies all classes with the package name beginning with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader
Specifies the JarClassLoader class only.

An error can occur when setting a log detail level specification from the administrative console if
selections are made from both the Groups and Components lists. In some cases, the selection
made from one list is lost when adding a selection from the other list. To work around this
problem, enter the log detail level specification directly into the log detail level entry field.

Select a component or group to set a log detail level. The table following lists the valid levels for
application servers at WebSphere Application Server Version 6 and later, and the valid logging and trace
levels for earlier versions.

Note: Logging level values are case-sensitive and begin with a lower-case letter.

 Table 15. Valid logging levels. The following table lists the valid levels for application servers at WebSphere
Application Server Version 6 and later, and the valid logging and trace levels for earlier versions.

Version 6 logging level Logging level before
Version 6

Trace level before Version
6

Content / Significance

off off All disabled* Logging is turned off.

* In Version 6, a trace level
of All disabled turns off
trace, but does not turn off
logging. Logging is enabled
from the Info level.

fatal fatal - Task cannot continue and
component, application, and
server cannot function.

82 Troubleshooting and support

Table 15. Valid logging levels (continued). The following table lists the valid levels for application servers at
WebSphere Application Server Version 6 and later, and the valid logging and trace levels for earlier versions.

severe error - Task cannot continue but
component, application, and
server can still function.
This level can also indicate
an impending fatal error.

warning warning - Potential error or impending
error. This level can also
indicate a progressive
failure (for example, the
potential leaking of
resources).

audit audit - Significant event affecting
server state or resources

info info - General information
outlining overall task
progress

config - - Configuration change or
status

detail - - General information
detailing subtask progress

fine - Event Trace information - General
trace + method entry, exit,
and return values

finer - Entry/Exit Trace information - Detailed
trace

finest - Debug Trace information - A more
detailed trace that includes
all the detail that is needed
to debug problems

all All enabled All events are logged. If you
create custom levels, All
includes those levels, and
can provide a more detailed
trace than finest.

When you enable a logging level in Version 6.0 or above, you are also enabling all of the levels with
higher severity. For example, if you set the logging level to warning on your Version 6.x application server,
then warning, severe and fatal events are processed.

[Basic mode logging] Trace information, which are events at the Fine, Finer and Finest levels, can be
written only to the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to
Fine, Finer, or Finest will not have an effect on the data that is logged.

Changing the message IDs used in log files
You can change the default format for message IDs in server logs by setting the
com.ibm.websphere.logging.messageId.version system property.

Before you begin

Note: Beginning with WebSphere Application Server Version 6.0, logging files are formatted according to
a standardized system. However, the default runtime behavior is still configured to use the older
format. In new releases of WebSphere Application Server, the message IDs that are written to log

Chapter 4. Configuring Java logging using the administrative console 83

files will be changed to ensure they do not conflict with other IBM products. The default runtime
behavior is still configured to use the older message IDs, deprecated in Version 8.0.

As a result of the default runtime behavior, you might see a mixture of messages that use 4–letter
message prefixes and 5–letter message prefixes. The information in this topic explains how to
change your configuration so that the messages consistently show with 5–letter message prefixes.
The default behavior has not changed to minimize the impact on customers that depend on the
existence of the 4–letter message prefixes.

The following is a sample of an entry in a trace.log file using a default message ID. Note that the message
ID is PMON0001A
[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A PMON0001A: PMI is enabled

A sample of the same entry using a new message ID follows. Note that the message ID is CWPMI0001A.
All new WebSphere Application Server message IDs begin with 'CW'.
[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A CWPMI0001A: PMI is enabled.

About this task

If you are using a logging tool that uses the standardized format, you might want to change the default
configuration settings to format the logging output appropriately. You will need to change the configuration
for each Java virtual machine (JVM) in the cell if you want the output formatting to be the same across
application servers.

Procedure
v To configure logging files so that they use the newer, 5–letter error message prefixes for each process,

use the following commands with the wsadmin utility:

– Using Jacl:
set cfgJvmList [$AdminConfig list JavaVirtualMachine]
set cfgJvm [lindex $cfgJvmList JavaVirtualMachine]
$AdminConfig create Property $cfgJvm {{name com.ibm.websphere.logging.messageId.version} {value 6} {required false}}
$AdminConfig save

– Using Jython:
ls = java.lang.System.getProperty("line.separator")
cfgJvmList = AdminConfig.list("JavaVirtualMachine").split(ls)
print cfgJvmList
cfgJvm = cfgJvmList[JavaVirtualMachine]
AdminConfig.create(’Property’, cfgJvm, [[’name’, ’com.ibm.websphere.logging.messageId.version’], [’value’, ’6’],
[’required’, ’false’]])
AdminConfig.save()

Where JavaVirtualMachine is the number of the process that you want to use.

When you specify the process, the first process listed is zero (0), the second process is one (1), and
so on. Make the changes for each JVM in the cell for consistent output formatting.

Important: Restart the application server for the changes to take effect.

v To change the configuration so that the log files contain the newer, 5–letter message prefixes in the
startServer.log or stopServer.log files, modify the startServer and stopServer scripts in the
install_root/bin directory.

Add the following line of code to the :WRITE_PROPERTIES_FILE section of the scripts:
>> %TMPJAVAPROPFILE% echo com.ibm.websphere.logging.messageId.version=6

Within these scripts, append the following code to the end
of the existing D_ARGS parameter:
$DEBUG -Dcom.ibm.websphere.logging.messageId.version=6

Results

Message IDs written to log files will now be compliant with the new standard.

84 Troubleshooting and support

Converting log files to use IBM unique Message IDs
The convertlog command creates a new log file with either new or old message IDs substituted in place of
the message IDs in the source file.

Before you begin

Note: Prior to Version 6.x, components were assigned message IDs that are not necessarily unique
across IBM software products. In Version 6.0, a system property was provided to map the message
IDs in output logs to a set of IBM unique message IDs (all WebSphere Application Server message
IDs now start with CW) that do not conflict with other IBM software products. The default runtime
behavior still uses the old message IDs.

About this task

To facilitate the migration of logging tools that are reliant on the old message IDs, the convertlog command
is provided to convert the message IDs of log entries from the old standard to the new standard, or the
new standard back to the old. By default, the software is configured to use the old message IDs when
logging, but you can change the default output with the com.ibm.websphere.logging.messageId.version
system property. Read “Changing the message IDs used in log files” on page 83 for more information.

Procedure

Use the convertlog command to convert the log output:
convertlog <source file name> <destination file name> [options]
 options: -newMessageFormat convert message IDs to CCCCCnnnnS format
 (cannot be used with -m5)
 -oldMessageFormat convert message IDs to CCCCnnnnS format
 (cannot be used with -m6)

Results

After using the convertlog command you have a new file with message IDs in the chosen format.

convertlog command
The convertlog command is used to convert the message IDs in log entries from the old standard to the
new standard, or the new standard back to the old.

Previous versions of WebSphere Application Server used message IDs that are deprecated in WebSphere
Application Server Version 8.0. To facilitate the migration of tools based on the old message IDs, the
convertlog command is implemented to translate log files from one message ID standard to the other.

Use the convertlog command as follows:
convertlog <source file name> <destination file name> [options]
 options: -newMessageFormat convert message IDs to CCCCCnnnnS format
 (cannot be used with -m5)
 -oldMessageFormat convert message IDs to CCCCnnnnS format
 (cannot be used with -m6)

MessageConverter class
The com.ibm.websphere.logging.MessageConverter class provides a method to convert a message ID at
the front of a String into either a new message ID or an old message ID. The direction of the conversion is
controlled with the conversionType argument.

Use the MessageConverter class with log analysis tools to convert message IDs from earlier versions of
WebSphere Application Server into the corresponding message IDs that are used in later releases, or to
revert message IDs to an earlier format.

Method

Chapter 4. Configuring Java logging using the administrative console 85

public static java.lang.String convert(java.lang.String in, short conversionType)

Parameters

Use the following parameters with the MessageConverter class:

 Parameter Name Description

in The message to convert. The method assumes the
message ID is the first part of the supplied message with
no leading white space.

conversionType CONVERSION_TYPE_WASV5_TO_WASV6

CONVERSION_TYPE_WASV6_TO_WASV5

HTTP error, FRCA, and NCSA access log settings
Use this page to configure the global HTTP error log, and National Center for Supercomputing Applications
(NCSA) access log settings for an HTTP inbound channel. If you are running the product on z/OS, you
can also use this page to configure the global Fast Response Cache Accelerator (FRCA) log settings for
an HTTP inbound channel. A FRCA log is a specialized form of a NCSA log and can only be created in a
z/OS environment.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name. Under Troubleshooting, click NCSA access and HTTP error logging. This
console page has separate sections for each type of logging. The FRCA logging section only appears if
you are running the product on z/OS.

The HTTP error log contains a record of HTTP processing errors that occur. The level of error logging that
occurs is dependent on the value that is selected for the Error log level field.

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel
handles. All of the messages that are contained in a NCSA access log are in NCSA format.

After you configure the HTTP error logs, NCSA access logs, and FRCA logs, you must explicitly enable
each type of logging on the settings page for the HTTP channels for which you want a specific types of
logging to occur. To view the settings page for an HTTP channel, click Servers > Server Types >
WebSphere application servers > server_name > Web Container Settings > HTTP inbound channel
> Web container transport chains.

gotcha: The settings for any of these logs can also be modified on the settings page for a specific HTTP
inbound channel. Any changes that you make on the HTTP inbound channel settings page only
apply to that specific inbound channel. and override any global configuration settings that you
specify on this page.

Enable logging service at server start-up
Select this option if you want any of the following logging to start when the server starts:
v NCSA access logging
v HTTP error logging

gotcha: Even if you select this option, you must explicitly enable the type of logging that you want to
occur on this page and on the settings page for the HTTP transport channel for which you want
that type of logging to occur.

86 Troubleshooting and support

Enable NCSA access logging
When selected, a record of inbound client requests that the HTTP transport channel handles is kept in the
NCSA access log.

NCSA access log file path
Specifies the directory path and name of the NCSA access log. Standard variable substitutions, such as
$(SERVER_LOG_ROOT), can be used when specifying the directory path.

NCSA access log maximum size
Specifies the maximum size, in megabytes, of the NCSA access log. When the content of the NCSA
access log reaches the specified maximum size limit, a log_name.1 archive log is created. The current
content of the NCSA access log is then copied to this archive log.

The next time the content in the NCSA access log reaches the specified maximum log size, the content of
the NCSA access log is again copied to the log_name.1 archive log. The copy process overwrites the
current content of the archive file with the most current content of the NCSA access log.

Maximum number of historical files
Specifies the maximum number of historical versions of the NCSA access log file that are kept for future
reference.

NCSA access log format
Specifies which NCSA format is used when logging client access information. If you select Common, the
log entries contain the requested resource and a few other pieces of information, but does not contain
referral, user agent, and cookie information. If you select Combined, referral, user agent, and cookie
information is included.

Enable error logging
When selected, HTTP errors that occur while the HTTP channel processes client requests are recorded in
the HTTP error log.

Error log file path
Specifies the directory path and the name of the HTTP error log. Standard variable substitutions, such as
$(SERVER_LOG_ROOT), can be used when specifying the directory path.

Error log maximum size
Specifies the maximum size, in megabytes, of the HTTP error log. When the content of the HTTP error log
reaches the specified maximum size limit, a log_name.1 archive log is created. The current content of the
HTTP error log is then copied to this archive log.

The next time the content in the HTTP error log reaches the specified maximum log size, the content of
the HTTP error log is again copied to the log_name.1 archive log. The copy process overwrites the current
content of the archive file with the most current content of the HTTP error log.

Maximum number of historical files
Specifies the maximum number of historical versions of the Error log file that are kept for future reference.

Error log level
Specifies the type of error messages that are included in the HTTP error log.

You can select:

Chapter 4. Configuring Java logging using the administrative console 87

Critical
Only critical failures that stop the Application Server from functioning properly are logged.

Error The errors that occur in response to clients are logged. These errors require Application Server
administrator intervention if they result from server configuration settings.

Warning
Information on general errors, such as socket exceptions that occur while handling client requests,
are logged. These errors do not typically require Application Server administrator intervention.

Information
The status of the various tasks that are performed while handling client requests is logged.

Debug
More verbose task status information is logged. This level of logging is not intended to replace
RAS logging for debugging problems, but does provide a steady status report on the progress of
individual client requests. If this level of logging is selected, you must specify a large enough log
file size in the Error log maximum size field to contain all of the information that is logged.

88 Troubleshooting and support

Chapter 5. Using HPEL to troubleshoot applications

You can use High Performance Extensible Logging (HPEL) to help diagnose problems in WebSphere
Application Server.

About this task

Administrators using WebSphere Application Server need to use log and trace files to determine whether
their applications and the server are running correctly.

Logs typically contain information that is of interest to administrators and must be looked at periodically to
ensure there are no unexpected errors or warnings.

Trace typically contains information that is useful for debugging application or server problems and can
help identify specific problems with individual components.

Procedure
1. Enable HPEL if you have not done so already. Read about changing from basic mode to HPEL logging

and tracing for more information.

2. Configure the HPEL facility. For example, configure HPEL to store your logs and trace in appropriate
directories, and specify how long you want log and trace content to be retained before being deleted.
Read about HPEL to learn about the log and trace framework overall, and read about configuring
HPEL for more configuration information.

3. Restart the application server after making static configuration changes.

High Performance Extensible Logging (HPEL)
High Performance Extensible Logging (HPEL) is a log and trace facility that is provided as a part of
WebSphere Application Server.

Overview

Note: The basic log and trace facility is enabled by default. To use HPEL you must enable it.

Note: HPEL provides a convenient mechanism for storing and accessing log, trace, System.err, and
System.out information produced by the application server or your applications. It is an alternative
to the basic log and trace facility, which provided the JVM logs, diagnostic trace, and service log
files commonly named SystemOut.log/SystemErr.log, trace.log, and activity.log.

HPEL log and trace storage

HPEL provides a log data repository, a trace data repository, and a text log file. See the following figure to
understand how applications and the application server store log and trace information.

© Copyright IBM Corp. 2011 89

Application
code

Application
code

Application
code

com.xyz.abc.def
(Logger)

com.xyz.abc.ghi
(Logger)

JRAS.API
(deprecated)

Anonymous
(Logger)

com.xyz.abc
(Logger)

root
(Logger)

Service broker com.ibm.ws.xyz
(Logger)

com.ibm.ws
(Logger) Service

log

SystemOut.log

Trace log

Text
Log

Trace Data
Repository

Log Data
Repository

Applications

WebSphere Application Server

HPEL

Compatibility

LogData
Handler

TraceData
Handler

Text Log
Handler

JMX Notification
Handler

RasLoggingService
M Bean

Service
Log

Handler

SystemOut
Handler

Trace
Handler

HPEL log data repository

The log data repository is a storage facility for log records. Log data is typically intended to be reviewed by
administrators. This includes any information applications or the server write to System.out, System.err, or
java.util.logging at level Detail or higher (including Detail, Config, Info, Audit, Warning, Severe, Fatal, and
any custom levels at level Detail or higher).

HPEL trace data repository

The trace data repository is a storage facility for trace records. Trace data is typically intended for use by
application programmers or by the WebSphere Application Server support team. This includes any
information applications or the server write to java.util.logging at levels below level Detail (including Fine,
Finer, Finest, and any custom levels below level Detail).

Note: Log and trace content written to the deprecated JRAS logging API is also included in the log and
trace data repositories. Some logging APIs, such as Jakarta Commons Logging can also be
configured to route their log and trace data to java.util.logging, and would have their output stored
in the log data or trace data repository as well.

HPEL text log

The text log file is a plain text file for log and trace records. The text log file is provided for convenience,
primarily so that log content can be read without having to run the LogViewer command-line tool to convert
the log data repository content to plain text.

The text log file does not contain any content that is not also stored in either the log data repository or
trace data repository. You can disable the text log to enhance server performance. The text log can be
configured to record trace content for debugging convenience.

Note: Writing trace to the text log is expensive from a performance perspective.

Log and trace performance

Note: HPEL has been designed and tested to significantly outperform the existing basic log and trace
facility. One result is that the application server can run with trace enabled while causing less

90 Troubleshooting and support

impact to performance than tracing the same components using basic logging. Another result is that
applications that frequently write to the logs might run faster with HPEL. A number of factors
contribute to the overall performance of HPEL logging and tracing.

Log and trace events are each stored in only one place

Log events, System.out, and System.err are stored in the log data repository. Trace events are stored in
the trace data repository. If the text log file is disabled, HPEL might only write log and trace content to
these repositories. Storing each type of event in one place ensures that performance is not wasted on
redundant data storage.

Log events, and optionally trace events, are written to the text log file when it is enabled. Since this data is
always also stored in the log data and trace data repositories, the text log file content is redundant. The
text log is convenient for users who do not want to run the LogViewer command-line tool to see their logs
and trace; but you can disable the text log if this convenience is not needed.

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

Log and trace repositories are not shared across processes

Synchronizing activities between processes causes a degradation in performance to all processes
involved. With HPEL, each server process has its own log data repository, trace data repository, and text
log file. Since these files are not shared across processes, the server runtime environment does not need
to synchronize with other processes when writing to these destinations.

Data is not formatted unless it is needed

Formatting data for an user to read uses processor time. Rather than format log event and trace event
data at run time, HPEL log and trace data is stored more rapidly in a proprietary binary representation.
This improves the performance of the log and trace facility. By deferring log and trace formatting until the
LogViewer is run, sections of the log or trace that are never viewed are never formatted.

You can enable the text log file, which stores the log data and trace data in an already readable text
format.

Chapter 5. Using HPEL to troubleshoot applications 91

Note: Disable the text log when performance of your server is a key concern, or if the text log is not
wanted.

Log and trace data is buffered before being written to disk

Writing large blocks of data to a disk is more efficient than writing the same amount of data in small
blocks. HPEL provides buffer log and trace data before writing it to disk. By default, log and trace data is
stored in an 8 KB buffer before being written to disk. If the buffer is filled within 10 seconds, the buffer is
written to disk. If the buffer is not filled within that time it is automatically written to disk to ensure that the
logs have the most current information.

Note: The size of the buffer can be controlled by setting the HPEL.BUFFER.SIZE system property. The
frequency that the buffer writes to disk can be controlled by setting the
HPEL.FLUSH.PERIOD.SECS system property.

Administration of log and trace

Note: HPEL has been designed to be easy to configure and understand. For example, administrators can
easily configure how much disk space to dedicate to logs or trace, or how long to retain log and
trace records, and leave the management of log and trace content up to the server. As another
example all log, trace, System.out, and System.err content can be accessed using one easy-to-use
command (LogViewer), avoiding any possible confusion over which file to access for certain
content.

Reading from the log data and trace data repositories

The log data and trace data repositories are stored in a WebSphere Application Server proprietary format
and cannot be read using text file editors such as Notepad or VI. You can copy the log data and trace data
repositories in to a plain text format using the LogViewer command.

Trace Data
Repository

Log Data
repository

Text
LogLog Viewer

HPEL LogViewer command

The HPEL LogViewer is an easy-to-use, command-line tool provided for HPEL users to work with the log
data and trace data repositories. The LogViewer provides filtering and formatting options that make finding
important content in the log data and trace data repositories easy. For example, a user might filter any
errors or warnings, then filter all log and trace entries that occurred within 10 seconds of a key error
message on the same thread.

HPEL in the administrative console

The administrative console contains panels that enable HPEL administrators to:

v Configure the HPEL log data repository.

92 Troubleshooting and support

v Configure the HPEL trace data repository.

v Configure the HPEL text log file.

v View the contents of the HPEL log and trace data repositories.

v View and set the log detail levels for logging and tracing.

To use these capabilities, in the administrative console, click Troubleshooting > Logs and Trace link.

Development resources

Note: HPEL has been designed to make working with log and trace content more flexible and effective
than the basic logging facility. Log and trace content can be easily filtered to show only the records
that are of interest. You can use the command line (see the description of the HPEL LogViewer
command), or developers can create powerful log handling programs using the HPEL API.

Scripts and Java programs read from the log data and trace data repositories

Developers and scripters have a number of options for how to read the log data and trace data
repositories:

v Locally or remotely from a wsadmin script, using the HPELControlService JMX MBean

v Locally or remotely from a Java program, using the HPELControlService JMX MBean

v Locally from a Java program, using the com.ibm.websphere.logging.hpel API

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

HPEL-related JMX MBeans

A MBean interface has been provided to make it easy to access HPEL repository content remotely. For
example, a developer might write a JMX client program to read log content from across their WebSphere
Application Server cell. This interface is part of the HPELControlService MBean. Refer to the MBean
interface documentation for details on the HPEL remote log reading interface.

Chapter 5. Using HPEL to troubleshoot applications 93

Table 16. JMX MBeans related to HPEL. The JMX MBeans are related to the operation of HPEL
JMX MBean Description

HPELControlService Provides operations related to configuring the log or trace detail level of
the server, viewing the log component registry, and querying the log and
trace repositories

HPELLogDataService Provides operations related to configuring the log data repository of the
server

HPELTraceDataService Provides operations related to configuring the trace data repository of the
server

HPELTextLogService Provides operations related to configuring the text log file of the server

RasLoggingService Only used for JMX Notification of log events

When using HPEL for log and trace rather than basic logging, the log and trace JMX MBean,
TraceService, is not used.

HPEL API

An API has been provided to make it easy for developers to develop tools to consume content from the
HPEL log and trace repositories. For example, a developer might write a Java program to search the log
and trace content to find any messages with message IDs that match a known list of important message
IDs. This API is in the com.ibm.websphere.logging.hpel package. Refer to the API documentation for
details on the HPEL log reading API.

Basic mode and HPEL mode
Two modes of logging and tracing exist in the product, which are basic mode and High Performance
Extensible Logging (HPEL) mode. Use this topic to understand the differences between these modes.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Basic mode, the default mode, is the existing log and trace framework from prior releases of WebSphere
Application Server. Any existing scripts and tools you have that use logs and trace might need minor
modifications to work with HPEL mode.

To take advantage of the new log and trace framework, HPEL mode must be enabled. After HPEL mode is
enabled the JVM logs (typically SystemOut.log and SystemErr.log), the trace log (typically trace.log), and
the service log (typically activity.log) are no longer written to. Instead, log and trace content is written to a
log data or trace data repository in a proprietary binary format and, if configured, to a text log file.
Disabling the writing of the text log file results in the largest possible performance benefit of HPEL. A log
viewing tool, LogViewer, is provided to allow for viewing, filtering, monitoring, and formatting the log and
trace data in the repositories.

Log and Trace files

The following figure shows the files used by the basic mode and HPEL mode log and trace facilities. When
enabled, the HPEL text log file stores content from Java trace (optional), Java logs, System.out, and
System.err. You can disable the HPEL text log in cases where it is not needed as indicated by the dotted
lines.

94 Troubleshooting and support

Basic Mode HPEL mode

Java trace

Java logs

System out

System err

Trace log

Service
log

SystemOut.log

ShowLog

native_stdout.logcout

cerr

SystemErr.log

native_stderr.log

Java trace

Java logs

System out

System err

Trace
data

repository

Text
log

Log data
repository

LogViewer

native_stdout.logcout

cerr native_stderr.log

Table 17. Basic mode and HPEL mode files. This table shows where each of the application and application server
log, trace, JVM log, and native JVM log content is routed and how to view that content.
Source Basic mode files HPEL mode files How to view the HPEL files

System.out SystemOut.log

trace.log (when trace enabled)

logdata/*.wbl

TextLog_<timestamp>.log (when
text log enabled)

logdata - use LogViewer, with
optional filtering, to render log data
repository as readable text, then
use any text editor

TextLog - any text editor

System.err SystemErr.log Same as System.out Same as System.out

java.util.logging (levels DETAIL and
above)

SystemOut.log

activity.log

trace.log (when trace enabled)

Same as System.out Same as System.out

java.util.logging (levels below
DETAIL)

trace.log tracedata/*.wbl

TextLog_<timestamp>.log (when
text log enabled)

tracedata - use LogViewer, with
optional filtering, to render trace
data repository as readable text,
then use any text editor

TextLog - any text editor

native cout native_stdout.log native_stdout.log Any text editor

native cerr native_stderr.log native_stderr.log Any text editor

MBean services

 Table 18. Basic mode and HPEL mode MBeans. This table shows the JMX MBeans that are associated with the
basic mode and HPEL mode log and trace frameworks.
Basic mode MBeans HPEL mode MBeans HPEL MBean Descriptions

RasLoggingServiceMBean RasLoggingServiceMBean Provides JMX Notification

HPELLogDataServiceMBean Configures the log repository such as location,
retention policy, out of space behavior, buffering,
and file switching

HPELTraceDataServiceMBean Configures the trace repository such as location,
retention policy, out of space behavior, buffering,
and file switching

Chapter 5. Using HPEL to troubleshoot applications 95

Table 18. Basic mode and HPEL mode MBeans (continued). This table shows the JMX MBeans that are associated
with the basic mode and HPEL mode log and trace frameworks.
Basic mode MBeans HPEL mode MBeans HPEL MBean Descriptions

HPELTextLogServiceMBean Configures the text log such as location,
retention policy, out of space behavior, buffering,
file switching, and SystemErr or SystemOut
format

TraceServiceMBean HPELControlServiceMBean Configures trace specification levels, and
provides access to log and trace repository
content

Changing from basic mode to HPEL logging and tracing
The basic mode log and trace framework is enabled by default when you set up a new application server.
Use this topic to switch to the High Performance Extensible Logging (HPEL) log and trace framework.

Before you begin

Before beginning this task, read about the differences between HPEL mode and basic mode. Be aware of
changes you might need to make to any tools and scripts you have that use the basic mode log and trace
files.

About this task

HPEL provides faster log and trace handling capabilities and more flexible ways to use log and trace
content than the basic mode. You can switch to HPEL mode using the administrative console, or using
wsadmin scripting.

Procedure
v Use the administrative console to switch to HPEL.

1. Log on to the administrative console.

2. If using an admin agent topology select a node that you want to manage and navigate to it.

3. From the navigation section in the console choose Troubleshooting > Logs and trace .

4. Select the server that you want to switch to HPEL.

5. Click Switch to HPEL Mode .

6. Save the changes.

v Use wsadmin scripting to switch to HPEL. Complete these steps to modify the server configuration.

1. Start wsadmin. In this case, you can connect wsadmin to a running server or access the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Get a reference to the HighPerformanceExtensibleLogging configuration object.

Using Jython:
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/HighPerformanceExtensibleLogging:/")

 Table 19. AdminConfig command description. The table lists AdminConfig command and description.
Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

3. Set the HighPerformanceExtensibleLogging enable attribute to true.

Using Jython:

96 Troubleshooting and support

AdminConfig.modify(HPELService, "[[enable true]]")

4. Get a reference to the RASLoggingService object.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/RASLoggingService:/")

 Table 20. AdminConfig command description. The table lists AdminConfig command and description.

Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

5. Set the RASLoggingService enable attribute to false.

Using Jython:
AdminConfig.modify(RASLogging, "[[enable false]]")

6. Save the configuration.

Using Jython:
AdminConfig.save()

Results

The server is now configured to use HPEL when you restart.

What to do next

Configure HPEL to meet your needs. If you have any tools or scripts that were using the basic mode log
and trace files, you might need to modify them to continue working with HPEL.

Changing from HPEL to basic mode logging and tracing
Use this topic if you need to switch from HPEL to the basic mode log and trace framework. The basic
mode log and trace framework is enabled by default when you set up a new application server.

Before you begin

Before beginning this task, read about the differences between HPEL mode and basic mode. Be aware of
changes you might need to make to any tools and scripts you have that use HPEL files or commands.

About this task

You can switch to basic mode using the administrative console, or using wsadmin scripting. HPEL provides
faster log and trace handling capabilities and more flexible ways to exploit log and trace content than the
basic mode.

Procedure
v Use the administrative console to switch to basic mode.

1. Log on to the administrative console.

2. If using an administrative agent topology, select a node that you want to manage and navigate to it.

3. From the navigation section in the console click Troubleshooting > Logs and trace.

4. Select the server that you want to switch to basic mode.

5. Click Change log and trace mode.

6. Click Switch back to basic mode.

Chapter 5. Using HPEL to troubleshoot applications 97

7. Save the changes.

v Use wsadmin scripting to switch to basic mode. These steps modify the server configuration. The server
does not need to be running to perform these steps.

1. Start wsadmin. In this case, wsadmin can be connected to a running server or accessing the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Get a reference to the HighPerformanceExtensibleLogging configuration object.

Using Jython:
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/HighPerformanceExtensibleLogging:/")

 Table 21. AdminConfig command description. The table lists AdminConfig command and description.
Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

3. Set the HighPerformanceExtensibleLogging enable attribute to false.

Using Jython:
AdminConfig.modify(HPELService, "[[enable false]]")

4. Get a reference to the RASLoggingService object.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/RASLoggingService:/")

 Table 22. AdminConfig command description. The table lists AdminConfig command and description.

Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

5. Set the RASLoggingService enable attribute to true.

Using Jython:
AdminConfig.modify(RASLogging, "[[enable true]]")

6. Save the configuration.

Using Jython:
AdminConfig.save()

Results

The server is now configured to use the basic mode log and trace framework when you restart.

Configuring HPEL

Configuring HPEL with wsadmin scripting
You can configure the High Performance Extensible Logging (HPEL) log and trace framework using
wsadmin scripting. Use the examples in this topic as a guide to build your own wsadmin scripts.

98 Troubleshooting and support

About this task

HPEL provides faster log and trace handling capabilities and more flexible ways to use log and trace
content than the basic mode. You can configure the HPEL mode using the administrative console, or using
wsadmin scripting. The examples in this topic show how to configure HPEL using wsadmin. If you
complete this task using the deployment manager, then you might need to synchronize the node agent on
the target node and restart the server before configuration changes take effect.

 Table 23. Variable Names. The table applies to all examples in this topic. All examples use the Jython scripting
language.
Variable Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

Procedure
v Use the AdminConfig object to configure HPEL.

Changes you make using the AdminConfig object take effect the next time you start the server.

1. Change the trace specification.

The following example shows how to change the trace specification to
=info:com.ibm.ws.classloader.=all
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
AdminConfig.modify(HPELService, "[[startupTraceSpec *=info:com.ibm.ws.classloader.*=all]]")
AdminConfig.save()

2. Change the size of the log repository.

The following example shows how to set HPEL to automatically delete the oldest log content from
the log repository when the repository size approaches 65 MB. Specify HPELTrace or HPELTextLog
instead of HPELLog to change the setting for the HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[purgeMaxSize 65]]")
AdminConfig.save()

3. Change the log repository location.

The following example shows how to change the HPEL log repository directory name to
/tmp/myDirectory. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for
the HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[dataDirectory /tmp/myDirectory]]")
AdminConfig.save()

4. Disable log record buffering.

The following example shows how to change the HPEL log repository to not use log record
buffering. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[bufferingEnabled false]]")
AdminConfig.save()

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

Chapter 5. Using HPEL to troubleshoot applications 99

5. Start writing to a new log file each day at a specified time.

The following example shows how to enable the HPEL log repository to start a new log file each day
at 3pm. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[fileSwitchTime 15]]")
AdminConfig.modify(HPELLog, "[[fileSwitchEnabled true]]")
AdminConfig.save()

6. Change the out of space action for the log repository.

The following example shows how to change the out of space action for the HPEL log repository.
Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the HPEL trace
repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[outOfSpaceAction PurgeOld]]")
AdminConfig.save()

v Use the AdminControl object to configure HPEL. Changes you make using the AdminControl object take
effect immediately.

1. Change the trace specification.

The following example shows how to change the trace specification to
=info:com.ibm.ws.classloader.=all
HPELControlMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELControlService,process=myServer,*’)
AdminControl.setAttribute(HPELControlMBean, "traceSpecification",
"*=info:com.ibm.ws.classloader.*=all")

2. Change the size of the log repository.

The following example shows how to set HPEL to automatically delete the oldest log content from
the log repository when the repository size approaches 65 MB. Specify HPELTraceDataService or
HPELTextLogService instead of HPELLogDataService to change the setting for the HPEL trace
repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,
node=myNode,type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "purgeMaxSize", "65")

3. Change the log repository location.

The following example shows how to change the HPEL log repository directory name to
/tmp/myDirectory. Specify HPELTraceDataService or HPELTextLogService instead of
HPELLogDataService to change the setting for the HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,
node=myNode,type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "dataDirectory", "/tmp/myDirectory")

4. Disable log record buffering.

The following example shows how to change the HPEL log repository to not use log record
buffering. Specify HPELTraceDataService or HPELTextLogService instead of HPELLogDataService
to change the setting for the HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "bufferingEnabled", "false")

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

5. Start writing to a new log file each day at a specified time.

100 Troubleshooting and support

The following example shows how to enable the HPEL log repository to start a new log file each day
at 3pm. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "fileSwitchTime", "15")
AdminControl.setAttribute(HPELLogDataMBean, "fileSwitchEnabled", "true")

6. Change the out of space action for the log repository.

The following example shows how to change the out of space action for the HPEL log repository.
Specify HPELTraceDataService or HPELTextLogService instead of HPELLogDataService to change
the setting for the HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "outOfSpaceAction", "PurgeOld")

Results

HPEL is now configured. If you made changes with the AdminConfig command, restart the server to make
the changes take effect.

HPEL logging and trace settings
Use this page to view and configure High Performance Extensible Logging (HPEL) logging and trace
settings for the server.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and Trace > server_name.

Configure HPEL logging
Use this link to configure HPEL log options. If this server is in running state, then important log
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

Configure HPEL trace
Use this link to configure HPEL trace options. If this server is in running state, then important trace
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

Configure HPEL text log
Use this link to configure HPEL text log options. If this server is in running state, then important text log
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

View HPEL logs and trace
Use this page to view log data from the HPEL repository. You can also use this page to filter and search
the repository. You can export the customized view or full repository into a text file or into a new HPEL
repository.

Change log detail levels
Use this page to enter a log detail level that specifies the components, packages, or groups to trace.

Change log and trace mode
Use this link to switch back to basic mode logging, instead of HPEL mode logging currently enabled for
this server.

Chapter 5. Using HPEL to troubleshoot applications 101

Manage process logs
WebSphere Application Server processes contain two output streams that are accessible to native code,
which runs in a particular process. These streams are the stdout and stderr streams. Native code,
including Java virtual machines (JVM), might write data to these process streams. In addition, you can
also configure JVM-provided System.out and System.err streams to write their data to these streams.

HPEL log configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) log settings.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL logging .

Directory path
Specifies the directory to which log files are written. A subdirectory, logdata, is created in this directory, and
the log files are written to this location.

Enable log record buffering
Specifies that the logging system avoids writing to disk each time a log record is created. The logging
system creates a buffer that can hold a number of log records, and writes the buffered events when the
buffer is full. The logging system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Selecting this setting significantly improves logging performance; however, if the server stops
unexpectedly, the contents might not be written to the log repository.

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your server
is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the logging framework to close the log file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Note: If you want to automatically archive your log files, set up your backup program to copy files after
the time you configured for new logs to be started. Configure the backup to occur at least 10
minutes after the time configured for new logs to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the log cleanup settings to be used to automatically purge the oldest log records, or log records
that no longer fit in the configured space, from the log repository.

Select When log size approaches maximum to configure automatic log file cleanup to begin when the
total size of the log repository approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic log file cleanup to begin when log
content is the age limit specified.

Select When either age or size restriction is met to configure automatic log file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, records are deleted from the log repository in the order in which they
were written to the log repository.

Log record age limit:

102 Troubleshooting and support

Specifies the lifespan, in hours, that log records can remain in the log repository before the log records
can be automatically deleted by the server. When the oldest records in the log repository have existed
longer than the age limit specified, then those records are targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the log repository to reach. When
the log repository approaches this size limit, the server deletes the oldest records from the log repository
to make space for new log records.

Out of space action
Specifies how the server reacts to an inability to add content to the log repository.

Select Stop server to specify that the server stops when the server is unable to write to the log repository.

Select Purge old records to specify that the server continues to run, and that the oldest log records are
immediately removed when the server is unable to write to the log repository.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the log when the server is unable to write to the log repository.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server, and the server
configuration, which takes effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

HPEL trace configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) trace settings.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL trace.

Trace to a directory
Specifies that the tracing system writes trace records to the trace directory as they are created by the
server.

Enable log record buffering
Specifies that the tracing system avoids writing to disk each time a trace record is created. The tracing
system creates a buffer that can hold a number of trace records, and writes the buffered events when the
buffer is full. The tracing system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Selecting this setting significantly improves tracing performance; however, if the server stops unexpectedly,
the contents might not be written to the trace repository.

Note: Enable trace record buffering in almost all cases. Only disable trace record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the tracing framework to close the trace file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Chapter 5. Using HPEL to troubleshoot applications 103

Note: If you want to automatically archive your trace files, set up your backup program to copy files after
the time you configured for new files to be started. Configure the backup to occur at least 10
minutes after the time configured for new files to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the trace cleanup settings to be used to automatically purge the oldest trace records, or trace
records that no longer fit in the configured space, from the trace repository.

Select When log size approaches maximum to configure automatic trace file cleanup to begin when the
total size of the trace repository approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic trace file cleanup to begin when
trace content is the age limit specified.

Select When either age or size restriction is met to configure automatic trace file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, records are deleted from the trace repository in the order in which
they were written to the trace repository.

Log record age limit:

Specifies the lifespan, in hours, that trace records can remain in the trace repository before the trace
records can be automatically deleted by the server. When the oldest records in the trace repository have
existed longer than the age limit specified, then those records are targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the trace repository to reach. When
the trace repository approaches this size limit, the server deletes the oldest records from the trace
repository to make space for new trace records.

Out of space action
Specifies how the server reacts to an inability to add content to the trace repository.

Select Stop server to specify that the server stops when the server is unable to write to the trace
repository.

Select Purge old records to specify that the server continues to run, and that the oldest trace records are
immediately removed when the server is unable to write to the trace repository.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the trace when the server is unable to write to the trace repository.

Trace to a memory buffer
Specifies that the tracing system writes trace records to a memory buffer.

You can write the memory buffer contents to the trace directory from the runtime tab.

Memory buffer size
Specifies the amount of memory the tracing system allocates in the server to contain trace records.

In cases where the memory buffer is full when a new trace record is created, the oldest entry from the
memory buffer is deleted to make space.

104 Troubleshooting and support

Dump button
Use this button to write the contents of the trace memory buffer to the trace directory.

The tracing system resets the memory buffer after you dump it. The tracing system continues to record
trace records in the memory buffer after you dump the buffer.

Directory to use for tracing and dumping memory buffer
Specifies the directory to which trace files are written. A subdirectory, trace data, is created in this
directory, and the trace files are written to this location.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server, and the server
configuration, which takes effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

HPEL text log configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) settings for text log.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL Text Log.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Enable Text Log
Enables writing log and trace records into the text log file.

Specifies that in addition to writing log and trace records in binary format, the logging system writes them
in a text format as well. You can configure the text log to be formatted in either of the formats that the
basic mode SystemOut.log file uses.

Note: All content written to the text log is also written to either the log repository or trace repository.
Enabling the text log degrades performance for applications that frequently create log or trace
entries.

Directory path
Specifies the directory to which log files are written.

Text log file names have the following format: TextLog_<yy.mm.dd>_<hh.mm.ss>, where "TextLog_" is a
fixed prefix, <yy.mm.dd> is a date (year, month, date) of the first record in the file, and <hh.mm.ss> is the
time (hour, minute, second).

Enable log record buffering
Specifies that the logging system avoids writing to disk each time a log record is created. The logging
system creates a buffer that can hold a number of log records, and writes the buffered events when the
buffer is full. The logging system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Chapter 5. Using HPEL to troubleshoot applications 105

Selecting this setting significantly improves logging performance; however, if the server stops
unexpectedly, the contents might not be written to the text log file.

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your server
is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the logging framework to close the log file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Note: If you want to automatically archive your log files, set up your backup program to copy files after
the time you configured for new logs to be started. Configure the backup to occur at least 10
minutes after the time configured for new logs to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the log cleanup settings to be used to automatically purge the oldest log records, or log records
that no longer fit in the configured space, from the text log directory.

Select When log size approaches maximum to configure automatic log file cleanup to begin when the
total size of the text log files approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic log file cleanup to begin when log
content is the age limit specified.

Select When either age or size restriction is met to configure automatic log file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, text log files are deleted from the text log directory in the order in
which they were written.

Log record age limit:

Specifies the lifespan, in hours, that log records can remain in the text log directory before the log records
can be automatically deleted by the server. When all records in a text log file have existed longer than the
age limit specified, then that file is targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the text log files to reach. When the
total size of the text log files approaches this size limit, the server deletes the oldest text log files from the
text log directory to make space for new log records.

Out of space action
Specifies how the server reacts to an inability to add content to the text log directory.

Select Stop server to specify that the server stops when the server is unable to write to the text log
directory.

Select Purge old records to specify that the server continues to run and that the file containing the oldest
log records is immediately removed when the server is unable to write to the text log directory.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the log when the server is unable to write to the text log directory.

106 Troubleshooting and support

Text Output Format
Specifies the format to use in the text log file.

Select Basic to specify a shorter, one-line-per-record format.

Select Advanced to specify a longer format using full logger name and more details about each record.

Include trace records
Specifies whether trace records are included in the text log file, as well as log records.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server and the server
configuration, which take effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

Log viewer settings
Use this page to view your High Performance Extensible Logging (HPEL) log, trace, System.out, and
System.err content.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
View HPEL logs and trace.

If HPEL is not enabled, you must enable it. Read about changing to HPEL logging and tracing from basic
mode for more information.

You can view log and trace data for servers that are currently running and configured to use HPEL. You
can also view log and trace data for servers that are currently stopped as long as a node agent or
administrative agent is running on the same machine and that agent is configured to use HPEL.

Log view table
Displays the log, trace, System.out, and System.err records.

The log view section displays the records. Use the First Page, Previous Page, Next Page, and Last Page
buttons to move through the list of records, or specify filter criteria in the Content and Filtering Details
section to limit the rows displayed. Records are always displayed in the order they were recorded by the
server. By default the log view has 5 columns as listed in the following table..

 Table 24. Log view table columns. The table columns provide information on the log records.

Column Description

Time Stamp The time when the event was recorded.

Thread ID The identity of the thread that recorded the event in hexadecimal
notation.

Logger The logger that recorded the event.

Level The type of event that was recorded.

Message The message from the recorded event. If the message has a
message ID the message ID is underlined. Click the message ID
to get an explanation and recommended user action for the
message.

To manipulate the log view, you can complete the following actions using available buttons.

Chapter 5. Using HPEL to troubleshoot applications 107

Table 25. Log view table buttons. The table buttons help you configure the log settings.

Button Resulting action

Refresh View Clears the contents of the viewer and reinitializes the view using
records from the server. Use this button to retrieve information
about any additional rows created since the log viewer was
started.

Show Only Selected Threads Filters any records created by any thread other than the one
selected in the selection area. Clicking on this button enables the
Show All Threads button.

Show All Threads Displays any records that were filtered when you clicked Show
Only Selected Threads.. This button is only enabled when you
have restricted the view using the Show Only Selected Treads
button.

Select Columns Enables you to select the columns in the viewer that you want to
view.

Export Exports logs to local workstation in any of basic, advanced, or
binary (HPEL) formats

Copy to Clipboard Copies the records that are highlighted in the selection area into
the operating system clipboard.

Server Instance Information Displays attributes for the selected server instance process. Use
this table to find attributes and corresponding values for the
server instance process environment. These properties are
similar to the ones found in the header of basic mode logs.

Content and filtering details
Provides selection options to specify what content sources to include and what content to filter from the
log view.

To change what content sources are shown in the table, or to filter what content is shown, expand the
Content and Filtering Details section.

Server instance
Changes the server instance from which log records are retrieved.

A server instance represents a run of a server process. Each time the server is restarted, a new server
instance is created. By default, the log view table shows log records generated in the most recent server
instance. To select a different server start time, choose a server instance with the appropriate start
timestamp. The timestamps shown represent the timestamp of the first record written to each server
instance.

View contents
Controls what content sources are displayed in the log view.

System Out
Specifies that content logged to the System.out output stream is included in the log view.

System Error
Specifies that content logged to the System.err output stream is included in the log view.

Logs and trace
Specifies that log and trace records are included in the log view.

108 Troubleshooting and support

Log and trace entries can be further specified to include a minimum or maximum level. Minimum and
maximum can be specified together, for example to display only a certain level of trace. If log and trace is
not selected neither log nor trace records of any severity might be displayed.

Examples of log and trace filtering:

v Selecting logs and trace and clearing minimum level and maximum level fields results in the log view
displaying records with any log or trace level.

v Selecting logs and trace and setting minimum level to WARNING results in the log view displaying log
records with levels WARNING, FATAL, or SEVERE.

v Selecting logs and trace and setting maximum level to FINE results in the log view displaying trace
records with levels FINE, FINER, or FINEST.

v Selecting logs and trace and setting minimum level to DETAIL and maximum level to AUDIT results in
the log view displaying log records with levels DETAIL, CONFIG, INFO, or AUDIT.

Filtering
Controls which records are included in and excluded from the log view.

For all filters in this section, multiple entries might be specified using a colon (:) as a separator character.
A limited set of regular expression characters can be used. Refer to console documentation for more
details. If multiple filter settings are specified, the filter conditions must all be true for a record to be
displayed in the log view.

Include loggers
Specifies the list of loggers whose records are included in the log view.

Exclude loggers
Specifies the list of loggers whose records are excluded from the log view.

Message contents
Specifies the message content that each record must contain to be included in the log view.

Event timing
Controls what records are displayed in the log view based on a start and end date and time.

From
Specifies the time of day, which the record creation time must be greater than or equal to for the record to
be displayed in the log view.

Time must be specified as HH:mm:ss using the 24-hour clock. If the From value is not specified, a default
value of 00:00:00 is used.

v HH represents the hour of the day. Valid values are from 0 to 23.

v mm represents the minute of the hour. Valid values are from 0 to 59.

v ss represents the seconds of the minute. Valid values are from 0 to 59.

On (first occurrence)
Specifies the date, which the record creation date must be greater than or equal to for the record to be
displayed in the log view.

Chapter 5. Using HPEL to troubleshoot applications 109

Until
Specifies the time of day, which the record creation time must be less than or equal to for the record to be
displayed in the log view.

Time must be specified as HH:mm:ss using the 24-hour clock. If the Until value is not specified, a default
value of 23:59:59 is used.

v HH represents the hour of the day. Valid values are from 0 to 23.

v mm represents the minute of the hour. Valid values are from 0 to 59.

v ss represents the seconds of the minute. Valid values are from 0 to 59.

On (second occurrence)
Specifies the date, which the record creation date must be less than or equal to for the record to be
displayed in the log view.

LogViewer command-line tool
Use the LogViewer command to query the contents of the High Performance Extensible Logging (HPEL)
log and trace repositories. You can also use the LogViewer command to view new log and trace repository
entries as the server writes content to them.

LogViewer

The High Performance Extensible Logging (HPEL) facility writes to the log and trace repositories in a
binary format. You can view, query and filter the repository using the LogViewer command. The LogViewer
command provides options for quickly converting HPEL logs into a text file in various formats, including
basic, advanced, and Common Base Event format. The command also provides options to make getting
the data you need from the logs easier; for example, allowing you to filter what log records you want by
level, logger name, or date and time.

Use the following command to view the full contents of your log and trace repositories:

v

(Windows) logViewer.bat

v

(Unix) logViewer.sh

Optional parameters

-repositoryDir directory_name
Specifies the path to the repository directory. In the case where you want to query both the log and
trace data together, provide the path to the parent directory, which contains both the log data and
tracedata directories. If you use the default repository location, profile_root/logs/application_server/,
and run this tool from the profile bin directory, then this argument is optional. The tool checks the
default location if one is not provided. If multiple application servers exist in this profile with HPEL
repositories, you are prompted to select which server log and trace repository you want to view.

-outLog file_name
Specifies the file name you want the text output written to. If you do not provide this information, the
text output is displayed on the console.

-format basic | advanced | cbe-1.0.1
Specifies the output format. Supported formats include basic, advanced, and the CBE-1.0.1 format. If
you do not provide this information, the output is in basic format.

-monitor [interval]
Specifies that you want the logViewer to continuously monitor the repository and output new log record
entries as they are created. You can provide an optional integer argument after this parameter to
specify how often you want the LogViewer tool to query the repository for new records. By default the

110 Troubleshooting and support

logViewer queries the repository for new records every 5 seconds. When used with other filtering
options, only those new records that match the filter criteria are displayed.

-help
Use this parameter to have the LogViewer tool list the full set of options that are available.

-startDate date_time
You can filter the results that are displayed from the repository by date and time. Use the startDate
parameter to filter out log entries that occurred before the date or date time provided as an argument.
Provide either a date or date and time, entered in the MM/dd/yy format or the MM/dd/yy H:m:s:S
format.

-stopDate date_time
Use this parameter to filter out log entries that occurred after the specified date or date time. Provide
the argument in the same format as the -startDate option.

-level level_name
Specifies that you want the tool to only display those log events which match the level name you
provide as an argument. Valid values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG,
INFO, AUDIT, WARNING, SEVERE, FATAL.

-minLevel level_name
Specifies that you want the tool to only display records which are at or above the specified level. Valid
values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG, INFO, AUDIT, WARNING,
SEVERE, FATAL.

-maxLevel level_name
Specifies that you want the tool to only display records that are at or below the specified level. Valid
values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG, INFO, AUDIT, WARNING,
SEVERE, FATAL.

-includeLoggers logger_names
When this option is used, only log events from the specified loggers are included in the LogViewer
output. Separate multiple entries with a comma. The * symbol can be used as a wild card to include all
loggers below a parent logger. When used in combination with the -excludedLoggers option, the more
specific match determines if the log event is included or excluded.

-excludeLoggers logger_names
Use this option to exclude log events from the specified loggers in the LogViewer output. Separate
multiple entries with a comma. The * symbol can be used as a wildcard to include all loggers below a
parent logger. When used in combination with the -includeLoggers option, the more specific match
determines if the log event is included or excluded.

-thread thread_ID
Use this option to restrict LogViewer output to only those log events from a specific thread. Any log
messages that were not created by the thread ID provided as an argument to this option are not
displayed. Specify the thread ID in hex format.

-extractToNewRepository directory_name
This option redirects log and trace records from a binary repository to a new binary repository at the
location that you specify. You can use this option with other filtering options to get a subset of log and
trace records into the new repository. This option uses the directory path where the new repository
must be written as an argument. Therefore, the directory must be empty. If the directory does not
exist, the directory is created. However, errors that occur during the directory creation might create
extraneous directories.

-listInstances
Use this option to list the IDs of available server process instances that are available to use with the
-instance option. After running LogViewer with the -listInstances option, you can then use the -instance

Chapter 5. Using HPEL to troubleshoot applications 111

option to invoke LogViewer with one of the server process instance IDs as an argument. Since this
option does not process any log or trace records, all other options are ignored when you specify this
option.

-instance instanceId
Use this option to retrieve the log and trace data for a given server process instance by providing the
server instance ID. Run LogViewer, along with the -listInstances option, before you use this option to
obtain a valid instance ID. This option is required when viewing logs and trace from an environment
that contains subprocesses, such as the z/OS operating system.

 If this option is combined with -latestInstance, -instance is ignored.

-latestInstance
Use this option to retrieve the log and trace data from the most recent server instance. If this option is
used with the -instance option, the -instance option is ignored.

-message match_string
Use this option to retrieve only log or trace data with a message field that matches the requested text.

Filtering considerations

Be aware of LogViewer filtering optimizations. The LogViewer tool is able to filter log and trace data most
efficiently when used with the following filter options:

v startDate

v stopDate

v thread

v level

v minLevel

v maxLevel

Example usage

See the following examples of LogViewer commands on UNIX-based systems. The examples show how to
run LogViewer from the profile bin directory where the repositoryDir parameter is not required.

v Write all records in the default repository between July 19th, 2009 and August 2nd, 2009 to a file called
/tmp/promo.logs.

logViewer.sh -outLog /tmp/promo.logs -startDate 07/19/2009 -stopDate 08/02/2009

v Display new records whose specified level is WARNING or higher using the advanced format as the
server writes them to the log repository.

logViewer.sh -monitor -minLevel WARNING -format advanced

v Write only those log messages that were written to the error stream of a specific repository to a file
called logged_errors.txt.

logViewer.sh -repositoryDir /apps/server1/logs -includeLoggers SystemErr -outLog logged_errors.txt

v View events from the default repository that occurred before September 14th, 2009 4:28 PM eastern
daylight time.

logViewer.sh -stopDate "09/14/2009 16:28:00:000 EDT"

Developing log and trace reading applications

Determining which of basic mode and HPEL mode is enabled
WebSphere Application Server offers both a High Performance Extensible Logging (HPEL) log and trace
framework, and a basic log and trace framework. There are a number of ways to determine which of the
two frameworks is enabled.

112 Troubleshooting and support

About this task

In many circumstances it might be important to know whether the HPEL or basic log and trace framework
is enabled, for example, when writing a script whose purpose is to read from any log files of the server.

Since the configuration files of a server can differ from the running state of a server (for example when
configuration changes have been made but the server has not been restarted), steps are provided for
determining the log and trace mode in various ways.

Procedure
v Use wsadmin to determine the log and trace mode that a running server uses.

1. Start wsadmin. In this case, wsadmin must be connected to a running server, for example through
the SOAP port. Read about starting the wsadmin scripting client for more information.

2. Determine whether the HPELControlService object is available. If the HPELControlService is present
it can be concluded that the server is running with the HPEL log and trace framework.

Using Jython:
HPELMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELControlService,process=myServer,*’)
if (HPELMBean == ’’):
 print "HPEL is not enabled"
else:
 print "HPEL is enabled"

 Table 26. AdminControl command description. The table lists AdminControl command and their description.
Command Description

myNode The host name of the node

myServer The name of the server

v Use wsadmin to determine the log and trace mode that a servers configuration specifies.

1. Start wsadmin. In this case, wsadmin can be connected to a running server or accessing the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Determine whether the RASLoggingService configuration object is enabled. If the
RASLoggingService config object is enabled then it can be concluded that the server is configured
to run with the basic log and trace framework. Otherwise, if the HighPerformanceExtensibleLogging
config object is enabled it can be concluded that the server is configured to run with the HPEL log
and trace framework.

Note: If both the RASLoggingService config object and the HighPerformanceExtensibleLogging
config object are enabled it can be concluded that the server is configured to run with the
basic log and trace framework.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/RASLoggingService:/")
basicEnabled = AdminConfig.showAttribute(RASLogging, "enable")
if (basicEnabled == "true"):
 print "Basic mode logging in effect"
else:
 HPELSvc = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/HighPerformanceExtensibleLogging:/")
 HpelEnabled = AdminConfig.showAttribute(HPELSvc, "enable")
 if (HpelEnabled == "true"):
 print "HPEL is enabled"
 else:
 print "No logging is enabled"

 Table 27. AdminControl command description. The table lists AdminControl command and their description.
Command Description

myCell The name of the cell

Chapter 5. Using HPEL to troubleshoot applications 113

Table 27. AdminControl command description (continued). The table lists AdminControl command and their
description.
Command Description

myNode The host name of the node

myServer The name of the server

v Use the administrative console to determine the log and trace mode that a running server uses.

1. Log into the administrative console.

2. Click Troubleshooting > Logs and Trace > myServer (where myServer is the name of the server
you are interested in)

3. Find the Switch to HPEL Mode button. If this button is available, the server is using the basic log
and trace framework. Otherwise, the server is using HPEL.

Results

For any method selected, the result is that you now know whether a server is configured to use the HPEL
or basic mode log and trace framework.

114 Troubleshooting and support

Chapter 6. Using sensitive log and trace guard

You can protect information with the sensitive log and trace guard. The sensitive log and trace guard
prevents loggers from writing sensitive information in your log and trace files.

Sensitive log and trace guard
The sensitive log and trace guard is a feature that helps administrators prevent sensitive information from
being exposed in log and trace files.

The sensitive log and trace guard uses an internal list of allowable levels for sensitive loggers which
specifies the lowest level at which listed loggers can generate log or trace data without containing
potentially sensitive data. You can also add your own loggers to the list that the sensitive log and trace
guard will block.

An example is as follows: If a servlet writes URL request parameters verbatim to logger
com.xyz.SomeLogger at level Level.FINE, and these request parameters could contain information such as
credit card numbers or passwords, then you should add an entry to the sensitive logger list to allow only
levels higher than Level.FINE to be logged - com.xyz.SomeLogger=CONFIG.

When the server initializes the log and trace system, or when you attempt to change the log detail level for
a server, the list of allowable levels for sensitive loggers is compared to the stated log detail level. Any
attempt to enable logging or tracing that is in conflict with entries in the list is overridden. In cases where
the same loggers are specified multiple times in the list the most restrictive entry is used. For example, if
the list of allowable levels for sensitive loggers contains a.b.*=INFO and a.b.*=FINE, then the a.b.* loggers
are restricted to only being able to log at levels INFO and higher. The following table provides examples of
how lists of allowable levels for sensitive loggers modify specified log detail level settings to determine
effective log detail level settings:

 Table 28. Restriction list. Examples of how sensitive log and trace guard settings affect log detail level settings
Log detail level setting List of allowable levels for sensitive loggers Resulting effective log detail level setting

a.b.*=SEVERE a.b.*=FINE *=INFO:a.b.*=SEVERE

a.b.*=SEVERE a.b.*=SEVERE *=INFO:a.b.*=SEVERE

a.b.*=FINE a.b.*=FATAL *=INFO:a.b.*=FATAL

a.*=SEVERE a.b.*=FINE *=INFO:a.*=SEVERE

a.*=SEVERE a.b.*=SEVERE *=INFO:a.*=SEVERE

a.*=FINE a.b.*=FATAL *=INFO:a.*=FINE:a.b.*=FATAL

a.b.*=SEVERE a.*=FINE *=INFO:a.b.*=SEVERE

a.b.*=SEVERE a.*=SEVERE *=INFO:a.b.*=SEVERE

a.b.*=FINE a.*=FATAL *=INFO:a.b.*=FATAL

a.b.*=FINE *=SEVERE *=SEVERE:a.b.*=SEVERE

a.b.*=FINE *=FINE *=INFO:a.b.*=FINE

a.b.*=FINE *=FINEST *=INFO:a.b.*=FINE

a.b.*=FINE x.y.z.*=SEVERE *=INFO:a.b.*=FINE:x.y.z.*=SEVERE

a.b.*=FINE x.y.z.*=FINE *=INFO:a.b.*=FINE

a.b.*=FINE x.y.z.*=FINEST *=INFO:a.b.*=FINE

a.b.*=FINE *=WARNING:x.y.z.*=SEVERE *=WARNING:a.b.*=WARNING:x.y.z.*=SEVERE

a.b.*=FINE *=WARNING:*=SEVERE:x.y.z.*=SEVERE *=SEVERE:a.b.*=SEVERE

By using this log and trace guard, you can prevent loggers from logging at levels which might expose
sensitive information.

© Copyright IBM Corp. 2011 115

The product is preconfigured with a known list of loggers to restrict, however you might find that further
restrictions are required. .

Enabling and disabling sensitive log and trace guard
You can either enable or disable the sensitive log and trace guard to help control whether loggers write
sensitive information in your log and trace files.

About this task

Administrators using WebSphere Application Server can prevent sensitive information, such as data
provided from users in HTTP requests, from being written in log and trace files. In some cases, when
having access to private data can help with debugging, you might want to disable sensitive log and trace
guard. For example, you might see that a credit card number that was entered in a web form did not have
the required number of digits.

Sensitive log and trace guard works by preventing administrators from enabling certain loggers to levels at
which they are known to log or trace sensitive information.

Use the administrative console to enable or disable the sensitive log and trace guard.

Procedure
1. Log on to the administrative console.

2. If you are using an administrative agent topology, then select a node that you want to manage, and
navigate to it.

3. From the navigation section in the console, choose Troubleshooting > Logs and trace.

4. Select the server that you want to enable or disable with sensitive log and trace guard.

5. Click Change log detail levels.

6. Select the Disable logging and tracing of potentially sensitive data check box to enable sensitive
log and trace guard. To disable sensitive log and trace guard, clear the Disable logging and tracing
of potentially sensitive data check box.

7. Click OK

8. Save the changes.

Results

After you enable sensitive log and trace guard, the server is now configured to prevent known sensitive
loggers from writing sensitive content to the log and trace files. After you disable sensitive log and trace
guard, the server is now configured to allow known sensitive loggers to write sensitive content to the log
and trace files. If you completed these steps using the deployment manager, you might need to
synchronize the node agent on the target node before restarting the server.

Maintaining sensitive log and trace guard lists
The sensitive log and trace guard relies on lists which declare which loggers can potentially log or trace
sensitive information, and the levels at which the sensitive information would be logged. You can extend
the default list of loggers and their corresponding levels in cases where you find sensitive information in
your log or trace that you want to block from being logged or traced in the future.

Before you begin

Read about log level settings for information about enabling the Sensitive Log and Trace Guard.

116 Troubleshooting and support

About this task

The application server has a private default list of sensitive loggers and their corresponding levels which it
will block whenever the sensitive log and trace guard feature is enabled. The application server also
provides a sensitive log and trace guard property file, and a sensitive log and trace guard API that you can
use to declare new logger restrictions if you discover other loggers which log or trace sensitive information.

Note: If you attempt to add loggers to the sensitive log and trace guard list that have already been
declared, the sensitive log and trace guard will use the more restrictive logger setting of the already
declared and newly specified levels. For example, if the server is already configured to only allow
logger com.xyz.SomeLogger to log at level FINE, and you attempt to declare that the same logger
should only be allowed to log at level FINEST, the server will ignore the update, but if you attempt
to declare that the same logger should only be allowed to log at level INFO, then the server will
reconfigure the sensitive log and trace guard to use level INFO for that logger.

Procedure
v You can use a properties file to declare new logger restrictions. This file is in the cell-scoped

configuration for each profile. The name is:

<profileHome>/config/cells/<cellname>/ras.rawtracelist.properties

This file contains documentation and syntax samples, but contains no actual entries. If you edit this file
on the deployment manager the file is automatically synchronized with all nodes in the cell. If you edit
this file on a specific node, it will be replaced the next time the file is synchronized with the deployment
manager. Thus, it is best to maintain the list at the deployment manager.

v You can use the com.ibm.websphere.logging.RawTraceList API to declare new logger restrictions This
API allows you to add individual entries or an array of entries (using the PatternLevel object in the same
package). It also allows passing in an input stream in the same format as the properties file.

Chapter 6. Using sensitive log and trace guard 117

118 Troubleshooting and support

Chapter 7. Diagnosing problems (using diagnosis tools)

Various diagnosis tools are provided to help you determine the source and impact of problems occurring in
your application serving environment.

About this task

The purpose of this section is to aid you in understanding why your enterprise application, application
server, or WebSphere Application Server is not working and to help you resolve the problem. Unlike
performance tuning, which focuses on solving problems associated with slow processes and non-optimized
performance, problem determination focuses on finding solutions to functional problems.

Procedure
 1. If deploying or running an application results in exceptions such as ClassNotFoundException, use the

Class Loader Viewer to diagnose problems with class loaders.

 2. If you already have an error message and want to quickly look up its explanation and recommended
response, look up the message by expanding the Messages section of the Information Center under
Reference > Messages.

 3. For help in knowing where to find error and warning messages, interpreting messages, and
configuring log files, see Working with message logs.

 4. Difficult problems can require the use of tracing, which exposes the low-level flow of control and
interactions between components. For help in understanding and using traces, see Working with
trace.

 5. For help in using settings or tools to help you diagnose the problem, see Working with
troubleshooting tools. Some of these tools are bundled with the product, and others are freely
downloadable.

 6. To learn how to work with Diagnostic Providers, see Working with Diagnostic Providers..

 7. To find out how to look up documented problems, common mistakes, WebSphere Application Server
prerequisites, and other problem-determination information on the WebSphere Application Server
public website, or to obtain technical support from IBM, see Obtaining help from IBM.

 8. The IBM developer kits: Diagnosis documentation describes debugging techniques and the diagnostic
tools that are available to help you solve problems with Java. It also gives guidance on how to submit
problems to IBM. You can find the guide at http://www.ibm.com/developerworks/java/jdk/diagnosis/.

 9. For current information available from IBM Support on known problems and their resolution, see the
WebSphere Application Server Product support page. For last minute updates, limitations, and known
problems, refer to the Release notes section.

10. IBM Support has documents that can save you time gathering information needed to resolve this
problem. Before opening a PMR, see the Must gather documents page for information to gather to
send to IBM Support.

© Copyright IBM Corp. 2011 119

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/support/search.wss?rs=180&q=mustgather

120 Troubleshooting and support

Chapter 8. Diagnosing problems with message logs

WebSphere Application Server can write system messages to several general purpose logs, including
JVM, process, and IBM service logs, which can be examined for problem determination.

Before you begin

The JVM logs are created by redirecting the System.out and System.err streams of the JVM to
independent log files. WebSphere Application Server writes formatted messages to the System.out stream.
In addition, applications and other code can write to these streams using the print() and println()
methods defined by the streams. Some Developer Kit built-ins such as the printStackTrace() method on
the Throwable class can also write to these streams. Typically, the System.out log is used to monitor the
health of the running application server. The System.out log and System.err log can be used for problem
determination. The System.err log contains exception stack trace information that is useful when
performing problem analysis.

Because each application server represents a JVM, there is one set of JVM logs for each application
server and all of its applications located by default in the following directory:

v install_root/profiles/profile_name/logs/server_name

The process logs are created by redirecting the STDOUT and STDERR streams of the process to independent
log files. Native code, including the Java virtual machine (JVM) itself, writes to these files. As a general
rule, WebSphere Application Server does not write to these files. However, these logs can contain
information relating to problems in native code or diagnostic information written by the JVM.

As with JVM logs, there is a set of process logs for each application server, since each JVM is an
operating system process.

The IBM service log contains both the WebSphere Application Server messages that are written to the
System.out stream and some special messages that contain extended service information that is normally
not of interest, but can be important when analyzing problems. There is one service log for all WebSphere
Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in
a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides
additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM
support organizations.

In addition to these general purpose logs, WebSphere Application Server contains other specialized logs
that are specific to a particular component or activity. For example, the HTTP server plug-in maintains a
special log. Normally, these logs are not of interest, but you might be instructed to examine one or more of
these logs while performing specific problem determination procedures. For details on how and when to
view the plug-in log, see the Accessing a web resource through the application server and bypassing the
HTTP server subsection of the A web resource does not display topic.

Note: The system log (SYSLOG) is only supported on WebSphere Application Server for z/OS.
WebSphere Application Server logging does not utilize operating system logs except in the case of
z/OS.

About this task

Sometimes server and application problems can be diagnosed by examining log output from the
WebSphere Application Server.

© Copyright IBM Corp. 2011 121

Procedure

Determine which type of logs you would like to implement:

v JVM logs

v Process logs

v IBM service logs

Example

How to direct SYSPRINT and SYSOUT output to an HFS file.

If you are familiar with UNIX or Windows environments, you might be reluctant to use the facilities of
SDSF (or IOF) to view the SYSPRINT and SYSOUT output from servants. If you would rather use a
familiar editor (such as vi) in a Telnet session to view your output, it is possible to redirect the SYSPRINT
and SYSOUT outputs to files in an HFS.

The JCL example below shows how to modify the SYSPRINT DD card in your startup procedure to
redirect the output to an HFS file. The old SYSPRINT DD card has been commented out by preceding it
with /*, and a new SYSPRINT DD card points to a file in the "/myDir/myServer" directory, in this case
named was.log.d&LYYMMDD..t&LHHMMSS.log. The extra period between the date and time variables is not a
typographical error, but rather an instance of JCL syntax that is necessary to terminate the first variable.
&LYYMMDD will be replaced with the local date in YYMMDD format and &LHHMMSS will be replaced by
the local time in HHMMSS format. The PATHMODE subparameter sets the file mode to 775 and the
PATHOPTS subparameter OWRONLY opens the file for WRITE access. The sub-parameter OCREAT
indicates that if the file does not already exist, create it.

You can modify the SYSPRINT DD card in either your Servant or Controller startup procedure. In addition,
the SYSOUT DD card can be modified in the same way to redirect the SYSOUT output.
//*YSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSPRINT DD PATHMODE=(SIRWXU,SIRWXG,SIROTH),
// PATHOPTS=(OWRONLY,OCREAT),
// PATH=’/myDir/myServer/was.log.d&LYYMMDD..t&LHHMMSS’

Note: If you try to direct the output for multiple streams to the same file, such as setting both DEFALTDD
and HRDCPYDD variables, the allocation for the HRDCPYDD file fails and output is sent to the
default location (JOBLOG/SYSLOG).

Viewing JVM logs
The Java virtual machine (JVM) logs are written as plain text files.

About this task

Use either of two techniques to view the JVM logs for an application server:
v Use the administrative console, which also supports viewing the JVM logs from a remote machine.
v Use a text editor on the machine where the logs are stored.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

122 Troubleshooting and support

Procedure
1. View the JVM logs from the administrative console.

a. Start the administrative console.

b. Click Troubleshooting > Logs and Trace in the console navigation tree. To view the logs for a
particular server, click on the server name to select it, then click JVM Logs.

c. Select the runtime tab.

d. Click View corresponding to the log you want to view.

2. View the JVM logs from the machine where they are stored.

a. Go to the machine where the logs are stored.

b. Navigate to the profile_root/logs/server_name directory and select SystemOut.log or
SystemErr.log.

c. Open the file in a text editor or drag and drop the file into an editing and viewing program.

JVM log interpretation
View the JVM log files to determine problems within application environments.

The JVM logs contain print data written by applications. The application can write this data directly in the
form of System.out.print(), System.err.print(), or other method calls. The application can also write
data indirectly by calling a JVM function, such as an Exception.printStackTrace(). In addition, the
System.out JVM log contains system messages written by the WebSphere Application Server.

You can format application data to look like WebSphere Application Server system messages by using the
Installed Application Output field of the JVM Logs properties panel, or as plain text with no additional
formatting. WebSphere Application Server system messages are always formatted. Depending on how the
JVM log is configured, formatted messages can be written to the JVM logs in either basic or advanced
format.

Message formats

Formatted messages are written to the JVM logs in one of two formats:
Basic Format

The format used in earlier versions of WebSphere Application Server.
Advanced Format

Extends the basic format by adding information about an event, when possible.

Basic and advanced format fields

Basic and Advanced Formats use many of the same fields and formatting techniques. The various fields
that may be found in these formats follow:
TimeStamp

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully
qualified date (for example YYMMDD), 24 hour time with millisecond precision and a time zone.

ThreadId
An 8 character hexadecimal value generated from the hash code of the thread that issued the
message.

ThreadName
The name of the Java thread that issued the message or trace event.

ShortName
The abbreviated name of the logging component that issued the message or trace event. This is
typically the class name for WebSphere Application Server internal components, but can be some
other identifier for user applications.

Chapter 8. Diagnosing problems with message logs 123

LongName
The full name of the logging component that issued the message or trace event. This is typically
the fully qualified class name for WebSphere Application Server internal components, but can be
some other identifier for user applications.

EventType
A one character field that indicates the type of the message or trace event. Message types are in
upper case. Possible values include:
F A Fatal message.
E An Error message.
W A Warning message.
A An Audit message.
I An Informational message.
C An Configuration message.
D A Detail message.
O A message that was written directly to System.out by the user application or internal

components.
R A message that was written directly to System.err by the user application or internal

components.
Z A placeholder to indicate the type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Basic format

Message events displayed in basic format use the following format. The notation <name> indicates
mandatory fields that will always appear in the basic format message. The notation [name] indicates
optional or conditional fields that will be included if they can be determined.
<timestamp><threadId><shortName><eventType>[className][methodName]<message>

Advanced format

Message events displayed in advanced format use the following format. The notation <name> is used to
indicate mandatory fields that will always appear in the advanced format for message entries. The notation
[name] is used to indicate optional or conditional fields that will be included if they can be determined.
<timestamp><threadId><eventType><UOW><source=longName>[className]
[methodName]<Organization><Product><Component>
[thread=threadName]<message>

Configuring the JVM logs
Use the administrative console to configure the JVM logs for an application server.

About this task

To log events or information from a running JVM, you can use the administrative console to configure the
settings you need for each server. Configuration changes for the JVM logs that are made to a running
application server are not applied until the application server is restarted.

124 Troubleshooting and support

Procedure
1. Start the administrative console

2. Click Troubleshooting > Logs and Trace, then click server > JVM Logs.

3. Select the Configuration tab.

4. Scroll through the panel to display the attributes for the stream to configure.

5. Change the appropriate configuration attributes and click Apply.

6. Save your configuration changes.

Java virtual machine (JVM) log settings
Use this page to view and modify the settings for the Java virtual machine (JVM) System.out and
System.err logs.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and Trace >server name > JVM
Logs.

View and modify the settings for the Java Virtual Machine (JVM) System.out and System.err logs for this
managed process. The JVM logs are created by redirecting the System.out and System.err streams of the
JVM to independent log files. The System.out log is used to monitor the health of the running application
server. The System.err log contains exception stack trace information that is useful when performing
problem analysis. There is one set of JVM logs for each application server and all of its applications. JVM
logs are also created for the deployment manager and each node manager. Changes on the Configuration
panel will apply when the server is restarted. Changes on the Runtime panel will apply immediately.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

File Name
Specifies the name of one of the log file described on this page.

The first file name field specifies the name of the System.out log. The second file name field specifies the
name of the System.err file.

Press the View button on the Runtime tab to view the contents of a selected log file.

The file name specified for the System.out log or the System.err log must have one of the following
values:
filename

The name of a file in the file system. It is recommended that you use a fully qualified file name. If
the file name is not fully qualified, it is considered to be relative to the current working directory for
the server. Each stream must be configured with a dedicated file. For example, you cannot redirect
both System.out and System.err to the same physical file.

 If the directory containing the file already exists, the user ID under which the server is running
requires read/write access to the directory. If the directory does not exist, it will be created with the
proper permissions. The user id under which the server is running must have authority to create
the directory.

Chapter 8. Diagnosing problems with message logs 125

console
This is a special file name used to redirect the stream to the corresponding process stream. If this
value is specified for System.out, the file is redirected to stdout. If this value is specified for
System.err, the file is redirected to stderr.

none Discards all data written to the stream. Specifying none is equivalent to redirecting the stream to
dev/null on an operating system such as AIX® of Linux.

The default path for filename is the value of the variable SERVER_LOG_ROOT. To see the value of the
SERVER_LOG_ROOT variable:

1. On the administrative console, select Environment > WebSphere Variables

2. Click on the Server radio button, and then click Apply. The value of the SERVER_LOG_ROOT
variable appears in the resulting list.

To change the value of SERVER_LOG_ROOT:

1. Select SERVER_LOG_ROOT

2. Enter a new path in the Value field

3. Click Apply

4. Save the configuration. You will have to restart the server for the change to take effect.

You can also change the location and name of the ${SERVER_LOG_ROOT}/SystemOut.log and
${SERVER_LOG_ROOT}/SystemErr.log files to any other absolute path and filename (for example,
/tmp/myLogfile.log).

File formatting
Specifies the format to use in saving the System.out file.

Log file rotation
Use this set of configuration attributes to configure the System.out or System.err log file to be
self-managing.

A self-managing log file writes messages to a file until reaching either the time or size criterion. At the
specified time or when the file reaches the specified size, logging temporarily suspends while the log file
rolls over, which involves closing and renaming the saved file. The new saved file name is based on the
original name of the file plus a timestamp qualifier that indicates when the renaming occurs. Once the
renaming completes, a new, empty log file with the original name reopens and logging resumes. All
messages remain after the log file rollover, although a single message can split across the saved and the
current file.

You can only configure a log to be self-managing if the corresponding stream is redirected to a file.
File Size

Click this attribute for the log file to manage itself based on its file size. Automatic roll over occurs
when the file reaches the specified size you specify in the maximum size field.

Maximum Size
Specify the maximum size of the file in megabytes. When the file reaches this size, it rolls over.

 This attribute is only valid if you click File size.
Time Click this attribute for the log file to manage itself based on the time of day. At the time specified in

the start time field, the file rolls over.
Start Time

Specify the hour of the day, from 1 to 24, when the periodic rollover algorithm starts for the first
time after an Application Server restart. The algorithm loads at Application Server startup. Once
started at the (start time field) hour, the rollover algorithm rolls the file every (repeat time field)
hours. This rollover pattern continues without adjustment until the Application Server stops.

126 Troubleshooting and support

Note: The rollover always occurs at the beginning of the specified hour of the day. The first hour
of the day, which starts at 00:00:00 (midnight), is hour 1 and the last hour of the day, which
starts at 23:00:00, is hour 24. Therefore, if you want log files to roll over at midnight, set the
start time to 1.

Repeat time
Specifies the number of hours after which the log file rolls over. Valid values range from 1 to 24.

Configure a log file to roll over by time, by size, or by time and size. Click File Size and Time to roll the
file at the first matching criterion. For example, if the repeat time field is 5 hours and the maximum file size
is 2 MB, the file rolls every 5 hours, unless it reaches 2 MB before the interval elapses. After the size
rollover, the file continues to roll at each interval.

Maximum Number of Historical Log Files
Specifies the number of historical (rolled) files to keep. The stream writes to the current file until it rolls. At
rollover, the current file closes and is saved as a new name consisting of the current name plus the
rollover timestamp. The stream then reopens a new file with the original name to continue writing. The
number of historical files grows from zero to the value of the maximum number of historical files field. The
next rollover deletes the oldest historical file.

Installed Application Output
Specifies whether System.out or System.err print statements issued from application code are logged and
formatted.
Show application print statements

Click this field to show messages that applications write to the stream using print and println
stream methods. WebSphere Application Server system messages always appear.

Format print statements
Click this field to format application print statement like WebSphere Application Server system
messages.

Monitoring application logging using JMX notifications
Java developers can create programs to monitor application server logs using JMX notifications.

About this task

The most common log message listeners are written in Java, and connect to the deployment manager or
an application server using SOAP. Use this topic to build a Java client that listens for log events.

Note: Be careful when adding listeners to servers with high logging volume as JMX notifications can slow
down your server.

Procedure
1. Import the necessary packages. You will typically need the following import statements at the beginning

of your Java program:
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.management.InstanceNotFoundException;
import javax.management.MalformedObjectNameException;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;

Additionally, to handle the messages, and the types returned from the calls in subsequent steps you
will need the following import statements.

Chapter 8. Diagnosing problems with message logs 127

import java.util.Iterator;
import java.util.Properties;
import java.util.Set;
import com.ibm.websphere.ras.RasMessage;

2. Create a Java class that implements the NotificationListener interface.

3. Implement the handleNotification method. The following example is a sample that writes the message
text to the Java console:
public void handleNotification(Notification notification, Object handback) {
 RasMessage rasMessage = (RasMessage)notification.getUserData() ;
 System.out.println("Localized message: " + rasMessage.getLocalizedMessage(null));
}

4. Connect to the SOAP port of the server whose JMX MBeans you want to monitor. The following code
creates a SOAP-connected AdminClient object with a specified host and a specified port:
 AdminClient adminClient = null ;
 String hostName = "someHostName";
 String soapPort = "8880";

 Properties connectProps = new Properties();
 connectProps.setProperty(AdminClient.CONNECTOR_TYPE, "SOAP");
 connectProps.setProperty(AdminClient.CONNECTOR_HOST, hostName);
 connectProps.setProperty(AdminClient.CONNECTOR_PORT, soapPort);

 try {
 adminClient = AdminClientFactory.createAdminClient(connectProps);
 } catch (ConnectorException e) {
 // error handling code
 }

5. Retrieve the MBean object name for the RasLoggingService MBean. The following code retrieves the
RasLoggingService MBean object name:
 String queryString = "WebSphere:cell="+cellName+",node="+nodeName+",process="+serverName+",
type=RasLoggingService,*" ;
 Set<ObjectName> objectMBeans = null;
 try {
 ObjectName queryName = new ObjectName(queryString);
 objectMBeans = (Set<ObjectName>)adminClient.queryNames(queryName, null);
 if (objectMBeans.size() > 1) {
 // error handling code to deal with the case where we get more than one name returned.
 }
 } catch (MalformedObjectNameException e) {
 // error handling code
 } catch (ConnectorException e) {
 // error handling code
 }

 if (objectMBeans.isEmpty()) {
 // error handling code to deal with the case where the MBean is not found
 }

 Iterator<ObjectName> objectNames = objectMBeans.iterator() ;
 ObjectName objectName = objectNames.next() ;

6. Add the notification listener. This sample code adds a notification listener, waits for 60 seconds while it
processes notifications, then removes the notification listener. A listener can stay connected as long as
needed.
 try {
 adminClient.addNotificationListener(objectName, this, null, null);
 Thread.sleep(60 * 1000) ;
 adminClient.removeNotificationListener(objectName, this) ;
 } catch (InstanceNotFoundException e) {
 // error handling code
 } catch (ConnectorException e) {

128 Troubleshooting and support

// error handling code
 } catch (Exception e) {
 // error handling code
 }

7. Add the necessary jar to your classpath. Add the admin client jar file to your classpath to be able to
compile and run your code. The admin client jar file is in the <install_root>/runtimes directory.

Results

You have created a Java program that can listen to, and take actions as a result of log event notifications
from an application server.

Process logs
WebSphere Application Server processes contain two output streams that are accessible to native code
running in the process. These streams are the stdout and stderr streams. Native code, including Java
virtual machines (JVM), might write data to these process streams. In addition, JVM provided System.out
and System.err streams can be configured to write their data to these streams also.

By default, the stdout and stderr streams are redirected to log files at application server startup, which
contain text written to the stdout and stderr streams by native modules (.dlls, .exes, UNIX libraries,
and other modules). By default, these files are stored as profile_root/logs/server_name/
native_stderr.log and profile_root/logs/native_stdout.log.

Important: If you turn on the debugging service or verbose Java logging, the size of the
native_stderr.log and native_stdout.log files increase in size with each restart of the
application server. This situation can cause application server crashes especially on Linux
operating systems where you might have a 2 gigabyte maximum file size. To prevent this
problem, consider redirecting the Java exceptions and verbose Java garbage collection to
other files.

You can increase the maximum file size beyond the 2 gigabyte file size limit if you

enable Large File Support (LFS). For more information, see your operating system
documentation.

Configuring the service log
The settings for service logs are typically shared for all servers, but you can configure a separate service
log for each server process by overriding the configuration values at the server level.

About this task

The configuration values for the service log are inherited by each server process from the node
configuration, but under certain circumstances you might wish to configure the service logs differently for
individual servers. You can use the administrative console to change the service log settings from the
server level configuration panels.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Chapter 8. Diagnosing problems with message logs 129

trns: In WebSphere Application Server Version 7 and earlier, the service log is enabled by default. In
WebSphere Application Server Version 8 and later, however, the service log is disabled by default.
Configure your servers to use HPEL log and trace mode and use the HPEL API if you need to be
able to merge log file content from multiple servers. Use the HPEL log and trace mode and use the
HPEL LogViewer command if you need to be able to render log content in Common Base Event
XML format.

Procedure
1. Start the administrative console.

2. Click Troubleshooting > Logs and Trace > server_name > IBM Service Logs.

3. Select the Enable box to enable the service log, or clear the check box to disable the log.

4. Set the name for the service log.

The default name is profile_root/logs/activity.log. If the name is changed, the run time requires
write access to the new file, and the file must use the .log extension.

5. Set the maximum file size.

Specifies the number of megabytes to which the file can grow. When the file reaches this size, it
wraps, replacing the oldest data with the newest data.

6. Save the configuration.

7. Restart the server to apply the configuration changes.

IBM service log settings
Use this page to configure the IBM service log, also known as the activity log.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and Trace > server name > IBM
Service Logs.

Use this page to configure the IBM service log, also known as the activity log. The IBM service log
contains both the WebSphere Application Server messages that are written to the System.out stream and
some special messages that contain extended service information that can be important when analyzing
problems. There is one service log for all WebSphere Application Server Java virtual machines (JVMs) on
a node, including all application servers. The IBM Service log is maintained in a binary format. Use the
Log and Trace Analyzer or Showlog tool to view the IBM service log.

Enable service log
Specifies creation of a log file by the IBM Service log.

File Name
Specifies the name of the file used by the IBM Service log.

Maximum File Size
Specifies the maximum size in megabytes of the service log file. The default value is 2 megabytes.

When this size is reached, the service log wraps in place. Note that the service log does not roll over to a
new log file like the JVM logs.

Enable Correlation ID
Specifies the generation of a correlation ID that is logged with each message.

You can use the correlation ID to correlate activity to a particular client request.

You can also use it to correlate activities on multiple application servers, if applicable.

130 Troubleshooting and support

Viewing the service log
Service logs are logs written in a binary format. You cannot view a service log directly using a text editor.
You should never directly edit the service log, as doing so will corrupt the log.

Before you begin

To move a service log from one machine to another, you must use a mechanism like FTP, which supports
binary file transfer. Use the Showlog tool to convert the contents of the service log to a text format that you
can then write to a file or dump to the command shell window.

About this task

Run the showlog script to view the contents of the service log as described in the following procedure.

Procedure
1. Open a shell window on the machine where the service log resides.

2. Change the directory to app_server_root/bin where app_server_root is the fully qualified path where
the WebSphere Application Server product is installed.

3. Run the showlog script.

showlog.bat

showlog.sh

4. Run the following showlog script with no parameters to display usage instructions.

showlog.bat

showlog.sh

5. Display the service log contents to the shell window.
 showlog service_log_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

6. Format and write the service log contents to a file.
 showlog service_log_filename output_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

Chapter 8. Diagnosing problems with message logs 131

132 Troubleshooting and support

Chapter 9. Working with trace

Use trace to obtain detailed information about running the WebSphere Application Server components,
including application servers, clients, and other processes in the environment.

About this task

Trace files show the time and sequence of methods called by WebSphere Application Server base
classes, and you can use these files to pinpoint the failure. Collecting a trace is often requested by IBM
technical support personnel. If you are not familiar with the internal structure of WebSphere Application
Server, the trace output might not be meaningful to you.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Configure an output destination to which trace data is sent.

2. Enable trace for the appropriate WebSphere Application Server or application components.

3. Run the application or operation to generate the trace data.

4. Analyze the trace data or forward it to the appropriate organization for analysis.

Results

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Enabling trace on client and stand-alone applications
When stand-alone client applications (such as Java applications which access enterprise beans hosted in
WebSphere Application Server) have problems interacting with WebSphere Application Server, it might be
useful to enable tracing for the application. Enabling trace for client programs will cause the WebSphere
Application Server classes used by those applications, such as naming-service client classes, to generate
trace information.

About this task

A common troubleshooting technique is to enable tracing on both the application server and client
applications, and match records according to timestamp to try to understand where a problem is occurring.

Procedure
1. To enable trace for the WebSphere Application Server classes in a client application, add the system

properties shown in the following example to the startup script or command of the client application.
The location of the output and the classes and detail included in the trace follow the same rules as for
adding trace to WebSphere Application Servers. For example, trace the stand-alone client application
program named com.ibm.sample.MyClientProgram, enter the following command:

© Copyright IBM Corp. 2011 133

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

java -DtraceSettingsFile=MyTraceSettings.properties
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager
-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

The file identified by file name must be a properties file placed in the class path of the application
client or stand-alone process. You must create a trace properties file by copying the
%install_root\properties\TraceSettings.properties file to the same directory as your client
application Java archive (JAR) file.

You cannot use the -DtraceSettingsFile=TraceSettings.properties property to enable tracing of the
ORB component for thin clients. ORB tracing output for thin clients can be directed by setting
com.ibm.CORBA.Debug.Output = debugOutputFilename parameter in the command line.

The java.util.logging.manager and java.util.logging.configureByServer system properties configure Java
logging to use a WebSphere Application Server-specific LogManager class and to use the
configuration from the file specified by the traceSettingsFile property. The default Java Logging
properties file, located in the Java SE Runtime Environment 6 (JRE6), will not be applied.

2. You can configure the MyTraceSettings.properties file to send trace output to a file using the
traceFileName property. Specify one of two options:

v The fully qualified name of an output file. For example, traceFileName=c:\\MyTraceFile.log. You
must specify this property to generate visible output.

v stdout. When specified, output is written to System.out.

3. You can also specify a trace string for writing messages with the Trace String property, Specify a
startup trace specification similar to that available on the server. For your convenience, you can enter
multiple individual trace strings into the trace settings file, one trace string per line.

Results

Here are the results of using each optional property setting:
v Specify a valid setting for the traceFileName property without a trace string to write messages to the

specified file or System.out only.
v Specify a trace string without a traceFileName property value to generate no output.
v Specify both a valid traceFileName property and a trace string to write both message and trace entries

to the location specified in the traceFileName property.

Tracing and logging configuration
Configure tracing and logging settings to help diagnose problems or evaluate system performance.

You can configure the application server to start in a trace-enabled state by setting the appropriate
configuration properties. You can only enable trace for an application client or stand-alone process at
process startup.

In WebSphere Application Server, V6 and later, a logging infrastructure, extending Java Logging, is used.
This results in the following changes to the configuration of the logging infrastructure in WebSphere
Application Server:

v Loggers defined in Java logging are equivalent to, and configured in the same way as, trace
components introduced in previous versions of WebSphere Application Server. Both are referred to as
"components."

v Both Java logging levels and WebSphere Application Server levels can be used. The following is a
complete list of valid levels, ordered in ascending order of severity:

 Trace option Output file

all trace.log

finest or debug trace.log

finer or entryExit trace.log

134 Troubleshooting and support

Trace option Output file

fine or event trace.log

detail SystemOut.log

config trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

info trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

audit trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

warning trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

severe or error trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

fatal trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

off trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

v Setting the logging and tracing level for a component to all will enable all the logging for that
component. Setting the logging and tracing level for a component to off will disable all the logging for
that component.

v You can only configure a component to one level. However, configuring a component to a certain level
enables it to perform logging on the configured level and any higher severity level.

v Several levels have equivalent names: finest is equivalent to debug; finer is equivalent to entryExit; fine
is equivalent to event; severe is equivalent to error.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Java Logging does not distinguish between tracing and message logging. However, previous versions of
WebSphere Application Server have made a clear distinction between those kind of messages. In
WebSphere Application Server, V6 and later, the differences between tracing and message logging are as
follows:

v Tracing messages are messages with lower severity (for example, tracing messages are logged on
levels fine, finer, finest, debug, entryExit, or event).

v Tracing messages are generally not localized.

v When tracing is enabled, a much higher volume of messages will be produced, and the trace output will
be in the trace file, not the SystemOut/Err log files. The trace file will only appear if tracing is enabled.

v Tracing messages provide information for problem determination.

Trace and logging strings

In WebSphere Application Server, V5.1.1 and earlier, trace strings were used for configuring tracing only.
Starting in WebSphere Application Server, Version 6 and later, the "trace string" becomes a "logging
string"; it is used to configure both tracing and message logging.

Chapter 9. Working with trace 135

In WebSphere Application Server, V5.1.1 and earlier, the trace service for all WebSphere Application
Server components is disabled by default. To request a change to the current state of the trace service, a
trace string is passed to the trace service. This trace string encodes the information detailing which level of
trace to enable or disable and for which components.

In all versions of WebSphere Application Server, the tracing for all components is disabled by default. To
change to the current state of the tracing and message logging, a logging string must be constructed and
passed to the server. This logging string specifies what level of trace or logging to enable or disable for
specific components.

You can type in trace strings (or logging strings), or construct them using the administrative console. Trace
and logging strings must conform to a specific grammar.

For WebSphere Application Server, V5.1.1 and earlier, the specification of this grammar is as follows:
TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*

LEVEL = all | entryExit | debug | event

STATE = enabled | disabled

COMPONENT_NAME = COMPONENT | GROUP

For WebSphere Application Server, V6 and later, the previous grammar is supported. However a new
grammar has been added to better represent the underlying infrastructure:
LOGGINGSTRING=COMPONENT_LOGGING_STRING[:COMPONENT_LOGGING_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL

LEVEL = all | (finest | debug) | (finer | entryExit) | (fine | event)
| detail | config | info | audit | warning | (severe | error) | fatal | off

COMPONENT_NAME = COMPONENT | GROUP

The COMPONENT_NAME is the name of a component or group registered with the trace service logging
infrastructure. Typically, WebSphere Application Server components register using a fully qualified Java
class name, for example com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard
character of asterisk (*) to terminate a component name and indicate multiple classes or packages. For
example, use a component name of com.ibm.servlet.* to specify all components whose names begin with
com.ibm.servlet. Use a wildcard character of asterisk (*) at the end of the component or group name to
make the logging string applicable to all components or groups whose names start with specified string.
For example, a logging string specifying "com.ibm.servlet.*" as a component name will be applied to all
components whose names begin with com.ibm.servlet. When an asterisk (*) is used by itself in place of
the component name, the level the string specifies, will be applied to all components.

The following are examples of using an asterisk (*) in logging strings. Note that the asterisk (*) in the
logging string does not need to have a period (.) in front of it. The period (.) can be used anywhere in the
logging string.

v com.ibm.ejs.ras.*=all - enables tracing for all loggers with names starting with "com.ibm.ejs.ras.". If
there is a logger named "com.ibm.ejs.ras" it will not have trace enabled.

v com.ibm.ejs.ras*=all - enables tracing for all loggers with names starting with "com.ibm.ejs.ras", such
as com.ibm.ejs.ras, com.ibm.ejs.raslogger, com.ibm.ejs.ras.ManagerAdmin

Note:

136 Troubleshooting and support

v In WebSphere Application Server, V5.1.1 and earlier, you could set the level to "all=disabled" to
disable tracing. This syntax, beginning with Version 6.0, will result in LEVEL=info; tracing will be
disabled, but logging will be enabled.

v In WebSphere Application Server, V6 and later, "info" is the default level. If the specified
component is not present (*=xxx is not found), *=info is always implied. Any component that is
not matched by the trace string will have its level set to info.

v If the logging string does not start with a component logging string specifying a level for all
components, using the "*" in place of component name, one will be added, setting the default
level for all components.

v STATE = enabled | disabled is not needed in Version 6 and later. However, if used, it has the
following effect:

– "enabled" sets the logging for the component specified to the level specified

– "disabled" sets the logging for the component specified to one level above the level specified.

 Table 29. Logging string and resulting logging level. The following examples illustrate the effect that disabling has on
the logging level:

Logging string Resulting logging level Notes®

com.ibm.ejs.ras=debug=disabled com.ibm.ejs.ras=finer debug (version 5) = finest (version 6)

com.ibm.ejs.ras=all=disabled com.ibm.ejs.ras=info "all=disabled" will disable tracing;
logging is still enabled.

com.ibm.ejs.ras=fatal=disabled com.ibm.ejs.ras=off

com.ibm.ejs.ras=off=disabled com.ibm.ejs.ras=off off is the highest severity

Proceed from broad to specific trace specifications in the trace string

best-practices: Start the trace string from the most broad component groups and then select more
specific traces. The advantage to this approach is that the trace settings for classes or
packages that are contained in a larger group are specified correctly by including them
later in the trace string.

The logging string is processed from left to right. During the processing, part of the logging string might be
modified or removed if the levels they configure are overridden by another part of the logging string.

Groups that contain packages that disable traces disable any packages that are enabled previously on the
same line. For example:
=off : MyGroup1=info : MyGroup2=finest : com.mycompany.mypackage.=info : com.mycompany.mypackage.MyClass=finest

This trace string indicates that the only tracing should come from the MyGroup1 group, the MyGroup2
group, and the com.mycompany.mypackage.* package with more specific tracing for MyClass class. If you
reverse this string, all tracing is disabled.

Examples

 Table 30. Version 5 and Version 6 strings. Examples of legal trace strings include:

Version 5 syntax Version 6 syntax

com.ibm.ejs.ras.ManagerAdmin=debug=enabled com.ibm.ejs.ras.ManagerAdmin=finest

com.ibm.ejs.ras.ManagerAdmin=all=enabled,event=disabled com.ibm.ejs.ras.ManagerAdmin=detail

com.ibm.ejs.ras.*=all=enabled com.ibm.ejs.ras.*=all

com.ibm.ejs.ras.*=all=enabled:com.ibm.ws.ras=debug=
enabled,entryexit=enabled

com.ibm.ejs.ras.*=all:com.ibm.ws.ras=finer

Chapter 9. Working with trace 137

Enabling trace at server startup
Use the administrative console to enable tracing at a server's startup. You can use trace to assist you in
monitoring system performance and diagnosing problems.

About this task

The diagnostic trace configuration settings for a server process determines the initial trace state for a
server process. The configuration settings are read at server startup and used to configure the trace
service. You can also change many of the trace service properties or settings while the server process is
running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
 1. Start the administrative console.

 2. Click Troubleshooting > Logs and trace in the console navigation tree, then click Server >
Diagnostic Trace.

 3. Click Configuration.

 4. Do not select the None check box. If this option is selected, the trace data is not logged or recorded
anywhere. All other handlers (including handlers registered by applications) still have an opportunity
to process these traces.

 5. Select whether to direct trace output to either a file or an in-memory circular buffer.

Note: Different components can produce different amounts of trace output per entry. Naming and
security tracing, for example, produces a much higher trace output than web container tracing.
Consider the type of data being collected when you configure your memory allocation and
output settings.

 6. If the in-memory circular buffer is selected for the trace output set the size of the buffer, specified in
thousands of entries. This is the maximum number of entries that will be retained in the buffer at any
given time.

 7. If a file is selected for trace output, set the maximum size in megabytes to which the file should be
allowed to grow. When the file reaches this size, the existing file will be closed, renamed, and a new
file with the original name reopened. The new name of the file will be based upon the original name
with a timestamp qualifier added to the name. In addition, specify the number of history files to keep.

 8. Select the desired format for the generated trace.

 9. Save the changed configuration.

10. To enter a trace string to set the trace specification to the desired state:

a. Click Troubleshooting > Logs and trace in the console navigation tree.

b. Select a server name.

c. Click Change Log Level Details.

d. If All Components has been enabled, you might want to turn it off, and then enable specific
components.

e. Click a component or group name. For more information see the page on log level settings. If the
selected server is not running, you will not be able to see individual component in graphic mode.

f. Enter a trace string in the trace string box.

138 Troubleshooting and support

g. Select Apply, then OK.

11. Allow enough time for the nodes to synchronize, and then start the server.

Enabling trace on a running server
Use the administrative console to enable tracing on a running server. You can use trace to assist you in
monitoring system performance and diagnosing problems.

About this task

You can modify the trace service state that determines which components are being actively traced for a
running server by using the following procedure.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Start the administrative console.

2. Click Troubleshooting > Logs and Trace in the console navigation tree, then click server >
Diagnostic Trace.

3. Select the Runtime tab.

4. Select the Save runtime changes to configuration as well check box if you want to write your
changes back to the server configuration.

5. Change the existing trace state by changing the trace specification to the desired state.

6. Configure the trace output if a change from the existing one is desired.

7. Click Apply.

Managing the application server trace service
You can manage the trace service for a server process while the server is stopped and while it is running.
You can specify which components to trace, where to send trace output, the characteristics of the trace
output device, and which format to generate trace output in.

About this task

Modify the trace settings to help with diagnosing problems or tuning performance within certain
applications.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Chapter 9. Working with trace 139

Procedure
 1. Start the administrative console.

 2. Click Troubleshooting > Logs and Trace > server_name.

 3. Click the Diagnostic Trace link.

 4. On the Configuration tab, do not select the None option. If this option is selected, the trace data is
not logged or recorded anywhere. All other handlers (including handlers registered by applications)
still have an opportunity to process these traces.

 5. On the Runtime tab, select either the Memory Buffer or File Trace Output option.

 6. Specify the appropriate values for your configuration for either the Memory Buffer or File Trace Output
option.

 7. Click Apply.

 8. Click Troubleshooting > Logs and Trace > server_name.

 9. Click the Change Log Detail Levels link.

10. Under Additional properties, click Change Log Detail Levels.

11. On the Runtime tab, change the existing trace state by changing the trace specification to the desired
state.

12. Click Apply.

Trace output
Trace output allows administrators to examine processes in the application server and diagnose various
issues.

On an application server, trace output can be directed either to a file or to an in-memory circular buffer. If
trace output is directed to the in-memory circular buffer, it must be dumped to a file before it can be
viewed.

On an application client or stand-alone process, trace output can be directed either to a file or to the
process console window.

In all cases, trace output is generated as plain text in either basic, advanced or log analyzer format as
specified by the user. The basic and advanced formats for trace output are similar to the basic and
advanced formats that are available for the JVM message logs.

Basic and advanced format fields

Basic and Advanced Formats use many of the same fields and formatting techniques. The fields that can
be used in these formats include:
TimeStamp

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully
qualified date (YYMMDD), 24 hour time with millisecond precision and the time zone.

ThreadId
An 8 character hexadecimal value generated from the hash code of the thread that issued the
trace event.

ThreadName
The name of the Java thread that issued the message or trace event.

ShortName
The abbreviated name of the logging component that issued the trace event. This is typically the
class name for WebSphere Application Server internal components, but may be some other
identifier for user applications.

140 Troubleshooting and support

LongName
The full name of the logging component that issued the trace event. This is typically the fully
qualified class name for WebSphere Application Server internal components, but may be some
other identifier for user applications.

EventType
A one character field that indicates the type of the trace event. Trace types are in lower case.
Possible values include:
> a trace entry of type method entry.
< a trace entry of type method exit.
1 a trace entry of type fine or event.
2 a trace entry of type finer.
3 a trace entry of type finest, debug or dump.
Z a placeholder to indicate that the trace type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Basic format

Trace events displayed in basic format use the following format:
<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>
 [parameter 1]
 [parameter 2]

Advanced formats

Trace events displayed in advanced format use the following format:
<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]
<Organization><Product><Component>[thread=threadName]
<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer trace format

Preserves trace information in the same format as produced by Showlog tool.

Diagnostic trace service settings
Use this page to configure diagnostic trace service settings.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this page, click the following path:

v Troubleshooting > Logs and Trace > server > Diagnostic trace

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using

Chapter 9. Working with trace 141

HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Trace Output
Specifies where trace output should be written. The trace output can be written directly to an output file, or
stored in memory and written to a file on demand using the Dump button found on the run-time page.

Different components can produce different amounts of trace output per entry. Naming and security
tracing, for example, produces a much higher trace output than web container tracing. Consider the type of
data being collected when you configure your memory allocation and output settings.

None

If this option is selected, the trace data is not logged or recorded anywhere. All other handlers (including
handlers registered by applications) still have an opportunity to process these traces.

Memory Buffer Specifies that the trace output should be written to an in-memory circular buffer. If you
select this option you must specify the following parameters:

v Maximum Buffer Size

– Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is
exceeded, older entries are overwritten by new entries.

File

Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages
to the file until the specified maximum file size is reached. When the file reaches the specified size,
logging is temporarily suspended and the log file is closed and renamed. The new name is based on the
original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the
renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No
messages are lost as a result of the rollover, although a single message may be split across the two files.
If you select this option you must specify the following parameters:

v Maximum File Size

– Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute
is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as
described above.

v Maximum Number of Historical Files

– Specifies the maximum number of rolled over files to keep.

v File Name

– Specifies the name of the file to which the trace output is written.

Trace Output Format
Specifies the format of the trace output.

You can specify one of three levels for trace output:

v Basic (Compatible)

– Preserves only basic trace information. Select this option to minimize the amount of space taken up
by the trace output.

v Advanced

– Preserves more specific trace information. Select this option to see detailed trace information for use
in troubleshooting and problem determination.

v Log analyzer trace format

142 Troubleshooting and support

– Preserves trace information in the same format as produced by Showlog tool.

Trace Output
Specifies where trace output should be written. The trace output can be written directly to an output file, or
stored in memory and written to a file on demand using the Dump button found on the run-time page.

None

If this option is selected, the trace data is not logged or recorded anywhere. All other handlers (including
handlers registered by applications) still have an opportunity to process these traces.

Memory Buffer

Specifies that the trace output should be written to an in-memory circular buffer. If you select this option
you must specify the following parameters:

v Maximum Buffer Size

– Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is
exceeded, older entries are overwritten by new entries.

v Dump File Name

– The name of the file to which the memory buffer will be written when it is dumped. This option is only
available from the Runtime tab.

File

Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages
to the file until the specified maximum file size is reached. When the file reaches the specified size,
logging is temporarily suspended and the log file is closed and renamed. The new name is based on the
original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the
renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No
messages are lost as a result of the rollover, although a single message may be split across the two files.
If you select this option you must specify the following parameters:

v Maximum File Size

– Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute
is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as
described above.

v Maximum Number of Historical Files

– Specifies the maximum number of rolled over files to keep.

v File Name

– View the file that is specified by the File Name parameter. This does not apply your configuration.

Select a server to configure logging and tracing
Use this page to select the server for which you want to configure logging and trace settings.

Application Servers

This page lists application servers in the cell and the nodes holding the application servers. The status
indicates whether a server is running, stopped, or encountering problems.

When you select an application server, a panel is displayed that will allow you to choose which log or trace
task to configure for that application server.

To view this administrative console page, click Troubleshooting > Logs and Trace

Chapter 9. Working with trace 143

Server
Specifies the logical name of the server.

Host name
Specifies the name of the host for the application server.

Version
Specifies the version for the application server.

Type
Specifies the type of application server.

Status
Indicates whether the application server is started or stopped. (WebSphere Application Server, Network
Deployment only)

Note that if the status is Unavailable, the node agent is not running in that node, and you must restart the
node agent before you can start the server.

Log and trace settings
Use this page to view and configure logging and trace settings for the server.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click:

v Troubleshooting > Logs and Trace > server_name

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Switch to HPEL Mode button
Use the Switch to HPEL Mode button to change the log and trace mode for the server to HPEL.

Note: Switching the server to HPEL log and trace mode requires a server restart.

Diagnostic Trace
The diagnostic trace configuration settings for a server process determine the initial trace state for a server
process. The configuration settings are read at server startup and used to configure the trace service. You
can also change many of the trace service properties or settings while the server process is running.

Java virtual machine (JVM) Logs
The JVM logs are created by redirecting the System.out and System.err streams of the JVM to
independent log files. WebSphere Application Server writes formatted messages to the System.out stream.
In addition, applications and other code can write to these streams using the print() and println() methods
defined by the streams.

144 Troubleshooting and support

Process Logs
WebSphere Application Server processes contain two output streams that are accessible to native code
running in the process. These streams are the stdout and stderr streams. Native code, including Java
virtual machines (JVM), might write data to these process streams. In addition, JVM provided System.out
and System.err streams can be configured to write their data to these streams also.

IBM Service Logs
The IBM service log contains both the WebSphere Application Server messages that are written to the
System.out stream and some special messages that contain extended service information that is normally
not of interest, but can be important when analyzing problems. There is one service log for all WebSphere
Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in
a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides
additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM
support organizations.

Change Log Level Details
Enter a log detail level that specifies the components, packages, or groups to trace. The log detail level
string must conform to the specific grammar described in this topic. You can enter the log detail level string
directly, or generate it using the graphical trace interface.

NCSA access and HTTP error logging
The NCSA access and HTTP error logging page enables you to configure the log settings for your HTTP
server.

Chapter 9. Working with trace 145

146 Troubleshooting and support

Chapter 10. Troubleshooting class loaders

Class loaders find and load class files. For a deployed application to run properly, the class loaders that
affect the application and its modules must be configured so that the application can find the files and
resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.
To diagnose and fix the problems more quickly, use the administrative console class loader viewer to
examine class loaders and the classes loaded by each class loader.

Before you begin

This topic assumes that you have installed an application on a server supported by the product and you
want to examine class loaders used by the application or its modules. The modules can be web modules
(.war files) or enterprise bean (EJB) modules (.jar files). The class loader viewer enables you to examine
class loaders in a runtime environment.

This topic also assumes that you have enabled the class loader viewer service. Click Servers > Server
Types > WebSphere application servers > server_name > Class loader viewer service, enable the
service and restart the server.

About this task

The runtime environment of WebSphere Application Server uses the following class loaders to find and
load new classes for an application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

2. A WebSphere extensions class loader

3. One or more application module class loaders that load elements of enterprise applications running in
the server

4. Zero or more web module class loaders

Each class loader is a child of the previous class loader. That is, the application module class loaders are
children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.
Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class
loader. If none of the parent class loaders can find the class, the original class loader attempts to load the
class. Requests can only go to a parent class loader; they cannot go to a child class loader. After a class
is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go up the
precedence list until the class is found.

© IBM Corporation 2005 147

If the class loaders that load the artifacts of an application are not configured properly, the Java virtual
machine (JVM) might throw a class loading exception when starting or running that application. “Class
loading exceptions” on page 149 describes the types of exceptions caused by improperly configured class
loaders and suggests ways to use the class loader viewer to correct configurations of class loaders. The
types of exceptions include:
v ClassCastException
v ClassNotFoundException
v NoClassDefFoundException
v UnsatisfiedLinkError

Use the class loader viewer to examine class loaders and correct problems with application or class loader
configurations.

Procedure
v Examine a tree view that lists all installed applications and their modules. The modules can be web

modules (.war files) or EJB modules (.jar files).

Click Troubleshooting > Class loader viewer to access the Enterprise applications topology page.

v Examine the class loader delegation hierarchy.

On the Enterprise applications topology page, select a module to access the Class loader viewer page.
The page lists the class loaders visible to web and EJB modules in an installed enterprise application.
This page helps you to determine which class loaders loaded files of a module and to diagnose
problems with class loaders.

The delegation hierarchy is determined by the class loader delegation mode, or class loader order,
specified for an application or web module. The value can be either Classes loaded with parent class
loader first or Classes loaded with local class loader first (parent last). Refer to the
Configure class loaders step for more information.

v Export information on class loaders.

1. On the Class loader viewer page, click Export.

2. Select to open a browser or editor on the class loader information or to save the information to disk
in XML format.

3. Click OK, and specify any additional information requested by the system.

v Display information about class loaders visible to the module in an HTML table format.

On the Class loader viewer page, click Table View. The Table View page displays the following
information:

 Table 31. Table View page. Information available on class loader attributes.

Class loader attribute Description

Delegation Indicates whether the class loader delegates the loading of the module to its parent class
loader. A value of true implies that the class loader of the parent application is being used
(Classes loaded with parent class loader first). A value of false implies that the
module class loader is being used (Classes loaded with local class loader first
(parent last)). Refer to the Configure class loaders step for more information.

Classpath Lists the paths over which the class loader searches for classes and resources.

Classes Lists the names of classes loaded in the JVM by this class loader.

The Table View option does not return a value when out-of-memory errors are generated. The
out-of-memory errors might be related to a memory leak. To examine information about class loaders in
a table, resolve the out-of-memory problem, and then click Table View again.

v Search class loaders.

On the Class loader viewer page, click Search to access the Search page, on which you can search
class loaders for the following:
– Specific strings

148 Troubleshooting and support

– Specific .jar files
– The names of files in a specific directory
– The names of files loaded by a specific class loader

The search is case-sensitive. “Class loading exceptions” describes several uses of the Search page.

v Configure class loaders. You can configure class loaders for the following:
– All applications installed on a specific server.
– A specific application
– A specific web module

Note: For detailed information about server, application, and web class loaders, see the chapter on
class loading in the Developing and deploying applications PDF book.

Class loader configuration determines which class loader loads the classes and resource files for an
application or web module. Application and WAR module class loader configuration settings include
Class loader order and WAR class loader policy.

A Class loader order value can be either Classes loaded with parent class loader first or Classes
loaded with local class loader first (parent last). The default is Classes loaded with parent
class loader first. A class loader with the Classes loaded with parent class loader first mode
delegates loading a class or resource to its immediate parent class loader before searching its
classpath.

When troubleshooting class loading problems, you might need to override classes visible to a parent
class loader. To override such classes with those specific to an application, set the Class loader order
to Classes loaded with local class loader first (parent last) on the class loader that contains the
application classes on its classpath. An application can override classes visible to a parent class loader,
but doing so can result in a ClassCastException or UnsatisfiedLinkError if there is a mixed use of
overridden classes and non-overridden classes.

For example, under default class loader policies, a web module has its own Web module (WAR) class
loader to load its artifacts, which are typically in the WEB-INF/classes and WEB-INF/lib directories. An
application module class loader is the immediate parent of this WAR class loader. To ensure that the
web module class loader searches these paths for a particular class or resource first, before delegating
the load operation to the application module class loader, set the Class loader order of the web
module to Classes loaded with local class loader first (parent last).

Class loader policies determine the structure of the application and WAR module class loaders. Under
the default policies, every running application EAR has its own application module class loader, and
every web module has its own WAR module class loader. The default policies ensure Java EE
compliance regarding visibility and isolation among application artifacts. Changing the default policies is
not suggested when troubleshooting class loading problems.

What to do next

If you continue to have class loader problems, refer to “Class loading exceptions” and to the class loading
chapter of the Developing and deploying applications PDF book.

Class loading exceptions
What kind of class-loading error do you see when you develop an application or start an installed
application?
v “ClassCastException” on page 150
v “ClassNotFoundException” on page 151
v “NoClassDefFoundException” on page 152
v “UnsatisfiedLinkError” on page 152

Chapter 10. Troubleshooting class loaders 149

ClassCastException

A class cast exception results when the following conditions exist and can be corrected by the following
actions:
v The type of the source object is not an instance of the target class (type).
v The class loader that loaded the source object (class) is different from the class loader that loaded the

target class.
v The application fails to perform or improperly performs a narrow operation.

The type of the source object is not an instance of the target class (type).
This is the typical class cast exception. You can diagnose whether the source object of a cast
statement is not an instance of the target class (type) by examining the class signature of the
source object class, then verifying that it does not contain the target class in its ancestry and the
source object class is different than the target class. You can obtain class information by inserting
a simple print statement in your code. For example:
System.out.println(source.getClass().getName() + “:” + target.getClass().getName());

Or use a javap command. For example:
javap java.util.HashMap
Compiled from "HashMap.java"
public class java.util.HashMap extends java.util.AbstractMap
 implements java.util.Map,java.lang.Cloneable,java.io.Serializable {

The class loader that loaded the source object (class) is different from the class loader that loaded
the target class.

Assuming that the type of the source object is an instance of the target class, a class cast
exception occurs when the class loader that loaded the source object's class is different that the
class loader that loaded the target class. This condition might occur when the target class is
visible on the classpaths of more than one class loader in the WebSphere Application Server
runtime environment. To correct this problem, use the Search and Search by class name console
pages used to diagnose problems with class loaders:
1. Click Troubleshooting > Class loader viewer > module_name > Search to access the

Search page.
2. For Search type, select Class/Package.
3. For Search terms, type the name of the class that is loaded by two class loaders.
4. Click OK. The Search by class name page is displayed, listing all class loaders that load the

class.

If there is more than one class loader listed, then the target class was loaded by more than
one class loader. Because the source object is an instance of the target class, the class loader
that loaded the source object class is different from the class loader that loaded the target
class.

5. Return to the Class loader viewer page and examine the classpath to determine why two
different class loaders load the class.

6. Correct your code so that the class is visible only to the appropriate class loader.

The application fails to perform or improperly performs a narrow operation.
A class cast exception can occur because, when the application is resolving a remote enterprise
bean (EJB) object, the application code does not perform a narrow operation as required. The
application must perform a narrow operation after looking up a remote object. Examine the
application and determine whether it looks up a remote object and, if so, the result of the lookup is
submitted to a narrow method.

 The narrow method must be invoked according to the EJB 2.0 programming model. In particular,
the target class submitted to the narrow method must be the exact, most derived interface of the
EJB. This also causes a class cast exception in the WebSphere Application Server runtime
environment. Examine the application and determine whether the target class submitted to the
narrow method is a super-interface of the EJB that is specified, not the exact EJB type; if so,
modify the application to invoke narrow with the exact EJB interface.

150 Troubleshooting and support

Lastly, if a class cast exception occurs during a narrow operation, verify that the narrow method is
being applied to the result of a remote EJB lookup, not to a local enterprise bean. A narrow is not
used for local lookups. Examine the application or module deployment descriptor to ensure that
the object being narrowed is not a local object.

ClassNotFoundException

A class not found exception results when the following conditions exist and can be corrected by the
following actions:
v The class is not visible on the logical classpath of the context class loader.
v The application incorrectly uses a class loader API.
v A dependent class is not visible.

The class is not visible on the logical classpath of the context class loader.
The class not found is not in the logical class path of the class loader associated with the current
thread. The logical classpath is the accumulation of all classpaths searched when a load operation
is invoked on a class loader. To correct this problem, use the Search page to search by class
name and by Java archive (JAR) name:

1. Click Troubleshooting > Class loader viewer > module_name > Search to access the
Search page.

2. For Search type, select Class/Package.

3. For Search terms, type the name of the class that is not found.

4. Click OK. The Search by class name page is displayed, listing all class loaders that load the
class.

5. Examine the page to see if the class exists in the list.

6. If the class is not in the list, return to the Search page. For Search terms, type the name of
the .jar file for the class; for Search type, select JAR/Directory.

7. Click OK. The Search by Path page is displayed, listing all directories that hold the JAR file.

If the JAR file is not in the list, the class likely is not in the logical class path, not readable or an
alternate class is already loaded. Move the class to a location that enables it to be loaded.

The application incorrectly uses a class loader API.
An application can obtain an instance of a class loader and call either the loadClass method on
that class loader, or it can call Class.forName(class_name, initialize, class_loader) with that class
loader. The application may be incorrectly using the class loader application programming interface
(API). For example, the class name is incorrect, the class is not visible on the logical classpath of
that class loader, or the wrong class loader was engaged.

 To correct this problem, determine whether the class exists and whether the application is properly
using the class loader API. Follow the steps in The class is not visible on the logical classpath of
the context class loader to determine whether the class is loaded. If the class has not been
loaded, attempt to correct the application and see if the class loads. If the class is in the class
path with proper permission and is not being overridden by another factory class, examine the API
used to load the class.

1. Click Troubleshooting > Class loader viewer > module_name > Search to access the class
loader Search page.

2. For Search type, select Class/Package.

3. For Search terms, type the name of the class.

4. Click OK. The Search by class name page is displayed, listing all class loaders that load the
class.

5. Examine the page to see if the class exists in the list.

6. If the class is in the list and a ClassNotFound exception was thrown, then the .jar file or class
is not in the correct context or a wrong API call in the current context was used.

Chapter 10. Troubleshooting class loaders 151

If the class is not in the list, return to the Search page and do the following:
a. Search for the class that generated the exception; that is, the class calling Class.forName.
b. See which class loader loads the class.
c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.

A dependent class is not visible.
When a class loader clsldr loads a class cls, the Java virtual machine (JVM) invokes clsldr to load
the classes on which cls depends. Dependent classes must be visible on the logical classpath of
clsldr, otherwise an exception occurs. This condition typically occurs when users make
WebSphere Application Server classes visible to the JVM, or make application classes visible to
the JVM or to the WebSphere extensions class loader. For example:
v Class A depends on Class B.
v Class A is visible to the WebSphere extensions class loader.
v Class B is visible on the local classpath of a WAR module class loader, not the WebSphere

extensions class loader classpath.

When the JVM loads class A using the WebSphere extensions class loader, it then attempts to
load Class B using the same class loader and ultimately creates a class not found exception.

To correct this problem:
1. Make the application-specific classes visible to the appropriate application class loader.
2. Search for the class not found (Class B).
3. If Class B is in the proper location, search for the class that loads the dependent class (Class

A) in the Class loader viewer.
4. If the class is loaded and a ClassNotFound exception was thrown, then the .jar file or class is

not in proper context or the wrong API call in the current context was used.

If no class was found, do the following:
a. Search for the class that generated the exception; that is, the class calling Class.forName.
b. See which class loader loads the class.
c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.
5. Ensure that the caller class (Class B) is visible to the JVM or WebSphere extensions class

loader.

NoClassDefFoundException

A no class definition found exception results when the following conditions exist and can be corrected by
the following actions:

The class is not in the logical class path.
Refer to “ClassNotFoundException” on page 151 for information.

The class cannot load.
There are various reasons for a class not loading. The reasons include: failure to load the
dependent class, the dependent class has a bad format, or the version number of a class.

UnsatisfiedLinkError

A linkage error results when the following conditions exist and can be corrected by the following actions:
v A user action caused the error.
v System.mapLibraryName returns the wrong library file.
v The native library is already loaded.
v A dependent native library was used.

A user action caused the error.

 Several user actions can result in a linkage error:

A library extension name is incorrect for the platform.

152 Troubleshooting and support

A library has the dynamic link library name library_name.dll.

A library has the name library_name.so or library_name.a.

System.loadLibrary is passed an incorrect parameter.

To load a dynamic link library named Name.dll, Name has to be passed to a
loadLibrary call.

To load a library named libName.so or libName.a, libName is
passed to the load library.

The library is not visible.
As a best practice, use the JVM class loader to find or load native libraries. WebSphere
Application Server prints the Java library path (java.library.path) when starting up. If the
JVM class loader is intended to load the library, verify that the path containing the native
library file is in the Java library path. If not, append the path to the platform-specific native
library environment variable or to the java.library.path system property of the server
process definition.

 In general, the Java virtual machine invokes findLibrary() on the class loader xxx that
loads the class that calls System.loadLibrary(). If xxx.findLibrary() fails, the Java virtual
machine attempts to find the library using the JVM class loader, which searches the JVM
library path. If the library cannot be found, the Java virtual machine creates an
UnsatisfiedLinkError exception.

Thus, if a WebSphere class loader is intended to find a native library myNativeLib, the
library must be visible on the nativelibpath of the class loader that loads the class that
calls System.loadLibrary(myNativeLib). This practice is necessary or desirable in the
following situation:

v Shared libraries have a Native library path in their configuration. Because shared
libraries enable the versioning of application-specific libraries, consider specifying the
paths to any native libraries used by the shared library code in the shared library
configuration.

Ensure that the correct WebSphere class loader loads the class that calls
System.loadLibrary() and that the native library is visible on the Native library path
setting.

System.mapLibraryName returns the wrong library file.
When loading a shared library, JVM calls mapLibraryName(libName) to convert libName to a
platform specific name. On AIX, HP-UX or Solaris operating systems, this call might return a file
name with the wrong extension (for example, libName.so rather than libName.a). To debug this,
write a program to that calls System.mapLibraryName() and verify that it returns the correct file
name.

The native library is already loaded.
This condition can result from either of the following errors:

User error
Check for multiple calls to System.loadLibrary and remove any extraneous calls.

Error when an application restarts
The JVM has a restriction that only one class loader can load a native library at a time. An
error results when an application restarts before the garbage collector cleans up the class
loader from the stopped application. When the class that loads the native library moves, all
of the classes that depend on that native library and their dependencies also must move.

 To correct this condition, move the loading of the native library to a class loader that does
not reload:

Chapter 10. Troubleshooting class loaders 153

1. Locate all application classes that load native libraries or have native methods.
2. Identify any dependent classes for the classes in step 1, such as logging packages.
3. Create a server-associated shared library or an isolated shared library.
4. Move the JAR files loaded for classes in steps 1 and 2 from the application to the

shared library created in step 3.
5. Save your changes.
6. Redeploy the application and rerun the scenario.

For more information about invoking, creating, and managing shared libraries, read
“Managing shared libraries” in the Administering applications and their environment PDF
book.

Classes within server-scoped libraries are loaded once for each server lifecycle, ensuring
that the native library required by the application is loaded once for each Java virtual
machine, regardless of the application's life cycle.

A dependent native library was used.
Dependent native libraries must be found or loaded by the JVM class loader. That is, if a native
library NL is dependent on another native library, DNL, the JVM class loader must find DNL on the
Java library path. This is because the JVM runs native code when loading NL; when it encounters
the dependency on DNL, the JVM native code can call only to the JVM class loader to resolve the
dependency. A WebSphere class loader cannot load a dependent native library.

 Modify the platform-specific environment variable defining the Java library path (LIBPATH) to
include the path containing the unresolved native library.

Class loader viewer service settings
Use this page to configure the server to start the class loader viewer service when the server starts. The
Class Loader Viewer helps you diagnose problems with class loaders.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Class loader viewer service.

Class loaders find and load class files. For a deployed application to run properly, the class loaders that
affect the application and its modules must be configured so that the application can find the files and
resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.
To diagnose and fix the problems more quickly, enable the class loader viewer service on this page and
then use the console Class loader viewer to examine class loaders and the classes loaded by each class
loader. Click Troubleshooting > Class loader viewer to access the Class loader viewer in the console.

Enable service at server startup
Specifies whether or not the server attempts to start the class loader viewer service when the server
starts.

The default is not to start the class loader viewer service.

Enterprise application topology
Use this page to see where modules reside in a topology of enterprise applications. Knowing where a
module resides helps you to determine which class loader loaded a module and to diagnose problems with
class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer. This page lists all
installed applications and their modules in a tree view. The modules can be web modules (.war files) or
enterprise bean (EJB) modules (.jar files).

154 Troubleshooting and support

When deploying an application to a server or starting an application, you might encounter problems related
to class loaders. Use the console pages accessed from this page to troubleshoot errors such as the
following:
v ClassCastException
v ClassNotFoundException
v NoClassDefFoundException
v UnsatisfiedLinkError

You can use the Class loader viewer console pages without having to restart or manipulate the application.

Enterprise applications topology
Displays a tree hierarchy of applications installed on a server and lists the module files in the class paths
of the applications.

Expand the hierarchy for an application to see what web modules (.war files) and EJB modules (.jar files)
are in the application class path.

Click on a module name to examine the class loaders of the module.

Class loader viewer settings
Use this page to examine the class loaders visible to a web module (.war file) or enterprise bean (.ejb
file) in an installed enterprise application. This page helps you to determine which class loaders loaded
files of a module and to diagnose problems with class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer > module_name.

To learn more about classes used by the module and their class loaders, click a button:

 Table 32. Class loader viewer buttons. Click a button to access information about classes.

Button Resulting action

Export Opens a dialog that enables you to view or save the class loader information on this page in an
XML file.

Table View Displays the Table view page, which provides information about class loaders visible to the
module in an HTML table format for each class loader. Such information includes:
Delegation

Whether the class loader delegates a load operation to its immediate parent before
searching its local classpath for a class or resource

Classpath
The local classpath, which includes the paths over which the class loader searches for
classes and resources, excluding the classpaths of any parent class loaders.

Classes
The names of classes loaded by the class loader

Search Displays the Search page, on which you can search class loaders for the following:
v Specific strings
v Specific .jar files
v The names of files in a specific directory
v The names of files loaded by a specific class loader

Class Loader
Displays a hierarchy of class loaders that affect the loading of classes used by the web or EJB module.
The Hierarchy tab displays the class loaders in a tree hierarchy. The Search Order tabs lists the class
loaders in the order in which the runtime environment uses them to find and load classes.

Chapter 10. Troubleshooting class loaders 155

Expand a hierarchy of class loaders to view the following:

v Class loader names

v Arrows that point upwards beside class loader names, indicating that requests can go to a parent class
loader only and not go to a child class loader

v The names of classes that are loaded by a class loader

v The paths of property files and .jar files used by the classes

The following class loaders might be in a hierarchy:

 Table 33. Class loader name descriptions. Class loaders that might be in the hierarchy of class loaders.

Class loader name Description

JDK Extension Loader The JDK extensions class loader is a composite class loader that is
comprised of the Java virtual machine (JVM) bootstrap class loader, the
JVM extensions class loader and the JVM system class loader, which load
the core SDK classes and resources as well as classes and resources
visible on the JVM classpath.

WAS Extension Class Loader The WAS Extension Class Loader loads the WebSphere Application Server
classes, stand-alone resource classes, custom service classes, and custom
registry classes. At bootstrap, this class loader uses the ws.ext.dirs
system property to determine the path that is used to load classes. Each
directory in the ws.ext.dirs class path and every .jar file or compressed
.zip file in these directories is added to the class path used by this class
loader.

WAS Compound Class Loader The WAS Compound Class Loaders load classes and resources of
enterprise archive (EAR) modules, web application archive (WAR) modules,
and server-associated shared libraries. Under default class loader policies,
an instance of a WAS Compound Class Loader exists for each running
EAR and WAR module and for each class loader defined in the server
configuration.

Click on Classes to view a list of classes loaded by a class loader.

The class loader viewer service must be enabled to view the list of classes.

Search settings
Use this page to search for information about class loaders visible to a web module (.war file) or
enterprise bean (.ejb file) in an installed enterprise application. This page helps you diagnose problems
with class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer > module_name
> Search.

On the Search page, you can search class loaders for the following:
v Specific strings
v Specific .jar files
v The names of files in a specific directory
v The names of files loaded by a specific class loader

156 Troubleshooting and support

Search type
Specifies the type of items in which to search for the string.

 Table 34. Search type fields. Type searchable information in a field and click Go.

Search type Instructions and resulting action

Class/Package In the Search terms field, type a class name or package name. After you select this search
type and click Go, the program searches class loaders for a class or package name. The
program displays a list of classes and packages that have the string in their name.

JAR/Directory In the Search terms field, type a .jar file name or directory name. After you select this
search type and click Go, the program searches class loaders for a .jar file or directory
name. The program displays a list of .jar files that have the string in their name and of all
files in directories that have the string in their name.

Search terms
Specifies the string to be found in the items searched.

The search is case-sensitive. If the search string is classname, the string ClassName is not found.

The search matches the entire string. If the search type is JAR/Directory and the search string is
C:/WebSphere/AppServerd0603.185/java/jre/lib/ext/CmpCrmf.jar, the entire path of the JAR file is
matched. If the search type is JAR/Directory and the search string is Cmp, the string Cmp is not found.

The search supports limited regular expressions. It supports the wildcard characters asterisk (*), question
mark (?), and percent sign (%). The wildcard characters * and % match zero or more characters; ? matches
exactly one character.

 Table 35. Search strings with wildcard characters. Use the example search strings to see what items result from
searches.

Search string Resulting matches

Cmp Items that have Cmp in their name

Cmp.jar Items that have Cmp in their name and that end in .jar

%Cmp% Items that have Cmp in their name

%Cmp%.jar Items that have Cmp in their name and that end in .jar

*Cmp?rmf.jar Items that have a name with any characters before Cmp, then any one character,
and then rmf.jar

The search supports full regular expressions if the value for the search string starts and ends with a
forward slash (/).

 Table 36. Search strings with regular expressions. Use the example search strings to see what items result from
searches.

Search string Resulting matches

/.*Cmp.*/ Items that contain any character before and after Cmp in their name

/.*Cmp.*\.jar/ Items that have Cmp in their name and that end in .jar

/.*Cmp?rmf\.jar/ Items that have a name with any characters before Cmp, then any one character,
and then rmf.jar

/.*\d\.jar/ Items with a name that ends in a number followed by .jar

Chapter 10. Troubleshooting class loaders 157

158 Troubleshooting and support

Chapter 11. Configuring the hang detection policy

The hang detection option for WebSphere Application Server is turned on by default. You can configure a
hang detection policy to accommodate your applications and environment so that potential hangs can be
reported, providing earlier detection of failing servers. When a hung thread is detected, WebSphere
Application Server notifies you so that you can troubleshoot the problem.

Before you begin

A common error in Java Platform, Enterprise Edition (Java EE) applications is a hung thread. A hung
thread can result from a simple software defect (such as an infinite loop) or a more complex cause (for
example, a resource deadlock). System resources, such as CPU time, might be consumed by this hung
transaction when threads run unbounded code paths, such as when the code is running in an infinite loop.
Alternately, a system can become unresponsive even though all resources are idle, as in a deadlock
scenario. Unless an end user or a monitoring tool reports the problem, the system may remain in this
degraded state indefinitely.

Using the hang detection policy, you can specify a time that is too long for a unit of work to complete. The
thread monitor checks all managed threads in the system (for example, web container threads and object
request broker (ORB) threads) . Unmanaged threads, which are threads created by applications, are not
monitored. For more information read “Hung threads in Java Platform, Enterprise Edition applications” on
page 160.

About this task

The thread hang detection option is enabled by default. To adjust the hang detection policy values, or to
disable hang detection completely:

Procedure
1. From the administrative console, click Servers > Application Servers > server_name

2. Under Server Infrastructure, click Administration > Custom Properties

3. Click New.

4. Add the following properties:

 Name com.ibm.websphere.threadmonitor.interval

Value The frequency, in seconds, at which managed threads in
the selected application server will be interrogated.

Default 180 seconds (three minutes)

 Name com.ibm.websphere.threadmonitor.threshold

Value The length of time, in seconds, in which a thread can be
active before it is considered hung. Any thread that is
detected as active for longer than this length of time is
reported as hung.

Default 600 seconds (ten minutes)

 Name com.ibm.websphere.threadmonitor.false.alarm.threshold

© Copyright IBM Corp. 2011 159

Value The number of times (T) that false alarms can occur
before automatically increasing the threshold. It is
possible that a thread that is reported as hung eventually
completes its work, resulting in a false alarm. A large
number of these events indicates that the threshhold
value is too small. The hang detection facility can
automatically respond to this situation: For every T false
alarms, the threshold T is increased by a factor of 1.5.
Set the value to zero (or less) to disable the automatic
adjustment.

Default 100

 Name com.ibm.websphere.threadmonitor.dump.java

Value Set to true to cause a javacore to be created when a
hung thread is detected and a WSVR0605W message is
printed. The threads section of the javacore can be
analyzed to determine what the reported thread and other
related threads are doing.

Default false

 Name com.ibm.websphere.threadmonitor.dump.stack

Value Set to true to cause a stack trace to be printed when a
hung thread is detected and a WSVR0605W message is
printed.

Default true

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval property to
less than or equal to zero.

5. Click Apply.

6. Click OK.

7. Save the changes. Make sure a file synchronization is performed before restarting the servers.

8. Restart the Application Server for the changes to take effect.

Hung threads in Java Platform, Enterprise Edition applications
WebSphere Application Server monitors thread activity and performs diagnostic actions if one has become
inactive.

When WebSphere detects that a thread has been active longer than the time defined by the thread
monitor threshold, the application server takes the following actions:

v Logs a warning in the WebSphere Application Server log that indicates the name of the thread that is
hung and how long it has already been active. The following message is written to the log:
WSVR0605W: Thread threadname has been active for
hangtime and may be hung. There are totalthreads
threads in total in the server that may be hung.

where: threadname is the name that appears in a JVM thread dump, hangtime gives an approximation
of how long the thread has been active and totalthreads gives an overall assessment of the system
threads.

v Issues a Java Management Extensions (JMX) notification. This notification enables third-party tools to
catch the event and take appropriate action, such as triggering a JVM thread dump of the server, or

160 Troubleshooting and support

|||

||
|
|

||
|

issuing an electronic page or email. The following JMX notification events are defined in the
com.ibm.websphere.management.NotificationConstants class:

– TYPE_THREAD_MONITOR_THREAD_HUNG This event is triggered by the detection of a
(potentially) hung thread.

– TYPE_THREAD_MONITOR_THREAD_CLEAR This event is triggered if a thread that was previously
reported as hung completes its work. Consult the section on false alarms for more information.

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data
counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance
analysis.

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data
counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance
analysis.

For additional information about performance monitoring and Tivoli Performance Viewer, see the chapter
Monitoring performance with Tivoli Performance Viewer in the Tuning guide PDF book

False Alarms

If the work actually completes, a second set of messages, notifications and PMI events is produced to
identify the false alarm. The following message is written to the log:
WSVR0606W: Thread threadname was previously reported to be
hung but has completed. It was active for approximately hangtime.
There are totalthreads threads in total in the server that still
may be hung.

where threadname is the name that appears in a JVM thread dump, hangtime gives an approximation of
how long the thread has been active and totalthreads gives an overall assessment of the system threads.

Automatic adjustment of the hang time threshold

If the thread monitor determines that too many false alarms are issued (determined by the number of pairs
of hang and clear messages), it can automatically adjust the threshold. When this adjustment occurs, the
following message is written to the log:
WSVR0607W: Too many thread hangs have been falsely reported. The hang
threshold is now being set to thresholdtime.

where: thresholdtime is the time (in seconds) in which a thread can be active before it is considered hung.

You can prevent WebSphere Application Server from automatically adjusting the hang time threshold. See
Chapter 11, “Configuring the hang detection policy,” on page 159

Example: Adjusting the thread monitor to affect server hang detection
The hang detection policy affects how the application server responds to a thread that is not being
processed correctly.

You can adjust the thread monitor settings by using the wsadmin scripting interface. These changes take
effect immediately, but do not persist to the server configuration, and are lost when the server is restarted.
The following script provides an example of how to adjust the properties for the thread monitor using the
wsadmin tool:
Read in the interval, threshold, false alarm from the command line
set interval [lindex $argv 0]
set threshold [lindex $argv 1]
set adjustment [lindex $argv 2]

Get the object name of the server you want to change the values on
set server [$AdminControl completeObjectName "type=Server,*"]

Chapter 11. Configuring the hang detection policy 161

Read in the interval and print to the console
set i [$AdminControl getAttribute $server threadMonitorInterval]

Read in the threshold and print to the console
set t [$AdminControl getAttribute $server threadMonitorThreshold]

Read in the false alarm adjustment threshold and print to the console
set a [$AdminControl getAttribute $server threadMonitorAdjustmentThreshold]

Set the new values using the command line parameters
$AdminControl setAttribute $server threadMonitorInterval ${interval}

$AdminControl setAttribute $server threadMonitorThreshold ${threshold}

$AdminControl setAttribute $server threadMonitorAdjustmentThreshold ${adjustment}

162 Troubleshooting and support

Chapter 12. Working with troubleshooting tools

WebSphere Application Server includes a number of troubleshooting tools that are designed to help you
isolate the source of problems. Many of these tools are designed to generate information to be used by
IBM Support, and their output might not be understandable by the customer.

About this task

This section only discusses tools that are bundled with the WebSphere Application Server product. A wide
range of tools which address a variety of problems is available from the WebSphere Application Server
Technical Support website.

Procedure
1. Select the appropriate tool for the task. For more information on the capacities of the supplied

troubleshooting tools, see the relevant articles in this section.

2. Run the tool as described in the relevant article.

3. Contact IBM Support for assistance in deciphering the output of the tool. For current information
available from IBM Support on known problems and their resolution, see the IBM Support page. IBM
Support has documents that can save you time gathering information needed to resolve this problem.
For the last minute updates, limitations, and known problems, see the release notes. Before opening a
PMR, see the Must gather page.

4. Use the IBM Support Assistant to help find and use various IBM Support resources, such as updated
documentation and problem determination tools.

Gathering information with the collector tool (deprecated)
The collector tool gathers information about your WebSphere Application Server installation and packages
it in a Java archive (JAR) file that you can send to IBM Customer Support to assist in determining and
analyzing your problem. Information in the JAR file includes logs, property files, configuration files,
operating system and Java data, and the presence and level of each software prerequisite.

Before you begin

The sort of information that you gather is not something that most people use. In fact, the collector tool
packages its output into a JAR file. IBM includes the collector tool in the product code, along with other
tools that help capture the information that you must provide when reporting a problem. The collector tool
is part of a strategy of making problem reporting as easy and complete as possible.

There are two phases of using the collector tool. The first phase runs the collector tool on your
WebSphere Application Server product and produces a Java archive (JAR) file. The IBM Support team
performs the second phase, which is analyzing the Java archive (JAR) file that the collector program
produces. The collector program runs to completion as it creates the JAR file, despite any errors that it
might find like missing files or invalid commands. The collector tool collects as much data in the JAR file
as possible.

The collector tool is a Java application that requires a Java SE Runtime Environment 6 (JRE6) to run.

About this task

The tool is within the installation root directory for WebSphere Application Server, Express. But you run the
tool from a working directory that you create outside of the installation root directory. This procedure
describes both of those steps and all of the other steps for using the tool and reporting the results from
running the tool.

© Copyright IBM Corp. 2011 163

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

There are two ways to run the collector tool. Run the collector tool to collect summary data or to traverse
the system to gather relevant files and command results. The collector tool produces a Java archive (JAR)
file of information needed to determine and solve a problem. The collector summary option produces a
lightweight collection of version and other information that is useful when first reporting the problem to IBM
Support. Run the collector tool from the root user or from the administrator user to access system files that
contain information about kernel settings, installed packages, and other vital data.

The tool collects information about the default profile if you do not use the optional parameter to identify
another profile.

Procedure

Run the collector tool.

1. Log on to the system as root or a member of the administrator group on a Windows platform.

2. Verify that Java 1.2.2 or higher is available in the path.

The collector program requires Java code to run. It also collects data about the IBM Developer Kit,
Java Technology Edition in which it runs.

If there are multiple Developer Kits on the system, verify that the one that the WebSphere Application
Server product uses is the one in the path for the collector program.

If the Developer Kit being used by the WebSphere Application Server is not available, put another
Developer Kit in the path for the collector program so that you can collect everything except data about
the Developer Kit that WebSphere Application Server, Express is using.

3. Verify that all necessary information is in the path being used by the collector program and that you
are not running the program from within the WebSphere Application Server product installation root
directory.

a.

Verify that the path contains the following system
directories:

v /bin

v /sbin

v /usr/bin

v /usr/sbin

b.

Include regedit in the path.

4. Make a working directory where you can start the collector program.

5. Make the working directory the current directory.

6. Run the collector program by entering the fully qualified command from the command line of the
working directory.

v Run the following command from Qshell:

app_server_root/bin/collector.sh

app_server_root\bin\collector.bat

Use the command with no additional parameter to gather one copy of the profile data and data from
each server in the node, and to store the data in a single JAR output file.

v Use the following command to gather data from a specific profile that might not be the default
profile.

app_server_root/bin/collector.sh -profileName profile_name

164 Troubleshooting and support

app_server_root\bin\collector.bat -profileName profile_name

7. Optional: You can run the collector tool from a profile's bin directory instead of the
app_server_root/bin/ directory.

Run the following command from Qshell:

profile_root/bin/collector.sh

profile_root\bin\collector.bat

You should get the same output if you run the collector tool from the bin directory of profile_root as
you would running it from app_server_root.

Issuing the command from the profile also runs the setupCmdLine.bat/sh file in the profile's bin
directory. This file sets an environment parameter that the collector uses to determine which profile's
data to collect.

Results

The collector program creates the Collector.log log file and an output JAR file in the current directory.

The name of the JAR file is composed of the host name, cell name, node name, and profile name:
host_name-cell_name-node_name-profile_name.JAR

The Collector.log log file is one of the files collected in the host_name-cell_name-node_name-
profile_name.JAR file.

What to do next

Send the host_name-cell_name-node_name-profile_name.JAR file to IBM Support for analysis.

Collector tool output
Use the collector tool to gather and analyze output from WebSphere Application Server.

The first step in using the collector tool on your WebSphere Application Server product is to run the tool to
produce a Java archive (JAR) file as output. The second step in using the collector tool is to analyze its
output. The preferred method of performing this analysis is to send the JAR file to IBM Support for
analysis. However, you can use this topic to understand the content of the JAR file if you perform your
own analysis.

You can view the files contained in the JAR file without extracting the files from the JAR file. However, it is
easier to extract all files and view the contents of each file individually. To extract the files, use one of the
following commands:
v jar -xvf WASenv.jar
v unzip WASenv.jar

Wasenv.jar stands for the name of the JAR file that the collector tool creates.

The JAR file contains:
v A collector tool log file, collector.log
v Copies of stored WebSphere Application Server files and their full paths that are located under directory

root in the JAR file
v Operating system information in a directory named OS
v Java information in a directory named Java
v WebSphere Application Server information in a directory named WAS
v Collector shell script (or batch file) execution information in a directory named debug

Chapter 12. Working with troubleshooting tools 165

v MQ information in a directory named MQ, if you installed WebSphere MQ or the embedded messaging
feature

v A JAR file manifest

Tips and suggestions
v Unzip the JAR file to an empty directory for easy access to the gathered files and for simplified cleanup.
v Check the collector.log file for errors:

– Some errors might be normal or expected. For example, when the collector attempts to gather files
or directories that do not exist for your specific installation, it logs an error about the missing files.

– A non-zero return code means that a command that the collector tool attempted to run does not
exist. This might be expected in some cases. If this type of error occurs repeatedly, there might
actually be a problem.

v

The OS/commands file has the location of all commands used. If
you are missing command output, check this file to see if the command was found.

v

The collector runs some shell scripts. The shell script output is
saved in files in the OS directory, while the corresponding debug information is saved in the debug
directory. If the output of a shell script is missing, check the corresponding file in the debug directory.

v

The OS directory contains a file named installed.out. This file contains a list of programs
found in the Add/Remove Programs list. This same information is contained in the file Desktop\My
Computer\Control Panel\Add/Remove Programs\Install/Uninstall.

collector command - summary option
WebSphere Application Server products include an enhancement to the collector tool beginning with
Version 5.0.2, known as the collector summary option.

The collector summary option helps you communicate with WebSphere Application Server technical staff
at IBM Support. Run the collector tool with the -Summary option to produce a lightweight text file and
console version of some of the information in the Java archive (JAR) file that the tool produces without the
-Summary parameter. You can use the collector summary option to retrieve basic configuration and
prerequisite software level information when starting a conversation with IBM Support.

The collector summary option produces version information for the WebSphere Application Server product
and the operating system as well as other information. It stores the information in the
Collector_Summary.txt file and writes it to the console. You can use the information to answer initial
questions from IBM Support or you can send the Collector_Summary.txt file directly to IBM Support.

Run the collector command to create the JAR file if IBM Support needs more information to solve your
problem.

To run the collector summary option, start from a temporary directory outside of the WebSphere
Application Server product installation root directory and enter one of the following commands:

v

app_server_root/bin/collector.sh -Summary

v

app_server_root \bin\collector.bat -Summary

First failure data capture (FFDC)
When a failure occurs during product runtime processing, the (FFDC) feature instantly collects information
about the events and errors that lead up to the failure. The captured data can then be used to analyze the
problem. After a maximum number of days, these files are automatically deleted from your system.

After the information is collected, and saved in a log file, FFDC returns control to the affected engines.

By default, a FFDC log file is automatically purged seven days it is created. You can configure the amount
of days between purges if you are concerned about the amount of space that the FFDC log files are using.

166 Troubleshooting and support

Two FFDC implementations are provided in the product:

v The WebSphere FFDC, which is the legacy FFDC implementation. This FFDC can only be used in
WebSphere products.

v The IBM FFDC, which is a more componentized, and more generic implementation that depends solely
on the JDK. This FFDC can be used in client processes and by non-WebSphere products, because it is
pluggable with non-WebSphere data collectors, formatters, providers, and listeners.

Both of these FFDC implementations support the OnDirProvider type functionality that is configurable
using the com.ibm.ffdc.log Java environment variable. The OnDirProvider functionality includes a built-in
provider that stores incidents as separate files in a directory, along with a separate summary file. The
com.ibm.ffdc.log Java environment variable can be set to the following values:

v <file_name>, where file_name is either be the name of a single file or a directory path.

– If file_name exists and is the name of a single file, all of the incident and summary reporting
information that FFDC collects is appended into that file.

– If file_name exists and is a directory path, whenever an incident occurs, a new file is created in that
directory and all of the incident and summary reporting information for that incident is written into this
newly created file. The incident is also added to the summary report in this directory.

– If file_name ends in a file separator (\ or /). but a file with the specified name does not exist, a
directory called file_name is created. Then, whenever an incident occurs, a new file is created in that
directory and all of the incident and summary reporting information for that incident is written into this
newly created file. The incident is also added to the summary report in this directory.

– If file_name does not end in a file separator (\ or /). and a file with the specified name does not exist,
a single file is created and given the specified name. All of the incident and summary reporting
information that FFDC collects is then appended into that file.

v System.out, which appends the incidents and summary report information to the stdout output stream.

v System.err, which append the incidents and summary report information to the stderr output stream.
System.err is the default value for the com.ibm.ffdc.log Java environment variable.

v Suppress, which causes all FFDC collected information to be discarded.

Specifying a value for the com.ibm.ffdc.log Java environment variable is the only configuration change that
you need to make to exploit the OnDirProvider functionality. The new FFDC also provides mechanisms to
overly choose this provider or to use your own WebSphere provider.

Starting in WebSphere Application Server V8, this same variable can be used to redirect the FFDC
incidents and summary created in the product. The only acceptable value for that, however, is a directory.
So it is recommended that, if this variable is used in a WebSphere server environment, that the
specification end in a File separator (/ or \\) to avoid conflicts.

gotcha: If the default setting for automatic purging of FFDC information is too long for your environment,
see the topic Configuring first failure data capture log file purges for a description of how you can
modify the length of time that the FFDC information is retained on your system.

Configuring first failure data capture log file purges
The first failure data capture (FFDC) log file saves information that is generated from a processing failure.
These files are deleted after a maximum number of days has passed. The captured data is saved in a log
file for analyzing the problem.

Before you begin

The first failure data capture (FFDC) feature preserves the information that is generated from a processing
failure and returns control to the affected engines. The captured data is saved in a log file for analyzing
the problem. FFDC is intended primarily for use by IBM Support. FFDC instantly collects events and errors

Chapter 12. Working with troubleshooting tools 167

that occur during the product run time. The information is captured as it occurs and is written to a log file
that can be analyzed by IBM Support personnel. The data is uniquely identified for the servant region that
produced the exception.

The FFDC configuration properties files are located in the properties directory under the Application Server
product installation. You must set the ExceptionFileMaximumAge property to the same value in all three
files: ffdcRun.properties, ffdcStart.properties, and ffdcStop.properties. You can set the
ExceptionFileMaximumAge property to configure the days between purging the FFDC log files. The value
of the ExceptionFileMaximumAge property must be a positive number. The FFDC feature does not affect
the performance of the Application Server product.

About this task

Perform the following steps to configure the number of days between the FFDC log file purges. The value
is in days.

Procedure
1. Open the ffdcRun.properties file.

The file is located in the app_server_root/properties directory.

2. Change the value for the ExceptionFileMaximumAge property to the number of days between the
FFDC log file purges. The value of the ExceptionFileMaximumAge property must be a positive number.
The default is seven days. For example, ExceptionFileMaximumAge = 3 sets the default time to three
days. The FFDC log file is purged after three days.

3. Save the ffdcRun.properties file and exit.

4. Repeat the previous steps to modify the ffdcStart.properties and ffdcStop.properties files.

Results

The FFDC file management function removes the FFDC log files that have reached the maximum age and
generates a message in the SystemOut.log file.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

168 Troubleshooting and support

Chapter 13. Working with Diagnostic Providers

Diagnostic Providers enable you to query the startup configuration, current configuration, and current state
of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic
tests that are available from a diagnostic domain.

About this task

The Diagnostic Provider Utility is a simple front end in the administration console that presents the
available set of Diagnostic Providers and enables you to work with them.

Procedure

Learn about Diagnostic Providers

Diagnostic Providers
Diagnostic Providers are a quick method for viewing configuration and the current state of individual
components within an application server environment.

WebSphere Application Server components can be considered as being divisible into diagnostic domains.
A diagnostic domain refers to a set of classes within the component that share a set of diagnostics. Some
larger components might have multiple diagnostic domains. For example, the Connection Manager
logically consists of multiple data sources and connection factories that each have separate diagnostic
domains.

This image shows the relationships between the parts that make up the Diagnostic Provider (DP) utility.

Diagnostic Provider MBeans

A single diagnostic domain receives its diagnostic services from a Diagnostic Provider MBean. The
Diagnostic Provider MBean enables you to query the startup configuration, current configuration, and
current state of the diagnostic domain. In addition, Diagnostic Provider MBeans can also provide access to
any self diagnostic tests that are available from the diagnostic domain. Some characteristics of Diagnostic
Provider MBeans include:
v Diagnostic Provider MBeans are Java Management Extensions (JMX) MBeans
v Diagnostic Provider MBeans all implement a DiagnosticProvider interface which includes methods for

configuration dumps, state dumps, and self diagnostic tests
v Diagnostic Provider MBeans provide a way to expose information about running components so

administrators can more easily debug problems related to those components. As with other MBeans
running in WebSphere Application Server, they can be accessed from JMX client code, or through the
wsadmin tool.

Diagnostic Provider Infrastructure

Diagnostic Provider MBeans are efficient at delivering Java object representations of configuration, state,
and self test information. This is good for when programs interact. For human users to access the
information, WebSphere Application Server provides a set of facilities to extend the value of Diagnostic
Provider MBeans.

The Diagnostic Service MBean
provides methods to convert Diagnostic Provider MBean output into human readable formats. The
Diagnostic Service MBean also provides some methods to facilitate looking up the Diagnostic

© Copyright IBM Corp. 2011 169

Provider MBeans on the same server as the Diagnostic Service MBean. For administrators that
want to access diagnostic data from a command line, the wsadmin tool can be used directly with
the Diagnostic Service MBean to get formatted results

The Diagnostic Provider utility
a set of panels included in the WebSphere Application Server administration console through
which administrators can interact with Diagnostic Provider MBeans. The Diagnostic Provider utility
is a simple front end in the administration console that presents the available set of Diagnostic
Provider MBeans present on each managed server, and provides a means to execute and view
the results of configuration dumps, state dumps, and diagnostic self tests.

.

The purpose of Diagnostic Providers

Diagnostic Providers give you more information for quickly discovering and diagnosing system problems.
The following scenario contrasts the experience of an administrator working with a component that does
not have a Diagnostic Provider to one that does.

When the administrator works with a component that is without a Diagnostic Provider, the events are as
follows:
1. A log entry indicates that a particular component is experiencing a problem.
2. The system administrator sees the log entry through the runtime messages panel.
3. The system administrator cannot tell what is wrong, so calls IBM support for assistance, with a

potentially ill-defined problem.

When the administrator works with a component with a Diagnostic Provider, and the Diagnostic Provider
ID is registered with the component's logger, the situation changes as follows:
1. A log entry that contains a Diagnostic Provider ID (DPID) indicates that something has gone wrong in a

specific component.
2. The system administrator sees the log entry through the runtime messages panel.
3. The administrator clicks a button on the runtime message panel to execute a state dump or a

configuration dump, or to be taken to the list of component self tests.
4. From the self test, the administrator is warned that the component is configured in a way that could

lead to poor performance or failures.

Furthermore, when the administrator works with a component with a Diagnostic Provider, and the
Diagnostic Provider ID is not registered with the component's logger, the situation might unfold like this:
1. A log entry which doesn’t contain a DPID indicates that something has gone wrong in a component.
2. The system administrator sees the log entry through the runtime messages panel.
3. The system administrator uses the administrative console to navigate through the available set of

Diagnostic Providers and selects one that sounds appropriate.
4. He runs a configuration dump, a state dump, or a self diagnostic test against the Diagnostic Provider

to collect information about the component.
5. From the state dump, the administrator is able to notice that the component state is not what would be

expected for its workload.
6. The administrator works with the test team to determine which of the flows is causing the state of the

component to diverge from what is expected (as evidenced by repeated execution of the state dump).

Diagnostic Provider IDs
A Diagnostic Provider ID (DPID) is the unique address of a Diagnostic Provider MBean. Components that
have associated Diagnostic Provider MBeans can include the DPID in their log entries.

Diagnostic Provider IDs are implemented in WebSphere Application Server as Java Management
Extensions (JMX) MBean ObjectNames, and can be used at JMX MBean servers to look up Diagnostic
Provider MBeans.

170 Troubleshooting and support

By including the String representation of the DPID in each logged message, the message can be tracked
back to the Diagnostic Provider related to the component. A method is provided to associate Diagnostic
Provider IDs with Loggers (from the java.util.logging logging API).

The diagram above shows how the use of DPIDs in log entries enables callbacks to the component that
originally created the log entry.
1. Shows the component logging with a DPID included in the log entry.
2. The administrator examines the log entry through the Runtime Messages Utility and notices that the

entry has a link to a Diagnostic Provider.
3. The administrator uses the link to gain access to the relevant MBean in the Diagnostic Provider Utility .
4. The Diagnostic Provider Utility contacts the Diagnostic Provider MBean to ask for more information.
5. The request for more information is sent back to the source of the original log entry.
6. The response from the Diagnostic Provider is provided in the administration console.

Diagnostic Provider configuration dumps, state dumps, and self tests
The Diagnostic Provider (DP) infrastructure allows for a software component or stack product in the
WebSphere Application Server space to expose key information about its configuration, current state, and
current ability to perform operations.

The methods that expose this information might be driven as a result of a message put out by the
component (by a logger which automatically includes the Diagnostic Provider ID in each message), or
might be driven as a result of an overall system health-check when an administrator or automated tool is
monitoring the system.

Configuration dumps

A Configuration dump is an operation you can perform on a Diagnostic Provider to list the startup or
current values of the configuration attributes for the DP. The name for each data item in this dump should
reflect its disposition. That is, each item should be called startup-xxx or current-xxx to show whether this is
a startup or current value. The collection of attributes returned from this operation can be thought of as the
payload of the configuration dump. More information about payloads can be found in “Diagnostic Provider
method implementation” on page 177.

You can find several ways to filter the output of a configuration dump in “Diagnostic Provider registered
attributes and registered tests” on page 172.

State dumps

A State dump is similar to a configuration dump, but it differs in two key areas. First, a state dump displays
current information about the operation of a component. An example is a connection pool. A configuration
dump can show DataSource name, the minConnections (configured or current), the maxConnections, the
DataBase name, and so on. A state dump is more likely to show the current connections in use, the high
concurrent use count, the number of times the pool has been expanded, the average time between
requesting a connection and returning it, and so forth.

State dumps can be impacted by the values in the State Collection Specification. This is a dynamic
specification that controls additional data collection that the component can do at runtime. If additional data
is being collected, then a State dump might display more information. The same filters and payload
information that apply to Configuration dumps (see “Diagnostic Provider registered attributes and
registered tests” on page 172) apply to State dumps.

Chapter 13. Working with Diagnostic Providers 171

Self Diagnostic tests

Self diagnostic tests are non-invasive operations that a Diagnostic Provider exposes. Non-invasive means
that if they modify anything for the test, the conclusion of the test reverses the modification. These tests
give an administrator the option to test simple functions of a component to see if it is able to perform them.

The filters for a self diagnostic test apply to the test itself, not to the output of the test. A typical use of Self
Diagnostic tests could be for a pool manager of some sort to pull an object out of the pool and return it to
the pool to verify that this operation can still be performed, and with acceptable performance.

Diagnostic Provider registered attributes and registered tests
Each Diagnostic Provider (DP) provides a list of state dump attributes, configuration dump attributes, self
tests, and self test attributes. The tests are operations that the DP can perform. The attributes are pieces
of information that are available for collection from a Configuration dump, a State dump, or a specific Self
Diagnostic test.

Each attribute can be seen as a piece of information with a label on it. Each attribute is also considered to
be either registered or not registered. A registered attribute is one that should be available from one
release of WebSphere Application Server to the next. A nonregistered attribute might not be available in its
current form in future releases of the product (no commitment has been made).

When performing a Configuration dump, a State dump, or a Self Diagnostic test, an administrator or
automatic tooling can request only registered values, or all values, depending on the needs of the
administrator or tool. Note that the option of filtering results is only available through the Diagnostic
Provider's Java Management Extension (JMX) MBean interface, which you can access programmatically
or through the wsadmin tool.

The DiagnosticProviderRegistration XML file

The DiagnosticProviderRegistration Extensible Markup Language (XML) file is used in conjunction with the
method signatures to filter the results of calling the various methods. This XML file defines the
configuration information, state information, and self diagnostic tests exposed by the component. In the
configuration and state information, the key working unit is referred to as the attribute. Specification of an
attribute is as follows:
<attribute>
 <id><Regular Expression representing the attribute name></id>
 <descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>
 <registered>true</registered>
 </attribute>

The parts are as follows:

ID: The attribute's name. This name can be expressed with wildcard characters conforming to regular
expression syntax. The registered attribute ID is used in the following places:
v Within Diagnostic Provider configuration dump and state dump methods to determine which

attributes to return.
v In the administration console to match description keys to attributes returned from a request to

a Diagnostic Provider for a configuration dump, state dump, or self diagnostic operation.

As an example, if a configuration dump returns an attribute with ID cachedServlet-MyServlet-
servletPath to the administration console, the administration console could use the descriptionKey
corresponding to the attribute registered as <id>cachedServlet-.*-servletPath</id> when
selecting what description text to put next to this attribute's name and return values.

descriptionKey:
This is a key into a resourceBundle for localization.

172 Troubleshooting and support

registered:
This is a boolean qualifying whether this attribute will be available from one release of the software
to the next. If registered is true, then this attribute should be available in the next release. If
registered is false, then there is no guarantee that this attribute will continue to exist. Automation
should use some caution when handling non-registered attributes.

Specification of a selfDiagnosticTest is as follows:
<test>
 <id><Regular Expression for the name of the test></id>
 <descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>
 <attribute><One or more attributes which will be output from this test></attribute>
</test>

The parts are as follows:

ID: Similar to the ID for the attribute, but in this case, describing the test to be performed instead of
the attribute to be returned.

descriptionKey:
This is a key into a resourceBundle for localization.

Method interfaces
public DiagnosticEvent [] configDump(String aAttributeId, boolean aRegisteredOnly);
public DiagnosticEvent [] stateDump(String aAttributeId, boolean aRegisteredOnly);

These methods invoke the configuration or state dump on the component, and specify a regular
expression filter for the attributes to return as well as filtering the output to include all matching attributes,
or only those attributes which are registered. This enables the administrator or automated software driving
the method to specify a subset of the overall fields (especially important if many attributes are exposed or
if the State Collection Specification increases the amount of data available). The following helper methods
are available to assist with filtering the output.

To take a list of Attributes that are available to return, and filter them:
 public static AttributeInfo [] queryMatchingDPInfoAttributes(String aAttributeId,
 AttributeInfo [] inAttrs, String [] namesToCheck, boolean aRegisteredOnly) {

To take a single Attribute that is available to return, and filter it:
 public static AttributeInfo queryMatchingDPInfoAttributes(String aAttributeId,
 AttributeInfo [] inAttrs, String nameToCheck, boolean aRegisteredOnly) {

To go through a populated set of Attribute Information and remove unneeded parts:
 public static void filterEventPayload(String aAttributeId, HashMap payLoad) {

For details on these messages, please review the API documentation for the DiagnosticProviderHelper
class. The basic concept is that, once the component knows what attributes are able to be returned, the
helper method will determine which of them should be returned based on the regular expression logic and
registration boolean.

The selfDiagnostic Method interface here is similar to that of Configdump and Statedump:
public DiagnosticEvent[] selfDiagnostic(String aTestId, boolean aRegisteredOnly)

The difference is that the first parameter is a regular expression filter for which test to run.

Chapter 13. Working with Diagnostic Providers 173

Diagnostic Provider names
In addition to the Diagnostic Provider ID (DPID), each component that implements the Diagnostic Provider
interface must have a Diagnostic Provider Name. While the DPID must be unique within the entire
WebSphere Application Server domain, the Diagnostic Provider Name need only be unique within the Java
Virtual Machine (JVM).

Unlike the Diagnostic Provider ID, which tends to be long and not human-friendly, the Diagnostic Provider
Name should be shorter and easier to read. In addition, by convention it should end in DP. The Diagnostic
Service MBean (see “The simpler interfaces provided by the Diagnostic Service MBean”) can drive
methods on a Diagnostic Provider using its name.

The simpler interfaces provided by the Diagnostic Service MBean
All services for a Diagnostic Provider (DP) are also available through a Java Management Extensions
(JMX) interface known as the Diagnostic Service interface. The Diagnostic Service interface enables
administrators to drive methods against DPs using the Diagnostic Provider Name or Diagnostic Provider
ID.

When formatted output is requested of the Diagnostic Service, it is localized to the client Locale. This
makes the Diagnostic Service MBean ideal for clients using an interface where consuming complex Java
objects, such as those returned from the Diagnostic Provider MBeans, is not feasible. An example of such
an interface is the wsadmin tool.

The Diagnostic Service interface provides four signatures for each of the key methods available on the
Diagnostic Providers (configDump, stateDump, and selfDiagnostic) objects. Because these method
signatures look so similar, this example shows it all through the configDump methods. The four Diagnostic
Service methods that map to configDump on a Diagnostic Provider are:
public DiagnosticEvent [] configDump(String aDPName, String aAttributeIdSpec, boolean aRegisteredOnly)
public DiagnosticEvent [] configDumpById(String aDPid, String aAttributeIdSpec, boolean aRegisteredOnly)
public String [] configDumpFormatted(String aDPName, String aAttributeIdSpec,
 boolean aRegisteredOnly, Locale aLocale)
public String [] configDumpFormattedById(String aDPid, String aAttributeIdSpec,
 boolean aRegisteredOnly, Locale aLocale) {

The first two return exactly what the Diagnostic Provider does. The second two methods act as a
pass-through to the actual Diagnostic Provider, but they take the array of Diagnostic Events that the
Diagnostic Provider returns, and convert it into a more easily consumable String array. In addition, these
methods handle localizing the output to the appropriate locale. It is important to note that the same method
can be driven using the Diagnostic Provider ID or the Diagnostic Provider Name.

Creating a Diagnostic Provider
Use Diagnostic Providers to query the startup configuration, current configuration, and current state of a
diagnostic domain. Diagnostic Providers also provide access to any self diagnostic tests that are available
from a diagnostic domain.

Before you begin

To complete this task you must have programming knowledge of your system and the proper authorities to
perform the following steps.

About this task

The steps that follow outline a general process for creating Diagnostic Providers (DP).

174 Troubleshooting and support

Procedure
1. Determine your diagnostic domain. Look for configuration MBeans that control a similar domain in the

same component. Extending an existing configuration MBean with a DP interface avoids proliferation of
new MBeans and has the benefit that mapping from a diagnostic MBean to a configuration MBean
requires no additional information.

2. Determine what configuration attributes you want to expose. Include information that is used to
configure your component from the configuration MBeans.

3. Determine what state attributes you want to expose. Anything you might want to know about the state
of your component for troubleshooting can go here.

4. Determine what self diagnostic tests you will expose.

5. Determine what test attributes you will return for each self diagnostic.

6. Create your DP registration Extensible Markup Language (XML) file.

7. Create your DP implementation.

a. To see an example, refer to “Implementing a Diagnostic Provider” on page 177 and keep in mind
that most things that a Diagnostic Provider should do are already done for you in the
DiagnosticProviderHelper class.

b. To ensure that you do not collect unwanted data, add hooks in your component code where you
need to collect state data using the DiagnosticConfig object.

c. Add hooks in your component code where you need to store or be able to access configuration
data.

8. Add code to register your DP implementation. Typically, the best place to do this is where your
component is initialized.

9. Add Diagnostic Provider IDs (DPID) to your logged messages. Registering a DPID with a logger
makes that information available in any messages logged with this logger. This enables fast paths in
the DP utility to function on this particular Diagnostic Provider.

a. Register your DPID with your loggers (for any of your loggers that you only want to associate a
single DPID with).

b. When you use multiple DPIDs with the same Logger, you can (instead of registering a single DPID
with a Logger) add DPIDs to individual logging calls in the parm[0] position. Do not put {0} in the
corresponding localized messages. It is bad practice to print the DPID in your messages as this
would be inconsistent with messages from loggers with statically assigned DPIDs.

Diagnostic Provider Extensible Markup Language
Some conventions to follow for Diagnostic Provider (DP) Extensible Markup Language (XML) declarations.

These guidelines are to help keep your use of Diagnostic Providers (DP) consistent.

v Include the Document type definition (DTD) for your Diagnostic Provider at the top of every DP
declaration Extensible Markup Language (XML) file.

v Start all names and name segments with lower case. Use camel case for attribute names. That is,
capitalize every initial letter in the name, except the first. For example, traceCollectionSpec.

v Indicate hierarchy with dashes. Dashes work better than dots because attribute names are regular
expressions. For example, traceService-traceCollectionSpec.

v Indicate string dynamic parts to attribute names using an asterisk (*). For example,
vhosts-.*-webgroups-.*-webapps-.*-listeners-filterInvocationListeners

which would match vhosts-someHost-webgroups-someGroup-webapps-someApp-listeners-
filterInvocationListeners

v Indicate numeric dynamic parts to attribute names using [0-9]*. For example,
vhosts-index-[0-9]*

Chapter 13. Working with Diagnostic Providers 175

which would match webcontainer-vhosts-index-123

v If you have a general purpose self diagnostic test that can be run without significant performance cost,
name it general.

Some tips for configDump implementation
v configDump should contain information used to define the component's environment. Some examples

are:

– configuration data set by Java Management Extensions (JMX)

– configuration from system properties, xml files, and property files

– configuration information hard-wired and unchanging in code (such as, if a resource adapter
implements interface X, or has some static final field Y, then those could indicate aspects of
configuration and be included in the configDump).

v configDump should not contain dynamically registered attributes, such as:

– a list of registered loggers (this belongs in stateDump)

– a list of servlets in an application (this belongs in stateDump).

v configDump should be separated into 2 sections -- startup and current.

– All configDump attributes must start with either startup- or current-.

– The startup section details the component's environment at startup time. Startup configDump
attributes start with startup- .

– The current section details the component's environment at the moment the configDump is
requested. Current configDump attributes start with current-.

Best practices for configDump
v Group related attributes using an attribute hierarchy (such as, for two attributes about the traceLog:

startup-traceLog-rolloverSize=20, startup-traceLog-maxNumberOfBackupFiles=1)

v For information in the current attribute list that refers to the same thing as a startup attribute, the names
of both current and startup attributes should match.

v If an attribute has no use after startup, only show it in the startup section (for example, a configuration
attribute that contains a file name from which startup data is read).

Choosing a Diagnostic Provider name
To ensure consistency when choosing Diagnostic Provider names to use with your components, you
should consider the guidelines that follow.

Diagnostic Provider name guidelines:

v Names must be unique within a Java Virtual Machine (JVM). One Diagnostic Provider name goes
uniquely with one Diagnostic Provider ID within a server.

v If necessary, names can contain a dynamic element to help with uniqueness. Of course, the dynamic
element should have meaning to the administrator.

v Although not a hard limit, the static part of names should be 16 characters or less.

v The static part of names must follow the class name convention. Start with a capital letter, no spaces,
and capitalize each word in the name.

v The static part of names must end with DP.

v Valid names contain a static part only, or a static part followed by a dash (-), followed by a dynamic
part. Some valid examples:
– ConnMgrDP-instance_specific_stuff
– WebContainerDP
– AdvisorDP
– NodeAgentDP

176 Troubleshooting and support

Implementing a Diagnostic Provider
To use a Diagnostic Provider you must configure an MBean with the methods and attributes required to
handle the data from the application server and client applications.

Before you begin

This task presumes that you have a programming knowledge of the creation of MBeans. For more
information about the interaction of MBeans with WebSphere Application Server, refer to topic, Creating
and registering standard, dynamic, and open custom MBeans in the Administering applications and their
environment PDF book.

About this task

The steps that follow outline a general process for implementing a Diagnostic Provider (DP).

Procedure
1. Modify the MBean descriptor Extensible Markup Language (XML). To implement a Diagnostic Provider,

you must have an MBean, and the MBean should include this statement in its descriptor XML as a
direct child of the MBean element:
<parentType type="DiagnosticProvider"/>

This defines the operations, attributes, and aggregators necessary for an MBean to be a Diagnostic
Provider. If you do not need to have this DP exist in z/OS Controllers, then this XML inclusion handles
all z/OS specifics for your MBean.

2. Modify the MBean Implementation. Your MBean should already have a class which instantiates it and
registers it with the Java Management Extensions (JMX) server.

The first difference here is that you must define a property in the Properties class that is passed to the
registration (and becomes part of the ObjectName). The property is diagnosticProvider=true and it
can be added with a line of code such as:
 MyProps.setProperty(DiagnosticProvider.DIAGNOSTIC_PROVIDER_KEY, DiagnosticProvider.DIAGNOSTIC_PROVIDER_VALUE) ;

The second difference is that this class should register this Diagnostic Provider with the Diagnostic
Service. A helper method is available to do this:
 DiagnosticProviderHelper.registerMBeanWithDiagnosticService(DiagnosticProviderPName, DiagnosticProviderId) ;

Obviously this must be done after the registration when the ObjectName can be retrieved into the
DiagnosticProviderId string.

3. Implement the Diagnostic Provider methods.

Diagnostic Provider method implementation
To create a Diagnostic Provider (DP) you must have an MBean that includes the required methods in its
deployment Extensible Markup Language (XML) file. These methods define the operations, attributes, and
aggregators necessary for an MBean to be a Diagnostic Provider.

Adding these methods can be accomplished by adding the parentType directive to your existing XML file
(see “Implementing a Diagnostic Provider”), or by including the operations directly into your deployment
XML file. The definitions needed are included in “Diagnostic Provider registered attributes and registered
tests” on page 172. The next step is for the MBean to actually implement these methods. The methods to
implement include:
v “getRegisteredDiagnostics” on page 178
v “getDiagnosticProviderName” on page 178
v “getDiagnosticProviderID” on page 178
v “configDump” on page 178
v “stateDump” on page 179
v “selfDiagnostic” on page 179

Chapter 13. Working with Diagnostic Providers 177

v “localize” on page 180

getRegisteredDiagnostics

This method exposes the registration information for this Diagnostic Provider. It is commonly used by the
DP Utility in the administration console to gather information about Diagnostic Providers that are to be
displayed in the console. This method returns a DiagnosticProviderInfo object that is usually attained by
passing the appropriate XML to a DiagnosticProviderHelper helper class. Here is an example:
public DiagnosticProviderInfo getRegisteredDiagnostics() {
 InputStream regIS= Thread.currentThread().getContextClassLoader().getResourceAsStream(
 "com/ibm/ws/xxx/SampleDP2DiagnosticProvider.xml");
 dpInfo = DiagnosticProviderHelper.loadRegistry(regIS, sDPName) ;

 if (dpInfo == null) {
 sSampleDP2MBeanLogger.logp(Level.WARNING, sThisClass, "getRegisteredDiagnostics",
 "RasDiag.DPInfo.NoGotz") ;
 }
 return dpInfo ;
 }

Notice that the XML is packaged and available in the classpath of the current classloader. The
“Registration XML” on page 180 contains crucial information that the Diagnostic Provider uses to “Populate
the payload” on page 180 and “localize” on page 180 results.

getDiagnosticProviderName

This is usually a pretty simple return of a constant as the following example shows
public String getDiagnosticProviderName() {
 return sDPName;
 }

getDiagnosticProviderID

This is usually a pretty simple return of a Java Management Extensions (JMX) object ID that MBeans can
pull out of the base class method. For example:
public String getDiagnosticProviderId() {
 return getObjectName().toString() ;
 }

configDump

The configDump method enables the Diagnostic Provider to expose the configuration data that was in
place when this Diagnostic Provider started (or the current values of them). The DiagnosticEvent objects
that this method returns include a “Payload” on page 180 that contains the core data. The following is an
excerpt from a configDump method:
public DiagnosticEvent [] configDump(String aAttributeIdSpec, boolean aRegisteredOnly) {
 HashMap cdHash = new HashMap(64) ;

 // “Populate the payload” on page 180

 DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;
 diagnosticEvent[0] = DiagnosticEventFactory.createConfigDump(getObjectName().toString(),
 "ThisClassName", "configDump", cdHash) ;

 return diagnosticEvent ;
 }

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one
object. However, the method accepts an array because on z/OS systems a server can have multiple

178 Troubleshooting and support

servants, and aggregation of the output from the servants is stored in the array.

stateDump

The stateDump method enables the Diagnostic Provider to expose the current state data, or data about
the current operating conditions of the Diagnostic Provider. The data made available can be anything likely
to assist a customer, an IBM support person, or automated tooling in analyzing the health of the
component and problem determination if there is an issue. The amount of data available is impacted by
the State Collection Specification in effect at the time. If the current State Collection Specification involves
the collection of additional data by the Diagnostic Provider, then this additional data can be exposed in the
stateDump. The DiagnosticEvent objects that this method returns include a “Payload” on page 180 that
contains the core data. The following is an excerpt from a stateDump method:
public DiagnosticEvent [] stateDump(String aAttributeIdSpec, boolean aRegisteredOnly) {
 HashMap sdHash = new HashMap(64) ;

 // “Populate the payload” on page 180

 DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;
 diagnosticEvent[0] = DiagnosticEventFactory.createStateDump(getObjectName().toString(),
 "ThisClassName", "stateDump", sdHash) ;

 return diagnosticEvent ;
 }

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one
object.

selfDiagnostic

The selfDiagnostic method enables the Diagnostic Provider to perform certain predefined activities to test
key functionalities of your system. These tests should not have a lasting effect on the system. For
example, if the test is to create a TCP/IP connection to a remote host, the test should also break that
connection before returning its results so that the state of the component is unchanged by the test. The
information returned by the test is determined by the attributes included in the test section of the XML file.
The following is an excerpt from a selfDiagnostic method:
public DiagnosticEvent [] selfDiagnostic(String aAttributeIdSpec, boolean aRegisteredOnly) {
 TestInfo [] testInfo = dpInfo.selfDiagnosticInfo.testInfo ; // Retrieve the test registry information
 Pattern testChecker = Pattern.compile(aAttributeIdSpec) ; // Compile test regexp parm for faster checking
 ArrayList deList = new ArrayList(8) ; // Allocate expandable list of DiagnosticEvents
 for (int i = 0; i < testInfo.length; i++) {
 if (testChecker.matcher(testInfo[i].id).matches()) {
 HashMap deHash = new HashMap(32) ;

 // “Populate the payload” on page 180

 deList.add(DiagnosticEventFactory.createDiagnosticEvent(getObjectName().toString(),
 DiagnosticEvent.EVENT_TYPE_SELF_DIAGNOSTIC, DiagnosticEvent.LEVEL_INFO,
 "ThisClassName", "selfDiagnostic", dpInfo.resourceBundleName,
 "RasDiag.SDP2.createDE3", // MsgKey for localization
 // Parms to incorporate in msg
 new Object [] { "OneParm", "TwoParm", "RedParm", "BlueParm"}, deHash)) ;
 }
 }

 DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[deList.size()] ;
 diagnosticEvent = (DiagnosticEvent [])deList.toArray(diagnosticEvent) ;

 return diagnosticEvent ;
 }

Chapter 13. Working with Diagnostic Providers 179

This returns an array of DiagnosticEvent objects. In this example, one DiagnosticEvent was created
from each test that matched the parameter regular expression. The Diagnostic Provider is not required to
produce only one per test. The generation of “Payload” is similar to that of configDump and stateDump.

localize

The DiagnosticEvents that methods return contain payload HashMaps that contain MessageKeys and
ResourceBundles. The final consumer of these events is often not on the server, and thus may not have
the appropriate classpath to resolve this. For this purpose, a callback to the Diagnostic Provider to localize
the variables is done. A helper method, however, makes it a simple method to write, as this example
demonstrates:
public String [] localize(String [] aKeys, Locale aLocale) {
 return DiagnosticProviderHelper.localize(dpInfo.resourceBundleName, aKeys, aLocale) ;
 }

Note that the dpInfo (DiagnosticProviderInfo) object is needed as this object includes a reference to the
ResourceBundle.

Payload

A recurring theme in these methods is the ability to include a payload in return objects. This is a set of
name=value pairs that include the information being exposed by the method. Diagnostic Events returned
from a configDump, stateDump, or selfDiagnostic test are relatively complex Java objects. The majority of
the information that is returned is contained in the DiagnosticData portion of the DiagnosticEvent object.
Each attribute returned by the Diagnostic Provider is stored in an entry in a HashMap. There can be
cascading HashMaps within a single DiagnosticEvent object (if breaking the data down into subGroups
makes sense). Each HashMap entry contains either a reference to a child HashMap, or a
DiagnosticTypedValue (which contains the value, the type of data, and a MsgKey for localization of the
label or /name). The values to be returned should be filtered with:
v The type of method (that is, configDump, stateDump, or selfDiagnostic)
v The AttributeIdSpec sent in to filter the values
v The current State Collection Specification (which can impact the amount of data available).

Populate the payload

The API documentation for DiagnosticProviderHelper.queryMatchingDPInfoAttributes explains how to do
the filtering before retrieving the data. In some cases, it is easier and helps performance for a Diagnostic
Provider to retrieve all data into the Payload and then filter the HashMap after the fact. The
post-population filtering can be done with the method DiagnosticProviderHelper.filterEventPayload. For
information on use of the JavaBeans type approach, see the API documentation for the
AttributeBeanInfo.populateMap method.

Registration XML

Registration XML enables much of the information needed by the Diagnostic Provider to be externalized. It
also provides a means of commonizing localization and consumption of the tests (thus aiding automation).
An excerpt of this XML from a sample Diagnostic Provider follows:
<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

<diagnosticProvider>
 <resourceBundleName> com.ibm.ws.rasdiag.resources.RasDiagSample</resourceBundleName>
 <state>
 <attribute>
 <id>Leg-Foot</id>
 <descriptionKey>SampleDiagnostic.LegFoot.descriptionKey</descriptionKey>
 <registered>true</registered>

180 Troubleshooting and support

</attribute>
 <attribute>
 <id>Leg-Ankle</id>
 <descriptionKey>SampleDiagnostic.LegAnkle.descriptionKey</descriptionKey>
 <registered>true</registered>
 </attribute>
 </state>
 <config>
 <attribute>
 <id>Arm-Hand-Size</id>
 <descriptionKey>SampleDiagnostic.HandSize.descriptionKey</descriptionKey>
 <registered>true</registered>
 </attribute>
 <attribute>
 <id>Leg-Foot-Size</id>
 <descriptionKey>SampleDiagnostic.FootSize.descriptionKey</descriptionKey>
 <registered>true</registered>
 </attribute>
 </config>
 <selfDiagnostic>
 <test>
 <id>Kick</id>
 <descriptionKey>SampleDiagnostic.Kick.descriptionKey</descriptionKey>
 <attribute>
 <id>Kick-Pain</id>
 <descriptionKey>SampleDiagnostic.KickPain.descriptionKey</descriptionKey>
 </attribute>
 <attribute>
 <id>Kick-Length</id>
 <descriptionKey>SampleDiagnostic.KickLength.descriptionKey</descriptionKey>
 </attribute>
 </test>
 <test>
 <id>Throw</id>
 <descriptionKey>SampleDiagnostic.Throw.descriptionKey</descriptionKey>
 <attribute>
 <id>Throw-Pain</id>
 <descriptionKey>SampleDiagnostic.ThrowPain.descriptionKey</descriptionKey>
 <registered>true</registered>
 </attribute>
 <attribute>
 <id>Throw-Length</id>
 <descriptionKey>SampleDiagnostic.ThrowLength.descriptionKey</descriptionKey>
 <registered>true</registered>
 </attribute>
 </test>
 </selfDiagnostic>
</diagnosticProvider>

For understanding the storage of this information into a DiagnosticProviderInfo object, see the API
documentation for DiagnosticProviderInfo. For conceptual information about the purpose of the registration
XML, see “Diagnostic Provider registered attributes and registered tests” on page 172.

Diagnostic Provider XML example:

Here is an example of the Diagnostic Provider Extensible Markup Language (XML).
version="6.0"
platform="common"
aggregationHandlerClass="com.ibm.ws.management.component.DiagnosticProviderAggregator"
description="DiagnosticProvider portion of Mbean for inclusion into MBeans implementing this interface">
 <attribute
 description="DiagnosticProviderName (not dependent on runtime, but subset of ObjectName"
 getMethod="getDiagnosticProviderName" name="diagnosticProviderName"
 type="java.lang.String" proxyInvokeType="unicall" proxySetterInvokeType="multicall"/>
 <operation

Chapter 13. Working with Diagnostic Providers 181

description="Get the DiagnosticProvider ID"
 impact="INFO" name="getDiagnosticProviderId" role="operation"
 targetObjectType="objectReference" type="java.lang.String" proxyInvokeType="unicall">
 <signature/>
 </operation>
 <operation
 description="Return the registry information based on type (config/state/selfDiag)."
 impact="INFO" name="getRegisteredDiagnostics" role="operation"
 targetObjectType="objectReference"
 type="com.ibm.wsspi.rasdiag.diagnosticProviderRegistration.DiagnosticProviderInfo"
 proxyInvokeType="unicall">
 <signature/>
 </operation>
 <operation
 description="Dump the configuration information associated with managed resource."
 impact="INFO" name="configDump" role="operation"
 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"
 proxyInvokeType="multicall">
 <signature>
 <parameter description="Attribute ID to use"
 name="attributeId" type="java.lang.String"/>
 <parameter description="Report on just registered info, or all info"
 name="registeredOnly" type="boolean"/>
 </signature>
 </operation>
 <operation
 description="Dump state information for the managed resource."
 impact="INFO" name="stateDump" role="operation"
 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"
 proxyInvokeType="multicall">
 <signature>
 <parameter description="Attribute ID to use"
 name="attributeId" type="java.lang.String"/>
 <parameter description="Report on just registered info, or all info"
 name="registeredOnly" type="boolean"/>
 </signature>
 </operation>
 <operation
 description="Perform diagnostics on the managed resource driven by current diagnostic mode setting."
 impact="ACTION" name="selfDiagnostic" role="operation"
 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"
 proxyInvokeType="multicall">
 <signature>
 <parameter description="Test ID to use"
 name="testId" type="java.lang.String"/>
 <parameter description="Report on just registered info, or all info"
 name="registeredOnly" type="boolean"/>
 </signature>
 </operation>
 <operation
 description="localize messages for console display"
 impact="INFO" name="localize" role="operation"
 targetObjectType="objectReference" type="[Ljava.lang.String;"
 proxyInvokeType="unicall">
 <signature>
 <parameter description="Message Keys" name="msgKeys" type="[Ljava.lang.String;"/>
 <parameter description="Locale to use for output" name="locale" type="java.util.Locale"/>
 </signature>
 </operation>

Creating a Diagnostic Provider registration XML file
The Diagnostic Provider registration XML is used to provide information about the exposed configuration,
state, and self diagnostic attributes and tests to the Diagnostic Provider utility. It is also used to populate
objects needed later in the process, to assist in filtering, and to assist in localization.

182 Troubleshooting and support

Before you begin

Programming knowledge of your system and the proper authorities to perform the following steps.

About this task

The steps that follow outline a general process for creating a Diagnostic Provider (DP) registration
Extensible Markup Language (XML) file.

Procedure
1. Start with the DP document type definition (DTD). If you are using the helper methods (see the step

called Create your DP implementation in “Creating a Diagnostic Provider” on page 174), you can use
this DOCTYPE line to pick up the common DTD:
<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

If you are extending an existing MBean with an existing XML configuration, you might need either to
add the DP XML to an existing DTD, or omit the DP XML entirely. If you omit the DP XML, you will not
be able to validate that your XML file is well formed.

2. Follow the conventions described in “Diagnostic Provider Extensible Markup Language” on page 175 to
help keep your XML consistent with other components. You can find an example of a small DP
registration XML file in “Diagnostic Provider method implementation” on page 177.

Associating a Diagnostic Provider ID with a logger
If you are using a Diagnostic Provider to manage alerts and messages, you need to associate the
Diagnostic Provider ID with a logger. This can be done dynamically or through a static assignment.

About this task

Components whose diagnostics are managed through a Diagnostic Provider MBean should include the
Diagnostic Provider ID (DPID) in all logged messages. In some cases a single logger always logs with the
same DPID. In those cases, it is appropriate to statically associate the DPID with the logger. In other
cases, a logger might log on behalf of various diagnostic domains. For example, although every data
source has a separate Diagnostic Provider MBean, they all share the same logger. In those cases, the
DPID can be dynamically supplied on each logging call.

Static Assignment
About this task

The method below statically assigns a DPID to a logger.

Procedure

Associate a DPID with a logger:
Logger logger = Logger.getLogger("com.ibm.ws.MyClass");
DiagnosticProviderHelper.addDiagnosticProviderIDtoLogger(logger, dpid);

Dynamic Assignment
About this task

DPIDs can be associated with a single log request by including them as the first message parameter,
prefixed with DPID:. To associate a DPID with a single log request using a logger:
Object[] parms = new Object[] { "DPID:" + dpid };
logger.logp(classname, methodname, "MSG0001", parms);

Chapter 13. Working with Diagnostic Providers 183

Note that in the dynamic case, the DPID does not need to actually show up in the formatted message.
The two examples below illustrate:
(in resource bundle)
// by not including {0} first parm is not printed in the message.
MSG0001=This message does not include the DPID.

// note - it is not recommended to print the DPID in your message.
MSG0002=This message includes the DPID...it’s value is {0}.

It is recommended that messages not include the DPID in the formatted message. As shown above, this is
done by not including {0} in the message value in the resource bundle.

Using Diagnostic Providers from wsadmin scripts
In addition to enabling Diagnostic Providers (DP) from the administration console, you can also use them
through scripts from the Wsadmin tool.

About this task

You might want to enable, disable, or configure Diagnostic Providers from the administrative console, but
in some cases it might be more efficient or useful to do so with scripts using the wsadmin tool.

Read the wsadmin tool information about using the tool with scripts.

Procedure
1. List the MBeans that implement the Diagnostic Provider (DP) interface. Enter

$AdminControl queryNames diagnosticProvider=true,*

And you will see an output that displays all of the Diagnostic Providers in a format like this:
"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=
 camelhair,JDBCProvider=Derby JDBC Provider,
diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=server1,Server=server1,
 version=6.1.0.0,type=DataSource,
mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/resources.xml#
 DataSource_1131113688564,
JDBCResource=Derby JDBC Provider,cell=camelhairCell"
"WebSphere:name=DefaultEJBTimerDataSource,process=server1,platform=dynamicproxy,
 node=camelhair,
JDBCProvider=Derby JDBC Provider (XA),diagnosticProvider=true,j2eeType=
 JDBCDataSource,J2EEServer=server1,Server=server1,version=6.1.0.0,type=DataSource,
 mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/
 resources.xml#DataSource_1000001,
JDBCResource=Derby JDBC Provider (XA),cell=camelhairCell"
WebSphere:name=WebcontainerDiagnosticProvider,process=server1,platform=
 dynamicproxy,node=camelhair,diagnosticProvider=true,
version=6.1.0.0,type=WebcontainerEventProvider,mbeanIdentifier=null,
 cell=camelhairCell

2. Capture the ObjectName of your Diagnostic Provider in a variable. This enables you to reference your
Diagnostic Provider more easily, especially in a script. For example, instead of typing all of those lines,
if you want to work with the WebContainer Diagnostic Provider, for example, you can do the following:

v set DP [lindex [$AdminControl queryNames
name=WebcontainerDiagnosticProvider,diagnosticProvider=true,*] 0]

This ObjectName stored in the DP variable can be used on the methods, or you can use the
Diagnostic Provider name as text or a variable.

v Now that you have the ObjectName in a variable, you can get the Diagnostic Provider name in a
variable with the command:
set DPNm [$AdminControl invoke $DS getDiagnosticProviderNameById $DP]

184 Troubleshooting and support

This provides the result:
WebContainerDP

Now the DiagnosticProvider (WebContainer) is addressable by its objectname in variable DP, or by
its DiagnosticProvider name in variable DPNm. If you would prefer, you can hard-code the DPName
WebContainerDP as it is short enough.

3. Save the ObjectName of the DiagnosticService MBean to a variable. For wsadmin, WebSphere
Application Server provides this MBean so that the output of the Diagnostic Provider is more easily
consumable. Enter
set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

4. Run a configDump. You can run a configDump and capture all attributes with the command:
$AdminControl invoke $DS configDumpFormattedById [list $DP .* true null]

This lists the values that the Diagnostic Provider used at start up (and possible current values). .

 Table 37. An excerpt of the configDump output. The following table lists the values that the Diagnostic Provider used
at start up and possible current values.

Item Concatenated Name Value

customProperties = Null

defaultVirtualHostName = default_host

jvmProps = Null

localeProps = Null

servletCachingEnabled = false

aliases = *:9080;*:80;*:9443;

5. Filter the output of your configDump. You can use configDumpFormatted (leaving off the ById) and
switch $DP for $DPNm or the string WebContainerDP. This example uses $DPNm on this slightly
modified version whereby it only picks up attributes dealing with automation:
$AdminControl invoke $DS configDumpFormatted [list $DPNm .*auto.* true null]

This results in just those attributes that contain auto in them. Full (but strict) regular expression syntax
is allowed.

 Table 38. Results. The following table lists the concatenated names and values.

Item Concatenated Name Value

autoLoadFiltersEnabled = false

autoRequestEncoding = false

autoResponseEncoding = false

autoLoadFiltersEnabled = false

autoRequestEncoding = false

autoResponseEncoding = false

The syntax is the same for stateDumps and selfDiagnostics

Viewing the run time configuration of a component using Diagnostic
Providers
You can use the administrative console to navigate to configuration data that can be used to check the
health of a server runtime component.

Before you begin

You must have sufficient authority to run the action.

Chapter 13. Working with Diagnostic Providers 185

About this task

Runtime components that have associated diagnostic providers can include their Diagnostic Provider ID
(DPID) in their log entries. If you know the DPID, you can enter it directly in the quick link text box.
Otherwise, navigate to the desired process by using the tree view displayed at the bottom of the panel, as
shown in the steps below.

Procedure
1. Start the administration console.

2. From the task bar on the left side of the console, select Troubleshooting.

3. From the task bar on the left side of the console, select Diagnostic Provider.

4. From the task bar on the left side of the console, select Configuration Data.

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed at the bottom of the
panel under the section title Server selection topology.

6. From the list of available diagnostic providers for the selected process, choose the desired diagnostic
provider name. The configuration data for that diagnostic provider appears.

Configuration data quick link or server selection
Use this panel to select a Diagnostic Provider server for viewing run time configuration data.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Configuration
Data

Quick link using Diagnostic Provider ID
From the Configuration data panel, enter a Diagnostic Provider ID to go directly to the page for the
configuration data for the Diagnostic Provider for the specific server.

Server selection topology
Use these folders to select server or cluster for viewing the configuration data for a Diagnostic Provider.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

Diagnostic Providers (selection)
Use this panel to select a Diagnostic Provider from the selected server or cluster.

The list will contain only Diagnostic Providers registered on the selected server or cluster. Not all
Diagnostic Providers register with every server in the cell.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting then expand Diagnostic Provider and click on Tests. Under Server selection
topology, click on a server or cluster name then click on a Diagnostic Provider from the list.

Diagnostic Providers
Choose a diagnostic provider from this list.

The path you chose to get to this panel determines which panel displays next.
v If you chose Troubleshooting > Diagnostic Provider > Tests, you see a panel that lists all of the

available tests to run on the Diagnostic Provider.
v If you chose Troubleshooting > Diagnostic Provider > State Data, you see a panel that shows the

collected state data for the Diagnostic Provider.

186 Troubleshooting and support

v If you chose Troubleshooting > Diagnostic Provider > Configuration Data, you see a panel that shows
the configuration data for the Diagnostic Provider.

Configuration data
Use this panel to view the current configuration data for a Diagnostic Provider on a selected server or
cluster. Not necessarily every piece of configuration data appears, but data that can be helpful in problem
determination is shown.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting then expand Diagnostic Provider and click on Configuration data . Under Server
selection topology, click on a server or cluster name then click on a Diagnostic Provider from the list.

The attributes show information that has been configured for the Diagnostic Provider. You can use the
Save button to save the information to a file.

Note: Results from a configuration dump contain names that start with either startup or current. The
startup entries represent data that was read in by the component at server startup time. The current
entries contain data that is current – meaning the value of the attributes in use by the runtime at the
time the configuration dump was requested.

Node
This is the node name from where the configuration data was collected.

Server
This is the server name from where the configuration data was collected.

Name
This is the name of the attribute for the configuration data.

Value
This is the value of the configuration data.

Description
This is a description of the configuration data.

Viewing the run time state data or configuring the state data collection
specifications for a Diagnostic Provider
Use the administrative console to navigate to the state data that can be used to check the health of a
server runtime component, or you can configure the state data to be collected for a server.

Before you begin

You must have sufficient authority to execute the action.

About this task

In the server selection topology section, use the view state data radio button to go to the list of registered
diagnostic providers. Use the change state data collection specification radio button to modify the state
collection specification for the runtime components for a server. Runtime components that have associated
diagnostic providers can include their Diagnostic Provider ID (DPID) in their log entries. If you know the
DPID, you can enter it directly in the quick link text box.

Chapter 13. Working with Diagnostic Providers 187

Procedure
1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select State Data.

5. Select the View State Data radio button to simply look at the state data, or select the Change state
data collection specification radio button to change the configuration.

6. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed at the bottom of the
panel.

v If you chose the View State Data radio button, a panel listing the available Diagnostic Providers
appears. Choose one of the providers by clicking on it. A panel displaying the state data appears.

v If you chose the Change state data collection specification radio button, a panel appears that
contains a list of the available Diagnostic Providers and a text entry block. The state collection
specification for the selected process is managed from this panel. Select one of the available
providers by using the checkbox next to it.

Diagnostic Provider State Collection Specification
The State Collection specification provides a mechanism for indicating what additional data diagnostic
providers in the system should retain in cases where this additional data could be useful for problem
determination or application tuning.

In normal operation, most components should work optimally and not store any operational data that is not
needed. There are times, however, when an administrator or automated tool may want a component to
collect more information than normal to help in problem determination. This data could then be exposed
through a State dump. The State Collection specification was created as a syntax for indicating what
additional data the diagnostic providers in the system should retain.

For the syntax of the aCollectionSpec string, refer to the DiagnosticConfigHome API documentation. It is
basically a semicolon (;) separated list of collection specification clauses which are of the form:
 <DiagnosticProviderName regexp>:<AttributeId regexp>=[0|1]

Where the DiagnosticProviderName regular expression will make this clause apply to any Diagnostic
Provider Name that matches that regular expression. The AttributeId regexp and the boolean value (0 for
off, and 1 for on) are stored in the DiagnosticConfig object that each Diagnostic Provider uses. Turning on
or off, and processing the clauses left to right allows relatively complex specification. Any specification that
is not explicitly turned on is considered to be off. This format is explained further in the following
examples.

To turn on tracing for all attributes in the MyDP Diagnostic Provider:
MyDP:.*=1

To turn on tracing for all attributes of all Diagnostic Providers (this will probably impact system
performance):
.*:.*=1

To turn on all tracing for all attributes of all Diagnostic Providers beginning with ConnMgr (for example,
Data Sources):
ConnMgr.*:.*=1

This specification turns on special collection attributes in the MyDP Diagnostic Provider that begin with the
string PoolInfo. If, however, the attribute begins with PoolInfo.Db2Pool, then the collection is off (because
it is read left to right).

188 Troubleshooting and support

MyDP:PoolInfo.*=1;MyDP:PoolInfo.Db2Pool.*=0

It should be noted that State dumps can return important information even in the case where there is no
State Collection Specification turned on for a Diagnostic Provider. Diagnostic Providers frequently have to
keep some state information in order to operate. Anything in this category is available in a State dump
even if there is no special data collection going on. Using the State Collection Specification may increase
the amount of data available.

State Data Quick Link or Server Selection
Use this panel to select a server or cluster to either view collected state data, or to configure state data to
collect for a Diagnostic Provider.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State Data.

Quick link using Diagnostic Provider ID
Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the
Diagnostic Provider.

Server selection topology
Use these radio buttons and folders to select a specific server or cluster for viewing of state data or
configuring the specification of state data.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

View state data
Select this radio button to view the state data for a Diagnostic Provider. Then select the cell or
cluster you want to work with.

Change state data collection settings
Select this radio button to configure the state collection specification for a Diagnostic Provider.
Then select the cluster or managed server you want to work with.

State data
Use this panel to view the current state data for a Diagnostic Provider on a selected server or cluster.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >
select the View state data radio button and then select a server or cluster name > select a Diagnostic
Provider from the list.

The attributes show information that has been collected as part of the enabled state collection specification
for the Diagnostic Provider. You can use the save... button to save the information to a file

Node
This is the node name from where the state data was collected.

Server
This is the server name from where the state data was collected.

Name
This is the name of the state collection specification used to collect the state data.

Value
This is the value of the state collection specification used to collect the state data.

Chapter 13. Working with Diagnostic Providers 189

Description
This is a description of the state collection specification used to collect the state data.

Detailed state specification
Use this panel to view the attributes and descriptions of the Diagnostic Provider that you have selected.

To add attributes, select the checkbox next to your chosen diagnostic provider, then select the Add to
specification button.

To remove a diagnostic provider's sub-component attribute from the state specification, select the
sub-component attribute in the displayed list and then select the Remove from specification button.

When you are done adding or removing a diagnostic provider's sub-component attributes, select the Done
button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data
>select the View state data radio button and then select a server or cluster name > select a Diagnostic
Provider from the list.

Attribute
This is the individual state collection specification available for the Diagnostic Provider.

Description
This is the description of the individual state collection specification item.

Change state specification
Use this panel to add a Diagnostic Provider and its attributes to the specification for collecting state data.

To add a diagnostic provider (DP) and all of its attributes, select the checkbox next to your chosen DP,
then click on the Add to specification button. To add only some of the DP's attributes, click on the DP
name itself in the list, and a new panel where you can perform this task appears.

To put the state specification into affect, select the Apply or OK button.

To reset the specification to its original state, use the Reset button.

To manually enter a state specification, update the text area with the state specification and use the
Update button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >
select the Change state data collection specification radio button and then select a server or cluster name
> select a Diagnostic Provider from the list.

Name
This is a list of available Diagnostic Providers for the server selected.

Modifying the State Collection Specification from wsadmin scripts
In addition to modifying the State Collection Specification from the administrative console, you can also
modify these settings using scripts and the wsadmin tool.

About this task

In doing problem determination, you might want to begin collecting additional data during normal
processing. This can be accomplished by modifying the State Collection Specification dynamically. This
section illustrates how to do that through the wsadmin tool . This technique can be used to turn on traces,

190 Troubleshooting and support

as well as to turn off traces. Depending on the usage pattern of the component, the impact should take
affect shortly after it is set.

Procedure
1. Capture the DiagnosticService ObjectName into a variable. Enter

set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

2. Use this variable to drive the method to set the specification. Enter
$AdminControl invoke $DS setStateCollectionSpec "SampleDiagnosticProvider:player.*=1;
SampleDiagnosticProvider:defense.*=1"

The specification is of the form DiagnosticProviderName:AttributeId=0|1... (with a semicolon at the
end, multiple sub-specifications can be entered similar to the TraceSpec). The
DiagnosticProviderName and AttributeId can be proper regular expressions.

Running a self diagnostic on a Diagnostic Provider
You can check the status of server runtime components with predefined tests that can be associated with
a Diagnostic Provider. Use the administrative console to access these functions.

Before you begin

You must have sufficient authority to execute the action.

About this task

You can access a list of predefined diagnostic tests that you can use to check the status of a server
runtime component. Runtime components that have associated diagnostic providers can include their
Diagnostic Provide ID (DPID) in their log entries. If you know the DPID, you can enter it directly in the
quick link text box. Otherwise, navigate to the desired process by using the tree view displayed at the
bottom of the panel.

Procedure
1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select Tests .

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed in the Server
selection topology section.

6. Select the desired self diagnostic test.

7. Read the output messages from the self diagnostic test.

8. Select a self diagnostic test message by clicking on it. The console displays a panel with the attributes
related to the message you chose.

Tests Quick Link or Server Selection
Use this panel to select a Diagnostic Provider server for diagnostic tests.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests.

Quick link using Diagnostic Provider ID
Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the
Diagnostic Provider.

Chapter 13. Working with Diagnostic Providers 191

Server selection topology
Use these folders to select server or cluster for viewing the available tests for a Diagnostic Provider.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

Test selection
Use this panel to select one of the tests that are available for the chosen Diagnostic Provider on the
chosen server or cluster.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting > Diagnostic Provider > Tests > select a server or cluster name > select a Diagnostic
Provider from the list.

Test identification
Choosing a test ID causes the test to run. Results of the test are shown on the Test Results panel.

Test description
A description of the test available to run on the Diagnostic Provider.

Test Results
Use this panel to see the results from the server or cluster members for the selected test.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting > Diagnostic Provider > Tests > select a cluster name > select a Diagnostic Provider
from the list > select a Test identification from the list.

Multiple results can be returned from a test from each server. The results are sorted by Node, then by
Server, then by Severity. You can page through the messages that are returned.

Server
The name of the server where the test result came back from.

Node
The name of the node where the test result came back from.

Severity
The severity of the result from the test run.

Message
A description of the test result.

The entries in this column are linked to another panel. If you click on a message, you can see additional
attributes associated with the message.

Test result details
Use this panel to see additional attributes for the selected test result.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests > select
a cluster name > select a Diagnostic Provider from the list > select a Test identification from the list >
select a message.

192 Troubleshooting and support

The attributes show information that helped to diagnose the condition described in the message. You can
use the Save button to save to a file the attributes and the messages to which they correspond.

Name
The name of the test.

Value
This is the value of the test result.

Description
This is a description of the test.

Chapter 13. Working with Diagnostic Providers 193

194 Troubleshooting and support

Chapter 14. Troubleshooting help from IBM

If you are not able to resolve a WebSphere Application Server problem by following the steps described in
the Troubleshooting guide, by looking up error messages in the message reference, or looking for related
documentation on the online help, contact IBM Technical Support.

Purchase of WebSphere Application Server entitles you to one year of telephone support under the
Passport Advantage® program. For details on the Passport Advantage program, visit http://www.lotus.com/
services/passport.nsf/WebDocs/Passport_Advantage_Home.

The number for Passport Advantage members to call for WebSphere Application Server support is
1-800-237-5511. Please have the following information available when you call:

v Your Contract or Passport Advantage number.

v Your WebSphere Application Server version and revision level, plus any installed fixes.

v Your operating system name and version.

v Your database type and version.

v Basic topology data: how many machines are running how many application servers, and so on.

v Any error or warning messages related to your problem.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

IBM Support Assistant

IBM Support Assistant allows you to search multiple knowledge repositories and gives you access to the
latest product information. You can choose to be guided through your problem symptoms or view a
complete listing of advanced tooling for analyzing everything from logs to memory dumps. Using the IBM
Support Assistant Workbench installed on a local workstation running the Windows or Linux Intel operating
system, you can connect to the IBM Support Assistant Agent installed on a remote system running on the
AIX, Linux, Windows, or Solaris operating system. You can use IBM Support Assistant to run automated,
symptom-specific data collectors. This data can then be attached to an IBM Service Request so that you
can get help from IBM Support.

The Collector Tool

WebSphere Application Server comes with a built-in utility that collects logs and configuration information
into one file, the Collector Tool. IBM Support might ask you to run this tool and submit the output.

Tracing

WebSphere Application Server support engineers might ask you to enable tracing on a particular
component of the product to diagnose a difficult problem.

For details on how to do this, see Enabling trace.

Consulting

For complex issues such as integration with legacy systems, education, and help in getting started quickly
with the WebSphere product family, consider using IBM consulting services. To learn about these services,
browse the website http://www.ibm.com/services/fullservice.html.

© Copyright IBM Corp. 2011 195

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/services/fullservice.html

Diagnosing and fixing problems: Resources for learning
In addition to the information center, there are several Web-based resources for researching and resolving
problems related to the WebSphere Application Server.

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere Application Server problems
is the WebSphere Application Server support page: http://www.ibm.com/software/webservers/appserv/
support.html. Among the features it provides are:
v A search field for searching the entire support site for documentation and fixes related to a specific

exception, error message, or other problem. Use this search function before contacting IBM Support
directly.

v Solve a problem links take you to specific problems and resolutions documented by WebSphere
Application Server technical support personnel.

v The Download links provide free WebSphere Application Server maintenance upgrades and problem
determination tools.
– fixes are software patches which address specific WebSphere Application Server defects. Selecting a

specific defect from the list in the Fixes by version page takes you to a description of what problem
the fix addresses.

– Fix packs are bundles of multiple fixes, tested together and released as a maintenance upgrade to
WebSphere Application Server. Refresh packs are fix packs that also contain new function. If you
select a fix pack from this page, you are taken to a page describing the target platform, WebSphere
Application Server prerequisite level, and other related information. Selecting the fix list link on that
page displays a list of the fixes which the fix pack includes. If you intend to install a fix which is part
of a fix pack, it is usually better to upgrade to the complete fix pack rather than to just install the
individual fix.

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked with a key icon. To
access these resources, you must supply a user ID and password, or register if do not already have an ID.
When registering, you are asked for your contract number, which is supplied as part of a WebSphere
Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn about IBM software
products and how to use them. They contain resources such as articles, tutorials, and links to newsgroups
and user groups. You can reach the WebSphere Developer Domain at http://www7b.software.ibm.com/
wsdd/.

The IBM Support page

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents for information to gather to send to IBM Support.

Using IBM Support Assistant
IBM Support Assistant is a free troubleshooting application that helps you research, analyze, and resolve
problems using various support features and tools. IBM Support Assistant enables you to find solutions
yourself using the same troubleshooting techniques used by the IBM Support team, and it allows you to
organize and transfer your troubleshooting efforts between members of your team or to IBM for further
support.

196 Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

About this task

IBM Support Assistant V4.0 is released with a host of new features and enhancements, making this
version the most comprehensive and flexible yet. Our one-stop-shop solution to research, analyze and
resolve software issues is now better than ever before, and you can still download it at no charge.

IBM Support Assistant version 4.0 enhancements include:

v Remote System Troubleshooting: Explore file systems, run automated data collectors and
troubleshooting tools, and view the system inventory on remote systems.

v Activity-based Workflow: Choose from support-related activities, or use the Guided Troubleshooter for
step-by-step help with analysis and resolution.

v Case Management: Organize your troubleshooting data in "cases"; then export and share these cases
with other problem analysts or with IBM Support.

v Improved Flexibility: Add your own search locations, control updates by hosting your own update site,
get the latest product news and updates.

The IBM Support Assistant V4.0 consists of the following three distinct entities:

IBM Support Assistant Workbench
The IBM Support Assistant Workbench, or simply the Workbench, is the client-facing application
that you can download and install on your workstation. It enables you to use all the
troubleshooting features of the Support Assistant such as Search, Product Information, Data
Collection, Managing Service Requests, and Guided Troubleshooting. However, the Workbench
can only perform these functions locally, for example, on the system where it is installed (with the
exception of the Portable Collector).

 If you need to use the IBM Support Assistant features on remote systems, additionally install the
Agent Manager and Agent. However, if your problem determination needs are purely on the local
system, the Agent and Agent Manager are not required.

The Workbench has a separate download and this is all that is required to get started with the
Support Assistant.

IBM Support Assistant Agent
The IBM Support Assistant Agent, or simply the Agent, is the piece of software that needs to be
installed on EVERY system that you need to troubleshoot remotely. Once an Agent is installed on
a system, it registers with the Agent Manager and you can use the Workbench to communicate
with the Agent and use features such as remote system file transfer, data collections and inventory
report generation on the remote machine.

IBM Support Assistant Agent Manager
The IBM Support Assistant Agent Manager, or simply the Agent Manager, needs to be installed
only ONCE in your network. The Agent Manager provides a central location where information on
all available Agents is stored and acts as the certificate authority. For the remote troubleshooting
to work, all Agent and Workbench instances register with this Agent Manager. Any time a Support
Assistant Workbench needs to perform remote functions, it authenticates with the Agent Manager
and gets a list of the available Agents. After this, the Workbench can communicate directly with the
Agents.

The Agent and Agent Manager can be downloaded in a combined installer, separate from the Workbench.

IBM Support Assistant Version 4 has the following functions:

Search interface and access to the latest product information
IBM Support Assistant allows you to search multiple knowledge repositories with one click and
gives you quick access to the latest product information so that you spend less time looking for the
solution and more time building skills and solving problems.

Chapter 14. Troubleshooting help from IBM 197

Troubleshooting tools
Whether you are new to an IBM product or an advanced user, IBM Support Assistant can help.
You can choose to be guided through your problem symptoms or view a complete listing of
advanced tooling for analyzing everything from logs to memory dumps.

Access to local and remote systems
Using the IBM Support Assistant Workbench installed on a local workstation running the Windows
or Linux Intel operating system, you can connect to the IBM Support Assistant Agent installed on a
remote system running on the AIX, Linux, Windows, or Solaris operating system through the IBM
Support Assistant Agent Manager on the Workbench. This function enables you to explore,
transfer data, and run diagnostic tooling not only on your system but on any other system where
the IBM Support Assistant Agent is installed.

Automated data gathering and efficient support
Instead of manually gathering information, you can use IBM Support Assistant to run automated,
symptom-specific data collectors. This data can then be attached to an IBM Service Request so
that you can get support from the experts at IBM Support.

Procedure
v Follow the installation instructions on IBM Support Assistant (ISA) website at: IBM Support Assistant

(ISA).

v Read the “First Steps" section of the documentation for IBM Support Assistant to run the customization
wizard, or migrate from a previous version of IBM Support Assistant. Read the "Tutorials" section to
learn more about the capabilities of ISA.

Diagnosing problems using IBM Support Assistant tooling
The IBM Support Assistant (ISA) is a free local software serviceability workbench that helps you resolve
questions and problems with IBM software products.

About this task

Tools for IBM Support Assistant perform numerous functions from memory-heap dump analysis and Java
core-dump analysis to enabling remote assistance from IBM Support. All of these tools come with help and
usage documentation that allow you to learn about the tools and start using them to analyze and resolve
your problems.

The following are samples of the tools available in IBM Support Assistant:

Memory Dump Diagnostic for Java (MDD4J)
The Memory Dump Diagnostic for Java tool analyzes common formats of memory dumps (heap
dumps) from the Java virtual machine (JVM) that is running the WebSphere Application Server or
any other stand-alone Java applications. The analysis of memory dumps is targeted towards
identifying data structures within the Java heap that might be root causes of memory leaks. The
analysis also identifies major contributors to the Java heap footprint of the application and their
ownership relationship. The tool is capable of analyzing very large memory dumps obtained from
production-environment application servers encountering OutOfMemoryError issues.

IBM Thread and Monitor Dump Analyzer (TMDA)
IBM Thread and Monitor Dump Analyzer (TMDA) provides analysis for Java thread dumps or
javacores such as those from WebSphere Application Server. You can analyze thread usage at
several different levels, starting with a high-level graphical view and drilling down to a detailed tally
of individual threads. If any deadlocks exist in the thread dump, TMDA detects and reports them.

Log Analyzer
Log Analyzer is a graphical user interface that provides a single point of contact for browsing,

198 Troubleshooting and support

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

analyzing, and correlating logs produced by multiple products. In addition to importing log files
from multiple products, Log Analyzer enables you to import and select symptom catalogs against
which log files can be analyzed and correlated.

IBM Visual Configuration Explorer
The IBM Visual Configuration Explorer provides a way for you to visualize, explore, and analyze
configuration information from diverse sources.

IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT)
The IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT) parses IBM
verbose garbage-collection (GC) trace, analyzes Java heap usage, and recommends key
configurations based on pattern modeling of Java heap usage. Only verbose GC traces that are
generated from IBM Java Development Kits (JDKs) are supported.

IBM Assist On-site
IBM Assist On-site provides remote desktop capabilities. You run this tool when you are instructed
to do so by IBM Support personnel. With this live remote-assistance tool, a member of the IBM
Support team can view your desktop and share control of your mouse and keyboard to help you
find a solution. The tool can speed up problem determination, data collection, and ultimately your
problem solution.

Procedure

To install tools for the IBM Support Assistant Workbench on a Windows or Linux Intel operating system, go
to the Update menu and select Tool Add-ons. A list of all available tools appears, and you can select the
tools that you would like to install.
You can install, update, or remove tools from the IBM Support Assistant Workbench at any time.

Chapter 14. Troubleshooting help from IBM 199

200 Troubleshooting and support

Chapter 15. Collecting Java dumps and core files using the
administrative console

You can use the Java runtime environment to create dump and core files to help with troubleshooting. You
can use the administrative console to trigger the creation of these dumps and core files.

About this task

Note: The Java virtual machine (JVM) is capable of producing Java dump and core files to aid in
troubleshooting. You can use heap dump and system dump files to help you diagnose
memory-related problems, such as memory leaks. You can use Java core files to help you diagnose
problems where the CPU is persistently 100% busy, when threads are hanging, or where threads
are in a deadlock.

Note: The process of generating dump and core files can have a noticeable performance impact on your
system that can last for many seconds or minutes. If necessary, use your test and development
environments to better understand the impact of generating dump and core files.

Procedure
1. In the navigation pane, click Troubleshooting > Java dumps and cores.

2. Select the server or servers you need to collect a dump or core from.

3. Click System Dump or Java Core or Heap Dump depending on your need.

Results

The system dump or heap dump or Java core is created and stored in the profile root directory of the
server from which you requested the dump or core.

Java dump and core collection
Use this page to generate various Java dumps and cores from within the administrative console.

To view this administrative console page, click Troubleshooting > Java dumps and cores.

Select one or more of the listed servers, and click one of the following buttons to generate dumps. You
can analyze dumps and cores using problem determination tools available for the IBM Support Assistant.

Heap dump
A heap dump is a snapshot of JVM memory. It shows live objects in the memory and references
between them.

 You can use this option to debug conditions such as memory leaks, heap fragmentation or to
investigate what objects are consuming the largest part of the memory.

Java core
Use this button to investigate why a server is hanging or investigate messages in the logs that
indicate a thread has not completed its work in the expected amount of time.

System dump
Use this button to generate system native dumps of the server process. These dumps can be
quite large.

© Copyright IBM Corp. 2011 201

202 Troubleshooting and support

Chapter 16. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

 Table 39. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot

user_home/IBM/WebSphere/AppClient (Java EE
Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

 Table 40. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot

user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this topic.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the

© Copyright IBM Corp. 2011 203

target system. The following list shows the default installation root directory for Version 8 of the
GSKit, where product_root is the root directory of the product that is installing GSKit, for example
IBM HTTP Server or the web server plug-in.

product_root/gsk8

product_root\gsk8

profile_root

 Table 41. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot

user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

 Table 42. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot

user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

 Table 43. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root

/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot

user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

204 Troubleshooting and support

Table 44. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root

/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot

user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Chapter 16. WebSphere Application Server default directories 205

206 Troubleshooting and support

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

 Table 45. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot

user_home/IBM/WebSphere/AppClient (Java EE
Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

 Table 46. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot

user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this topic.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the

© IBM Corporation 2005 207

target system. The following list shows the default installation root directory for Version 8 of the
GSKit, where product_root is the root directory of the product that is installing GSKit, for example
IBM HTTP Server or the web server plug-in.

product_root/gsk8

product_root\gsk8

profile_root

 Table 47. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot

user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

 Table 48. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot

user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

 Table 49. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root

/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot

user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

208 Troubleshooting and support

Table 50. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root

/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot

user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Appendix. WebSphere Application Server default directories 209

210 Troubleshooting and support

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

 IBM Director of Intellectual Property & Licensing
 IBM Corporation
 North Castle Drive
 Armonk, NY 10504-1785
 USA

© Copyright IBM Corp. 2011 211

212 Troubleshooting and support

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 213

http://www.ibm.com/legal/copytrade.shtml

214 Troubleshooting and support

Index

D
directory

installation
conventions 203, 207

© Copyright IBM Corp. 2011 215

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. How do I troubleshoot?
	Chapter 2. Debugging applications
	Debugging components in the IBM Rational Application Developer for WebSphere
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters

	Chapter 3. Adding logging and tracing to your application
	Using Java logging in an application
	Using a logger
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters

	Java logging
	Configuring the logger hierarchy
	Creating log resource bundles and message files
	Logger.properties file for configuring logger settings

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Logging Common Base Events in WebSphere Application Server
	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	Common Base Event structure
	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination

	Logging with Common Base Event API and the Java logging API
	Generate Common Base Event content with the default event factory
	Common Base Event content handler
	Creating custom Common Base Event content handlers
	Common Base Event factory home
	Creating custom Common Base Event factory homes
	Common Base Event factory context
	Common Base Event factory

	java.util.logging -- Java logging programming interface
	Logger.properties file
	Logging Common Base Events in WebSphere Application Server
	Showlog commands for Common Base Events

	Chapter 4. Configuring Java logging using the administrative console
	Log streams and expected output
	Log level settings
	Changing the message IDs used in log files
	Converting log files to use IBM unique Message IDs
	convertlog command
	MessageConverter class

	HTTP error, FRCA, and NCSA access log settings
	Enable logging service at server start-up
	Enable NCSA access logging
	NCSA access log file path
	NCSA access log maximum size
	Maximum number of historical files
	NCSA access log format
	Enable error logging
	Error log file path
	Error log maximum size
	Maximum number of historical files
	Error log level

	Chapter 5. Using HPEL to troubleshoot applications
	High Performance Extensible Logging (HPEL)
	Basic mode and HPEL mode

	Changing from basic mode to HPEL logging and tracing
	Changing from HPEL to basic mode logging and tracing
	Configuring HPEL
	Configuring HPEL with wsadmin scripting
	HPEL logging and trace settings
	Configure HPEL logging
	Configure HPEL trace
	Configure HPEL text log
	View HPEL logs and trace
	Change log detail levels
	Change log and trace mode
	Manage process logs

	HPEL log configuration settings
	Directory path
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Save runtime changes to configuration as well

	HPEL trace configuration settings
	Trace to a directory
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Trace to a memory buffer
	Memory buffer size
	Dump button
	Directory to use for tracing and dumping memory buffer
	Save runtime changes to configuration as well

	HPEL text log configuration settings
	Enable Text Log
	Directory path
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Text Output Format
	Include trace records
	Save runtime changes to configuration as well

	Log viewer settings
	Log view table
	Content and filtering details
	Server instance
	View contents
	System Out
	System Error
	Logs and trace
	Filtering
	Include loggers
	Exclude loggers
	Message contents
	Event timing
	From
	On (first occurrence)
	Until
	On (second occurrence)

	LogViewer command-line tool
	Developing log and trace reading applications
	Determining which of basic mode and HPEL mode is enabled

	Chapter 6. Using sensitive log and trace guard
	Sensitive log and trace guard
	Enabling and disabling sensitive log and trace guard
	Maintaining sensitive log and trace guard lists

	Chapter 7. Diagnosing problems (using diagnosis tools)
	Chapter 8. Diagnosing problems with message logs
	Viewing JVM logs
	JVM log interpretation
	Configuring the JVM logs
	Java virtual machine (JVM) log settings
	File Name
	File formatting
	Log file rotation
	Maximum Number of Historical Log Files
	Installed Application Output

	Monitoring application logging using JMX notifications
	Process logs
	Configuring the service log
	IBM service log settings
	Enable service log
	File Name
	Maximum File Size
	Enable Correlation ID

	Viewing the service log

	Chapter 9. Working with trace
	Enabling trace on client and stand-alone applications
	Tracing and logging configuration
	Enabling trace at server startup
	Enabling trace on a running server
	Managing the application server trace service
	Trace output
	Diagnostic trace service settings
	Trace Output
	Trace Output Format
	Trace Output

	Select a server to configure logging and tracing
	Server
	Host name
	Version
	Type
	Status

	Log and trace settings
	Switch to HPEL Mode button
	Diagnostic Trace
	Java virtual machine (JVM) Logs
	Process Logs
	IBM Service Logs
	Change Log Level Details
	NCSA access and HTTP error logging

	Chapter 10. Troubleshooting class loaders
	Class loading exceptions
	Class loader viewer service settings
	Enable service at server startup

	Enterprise application topology
	Enterprise applications topology

	Class loader viewer settings
	Class Loader

	Search settings
	Search type
	Search terms

	Chapter 11. Configuring the hang detection policy
	Hung threads in Java Platform, Enterprise Edition applications
	Example: Adjusting the thread monitor to affect server hang detection

	Chapter 12. Working with troubleshooting tools
	Gathering information with the collector tool (deprecated)
	Collector tool output
	collector command - summary option

	First failure data capture (FFDC)
	Configuring first failure data capture log file purges

	Chapter 13. Working with Diagnostic Providers
	Diagnostic Providers
	Diagnostic Provider IDs
	Diagnostic Provider configuration dumps, state dumps, and self tests
	Diagnostic Provider registered attributes and registered tests
	Diagnostic Provider names
	The simpler interfaces provided by the Diagnostic Service MBean

	Creating a Diagnostic Provider
	Diagnostic Provider Extensible Markup Language
	Choosing a Diagnostic Provider name
	Implementing a Diagnostic Provider
	Diagnostic Provider method implementation

	Creating a Diagnostic Provider registration XML file

	Associating a Diagnostic Provider ID with a logger
	Static Assignment
	Dynamic Assignment

	Using Diagnostic Providers from wsadmin scripts
	Viewing the run time configuration of a component using Diagnostic Providers
	Configuration data quick link or server selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	Diagnostic Providers (selection)
	Diagnostic Providers

	Configuration data
	Node
	Server
	Name
	Value
	Description

	Viewing the run time state data or configuring the state data collection specifications for a Diagnostic Provider
	Diagnostic Provider State Collection Specification
	State Data Quick Link or Server Selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	State data
	Node
	Server
	Name
	Value
	Description

	Detailed state specification
	Attribute
	Description

	Change state specification
	Name

	Modifying the State Collection Specification from wsadmin scripts

	Running a self diagnostic on a Diagnostic Provider
	Tests Quick Link or Server Selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	Test selection
	Test identification
	Test description

	Test Results
	Server
	Node
	Severity
	Message

	Test result details
	Name
	Value
	Description

	Chapter 14. Troubleshooting help from IBM
	Diagnosing and fixing problems: Resources for learning
	Using IBM Support Assistant
	Diagnosing problems using IBM Support Assistant tooling

	Chapter 15. Collecting Java dumps and core files using the administrative console
	Java dump and core collection

	Chapter 16. Directory conventions
	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	D

